WO2014062000A1 - Susceptor for epitaxial growing and method for epitaxial growing - Google Patents

Susceptor for epitaxial growing and method for epitaxial growing Download PDF

Info

Publication number
WO2014062000A1
WO2014062000A1 PCT/KR2013/009259 KR2013009259W WO2014062000A1 WO 2014062000 A1 WO2014062000 A1 WO 2014062000A1 KR 2013009259 W KR2013009259 W KR 2013009259W WO 2014062000 A1 WO2014062000 A1 WO 2014062000A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
gas
susceptor
height
control member
Prior art date
Application number
PCT/KR2013/009259
Other languages
French (fr)
Korean (ko)
Inventor
강유진
Original Assignee
주식회사 엘지실트론
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130121561A external-priority patent/KR20140049473A/en
Application filed by 주식회사 엘지실트론 filed Critical 주식회사 엘지실트론
Publication of WO2014062000A1 publication Critical patent/WO2014062000A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68735Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by edge profile or support profile
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow
    • C23C16/45591Fixed means, e.g. wings, baffles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4585Devices at or outside the perimeter of the substrate support, e.g. clamping rings, shrouds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/12Substrate holders or susceptors
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • C30B25/165Controlling or regulating the flow of the reactive gases

Definitions

  • the present invention relates to susceptors for manufacturing epitaxial wafers, and more particularly to methods of manufacturing susceptors for controlling the flatness of wafer edges.
  • Silicon epitaxial wafers in which a dopant such as boron (B) is doped and a relatively small amount of impurities are doped on a silicon wafer having a low specific resistance to vapor-grow a silicon epitaxial layer having a high specific resistance have a high gathering capability and low stretch-up. Latch-up and high slip resistance at high temperatures make it widely used as a wafer for manufacturing LSI devices as well as MOS devices.
  • the quality items required for such an epitaxial wafer include flatness, degree of particle contamination, and the like on the surface of the epitaxial wafer including the base substrate and the epitaxial layer, and the epitaxial layer as an item on the epitaxial itself. Thickness uniformity, resistivity and its uniformity, metal contamination, lamination defect, slip dislocation, and the like.
  • the flatness has a great influence on the photolithography process, the chemical mechanical polishing (CMP) process, and the bonding process for the silicon on insulator (SOI) wafer during the manufacturing of the semiconductor device on the epitaxial wafer.
  • edge roll-off in which the edge of the wafer is pushed up or down, has a great influence on the defocus in the photolithography process, the polishing uniformity in the CMP process, and the poor bonding in the SOI bonding process. Since the flatness of the wafer edge is becoming more important in the quality items of the epitaxial wafer as the diameter becomes larger than 300 mm, it is necessary to identify the cause of the distortion of the flatness of the edge of the epitaxial wafer.
  • the semiconductor wafer serving as the substrate is mounted inside the chamber of the epitaxial manufacturing apparatus at a predetermined rotational speed so as to obtain a uniform film thickness as a whole, thereby forming an epitaxial layer according to the rotation.
  • the crystal orientation of the wafer always changes with respect to the epitaxial manufacturing apparatus. That is, since the wafer is fixed to a susceptor having a pocket, the crystal orientation of the wafer is fixed constantly with respect to the susceptor.
  • Figure 1 is a view showing the crystal orientation of the wafer
  • Figure 2 shows the thickness of the epitaxial layer deposited according to the orientation of the wafer when using a susceptor with a constant pocket height for each orientation when the epitaxial layer is deposited on a conventional wafer It is a graph.
  • the 0 degree direction becomes a ⁇ 110> crystal orientation
  • a direction shifted 45 degrees with respect to the ⁇ 110> crystal orientation is ⁇ 100> crystal orientation. That is, the ⁇ 100> and ⁇ 110> crystal orientations exhibit the same crystal orientation at intervals of 90 degrees.
  • FIG. 2 it is a graph showing a portion where the variation of the thickness of the epitaxial layer deposited according to the orientation of the wafer of FIG. 1 is greatest.
  • the thickness of the epitaxial layer of the edge portion 149 mm from the center of the wafer is formed thickest at around 180 degrees of the wafer and thinnest at 135 and 225 degrees. The result was obtained.
  • the growth rate of the epitaxial layer varies depending on the characteristics of the crystal plane according to the orientation of the wafer, and variations in the thickness of the epitaxial layer at the wafer edges occur.
  • This means that the growth of the epitaxial layer increases in the ⁇ 110> crystal orientation of the wafer and the growth of the epitaxial layer decreases relatively in the ⁇ 100> crystal orientation of the wafer.
  • the interval of the thickness of the epitaxial layer occurs at the edge portion of the wafer at a 45 degree interval.
  • the quality of the wafer is affected and the semiconductor element is formed.
  • the present invention has been made to solve the above-mentioned problems, and an object thereof is to provide a susceptor for improving the flatness of the epitaxial wafer surface, in particular for uniformly controlling the thickness of the edge portion.
  • the present invention provides a susceptor for manufacturing an epitaxial wafer in which an epitaxial layer is grown by reacting a wafer and a source gas in a chamber, the susceptor comprising: a pocket having an opening in which the wafer is disposed; A ledge portion on which the wafer is supported; And a gas regulating member positioned at an outer circumferential portion of the upper surface of the susceptor opening, wherein the gas regulating member includes a first gas regulating member formed in a predetermined region facing the wafer crystal direction, and the wafer ⁇ A second gas regulating member and a third gas regulating member formed between the first gas regulating member and the second gas regulating member in a predetermined region facing the crystal direction; The height of the second gas regulating member is formed to have a predetermined ratio, and the first, second and third gas regulating members are formed so that the inclination from the center direction of the wafer to the susceptor direction is different from each other. do.
  • the gas flow when the epitaxial layer is formed on the semiconductor wafer, the gas flow can be controlled by differently forming the height of the gas flow increasing and decreasing device (gas control member) on the outer periphery of the susceptor according to the crystal orientation so that the epitaxial layer is epitaxial.
  • the thickness of the wafer can be controlled to be uniform.
  • the gas flow can be finely adjusted for each region of the wafer, so that the thickness of the epitaxial wafer can be constantly controlled.
  • the susceptor provided with the gas adjusting member according to the embodiment of the present invention it is possible to provide a semiconductor wafer with a uniform thickness of the edge portion, thereby improving the quality and production yield of the semiconductor wafer on which the element is formed. have.
  • FIG. 2 is a view showing the epilayer thickness according to the wafer crystal orientation when using a conventional susceptor
  • 3 is a plan view showing a region in which the thickness of the wafer epitaxial layer increases or decreases depending on the crystal direction of the wafer;
  • FIG. 4 is a cross-sectional view showing the structure of a general susceptor for manufacturing an epitaxial wafer.
  • FIG. 5 is a view showing one end surface of a susceptor according to an embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing a gas adjusting member for varying the gas flow according to another embodiment of the present invention
  • the semiconductor wafer is supported and rotated by a susceptor provided inside the chamber of the epitaxial manufacturing apparatus at a predetermined rotation speed to form a uniform film thickness.
  • a susceptor provided inside the chamber of the epitaxial manufacturing apparatus at a predetermined rotation speed to form a uniform film thickness.
  • a member capable of changing the above elements is provided near the inner peripheral surface of the opening of the pocket on which the wafer is supported. It is desirable to.
  • an apparatus for controlling the epilayer thickness for each crystal orientation through a gas adjusting member formed on the upper surface near the opening of the susceptor And to provide a method.
  • various comparative examples are intended to control the difference in the optimized height of the gas control member formed differently for each crystal orientation.
  • the growth rate of the epitaxial layer is known to depend on the crystal orientation, and due to the change in the growth rate, the thickness of the epitaxial layer increases and decreases at 90 degrees. do.
  • 3 is a plan view illustrating a region in which the thickness of the wafer epitaxial layer increases or decreases along the crystal direction of the wafer.
  • a region having a predetermined angle with respect to 0 degrees, 90 degrees, 180 degrees, and 270 degrees has a relatively thick wafer epi layer thickness.
  • the predetermined area on the basis of the above-mentioned 45 degrees, 135 degrees, 225 degrees, and 315 degrees represents a region where the thickness of the wafer epi layer is relatively thin.
  • the above angle may vary depending on the crystal orientation.
  • an area within a predetermined range on the basis of the 0 degrees, 90 degrees, 180 degrees, and 270 degrees is an area within a predetermined range on the basis of the Higher region, 45 degrees, 135 degrees, 225 degrees, and 315 degrees.
  • the lower region, and the region between the higher region and the lower region is referred to as a buffer region.
  • the higher region, the lower region, and the buffer region mean regions on the susceptor where the gas regulating member is formed to control the flatness of the wafer edge portion. That is, the ⁇ 100> crystal direction of the wafer may be defined as a lower region, the ⁇ 110> crystal direction may be defined as a higher region, and a predetermined region between the lower region and the higher region may be defined as a buffer region.
  • FIG. 4 is a view showing the structure of a susceptor for producing an epitaxial wafer.
  • the semiconductor wafer 5 is supported by a ledge portion 41 formed in a pocket 20, which is an opening of the susceptor 10.
  • the pocket 20 is basically formed in a circular concave shape having a flat bottom and includes the ledge portion 41 and a bottom portion 42 formed to have a step with the ledge portion 41.
  • the wafer can be accommodated in the concave shape of the inner side of 20.
  • the shape of the pocket is defined by the inner circumferential surface 21 and the bottom surface
  • the ledge portion 41 has a tapered top surface extending only a predetermined length from the inner circumferential surface 21 to the inner circumferential side, and at the bottom surface along the circumferential direction of the opening. Is formed.
  • the ledge 41 has a structure in which the upper surface has a tapered surface and becomes the bottom surface of the pocket in order to keep the contact of the semiconductor wafer as small as possible and to securely support the wafer 5.
  • the susceptor as described above is provided inside the reaction chamber (not shown), and the epitaxial layer is formed on the wafer 5 while the epitaxial growth gas is injected.
  • the gas injection port is provided on the outer circumferential side (not shown) of the susceptor, and the source gas flows in the inner circumferential direction in which the wafer is located at the outer circumference of the susceptor. That is, the source gas reaches the wafer through the top surface 22 of the susceptor opening, and the length of the inner circumferential surface of the pocket in which the opening is inclined at right angles may be defined as the height of the pocket H, and the height of the pocket ( H) is a factor that affects the flow of gas.
  • FIG. 5 is a view showing one end surface of the susceptor according to the embodiment of the present invention.
  • the gas adjusting member 25 is formed on the upper surface 22 of the susceptor opening to adjust the gas flow rate flowing from the outer periphery of the susceptor to the wafer direction, so that the variation in the thickness of the wafer edge portion is particularly reduced.
  • a susceptor to reduce it.
  • Comparative Example 1 a susceptor in which the height H of the susceptor's pockets is uniformly formed in each direction of the wafer crystal in FIG. 4 was used. An epitaxial deposition process on the wafer was performed using the susceptor. After the measurement, the thickness of the epi layer on the wafer edge is measured.
  • the thickness of the epi layer tends to increase in the ⁇ 110> crystal directions of the wafer at 0 degrees, 90 degrees, 180 degrees, and 270 degrees, and 45 degrees, 135 degrees, and 225 in the ⁇ 100> crystal directions.
  • FIG. 315 it can be seen that the thickness of the epi layer tends to decrease, and the maximum deviation of the epi layer thickness in the entire region of the wafer edge at the 149 mm point is 173.44 nm. Accordingly, it can be seen from Comparative Example 1 that the deviation of the epitaxial layer thickness is about 173.44 nm in the entire region of the wafer edge at 149 mm.
  • the height (H) of the pocket of the susceptor is differently formed in the higher region, the lower region, and the buffer region in FIG. 4, and the thickness of the epitaxial layer on the wafer edge is measured after the epitaxial deposition process on the wafer. It is measured.
  • the pocket height H of the lower region is increased by 57%.
  • the pocket height H of the higher region was formed.
  • the pocket height H of the lower region is 0.7 mm
  • the pocket height H of the upper region is 1.1 mm which increases the pocket height H of the lower region by 57%
  • the pocket height of the buffer region applies any value between the Lower and Higher regions.
  • the height (H) of the pocket may be a height including the height of the gas adjusting member.
  • the height of the pocket may include the height of the first gas regulating member formed in the Higher region, the second gas regulating member formed in the Lower region and the third gas regulating member formed in the Buffer region.
  • FIG. 7 is a graph measuring epitaxial thickness of the wafer edge portion according to Comparative Example 2.
  • the minimum deviation of the epitaxial layer thickness of the entire edge portion of the wafer 149 mm was 209.05 nm.
  • the height H of the susceptor pocket is formed differently in the higher region, the lower region, and the buffer region in FIG. 4 to measure the thickness of the epilayer on the wafer edge after performing the epilayer deposition process on the wafer. It is.
  • the present invention is to control the difference between the pocket height of the lower region and the pocket height of the upper region, to provide an optimized ratio of the pocket height of the lower region and the higher region that can make the thickness of the wafer edge portion uniform.
  • the pocket height H of the higher region is increased by 25% compared to the pocket height H of the lower region, and the thickness variation of the wafer edge is evaluated accordingly.
  • the pocket height H of the lower region is 0.8 mm
  • the pocket height H of the upper region is 1.0 mm which increases the pocket height H of the lower region by 25%
  • the pocket height H of the buffer region is Any value between the Lower and Higher regions was applied.
  • the height (H) of the pocket may be a height including the height of the gas control member formed on the outer peripheral portion of the upper surface of the susceptor opening.
  • the height of the pocket may include the height of the first gas regulating member formed in the Higher region, the second gas regulating member formed in the Lower region and the third gas regulating member formed in the Buffer region.
  • the minimum deviation of the epitaxial layer thickness was 128.75 nm in all sections of the wafer edge at 149 mm.
  • Comparative Example 1 and Example are compared.
  • Comparative Example 1 In addition, the data of Comparative Example 1 and Comparative Example 2 are compared.
  • Comparative Example 1 In Comparative Example 1 in which the heights of the pockets were all formed identically according to the crystal direction of the wafer, the thickness variation of the wafer edge was 173.44 nm, and the heights of the Higher and Lower regions were formed differently according to the crystal direction of the wafer.
  • Comparative Example 2 increased the height of the higher area pocket by 157% compared to the height of the lower area pocket, but the evaluation results show that the thickness variation is intensified compared to that of Comparative Example 1, which does not have a step difference for each area.
  • the preferred height of the gas adjusting member to be formed in the Higher region, the Lower region and the Buffer region in the present invention can be set through Comparative Examples 1 and 2 and Examples.
  • the gas regulating member is formed to increase or decrease the flow of gas flowing in the wafer, and the height of the pocket is set including the height of one side of the gas regulating member.
  • the height of the pocket including the first gas regulating member formed in the higher region may be formed in a range of 115% to 157% relative to the height of the pocket including the second gas regulating member formed in the lower region.
  • the height of the pocket formed in the higher region is 125% as compared with the height of the pocket formed in the lower region as in the evaluation result of the above-described embodiment.
  • the height of the pocket may be a height including the height of the gas adjusting member as described above.
  • the buffer region is formed to have a value between the height values of the high region and the lower region, but the buffer region does not have a constant value so that a step is not generated so that gas flows between the high region and the lower region. It is preferably set to any value having a slope.
  • the thickness of the epi layer to be deposited on the wafer increases, the thickness variation of the epi layer on the wafer edge portion tends to increase.
  • the thickness of the epi layer increases, other quality aspects of backside deposition increase, but this can be reduced as the pocket height increases. Therefore, according to the thickness of the epi layer to be formed, the height of each region pocket to be formed in the present invention may be raised or lowered as a whole.
  • the pocket thickness of the lower region was evaluated to be 0.8 mm, and the pocket thickness of the higher region was 1 mm.
  • the present invention is not limited thereto. If it is satisfied, the epilayer flatness of the wafer edge portion can be improved.
  • the pocket height may be adjusted by coating silicon on the susceptor.
  • silicon is deposited in the lower region and the higher region on the susceptor, and if the height is to be adjusted again, the coated silicon may be removed by HCL etching.
  • the present invention proposes another embodiment of the gas adjusting member formed by the crystal orientation zone of the wafer while setting the height of the pocket by dividing the crystal orientation of the wafer for each zone.
  • FIG. 9 is a sectional view showing a gas adjusting member according to another embodiment.
  • a gas adjusting member 30 is formed on the upper surface 22 of the opening of the pocket 20 provided in the susceptor 10 to control the flow of gas.
  • the gas regulating member 30 is formed to be inclined from the outer circumferential end of the susceptor to the end side or the edge side of the wafer direction to reduce the flow of gas flowing from the outer circumference of the susceptor 10 to the wafer direction. do. That is, the gas regulating member 30 may be formed in a (110) crystal orientation, that is, a higher region where the thickness of the epi layer is relatively thick, and the height H2 of the inner pocket is greater than the height D2 of the outer pocket. Larger, the epi layer can be made thinner because the flow of gas is reduced than in other regions.
  • the gas regulating member 30 proposed in FIG. 9 has a structure in which the height of the pockets is sequentially changed, and since the source gas can flow fluidly, the epitaxial layer thickness can be more finely adjusted, which is advantageous in improving the thickness variation.
  • the gas adjusting member 30 of FIG. 9 may be simultaneously formed in the higher region and the lower region.
  • the gas adjusting member 30 is inclined toward the center of the wafer in the susceptor direction to change the flow rate of the gas as shown in FIG. 9. It may be formed in the region and the lower region.
  • the inclination of the first gas regulating member formed in the higher region is made larger than the inclination of the second gas regulating member formed in the lower region, thereby controlling the variation in the thickness of the epitaxial film at the edge portion of the wafer to be increased. have.
  • the gas regulating member 30 is inclined from the center direction of the wafer to the susceptor direction so as to reduce the flow rate of the gas. It may be formed in the lower region. At this time, the inclination of the second gas regulating member formed in the lower region is made larger than the inclination of the first gas regulating member formed in the higher region, so that the variation in the thickness of the epitaxial film of the edge portion of the wafer to be reduced can be controlled. have.
  • the gas control member may be provided in a stepped, trapezoidal, triangular shape according to the need to increase or decrease the gas flow.
  • Embodiments of the various gas regulating members proposed in the present invention may be applied to reduce the variation in the thickness of the edge portion appearing for each orientation of the epitaxial wafer.
  • the gas regulating member decreases the flow rate of gas
  • the gas regulating member is formed in the high region of the ⁇ 110> crystal orientation, and the case in which the gas flow rate is increased is formed in the Lower region of the ⁇ 100> crystal orientation.
  • the gas regulating member for reducing the gas flow rate may be formed only in the crystal orientation region, and the gas regulating member may not be formed in the ⁇ 100> crystal orientation region and the buffer region, and vice versa.
  • the present invention the case where the diameter of the wafer is 300 mm has been described as an example. However, the present invention is not limited thereto, and the present invention may be applied even when the diameter of the wafer is further expanded to 300 mm or more.
  • the crystal orientation is also described with respect to ⁇ 100>, ⁇ 110>, but can be applied to both the [110] direction and [100] direction having the same crystal characteristics.
  • the gas flow can be controlled by forming a gas flow increasing and decreasing device (gas regulating member) with different heights for each crystal orientation at the outer periphery of the susceptor.
  • the thickness of the epitaxial wafer can be controlled to be constant according to the diameter.
  • the gas flow can be finely adjusted for each region of the wafer, so that the thickness flatness of the epitaxial wafer can be constantly controlled.
  • the susceptor according to the embodiment of the present invention it is possible to provide a semiconductor wafer with uniform edge flatness, thereby improving the quality and production yield of the semiconductor wafer on which the device is formed.
  • the epitaxial growth of the silicon wafer 100 surface has been described as an example, but the present invention is not limited thereto, and is used for the epitaxial manufacturing apparatus of all materials having an epitaxial growth rate with crystal orientation dependence, or used in the apparatus. It can be used in susceptors.

Abstract

The present invention relates to a susceptor for epitaxial growing, which is for manufacturing an epitaxial wafer made by performing a reaction of a wafer and a source gas inside a chamber and growing an epitaxial layer, comprising: a pocket provided with an opening on which the wafer is arranged; a ledge portion for supporting the wafer; and a gas control member positioned on the outer circumferential portion of the upper surface of the susceptor opening, wherein the gas control member comprises a first gas control member which is formed on a predetermined area opposite a crystalline direction of the wafer (110), a second gas control member which is formed on a predetermined area opposite the crystalline direction of the wafer (100), and a third gas control member which is formed between the first gas control member and the second gas control member, wherein the first gas control member and the second gas control member are formed so that the heights thereof have a predetermined ratio, and wherein the first, second, and third gas control member are formed so that tilt angles thereof from the center of the wafer toward a susceptor direction are different from each other. As a result, when forming the epitaxial layer on a semiconductor wafer, gas flow can be controlled by forming the heights of devices for increasing/decreasing gas flow around the outer circumferential portion of the susceptor (gas control members) differently according to crystalline directions, thereby enabling control so that the thickness of the epitaxial wafer is uniformly formed.

Description

에피택셜 성장용 서셉터 및 에피택셜 성장방법Susceptor for epitaxial growth and epitaxial growth method
본발명은 에피택셜 웨이퍼를 제작하기 위한 서셉터에 관한 것으로, 특히 웨이퍼 가장자리의 평탄도를 제어하기 위한 서셉터를 제조하는 방법에 관한 것이다. FIELD OF THE INVENTION The present invention relates to susceptors for manufacturing epitaxial wafers, and more particularly to methods of manufacturing susceptors for controlling the flatness of wafer edges.
붕소(B)등의 불순물이 도핑되어 낮은 비저항을 가지는 실리콘 웨이퍼 상에 상대적으로 불순물이 적게 도핑되어 높은 비저항을 가지는 실리콘 에피택셜층을 기상 성장시킨 실리콘 에피택셜 웨이퍼는, 높은 게더링 능력과 낮은 레치업(latch-up)특성, 그리고 고온에서 슬립(slip)에 강한 특징을 가지고 있어, 최근 MOS 소자뿐 아니라 LSI 소자 제조용 웨이퍼로 널리 이용되고 있다. Silicon epitaxial wafers in which a dopant such as boron (B) is doped and a relatively small amount of impurities are doped on a silicon wafer having a low specific resistance to vapor-grow a silicon epitaxial layer having a high specific resistance have a high gathering capability and low stretch-up. Latch-up and high slip resistance at high temperatures make it widely used as a wafer for manufacturing LSI devices as well as MOS devices.
이러한 에피택셜 웨이퍼에 대해 요구되는 품질 항목으로는, 기재 기판과 에피택셜층을 포함한 에피택셜 웨이퍼의 표면에 대한 항목으로서 평탄도, 입자 오염 정도 등이 있고, 에피택셜 자체에 대한 항목으로서 에피택셜층의 두께 균일도, 비저항 및 그 균일도, 금속 오염, 적층 결함, 슬립 전위 등이 있다. The quality items required for such an epitaxial wafer include flatness, degree of particle contamination, and the like on the surface of the epitaxial wafer including the base substrate and the epitaxial layer, and the epitaxial layer as an item on the epitaxial itself. Thickness uniformity, resistivity and its uniformity, metal contamination, lamination defect, slip dislocation, and the like.
이중에서 평탄도는 에피택셜 웨이퍼 상에 반도체 소자를 제조하는 과정에서 사진 식각 공정과 CMP(chemical mechanical polishing) 공정, 그리고 SOI(Silicon On Insulator)웨이퍼를 위한 접합 공정 등에 많은 영향을 미친다. 특히 웨이퍼의 가장자리가 밀려 올라가거나 내려가는 ERO(Edge Roll-off)는 사진 식각 공정에서의 디포커스(defocus), CMP 공정에서의 연마 균일도, SOI 접합 공정에서의 접합 불량 등에 큰 영향을 미치고 있으며, 웨이퍼의 직경이 300mm 이상으로 커짐에 따라 웨이퍼 가장자리의 평탄도는 에피택셜 웨이퍼의 품질 항목에서 중요도가 점점 커지고 있기에, 에피택셜 웨이퍼의 가장자리의 평탄도가 왜곡되는 현상의 원인을 규명할 필요가 있다. Among these, the flatness has a great influence on the photolithography process, the chemical mechanical polishing (CMP) process, and the bonding process for the silicon on insulator (SOI) wafer during the manufacturing of the semiconductor device on the epitaxial wafer. In particular, edge roll-off (ERO), in which the edge of the wafer is pushed up or down, has a great influence on the defocus in the photolithography process, the polishing uniformity in the CMP process, and the poor bonding in the SOI bonding process. Since the flatness of the wafer edge is becoming more important in the quality items of the epitaxial wafer as the diameter becomes larger than 300 mm, it is necessary to identify the cause of the distortion of the flatness of the edge of the epitaxial wafer.
기판이 되는 반도체 웨이퍼는 전체적으로 균일한 막두께를 얻기 위해 소정의 회전 속도로 에피택셜 제조장치의 챔버 내부에 장착되어 회전에 따라 에피택셜층이 형성된다. 따라서, 웨이퍼의 결정 방위는 에피택셜 제조 장치에 대해 항상 변화하게 된다. 즉, 상기 웨이퍼는 포켓(Pocket)을 가지는 서셉터에 고정되기 때문에 웨이퍼의 결정 방위는 서셉터에 대해 일정하게 고정된다. The semiconductor wafer serving as the substrate is mounted inside the chamber of the epitaxial manufacturing apparatus at a predetermined rotational speed so as to obtain a uniform film thickness as a whole, thereby forming an epitaxial layer according to the rotation. Thus, the crystal orientation of the wafer always changes with respect to the epitaxial manufacturing apparatus. That is, since the wafer is fixed to a susceptor having a pocket, the crystal orientation of the wafer is fixed constantly with respect to the susceptor.
웨이퍼 가장자리의 평탄도는 웨이퍼가 서셉터에 놓인 채로 회전하므로 결정 방위에 따라 주기적으로 증감하는 차이가 생기게 된다.The flatness of the wafer edge rotates with the wafer placed on the susceptor, resulting in a gradual increase and decrease depending on the crystal orientation.
도 1은 웨이퍼의 결정 방위를 나타낸 도면이며, 도 2 는 종래 웨이퍼에 에피택셜층을 증착할 시 방위별로 포켓의 높이가 일정한 서셉터를 사용한 경우 웨이퍼의 방위에 따라 증착되는 에피택셜층 두께를 나타낸 그래프이다. 1 is a view showing the crystal orientation of the wafer, Figure 2 shows the thickness of the epitaxial layer deposited according to the orientation of the wafer when using a susceptor with a constant pocket height for each orientation when the epitaxial layer is deposited on a conventional wafer It is a graph.
우선 도 1을 참조하면, 웨이퍼의 (100)면의 3시 방향을 0도라 하였을 시 상기 0도 방향은 <110>결정 방위가 되며, 상기 <110>결정 방위에 대해 45도 이동한 방향은 <100>결정 방위가 된다. 즉, <100> 및 <110>결정 방위는 90도를 주기로 같은 결정 방위를 나타내게 된다. First, referring to FIG. 1, when the 3 o'clock direction of the (100) plane of the wafer is 0 degrees, the 0 degree direction becomes a <110> crystal orientation, and a direction shifted 45 degrees with respect to the <110> crystal orientation is < 100> crystal orientation. That is, the <100> and <110> crystal orientations exhibit the same crystal orientation at intervals of 90 degrees.
도 2를 참조하면, 도 1의 웨이퍼의 방위에 따라 증착되는 에피택셜층 두께의 편차가 가장 크게 나타난 부분을 도시한 그래프이다. 직경이 300㎜인 웨이퍼에 대해 특히, 상기 웨이퍼의 중심으로부터 149㎜지점의 에지부의 에피택셜층의 두께는 웨이퍼의 180도 부근에서 가장 두껍게 형성되고, 135도 및 225도 부근에서는 가장 얇게 형성되는 평가결과가 도출되었다. Referring to FIG. 2, it is a graph showing a portion where the variation of the thickness of the epitaxial layer deposited according to the orientation of the wafer of FIG. 1 is greatest. For wafers with a diameter of 300 mm, in particular, the thickness of the epitaxial layer of the edge portion 149 mm from the center of the wafer is formed thickest at around 180 degrees of the wafer and thinnest at 135 and 225 degrees. The result was obtained.
웨이퍼의 방위에 따른 결정면의 특성에 따라 에피택셜층의 성장 속도가 달라지고, 웨이퍼 에지부 에피택셜층 두께의 편차가 발생하게 된다. The growth rate of the epitaxial layer varies depending on the characteristics of the crystal plane according to the orientation of the wafer, and variations in the thickness of the epitaxial layer at the wafer edges occur.
이는, 결국 웨이퍼의 <110>결정 방위에서는 에피택셜층의 성장이 증가하고, 웨이퍼의 <100>결정 방위에서는 에피택셜층의 성장이 상대적으로 감소되는 것을 의미한다.This, in turn, means that the growth of the epitaxial layer increases in the <110> crystal orientation of the wafer and the growth of the epitaxial layer decreases relatively in the <100> crystal orientation of the wafer.
따라서, 웨이퍼의 에지부에는 45도를 주기로 에피택셜층의 두께의 편차가 발생하는 구간이 존재하게 되며, 상기와 같은 두께의 편차가 심화됨에 따라 웨이퍼의 품질에 영향을 미치며, 반도체 소자를 형성하는 점에 있어 많은 문제점이 발생하게 된다.Therefore, the interval of the thickness of the epitaxial layer occurs at the edge portion of the wafer at a 45 degree interval. As the variation of the thickness increases, the quality of the wafer is affected and the semiconductor element is formed. There are many problems in this regard.
본발명은 상술한 문제점을 해결하기 위한 것으로서, 에피택셜 웨이퍼 표면의 평탄도를 향상시키기 위한, 특히 가장자리부의 두께를 균일하게 제어하기 위한 서셉터를 제공하는 것을 목적으로 한다.The present invention has been made to solve the above-mentioned problems, and an object thereof is to provide a susceptor for improving the flatness of the epitaxial wafer surface, in particular for uniformly controlling the thickness of the edge portion.
본 발명은 챔버 내에서 웨이퍼와 소스 가스를 반응시켜 에피택셜층을 성장시킨 에피택셜 웨이퍼를 제조하기 위한 서셉터로서, 상기 웨이퍼가 배치되는 개구부가 형성된 포켓; 상기 웨이퍼가 지지되는 렛지부; 및 상기 서셉터 개구부 윗면의 외주부에 위치하는 가스조절 부재;를 포함하고, 상기 가스조절 부재는 상기 웨이퍼 <110> 결정방향에 대향하는 소정의 영역에 형성되는 제1 가스조절 부재와, 상기 웨이퍼 <100> 결정방향에 대향하는 소정의 영역에 제2 가스조절 부재 및 상기 제1 가스조절 부재와 상기 제2 가스조절 부재 사이에 형성되는 제3 가스조절 부재를 포함하고, 상기 제1 가스조절 부재와 상기 제2 가스조절 부재의 높이는 기설정된 비율을 가지도록 형성되고, 상기 제1, 제2 및 제3 가스조절 부재는 웨이퍼의 중심방향에서 서셉터 방향으로의 경사도가 서로 상이하도록 형성되는 것을 특징으로 한다.The present invention provides a susceptor for manufacturing an epitaxial wafer in which an epitaxial layer is grown by reacting a wafer and a source gas in a chamber, the susceptor comprising: a pocket having an opening in which the wafer is disposed; A ledge portion on which the wafer is supported; And a gas regulating member positioned at an outer circumferential portion of the upper surface of the susceptor opening, wherein the gas regulating member includes a first gas regulating member formed in a predetermined region facing the wafer crystal direction, and the wafer < A second gas regulating member and a third gas regulating member formed between the first gas regulating member and the second gas regulating member in a predetermined region facing the crystal direction; The height of the second gas regulating member is formed to have a predetermined ratio, and the first, second and third gas regulating members are formed so that the inclination from the center direction of the wafer to the susceptor direction is different from each other. do.
본발명에 의하면, 반도체 웨이퍼에 에피택셜층을 형성시, 서셉터의 외주부에 가스흐름 증가 및 감소 장치(가스 조절 부재)의 높이를 결정 방위별로 다르게 형성함으로 인해 가스 흐름을 제어할 수 있으므로 에피택셜 웨이퍼의 두께를 균일하도록 제어할 수 있다. According to the present invention, when the epitaxial layer is formed on the semiconductor wafer, the gas flow can be controlled by differently forming the height of the gas flow increasing and decreasing device (gas control member) on the outer periphery of the susceptor according to the crystal orientation so that the epitaxial layer is epitaxial. The thickness of the wafer can be controlled to be uniform.
또한, 가스 조절 부재의 높이 및 각도를 웨이퍼의 결정 방위에 따라 변경함으로써, 웨이퍼의 구역별로 가스 흐름을 미세하게 조정할 수 있으므로 에피택셜 웨이퍼의 두께를 일정하게 제어할 수 있다. In addition, by changing the height and angle of the gas adjusting member according to the crystal orientation of the wafer, the gas flow can be finely adjusted for each region of the wafer, so that the thickness of the epitaxial wafer can be constantly controlled.
그리고, 본발명의 실시예에 따른 가스 조절 부재를 구비한 서셉터에 의하면, 에지부의 두께가 균일한 반도체 웨이퍼를 제공할 수 있게 되어, 소자가 형성되는 반도체 웨이퍼의 고품질화 및 생산 수율을 향상시킬 수 있다. In addition, according to the susceptor provided with the gas adjusting member according to the embodiment of the present invention, it is possible to provide a semiconductor wafer with a uniform thickness of the edge portion, thereby improving the quality and production yield of the semiconductor wafer on which the element is formed. have.
도 1은 반도체 웨이퍼의 결정 방위를 나타내는 도면1 shows a crystal orientation of a semiconductor wafer
도 2는 종래의 서셉터를 사용할 시 웨이퍼 결정 방위에 따른 에피층 두께를 나타낸 도면 2 is a view showing the epilayer thickness according to the wafer crystal orientation when using a conventional susceptor
도 3은 웨이퍼의 결정 방향에 따라 웨이퍼 에피층 두께의 증감이 일어나는 영역을 도시한 평면도3 is a plan view showing a region in which the thickness of the wafer epitaxial layer increases or decreases depending on the crystal direction of the wafer;
도 4는 에피택셜 웨이퍼를 제작하기 위한 일반적인 서셉터의 구조를 나타낸 단면도4 is a cross-sectional view showing the structure of a general susceptor for manufacturing an epitaxial wafer.
도 5는 본 발명의 실시예에 따른 서셉터의 일단면을 나타낸 도면5 is a view showing one end surface of a susceptor according to an embodiment of the present invention.
도 6은 비교예 1에 따라 웨이퍼 에지부의 에피층 두께를 측정한 그래프6 is a graph measuring epitaxial thickness of the wafer edge portion according to Comparative Example 1
도 7은 비교예 2에 따라 웨이퍼 에지부의 에피층 두께를 측정한 그래프7 is a graph measuring epitaxial thickness of the wafer edge portion according to Comparative Example 2;
도 8은 실시예에 따라 웨이퍼 에지부의 에피층 두께를 측정한 그래프8 is a graph measuring the epitaxial thickness of the wafer edge portion according to the embodiment
도 9는 본발명의 다른 실시예에 따른 가스흐름을 변동시키기 위한 가스조절 부재를 나타낸 단면도9 is a cross-sectional view showing a gas adjusting member for varying the gas flow according to another embodiment of the present invention
이하 첨부된 도면들을 참조하여 본 발명의 실시예들을 상세하게 설명하지만, 본 발명의 실시예에 의해 제한되거나 한정되는 것은 아니다. 본 발명을 설명함에 있어서, 공지된 기능 혹은 구성에 대해 구체적인 설명은 본 발명의 요지를 명료하게 하기 위해 생략될 수 있다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings, but are not limited or limited by the embodiments of the present invention. In describing the present invention, a detailed description of known functions or configurations may be omitted to clarify the gist of the present invention.
반도체 웨이퍼는 균일한 막두께를 형성하기 위해 소정의 회전 속도로 에피택셜 제조장치의 챔버 내부에 구비되는 서셉터에 지지되어 회전한다. 일반적으로, 에피택셜층의 성장 속도는 에피택셜 성장용 가스의 유량, 실리콘 성분의 농도, 온도 등에 의존하기 때문에 상기의 요소들을 변화시킬 수 있는 부재를 웨이퍼가 지지되는 포켓의 개구부의 내주면 부근에 구비하는 것이 바람직하다. 본실시예에서는 웨이퍼의 주변부 평탄도를 개선하기 위하여 가장자리를 따라 흐르는 가스의 유량을 제어하고자, 서셉터의 개구부 부근 윗면에 형성되는 가스조절 부재를 통해, 결정 방위별 에피층 두께를 제어하기 위한 장치 및 방법을 제공하는 것을 목적으로 한다. 또한, 여러가지 비교예를 통해 결정 방위별로 다르게 형성되는 가스조절 부재의 최적화된 높이의 차이를 제어하고자 한다. The semiconductor wafer is supported and rotated by a susceptor provided inside the chamber of the epitaxial manufacturing apparatus at a predetermined rotation speed to form a uniform film thickness. In general, since the growth rate of the epitaxial layer depends on the flow rate of the epitaxial growth gas, the concentration of the silicon component, the temperature, and the like, a member capable of changing the above elements is provided near the inner peripheral surface of the opening of the pocket on which the wafer is supported. It is desirable to. In this embodiment, in order to control the flow rate of the gas flowing along the edge to improve the flatness of the peripheral portion of the wafer, an apparatus for controlling the epilayer thickness for each crystal orientation through a gas adjusting member formed on the upper surface near the opening of the susceptor And to provide a method. In addition, various comparative examples are intended to control the difference in the optimized height of the gas control member formed differently for each crystal orientation.
실리콘 단결정의 경우 (100)결정에 있어서, 에피택셜층의 성장 속도는 결정 방위 의존성이 있는 것으로 알려져 있으며, 성장 속도가 달라짐으로 인하여 웨이퍼 주변부의 두께는 90도를 주기로 에피택셜막 두께에 증감이 생기게 된다. In the case of silicon single crystal, in the (100) crystal, the growth rate of the epitaxial layer is known to depend on the crystal orientation, and due to the change in the growth rate, the thickness of the epitaxial layer increases and decreases at 90 degrees. do.
도 3은 웨이퍼의 결정 방향에 따라 웨이퍼 에피층 두께의 증감이 일어나는 영역을 도시한 평면도이다. 3 is a plan view illustrating a region in which the thickness of the wafer epitaxial layer increases or decreases along the crystal direction of the wafer.
도 3을 참조하면, 웨이퍼의 중심을 기준으로 12시 방향을 0도라 가정하면, 0도, 90도, 180도, 270도를 기준으로 소정의 각도를 갖는 영역은 웨이퍼 에피층 두께가 상대적으로 두껍게 형성되는 영역이며, 상기와 같은 기준으로 45도, 135도, 225도, 315도를 기준으로 하는 소정의 영역은 웨이퍼 에피층의 두께가 상대적으로 얇게 형성되는 영역을 나타낸다. 물론, 웨이퍼의 회전에 따라 상기의 각은 결정 방위에 의존하여 변동될 수 있다. Referring to FIG. 3, assuming that the 12 o'clock direction is 0 degrees with respect to the center of the wafer, a region having a predetermined angle with respect to 0 degrees, 90 degrees, 180 degrees, and 270 degrees has a relatively thick wafer epi layer thickness. The predetermined area on the basis of the above-mentioned 45 degrees, 135 degrees, 225 degrees, and 315 degrees represents a region where the thickness of the wafer epi layer is relatively thin. Of course, as the wafer rotates, the above angle may vary depending on the crystal orientation.
이후의 설명에서, 상기 0도, 90도, 180도, 270도 각각을 기준으로 소정 범위 이내의 영역은 Higher 영역, 45도, 135도, 225도, 315도각각을 기준으로 소정 범위 이내의 영역은 Lower 영역, 그리고 상기 Higher 영역과 Lower 영역 사이의 영역은 Buffer 영역이라 칭하기로 한다. 구체적으로 상기 Higher 영역과 Lower 영역 및 Buffer 영역은 웨이퍼 에지부의 평탄도를 제어하기 위해 가스조절 부재가 형성되는 서셉터 상의 영역을 의미한다. 즉, 웨이퍼의 <100> 결정방향은 Lower 영역이며, <110> 결정방향은 Higher 영역이라 정의할 수 있으며, 상기 Lower 영역과 Higher 영역 사이의 소정의 영역을 Buffer 영역이라 정의할 수 있다. In the following description, an area within a predetermined range on the basis of the 0 degrees, 90 degrees, 180 degrees, and 270 degrees is an area within a predetermined range on the basis of the Higher region, 45 degrees, 135 degrees, 225 degrees, and 315 degrees. Is the lower region, and the region between the higher region and the lower region is referred to as a buffer region. Specifically, the higher region, the lower region, and the buffer region mean regions on the susceptor where the gas regulating member is formed to control the flatness of the wafer edge portion. That is, the <100> crystal direction of the wafer may be defined as a lower region, the <110> crystal direction may be defined as a higher region, and a predetermined region between the lower region and the higher region may be defined as a buffer region.
도 4는 에피택셜 웨이퍼를 제작하기 위한 서셉터의 구조를 나타내는 도면이다. 도 4를 참조하면, 반도체 웨이퍼(5)는 서셉터(susceptor, 10)의 개구부인 포켓(pocket, 20)내에 형성되는 렛지(ledge)부(41)에 의하여 지지된다. 상기 포켓(20)은 기본적으로 평탄한 밑면을 가지는 원형의 오목형상으로 형성되고 상기 렛지부(41)와, 상기 렛지부(41)와 단차를 갖도록 형성되는 바닥부(42)를 포함하고, 상기 포켓(20)의 내측의 오목형상 내에 웨이퍼가 수용될 수 있다. 즉, 포켓의 형상은 내주면(21) 및 밑면에 의해 정의되며, 렛지부(41)는 내주면(21)으로부터 내주측으로 소정의 길이만 늘어나는 테이퍼 모양의 윗면을 가지면서 개구부의 둘레 방향을 따라 밑면에 형성된다. 상기 렛지부(41)는 반도체 웨이퍼의 접촉을 가능한 적게 하며 상기 웨이퍼(5)를 확실히 지지하기 위해, 윗면이 테이퍼 면을 가지면서 포켓의 밑면이 되는 구조이다. 4 is a view showing the structure of a susceptor for producing an epitaxial wafer. Referring to FIG. 4, the semiconductor wafer 5 is supported by a ledge portion 41 formed in a pocket 20, which is an opening of the susceptor 10. The pocket 20 is basically formed in a circular concave shape having a flat bottom and includes the ledge portion 41 and a bottom portion 42 formed to have a step with the ledge portion 41. The wafer can be accommodated in the concave shape of the inner side of 20. That is, the shape of the pocket is defined by the inner circumferential surface 21 and the bottom surface, the ledge portion 41 has a tapered top surface extending only a predetermined length from the inner circumferential surface 21 to the inner circumferential side, and at the bottom surface along the circumferential direction of the opening. Is formed. The ledge 41 has a structure in which the upper surface has a tapered surface and becomes the bottom surface of the pocket in order to keep the contact of the semiconductor wafer as small as possible and to securely support the wafer 5.
상기와 같은 서셉터가 반응 챔버(미도시) 내부에 구비되고, 에피택셜 성장용 가스가 주입되면서 웨이퍼(5)에 에피택셜층이 형성된다. 여기서, 가스 분사구는 서셉터의 외주측(미도시)에 구비되며, 소스 가스는 서셉터 외주에서 웨이퍼가 있는 내주 방향으로 흐르게 된다. 즉, 소스 가스는 서셉터 개구부의 윗면(22)을 지나 웨이퍼에 도달하며, 상기 개구부가 직각으로 경사진 포켓의 내주면의 길이는 포켓의 높이(H)로 정의할 수 있으며, 상기 포켓의 높이(H)는 가스의 흐름에 영향을 주는 요소이다. The susceptor as described above is provided inside the reaction chamber (not shown), and the epitaxial layer is formed on the wafer 5 while the epitaxial growth gas is injected. Here, the gas injection port is provided on the outer circumferential side (not shown) of the susceptor, and the source gas flows in the inner circumferential direction in which the wafer is located at the outer circumference of the susceptor. That is, the source gas reaches the wafer through the top surface 22 of the susceptor opening, and the length of the inner circumferential surface of the pocket in which the opening is inclined at right angles may be defined as the height of the pocket H, and the height of the pocket ( H) is a factor that affects the flow of gas.
도 5는 본 발명의 실시예에 따른 서셉터의 일단면을 나타낸 도면이다. 5 is a view showing one end surface of the susceptor according to the embodiment of the present invention.
도 5를 참조하면, 본 발명에서는 상기 서셉터 개구부의 윗면(22)에 가스조절 부재(25)를 형성함으로써, 서셉터 외주에서 웨이퍼 방향으로 흐르는 가스 유량을 조절하여 특히 웨이퍼 에지부의 두께의 편차를 감소시키기 위한 서셉터를 제안하고자 한다. Referring to FIG. 5, in the present invention, the gas adjusting member 25 is formed on the upper surface 22 of the susceptor opening to adjust the gas flow rate flowing from the outer periphery of the susceptor to the wafer direction, so that the variation in the thickness of the wafer edge portion is particularly reduced. We propose a susceptor to reduce it.
이하에서는 비교예와 실시예와의 비교를 통해 본 발명을 실시하기 위한 서셉터의 바람직한 구조에 대해 살펴보기로 한다. Hereinafter, the preferred structure of the susceptor for carrying out the present invention through comparison with the comparative example and the embodiment will be described.
(비교예 1) (Comparative Example 1)
비교예 1에서는 도 4에서 서셉터의 포켓의 높이(H)가 웨이퍼 결정의 각 방향에 대해서 모두 일정하게 형성되어 있는 서셉터를 적용하였으며, 상기 서셉터를 사용하여 웨이퍼에 대한 에피층 증착 공정을 수행후 웨이퍼 에지부에 대한 에피층의 두께를 측정한 것이다. In Comparative Example 1, a susceptor in which the height H of the susceptor's pockets is uniformly formed in each direction of the wafer crystal in FIG. 4 was used. An epitaxial deposition process on the wafer was performed using the susceptor. After the measurement, the thickness of the epi layer on the wafer edge is measured.
도 6은 비교예 1에 따른 데이터이며, 구체적으로는 직경이 300㎜ 웨이퍼의 에지부 149㎜에서 에피층의 두께 차이를 평가하였으며, 이에 따라 웨이퍼 에지부의 에피층 두께를 결정방위 별로 측정한 그래프이다. 6 is data according to Comparative Example 1, specifically, the difference in the thickness of the epi layer was measured at the edge portion 149 mm of the 300 mm diameter wafer, and thus the epi layer thickness of the wafer edge portion was measured for each crystal orientation. .
도 6을 참조하면, 웨이퍼의 <110>결정 방향인 0도, 90도, 180도, 270도에서는 에피층의 두께가 증가하는 경향이, 그리고 <100>결정 방향인 45도, 135도, 225도, 315도에서는 에피층의 두께가 감소하는 경향이 있음을 확인할 수 있고, 149㎜ 지점의 웨이퍼 에지부 전 구간에서 에피층 두께의 최대 편차는 173.44㎚를 나타내었다. 따라서, 비교예 1을 통해 149㎜ 지점의 웨이퍼 에지부 전 구간에서 에피층 두께의 편차는 약 173.44㎚ 수준으로 나타남을 알 수 있다.Referring to FIG. 6, the thickness of the epi layer tends to increase in the <110> crystal directions of the wafer at 0 degrees, 90 degrees, 180 degrees, and 270 degrees, and 45 degrees, 135 degrees, and 225 in the <100> crystal directions. In FIG. 315, it can be seen that the thickness of the epi layer tends to decrease, and the maximum deviation of the epi layer thickness in the entire region of the wafer edge at the 149 mm point is 173.44 nm. Accordingly, it can be seen from Comparative Example 1 that the deviation of the epitaxial layer thickness is about 173.44 nm in the entire region of the wafer edge at 149 mm.
(비교예 2)(Comparative Example 2)
비교예 2는 도 4에서 서셉터의 포켓의 높이(H)를 Higher 영역과 Lower 영역 및 Buffer 영역에서 다르게 형성하여, 웨이퍼에 대한 에피층 증착 공정을 수행후 웨이퍼 에지부에 대한 에피층의 두께를 측정한 것이다. In Comparative Example 2, the height (H) of the pocket of the susceptor is differently formed in the higher region, the lower region, and the buffer region in FIG. 4, and the thickness of the epitaxial layer on the wafer edge is measured after the epitaxial deposition process on the wafer. It is measured.
즉, 본 발명에서 제안하고자 하는 Lower 영역의 포켓 높이(H)와 Higher 영역의 포켓 높이(H)의 최적화된 비율을 찾기 위해, 비교예 2에서는 Lower 영역의 포켓 높이(H)를 57%만큼 증가시켜 Higher 영역의 포켓 높이(H)를 형성하였다. That is, in order to find an optimized ratio of the pocket height H of the lower region and the pocket height H of the upper region to be proposed in the present invention, in Comparative Example 2, the pocket height H of the lower region is increased by 57%. The pocket height H of the higher region was formed.
구체적인 실험값을 도출하기 위해, Lower 영역의 포켓 높이(H)는 0.7㎜, Higher 영역의 포켓 높이(H)는 Lower 영역의 포켓 높이(H)를 57% 증가시킨 1.1㎜, 그리고 Buffer 영역의 포켓 높이(H)는 상기 Lower 영역과 Higher 영역 사이의 임의의 값을 적용하였다. To derive specific experimental values, the pocket height H of the lower region is 0.7 mm, the pocket height H of the upper region is 1.1 mm which increases the pocket height H of the lower region by 57%, and the pocket height of the buffer region. (H) applies any value between the Lower and Higher regions.
여기서, 상기 포켓의 높이(H)는 가스조절 부재의 높이를 포함한 높이일 수 있다. 구체적으로, 상기 포켓의 높이(H) Higher 영역에 형성되는 제1 가스조절 부재, Lower 영역에 형성되는 제2 가스조절 부재 및 Buffer 영역에 형성되는 제3 가스조절 부재의 높이를 포함할 수 있다. Here, the height (H) of the pocket may be a height including the height of the gas adjusting member. Specifically, the height of the pocket may include the height of the first gas regulating member formed in the Higher region, the second gas regulating member formed in the Lower region and the third gas regulating member formed in the Buffer region.
도 7은 비교예 2에 따라 웨이퍼 에지부의 에피층 두께를 측정한 그래프이다. 7 is a graph measuring epitaxial thickness of the wafer edge portion according to Comparative Example 2. FIG.
도 7을 참조하면, 웨이퍼 149㎜ 지점의 에지부 전 구간에서 에피층 두께의 최소 편차는 209.05㎚를 나타내었다.Referring to FIG. 7, the minimum deviation of the epitaxial layer thickness of the entire edge portion of the wafer 149 mm was 209.05 nm.
(실시예)(Example)
실시예는 도 4에서 서셉터의 포켓의 높이(H)를 Higher 영역과 Lower 영역 및 Buffer 영역에서 다르게 형성하여, 웨이퍼에 대한 에피층 증착 공정을 수행후 웨이퍼 에지부에 대한 에피층의 두께를 측정한 것이다.In FIG. 4, the height H of the susceptor pocket is formed differently in the higher region, the lower region, and the buffer region in FIG. 4 to measure the thickness of the epilayer on the wafer edge after performing the epilayer deposition process on the wafer. It is.
본 발명은 Lower 영역의 포켓 높이와 Higher 영역의 포켓 높이의 차이를 제어하여, 웨이퍼 에지부의 두께를 균일하게 할 수 있는 Lower 영역 및 Higher 영역의 최적화된 포켓 높이의 비율을 제공하고자 하는 것이다. The present invention is to control the difference between the pocket height of the lower region and the pocket height of the upper region, to provide an optimized ratio of the pocket height of the lower region and the higher region that can make the thickness of the wafer edge portion uniform.
본 실시예에서는, Higher 영역의 포켓 높이(H)를 Lower 영역의 포켓 높이(H)에 대비해 25% 만큼 증가시켰으며, 이에 따른 웨이퍼 에지부의 두께 편차를 평가하였다. In this embodiment, the pocket height H of the higher region is increased by 25% compared to the pocket height H of the lower region, and the thickness variation of the wafer edge is evaluated accordingly.
구체적으로, Lower 영역의 포켓 높이(H)는 0.8㎜, Higher 영역의 포켓 높이(H)는 Lower 영역의 포켓 높이(H)를 25% 증가시킨 1.0㎜, 그리고 Buffer 영역의 포켓 높이(H)는 상기 Lower 영역과 Higher 영역 사이의 임의의 값을 적용하였다. Specifically, the pocket height H of the lower region is 0.8 mm, the pocket height H of the upper region is 1.0 mm which increases the pocket height H of the lower region by 25%, and the pocket height H of the buffer region is Any value between the Lower and Higher regions was applied.
여기서, 상기 포켓의 높이(H)는 서셉터 개구부 윗면 외주부에 형성되는 가스조절 부재의 높이를 포함한 높이일 수 있다. 구체적으로, 상기 포켓의 높이(H) Higher 영역에 형성되는 제1 가스조절 부재, Lower 영역에 형성되는 제2 가스조절 부재 및 Buffer 영역에 형성되는 제3 가스조절 부재의 높이를 포함할 수 있다.Here, the height (H) of the pocket may be a height including the height of the gas control member formed on the outer peripheral portion of the upper surface of the susceptor opening. Specifically, the height of the pocket may include the height of the first gas regulating member formed in the Higher region, the second gas regulating member formed in the Lower region and the third gas regulating member formed in the Buffer region.
도 8은 실시예에 따라 웨이퍼 에지부의 에피층 두께를 측정한 그래프이다.8 is a graph measuring the epitaxial thickness of the wafer edge portion according to the embodiment.
도 8을 참조하면, 149㎜ 지점의 웨이퍼 에지부 전 구간에서 에피층 두께의 최소 편차는 128.75㎚ 수준으로 나타났다. Referring to FIG. 8, the minimum deviation of the epitaxial layer thickness was 128.75 nm in all sections of the wafer edge at 149 mm.
우선, 상기 비교예 1과 실시예의 데이터를 비교해본다. 웨이퍼의 결정 방향에 따라 Higher 영역과 Lower 영역의 높이를 다르게 형성한 서셉터를 사용하며, 즉 각 영역별로 가스조절 부재를 형성하여 포켓의 높이를 다르게 형성한 실시예의 경우는 웨이퍼 에지부 두께 편차가 128.75nm이며, 웨이퍼의 결정방향에 따라 포켓의 높이를 모두 동일하게 형성한 비교예 1은 173.44nm이다. 즉, 실시예는 비교예1과 대비하여 웨이퍼 에지부의 두께 편차가 약 26%=(1-(128.75/173.44))% 만큼 개선되었음을 알 수 있다. First, the data of Comparative Example 1 and Example are compared. In the case of using the susceptor in which the heights of the upper and lower regions are formed differently according to the crystal direction of the wafer, that is, in the embodiment in which the gas adjusting member is formed in each region to vary the height of the pocket, the wafer edge thickness variation is different. It is 128.75 nm, and the comparative example 1 which formed all the same height of the pocket according to the crystal direction of a wafer is 173.44 nm. That is, it can be seen that the embodiment improved the thickness variation of the wafer edge portion by about 26% = (1- (128.75 / 173.44))% compared to Comparative Example 1.
또한, 상기 비교예 1과 비교예 2의 데이터를 비교해본다. 웨이퍼의 결정방향에 따라 포켓의 높이를 모두 동일하게 형성한 비교예 1은 웨이퍼 에지부 두께 편차가 173.44nm이며, 웨이퍼의 결정 방향에 따라 Higher 영역과 Lower 영역의 높이를 다르게 형성한 비교예 2의 경우는 웨이퍼 에지부 두께 편차가 209.05nm이다. 즉, 비교예 2는 비교예 1과 대비하여 웨이퍼 에지부 두께 편차가 약 19%=(1-(209.05/173.44))% 만큼 열위되었음을 알 수 있다. In addition, the data of Comparative Example 1 and Comparative Example 2 are compared. In Comparative Example 1 in which the heights of the pockets were all formed identically according to the crystal direction of the wafer, the thickness variation of the wafer edge was 173.44 nm, and the heights of the Higher and Lower regions were formed differently according to the crystal direction of the wafer. In the case, the wafer edge portion thickness variation is 209.05 nm. That is, it can be seen that in Comparative Example 2, the wafer edge thickness variation was inferior by about 19% = (1- (209.05 / 173.44))% compared to Comparative Example 1.
비교예 2는 Higher 영역 포켓 높이를 Lower 영역 포켓 높이 대비 157%만큼 증가시켰지만, 평가 결과는 영역별 단차를 두지 않은 비교예 1에 비해 오히려 두께 편차가 심화된 결과를 보여준다. Comparative Example 2 increased the height of the higher area pocket by 157% compared to the height of the lower area pocket, but the evaluation results show that the thickness variation is intensified compared to that of Comparative Example 1, which does not have a step difference for each area.
따라서, 서셉터의 Higher 영역과 Lower 영역의 포켓 높이의 차이를 설정함에 있어서, 상기 높이의 비율에 따라 웨이퍼 에지부의 두께 편차가 개선되는 구간이 존재함을 알 수 있다. 즉, 실시예와 같이 Higher 영역의 포켓 높이를 Lower 영역의 포켓 높이에 대비해 125%만큼 증가시키는 경우가 바람직하며, 157%보다는 작게 형성하는 것이 웨이퍼 에지부 두께를 더욱 균일하게 제어할 수 있음을 확인할 수 있다. Therefore, in setting the difference between the pocket heights of the upper and lower regions of the susceptor, it can be seen that there is a section in which the thickness variation of the wafer edge portion is improved according to the ratio of the heights. That is, it is preferable to increase the pocket height of the higher region by 125% as compared to the pocket height of the lower region as in the embodiment, and to make it smaller than 157% can control the wafer edge thickness more uniformly. Can be.
즉, 비교예 1,2 및 실시예를 통해서 본 발명에서 Higher 영역, Lower 영역 및 Buffer 영역에 형성하고자 하는 가스조절 부재의 바람직한 높이를 설정할 수 있다. 상기 가스조절 부재는 웨이퍼에 흐르는 가스의 흐름을 증가 또는 감소시키기 위해 형성되는 것으로서, 가스조절 부재 일측의 높이를 포함하여 포켓의 높이가 설정된다.That is, the preferred height of the gas adjusting member to be formed in the Higher region, the Lower region and the Buffer region in the present invention can be set through Comparative Examples 1 and 2 and Examples. The gas regulating member is formed to increase or decrease the flow of gas flowing in the wafer, and the height of the pocket is set including the height of one side of the gas regulating member.
본 발명에서 Higher 영역에 형성되는 제1 가스조절 부재를 포함한 포켓의 높이는 Lower 영역에 형성되는 제2 가스조절 부재를 포함한 포켓의 높이에 대비하여 115%~157%의 범위로 형성될 수 있다. 또한, 상술한 실시예의 평가결과와 같이 Higher 영역에 형성되는 포켓의 높이는 Lower 영역에 형성되는 포켓의 높이에 대비하여 125%로 형성되는 것이 바람직하다. 상기 포켓의 높이라 함은, 상술한 바와 같은 가스조절 부재의 높이를 포함한 높이가 될 수 있다. In the present invention, the height of the pocket including the first gas regulating member formed in the higher region may be formed in a range of 115% to 157% relative to the height of the pocket including the second gas regulating member formed in the lower region. In addition, it is preferable that the height of the pocket formed in the higher region is 125% as compared with the height of the pocket formed in the lower region as in the evaluation result of the above-described embodiment. The height of the pocket may be a height including the height of the gas adjusting member as described above.
Buffer 영역에서는 상기 Higher 영역과 Lower 영역의 높이값의 사이값을 갖도록 형성되지만, Buffer 영역은 상기 Higher 영역과 Lower 영역 사이에서 가스가 유동적으로 흐르게 하기 위해 단차가 생기지 않도록 일정한 값을 갖지 않으며, 소정의 기울기를 갖는 임의의 값으로 설정되는 것이 바람직하다.The buffer region is formed to have a value between the height values of the high region and the lower region, but the buffer region does not have a constant value so that a step is not generated so that gas flows between the high region and the lower region. It is preferably set to any value having a slope.
한편, 웨이퍼 상에 증착하려는 에피층의 두께가 증가할수록 웨이퍼 에지부의 에피층의 두께 편차는 증가하는 경향을 보인다. 에피층의 두께가 증가함에 따라 타 품질적인 측면인 후면 증착이 증가하게 되나, 이는 포켓의 높이를 높게 할수록 감소시키는 것이 가능하다. 따라서, 형성하려는 에피층의 두께에 따라 본 발명에서 형성하고자 하는 각영역별 포켓의 높이는 전체적으로 상승하거나 하향될 수 있다.On the other hand, as the thickness of the epi layer to be deposited on the wafer increases, the thickness variation of the epi layer on the wafer edge portion tends to increase. As the thickness of the epi layer increases, other quality aspects of backside deposition increase, but this can be reduced as the pocket height increases. Therefore, according to the thickness of the epi layer to be formed, the height of each region pocket to be formed in the present invention may be raised or lowered as a whole.
즉, 상기의 실시예에서 Lower 영역의 포켓 두께는 0.8mm, Higher 영역의 포켓 두께는 1mm로 평가하였지만, 이에 한정되지 않고 실시예와 같이 Lower 영역의 포켓 높이에 대비한 Higher 영역의 포켓 높이의 비율을 충족시킨다면 웨이퍼 에지부의 에피층 평탄도를 향상시킬 수 있다. That is, in the above embodiment, the pocket thickness of the lower region was evaluated to be 0.8 mm, and the pocket thickness of the higher region was 1 mm. However, the present invention is not limited thereto. If it is satisfied, the epilayer flatness of the wafer edge portion can be improved.
Higher 영역의 포켓 높이를 조절하기 위해서는 서셉터 상에 실리콘을 코팅하여 상기 포켓 높이를 조절할 수 있다. 형성하고자 하는 에피층의 두께에 따라, 서셉터 상의 Lower 영역, Higher 영역에 실리콘을 증착하며, 다시 높이를 조절해야 하는 경우 HCL 에칭을 통해 코팅된 실리콘을 제거할 수 있다. To adjust the pocket height of the higher region, the pocket height may be adjusted by coating silicon on the susceptor. Depending on the thickness of the epi layer to be formed, silicon is deposited in the lower region and the higher region on the susceptor, and if the height is to be adjusted again, the coated silicon may be removed by HCL etching.
상기와 같이 결정 방위별로 포켓의 높이를 형성하면, 웨이퍼에 증착되는 에피택셜층의 두께의 평탄도를 균일화할 수 있다. 그러나, 웨이퍼의 평탄도에 영향을 끼치는 요소가 한가지라도 변화되면 웨이퍼의 수율이 떨어지기 때문에, 보다 세밀한 조정이 필요하다. 이를 위해서, 본발명에서는 웨이퍼의 결정 방위를 구역별로 나누어 포켓의 높이를 설정함과 동시에, 상기 웨이퍼의 결정 방위 구역별로 형성되는 가스조절 부재의 다른 실시예를 제안한다. If the height of the pocket is formed for each crystal orientation as described above, the flatness of the thickness of the epitaxial layer deposited on the wafer can be made uniform. However, even if there is only one factor that affects the flatness of the wafer, the yield of the wafer is lowered when it is changed, and thus finer adjustment is required. To this end, the present invention proposes another embodiment of the gas adjusting member formed by the crystal orientation zone of the wafer while setting the height of the pocket by dividing the crystal orientation of the wafer for each zone.
도 9는 다른 실시예에 따른 가스조절 부재를 나타낸 단면도이다. 9 is a sectional view showing a gas adjusting member according to another embodiment.
도 9를 참조하면, 서셉터(10) 내부에 구비되는 포켓(20) 개구부의 윗면(22)에 가스의 흐름을 조절하기 위한 가스조절 부재(30)가 형성된다. 상기 가스조절 부재(30)는 서셉터의 외주방향의 단부에서 웨이퍼 방향의 단부측 또는 에지측으로 경사진 형태로서 상기 서셉터(10)의 외주에서 웨이퍼 방향으로 유동하는 가스의 흐름을 감소시키도록 형성된다. 즉, 상기 가스조절 부재(30)는 에피층의 두께가 상대적으로 두껍게 형성되는 (110)결정 방위, 즉 Higher 영역에 형성될 수 있으며 내주 포켓의 높이(H2)가 외주 포켓의 높이(D2)보다 크게 형성되어, 가스의 흐름이 다른 영역에서보다 감소되기 때문에 에피층이 얇게 형성될 수 있다. Referring to FIG. 9, a gas adjusting member 30 is formed on the upper surface 22 of the opening of the pocket 20 provided in the susceptor 10 to control the flow of gas. The gas regulating member 30 is formed to be inclined from the outer circumferential end of the susceptor to the end side or the edge side of the wafer direction to reduce the flow of gas flowing from the outer circumference of the susceptor 10 to the wafer direction. do. That is, the gas regulating member 30 may be formed in a (110) crystal orientation, that is, a higher region where the thickness of the epi layer is relatively thick, and the height H2 of the inner pocket is greater than the height D2 of the outer pocket. Larger, the epi layer can be made thinner because the flow of gas is reduced than in other regions.
상기 도 9에서 제안한 가스조절 부재(30)는 포켓의 높이가 순차적으로 변화하는 구조로서, 소스 가스가 유동적으로 흐를 수 있기 때문에 에피층 두께 변화를 더욱 미세하게 조절할 수 있어 두께 편차 개선에 유리하다. The gas regulating member 30 proposed in FIG. 9 has a structure in which the height of the pockets is sequentially changed, and since the source gas can flow fluidly, the epitaxial layer thickness can be more finely adjusted, which is advantageous in improving the thickness variation.
또한, 도 9의 가스조절 부재(30)는 Higher 영역과 Lower 영역에 동시에 형성될 수 있다. 웨이퍼의 에지부 에피택셜막 두께를 전반적으로 증가시키고자 할 경우, 상기 가스조절 부재(30)는 도 9과 같이 가스의 유량을 변동시키기 위해 서셉터 방향에서 웨이퍼의 중심방향으로 경사진 형상으로 Higher 영역과 Lower 영역에 형성될 수 있다. 이 때, Higher 영역에 형성되는 제1 가스조절 부재의 경사도를 Lower 영역에 형성되는 제2 가스조절 부재의 경사도보다 크게 형성함으로써, 증가시키고자하는 웨이퍼의 에지부 에피택셜막 두께 편차를 제어할 수 있다.In addition, the gas adjusting member 30 of FIG. 9 may be simultaneously formed in the higher region and the lower region. In order to increase the overall thickness of the edge epitaxial film of the wafer, the gas adjusting member 30 is inclined toward the center of the wafer in the susceptor direction to change the flow rate of the gas as shown in FIG. 9. It may be formed in the region and the lower region. At this time, the inclination of the first gas regulating member formed in the higher region is made larger than the inclination of the second gas regulating member formed in the lower region, thereby controlling the variation in the thickness of the epitaxial film at the edge portion of the wafer to be increased. have.
마찬가지로, 웨이퍼의 에지부 에피택셜막 두께를 전반적으로 감소시키고자 할 경우, 상기 가스조절 부재(30)는 가스의 유량을 감소시키기 위해 웨이퍼의 중심방향에서 서셉터 방향으로 경사진 형상으로 Higher 영역과 Lower 영역에 형성될 수 있다. 이 때, Lower 영역에 형성되는 제2 가스조절 부재의 경사도를 Higher 영역에 형성되는 제1 가스조절 부재의 경사도보다 크게 형성함으로써, 감소시키고자하는 웨이퍼의 에지부 에피택셜막 두께 편차를 제어할 수 있다.Similarly, in order to reduce the overall thickness of the edge epitaxial film of the wafer, the gas regulating member 30 is inclined from the center direction of the wafer to the susceptor direction so as to reduce the flow rate of the gas. It may be formed in the lower region. At this time, the inclination of the second gas regulating member formed in the lower region is made larger than the inclination of the first gas regulating member formed in the higher region, so that the variation in the thickness of the epitaxial film of the edge portion of the wafer to be reduced can be controlled. have.
또한, 상기 가스조절 부재는 가스흐름의 증가 또는 감소의 필요에 따라 계단식, 사다리꼴, 삼각형 형상으로 마련될 수도 있다. In addition, the gas control member may be provided in a stepped, trapezoidal, triangular shape according to the need to increase or decrease the gas flow.
본 발명에서 제안하는 여러 가스조절 부재의 실시예는 에피택셜 웨이퍼의 방위별로 나타나는 에지부 두께의 편차를 줄이기 위해 적용될 수 있다. 가스조절 부재가 가스의 유량을 감소시키는 경우는 <110>결정 방위인 Higher 영역에 형성되며, 가스의 유량을 증가시키는 경우는 <100>결정 방위인 Lower 영역에 형성되는 것으로 설명하였지만, <110>결정 방위 영역에만 가스 유량을 감소시키는 가스조절 부재를 형성하고, <100>결정 방위 영역 및 Buffer 영역에는 가스조절 부재를 형성하지 않을 수도 있으며, 반대의 경우도 마찬가지로 가능하다.Embodiments of the various gas regulating members proposed in the present invention may be applied to reduce the variation in the thickness of the edge portion appearing for each orientation of the epitaxial wafer. When the gas regulating member decreases the flow rate of gas, the gas regulating member is formed in the high region of the <110> crystal orientation, and the case in which the gas flow rate is increased is formed in the Lower region of the <100> crystal orientation. The gas regulating member for reducing the gas flow rate may be formed only in the crystal orientation region, and the gas regulating member may not be formed in the <100> crystal orientation region and the buffer region, and vice versa.
이는 웨이퍼의 가장자리부 평탄화에 영향을 미치는 요소가 여러가지이기 때문에, 상기와 같이 가스조절 부재를 유연하게 배치함으로서 웨이퍼에 형성되는 에피층의 두께 편차가 심한 곳만을 미세하게 조정할 수 있게 된다.This is because the factors affecting the flattening of the edges of the wafer are various, and by arranging the gas adjusting member flexibly as described above, it is possible to finely adjust only the place where the thickness variation of the epi layer formed on the wafer is severe.
본 발명에서는 웨이퍼의 직경이 300㎜인 경우를 예로 들어 설명하였으나, 이에 한정되지 않고 웨이퍼의 직경이 300㎜ 이상으로 더욱 확장되는 경우에도 적용이 가능하다. 또한, 결정방위 역시 <100>, <110>에 대하여 설명하였지만 같은 결정특성을 가지는 [110]방향, [100]방향에 모두 적용될 수 있다. In the present invention, the case where the diameter of the wafer is 300 mm has been described as an example. However, the present invention is not limited thereto, and the present invention may be applied even when the diameter of the wafer is further expanded to 300 mm or more. In addition, the crystal orientation is also described with respect to <100>, <110>, but can be applied to both the [110] direction and [100] direction having the same crystal characteristics.
본발명의 에피택셜 제조용 서셉터에 의하면, 반도체 웨이퍼에 에피택셜층을 형성시 서셉터의 외주부에 가스흐름 증가 및 감소 장치(가스조절 부재)를 결정 방위별로 높이를 다르게 형성함으로써 가스 흐름을 제어할 수 있어, 에피택셜 웨이퍼의 두께를 직경에 따라 일정하도록 제어할 수 있다. According to the susceptor for epitaxial manufacturing of the present invention, when the epitaxial layer is formed on a semiconductor wafer, the gas flow can be controlled by forming a gas flow increasing and decreasing device (gas regulating member) with different heights for each crystal orientation at the outer periphery of the susceptor. The thickness of the epitaxial wafer can be controlled to be constant according to the diameter.
또한, 가스조절 부재의 높이 및 단차를 웨이퍼의 결정 방위에 따라 변경함으로써, 웨이퍼의 구역별로 가스 흐름을 미세하게 조정할 수 있으므로 에피택셜 웨이퍼의 두께 평탄도를 일정하게 제어할 수 있다. In addition, by changing the height and step of the gas adjusting member according to the crystal orientation of the wafer, the gas flow can be finely adjusted for each region of the wafer, so that the thickness flatness of the epitaxial wafer can be constantly controlled.
그리고, 본발명의 실시예에 따른 서셉터에 의하면, 에지부 평탄도가 균일한 반도체 웨이퍼를 제공할 수 있게 되어, 소자가 형성되는 반도체 웨이퍼의 고품질화 및 생산 수율을 향상시킬 수 있다. In addition, according to the susceptor according to the embodiment of the present invention, it is possible to provide a semiconductor wafer with uniform edge flatness, thereby improving the quality and production yield of the semiconductor wafer on which the device is formed.
본발명에서는 실리콘 웨이퍼 (100)면의 에피택셜 성장을 예로 하여 설명하였지만, 본발명은 이에 한정되지 않고 결정 방위 의존성이 있는 에피택셜 성장 속도를 가지는 모든 물질의 에피택셜 제조 장치나 그 장치에 사용되는 서셉터에 이용될 수 있다. In the present invention, the epitaxial growth of the silicon wafer 100 surface has been described as an example, but the present invention is not limited thereto, and is used for the epitaxial manufacturing apparatus of all materials having an epitaxial growth rate with crystal orientation dependence, or used in the apparatus. It can be used in susceptors.
이상에서 본 발명에 대하여 그 바람직한 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 발명의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 본 발명의 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.The present invention has been described above with reference to the preferred embodiments, which are merely examples and are not intended to limit the present invention, and those skilled in the art to which the present invention pertains do not depart from the essential characteristics of the present invention. It will be appreciated that various modifications and applications are not possible that are not illustrated above. For example, each component specifically shown in the embodiment of the present invention can be modified. And differences relating to such modifications and applications will have to be construed as being included in the scope of the invention defined in the appended claims.
본 실시예는 에피택셜 웨이퍼를 제작하기 위한 에피택셜 성장 장치에서 실시가능하므로, 그 산업상 이용가능성이 있다.Since this embodiment can be implemented in an epitaxial growth apparatus for producing an epitaxial wafer, there is industrial applicability thereof.

Claims (17)

  1. 챔버 내에서 웨이퍼와 소스 가스를 반응시켜 에피택셜층을 성장시킨 에피택셜 웨이퍼를 제조하기 위한 서셉터로서,A susceptor for manufacturing an epitaxial wafer in which a epitaxial layer is grown by reacting a wafer and a source gas in a chamber,
    상기 웨이퍼가 배치되는 개구부가 형성된 포켓;A pocket having an opening in which the wafer is disposed;
    상기 웨이퍼가 지지되는 렛지부; 및A ledge portion on which the wafer is supported; And
    상기 서셉터 개구부 윗면의 외주부에 위치하는 가스조절 부재;를 포함하고,And a gas adjusting member positioned at an outer circumferential portion of the upper surface of the susceptor opening.
    상기 가스조절 부재는The gas regulating member
    상기 웨이퍼 <110> 결정방향에 대향하는 소정의 영역에 형성되는 제1 가스조절 부재와, 상기 웨이퍼 <100> 결정방향에 대향하는 소정의 영역에 제2 가스조절 부재 및 상기 제1 가스조절 부재와 상기 제2 가스조절 부재 사이에 형성되는 제3 가스조절 부재를 포함하고,A first gas regulating member formed in a predetermined region facing the wafer crystallographic direction, a second gas regulating member and the first gas regulating member disposed in a predetermined region facing the wafer crystallographic direction; A third gas regulating member formed between the second gas regulating members,
    상기 제1 가스조절 부재와 상기 제2 가스조절 부재의 높이는 기설정된 비율를 가지도록 형성되며, The height of the first gas control member and the second gas control member is formed to have a predetermined ratio,
    상기 제1, 제2 및 제3 가스조절 부재는 웨이퍼의 중심방향에서 서셉터 방향으로의 경사도가 서로 상이하도록 형성되는 것을 특징으로 하는 에피택셜 성장용 서셉터.The first, second and third gas regulating members are epitaxial growth susceptors, characterized in that the inclination from the center direction of the wafer to the susceptor direction is different from each other.
  2. 제 1항에 있어서, The method of claim 1,
    상기 제1 가스조절 부재는 웨이퍼의 중심을 기준으로 소정의 각도를 갖는 서셉터 상에 형성되고, 상기 제2 가스조절 부재는 웨이퍼의 중심을 기준으로 소정의 각도를 갖는 서셉터 상에 형성되는 것을 특징으로 하는 에피택셜 성장용 서셉터.The first gas regulating member is formed on the susceptor having a predetermined angle with respect to the center of the wafer, and the second gas regulating member is formed on the susceptor having a predetermined angle with respect to the center of the wafer. An epitaxial growth susceptor characterized by the above-mentioned.
  3. 제 1항에 있어서,The method of claim 1,
    상기 제1 및 제2 가스조절 부재는 웨이퍼의 결정 방향에 따라 90도를 주기로 상기 서셉터 상에 형성되는 것을 특징으로 하는 에피택셜 성장용 서셉터.And the first and second gas regulating members are formed on the susceptor at intervals of 90 degrees in the crystal direction of the wafer.
  4. 제 1항에 있어서, The method of claim 1,
    상기 제1 가스조절 부재의 높이는 상기 제2 가스조절 부재의 높이보다 기설정된 비율만큼 높게 형성되는 것을 특징으로 하는 에피택셜 성장용 서셉터.The height of the first gas control member is epitaxial growth susceptor, characterized in that formed by a predetermined ratio higher than the height of the second gas control member.
  5. 제 4항에 있어서,The method of claim 4, wherein
    상기 제1 가스조절 부재의 높이는 상기 제2 가스조절 부재의 높이에 대비하여 110~130% 만큼 높게 형성되는 것을 특징으로 하는 에피택셜 성장용 서셉터.The height of the first gas control member is epitaxial growth susceptor, characterized in that formed by 110 to 130% higher than the height of the second gas control member.
  6. 제 4항에 있어서, The method of claim 4, wherein
    상기 제1 가스조절 부재의 높이는 상기 제2 가스조절 부재의 높이에 대비하여 120~130% 만큼 높게 형성되는 것을 특징으로 하는 에피택셜 성장용 서셉터.The height of the first gas control member is epitaxial growth susceptor, characterized in that formed by 120 to 130% higher than the height of the second gas control member.
  7. 제 4항에 있어서,The method of claim 4, wherein
    상기 제1 가스조절 부재의 높이는 상기 제2 가스조절 부재의 높이보다 0.1~0.3㎜ 만큼 높게 형성되는 것을 특징으로 하는 에피택셜 성장용 서셉터.The height of the first gas control member is epitaxial growth susceptor, characterized in that formed by 0.1 ~ 0.3 mm higher than the height of the second gas control member.
  8. 제 4항에 있어서,The method of claim 4, wherein
    상기 제1 가스조절 부재의 높이는 상기 제2 가스조절 부재의 높이보다 0.15~0.25㎜ 만큼 높게 형성되는 것을 특징으로 하는 에피택셜 성장용 서셉터.The height of the first gas control member is epitaxial growth susceptor, characterized in that formed by 0.15 ~ 0.25 mm higher than the height of the second gas control member.
  9. 제 4항에 있어서,The method of claim 4, wherein
    상기 제1 가스조절 부재의 높이는 상기 제2 가스조절 부재의 높이보다 2㎜ 만큼 높게 형성되는 것을 특징으로 하는 에피택셜 성장용 서셉터.The height of the first gas control member is epitaxial growth susceptor, characterized in that formed by 2mm higher than the height of the second gas control member.
  10. 제 1항에 있어서,The method of claim 1,
    상기 제3 가스조절 부재의 높이는 인접한 영역의 높이의 사이값으로 형성되는 것을 특징으로 하는 에피택셜 성장용 서셉터.The height of the third gas control member is epitaxial growth susceptor, characterized in that formed between the value of the height of the adjacent region.
  11. 제 1항에 있어서,The method of claim 1,
    상기 제1 가스조절 부재는 가스유량을 감소시키기 위해 소정의 두께를 갖는 실리콘 증착막이며, 상기 제2 가스조절 부재는 가스 유량을 증가시키기 위해 소정의 두께를 갖는 실리콘 증착막인 것을 특징으로 하는 에피택셜 성장용 서셉터.The first gas regulating member is a silicon deposition film having a predetermined thickness to reduce the gas flow rate, and the second gas regulating member is a silicon deposition film having a predetermined thickness to increase the gas flow rate. Dragon susceptor.
  12. 제 1항에 있어서,The method of claim 1,
    상기 제1 가스조절 부재는 가스유량을 감소시키기 위해 웨이퍼의 중심방향에서 서셉터 방향으로 경사진 형상의 구조물인 것을 특징으로 하는 에피택셜 성장용 서셉터. The first gas regulating member is an epitaxial growth susceptor, characterized in that the structure inclined in the susceptor direction from the center direction of the wafer to reduce the gas flow rate.
  13. 제 1항에 있어서,The method of claim 1,
    상기 제2 가스조절 부재는 가스유량을 증가시키기 위해 서셉터 방향에서 웨이퍼의 중심방향으로 경사진 형상의 구조물인 것을 특징으로 하는 에피택셜 성장용 서셉터. The second gas regulating member is an epitaxial growth susceptor, characterized in that the structure inclined toward the center of the wafer in the susceptor direction to increase the gas flow rate.
  14. 제 1항에 있어서,The method of claim 1,
    상기 제1 가스조절 부재와 제2 가스조절 부재는 가스의 유량을 감소시키기 위해 웨이퍼의 중심방향에서 서셉터 방향으로 경사진 형상의 구조물이며, 제1 가스조절 부재의 경사도는 제2 가스조절 부재의 경사도보다 큰 것을 특징으로 하는 에피택셜 성장용 서셉터.The first gas regulating member and the second gas regulating member are structures inclined from the center direction of the wafer to the susceptor direction to reduce the flow rate of the gas, and the inclination of the first gas regulating member is An epitaxial growth susceptor, characterized in that greater than the inclination.
  15. 제 1항에 있어서,The method of claim 1,
    상기 제1 가스조절 부재와 제2 가스조절 부재는 가스의 유량을 증가시키기 위해 서셉터 방향에서 웨이퍼의 중심 방향으로 경사진 형상의 구조물이며, 제2 가스조절 부재의 경사도는 제1 가스조절 부재의 경사도보다 큰 것을 특징으로 하는 에피택셜 성장용 서셉터.The first gas regulating member and the second gas regulating member are structures inclined from the susceptor direction toward the center of the wafer in order to increase the flow rate of the gas, and the inclination of the second gas regulating member is An epitaxial growth susceptor, characterized in that greater than the inclination.
  16. 챔버 내에서 웨이퍼와 소스 가스를 반응시켜 에피택셜층을 성장시킨 에피택셜 웨이퍼를 제조하기 위한 서셉터로서,A susceptor for manufacturing an epitaxial wafer in which a epitaxial layer is grown by reacting a wafer and a source gas in a chamber,
    상기 웨이퍼가 배치되는 개구부가 형성된 포켓;A pocket having an opening in which the wafer is disposed;
    상기 웨이퍼가 지지되는 렛지부; 및A ledge portion on which the wafer is supported; And
    상기 서셉터 개구부 윗면의 외주부에 위치하는 가스조절 부재;를 포함하고,And a gas adjusting member positioned at an outer circumferential portion of the upper surface of the susceptor opening.
    상기 가스조절 부재는The gas adjusting member
    상기 웨이퍼 <110> 결정방향에 대향하는 소정의 영역에 형성되는 제1 가스조절 부재와, 상기 웨이퍼 <100> 결정방향에 대향하는 소정의 영역에 제2 가스조절 부재 및 상기 제1 가스조절 부재와 상기 제2 가스조절 부재 사이에 형성되는 제3 가스조절 부재를 포함하고,A first gas regulating member formed in a predetermined region facing the wafer crystallographic direction, a second gas regulating member and the first gas regulating member disposed in a predetermined region facing the wafer crystallographic direction; A third gas regulating member formed between the second gas regulating members,
    상기 제1 가스조절 부재와 상기 제2 가스조절 부재의 높이는 기설정된 비율를 가지도록 형성되는 에피택셜 성장용 서셉터.The height of the first gas control member and the second gas control member epitaxial growth susceptor is formed to have a predetermined ratio.
  17. 제 1항 내지 16항 중 어느 하나의 서셉터를 포함하는 에피택셜 증착 장치.An epitaxial deposition apparatus comprising the susceptor of any one of claims 1 to 16.
PCT/KR2013/009259 2012-10-16 2013-10-16 Susceptor for epitaxial growing and method for epitaxial growing WO2014062000A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20120114743 2012-10-16
KR10-2012-0114743 2012-10-16
KR10-2013-0121561 2013-10-11
KR1020130121561A KR20140049473A (en) 2012-10-16 2013-10-11 Susceptor for epitaxial growth and epitaxial growth method

Publications (1)

Publication Number Publication Date
WO2014062000A1 true WO2014062000A1 (en) 2014-04-24

Family

ID=50488494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/009259 WO2014062000A1 (en) 2012-10-16 2013-10-16 Susceptor for epitaxial growing and method for epitaxial growing

Country Status (1)

Country Link
WO (1) WO2014062000A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10167571B2 (en) 2013-03-15 2019-01-01 Veeco Instruments Inc. Wafer carrier having provisions for improving heating uniformity in chemical vapor deposition systems
US10316412B2 (en) 2012-04-18 2019-06-11 Veeco Instruments Inc. Wafter carrier for chemical vapor deposition systems
TWI711114B (en) * 2017-08-31 2020-11-21 日商Sumco股份有限公司 Crystal seat, epitaxial growth device, method for manufacturing epitaxial silicon wafer, and epitaxial silicon wafer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2762022B2 (en) * 1993-08-25 1998-06-04 日本エー・エス・エム株式会社 Rotary mechanism used in CVD apparatus and method for controlling temperature of workpiece using this mechanism
KR20090120309A (en) * 2008-05-19 2009-11-24 삼성전기주식회사 Apparatus for chemical vapor deposition
KR20110136583A (en) * 2010-06-15 2011-12-21 삼성엘이디 주식회사 Susceptor and chemical vapor deposition apparatus comprising the same
JP2012033775A (en) * 2010-07-30 2012-02-16 Nuflare Technology Inc Processing method of susceptor and processing method of semiconductor manufacturing apparatus
KR20120092984A (en) * 2011-02-14 2012-08-22 서울옵토디바이스주식회사 Suscepter for vapor deposition test and vapor deposiotion apparatus comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2762022B2 (en) * 1993-08-25 1998-06-04 日本エー・エス・エム株式会社 Rotary mechanism used in CVD apparatus and method for controlling temperature of workpiece using this mechanism
KR20090120309A (en) * 2008-05-19 2009-11-24 삼성전기주식회사 Apparatus for chemical vapor deposition
KR20110136583A (en) * 2010-06-15 2011-12-21 삼성엘이디 주식회사 Susceptor and chemical vapor deposition apparatus comprising the same
JP2012033775A (en) * 2010-07-30 2012-02-16 Nuflare Technology Inc Processing method of susceptor and processing method of semiconductor manufacturing apparatus
KR20120092984A (en) * 2011-02-14 2012-08-22 서울옵토디바이스주식회사 Suscepter for vapor deposition test and vapor deposiotion apparatus comprising the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10316412B2 (en) 2012-04-18 2019-06-11 Veeco Instruments Inc. Wafter carrier for chemical vapor deposition systems
US10167571B2 (en) 2013-03-15 2019-01-01 Veeco Instruments Inc. Wafer carrier having provisions for improving heating uniformity in chemical vapor deposition systems
TWI711114B (en) * 2017-08-31 2020-11-21 日商Sumco股份有限公司 Crystal seat, epitaxial growth device, method for manufacturing epitaxial silicon wafer, and epitaxial silicon wafer
US11501996B2 (en) 2017-08-31 2022-11-15 Sumco Corporation Susceptor, epitaxial growth apparatus, method of producing epitaxial silicon wafer, and epitaxial silicon wafer

Similar Documents

Publication Publication Date Title
WO2014062002A1 (en) Susceptor for epitaxial growing and method for epitaxial growing
KR101139132B1 (en) Susceptor for vapor growth apparatus
US9123759B2 (en) Susceptor, vapor phase growth apparatus, and method of manufacturing epitaxial wafer
US8795435B2 (en) Susceptor, coating apparatus and coating method using the susceptor
US6569239B2 (en) Silicon epitaxial wafer and production method therefor
JP4285240B2 (en) Epitaxial growth susceptor and epitaxial growth method
KR20190118077A (en) Substrate supporting device, substrate processing apparatus including the same and substrate processing method
US8268708B2 (en) Epitaxially coated silicon wafer and method for producing epitaxially coated silicon wafers
US8372298B2 (en) Method for producing epitaxially coated silicon wafers
EP0953659A2 (en) Apparatus for thin film growth
WO2014062000A1 (en) Susceptor for epitaxial growing and method for epitaxial growing
WO2016163602A1 (en) Device and method for growing silicon monocrystal ingot
KR20100102131A (en) Susceptor for epitaxial growth
WO2017135604A1 (en) Method for controlling flatness of epitaxial wafer
WO2021080094A1 (en) Raw material supply unit, single crystal silicon ingot growing apparatus comprising same and raw material supply method
TWI628734B (en) Susceptor for improved epitaxial wafer flatness and methods for fabricating a semiconductor wafer processing device
WO2016148385A1 (en) Lift pin and method for manufacturing same
CN207362367U (en) The silicon wafer of extension coating
US9234280B2 (en) Epitaxial growth apparatus and epitaxial growth method
WO2017122963A2 (en) Method for manufacturing epitaxial wafer
US20200173023A1 (en) SiC CHEMICAL VAPOR DEPOSITION APPARATUS AND METHOD OF MANUFACTURING SiC EPITAXIAL WAFER
JP2005353665A (en) Epitaxial vapor phase growth system and gradient angle setting method for partition member of gas inlet for the vapor phase growth system
KR20190009533A (en) Method and apparatus for manufacturing epitaxial wafer
WO2020189812A1 (en) Susceptor and device for manufacturing semiconductor
JP2002265295A (en) Susceptor for vapor growth and vapor growth method to use the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13847146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13847146

Country of ref document: EP

Kind code of ref document: A1