WO2014061473A1 - Resistive heating device - Google Patents

Resistive heating device Download PDF

Info

Publication number
WO2014061473A1
WO2014061473A1 PCT/JP2013/077108 JP2013077108W WO2014061473A1 WO 2014061473 A1 WO2014061473 A1 WO 2014061473A1 JP 2013077108 W JP2013077108 W JP 2013077108W WO 2014061473 A1 WO2014061473 A1 WO 2014061473A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
steel plate
insulating block
insulating
steel
Prior art date
Application number
PCT/JP2013/077108
Other languages
French (fr)
Japanese (ja)
Inventor
下津 晃治
幸弘 次田
勝志 大住
Original Assignee
株式会社アステア
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アステア filed Critical 株式会社アステア
Priority to JP2014542052A priority Critical patent/JPWO2014061473A1/en
Publication of WO2014061473A1 publication Critical patent/WO2014061473A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/40Direct resistance heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0014Devices wherein the heating current flows through particular resistances
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/03Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/06Heater elements structurally combined with coupling elements or holders
    • H05B3/08Heater elements structurally combined with coupling elements or holders having electric connections specially adapted for high temperatures

Definitions

  • the present invention is an energization heating device used when hot pressing a steel plate.
  • an electric heating device is used as one of means for heating the steel plate.
  • a steel plate is disposed between a plurality of electrodes, and the steel plate is heated by energizing between the electrodes. After heating, the steel sheet is brought into contact with a pressing mold and rapidly cooled. This heat treatment is called quenching. Quenching increases the hardness of the steel.
  • Patent Document 1 describes that an upper electrode (reference numeral 5) and a lower electrode (reference numeral 1) constitute one electrode unit.
  • the electrode unit is energized in a state where it is disposed at both ends of the steel plate (FIG. 1 and the like). It is described that energization is stopped by lowering the lower electrode with a cylinder (reference numeral 2) and separating the steel plate from the upper electrode.
  • Patent Document 2 also describes that an upper electrode (reference numeral 4) and a lower electrode (reference numeral 5) constitute one electrode unit.
  • the upper electrode is lowered by a load device (reference numeral 9).
  • the elastic member 3 is arranged on the electrode support member, so that the electrode can be uniformly contacted with the steel plate. It is described that when the electrode and the steel plate cannot be uniformly contacted, it causes local overheating in the steel plate.
  • Patent Document 3 also describes that an upper electrode (reference numerals 51 and 52) and a lower electrode (reference numerals 51 and 52) constitute one electrode unit.
  • an upper electrode reference numerals 51 and 52
  • a lower electrode reference numerals 51 and 52
  • the upper and lower electrodes move to prevent the generation of wrinkles.
  • the upper electrode and the lower electrode constitute one electrode unit, and the steel plate is heated by energizing between a pair of left and right electrode units.
  • the present inventors have a configuration in which a steel sheet is sandwiched and fixed between an upper electrode and a lower electrode, which are generally used in the past. It has been found that the temperature of other portions of the steel sheet is locally reduced. That is, as shown in FIG. 12, since the voltage is applied to the upper electrode and the lower electrode by branching the power supply line from the same power source, the potential of the upper electrode and the lower electrode is theoretically Is the same. However, in reality, a slight potential difference is unavoidable.
  • both of the electrode units that are in contact with the steel plate are electrodes. That is, since an electric circuit and a power supply line for supplying power to the electrode are always connected to the electrode, the weight of the electrode increases and the electrode becomes large. After heating the steel plate with the electric heating device, at least one of the upper and lower electrodes is raised or lowered to remove the steel plate. At this time, if the upper and lower electrodes are heavy and bulky, the efficiency of the quenching operation is lowered. Furthermore, actuators such as hydraulic cylinders that move the upper and lower electrodes must improve the output according to the weight of the electrodes, which increases the manufacturing cost and the maintenance cost of the apparatus.
  • An object of the present invention is to solve the problem caused by the stray current and to provide a light-weight and simple configuration energization heating apparatus.
  • the present invention is a steel sheet energization heating device (hereinafter sometimes simply referred to as a device) having a plurality of electrode units each composed of an electrode for supplying a current to a steel plate and at least one insulating block.
  • a steel sheet energization heating device (hereinafter sometimes simply referred to as a device) having a plurality of electrode units each composed of an electrode for supplying a current to a steel plate and at least one insulating block.
  • One part of the steel sheet is sandwiched between an electrode constituting one of the plurality of electrode units and the insulating block.
  • the other part of the steel plate is sandwiched between an electrode constituting the other of the plurality of electrode units and the insulating block.
  • the steel plate is heated by energizing between one and the other electrode unit.
  • the steel plate is sandwiched between the electrode and the insulating block, there is no possibility that stray current is generated. Since the steel plate is sandwiched between the electrode and the insulating block, it is firmly held during heating. Since the insulating block is used instead of the electrode, the area where the steel plate and the electrode are in contact decreases, but this can be ignored. For example, when electrodes are connected to the front sides of the left and right ends of the steel plate and insulating blocks are connected to the back sides of the left and right ends, the current flows mainly on the front side of the steel plate. The heat generated by energization is uniformly and quickly transmitted to the back side of the steel plate, so no problem occurs. For example, the electrode may be connected from the back side on the left side of the steel plate, and the electrode may be connected from the front side on the right side of the steel plate. In this case, an insulating block is brought into contact with the left surface and the right back surface.
  • Each electrode unit is provided with an actuator, the position of the electrode for supplying current to the steel plate is fixed in the vertical direction, and the insulating block is preferably configured to approach or separate from the electrode by the actuator. . If the position of the electrode is fixed in the vertical direction, it is not necessary to move a power supply line or an electric circuit associated with the electrode, so that work efficiency is improved.
  • the electrode may be configured to be movable in the left-right direction according to the width of the steel plate.
  • the actuator include a hydraulic cylinder and a pneumatic cylinder. If the rod is moved linearly by hydraulic pressure or air pressure and an insulating block is arranged at the tip of the rod, the insulating block can be moved in conjunction with the rod.
  • each electrode unit is provided with an actuator, the position of the electrode for supplying current to the steel plate is fixed in the vertical direction, the electrode supports the steel plate from below, and the insulating block is attached to the electrode by the actuator. On the other hand, it is configured to approach or leave from above. In this case, the steel plate is suspended between the electrodes and energized in a state where the steel plate and the electrode are brought into close contact with each other so as to be pressed from above with an insulating block.
  • the electrode unit When quenching a plurality of steel plates at a time, the electrode unit may be configured as follows. That is, each electrode unit is composed of one electrode for supplying a current to the steel plate and a plurality of insulating blocks, and an actuator is arranged independently on each of the plurality of insulating blocks. In this case, one part of the plurality of steel plates is sandwiched between a plurality of insulating blocks constituting one of the plurality of electrode units and one electrode, and the other part of the plurality of steel plates is sandwiched between the other of the plurality of electrode units. It is sandwiched between a plurality of insulating blocks and one electrode. If it is within the range of the length of the electrode in the longitudinal direction, a single wide steel plate can be heated instead of a plurality of steel plates.
  • Each electrode unit preferably includes an elastic member between the insulating block and the actuator.
  • the insulating block has a function of pressing the steel plate against the electrode. However, when the insulating block is pressed against the steel plate using an actuator, the pressing force may be excessive or a load may be applied locally. If an elastic member is arrange
  • the elastic member include a coil spring, a leaf spring, and an elastomer block. The elastic member is disposed so as to expand and contract with respect to the moving direction of the insulating block.
  • an insulating block forms an insulating layer in the surface facing the steel plate of a block main body.
  • the entire block may be made of an insulating material, the manufacturing cost increases because the insulating material is expensive.
  • the block main body since the material of the block main body does not necessarily need to be an insulating material, the block main body can be configured from an inexpensive material. Thereby, the manufacturing cost of an apparatus can be reduced.
  • an insulating layer By covering the block body with an elastic insulator, an insulating layer can be formed on the surface of the block body facing the steel plate.
  • a steel plate is sandwiched and fixed between the electrode constituting the electrode unit and the insulating block. Since no current passes from the electrode to the insulating block, it is possible to suppress the occurrence of stray current. By suppressing the generation of stray current, the steel sheet can be heated uniformly.
  • the device configuration can be simplified and the working efficiency can be improved.
  • each electrode unit is composed of one electrode and a plurality of insulating blocks, and an actuator is arranged independently for each insulating block, the insulating block is independently approached or separated from one electrode. It becomes possible to do. If it does in this way, it is also possible to heat a some steel plate at once, and it is possible to heat the steel plate of various widths.
  • FIG. 1 It is a perspective view which shows a mode that the steel plate is heated using an example (Example 1) of the electricity heating apparatus of this invention. It is a side view of the electric heating apparatus of FIG. It is a perspective view showing a mode that a steel plate is carried in to the electric heating apparatus of FIG. It is a perspective view showing a mode that a steel plate is carried out from the electric heating apparatus of FIG. It is a side view showing a mode that the electric heating apparatus which concerns on another Example (Example 2) is used. It is a side view showing a mode that the electric heating apparatus of another Example (Example 3) is used. It is a side view showing a mode that the electric heating apparatus of another Example (Example 4) is used.
  • Example 5 It is a side view showing a mode that the electric heating apparatus of another Example (Example 5) is used. It is a perspective view showing a mode that several sheets of steel plates are heated using the electric heating apparatus of another Example (Example 6). It is a perspective view showing a mode that one wide steel plate is heated using the electric heating apparatus of another Example (Example 6). It is the side view which showed typically the stray current produced by the clearance gap between an electrode and a steel plate. It is a side view showing a mode that the electric heating apparatus of a comparative example is used. It is a schematic diagram which shows the external appearance of the steel plate heated and cooled using the electric heating apparatus of Example 5. FIG. It is a schematic diagram which shows the external appearance of the steel plate heated and cooled using the electrical heating apparatus of a comparative example.
  • FIG. 1 to 4 show an example (Embodiment 1) of the electric heating apparatus of the present invention.
  • 5 to 10 show apparatuses according to the second to sixth embodiments.
  • the electric heating device 1 of Example 1 is composed of a pair of left and right electrodes.
  • Each electrode unit is composed of one electrode 11 and one insulating block 12.
  • the electrode 11 is disposed on the lower side and does not move in the vertical direction, but can be moved in the horizontal direction according to the length of the steel plate 2.
  • the insulating block 12 is disposed on the upper side, and approaches or leaves the electrode 11 from above by an actuator.
  • the left end of the steel plate 2 is sandwiched between a lower electrode 11 and an upper insulating block 12 constituting one of a pair of left and right electrode units.
  • the right end of the steel plate 2 is sandwiched between the lower electrode 11 and the upper insulating block 12 constituting the other of the pair of left and right electrode units.
  • the power source 113 is connected only to the lower electrode 11 via the feeder line 112.
  • the electrode 11 is a rectangular parallelepiped block having an electric circuit (not shown) therein, and the upper surface of the block, that is, the electrode surface is made of a copper plate.
  • a current 3 is supplied with the copper plate of the electrode 11 in contact with the back surface of the steel plate 2.
  • the weight of the lower electrode 11 in Example 1 is about 20 kg per piece.
  • the length in the longitudinal direction of the electrode 11 is set longer than the width of the steel plate 2 to be heated.
  • a material having low heat resistance and low resistance during energization may be used. Examples of such materials include copper and silver.
  • the electrode 11 is fixed on a base 111 formed of a nonconductive material.
  • the base 111 is a rectangular parallelepiped that is slightly larger than the electrode so that the electrode can be stably supported.
  • the base 111 is required to have insulating properties and heat insulating properties.
  • the base 111 was formed of ceramic.
  • the insulating block 112 is obtained by forming an insulating layer 121 on the lower surface of a rectangular parallelepiped block main body 122 as shown in FIG.
  • the length of the insulating block 112 is set to be longer than the width of the steel plate 2.
  • three coil springs 123 and a plate 124 for attaching the coil springs 123 are provided on the upper side of the insulating block 112.
  • the tip of the rod 125 of the hydraulic cylinder is connected to the central portion of the plate 124 in the longitudinal direction.
  • the base end of the rod 125 is connected to a hydraulic cylinder.
  • the rod 125 moves up and down in response to the hydraulic pressure. That is, the hydraulic cylinder and rod 125 function as an actuator.
  • the insulating block 112 preferably has a heat insulating property in addition to an electric insulating property.
  • the main body 122 of the insulating block is formed of stainless steel, and the insulating layer 121 is made of ceramic having excellent heat insulating properties.
  • the insulating layer 121 an elastic insulator having heat resistance described later may be used.
  • the block body 122 may be made of iron in order to finish it at a lower cost.
  • the insulating block 12, the coil spring 123, and the plate 124 are moved up and down by the expansion and contraction of the rod 125.
  • the rod 125 is contracted to separate the insulating block 12 from the left and right electrodes 11, and the steel plate 2 is placed on the left and right electrodes 11.
  • the rod 125 is extended to bring the insulating layer 121 of the insulating block 12 into contact with the steel plate 2.
  • the rod 125 is further extended to compress the coil spring 123, and the steel plate 2 is evenly pressed by the repulsive force of the coil spring 123. Thereby, the steel plate 2 and the electrode 11 are closely adhered without a gap.
  • the electrode 11 of Example 2 shown in FIG. 5 has a semicircular cross section, and this cross-sectional shape is continuous in the longitudinal direction of the electrode 11.
  • the electrode 11 of Example 3 shown in FIG. 6 has a triangular cross section, and this cross sectional shape is continuous in the longitudinal direction of the electrode. In the apparatus of Example 2 and Example 3, since the contact point between the electrode 11 and the steel plate 2 is a line, there is no gap between the electrode 11 and the steel plate 2.
  • the apparatus 1 of Examples 2 to 4 has the same configuration as that of the apparatus 1 of Example 1 except for the shape of the electrode 11.
  • the apparatus 1 of Example 5 of FIG. 8 is demonstrated.
  • the apparatus of the fifth embodiment has the same apparatus configuration as that of the apparatus 1 of the fourth embodiment shown in FIG. 7 except that the configuration of the insulating block 12 is different.
  • the insulating block 12 according to the fifth embodiment covers the block main body 122 made of iron or stainless steel with an elastic insulator 126 having heat resistance, so that the insulating layer 121 is provided on the surface of the block main body 122 facing the steel plate 2. Forming. Since the elastic insulator 126 can be in close contact with the steel plate 2 without a gap, the steel plate 2 can be pressed against the electrode 11 without a gap as compared with a hard material such as ceramics.
  • the block main body 122 is configured such that cracks are not generated from the corners by chamfering the corners.
  • a heat resistant cloth can be suitably used.
  • the heat-resistant cloth for example, a nonwoven fabric obtained by needle punching heat-resistant fibers such as glass wool mat, ceramic blanket, rock wool or the like can be used.
  • the apparatus 1 of Example 6 includes a pair of left and right electrode units. Each electrode unit is composed of one electrode 11 and two insulating blocks 12. The number of insulating blocks 12 may be increased according to the number of steel plates 2 placed on the device 2. Since the two insulating blocks 12 are provided with rods 125 connected to the hydraulic cylinders independently as actuators, the insulating blocks 12 are connected to the electrodes 11 for each steel plate 2 as shown in FIG. Can be approached or separated from each other. Therefore, a plurality of steel plates 2 can be heated together and can be heated every predetermined number. That is, it can cope with both mass production and small production. Further, as shown in FIG. 10, a single wide steel plate 2 can be heated.
  • the apparatus 1 can be used for quenching various parts.
  • the number of the insulating blocks 112 is two. However, if the width of each insulating block 112 is reduced and the number thereof is increased, the steel plates 2 and the electrodes 11 having various widths are provided. It becomes possible to make it adhere more reliably. Further, if the electrode 11 is made longer and the number of the insulating blocks 12 is increased, the wide steel plate 2 can be brought into close contact.
  • the electrode 11 is connected to a power source 113 via a feeder line 112.
  • the configuration of the insulating block 12 and the shape of the electrode 11 can be changed as in the first to fifth embodiments.
  • the number of coil springs 123 may be changed as appropriate.
  • the length of the electrode 11 is longer than those in Examples 1 to 5, but can be heated without any problem.
  • one electrode 11 includes one power supply line 112 and one electric circuit. That is, since it is not necessary to prepare a plurality of feeder lines and a plurality of electric circuits for each steel plate 2 to be heated, the apparatus configuration can be simplified and the weight per electrode can be reduced.
  • Example 5 using the apparatus of Example 5 (FIG. 8) and the apparatus of FIG. 12, steel sheets corresponding to German Industrial Standard 22MnB5 were quenched.
  • the steel sheet has a transformation start temperature (AC1) of 810 ° C. to 840 ° C. and a transformation completion temperature (AC 3) of 850 ° C.
  • AC1 transformation start temperature
  • AC 3 transformation completion temperature
  • Two steel plates having the same thickness, width, and length are prepared and heated by the apparatus of Example 5 and FIG.
  • a block body 122 prepared by chamfering a corner of a stainless steel block as an insulating block and wrapped with a glass wool mat having a thickness of 5 mm was used.
  • the steel plate was fixed in close contact with the lower electrode so that a pressure of 4 kN was applied to the left and right ends of the steel plate from above the steel plate via rods and coil springs of a hydraulic cylinder.
  • the steel plate was fixed by sticking the steel plate to the lower electrode so that the pressure of 4 kN was applied from the upper side to the left and right ends of the steel plate from above.
  • FIG. 13 shows one end portion of a steel plate heated by the apparatus of Example 5.
  • the upward direction in the figure is the central direction of the steel sheet.
  • the electrode was contacted along the broken line at the lower end of the steel plate.
  • the hatched portion 41 did not change in color with the raw steel plate before heating.
  • the portion 42 with wide hatching has a slightly yellowish color due to quenching. This yellow color is due to the steel plate being burnt, and indicates that it has been uniformly hardened.
  • the steel plate heated using the apparatus of Example 5 was uniformly colored yellowish except for both ends contacting the electrodes.
  • the temperature of the portion 41 that turned yellow during the heating of the steel sheet was measured, it was confirmed that the temperature was about 870 ° C., which exceeds the transformation completion temperature (AC3).
  • FIG. 14 shows one end portion of the steel plate heated by the apparatus of FIG.
  • the electrode was installed along the broken line at the lower end of the steel plate. Even when heated by the apparatus of FIG. 12, in the region where the electrode was in contact, there was no change in color and color of the raw steel plate, and it was confirmed that this region was not quenched. However, it was confirmed that a black portion 43, a portion 44 changed from yellow to brown, and a portion 45 having the same color as the raw steel plate appeared around the electrode. In FIG. 13, the black portion 43 is painted black, and the portion 44 is cross-hatched. The black portion 43 was generated because the steel plate was excessively heated and the steel plate was burnt.
  • the yellow to brown portion 44 is a portion that is not heated as much as the black portion 43 but is too heated and burnt.
  • a portion 44 having the same color as that of the raw steel plate is a portion where heating is insufficient. As is clear from FIG. 13, it was confirmed that there were a mixture of a part that was heated too much and a part that was insufficiently heated around the electrode.
  • the steel plate heated as described above was quickly conveyed to a press machine without being cooled, and heat was removed while forming with a press die to produce a door beam.
  • strength over the whole beam was able to be manufactured.
  • the strength of both ends of the beam is not uniform in the door beam using the steel plate heated by the apparatus of FIG. 12, and when the stress concentrates around the both ends, it easily deforms and exhibits the expected performance. I could't. Then, although the both ends of the steel plate were cut
  • Electric heating device 11
  • Electrode 11
  • Feed line 11
  • Power supply 12
  • Insulating block 121
  • Insulating layer 122
  • Coil spring 124
  • Plate 125
  • Rod (actuator) 2
  • Steel plate 3
  • Current 31 Stray current

Abstract

The present invention aims to prevent localized overheating in a steel sheet and localized drops in temperature in other parts of the steel sheet due to the generation of stray currents, and to provide a resistive heating device that is lightweight and has a simple device configuration. Furthermore, the present invention aims to provide a resistive heating device that can uniformly heat a plurality of steel sheets at the same time. The resistive heating device for steel sheets has a plurality of electrode units comprising at least one insulating block (12), and an electrode (11) that supplies current (3) to a steel sheet (2). The resistive heating device for steel sheets is characterized by a part of the steel sheet being sandwiched by the electrode and insulating block forming one of the plurality of electrode units, an other part of the steel sheet being sandwiched by the electrode and insulating block forming an other of the plurality of electrode units, and current being supplied between the one and the other electrode units when the steel sheet is fixed by the insulting blocks and the electrodes.

Description

通電加熱装置Electric heating device
本発明は、鋼板に対してホットプレス加工を行う際などに使用される通電加熱装置である。 The present invention is an energization heating device used when hot pressing a steel plate.
ホットプレス加工を行う際には、鋼板を加熱する手段の一つとして通電加熱装置が使用される。通電加熱装置では、複数の電極の間に鋼板を配置して、当該電極の間に通電して鋼板を加熱する。鋼板は、加熱した後、プレス用の型に接触させて急冷する。この熱処理は、焼き入れと呼ばれている。焼き入れによって、鋼の硬さが増大する。 When hot pressing is performed, an electric heating device is used as one of means for heating the steel plate. In the electric heating apparatus, a steel plate is disposed between a plurality of electrodes, and the steel plate is heated by energizing between the electrodes. After heating, the steel sheet is brought into contact with a pressing mold and rapidly cooled. This heat treatment is called quenching. Quenching increases the hardness of the steel.
特許文献1には、上側の電極(符号5)と下側の電極(符号1)とで一つの電極単位を構成することが記載されている。この電極単位を鋼板の両端に配置した状態で通電する(図1など)。シリンダ(符号2)によって下側の電極を下降させて、鋼板を上側の電極から離すことによって通電を停止する旨が記載されている。 Patent Document 1 describes that an upper electrode (reference numeral 5) and a lower electrode (reference numeral 1) constitute one electrode unit. The electrode unit is energized in a state where it is disposed at both ends of the steel plate (FIG. 1 and the like). It is described that energization is stopped by lowering the lower electrode with a cylinder (reference numeral 2) and separating the steel plate from the upper electrode.
特許文献2にも、上側の電極(符号4)と下側の電極(符号5)とで一つの電極単位を構成することが記載されている。この装置では、荷重装置(符号9)によって、上側の電極を下降させる。電極の支持部材には弾性部材3が配されるため、電極を鋼板に均一に接触できる旨が記載されている。電極と鋼板を均一に接触させることができない場合は、鋼板に局所的な過熱が生じる原因となる旨が記載されている。 Patent Document 2 also describes that an upper electrode (reference numeral 4) and a lower electrode (reference numeral 5) constitute one electrode unit. In this device, the upper electrode is lowered by a load device (reference numeral 9). It is described that the elastic member 3 is arranged on the electrode support member, so that the electrode can be uniformly contacted with the steel plate. It is described that when the electrode and the steel plate cannot be uniformly contacted, it causes local overheating in the steel plate.
 特許文献3にも、上側の電極(符号51、52)と下側の電極(符号51、52)とで一つの電極単位を構成することが記載されている。鋼板を加熱すると熱により体積が膨張して、鋼板にしわが発生することがある。この発明では、図8に示したように上下の電極が移動して、しわの発生を防止する。 Patent Document 3 also describes that an upper electrode (reference numerals 51 and 52) and a lower electrode (reference numerals 51 and 52) constitute one electrode unit. When a steel plate is heated, the volume expands due to heat, and wrinkles may occur in the steel plate. In the present invention, as shown in FIG. 8, the upper and lower electrodes move to prevent the generation of wrinkles.
実開昭57-053594号公報Japanese Utility Model Publication No.57-053594 特開2009-142853号公報JP 2009-142853 特開2011-245535号公報JP 2011-245535 A
特許文献1ないし3の通電加熱装置は、いずれも、上側の電極と下側の電極とで一つの電極単位を構成し、左右一対の電極単位の間に通電することにより鋼板を加熱する点で共通する。本発明者らは、図12に示すように、従来から一般的である上側の電極と下側の電極とで鋼板を挟んで固定する構成が、通電中に鋼板の一部が局所的に過熱されたり、鋼板の他の部分の温度が局所的に低下する原因となることを知見した。すなわち、図12に示したように、上側の電極及び下側の電極には、同一の電源から給電線を分岐して電圧を印加するため、上側の電極と下側の電極の電位は理論的には同じである。しかし、実際にはわずかな電位差が生じることが避けられない。電流は一方の電極単位から鋼板を介して他方の電極単位に流れるべきところ、この電位差に起因して一方の電極単位の上下の電極間でわずかではあるが電流が流れてしまう(以下、この電流のことを迷走電流と呼ぶ)。これにより、電極の近傍では鋼板の一部が局所的に過熱されたり、鋼板の他の部分の温度が局所的に低下するのである。 In each of the energization heating devices of Patent Documents 1 to 3, the upper electrode and the lower electrode constitute one electrode unit, and the steel plate is heated by energizing between a pair of left and right electrode units. Common. As shown in FIG. 12, the present inventors have a configuration in which a steel sheet is sandwiched and fixed between an upper electrode and a lower electrode, which are generally used in the past. It has been found that the temperature of other portions of the steel sheet is locally reduced. That is, as shown in FIG. 12, since the voltage is applied to the upper electrode and the lower electrode by branching the power supply line from the same power source, the potential of the upper electrode and the lower electrode is theoretically Is the same. However, in reality, a slight potential difference is unavoidable. Where current should flow from one electrode unit to the other electrode unit via the steel plate, a small amount of current flows between the upper and lower electrodes of one electrode unit due to this potential difference (hereinafter referred to as this current). Is called stray current). Thereby, in the vicinity of the electrode, a part of the steel sheet is locally heated, or the temperature of the other part of the steel sheet is locally decreased.
別の観点からみると、電極単位のうち、鋼板に接面する部分の両方を電極とする構成は以下の点で不利である。すなわち、電極には必ず電気回路とそれに電力を供給する給電線とが接続されるため、電極の重量が増加し、電極が大型化する。通電加熱装置で鋼板を加熱した後は、上下の電極のうち、少なくともいずれか一方を上昇又は下降させて、鋼板を取り外す。この際に上下の電極が重く、しかも嵩張るものであると、焼き入れ作業の効率を低下させる。さらには、上下の電極を移動させる油圧シリンダ等のアクチュエーターも電極の重量に応じて出力を向上せざるを得ず、製造コストや装置の維持コストを増加させる原因となる。 From another point of view, the configuration in which both of the electrode units that are in contact with the steel plate are electrodes is disadvantageous in the following points. That is, since an electric circuit and a power supply line for supplying power to the electrode are always connected to the electrode, the weight of the electrode increases and the electrode becomes large. After heating the steel plate with the electric heating device, at least one of the upper and lower electrodes is raised or lowered to remove the steel plate. At this time, if the upper and lower electrodes are heavy and bulky, the efficiency of the quenching operation is lowered. Furthermore, actuators such as hydraulic cylinders that move the upper and lower electrodes must improve the output according to the weight of the electrodes, which increases the manufacturing cost and the maintenance cost of the apparatus.
さらに別の観点からみると、生産性を向上させるために、複数枚の鋼板を幅方向に並べて、この鋼板に長尺な上下の電極を接面して通電することが考えられる。やはり、この場合にも、鋼板に接面する上下の部材の両方を電極とすると、上記の迷走電流に起因して鋼板が局所的に過熱されたり、局所的に温度が低下する。特に上側の電極を1本の長尺な電極とし、下側の電極も1本の長尺な電極として構成した場合、複数枚の鋼板と長尺な電極を均一に接面することは困難であり、上記の迷走電流の問題はよりいっそう顕在化することになる。上述の製造コストや装置の維持コストの問題も同様に生じる。 From another point of view, in order to improve productivity, it is conceivable that a plurality of steel plates are arranged in the width direction, and this steel plate is energized with the upper and lower electrodes in contact with each other. Again, in this case, if both the upper and lower members contacting the steel plate are electrodes, the steel plate is locally overheated or the temperature is locally lowered due to the stray current. In particular, when the upper electrode is a single long electrode and the lower electrode is also a single long electrode, it is difficult to uniformly contact a plurality of steel plates and the long electrode. Yes, the above-mentioned problem of stray current becomes even more apparent. The above-mentioned problems of manufacturing cost and device maintenance cost also occur.
本発明は上記迷走電流に起因する問題を解消し、軽量で簡素な構成の通電加熱装置を提供することを目的とする。 An object of the present invention is to solve the problem caused by the stray current and to provide a light-weight and simple configuration energization heating apparatus.
本発明は、鋼板に電流を供給する電極と少なくとも一つの絶縁性ブロックとからなる電極単位を複数有する鋼板用通電加熱装置(以下、単に装置と呼ぶことがある)であり、これにより上記の課題を解決する。鋼板の一方の部分は複数の電極単位の内の一方を構成する電極と絶縁性ブロックとの間に挟まれる。鋼板の他方の部分は複数の電極単位の内の他方を構成する電極と絶縁性ブロックとの間に挟まれる。絶縁性ブロックと電極によって鋼板の位置を固定した状態で一方と他方の電極単位の間に通電して鋼板を加熱する。 The present invention is a steel sheet energization heating device (hereinafter sometimes simply referred to as a device) having a plurality of electrode units each composed of an electrode for supplying a current to a steel plate and at least one insulating block. To solve. One part of the steel sheet is sandwiched between an electrode constituting one of the plurality of electrode units and the insulating block. The other part of the steel plate is sandwiched between an electrode constituting the other of the plurality of electrode units and the insulating block. In a state where the position of the steel plate is fixed by the insulating block and the electrode, the steel plate is heated by energizing between one and the other electrode unit.
本発明の装置では、鋼板を電極と絶縁性ブロックとで挟むので、迷走電流が発生するおそれがない。鋼板は電極と絶縁性ブロックとで挟まれるので、加熱中もしっかりと保持される。電極の代わりに絶縁性ブロックを使用するため鋼板と電極が接触する面積は減少するが、これについては無視できる。例えば、鋼板の左右両端の表側に電極を接続し、左右両端の裏側に絶縁性ブロックを接続した場合、電流は鋼板の表側を主に流れる。通電により生じた熱は、均等かつ迅速に鋼板の裏側に伝わるので問題は生じない。例えば、鋼板の左側では電極を裏側から接続して、鋼板の右側では電極を表側から接続してもよい。この場合、左側の表面及び右側の裏面には、絶縁性ブロックを接面させる。 In the apparatus of the present invention, since the steel plate is sandwiched between the electrode and the insulating block, there is no possibility that stray current is generated. Since the steel plate is sandwiched between the electrode and the insulating block, it is firmly held during heating. Since the insulating block is used instead of the electrode, the area where the steel plate and the electrode are in contact decreases, but this can be ignored. For example, when electrodes are connected to the front sides of the left and right ends of the steel plate and insulating blocks are connected to the back sides of the left and right ends, the current flows mainly on the front side of the steel plate. The heat generated by energization is uniformly and quickly transmitted to the back side of the steel plate, so no problem occurs. For example, the electrode may be connected from the back side on the left side of the steel plate, and the electrode may be connected from the front side on the right side of the steel plate. In this case, an insulating block is brought into contact with the left surface and the right back surface.
それぞれの電極単位はアクチュエーターを備えており、鋼板に電流を供給する電極の位置は上下方向に対して固定され、絶縁性ブロックはアクチュエーターによって電極に対して接近又は離隔するように構成することが好ましい。電極の位置を上下方向に固定しておけば、電極に付随する給電線や電気回路を動かす必要がなくなるので、作業効率が向上する。なお、電極は鋼板の幅に応じて左右方向に移動可能に構成しても構わない。アクチュエーターとしては、油圧シリンダ、空圧シリンダなどが挙げられる。油圧や空気圧によりロッドを直線的に運動させて、ロッドの先端に絶縁性ブロックを配しておけば、ロッドと連動して絶縁性ブロックを移動させることができる。 Each electrode unit is provided with an actuator, the position of the electrode for supplying current to the steel plate is fixed in the vertical direction, and the insulating block is preferably configured to approach or separate from the electrode by the actuator. . If the position of the electrode is fixed in the vertical direction, it is not necessary to move a power supply line or an electric circuit associated with the electrode, so that work efficiency is improved. The electrode may be configured to be movable in the left-right direction according to the width of the steel plate. Examples of the actuator include a hydraulic cylinder and a pneumatic cylinder. If the rod is moved linearly by hydraulic pressure or air pressure and an insulating block is arranged at the tip of the rod, the insulating block can be moved in conjunction with the rod.
より好ましくは、それぞれの電極単位はアクチュエーターを備えており、鋼板に電流を供給する電極の位置は上下方向に対して固定され、該電極は下方から鋼板を支え、絶縁性ブロックはアクチュエーターによって電極に対して上方から接近又は離反するように構成する。この場合、鋼板を電極間に懸架して、上から絶縁性ブロックで押さえつけるようにして鋼板と電極を密着させた状態で通電する。 More preferably, each electrode unit is provided with an actuator, the position of the electrode for supplying current to the steel plate is fixed in the vertical direction, the electrode supports the steel plate from below, and the insulating block is attached to the electrode by the actuator. On the other hand, it is configured to approach or leave from above. In this case, the steel plate is suspended between the electrodes and energized in a state where the steel plate and the electrode are brought into close contact with each other so as to be pressed from above with an insulating block.
一度に複数の鋼板を焼き入れする場合には、電極単位は次のように構成してもよい。すなわち、それぞれの電極単位は、鋼板に電流を供給する一つの電極と複数の絶縁性ブロックとからなり、複数の絶縁性ブロックのそれぞれに独立してアクチュエーターを配置する構成である。この場合、複数の鋼板の一方の部分を複数の電極単位の内一方を構成する複数の絶縁性ブロックと一つの電極とで挟み、複数の鋼板の他の部分を複数の電極単位の内他方を構成する複数の絶縁性ブロックと一つの電極とで挟む。電極の長手方向の長さの範囲内であれば、複数の鋼板に代えて、幅の広い1枚の鋼板を加熱することもできる。 When quenching a plurality of steel plates at a time, the electrode unit may be configured as follows. That is, each electrode unit is composed of one electrode for supplying a current to the steel plate and a plurality of insulating blocks, and an actuator is arranged independently on each of the plurality of insulating blocks. In this case, one part of the plurality of steel plates is sandwiched between a plurality of insulating blocks constituting one of the plurality of electrode units and one electrode, and the other part of the plurality of steel plates is sandwiched between the other of the plurality of electrode units. It is sandwiched between a plurality of insulating blocks and one electrode. If it is within the range of the length of the electrode in the longitudinal direction, a single wide steel plate can be heated instead of a plurality of steel plates.
それぞれの電極単位は、絶縁性ブロックとアクチュエーターの間に弾性部材を備えるものであることが好ましい。絶縁性ブロックは、電極に対して鋼板を押し付ける働きを有する。しかし、アクチュエーターを使って絶縁性ブロックを鋼板に押し付けると、押圧力が過剰になったり荷重が局所的に加わったりすることがある。弾性部材を絶縁性ブロックとアクチュエーターの間に配置すれば、過剰な押圧力や局所的な荷重が鋼板に加わることを防止することができる。弾性部材としては、コイルスプリング、板バネ、エラストマー製のブロック等が例示される。弾性部材は、絶縁性ブロックの移動方向に対して伸縮するように配置する。 Each electrode unit preferably includes an elastic member between the insulating block and the actuator. The insulating block has a function of pressing the steel plate against the electrode. However, when the insulating block is pressed against the steel plate using an actuator, the pressing force may be excessive or a load may be applied locally. If an elastic member is arrange | positioned between an insulating block and an actuator, it can prevent that excessive pressing force and a local load are added to a steel plate. Examples of the elastic member include a coil spring, a leaf spring, and an elastomer block. The elastic member is disposed so as to expand and contract with respect to the moving direction of the insulating block.
絶縁性ブロックは、ブロック本体の鋼板に対向する面に絶縁層を形成するものであることが好ましい。ブロック全体を絶縁材料で構成してもよいが、絶縁材料は高価なため製造コストが嵩む。さらに、この構成によれば、ブロック本体の材料は必ずしも絶縁材料である必要はないので、安価な材料からブロック本体を構成することが可能になる。これにより、装置の製造コストを低減することができる。ブロック本体を弾性絶縁体で覆うことにより、ブロック本体の鋼板に対向する面に絶縁層を形成することもできる。 It is preferable that an insulating block forms an insulating layer in the surface facing the steel plate of a block main body. Although the entire block may be made of an insulating material, the manufacturing cost increases because the insulating material is expensive. Furthermore, according to this configuration, since the material of the block main body does not necessarily need to be an insulating material, the block main body can be configured from an inexpensive material. Thereby, the manufacturing cost of an apparatus can be reduced. By covering the block body with an elastic insulator, an insulating layer can be formed on the surface of the block body facing the steel plate.
本発明では、電極単位を構成する電極と絶縁性ブロックとの間に鋼板を挟んで固定する。電極から絶縁性ブロックへと電流が通じることはないから、迷走電流の発生を抑えることが可能である。迷走電流の発生を抑えることにより、鋼板を均一に加熱することが可能になる。 In the present invention, a steel plate is sandwiched and fixed between the electrode constituting the electrode unit and the insulating block. Since no current passes from the electrode to the insulating block, it is possible to suppress the occurrence of stray current. By suppressing the generation of stray current, the steel sheet can be heated uniformly.
電極の位置を上下方向に対して固定し、電極に対して絶縁ブロックをアクチュエーターによって接近又は離隔させれば、電極に付随する給電線や電気回路を移動させる必要がなくなる。この構成を採用すれば、装置構成も簡素にすることができるし、作業効率を向上することができる。 If the position of the electrode is fixed in the vertical direction and the insulating block is moved closer to or away from the electrode by an actuator, there is no need to move a power supply line or an electric circuit associated with the electrode. By adopting this configuration, the device configuration can be simplified and the working efficiency can be improved.
それぞれの電極単位を、一つの電極と複数の絶縁性ブロックとから構成し、絶縁性ブロックのそれぞれに独立してアクチュエーターを配置すれば、一つの電極に対して絶縁ブロックを独立して接近又は離隔することが可能になる。このようにすれば、複数の鋼板を一度に加熱することも可能であるし、様々な幅の鋼板を加熱することが可能である。 If each electrode unit is composed of one electrode and a plurality of insulating blocks, and an actuator is arranged independently for each insulating block, the insulating block is independently approached or separated from one electrode. It becomes possible to do. If it does in this way, it is also possible to heat a some steel plate at once, and it is possible to heat the steel plate of various widths.
本発明の通電加熱装置の一例(実施例1)を使用して鋼板を加熱している様子を示す斜視図である。It is a perspective view which shows a mode that the steel plate is heated using an example (Example 1) of the electricity heating apparatus of this invention. 図1の通電加熱装置の側面図である。It is a side view of the electric heating apparatus of FIG. 図1の通電加熱装置に鋼板を搬入する様子を表す斜視図である。It is a perspective view showing a mode that a steel plate is carried in to the electric heating apparatus of FIG. 図1の通電加熱装置から鋼板を搬出する様子を表す斜視図である。It is a perspective view showing a mode that a steel plate is carried out from the electric heating apparatus of FIG. 別の実施例(実施例2)に係る通電加熱装置を使用している様子を表す側面図である。It is a side view showing a mode that the electric heating apparatus which concerns on another Example (Example 2) is used. 別の実施例(実施例3)の通電加熱装置を使用している様子を表す側面図である。It is a side view showing a mode that the electric heating apparatus of another Example (Example 3) is used. 別の実施例(実施例4)の通電加熱装置を使用している様子を表す側面図である。It is a side view showing a mode that the electric heating apparatus of another Example (Example 4) is used. 別の実施例(実施例5)の通電加熱装置を使用している様子を表す側面図である。It is a side view showing a mode that the electric heating apparatus of another Example (Example 5) is used. 別の実施例(実施例6)の通電加熱装置を使って複数枚の鋼板を加熱している様子を表す斜視図である。It is a perspective view showing a mode that several sheets of steel plates are heated using the electric heating apparatus of another Example (Example 6). 別の実施例(実施例6)の通電加熱装置を使って1枚の幅の広い鋼板を加熱している様子を表す斜視図である。It is a perspective view showing a mode that one wide steel plate is heated using the electric heating apparatus of another Example (Example 6). 電極と鋼板との間の隙間によって生じる迷走電流を模式的に示した側面図である。It is the side view which showed typically the stray current produced by the clearance gap between an electrode and a steel plate. 比較例の通電加熱装置を使用している様子を表す側面図である。It is a side view showing a mode that the electric heating apparatus of a comparative example is used. 実施例5の通電加熱装置を使用して加熱し、冷却した鋼板の外観を示す模式図である。It is a schematic diagram which shows the external appearance of the steel plate heated and cooled using the electric heating apparatus of Example 5. FIG. 比較例の通電加熱装置を使用して加熱し、冷却した鋼板の外観を示す模式図である。It is a schematic diagram which shows the external appearance of the steel plate heated and cooled using the electrical heating apparatus of a comparative example.
 以下、本発明を実施するための形態について図面を参照しながら説明する。図1ないし図4に、本発明の通電加熱装置の一例(実施例1)を示す。図5ないし図10に、実施例2ないし6に係る装置を示す。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. 1 to 4 show an example (Embodiment 1) of the electric heating apparatus of the present invention. 5 to 10 show apparatuses according to the second to sixth embodiments.
実施例1の通電加熱装置1は、図1及び図2に示したように、左右一対の電極単位からなる。それぞれの電極単位は一つの電極11と一つの絶縁性ブロック12とから構成される。電極11は下側に配置され、上下方向には移動しないが、鋼板2の長さに応じて左右方向には移動させることができる。絶縁性ブロック12は上側に配置され、アクチュエーターによって電極11に対して上方から接近又は離隔する。鋼板2の左端は左右一対の電極単位の一方を構成する下側の電極11と上側の絶縁性ブロック12との間に挟まれる。鋼板2の右端は左右一対の電極単位の他方を構成する下側の電極11と上側の絶縁性ブロック12との間に挟まれる。電源113は給電線112を介して下側の電極11にのみ接続される。 As shown in FIGS. 1 and 2, the electric heating device 1 of Example 1 is composed of a pair of left and right electrodes. Each electrode unit is composed of one electrode 11 and one insulating block 12. The electrode 11 is disposed on the lower side and does not move in the vertical direction, but can be moved in the horizontal direction according to the length of the steel plate 2. The insulating block 12 is disposed on the upper side, and approaches or leaves the electrode 11 from above by an actuator. The left end of the steel plate 2 is sandwiched between a lower electrode 11 and an upper insulating block 12 constituting one of a pair of left and right electrode units. The right end of the steel plate 2 is sandwiched between the lower electrode 11 and the upper insulating block 12 constituting the other of the pair of left and right electrode units. The power source 113 is connected only to the lower electrode 11 via the feeder line 112.
電極11は、内部に電気回路(図示略)を備える直方体状のブロックであり、ブロックの上面、すなわち電極面が銅板からなる。鋼板2の裏面に電極11の銅板を接面した状態で、電流3を供給する。実施例1の下側の電極11の重量は1個当たり20kg程度である。電極11の長手方向の長さは加熱する鋼板2の幅よりも長く設定されている。電極面の素材は、耐熱性と通電時の抵抗が小さい素材を使用すればよい。そのような素材としては、銅、銀などが挙げられる。電極11は、非導電性の素材で成形したベース111の上に固定されている。実施例1では、ベース111は電極を安定して支えられるように電極よりも一回り大きい直方体を使用した。ベース111には、絶縁性と断熱性が求められる。実施例1では、ベース111はセラミックで成形した。 The electrode 11 is a rectangular parallelepiped block having an electric circuit (not shown) therein, and the upper surface of the block, that is, the electrode surface is made of a copper plate. A current 3 is supplied with the copper plate of the electrode 11 in contact with the back surface of the steel plate 2. The weight of the lower electrode 11 in Example 1 is about 20 kg per piece. The length in the longitudinal direction of the electrode 11 is set longer than the width of the steel plate 2 to be heated. As the material for the electrode surface, a material having low heat resistance and low resistance during energization may be used. Examples of such materials include copper and silver. The electrode 11 is fixed on a base 111 formed of a nonconductive material. In Example 1, the base 111 is a rectangular parallelepiped that is slightly larger than the electrode so that the electrode can be stably supported. The base 111 is required to have insulating properties and heat insulating properties. In Example 1, the base 111 was formed of ceramic.
絶縁性ブロック112は、図2に示したように、直方体状のブロック本体122の下面に絶縁層121を形成したものである。鋼板2を電極11に対して、隙間なく押し付けるようにするために、絶縁性ブロック112の長さは、鋼板2の幅よりも長くなるように設定してある。絶縁性ブロック112の上側には、3基のコイルスプリング123、及びコイルスプリング123を取り付けるための板124を備える。板124の長手方向中央部分には油圧シリンダのロッド125の先端を接続している。図示は省略するがロッド125の基端は油圧シリンダに接続される。ロッド125は、油圧を受けて上下動する。すなわち、油圧シリンダ及びロッド125はアクチュエーターとして機能する。 The insulating block 112 is obtained by forming an insulating layer 121 on the lower surface of a rectangular parallelepiped block main body 122 as shown in FIG. In order to press the steel plate 2 against the electrode 11 without a gap, the length of the insulating block 112 is set to be longer than the width of the steel plate 2. On the upper side of the insulating block 112, three coil springs 123 and a plate 124 for attaching the coil springs 123 are provided. The tip of the rod 125 of the hydraulic cylinder is connected to the central portion of the plate 124 in the longitudinal direction. Although not shown, the base end of the rod 125 is connected to a hydraulic cylinder. The rod 125 moves up and down in response to the hydraulic pressure. That is, the hydraulic cylinder and rod 125 function as an actuator.
油圧シリンダ内部の油や空気圧シリンダの空気が加熱されると、アクチュエーターの制御が乱れるため、絶縁性ブロック112は、電気的絶縁性に加えて、断熱性を備えることが好ましい。実施例1では、絶縁性ブロックの本体122をステンレス鋼で成形し、絶縁層121に断熱性に優れるセラミックを使用している。絶縁層121として、後述する耐熱性を有する弾性絶縁体を使用してもよい。ブロック本体122は、より安価に仕上げるために鉄で構成してもよい。 When oil in the hydraulic cylinder or air in the pneumatic cylinder is heated, the control of the actuator is disturbed. Therefore, the insulating block 112 preferably has a heat insulating property in addition to an electric insulating property. In the first embodiment, the main body 122 of the insulating block is formed of stainless steel, and the insulating layer 121 is made of ceramic having excellent heat insulating properties. As the insulating layer 121, an elastic insulator having heat resistance described later may be used. The block body 122 may be made of iron in order to finish it at a lower cost.
絶縁性ブロック12、コイルスプリング123及び板124は、ロッド125の伸縮によって昇降する。鋼板2を装置11に載せる際には、図3に示したように、ロッド125を縮めて絶縁性ブロック12を左右の電極11から離隔させて、左右の電極11の上に鋼板2を載せる。そして、ロッド125を伸ばして、絶縁性ブロック12の絶縁層121を鋼板2に接面させる。この状態からさらにロッド125を伸ばしてコイルスプリング123を圧縮し、コイルスプリングの123の反発力により鋼板2を均等に押さえつける。これにより、鋼板2と電極11とが隙間なく密着する。鋼板2と電極の間に隙間があると、接触抵抗が発生して電極と鋼板の接触面が局所的に過熱されるおそれがある。コイルスプリング123を使用して鋼板2を電極11に押し付けることにより接触電流の発生を解消することができる。また、図11に示したように鋼板2と電極11との一方の接点113と他方の接点114の間で電流が生じてしまうことがある。これが迷走電流を発生させる原因となるが、上記のようにして鋼板2と電極11とを密着させれば、迷走電流の発生も防ぐことができる。鋼板2の加熱が終了した後は、図4に示したように、左右の絶縁性ブロック12を電極11から離隔させて、装置1から鋼板2を取り外す。取り外した鋼板2は、急冷して焼き入れを完了させる。急冷と同時に鋼板2を成形してもよい。 The insulating block 12, the coil spring 123, and the plate 124 are moved up and down by the expansion and contraction of the rod 125. When the steel plate 2 is placed on the apparatus 11, as shown in FIG. 3, the rod 125 is contracted to separate the insulating block 12 from the left and right electrodes 11, and the steel plate 2 is placed on the left and right electrodes 11. Then, the rod 125 is extended to bring the insulating layer 121 of the insulating block 12 into contact with the steel plate 2. From this state, the rod 125 is further extended to compress the coil spring 123, and the steel plate 2 is evenly pressed by the repulsive force of the coil spring 123. Thereby, the steel plate 2 and the electrode 11 are closely adhered without a gap. If there is a gap between the steel plate 2 and the electrode, contact resistance is generated and the contact surface between the electrode and the steel plate may be locally overheated. Generation of contact current can be eliminated by pressing the steel plate 2 against the electrode 11 using the coil spring 123. In addition, as shown in FIG. 11, a current may be generated between one contact 113 and the other contact 114 of the steel plate 2 and the electrode 11. This causes the generation of stray current. If the steel plate 2 and the electrode 11 are brought into close contact with each other as described above, the generation of stray current can be prevented. After the heating of the steel plate 2 is completed, the left and right insulating blocks 12 are separated from the electrode 11 and the steel plate 2 is removed from the apparatus 1 as shown in FIG. The removed steel plate 2 is rapidly cooled to complete quenching. The steel plate 2 may be formed simultaneously with the rapid cooling.
上述のように、鋼板2と電極11の間に隙間が生じると、迷走電流及び接触抵抗が生じて鋼板2を均一に加熱できない場合がある。そこで、図5ないし7に示した実施例2ないし4のように電極11の形状を変更してもよい。図5に示した実施例2の電極11は、半円形の断面を有し、この断面形状が電極11の長手方向に連続する。図6に示した実施例3の電極11は、三角形の断面を有し、この断面形状が電極の長手方向に連続する。実施例2及び実施例3の装置では、電極11と鋼板2の接点が線になるので、電極11と鋼板2に隙間が生じない。図7に示した実施例4の電極11は、四角柱の右上及び左上の角をその長手方向に沿って面取りした形状である。実施例2及び3に係る電極11に比べて、電極11と鋼板2との接触面積が大きいので、安定して鋼板2を支持することができる。実施例2ないし4の装置1は、電極11の形状以外は実施例1の装置1と同様の構成である。 As described above, when a gap is generated between the steel plate 2 and the electrode 11, stray current and contact resistance may be generated and the steel plate 2 may not be heated uniformly. Therefore, the shape of the electrode 11 may be changed as in the second to fourth embodiments shown in FIGS. The electrode 11 of Example 2 shown in FIG. 5 has a semicircular cross section, and this cross-sectional shape is continuous in the longitudinal direction of the electrode 11. The electrode 11 of Example 3 shown in FIG. 6 has a triangular cross section, and this cross sectional shape is continuous in the longitudinal direction of the electrode. In the apparatus of Example 2 and Example 3, since the contact point between the electrode 11 and the steel plate 2 is a line, there is no gap between the electrode 11 and the steel plate 2. The electrode 11 of Example 4 shown in FIG. 7 has a shape in which the upper right and upper left corners of the quadrangular prism are chamfered along the longitudinal direction thereof. Since the contact area between the electrode 11 and the steel plate 2 is larger than that of the electrode 11 according to Examples 2 and 3, the steel plate 2 can be supported stably. The apparatus 1 of Examples 2 to 4 has the same configuration as that of the apparatus 1 of Example 1 except for the shape of the electrode 11.
図8の実施例5の装置1について説明する。実施例5の装置は、絶縁性ブロック12の構成が異なる点を除いては図7の実施例4の装置1と同様の装置構成である。実施例5の絶縁性ブロック12は、鉄又はステンレス鋼等からなるブロック本体122を、耐熱性を有する弾性絶縁体126で覆うことにより、ブロック本体122が鋼板2に対向する面に絶縁層121を形成している。弾性絶縁体126は鋼板2に対して隙間なく密着することができるため、セラミックスなどの硬質材料に比べて鋼板2を電極11に対して隙間なく押し付けることができる。ブロック本体122は、角を面取りすることにより角からひび割れが生じないようにしてある。弾性絶縁体126としては、耐熱布が好適に使用できる。耐熱布としては、例えば、グラスウールマット、セラミックブランケット、ロックウールなど、耐熱性繊維をニードルパンチして仕上げた不織布を使用することができる。 The apparatus 1 of Example 5 of FIG. 8 is demonstrated. The apparatus of the fifth embodiment has the same apparatus configuration as that of the apparatus 1 of the fourth embodiment shown in FIG. 7 except that the configuration of the insulating block 12 is different. The insulating block 12 according to the fifth embodiment covers the block main body 122 made of iron or stainless steel with an elastic insulator 126 having heat resistance, so that the insulating layer 121 is provided on the surface of the block main body 122 facing the steel plate 2. Forming. Since the elastic insulator 126 can be in close contact with the steel plate 2 without a gap, the steel plate 2 can be pressed against the electrode 11 without a gap as compared with a hard material such as ceramics. The block main body 122 is configured such that cracks are not generated from the corners by chamfering the corners. As the elastic insulator 126, a heat resistant cloth can be suitably used. As the heat-resistant cloth, for example, a nonwoven fabric obtained by needle punching heat-resistant fibers such as glass wool mat, ceramic blanket, rock wool or the like can be used.
図9及び図10の実施例6に係る装置1について説明する。実施例6の装置1は、左右一対の電極単位を備える。それぞれの電極単位は一つの電極11と二つの絶縁性ブロック12とから構成される。絶縁性ブロック12の数は、装置2に載せる鋼板2の枚数に応じて増やしてもよい。二つの絶縁性ブロック12は、アクチュエーターとして、それぞれに独立して油圧シリンダに接続されるロッド125が設けられているので、図9に示したように、鋼板2ごとに絶縁性ブロック12を電極11に対して接近又は離隔することができる。したがって、複数枚の鋼板2をまとめて同時に加熱することもできるし、所定の枚数ごとに加熱することもできる。つまり、大量生産にも少量生産にも対応することができる。また、図10に示したように、幅の広い1枚の鋼板2を加熱することもできる。実施例6の装置1では、加熱できる鋼板2の幅を自由に選択することができため、本装置1を種々の部品の焼き入れに利用することが可能である。本実施例では、絶縁性ブロック112の数を二つにしたが、それぞれの絶縁性ブロック112の幅を小さくし、かつその数を増加させれば、様々な幅を有する鋼板2と電極11をより確実に密着させることが可能になる。また、電極11をより長くして、絶縁性ブロック12の数を増やせば幅の広い鋼板2を密着させることも可能である。電極11は給電線112を介して電源113に接続される。絶縁性ブロック12の構成及び電極11の形状等は上記実施例1ないし5のように変更することができる。コイルスプリング123の数などは適宜変更してもよい。電極11の長さは、実施例1ないし5に比較して長くなるが、問題なく加熱することができる。 A device 1 according to Example 6 in FIGS. 9 and 10 will be described. The apparatus 1 of Example 6 includes a pair of left and right electrode units. Each electrode unit is composed of one electrode 11 and two insulating blocks 12. The number of insulating blocks 12 may be increased according to the number of steel plates 2 placed on the device 2. Since the two insulating blocks 12 are provided with rods 125 connected to the hydraulic cylinders independently as actuators, the insulating blocks 12 are connected to the electrodes 11 for each steel plate 2 as shown in FIG. Can be approached or separated from each other. Therefore, a plurality of steel plates 2 can be heated together and can be heated every predetermined number. That is, it can cope with both mass production and small production. Further, as shown in FIG. 10, a single wide steel plate 2 can be heated. In the apparatus 1 of Example 6, since the width of the steel plate 2 that can be heated can be freely selected, the apparatus 1 can be used for quenching various parts. In this embodiment, the number of the insulating blocks 112 is two. However, if the width of each insulating block 112 is reduced and the number thereof is increased, the steel plates 2 and the electrodes 11 having various widths are provided. It becomes possible to make it adhere more reliably. Further, if the electrode 11 is made longer and the number of the insulating blocks 12 is increased, the wide steel plate 2 can be brought into close contact. The electrode 11 is connected to a power source 113 via a feeder line 112. The configuration of the insulating block 12 and the shape of the electrode 11 can be changed as in the first to fifth embodiments. The number of coil springs 123 may be changed as appropriate. The length of the electrode 11 is longer than those in Examples 1 to 5, but can be heated without any problem.
実施例6の装置1では、一つの電極11は、一本の給電線112と一つの電気回路とを含む。すなわち、加熱する鋼板2ごとに複数本の給電線と複数個の電気回路を準備する必要がないので装置構成を簡素にすることができるし、電極一つ当たりの重量も小さくすることができる。 In the device 1 according to the sixth embodiment, one electrode 11 includes one power supply line 112 and one electric circuit. That is, since it is not necessary to prepare a plurality of feeder lines and a plurality of electric circuits for each steel plate 2 to be heated, the apparatus configuration can be simplified and the weight per electrode can be reduced.
以下、実施例5(図8)の装置及び図12の装置を使用して、ドイツ工業規格22MnB5相当の鋼板に焼き入れを行った。この鋼板の変態開始温度(AC1)は810℃から840℃であるとされており、変態完了温度(AC3)は850℃であるとされている。鋼板の厚み、幅、及び長さが同じ鋼板を2枚用意して、実施例5と図12の装置でそれぞれ加熱する。実施例5の装置では、絶縁性ブロックとしてステンレス鋼のブロックの角を面取して作成したブロック本体122を厚さ5mmのグラスウールマットで包んだものを使用した。鋼板の左右の端部にはそれぞれ、油圧シリンダのロッド及びコイルスプリングを介して4kNの圧力が鋼板の上方から掛かるようにして、鋼板を下側の電極に密着させて固定した。一方、図12の装置では、鋼板の左右の端部を上方から4kNの圧力が鋼板の上方から掛かるようにして、鋼板を下側の電極に密着させて鋼板を固定した。 Hereinafter, using the apparatus of Example 5 (FIG. 8) and the apparatus of FIG. 12, steel sheets corresponding to German Industrial Standard 22MnB5 were quenched. The steel sheet has a transformation start temperature (AC1) of 810 ° C. to 840 ° C. and a transformation completion temperature (AC 3) of 850 ° C. Two steel plates having the same thickness, width, and length are prepared and heated by the apparatus of Example 5 and FIG. In the apparatus of Example 5, a block body 122 prepared by chamfering a corner of a stainless steel block as an insulating block and wrapped with a glass wool mat having a thickness of 5 mm was used. The steel plate was fixed in close contact with the lower electrode so that a pressure of 4 kN was applied to the left and right ends of the steel plate from above the steel plate via rods and coil springs of a hydraulic cylinder. On the other hand, in the apparatus of FIG. 12, the steel plate was fixed by sticking the steel plate to the lower electrode so that the pressure of 4 kN was applied from the upper side to the left and right ends of the steel plate from above.
このようにして鋼板を固定した状態で、両装置に固定した鋼板に12000アンペアの電流を供給した。7秒間通電した後に、通電を停止して鋼板を冷却した。その後、鋼板の外観を目視で確認した。図13に実施例5の装置で加熱した鋼板の一端部分を示す。図中の上方向が鋼板の中央の方向である。鋼板の下端の破線に沿って電極を接面した。図13においてハッチングを付していない部分41は加熱前の原料鋼板と色彩に変化がなかった。幅の広いハッチングを付した部分42は、焼き入れによりやや黄色がかった色彩になった。この黄色は鋼板が焼けたことに起因するものであって、均一に焼入されたことを示す。図示は省略するが、実施例5の装置を使用して加熱した鋼板では電極を接面した両端部を除いて均一に黄色がかった色彩に変色した。鋼板の加熱中に黄色に変色した部分41の温度を計測してみたところ、変態完了温度(AC3)を超える約870℃になっていることが確認された。 With the steel plates fixed in this way, a current of 12000 amperes was supplied to the steel plates fixed to both devices. After energizing for 7 seconds, the energization was stopped and the steel sheet was cooled. Then, the external appearance of the steel plate was confirmed visually. FIG. 13 shows one end portion of a steel plate heated by the apparatus of Example 5. The upward direction in the figure is the central direction of the steel sheet. The electrode was contacted along the broken line at the lower end of the steel plate. In FIG. 13, the hatched portion 41 did not change in color with the raw steel plate before heating. The portion 42 with wide hatching has a slightly yellowish color due to quenching. This yellow color is due to the steel plate being burnt, and indicates that it has been uniformly hardened. Although not shown in the drawings, the steel plate heated using the apparatus of Example 5 was uniformly colored yellowish except for both ends contacting the electrodes. When the temperature of the portion 41 that turned yellow during the heating of the steel sheet was measured, it was confirmed that the temperature was about 870 ° C., which exceeds the transformation completion temperature (AC3).
図14に図12の装置で加熱した鋼板の一端部分を示す。鋼板の下端の破線に沿って電極を設置した。図12の装置で加熱した場合も電極を接面した領域では、原料鋼板の色彩と変化がなく、この領域は焼き入れされないことが確認された。しかし、電極の周辺に黒色の部分43や、黄色から褐色に変色した部分44や、原料鋼板と同じ色彩の部分45が現れることが確認された。図13では、黒色の部分43を黒く塗りつぶし、部分44にはクロスハッチングを施した。黒色の部分43は鋼板が過度に加熱されて鋼板が焦げたために生じた。黄色から褐色の部分44は、黒色の部分43ほどではないが加熱されすぎて焦げた箇所である。原料鋼板と同じ色彩の部分44は加熱が不足した個所である。図13から明らかなように、電極周辺には、加熱されすぎた箇所と加熱が不足した個所が混在することが確認された。 FIG. 14 shows one end portion of the steel plate heated by the apparatus of FIG. The electrode was installed along the broken line at the lower end of the steel plate. Even when heated by the apparatus of FIG. 12, in the region where the electrode was in contact, there was no change in color and color of the raw steel plate, and it was confirmed that this region was not quenched. However, it was confirmed that a black portion 43, a portion 44 changed from yellow to brown, and a portion 45 having the same color as the raw steel plate appeared around the electrode. In FIG. 13, the black portion 43 is painted black, and the portion 44 is cross-hatched. The black portion 43 was generated because the steel plate was excessively heated and the steel plate was burnt. The yellow to brown portion 44 is a portion that is not heated as much as the black portion 43 but is too heated and burnt. A portion 44 having the same color as that of the raw steel plate is a portion where heating is insufficient. As is clear from FIG. 13, it was confirmed that there were a mixture of a part that was heated too much and a part that was insufficiently heated around the electrode.
次に、上述のようにして加熱した鋼板を冷却することなく速やかにプレス機に搬送して、プレス型で成形しながら抜熱して、ドアビームを製造した。実施例5の装置で加熱した鋼板を使用したドアビームではビーム全体にわたって均一な強度を有するドアビームを製造することができた。一方、図12の装置で加熱した鋼板を使用してドアビームではビームの両端部の強度が均一でなく、両端部の周辺に応力が集中すると容易に変形してしまい、期待される性能を発揮することができなかった。そこで、鋼板の両端部を切断して、ドアビームを製造したが、鋼板の歩留まりが低下してしまった。 Next, the steel plate heated as described above was quickly conveyed to a press machine without being cooled, and heat was removed while forming with a press die to produce a door beam. In the door beam using the steel plate heated with the apparatus of Example 5, the door beam which has uniform intensity | strength over the whole beam was able to be manufactured. On the other hand, the strength of both ends of the beam is not uniform in the door beam using the steel plate heated by the apparatus of FIG. 12, and when the stress concentrates around the both ends, it easily deforms and exhibits the expected performance. I couldn't. Then, although the both ends of the steel plate were cut | disconnected and the door beam was manufactured, the yield of the steel plate fell.
 1 通電加熱装置
 11 電極
 111 ベース
 112 給電線
 113 電源
 12 絶縁性ブロック
 121 絶縁層
 122 ブロック本体
 123 コイルスプリング
 124 板
 125 ロッド(アクチュエーター)
 2 鋼板
 3 電流
 31 迷走電流
1 Electric heating device 11 Electrode 111 Base 112 Feed line 113 Power supply 12 Insulating block 121 Insulating layer 122 Block body 123 Coil spring 124 Plate 125 Rod (actuator)
2 Steel plate 3 Current 31 Stray current

Claims (6)

  1. 鋼板に電流を供給する電極と少なくとも一つの絶縁性ブロックとからなる電極単位を複数有する鋼板の通電加熱装置であって、
    鋼板の一方の部分は複数の電極単位の内の一方を構成する電極と絶縁性ブロックとの間に挟まれ、
    鋼板の他方の部分は複数の電極単位の内の他方を構成する電極と絶縁性ブロックとの間に挟まれ、
    絶縁性ブロックと電極によって鋼板を固定した状態で一方と他方の電極単位の間に通電することを特徴とする鋼板用通電加熱装置。
    A current-carrying heating apparatus for a steel plate having a plurality of electrode units composed of an electrode for supplying current to the steel plate and at least one insulating block,
    One part of the steel plate is sandwiched between the electrode and the insulating block constituting one of the plurality of electrode units,
    The other part of the steel plate is sandwiched between the electrode constituting the other of the plurality of electrode units and the insulating block,
    An electric heating apparatus for a steel sheet, wherein electricity is supplied between one and the other electrode unit in a state where the steel sheet is fixed by an insulating block and an electrode.
  2. それぞれの電極単位はアクチュエーターを備えており、鋼板に電流を供給する電極の位置は上下方向に対して固定され、絶縁性ブロックはアクチュエーターによって電極に対して接近又は離隔するように構成される請求項1に記載の鋼板用通電加熱装置。 Each electrode unit is provided with an actuator, the position of the electrode which supplies an electric current to a steel plate is fixed to the up-and-down direction, and an insulating block is constituted so that it may approach or separate from an electrode with an actuator. 1. An electric heating apparatus for steel sheet according to 1.
  3. それぞれの電極単位はアクチュエーターを備えており、鋼板に電流を供給する電極の位置は上下方向に対して固定され、該電極は下方から鋼板を支え、絶縁性ブロックはアクチュエーターによって電極に対して上方から接近又は離隔するように構成される請求項1に記載の鋼板用通電加熱装置。 Each electrode unit is equipped with an actuator, the position of the electrode for supplying current to the steel plate is fixed in the vertical direction, the electrode supports the steel plate from below, and the insulating block is from above with respect to the electrode by the actuator. The electric heating apparatus for steel plates according to claim 1, which is configured to approach or separate.
  4. それぞれの電極単位は、鋼板に電流を供給する一つの電極と複数の絶縁性ブロックとからなり、複数の絶縁性ブロックのそれぞれに独立してアクチュエーターを配置して構成される請求項1ないし3のいずれかに記載の鋼板用通電加熱装置。 4. Each electrode unit comprises one electrode for supplying a current to a steel plate and a plurality of insulating blocks, and each of the plurality of insulating blocks is configured by independently arranging an actuator. The electric heating apparatus for steel plates according to any one of the above.
  5. それぞれの電極単位は、絶縁性ブロックとアクチュエーターの間に弾性部材を備えるものである請求項1ないし4のいずれかに記載の鋼板用通電加熱装置。 The steel sheet energization heating apparatus according to any one of claims 1 to 4, wherein each electrode unit includes an elastic member between the insulating block and the actuator.
  6. 絶縁性ブロックは、ブロック本体の鋼板に対向する面に絶縁層を形成することで構成される請求項1ないし5のいずれかに記載の鋼板用通電加熱装置。 The insulating heating device for steel sheet according to any one of claims 1 to 5, wherein the insulating block is formed by forming an insulating layer on a surface of the block body facing the steel sheet.
PCT/JP2013/077108 2012-10-18 2013-10-04 Resistive heating device WO2014061473A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014542052A JPWO2014061473A1 (en) 2012-10-18 2013-10-04 Electric heating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-230674 2012-10-18
JP2012230674 2012-10-18

Publications (1)

Publication Number Publication Date
WO2014061473A1 true WO2014061473A1 (en) 2014-04-24

Family

ID=50488042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077108 WO2014061473A1 (en) 2012-10-18 2013-10-04 Resistive heating device

Country Status (2)

Country Link
JP (1) JPWO2014061473A1 (en)
WO (1) WO2014061473A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104588521A (en) * 2014-12-19 2015-05-06 北京卫星制造厂 Current auxiliary heat forming device and method with flexible clamping adopted
JP2015149257A (en) * 2014-02-10 2015-08-20 新日鐵住金株式会社 Electrode for electric heating and electric heating method of steel plate using the same
WO2016017147A1 (en) * 2014-07-28 2016-02-04 Neturen Co., Ltd. Direct resistance heating method and press-molded product manufacturing method
WO2016158778A1 (en) * 2015-03-31 2016-10-06 住友重機械工業株式会社 Molding device
JP2017045656A (en) * 2015-08-27 2017-03-02 トヨタ自動車株式会社 Electric heating device
KR101833850B1 (en) * 2016-04-05 2018-03-02 엠디티 주식회사 Resistance heating apparatus for steel sheet
KR20180039921A (en) * 2016-10-11 2018-04-19 주식회사 엠에스 오토텍 Apparatus and method for heating a blank for hot stamping
CN112385091A (en) * 2018-06-28 2021-02-19 势必锐航空系统有限公司 Systems and methods employing active thermal buffer elements to improve joule heating
CN113573824A (en) * 2019-03-27 2021-10-29 住友重机械工业株式会社 Molding apparatus and molding method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63229214A (en) * 1986-10-27 1988-09-26 Daihen Corp Method and device for cutting amorphous alloy
WO2009075134A1 (en) * 2007-12-13 2009-06-18 Aisin Takaoka Co., Ltd. Energization heating device and hot press forming device having it and conduction heating method
JP2011183441A (en) * 2010-03-10 2011-09-22 Shiroki Corp Press forming method
JP2012149333A (en) * 2010-12-27 2012-08-09 Daihatsu Motor Co Ltd Quenching apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63229214A (en) * 1986-10-27 1988-09-26 Daihen Corp Method and device for cutting amorphous alloy
WO2009075134A1 (en) * 2007-12-13 2009-06-18 Aisin Takaoka Co., Ltd. Energization heating device and hot press forming device having it and conduction heating method
JP2011183441A (en) * 2010-03-10 2011-09-22 Shiroki Corp Press forming method
JP2012149333A (en) * 2010-12-27 2012-08-09 Daihatsu Motor Co Ltd Quenching apparatus

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015149257A (en) * 2014-02-10 2015-08-20 新日鐵住金株式会社 Electrode for electric heating and electric heating method of steel plate using the same
WO2016017147A1 (en) * 2014-07-28 2016-02-04 Neturen Co., Ltd. Direct resistance heating method and press-molded product manufacturing method
US10259028B2 (en) 2014-07-28 2019-04-16 Neturen Co., Ltd. Direct resistance heating method and press-molded product manufacturing method
CN104588521A (en) * 2014-12-19 2015-05-06 北京卫星制造厂 Current auxiliary heat forming device and method with flexible clamping adopted
JP2016190247A (en) * 2015-03-31 2016-11-10 住友重機械工業株式会社 Molding device
CN107427892A (en) * 2015-03-31 2017-12-01 住友重机械工业株式会社 Shaped device
KR20170132750A (en) * 2015-03-31 2017-12-04 스미도모쥬기가이고교 가부시키가이샤 Molding device
US20180015519A1 (en) * 2015-03-31 2018-01-18 Sumitomo Heavy Industries, Ltd. Forming device
US10967413B2 (en) 2015-03-31 2021-04-06 Sumitomo Heavy Industries, Ltd. Forming device
KR102362771B1 (en) * 2015-03-31 2022-02-15 스미도모쥬기가이고교 가부시키가이샤 molding equipment
WO2016158778A1 (en) * 2015-03-31 2016-10-06 住友重機械工業株式会社 Molding device
CN110014066A (en) * 2015-03-31 2019-07-16 住友重机械工业株式会社 Molding machine
EP3520920A1 (en) * 2015-03-31 2019-08-07 Sumitomo Heavy Industries, Ltd. Forming device
CN110014066B (en) * 2015-03-31 2021-07-30 住友重机械工业株式会社 Molding device
JP2017045656A (en) * 2015-08-27 2017-03-02 トヨタ自動車株式会社 Electric heating device
KR101833850B1 (en) * 2016-04-05 2018-03-02 엠디티 주식회사 Resistance heating apparatus for steel sheet
KR20180039921A (en) * 2016-10-11 2018-04-19 주식회사 엠에스 오토텍 Apparatus and method for heating a blank for hot stamping
KR101904839B1 (en) 2016-10-11 2018-10-05 주식회사 엠에스 오토텍 Apparatus and method for heating a blank for hot stamping
CN112385091A (en) * 2018-06-28 2021-02-19 势必锐航空系统有限公司 Systems and methods employing active thermal buffer elements to improve joule heating
CN113573824A (en) * 2019-03-27 2021-10-29 住友重机械工业株式会社 Molding apparatus and molding method

Also Published As

Publication number Publication date
JPWO2014061473A1 (en) 2016-09-05

Similar Documents

Publication Publication Date Title
WO2014061473A1 (en) Resistive heating device
WO2013137308A1 (en) Method for strengthening steel plate member
JP6333876B2 (en) Apparatus and method for heating a mold or mold
KR102388526B1 (en) Heating method, heating device and manufacturing method for press-formed article
US20170066030A1 (en) Hot forming line and method for producing hot formed sheet metal products
US20180124872A1 (en) Current applying apparatus, current applying method and direct resistance heating apparatus
KR20130032650A (en) Hot stamping method using resistance heating and resistance heating device for the same
KR101904839B1 (en) Apparatus and method for heating a blank for hot stamping
CN102834530A (en) Method for electrically heating spring, and device for same
JP6463911B2 (en) Heating method, heating apparatus, and method for producing press-molded product
US20140124105A1 (en) Hot forming line for producing hot formed and press hardened steel sheet products
KR101541849B1 (en) Electrically assisted forming with multi-point adjustable electrode apparatus
JP2013244507A (en) Electric heating method of press-molded article, electric heating device used therefor, and pressed product
KR20200052874A (en) Direct resistance heating device, direct resistance heating method, heating device, heating method, and hot press forming method
KR20170064272A (en) Press system for hot stamping
KR101765596B1 (en) Induction heating device of blank
KR20130069201A (en) Pre-heating device for hot stamping
CN105745993A (en) Induction heater
JP2011125897A (en) Electric heating method and device, and press machine having the same
KR101135457B1 (en) A laminating mold with assembled pad and the hot-melt laminating press thereof
ITUB20159600A1 (en) Thermal induction press for the welding of printed circuits and method implemented by this press
KR102030782B1 (en) Electric resistance spot welding machine by induction heating, multi current supply and multy pressure
CN204894487U (en) Double -deck hot press
JP2013131333A (en) Electric heating apparatus
JP3923423B2 (en) Electrical heating equipment for conductive rod-shaped members

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13848080

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014542052

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13848080

Country of ref document: EP

Kind code of ref document: A1