WO2014059807A1 - Triboelectricity-based pressure-sensitive cable - Google Patents

Triboelectricity-based pressure-sensitive cable Download PDF

Info

Publication number
WO2014059807A1
WO2014059807A1 PCT/CN2013/079461 CN2013079461W WO2014059807A1 WO 2014059807 A1 WO2014059807 A1 WO 2014059807A1 CN 2013079461 W CN2013079461 W CN 2013079461W WO 2014059807 A1 WO2014059807 A1 WO 2014059807A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
pressure sensing
sensing cable
triboelectric
alloys
Prior art date
Application number
PCT/CN2013/079461
Other languages
French (fr)
Chinese (zh)
Inventor
范凤茹
刘军锋
邓杨
Original Assignee
纳米新能源(唐山)有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 纳米新能源(唐山)有限责任公司 filed Critical 纳米新能源(唐山)有限责任公司
Publication of WO2014059807A1 publication Critical patent/WO2014059807A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/10Contact cables, i.e. having conductors which may be brought into contact by distortion of the cable
    • H01B7/104Contact cables, i.e. having conductors which may be brought into contact by distortion of the cable responsive to pressure
    • H01B7/106Contact cables, i.e. having conductors which may be brought into contact by distortion of the cable responsive to pressure comprising concentric conductors

Definitions

  • the present invention relates to a pressure sensing cable, and more particularly to a friction sensing based pressure sensing cable. Background technique
  • the conventional piezoelectric sensor is a flat film type, and in recent years, a piezoelectric cable has appeared in accordance with application requirements.
  • Piezoelectric cables are designed coaxially. When the piezoelectric cable is compressed or stretched, a piezoelectric effect occurs, producing a charge or voltage signal proportional to the pressure to provide the operating voltage.
  • Piezoelectric sensors are sensors made by utilizing the piezoelectric effect generated by the piezoelectric material. They have been widely used in many fields such as acoustics, medical, industrial, transportation, security, etc., and are gradually changing the way people live and work, becoming a society. The trend of development.
  • the technical problem to be solved by the present invention is to provide a friction-inducing pressure-sensing cable, which is generated under frictional conditions by friction between a polymer and a polymer or between a polymer and a metal.
  • the voltage signal applied to the pressure sensing cable is proportional to the pressure, which has the characteristics of high production process, high sensitivity, fast response and long service life.
  • the first technical solution adopted by the present invention is: a triboelectric-based pressure sensing cable comprising a first electrode core, a cavity, and a first polymer insulating layer disposed in parallel coaxially And a second electrode layer; wherein a second polymer spacer is disposed in the cavity; the first electrode core and the second electrode layer are voltage and current output electrodes of the triboelectric based pressure sensing cable.
  • the second polymer spacer is a second polymer insulating layer disposed on the surface of the first electrode core.
  • the thickness of the second polymer insulating layer is 300 nm to 1 ⁇ m.
  • the material of the first polymer insulating layer is selected from the group consisting of a polyimide film, an aniline resin film, a polyacetal film, an ethyl cellulose film, a polyamide film, and a melamine ruthenium.
  • Aldehyde film polyethylene glycol succinate film, cellulose film, cellulose acetate film, polyethylene adipate film, poly(phenylene terephthalate film), fiber (regeneration) Sponge film, polyurethane elastomer film, styrene propylene copolymer film, styrene butadiene copolymer film, rayon film, polydecyl methacrylate film, polyvinyl alcohol film, polyisobutylene film, polyparaphenylene Acid glycol film, polyvinyl butyral film, furfural phenol condensation film, neoprene film, butadiene propylene copolymer film, natural rubber film, polyacrylonitrile film, acrylonitrile vinyl chloride copolymer Any of the films.
  • the second polymer insulating layer is made of a material different from the first polymer insulating layer, and is selected from the group consisting of a polyimide film, an aniline furfural resin film, a polyacetal film, and an ethyl group.
  • At least one of the opposite surfaces of the first polymer insulating layer and the second polymer insulating layer is provided with a micro-nano-convex structure of nanometer to micrometer order, preferably a bump height Nano-concave structure of 50nm-300nm.
  • the second polymer spacer is a polymer spacer disposed in the cavity, and the height of the spacer is 100 ⁇ -1 ⁇ ⁇ .
  • the height of the spacer protrusion is 200 ⁇ -1 ⁇ .
  • the number of upper partitions per unit area is 2 10 4 / m 2 to 2 X 10 7 / m 2 .
  • the unit area refers to the number of partitions per square meter of area.
  • the spacer of the present invention is disposed in the cavity, so that the surface formed by the spacer is preferably a circumference concentric with the first electrode core, the radius of the circumference being greater than or equal to the radius of the first electrode core, less than or equal to the first polymer insulation The radius of the layer.
  • the spacer is disposed on the surface of the first electrode core, and when the radius of the circumference is equal to the radius of the first polymer insulating layer, the spacer is disposed on the surface of the first polymer insulating layer.
  • the material used for the spacer is a polymer and is different from the material used for the first polymer insulating layer.
  • the material used for the spacer is selected from the group consisting of a polyimide film, an aniline furfural resin film, a polyacetal film, an ethyl cellulose film, a polyamide film, a melamine furfural film, Polyethylene glycol succinate film, cellulose film, cellulose acetate film, polyethylene adipate film, poly(phenylene terephthalate film), fiber (recycled) sponge film, Polyurethane elastomer film, styrene propylene copolymer film, styrene butadiene copolymer film, rayon film, polydecyl methacrylate film, polyvinyl alcohol film, polyisobutylene film, polyethylene terephthalate Alcohol ester film, polyvinyl butyral film, furfural phenol polycondensate film, neoprene film, butadiene propylene copolymer film,
  • the spacer is disposed on the surface of the first electrode core.
  • the second polymer spacer is wrapped around A polymer wire on the surface of an electrode core, preferably having a diameter of 500 nm to 2 ⁇ m.
  • the winding of the polymer wire on the surface of the first electrode core is greatly 0.1 ⁇ m to 5 ⁇ m.
  • the winding pitch of the polymer wire on the surface of the first electrode core is ⁇ to 5 ⁇ .
  • the material of the polymer wire is different from the first polymer insulating layer.
  • the material for the polymer wire is selected from the group consisting of polyimide film, aniline acetal resin film, polyacetal film, ethyl cellulose film, polyamide film, melamine furfural film.
  • polyethylene glycol succinate film polyethylene glycol succinate film, cellulose film, cellulose acetate film, polyethylene adipate film, poly(phenylene terephthalate film), fiber (recycled) sponge film , polyurethane elastomer film, styrene propylene copolymer film, styrene butadiene copolymer film, rayon film, polydecyl methacrylate film, polyvinyl alcohol film, polyisobutylene film, poly-terephthalic acid Glycol ester film, polyvinyl butyral film, furfural phenol condensation film, neoprene film, butadiene propylene copolymer film, natural rubber film, polyacrylonitrile film, acrylonitrile vinyl chloride copolymer film Any of them.
  • the first electrode core is a single core structure.
  • the first electrode core is a multi-core structure arranged in parallel.
  • the first electrode core is a wound multi-core structure.
  • the material of the first electrode core is metal or alloy, wherein the metal is gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, Phase, tungsten or vanadium; alloys are aluminum alloys, titanium alloys, magnesium alloys, niobium alloys, copper alloys, alloys, manganese alloys, nickel alloys, lead alloys, tin alloys, cadmium alloys, niobium alloys, indium alloys, gallium alloys, Tungsten alloy, molybdenum alloy, niobium alloy or niobium alloy.
  • the material used for the first electrode core is a polymer, glass or fiber having a conductive layer on its surface.
  • the conductive layer is an indium tin oxide film, a graphene film, a silver nanowire film or a metal film, wherein the metal material used for the metal film is gold, silver, platinum, palladium, Aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium.
  • the material of the second electrode layer is selected from the group consisting of indium tin oxide, graphene electrode, silver nanowire film, and metal or alloy, wherein the metal is gold, silver, platinum, palladium, Aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium; alloys are aluminum alloys, titanium alloys, magnesium alloys, niobium alloys, copper alloys, alloys, manganese alloys, nickel alloys, lead alloys , tin alloy, cadmium alloy, niobium alloy, indium alloy, gallium alloy, tungsten alloy, molybdenum alloy, niobium alloy or niobium alloy.
  • the pressure-sensing cable based on triboelectric has the characteristics of single production process, high sensitivity, fast response speed and long service life.
  • FIG. 1 is a cross-sectional view of a triboelectric-based pressure sensing cable according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of the pressure sensing cable of FIG. 1;
  • FIG. 3 is a schematic cross-sectional view of a triboelectric-based pressure sensing cable according to another embodiment of the present invention.
  • Figure 4 is a schematic structural view of the pressure sensing cable of Figure 3;
  • Figure 5 is a cross-sectional view showing a triboelectric-based pressure sensing cable according to still another embodiment of the present invention.
  • Figure 6 is a schematic structural view of the pressure sensing cable of Figure 5;
  • Figure 7 is a cross-sectional view showing a triboelectric-based pressure sensing cable according to still another embodiment of the present invention.
  • FIG. 8 is a schematic structural view of the pressure sensing cable of FIG. 7.
  • FIG. 8 detailed description The present invention will be described in detail by the following detailed description of the invention.
  • the invention is based on a triboelectric pressure sensing cable.
  • the cable When the cable is subjected to pressure and generates a charge or voltage signal proportional to the pressure, it can be used as a traffic shaft pressure sensor to measure the vehicle speed and the vehicle weight, and is used as a cable switch detection presence/occupancy rate. Used as a contact microphone to monitor vital signs and perimeter safety.
  • the pressure sensing cable includes a first electrode core, a cavity, a first polymer insulating layer and a second electrode layer disposed coaxially in sequence; wherein the pressure sensing When the cable is naturally stretched, the first polymer insulating layer is separated from the first electrode core by a cavity; when the pressure sensing cable is bent by force, the first polymer insulating layer is in frictional contact with the first electrode core;
  • the electrode core and the second electrode layer are voltage and current output electrodes of a triboelectric based pressure sensing cable.
  • a triboelectric-based pressure sensing cable refers to a pressure sensing cable based on a friction generator principle, and the first electrode core and the second electrode layer are voltage and current output electrodes of a friction generator (ie, a pressure sensing cable). .
  • the first polymer insulating layer When the triboelectric-based pressure sensing cable is bent by force, the first polymer insulating layer is in frictional contact with the first electrode core to generate an electrostatic charge, and the generation of the electrostatic charge causes a capacitance between the first electrode core and the second electrode layer to occur.
  • the change causes a potential difference to occur between the first electrode core and the second electrode layer. Due to the existence of a potential difference between the first electrode core and the second electrode layer, free electrons will flow from the lower potential side to the higher potential side through the external circuit, thereby forming a current in the external circuit.
  • a triboelectric-based pressure sensing cable 1 of a specific embodiment includes a first electrode core 11 disposed in series, a cavity 12, and a first polymer insulating layer 13. And a second electrode layer 14; wherein a second polymer spacer (not shown) is disposed in the cavity 12; the first electrode core 11 and the second electrode layer 14 are voltage and current outputs of the pressure sensing cable 1 electrode.
  • the material used may be selected from the group consisting of polyimide film, aniline furfural resin film, polyacetal film, ethyl cellulose film, polyamide film, melamine furfural film, polyethylene glycol succinate film, cellulose film.
  • cellulose acetate film cellulose acetate film, polyethylene adipate film, poly(phenylene terephthalate) film, fiber (recycled) sponge film, polyurethane elastomer film, styrene propylene copolymer film, benzene Ethylene butadiene copolymer film, rayon film, polydecyl acrylate film, polyvinyl alcohol film, polyisobutylene film, polyethylene terephthalate film, polyvinyl butyral film, ruthenium Any one of an aldehyde phenol polycondensate film, a neoprene film, a butadiene propylene copolymer film, a natural rubber film, a polyacrylonitrile film, and an acrylonitrile vinyl chloride copolymer film.
  • the material of the second electrode layer 14 is selected from the group consisting of indium tin oxide, graphene electrode, silver nanowire film, and metal or alloy, wherein the metal is gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin. , iron, manganese, phase, tungsten or vanadium; alloys are aluminum alloys, titanium alloys, magnesium alloys, niobium alloys, copper alloys, alloys, manganese alloys, nickel alloys, lead alloys, tin alloys, cadmium alloys, niobium alloys, indium Alloy, gallium alloy, tungsten alloy, molybdenum alloy, niobium alloy or niobium alloy.
  • the first electrode core 11 in the pressure sensing cable 1 shown in Figs. 1 and 2 has a single core structure.
  • the material of the first electrode core 11 may be a metal or an alloy, wherein the metal may be, but not limited to, gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium.
  • the alloy may be, but not limited to, an aluminum alloy, a titanium alloy, a magnesium alloy, a bismuth alloy, a copper alloy, a rhodium alloy, a manganese alloy, a nickel alloy, a lead alloy, a tin alloy, a cadmium alloy, a bismuth alloy, an indium alloy, a gallium alloy, Tungsten alloy, molybdenum alloy, niobium alloy or niobium alloy.
  • the material used for the first electrode core 11 may also be a polymer, glass or fiber having a conductive layer on its surface.
  • the polymer described herein may be selected from the same range as the material used for the first polymer insulating layer, namely, a polyimide film, an aniline furfural resin film, a polyacetal film, an ethyl cellulose film, a polyamide.
  • Film melamine furfural film, polyethylene glycol succinate film, cellulose film, cellulose acetate film, polyethylene adipate film, poly(phenylene terephthalate) film, Fiber (recycled) sponge film, polyurethane elastomer film, styrene propylene copolymer film, styrene butadiene copolymer film, rayon film, polydecyl methacrylate film, polyvinyl alcohol film, polyisobutylene film, poly Ethylene terephthalate film, polyvinyl butyral film, furfural phenol condensation film, neoprene film, butadiene propylene Any one of a polymer film, a natural rubber film, a polyacrylonitrile film, and an acrylonitrile vinyl chloride copolymer film.
  • the glass refers to various silica-based glass materials, including glass having different uses and functions.
  • the fibers include various plant fibers, animal fibers, rayon fibers, fabric fibers, and cellulosic fibers such as cotton, kapok, linen, ramie, jute, bamboo fiber, sisal, abaca, sheep wool, cashmere, camel. Hair, rabbit hair, mohair, silk, viscose fiber, acetate fiber, copper ammonia fiber, polyester fiber (polyester), polyamide fiber (nylon or nylon), polyvinyl alcohol fiber (Vinyl), polyacrylonitrile fiber (acrylic fiber) ), polypropylene fiber (polypropylene), polyvinyl chloride fiber (chlorinated fiber), and the like.
  • the conductive layer may be an indium tin oxide film, a graphene film, a silver nanowire film or a metal film provided on a surface of a polymer, glass or fiber by a conventional magnetron sputtering or evaporation method, wherein the metal film is used for
  • the metal material may be, but not limited to, gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium.
  • the pressure sensing cable 2 includes a first electrode core 21, a cavity 22, a first polymer insulating layer 23, and a second electrode layer 24, which are disposed coaxially in series, wherein
  • the first electrode core 21 is a multi-core structure arranged in parallel.
  • the materials used for the first electrode core 21, the first polymer insulating layer 23 and the second electrode layer 24 are the same as those used for the pressure sensing cable 1 shown in Fig. 1, and will not be described again.
  • the first electrode core 21 may also be a multi-core structure that is wound.
  • Each of the electrode cores of the first electrode core 21 can be selected from different materials so that different signals can be output or different functions can be added. For example, if a metal is plated on a glass fiber, the fiber can transmit both an optical signal and an electrical signal.
  • the pressure sensing cable 3 includes a first electrode core 31, a cavity 32, a first polymer insulating layer 33, and a second electrode layer 34, which are disposed coaxially in series, wherein A compartment 35 is provided in the cavity 32.
  • the height of the spacer protrusion is from 100 nm to 1 ⁇ m, and is disposed on the surface of the first electrode core 31, and the number of the spacers per unit area is from 2 10 4 /m 2 to 2 10 7 /m 2 .
  • the spacer 35 is adhered to the surface of the first electrode core 31, for example, using a conventional commercially available conductive paste.
  • the materials used for the first electrode core 31, the first polymer insulating layer 33 and the second electrode layer 34 are the same as those used for the pressure sensing cable 1 shown in Fig. 1, and will not be described again.
  • the material used for the spacer 35 is preferably a polymer and is different from the material used for the first polymer insulating layer 33.
  • the material used for the spacer may be selected from, but not limited to, polyimide film, aniline resin film, polyacetal film, ethyl cellulose film, polyamide film, melamine furfural film, polyethylene glycol butyl Acid ester film, cellulose film, cellulose acetate film, polyethylene adipate film, diallyl phthalate film, fiber (recycled) sponge film, polyurethane elastomer film, benzene Ethylene propylene copolymer film, styrene butadiene copolymer film, rayon film, polydecyl acrylate film, polyvinyl alcohol film, polyisobutylene film, polyethylene terephthalate film, polyethylene Any one of a butyral film, a furfural phenol polycondensate film, a neoprene film, a butadiene propylene copolymer film, a natural rubber film, a polyacrylonitrile film, and an acrylon
  • the pressure sensing cable includes a first electrode core, a cavity, a first polymer insulating layer and a second electrode layer disposed coaxially in sequence, wherein the cavity is provided with a first pitch wound at a first interval
  • the polymer wires on the surface of the electrode core for example, the pitch of the polymer wires on the surface of the first electrode core are 0.1 ⁇ m to 5 ⁇ m.
  • the polymer strands have a diameter of from 500 nm to 2 ⁇ m.
  • the material used for the polymer strand is different from the first polymer insulating layer.
  • the material used for the polymer wire is selected from the group consisting of polyimide film, aniline furfural resin film, polyacetal film, ethyl cellulose film, polyamide film, melamine furfural film, polyethylene glycol succinate film, fiber Film, cellulose acetate film, polyethylene adipate film, diallyl phthalate film, fiber (recycled) sponge film, polyurethane elastomer film, styrene propylene copolymer film , styrene butadiene copolymer film, rayon film, polydecyl methacrylate film, polyvinyl alcohol film, polyisobutylene film, polyethylene terephthalate film, polyvinyl butyral film Any one of a furfural phenol condensation polymer film, a neoprene film, a butadiene propylene copolymer film, a natural
  • the pressure sensing cable includes a first electrode core, a cavity, a first polymer insulating layer, and a second electrode layer, which are disposed coaxially in parallel, and a surface of the first polymer insulating layer opposite to the first electrode core A nano-to-micron micro-nano-convex structure is provided thereon, preferably a protrusion height
  • Nano-concave structure of 50nm-3 OOnm (not shown).
  • the first polymer insulating layer When the triboelectric-based pressure sensing cable is bent by force, the first polymer insulating layer is in frictional contact with the first electrode core to form a friction surface.
  • the roughness of the friction surface affects the output of the voltage and current, that is, the size and number of the septum per unit area, as well as the thickness of the polymer and the spacing of the winding, all have an effect on the output properties of the electrical energy.
  • the preferred height of the spacer is 100 nm to 1 ⁇ m, and the number of spacers per unit area is 2 10 4 / m 2 to 2 x 10 7 /m 2 .
  • the preferred polymer wire diameter is 500 nm to 2 ⁇ m, and the winding of the polymer wire is greatly 0.1 ⁇ m to 5 ⁇ m, more preferably 1 ⁇ m to 5 ⁇ m.
  • the polymer wire diameter is larger than 2 ⁇ ⁇ and the winding pitch exceeds 5 ⁇ ⁇ , the voltage and current signals are rapidly reduced.
  • a triboelectric-based pressure sensing cable 4 of the specific embodiment includes a first electrode core 41, a cavity 42 and a first polymer insulating layer 43 which are disposed coaxially in sequence. And a second electrode layer 44.
  • the piezoelectric cable 4 further includes a second polymer insulating layer 45 disposed between the first electrode core 41 and the cavity 42; wherein, when the pressure sensing cable 4 is naturally extended, the first polymer insulating layer 43 and the first The two polymer insulating layers 45 are separated by a cavity 42.
  • the first polymer insulating layer 43 is in contact with the second polymer insulating layer 45.
  • the first electrode core 41 and the second electrode layer 44 are voltage and current output electrodes of the pressure sensing cable 4.
  • the materials used for the first electrode core 41, the first polymer insulating layer 43, and the second electrode layer 44 are the same as those used for the pressure sensing cable 1 shown in Fig. 1, and will not be described again.
  • the thickness of the second polymer insulating layer is 300 nm to 1 ⁇ m.
  • the second polymer insulating layer is different from the first polymer insulating layer and may be selected from the group consisting of a polyimide film, an aniline resin film, a polyacetal film, an ethyl cellulose film, a polyamide film, and a melamine lanthanum.
  • Aldehyde film Polyethylene glycol succinate film, cellulose film, cellulose acetate film, polyethylene adipate film, poly(phenylene terephthalate film), fiber (recycled) sponge film, Polyurethane elastomer film, styrene propylene copolymer film, styrene butadiene copolymer film, rayon film, polydecyl methacrylate film, polyvinyl alcohol film, polyisobutylene film, polyethylene terephthalate Alcohol ester film, polyvinyl butyral film, furfural phenol polycondensate film, neoprene film, butadiene propylene copolymer film, natural rubber film, polyacrylonitrile film, acrylonitrile vinyl chloride copolymer film Any one.
  • At least one of the opposite surfaces of the first polymer insulating layer 43 and the second polymer insulating layer 45 is provided with a micro-nano-convex structure of nanometer to micrometer order, preferably a bump height of 50 nm- 300 nm nano concave and convex structure (not shown).
  • the micro/nano-convex structure can be prepared by a variety of methods, such as pressing with a silicon template having a specific regular raised structure, sanding a roughened metal as a template, and other methods.
  • a preparation method of the nano concave-convex structure will be described in detail below.
  • S1 creates a silicon template.
  • a regular pattern is formed on the surface by photolithography of the silicon wafer.
  • the patterned silicon wafer is anisotropically etched by wet etching, and a concave quadrangular pyramid array structure can be engraved, or a concave cube array structure can be engraved by dry etching process isotropic etching. .
  • the template was cleaned with acetone and isopropyl alcohol, and then all the templates were subjected to surface silanization in a trimethyl chlorosilane atmosphere, and the treated silicon template was used.
  • S2 produces a polymer film having a micro-nano convex surface.
  • the polymer slurry is first applied to the surface of the silicon template, vacuum degassed, and the excess mixture on the surface of the wafer is removed by spin coating to form a thin polymer liquid film.
  • the entire template was cured and then peeled off to obtain a uniform polymer film having a specific microstructure array.
  • the first electrode core and the second electrode layer of the triboelectric-based pressure sensing cable are respectively connected to the detector, and when the cable is under pressure, the first electrode core and the second electrode layer generate a positively applicable probe.
  • the device is a conventional commercially available detector.
  • the friction-electric pressure sensing cable of the present invention can be used as a traffic axis sensor for detecting the presence/occupancy rate of a piezoelectric cable switch, and is used as a contact microphone to monitor vital signs and Perimeter security.
  • a traffic axis sensor when the tire passes through the cable, it produces a voltage signal proportional to the pressure applied to the sensor, and the output period is the same as the time the tire stays on the sensor. Whenever a tire passes the sensor, the sensor will Generate a new electronic pulse.
  • Two sensors are installed in the lane. When the tire passes the first sensor, the electronic clock is started. When the tire passes the second sensor, the electronic clock is started to stop the clock, and the time period is obtained. The distance between the sensors is known, and the speed is obtained. .
  • the pressure sensing cable 3 shown in Figure 5 has a diameter of 1.6 mm.
  • Industrial aluminum having a purity of 99.5% and a diameter of 1.5 mm was used as the first electrode core 31.
  • a commercially available polyacrylonitrile acrylate tube having a diameter of 1.6 mm was used as the first polymer insulating layer 33.
  • Commercially available polyethylene terephthalate particles having a diameter of 200 nm were used as the separator 35, and the polyethylene terephthalate particles were adhered to the first according to 2 10 7 /m 2 using a conductive adhesive.
  • the first electrode core 31 is then coaxially placed in a polymethyl methacrylate tube to form a cavity 32, and then the edges are sealed with a common tape.
  • ITO indium tin oxide
  • the voltage and current tests were performed using the Stanford SR560 voltage preamplifier and the SR 570 current preamplifier, respectively.
  • the voltage of one of the resistors is measured by using multiple voltage dividers of the same resistor, and finally the number of resistors is multiplied to obtain the total output voltage of the generator.
  • the stepping motor with periodic oscillation (0.33 Hz and 0.13% deformation) causes the pressure sensing cable 1# to be bent and released periodically, and the maximum output voltage and current signal of the pressure sensing cable 1# reached 30 V and 10 ⁇ , respectively.
  • Example 2 The stepping motor with periodic oscillation (0.33 Hz and 0.13% deformation) causes the pressure sensing cable 1# to be bent and released periodically, and the maximum output voltage and current signal of the pressure sensing cable 1# reached 30 V and 10 ⁇ , respectively.
  • the pressure sensing cable 3 shown in Figure 5 has a diameter of 1.6 mm.
  • Industrial aluminum having a purity of 99.5% and a diameter of 1.5 mm was used as the first electrode core 31.
  • a commercially available polyacrylonitrile acrylate tube having a diameter of 1.6 mm was used as the first polymer insulating layer 33.
  • Commercially available polyethylene terephthalate particles having a diameter of 1 ⁇ are used as the separator 35, and the polyethylene terephthalate particles are adhered at 1 X 10 5 /m 2 using a conductive adhesive.
  • the first electrode core 31 is then coaxially placed in a polymethyl methacrylate tube to form a cavity 32, and then the edges are sealed with a common tape.
  • ITO indium tin oxide
  • Example 3 In the same manner as in Example 1, the maximum output voltage and current signals of the sample 2# were measured to reach 12 V and 3 ⁇ , respectively.
  • the structure of this embodiment is basically the same as that of the embodiment 1, except that three optical fibers coated with metal gold having a diameter of 1 mm are arranged in parallel as the first electrode core.
  • the polyethylene terephthalate particles were adhered to the surface of the first electrode core 31 at a rate of 1 ⁇ 10 4 /m 2 using a conductive paste, and then pressure-sensing was obtained by the same preparation method as in Example 1 by other steps. Cable 3#.
  • the sensing cable 3# is capable of transmitting optical signals.
  • Example 4
  • the pressure sensing cable of this embodiment has a diameter of 1.6 mm.
  • Industrial copper with a purity of 99.5% and a diameter of 1.5 mm was used as the first electrode core.
  • a polyimide tube having a diameter of 1.6 mm was commercially available as the first polymer insulating layer.
  • ITO indium tin oxide
  • the pressure sensing cable of this embodiment has a diameter of 1.6 mm.
  • Industrial copper with a purity of 99.5% and a diameter of 1.5 mm was used as the first electrode core.
  • a polyimide tube having a diameter of 1.6 mm was commercially available as the first polymer insulating layer.
  • Commercially available polyethylene terephthalate wire of 2 ⁇ ⁇ diameter wrapped with polyethylene terephthalate at a pitch of 5 ⁇ on the surface of the first electrode core, and then first The electrode core is coaxially placed in the polyimide tube to form a cavity, and then the edge is sealed with a common tape.
  • Magnetic control of indium tin oxide ( ⁇ ) was sputtered onto the outer surface of the polyimide tube to form a second electrode layer, and a pressure sensing cable 5# was obtained.
  • the pressure sensing cable 4 shown in Figure 7 has a diameter of 2.2 mm.
  • Industrial aluminum having a purity of 99.5% and a diameter of 1.5 mm was used as the first electrode core 41.
  • a micro-nano-convex structure having a convex height of 150 nm is disposed on one surface of a polyethylene terephthalate film having a thickness of 0.25 mm, and then a polyethylene terephthalate film is disposed on the first electrode core
  • a second polymer layer 45 having a thickness of 500 nm was formed on the surface of 41.
  • a commercially available polyfluorenyl acrylate tube having a diameter of 2.2 mm was used as the first polymer insulating layer 43.
  • the first electrode core 41 is coaxially placed in a polyacrylonitrile acrylate tube to form a cavity 42, and then the edges are sealed with a common tape.
  • Magnetron sputtering (ITO) was sputter-deposited onto the outer surface of the polyfluorenyl acrylate tube to form a second electrode layer 44, and a pressure sensing cable 6# was obtained.
  • the first electrode core was coaxially placed in a polyacrylic acid acrylate tube and formed into a cavity, and then the edges were sealed with a common tape.
  • ITO indium tin oxide
  • the triboelectric-based pressure sensing cable of the present invention can generate a voltage signal proportional to the pressure applied to the pressure sensing cable under frictional conditions by friction between the polymer and the polymer or between the polymer and the metal. It has the characteristics of single production process, high sensitivity, fast response and long service life.

Abstract

A triboelectricity-based pressure-sensitive cable, comprising a first electrode core (11), a hollow (12), a first polymer insulation layer (13), and a second electrode layer (14) coaxially disposed in sequence; the hollow is provided with a second polymer spacer therein; the first electrode core (11) and the second electrode layer (14) are the voltage and current output electrodes of the triboelectricity-based pressure-sensitive cable. The present invention utilizes the friction between two polymers or the friction between a polymer and a metal to generate a voltage signal in direct proportion to the pressure applied on the pressure-sensitive cable.

Description

基于摩擦电的压力感应电缆  Friction-based pressure sensing cable
技术领域 Technical field
本发明涉及一种压力感应电缆, 尤其是涉及一种基于摩擦电的压力感应 电缆。 背景技术  The present invention relates to a pressure sensing cable, and more particularly to a friction sensing based pressure sensing cable. Background technique
随着现代生活水平不断提高, 生活节奏不断加快, 出现了应用方便、 对 环境依赖度低的自发电设备。 现有的自发电设备通常利用材料的压电特性。 例如 2006年,美国佐治亚理工学院教授王中林等成功地在纳米尺度范围内将 机械能转换成电能, 研制出了世界上最小的发电机-纳米发电机。 纳米发电机 的基本原理是: 当纳米线 (NWs )在外力下动态拉伸时, 纳米线中生成压电 电势, 相应瞬变电流在两端流动以平衡费米能级。  With the continuous improvement of the modern living standards and the accelerating pace of life, there have been self-generating devices that are easy to apply and have low dependence on the environment. Existing self-generating devices typically utilize the piezoelectric properties of the material. For example, in 2006, Professor Wang Zhonglin of the Georgia Institute of Technology in the United States successfully converted mechanical energy into electrical energy in the nanometer scale, and developed the world's smallest generator-nano generator. The basic principle of nanogenerators is: When nanowires (NWs) are dynamically stretched under external forces, a piezoelectric potential is generated in the nanowires, and the corresponding transient current flows at both ends to balance the Fermi level.
传统压电传感器是平板薄膜型, 近年来随应用需求, 出现了压电电缆。 压电电缆采用同轴设计, 当压电电缆被压缩或拉伸时, 会发生压电效应, 从 而产生正比于压力的电荷或者电压信号, 以提供工作电压。 压电传感器是利 用压电材料受力后产生的压电效应制成的传感器, 已经广泛用于声学、 医疗、 工业、 交通、 安防等众多领域, 正逐步改变人们的生活和工作方式, 成为社 会发展的趋势。  The conventional piezoelectric sensor is a flat film type, and in recent years, a piezoelectric cable has appeared in accordance with application requirements. Piezoelectric cables are designed coaxially. When the piezoelectric cable is compressed or stretched, a piezoelectric effect occurs, producing a charge or voltage signal proportional to the pressure to provide the operating voltage. Piezoelectric sensors are sensors made by utilizing the piezoelectric effect generated by the piezoelectric material. They have been widely used in many fields such as acoustics, medical, industrial, transportation, security, etc., and are gradually changing the way people live and work, becoming a society. The trend of development.
物体和物体之间相互进行摩擦, 就会使一方带上负电, 另一方带上正电, 这种物体间摩擦产生的电叫摩擦电。 摩擦电是自然界最常见的现象之一, 但 是因为很难收集利用而被忽略。 如果能够将摩擦电应用到压力感应电缆中, 势必会给人们的生活带来更多的便利。 发明内容  Rubbing between objects and objects causes one to be negatively charged and the other to be positively charged. The electricity generated by the friction between the objects is called triboelectric. Friction is one of the most common phenomena in nature, but it is difficult to collect and ignore. If the triboelectric power can be applied to the pressure sensing cable, it will definitely bring more convenience to people's lives. Summary of the invention
本发明所要解决的技术问题是提供一种基于摩擦电的压力感应电缆, 在 受力条件下, 通过聚合物和聚合物间摩擦或者聚合物与金属间摩擦, 产生与 施加到压力感应电缆上的压力成正比的电压信号, 其具有生产工艺筒单、 灵 敏度高、 响应速度快、 使用寿命长的特点。 The technical problem to be solved by the present invention is to provide a friction-inducing pressure-sensing cable, which is generated under frictional conditions by friction between a polymer and a polymer or between a polymer and a metal. The voltage signal applied to the pressure sensing cable is proportional to the pressure, which has the characteristics of high production process, high sensitivity, fast response and long service life.
为了解决上述技术问题, 本发明采用的第一技术方案是: 一种基于摩擦 电的压力感应电缆, 该压力感应电缆包括依次同轴设置的第一电极芯、 空腔、 第一聚合物绝缘层以及第二电极层; 其中在空腔中设有第二聚合物间隔物; 所述第一电极芯和第二电极层为基于摩擦电的压力感应电缆的电压和电流输 出电极。  In order to solve the above technical problem, the first technical solution adopted by the present invention is: a triboelectric-based pressure sensing cable comprising a first electrode core, a cavity, and a first polymer insulating layer disposed in parallel coaxially And a second electrode layer; wherein a second polymer spacer is disposed in the cavity; the first electrode core and the second electrode layer are voltage and current output electrodes of the triboelectric based pressure sensing cable.
前述的基于摩擦电的压力感应电缆, 所述第二聚合物间隔物是第二聚合 物绝缘层, 设置在第一电极芯表面上。  In the aforementioned triboelectric-based pressure sensing cable, the second polymer spacer is a second polymer insulating layer disposed on the surface of the first electrode core.
前述的基于摩擦电的压力感应电缆,所述第二聚合物绝缘层的厚度是 300 nm到 1 μ m。  In the aforementioned triboelectric-based pressure sensing cable, the thickness of the second polymer insulating layer is 300 nm to 1 μm.
前述的基于摩擦电的压力感应电缆, 所述第一聚合物绝缘层所用材料选 自聚酰亚胺薄膜、 苯胺曱 树脂薄膜、 聚曱醛薄膜、 乙基纤维素薄膜、 聚酰 胺薄膜、 三聚氰胺曱醛薄膜、 聚乙二醇丁二酸酯薄膜、 纤维素薄膜、 纤维素 乙酸酯薄膜、聚己二酸乙二醇酯薄膜、聚邻苯二曱酸二烯丙酯薄膜、 纤维(再 生)海绵薄膜、 聚氨酯弹性体薄膜、 苯乙烯丙烯共聚物薄膜、 苯乙烯丁二烯 共聚物薄膜、 人造纤维薄膜、 聚曱基丙烯酸曱酯薄膜、 聚乙烯醇薄膜、 聚异 丁烯薄膜、 聚对苯二曱酸乙二醇酯薄膜、 聚乙烯醇缩丁醛薄膜、 曱醛苯酚缩 聚物薄膜、 氯丁橡胶薄膜、 丁二烯丙烯共聚物薄膜、 天然橡胶薄膜、 聚丙烯 腈薄膜、 丙烯腈氯乙烯共聚物薄膜中的任意一种。  In the foregoing triboelectric-based pressure sensing cable, the material of the first polymer insulating layer is selected from the group consisting of a polyimide film, an aniline resin film, a polyacetal film, an ethyl cellulose film, a polyamide film, and a melamine ruthenium. Aldehyde film, polyethylene glycol succinate film, cellulose film, cellulose acetate film, polyethylene adipate film, poly(phenylene terephthalate film), fiber (regeneration) Sponge film, polyurethane elastomer film, styrene propylene copolymer film, styrene butadiene copolymer film, rayon film, polydecyl methacrylate film, polyvinyl alcohol film, polyisobutylene film, polyparaphenylene Acid glycol film, polyvinyl butyral film, furfural phenol condensation film, neoprene film, butadiene propylene copolymer film, natural rubber film, polyacrylonitrile film, acrylonitrile vinyl chloride copolymer Any of the films.
前述的基于摩擦电的压力感应电缆, 所述第二聚合物绝缘层所用材料与 第一聚合物绝缘层不同, 选自聚酰亚胺薄膜、 苯胺曱醛树脂薄膜、 聚曱醛薄 膜、 乙基纤维素薄膜、 聚酰胺薄膜、 三聚氰胺曱醛薄膜、 聚乙二醇丁二酸酯 薄膜、 纤维素薄膜、 纤维素乙酸酯薄膜、 聚己二酸乙二醇酯薄膜、 聚邻苯二 曱酸二烯丙酯薄膜、 纤维 (再生)海绵薄膜、 聚氨酯弹性体薄膜、 苯乙烯丙 烯共聚物薄膜、 苯乙烯丁二烯共聚物薄膜、 人造纤维薄膜、 聚曱基丙烯酸曱 酯薄膜、 聚乙烯醇薄膜、 聚异丁烯薄膜、 聚对苯二曱酸乙二醇酯薄膜、 聚乙 烯醇缩丁醛薄膜、 曱醛苯酚缩聚物薄膜、 氯丁橡胶薄膜、 丁二烯丙烯共聚物 薄膜、 天然橡胶薄膜、 聚丙烯腈薄膜、 丙烯腈氯乙烯共聚物薄膜中的任意一 种。 In the foregoing triboelectric-based pressure sensing cable, the second polymer insulating layer is made of a material different from the first polymer insulating layer, and is selected from the group consisting of a polyimide film, an aniline furfural resin film, a polyacetal film, and an ethyl group. Cellulose film, polyamide film, melamine furfural film, polyethylene glycol succinate film, cellulose film, cellulose acetate film, polyethylene adipate film, polyphthalic acid Diallyl ester film, fiber (recycled) sponge film, polyurethane elastomer film, styrene propylene copolymer film, styrene butadiene copolymer film, rayon film, polydecyl acrylate film, polyvinyl alcohol film , polyisobutylene film, polyethylene terephthalate film, polyvinyl butyral film, furfural phenol condensation film, neoprene film, butadiene propylene copolymer Any one of a film, a natural rubber film, a polyacrylonitrile film, and an acrylonitrile vinyl chloride copolymer film.
前述的基于摩擦电的压力感应电缆, 所述第一聚合物绝缘层和第二聚合 物绝缘层相对表面中的至少一个面上设置有纳米级至微米级的微纳凹凸结 构, 优选凸起高度 50nm-300nm的纳米凹凸结构。  In the foregoing triboelectric-based pressure sensing cable, at least one of the opposite surfaces of the first polymer insulating layer and the second polymer insulating layer is provided with a micro-nano-convex structure of nanometer to micrometer order, preferably a bump height Nano-concave structure of 50nm-300nm.
前述的基于摩擦电的压力感应电缆, 所述第二聚合物间隔物是设置在空 腔内的聚合物隔点, 所述隔点凸起高度为 100 ηηι -1 μ ηι。  In the foregoing triboelectric-based pressure sensing cable, the second polymer spacer is a polymer spacer disposed in the cavity, and the height of the spacer is 100 ηηι -1 μ ηι.
前述的基于摩擦电的压力感应电缆, 所述隔点凸起高度为 200 ηηι -1μηι。 前述的基于摩擦电的压力感应电缆,单位面积上隔点数量为 2 104个 /m2 至 2 X 107个 /m2In the foregoing triboelectric-based pressure sensing cable, the height of the spacer protrusion is 200 ηηι -1μηι. In the foregoing friction-electric-based pressure sensing cable, the number of upper partitions per unit area is 2 10 4 / m 2 to 2 X 10 7 / m 2 .
所述单位面积是指每平方米面积上隔点的数量。 本发明隔点设置在空腔 中, 因此隔点所形成的表面优选为与第一电极芯同轴心的圓周, 该圓周的半 径大于等于第一电极芯的半径, 小于等于第一聚合物绝缘层的半径。 当圓周 的半径等于第一电极芯的半径时, 隔点设置在第一电极芯表面, 当圓周的半 径等于第一聚合物绝缘层的半径时, 隔点设置在第一聚合物绝缘层表面。  The unit area refers to the number of partitions per square meter of area. The spacer of the present invention is disposed in the cavity, so that the surface formed by the spacer is preferably a circumference concentric with the first electrode core, the radius of the circumference being greater than or equal to the radius of the first electrode core, less than or equal to the first polymer insulation The radius of the layer. When the radius of the circumference is equal to the radius of the first electrode core, the spacer is disposed on the surface of the first electrode core, and when the radius of the circumference is equal to the radius of the first polymer insulating layer, the spacer is disposed on the surface of the first polymer insulating layer.
前述的基于摩擦电的压力感应电缆, 所述隔点所用材料是聚合物, 且与 第一聚合物绝缘层所用材料不同。  In the aforementioned triboelectric-based pressure sensing cable, the material used for the spacer is a polymer and is different from the material used for the first polymer insulating layer.
前述的基于摩擦电的压力感应电缆, 所述隔点所用材料选自聚酰亚胺薄 膜、 苯胺曱醛树脂薄膜、 聚曱醛薄膜、 乙基纤维素薄膜、 聚酰胺薄膜、 三聚 氰胺曱醛薄膜、 聚乙二醇丁二酸酯薄膜、 纤维素薄膜、 纤维素乙酸酯薄膜、 聚己二酸乙二醇酯薄膜、 聚邻苯二曱酸二烯丙酯薄膜、 纤维 (再生) 海绵薄 膜、 聚氨酯弹性体薄膜、 苯乙烯丙烯共聚物薄膜、 苯乙烯丁二烯共聚物薄膜、 人造纤维薄膜、 聚曱基丙烯酸曱酯薄膜、 聚乙烯醇薄膜、 聚异丁烯薄膜、 聚 对苯二曱酸乙二醇酯薄膜、 聚乙烯醇缩丁醛薄膜、 曱醛苯酚缩聚物薄膜、 氯 丁橡胶薄膜、 丁二烯丙烯共聚物薄膜、 天然橡胶薄膜、 聚丙烯腈薄膜、 丙烯 腈氯乙烯共聚物薄膜中的任意一种。  In the foregoing triboelectric-based pressure sensing cable, the material used for the spacer is selected from the group consisting of a polyimide film, an aniline furfural resin film, a polyacetal film, an ethyl cellulose film, a polyamide film, a melamine furfural film, Polyethylene glycol succinate film, cellulose film, cellulose acetate film, polyethylene adipate film, poly(phenylene terephthalate film), fiber (recycled) sponge film, Polyurethane elastomer film, styrene propylene copolymer film, styrene butadiene copolymer film, rayon film, polydecyl methacrylate film, polyvinyl alcohol film, polyisobutylene film, polyethylene terephthalate Alcohol ester film, polyvinyl butyral film, furfural phenol polycondensate film, neoprene film, butadiene propylene copolymer film, natural rubber film, polyacrylonitrile film, acrylonitrile vinyl chloride copolymer film Any one.
前述的基于摩擦电的压力感应电缆, 所述隔点设置在第一电极芯表面。 前述的基于摩擦电的压力感应电缆, 所述第二聚合物间隔物是缠绕在第 一电极芯表面上的聚合物线,优选的所述聚合物线的直径是 500 nm到 2 μ ηι。 前述的基于摩擦电的压力感应电缆 , 所述聚合物线在第一电极芯表面上 的缠绕间 巨为 0.1 μ m到 5 μ m。 In the aforementioned triboelectric-based pressure sensing cable, the spacer is disposed on the surface of the first electrode core. In the foregoing triboelectric-based pressure sensing cable, the second polymer spacer is wrapped around A polymer wire on the surface of an electrode core, preferably having a diameter of 500 nm to 2 μm. In the aforementioned triboelectric-based pressure sensing cable, the winding of the polymer wire on the surface of the first electrode core is greatly 0.1 μm to 5 μm.
前述的基于摩擦电的压力感应电缆 , 所述聚合物线在第一电极芯表面上 的缠绕间距为 Ιμηι到 5μηι。  In the foregoing triboelectric-based pressure sensing cable, the winding pitch of the polymer wire on the surface of the first electrode core is Ιμηι to 5μηι.
前述的基于摩擦电的压力感应电缆 , 所述聚合物线所用材料与第一聚合 物绝缘层不同。  In the aforementioned triboelectric-based pressure sensing cable, the material of the polymer wire is different from the first polymer insulating layer.
前述的基于摩擦电的压力感应电缆 , 所述聚合物线所用材料选自聚酰亚 胺薄膜、 苯胺曱醛树脂薄膜、 聚曱醛薄膜、 乙基纤维素薄膜、 聚酰胺薄膜、 三聚氰胺曱醛薄膜、 聚乙二醇丁二酸酯薄膜、 纤维素薄膜、 纤维素乙酸酯薄 膜、 聚己二酸乙二醇酯薄膜、 聚邻苯二曱酸二烯丙酯薄膜、 纤维 (再生) 海 绵薄膜、 聚氨酯弹性体薄膜、 苯乙烯丙烯共聚物薄膜、 苯乙烯丁二烯共聚物 薄膜、 人造纤维薄膜、 聚曱基丙烯酸曱酯薄膜、 聚乙烯醇薄膜、 聚异丁烯薄 膜、 聚对苯二曱酸乙二醇酯薄膜、 聚乙烯醇缩丁醛薄膜、 曱醛苯酚缩聚物薄 膜、 氯丁橡胶薄膜、 丁二烯丙烯共聚物薄膜、 天然橡胶薄膜、 聚丙烯腈薄膜、 丙烯腈氯乙烯共聚物薄膜中的任意一种。  In the foregoing triboelectric-based pressure sensing cable, the material for the polymer wire is selected from the group consisting of polyimide film, aniline acetal resin film, polyacetal film, ethyl cellulose film, polyamide film, melamine furfural film. , polyethylene glycol succinate film, cellulose film, cellulose acetate film, polyethylene adipate film, poly(phenylene terephthalate film), fiber (recycled) sponge film , polyurethane elastomer film, styrene propylene copolymer film, styrene butadiene copolymer film, rayon film, polydecyl methacrylate film, polyvinyl alcohol film, polyisobutylene film, poly-terephthalic acid Glycol ester film, polyvinyl butyral film, furfural phenol condensation film, neoprene film, butadiene propylene copolymer film, natural rubber film, polyacrylonitrile film, acrylonitrile vinyl chloride copolymer film Any of them.
前述的基于摩擦电的压力感应电缆, 所述第一电极芯是单芯结构。  In the aforementioned triboelectric-based pressure sensing cable, the first electrode core is a single core structure.
前述的基于摩擦电的压力感应电缆, 所述第一电极芯是平行设置的多芯 结构。  In the aforementioned triboelectric-based pressure sensing cable, the first electrode core is a multi-core structure arranged in parallel.
前述的基于摩擦电的压力感应电缆, 所述第一电极芯是缠绕设置的多芯 结构。  In the aforementioned triboelectric-based pressure sensing cable, the first electrode core is a wound multi-core structure.
前述的基于摩擦电的压力感应电缆, 所述第一电极芯所用材料是金属或 合金, 其中金属是金、 银、 铂、 钯、 铝、 镍、 铜、 钛、 铬、 锡、 铁、 锰、 相、 钨或钒; 合金是铝合金、 钛合金、 镁合金、 铍合金、 铜合金、 辞合金、 锰合 金、 镍合金、 铅合金、 锡合金、 镉合金、 铋合金、 铟合金、 镓合金、 钨合金、 钼合金、 铌合金或钽合金。  In the foregoing triboelectric-based pressure sensing cable, the material of the first electrode core is metal or alloy, wherein the metal is gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, Phase, tungsten or vanadium; alloys are aluminum alloys, titanium alloys, magnesium alloys, niobium alloys, copper alloys, alloys, manganese alloys, nickel alloys, lead alloys, tin alloys, cadmium alloys, niobium alloys, indium alloys, gallium alloys, Tungsten alloy, molybdenum alloy, niobium alloy or niobium alloy.
前述的基于摩擦电的压力感应电缆, 所述第一电极芯所用材料是表面设 有导电层的聚合物、 玻璃或纤维。 前述的基于摩擦电的压力感应电缆, 所述导电层是铟锡氧化物膜、 石墨 烯膜、 银纳米线膜或金属膜, 其中所述金属膜所用金属材料是金、 银、 铂、 钯、 铝、 镍、 铜、 钛、 铬、 锡、 铁、 锰、 相、 钨或钒。 In the foregoing triboelectric-based pressure sensing cable, the material used for the first electrode core is a polymer, glass or fiber having a conductive layer on its surface. In the foregoing triboelectric-based pressure sensing cable, the conductive layer is an indium tin oxide film, a graphene film, a silver nanowire film or a metal film, wherein the metal material used for the metal film is gold, silver, platinum, palladium, Aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium.
前述的基于摩擦电的压力感应电缆, 所述第二电极层所用材料选自铟锡 氧化物、 石墨烯电极、 银纳米线膜, 以及金属或合金, 其中金属是金、 银、 铂、 钯、 铝、 镍、 铜、 钛、 铬、 锡、 铁、 锰、 相、 钨或钒; 合金是铝合金、 钛合金、 镁合金、 铍合金、 铜合金、 辞合金、 锰合金、 镍合金、 铅合金、 锡 合金、 镉合金、 铋合金、 铟合金、 镓合金、 钨合金、 钼合金、 铌合金或钽合 金。  In the foregoing triboelectric-based pressure sensing cable, the material of the second electrode layer is selected from the group consisting of indium tin oxide, graphene electrode, silver nanowire film, and metal or alloy, wherein the metal is gold, silver, platinum, palladium, Aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium; alloys are aluminum alloys, titanium alloys, magnesium alloys, niobium alloys, copper alloys, alloys, manganese alloys, nickel alloys, lead alloys , tin alloy, cadmium alloy, niobium alloy, indium alloy, gallium alloy, tungsten alloy, molybdenum alloy, niobium alloy or niobium alloy.
当本发明基于摩擦电的压力感应电缆受到压力, 产生正比于压力的电荷 或者电压信号。 本发明基于摩擦电的压力感应电缆具有生产工艺筒单、 灵敏 度高、 响应速度快、 使用寿命长的特点。 附图说明  When the triboelectric based pressure sensing cable of the present invention is subjected to pressure, a charge or voltage signal proportional to the pressure is generated. The pressure-sensing cable based on triboelectric has the characteristics of single production process, high sensitivity, fast response speed and long service life. DRAWINGS
图 1 是本发明一个具体实施方式的基于摩擦电的压力感应电缆的剖面示 意图;  1 is a cross-sectional view of a triboelectric-based pressure sensing cable according to an embodiment of the present invention;
图 2是图 1压力感应电缆的结构示意图;  2 is a schematic structural view of the pressure sensing cable of FIG. 1;
图 3 是本发明另一个具体实施方式的基于摩擦电的压力感应电缆的剖面 示意图;  3 is a schematic cross-sectional view of a triboelectric-based pressure sensing cable according to another embodiment of the present invention;
图 4是图 3压力感应电缆的结构示意图;  Figure 4 is a schematic structural view of the pressure sensing cable of Figure 3;
图 5 是本发明又一个具体实施方式的基于摩擦电的压力感应电缆的剖面 示意图;  Figure 5 is a cross-sectional view showing a triboelectric-based pressure sensing cable according to still another embodiment of the present invention;
图 6是图 5压力感应电缆的结构示意图;  Figure 6 is a schematic structural view of the pressure sensing cable of Figure 5;
图 7是本发明再一个具体实施方式的基于摩擦电的压力感应电缆的剖面 示意图;  Figure 7 is a cross-sectional view showing a triboelectric-based pressure sensing cable according to still another embodiment of the present invention;
图 8是图 7压力感应电缆的结构示意图。 具体实施方式 为充分了解本发明之目的、 特征及功效, 借由下述具体的实施方式, 对 本发明做详细说明。 FIG. 8 is a schematic structural view of the pressure sensing cable of FIG. 7. FIG. detailed description The present invention will be described in detail by the following detailed description of the invention.
本发明基于摩擦电的压力感应电缆, 当电缆受到压力, 产生正比于压力 的电荷或者电压信号, 因此能够用作交通轴压力传感器测定车速和车重, 用 作电缆开关检测存在 /占有率, 用作接触式传声器监测生命特征及周界安全。  The invention is based on a triboelectric pressure sensing cable. When the cable is subjected to pressure and generates a charge or voltage signal proportional to the pressure, it can be used as a traffic shaft pressure sensor to measure the vehicle speed and the vehicle weight, and is used as a cable switch detection presence/occupancy rate. Used as a contact microphone to monitor vital signs and perimeter safety.
一种具体实施方式的基于摩擦电的压力感应电缆, 该压力感应电缆包括 依次同轴设置的第一电极芯、 空腔、 第一聚合物绝缘层以及第二电极层; 其 中, 所述压力感应电缆自然伸展时, 第一聚合物绝缘层与第一电极芯通过空 腔间隔分离; 所述压力感应电缆受力弯曲时, 第一聚合物绝缘层与第一电极 芯接触摩擦; 所述第一电极芯和第二电极层为基于摩擦电的压力感应电缆的 电压和电流输出电极。 在本申请中, 基于摩擦电的压力感应电缆是指基于摩 擦发电机原理的压力感应电缆, 第一电极芯和第二电极层为摩擦发电机(也 就是压力感应电缆) 的电压和电流输出电极。  A triboelectric-based pressure sensing cable according to a specific embodiment, the pressure sensing cable includes a first electrode core, a cavity, a first polymer insulating layer and a second electrode layer disposed coaxially in sequence; wherein the pressure sensing When the cable is naturally stretched, the first polymer insulating layer is separated from the first electrode core by a cavity; when the pressure sensing cable is bent by force, the first polymer insulating layer is in frictional contact with the first electrode core; The electrode core and the second electrode layer are voltage and current output electrodes of a triboelectric based pressure sensing cable. In the present application, a triboelectric-based pressure sensing cable refers to a pressure sensing cable based on a friction generator principle, and the first electrode core and the second electrode layer are voltage and current output electrodes of a friction generator (ie, a pressure sensing cable). .
当基于摩擦电的压力感应电缆受力弯曲时, 第一聚合物绝缘层与第一电 极芯接触摩擦产生静电荷, 静电荷的产生会使第一电极芯和第二电极层之间 的电容发生改变, 从而导致第一电极芯和第二电极层之间出现电势差。 由于 第一电极芯和第二电极层之间电势差的存在, 自由电子将通过外电路由电势 低的一侧流向电势高的一侧, 从而在外电路中形成电流。 当基于摩擦电的压 力感应电缆恢复到自然状态时, 这时形成在第一电极芯和第二电极层之间的 内电势消失, 此时已平衡的第一电极芯和第二电极层之间将再次产生反向的 电势差, 则自由电子通过外电路形成反向电流。 通过反复摩擦和恢复, 就可 以在外电路中形成周期性的交流电信号。  When the triboelectric-based pressure sensing cable is bent by force, the first polymer insulating layer is in frictional contact with the first electrode core to generate an electrostatic charge, and the generation of the electrostatic charge causes a capacitance between the first electrode core and the second electrode layer to occur. The change causes a potential difference to occur between the first electrode core and the second electrode layer. Due to the existence of a potential difference between the first electrode core and the second electrode layer, free electrons will flow from the lower potential side to the higher potential side through the external circuit, thereby forming a current in the external circuit. When the triboelectric-based pressure sensing cable returns to the natural state, the internal potential formed between the first electrode core and the second electrode layer disappears, and between the balanced first electrode core and the second electrode layer The reverse potential difference will again be generated, and the free electrons will form a reverse current through the external circuit. By repeated friction and recovery, periodic alternating current signals can be formed in the external circuit.
如图 1和 2所示, 一种具体实施方式的基于摩擦电的压力感应电缆 1 , 该压电电缆包括依次同轴设置的第一电极芯 11、 空腔 12、 第一聚合物绝缘层 13以及第二电极层 14; 其中在空腔 12中设有第二聚合物间隔物(图未示); 所述第一电极芯 11和第二电极层 14为压力感应电缆 1的电压和电流输出电 极。  As shown in FIGS. 1 and 2, a triboelectric-based pressure sensing cable 1 of a specific embodiment includes a first electrode core 11 disposed in series, a cavity 12, and a first polymer insulating layer 13. And a second electrode layer 14; wherein a second polymer spacer (not shown) is disposed in the cavity 12; the first electrode core 11 and the second electrode layer 14 are voltage and current outputs of the pressure sensing cable 1 electrode.
如图 1和 2所示的基于摩擦电的压力感应电缆 1 , 第一聚合物绝缘层 13 所用材料可以选自聚酰亚胺薄膜、 苯胺曱醛树脂薄膜、 聚曱醛薄膜、 乙基纤 维素薄膜、 聚酰胺薄膜、 三聚氰胺曱醛薄膜、 聚乙二醇丁二酸酯薄膜、 纤维 素薄膜、 纤维素乙酸酯薄膜、 聚己二酸乙二醇酯薄膜、 聚邻苯二曱酸二烯丙 酯薄膜、 纤维 (再生) 海绵薄膜、 聚氨酯弹性体薄膜、 苯乙烯丙烯共聚物薄 膜、 苯乙烯丁二烯共聚物薄膜、 人造纤维薄膜、 聚曱基丙烯酸曱酯薄膜、 聚 乙烯醇薄膜、 聚异丁烯薄膜、 聚对苯二曱酸乙二醇酯薄膜、 聚乙烯醇缩丁醛 薄膜、 曱醛苯酚缩聚物薄膜、 氯丁橡胶薄膜、 丁二烯丙烯共聚物薄膜、 天然 橡胶薄膜、 聚丙烯腈薄膜、 丙烯腈氯乙烯共聚物薄膜中的任意一种。 A triboelectric-based pressure sensing cable 1 as shown in FIGS. 1 and 2, a first polymer insulating layer 13 The material used may be selected from the group consisting of polyimide film, aniline furfural resin film, polyacetal film, ethyl cellulose film, polyamide film, melamine furfural film, polyethylene glycol succinate film, cellulose film. , cellulose acetate film, polyethylene adipate film, poly(phenylene terephthalate) film, fiber (recycled) sponge film, polyurethane elastomer film, styrene propylene copolymer film, benzene Ethylene butadiene copolymer film, rayon film, polydecyl acrylate film, polyvinyl alcohol film, polyisobutylene film, polyethylene terephthalate film, polyvinyl butyral film, ruthenium Any one of an aldehyde phenol polycondensate film, a neoprene film, a butadiene propylene copolymer film, a natural rubber film, a polyacrylonitrile film, and an acrylonitrile vinyl chloride copolymer film.
第二电极层 14所用材料选自铟锡氧化物、 石墨烯电极、 银纳米线膜, 以 及金属或合金, 其中金属是金、 银、 铂、 钯、 铝、 镍、 铜、 钛、 铬、 锡、 铁、 锰、 相、 钨或钒; 合金是铝合金、 钛合金、 镁合金、 铍合金、 铜合金、 辞合 金、 锰合金、 镍合金、 铅合金、 锡合金、 镉合金、 铋合金、 铟合金、 镓合金、 钨合金、 钼合金、 铌合金或钽合金。  The material of the second electrode layer 14 is selected from the group consisting of indium tin oxide, graphene electrode, silver nanowire film, and metal or alloy, wherein the metal is gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin. , iron, manganese, phase, tungsten or vanadium; alloys are aluminum alloys, titanium alloys, magnesium alloys, niobium alloys, copper alloys, alloys, manganese alloys, nickel alloys, lead alloys, tin alloys, cadmium alloys, niobium alloys, indium Alloy, gallium alloy, tungsten alloy, molybdenum alloy, niobium alloy or niobium alloy.
如图 1和 2所示的压力感应电缆 1中第一电极芯 11是单芯结构。第一电 极芯 11所用材料可以是金属或合金,其中金属可以是但不限于是金、银、铂、 钯、 铝、 镍、 铜、 钛、 铬、 锡、 铁、 锰、 相、 钨或钒; 合金可以是但不限于 是铝合金、 钛合金、 镁合金、 铍合金、 铜合金、 辞合金、 锰合金、 镍合金、 铅合金、 锡合金、 镉合金、 铋合金、 铟合金、 镓合金、 钨合金、 钼合金、 铌 合金或钽合金。  The first electrode core 11 in the pressure sensing cable 1 shown in Figs. 1 and 2 has a single core structure. The material of the first electrode core 11 may be a metal or an alloy, wherein the metal may be, but not limited to, gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium. The alloy may be, but not limited to, an aluminum alloy, a titanium alloy, a magnesium alloy, a bismuth alloy, a copper alloy, a rhodium alloy, a manganese alloy, a nickel alloy, a lead alloy, a tin alloy, a cadmium alloy, a bismuth alloy, an indium alloy, a gallium alloy, Tungsten alloy, molybdenum alloy, niobium alloy or niobium alloy.
在一个优选的实施方式中,第一电极芯 11所用材料还可以是表面设有导 电层的聚合物、 玻璃或纤维。 这里所述的聚合物可以从与第一聚合物绝缘层 所用材料相同的范围中进行选择, 即聚酰亚胺薄膜、 苯胺曱醛树脂薄膜、 聚 曱醛薄膜、 乙基纤维素薄膜、 聚酰胺薄膜、 三聚氰胺曱醛薄膜、 聚乙二醇丁 二酸酯薄膜、 纤维素薄膜、 纤维素乙酸酯薄膜、 聚己二酸乙二醇酯薄膜、 聚 邻苯二曱酸二烯丙酯薄膜、 纤维 (再生)海绵薄膜、 聚氨酯弹性体薄膜、 苯 乙烯丙烯共聚物薄膜、 苯乙烯丁二烯共聚物薄膜、 人造纤维薄膜、 聚曱基丙 烯酸曱酯薄膜、 聚乙烯醇薄膜、 聚异丁烯薄膜、 聚对苯二曱酸乙二醇酯薄膜、 聚乙烯醇缩丁醛薄膜、 曱醛苯酚缩聚物薄膜、 氯丁橡胶薄膜、 丁二烯丙烯共 聚物薄膜、 天然橡胶薄膜、 聚丙烯腈薄膜、 丙烯腈氯乙烯共聚物薄膜中的任 意一种。 所述玻璃是指各种以二氧化硅为基础的玻璃材料, 包括有不同用途 和功能的玻璃。 所述纤维包括各种植物纤维、 动物纤维、 人造纤维、 织物纤 维、 以及纤维素纤维, 如棉、 木棉、 亚麻、 苎麻、 黄麻、 竹纤维、 剑麻、 蕉 麻、 绵羊毛、 山羊绒、 骆驼毛、 兔毛、 马海毛、 蚕丝、 黏胶纤维、 醋酸纤维、 铜氨纤维、 聚酯纤维(涤纶) 、 聚酰胺纤维 (锦纶或尼龙) 、 聚乙烯醇纤维 (维纶)、 聚丙烯腈纤维(腈纶)、 聚丙烯纤维(丙纶)、 聚氯乙烯纤维(氯 纶)等。 In a preferred embodiment, the material used for the first electrode core 11 may also be a polymer, glass or fiber having a conductive layer on its surface. The polymer described herein may be selected from the same range as the material used for the first polymer insulating layer, namely, a polyimide film, an aniline furfural resin film, a polyacetal film, an ethyl cellulose film, a polyamide. Film, melamine furfural film, polyethylene glycol succinate film, cellulose film, cellulose acetate film, polyethylene adipate film, poly(phenylene terephthalate) film, Fiber (recycled) sponge film, polyurethane elastomer film, styrene propylene copolymer film, styrene butadiene copolymer film, rayon film, polydecyl methacrylate film, polyvinyl alcohol film, polyisobutylene film, poly Ethylene terephthalate film, polyvinyl butyral film, furfural phenol condensation film, neoprene film, butadiene propylene Any one of a polymer film, a natural rubber film, a polyacrylonitrile film, and an acrylonitrile vinyl chloride copolymer film. The glass refers to various silica-based glass materials, including glass having different uses and functions. The fibers include various plant fibers, animal fibers, rayon fibers, fabric fibers, and cellulosic fibers such as cotton, kapok, linen, ramie, jute, bamboo fiber, sisal, abaca, sheep wool, cashmere, camel. Hair, rabbit hair, mohair, silk, viscose fiber, acetate fiber, copper ammonia fiber, polyester fiber (polyester), polyamide fiber (nylon or nylon), polyvinyl alcohol fiber (Vinyl), polyacrylonitrile fiber (acrylic fiber) ), polypropylene fiber (polypropylene), polyvinyl chloride fiber (chlorinated fiber), and the like.
导电层可以是采用常规磁控溅射或者蒸镀的方法设置在聚合物、 玻璃或 纤维表面上的铟锡氧化物膜、 石墨烯膜、 银纳米线膜或金属膜, 其中所述金 属膜所用金属材料可以是但不限于是金、 银、 铂、 钯、 铝、 镍、 铜、 钛、 铬、 锡、 铁、 锰、 相、 钨或钒。  The conductive layer may be an indium tin oxide film, a graphene film, a silver nanowire film or a metal film provided on a surface of a polymer, glass or fiber by a conventional magnetron sputtering or evaporation method, wherein the metal film is used for The metal material may be, but not limited to, gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium.
如图 3和 4所示, 在一个优选实施方式中, 压力感应电缆 2包括依次同 轴设置的第一电极芯 21、空腔 22、第一聚合物绝缘层 23以及第二电极层 24, 其中第一电极芯 21是平行设置的多芯结构。 第一电极芯 21、 第一聚合物绝 缘层 23和第二电极层 24所用材料与图 1所示压力感应电缆 1所用材料相同, 这里不再赘述。 在另一个优选实施方式中, 第一电极芯 21还可以是缠绕设置 的多芯结构。  As shown in FIGS. 3 and 4, in a preferred embodiment, the pressure sensing cable 2 includes a first electrode core 21, a cavity 22, a first polymer insulating layer 23, and a second electrode layer 24, which are disposed coaxially in series, wherein The first electrode core 21 is a multi-core structure arranged in parallel. The materials used for the first electrode core 21, the first polymer insulating layer 23 and the second electrode layer 24 are the same as those used for the pressure sensing cable 1 shown in Fig. 1, and will not be described again. In another preferred embodiment, the first electrode core 21 may also be a multi-core structure that is wound.
第一电极芯 21的各电极芯可以选择不同的材料,从而可以输出不同的信 号, 也可以附加不同的功能。 例如, 在玻璃光纤上镀金属, 那么该光纤既可 以传输光学信号也可以输出电学信号。  Each of the electrode cores of the first electrode core 21 can be selected from different materials so that different signals can be output or different functions can be added. For example, if a metal is plated on a glass fiber, the fiber can transmit both an optical signal and an electrical signal.
如图 5和 6所示, 在一个优选实施方式中, 压力感应电缆 3包括依次同 轴设置的第一电极芯 31、空腔 32、第一聚合物绝缘层 33以及第二电极层 34, 其中空腔 32内设置有隔点 35。 优选的, 隔点凸起高度为 100纳米 -1微米, 设置在第一电极芯 31表面上,单位面积上隔点数量为 2 104个 /m2至 2 107 个 /m2。 例如采用常规市售导电胶将隔点 35粘在第一电极芯 31表面上。 第一 电极芯 31、 第一聚合物绝缘层 33和第二电极层 34所用材料与图 1所示压力 感应电缆 1所用材料相同, 这里不再赘述。 所述隔点 35所用材料优选是聚合物, 且与第一聚合物绝缘层 33所用材 料不同。 所述隔点所用材料可以选自但不限于是聚酰亚胺薄膜、 苯胺曱 树 脂薄膜、 聚曱醛薄膜、 乙基纤维素薄膜、 聚酰胺薄膜、 三聚氰胺曱醛薄膜、 聚乙二醇丁二酸酯薄膜、 纤维素薄膜、 纤维素乙酸酯薄膜、 聚己二酸乙二醇 酯薄膜、 聚邻苯二曱酸二烯丙酯薄膜、 纤维 (再生) 海绵薄膜、 聚氨酯弹性 体薄膜、 苯乙烯丙烯共聚物薄膜、 苯乙烯丁二烯共聚物薄膜、 人造纤维薄膜、 聚曱基丙烯酸曱酯薄膜、 聚乙烯醇薄膜、 聚异丁烯薄膜、 聚对苯二曱酸乙二 醇酯薄膜、 聚乙烯醇缩丁醛薄膜、 曱醛苯酚缩聚物薄膜、 氯丁橡胶薄膜、 丁 二烯丙烯共聚物薄膜、 天然橡胶薄膜、 聚丙烯腈薄膜、 丙烯腈氯乙烯共聚物 薄膜中的任意一种。 As shown in FIGS. 5 and 6, in a preferred embodiment, the pressure sensing cable 3 includes a first electrode core 31, a cavity 32, a first polymer insulating layer 33, and a second electrode layer 34, which are disposed coaxially in series, wherein A compartment 35 is provided in the cavity 32. Preferably, the height of the spacer protrusion is from 100 nm to 1 μm, and is disposed on the surface of the first electrode core 31, and the number of the spacers per unit area is from 2 10 4 /m 2 to 2 10 7 /m 2 . The spacer 35 is adhered to the surface of the first electrode core 31, for example, using a conventional commercially available conductive paste. The materials used for the first electrode core 31, the first polymer insulating layer 33 and the second electrode layer 34 are the same as those used for the pressure sensing cable 1 shown in Fig. 1, and will not be described again. The material used for the spacer 35 is preferably a polymer and is different from the material used for the first polymer insulating layer 33. The material used for the spacer may be selected from, but not limited to, polyimide film, aniline resin film, polyacetal film, ethyl cellulose film, polyamide film, melamine furfural film, polyethylene glycol butyl Acid ester film, cellulose film, cellulose acetate film, polyethylene adipate film, diallyl phthalate film, fiber (recycled) sponge film, polyurethane elastomer film, benzene Ethylene propylene copolymer film, styrene butadiene copolymer film, rayon film, polydecyl acrylate film, polyvinyl alcohol film, polyisobutylene film, polyethylene terephthalate film, polyethylene Any one of a butyral film, a furfural phenol polycondensate film, a neoprene film, a butadiene propylene copolymer film, a natural rubber film, a polyacrylonitrile film, and an acrylonitrile vinyl chloride copolymer film.
在另一个优选实施方式中, 压力感应电缆包括依次同轴设置的第一电极 芯、 空腔、 第一聚合物绝缘层以及第二电极层, 其中空腔内设置有以一定间 距缠绕在第一电极芯表面上的聚合物线, 例如所述聚合物线在第一电极芯表 面上的缠绕间距为 0.1 μ m到 5 μ m。 通常所述聚合物线的直径是 500 nm到 2 μ m。  In another preferred embodiment, the pressure sensing cable includes a first electrode core, a cavity, a first polymer insulating layer and a second electrode layer disposed coaxially in sequence, wherein the cavity is provided with a first pitch wound at a first interval The polymer wires on the surface of the electrode core, for example, the pitch of the polymer wires on the surface of the first electrode core are 0.1 μm to 5 μm. Typically the polymer strands have a diameter of from 500 nm to 2 μm.
聚合物线所用材料与第一聚合物绝缘层不同。 聚合物线所用材料选自聚 酰亚胺薄膜、 苯胺曱醛树脂薄膜、 聚曱醛薄膜、 乙基纤维素薄膜、 聚酰胺薄 膜、 三聚氰胺曱醛薄膜、 聚乙二醇丁二酸酯薄膜、 纤维素薄膜、 纤维素乙酸 酯薄膜、 聚己二酸乙二醇酯薄膜、 聚邻苯二曱酸二烯丙酯薄膜、 纤维(再生) 海绵薄膜、 聚氨酯弹性体薄膜、 苯乙烯丙烯共聚物薄膜、 苯乙烯丁二烯共聚 物薄膜、 人造纤维薄膜、 聚曱基丙烯酸曱酯薄膜、 聚乙烯醇薄膜、 聚异丁烯 薄膜、 聚对苯二曱酸乙二醇酯薄膜、 聚乙烯醇缩丁醛薄膜、 曱醛苯酚缩聚物 薄膜、 氯丁橡胶薄膜、 丁二烯丙烯共聚物薄膜、 天然橡胶薄膜、 聚丙烯腈薄 膜、 丙烯腈氯乙烯共聚物薄膜中的任意一种。  The material used for the polymer strand is different from the first polymer insulating layer. The material used for the polymer wire is selected from the group consisting of polyimide film, aniline furfural resin film, polyacetal film, ethyl cellulose film, polyamide film, melamine furfural film, polyethylene glycol succinate film, fiber Film, cellulose acetate film, polyethylene adipate film, diallyl phthalate film, fiber (recycled) sponge film, polyurethane elastomer film, styrene propylene copolymer film , styrene butadiene copolymer film, rayon film, polydecyl methacrylate film, polyvinyl alcohol film, polyisobutylene film, polyethylene terephthalate film, polyvinyl butyral film Any one of a furfural phenol condensation polymer film, a neoprene film, a butadiene propylene copolymer film, a natural rubber film, a polyacrylonitrile film, and an acrylonitrile vinyl chloride copolymer film.
隔点 35和聚合物线的设置能够使得压力感应电缆在自然伸展状态时,有 效隔离第一聚合物绝缘层和第一电极芯。 另外选择与第一聚合物绝缘层摩擦 起电效果好的聚合物, 有助于压力感应电缆的摩擦起电。 在另一个优选实施方式中, 压力感应电缆包括依次同轴设置的第一电极 芯、 空腔、 第一聚合物绝缘层以及第二电极层, 第一聚合物绝缘层相对第一 电极芯的表面上设置有纳米级至微米级的微纳凹凸结构, 优选凸起高度The arrangement of the spacers 35 and the polymer wires enables the pressure sensing cable to effectively isolate the first polymeric insulating layer from the first electrode core when in a naturally extended state. In addition, a polymer having a good triboelectric effect with the first polymer insulating layer is selected to contribute to the triboelectric charging of the pressure sensing cable. In another preferred embodiment, the pressure sensing cable includes a first electrode core, a cavity, a first polymer insulating layer, and a second electrode layer, which are disposed coaxially in parallel, and a surface of the first polymer insulating layer opposite to the first electrode core A nano-to-micron micro-nano-convex structure is provided thereon, preferably a protrusion height
50nm-3 OOnm的纳米凹凸结构 (图未示 )。 Nano-concave structure of 50nm-3 OOnm (not shown).
当基于摩擦电的压力感应电缆受力弯曲时, 第一聚合物绝缘层与第一电 极芯接触摩擦形成摩擦表面。 摩擦表面的粗糙度会对电压和电流的输出产生 影响, 即单位面积上隔点的大小、 数量以及聚合物的粗细及缠绕的间距都会 对电能的输出性质产生影响。在本发明中采用隔点作为第二聚合物间隔物时, 优选的隔点凸起高度为 100纳米 -1微米,单位面积上隔点数量为 2 104个 /m2 至 2 x l07个 /m2。 当隔点凸起高度(粒径) 小于 100纳米时, 成本过高; 当 隔点凸起高度(粒径) 大于 1微米时, 电压、 电流信号会迅速降低。 在本发 明中采用聚合物线作为第二聚合物间隔物时, 优选的聚合物线的直径是 500 nm到 2 μ m,聚合物线的缠绕间 巨为 0.1 μ m到 5 μ m,更优选 1 μ m到 5 μ m。 当聚合物线直径大于 2 μ ηι, 缠绕间距超过 5 μ ηι时, 电压、 电流信号会迅速 降低。 When the triboelectric-based pressure sensing cable is bent by force, the first polymer insulating layer is in frictional contact with the first electrode core to form a friction surface. The roughness of the friction surface affects the output of the voltage and current, that is, the size and number of the septum per unit area, as well as the thickness of the polymer and the spacing of the winding, all have an effect on the output properties of the electrical energy. In the present invention, when the spacer is used as the second polymer spacer, the preferred height of the spacer is 100 nm to 1 μm, and the number of spacers per unit area is 2 10 4 / m 2 to 2 x 10 7 /m 2 . When the height (particle size) of the spacer is less than 100 nm, the cost is too high; when the height (particle size) of the spacer is greater than 1 μm, the voltage and current signals are rapidly lowered. When a polymer wire is used as the second polymer spacer in the present invention, the preferred polymer wire diameter is 500 nm to 2 μm, and the winding of the polymer wire is greatly 0.1 μm to 5 μm, more preferably 1 μ m to 5 μ m. When the polymer wire diameter is larger than 2 μ ηι and the winding pitch exceeds 5 μ η, the voltage and current signals are rapidly reduced.
如图 7和 8所示, 一种具体实施方式的基于摩擦电的压力感应电缆 4, 该压力感应电缆包括依次同轴设置的第一电极芯 41、 空腔 42、 第一聚合物绝 缘层 43以及第二电极层 44。该压电电缆 4进一步包括第二聚合物绝缘层 45 , 设置在第一电极芯 41与空腔 42之间; 其中, 所述压力感应电缆 4自然伸展 时, 第一聚合物绝缘层 43与第二聚合物绝缘层 45通过空腔 42间隔分离; 所 述压力感应电缆 4受力弯曲时, 第一聚合物绝缘层 43 与第二聚合物绝缘层 45接触摩擦。 所述第一电极芯 41和第二电极层 44为压力感应电缆 4的电压 和电流输出电极。  As shown in FIGS. 7 and 8, a triboelectric-based pressure sensing cable 4 of the specific embodiment includes a first electrode core 41, a cavity 42 and a first polymer insulating layer 43 which are disposed coaxially in sequence. And a second electrode layer 44. The piezoelectric cable 4 further includes a second polymer insulating layer 45 disposed between the first electrode core 41 and the cavity 42; wherein, when the pressure sensing cable 4 is naturally extended, the first polymer insulating layer 43 and the first The two polymer insulating layers 45 are separated by a cavity 42. When the pressure sensing cable 4 is bent by force, the first polymer insulating layer 43 is in contact with the second polymer insulating layer 45. The first electrode core 41 and the second electrode layer 44 are voltage and current output electrodes of the pressure sensing cable 4.
第一电极芯 41、 第一聚合物绝缘层 43和第二电极层 44所用材料与图 1 所示压力感应电缆 1所用材料相同, 这里不再赘述。  The materials used for the first electrode core 41, the first polymer insulating layer 43, and the second electrode layer 44 are the same as those used for the pressure sensing cable 1 shown in Fig. 1, and will not be described again.
所述第二聚合物绝缘层的厚度是 300 nm到 1 μ ηι。 所述第二聚合物绝缘 层所用材料与第一聚合物绝缘层不同, 可以选自聚酰亚胺薄膜、 苯胺曱 树 脂薄膜、 聚曱醛薄膜、 乙基纤维素薄膜、 聚酰胺薄膜、 三聚氰胺曱醛薄膜、 聚乙二醇丁二酸酯薄膜、 纤维素薄膜、 纤维素乙酸酯薄膜、 聚己二酸乙二醇 酯薄膜、 聚邻苯二曱酸二烯丙酯薄膜、 纤维 (再生) 海绵薄膜、 聚氨酯弹性 体薄膜、 苯乙烯丙烯共聚物薄膜、 苯乙烯丁二烯共聚物薄膜、 人造纤维薄膜、 聚曱基丙烯酸曱酯薄膜、 聚乙烯醇薄膜、 聚异丁烯薄膜、 聚对苯二曱酸乙二 醇酯薄膜、 聚乙烯醇缩丁醛薄膜、 曱醛苯酚缩聚物薄膜、 氯丁橡胶薄膜、 丁 二烯丙烯共聚物薄膜、 天然橡胶薄膜、 聚丙烯腈薄膜、 丙烯腈氯乙烯共聚物 薄膜中的任意一种。 The thickness of the second polymer insulating layer is 300 nm to 1 μm. The second polymer insulating layer is different from the first polymer insulating layer and may be selected from the group consisting of a polyimide film, an aniline resin film, a polyacetal film, an ethyl cellulose film, a polyamide film, and a melamine lanthanum. Aldehyde film, Polyethylene glycol succinate film, cellulose film, cellulose acetate film, polyethylene adipate film, poly(phenylene terephthalate film), fiber (recycled) sponge film, Polyurethane elastomer film, styrene propylene copolymer film, styrene butadiene copolymer film, rayon film, polydecyl methacrylate film, polyvinyl alcohol film, polyisobutylene film, polyethylene terephthalate Alcohol ester film, polyvinyl butyral film, furfural phenol polycondensate film, neoprene film, butadiene propylene copolymer film, natural rubber film, polyacrylonitrile film, acrylonitrile vinyl chloride copolymer film Any one.
在一个优选的实施方式中, 第一聚合物绝缘层 43 和第二聚合物绝缘层 45相对表面中的至少一个面上设置有纳米级至微米级的微纳凹凸结构, 优选 凸起高度 50nm-300nm的纳米凹凸结构 (图未示)。  In a preferred embodiment, at least one of the opposite surfaces of the first polymer insulating layer 43 and the second polymer insulating layer 45 is provided with a micro-nano-convex structure of nanometer to micrometer order, preferably a bump height of 50 nm- 300 nm nano concave and convex structure (not shown).
微纳凹凸结构可以采用多种方法进行制备, 例如用有特定规则凸起结构 的硅模板压制, 用砂纸打磨的带有粗糙度的金属作为模板以及其他方法。 下 面详细说明 纳凹凸结构的一种制备方法。  The micro/nano-convex structure can be prepared by a variety of methods, such as pressing with a silicon template having a specific regular raised structure, sanding a roughened metal as a template, and other methods. A preparation method of the nano concave-convex structure will be described in detail below.
S1 制作硅模板。将硅片用光刻的方法在表面做出规则的图形。做好图形 的硅片用湿刻的工艺各向异性刻蚀, 可以刻出凹形的四棱锥阵列结构, 或者 也可以用干刻的工艺各向同性刻蚀可以刻出凹形的立方体阵列结构。 刻好之 后的模板用丙酮和异丙醇清洗干净, 然后所有的模板都在三曱基氯硅烷的气 氛中进行表面硅烷化的处理, 处理好的硅模板待用。  S1 creates a silicon template. A regular pattern is formed on the surface by photolithography of the silicon wafer. The patterned silicon wafer is anisotropically etched by wet etching, and a concave quadrangular pyramid array structure can be engraved, or a concave cube array structure can be engraved by dry etching process isotropic etching. . After the engraving, the template was cleaned with acetone and isopropyl alcohol, and then all the templates were subjected to surface silanization in a trimethyl chlorosilane atmosphere, and the treated silicon template was used.
S2制作具有微纳 凸结构表面的高分子聚合物膜。 首先将聚合物浆料涂 覆于硅模板表面, 真空脱气, 用旋转涂覆的方式将硅片表面多余的混合物去 掉, 形成一层薄薄的聚合物液体膜。 将整个模板固化, 然后剥离, 得到均匀 的具有特定微结构阵列的聚合物膜。  S2 produces a polymer film having a micro-nano convex surface. The polymer slurry is first applied to the surface of the silicon template, vacuum degassed, and the excess mixture on the surface of the wafer is removed by spin coating to form a thin polymer liquid film. The entire template was cured and then peeled off to obtain a uniform polymer film having a specific microstructure array.
在实际应用中, 基于摩擦电的压力感应电缆的第一电极芯和第二电极层 分别连接到探测器上, 当电缆受到压力时, 第一电极芯和第二电极层产生正 明能够应用的探测器是常规市售探测器。  In practical applications, the first electrode core and the second electrode layer of the triboelectric-based pressure sensing cable are respectively connected to the detector, and when the cable is under pressure, the first electrode core and the second electrode layer generate a positively applicable probe. The device is a conventional commercially available detector.
根据上述原理, 本发明基于摩擦电的压力感应电缆可以用作交通轴传感 器, 用作压电电缆开关检测存在 /占有率, 用作接触式传声器监测生命特征及 周界安全。 例如用作交通轴传感器, 当轮胎经过电缆时, 产生与施加到传感 器上的压力成正比的电压信号, 且输出周期与轮胎停留在传感器上的时间相 同, 每当一个轮胎经过传感器时, 传感器会产生一个新的电子脉沖。 在车道 上安装两条传感器, 轮胎经过第一个传感器时启动电子时钟, 轮胎经过第二 个传感器时启动电子时钟停止时钟, 得到了时间周期; 已知传感器之间的距 离, 这样就得到了车速。 According to the above principle, the friction-electric pressure sensing cable of the present invention can be used as a traffic axis sensor for detecting the presence/occupancy rate of a piezoelectric cable switch, and is used as a contact microphone to monitor vital signs and Perimeter security. For example, as a traffic axis sensor, when the tire passes through the cable, it produces a voltage signal proportional to the pressure applied to the sensor, and the output period is the same as the time the tire stays on the sensor. Whenever a tire passes the sensor, the sensor will Generate a new electronic pulse. Two sensors are installed in the lane. When the tire passes the first sensor, the electronic clock is started. When the tire passes the second sensor, the electronic clock is started to stop the clock, and the time period is obtained. The distance between the sensors is known, and the speed is obtained. .
当理解的是, 这不应被理解为对本发明权利要求范围的限制。 实施例 1 It is understood that this should not be construed as limiting the scope of the claims. Example 1
如图 5所示压力感应电缆 3 , 直径为 1.6 mm。 选用纯度 99.5%, 直径 1.5 mm的工业铝作为第一电极芯 31。  The pressure sensing cable 3 shown in Figure 5 has a diameter of 1.6 mm. Industrial aluminum having a purity of 99.5% and a diameter of 1.5 mm was used as the first electrode core 31.
市购直径 1.6 mm的聚曱基丙烯酸曱酯管用作第一聚合物绝缘层 33。 市 购直径 200 nm的聚对苯二曱酸乙二醇酯颗粒用作隔点 35 , 采用导电胶将聚 对苯二曱酸乙二醇酯颗粒按照 2 107个 /m2粘在第一电极芯 31的表面上, 然 后将第一电极芯 31 同轴的放入聚曱基丙烯酸曱酯管内, 形成空腔 32, 然后 边缘用普通胶布粘贴密封。 A commercially available polyacrylonitrile acrylate tube having a diameter of 1.6 mm was used as the first polymer insulating layer 33. Commercially available polyethylene terephthalate particles having a diameter of 200 nm were used as the separator 35, and the polyethylene terephthalate particles were adhered to the first according to 2 10 7 /m 2 using a conductive adhesive. On the surface of the electrode core 31, the first electrode core 31 is then coaxially placed in a polymethyl methacrylate tube to form a cavity 32, and then the edges are sealed with a common tape.
将铟锡氧化物(ITO )磁控溅镀到聚曱基丙烯酸曱酯管外表面上, 形成第 二电极层 34, 得到压力感应电缆 1#。  Magnetron sputtering of indium tin oxide (ITO) onto the outer surface of the polyfluorenyl acrylate tube to form a second electrode layer 34, resulting in a pressure sensing cable 1#.
电压和电流的测试分别采用美国 Stanford公司 SR560 电压前置放大器和 SR 570电流前置放大器。 其中测试电压时, 由于发电器输出限制, 采用多个 相同电阻分压的方式, 测其中一个电阻的电压, 最后乘以电阻数目得到发电 机总的输出电压。  The voltage and current tests were performed using the Stanford SR560 voltage preamplifier and the SR 570 current preamplifier, respectively. When testing the voltage, due to the output limitation of the generator, the voltage of one of the resistors is measured by using multiple voltage dividers of the same resistor, and finally the number of resistors is multiplied to obtain the total output voltage of the generator.
使用周期振荡 (0.33Hz和 0.13%的形变) 的步进电机使压力感应电缆 1# 发生周期的弯曲和释放, 压力感应电缆 1#的最大输出电压和电流信号分别达 到了 30 V和 10 μΑ。 实施例 2 The stepping motor with periodic oscillation (0.33 Hz and 0.13% deformation) causes the pressure sensing cable 1# to be bent and released periodically, and the maximum output voltage and current signal of the pressure sensing cable 1# reached 30 V and 10 μΑ, respectively. Example 2
如图 5所示压力感应电缆 3 , 直径为 1.6 mm。 选用纯度 99.5%, 直径 1.5 mm的工业铝作为第一电极芯 31。  The pressure sensing cable 3 shown in Figure 5 has a diameter of 1.6 mm. Industrial aluminum having a purity of 99.5% and a diameter of 1.5 mm was used as the first electrode core 31.
市购直径 1.6 mm的聚曱基丙烯酸曱酯管用作第一聚合物绝缘层 33。 市 购直径 1 μ ηι的聚对苯二曱酸乙二醇酯颗粒用作隔点 35 , 采用导电胶将聚对 苯二曱酸乙二醇酯颗粒按照 1 X 105个 /m2粘在第一电极芯 31的表面上, 然后 将第一电极芯 31 同轴的放入聚曱基丙烯酸曱酯管内, 形成空腔 32, 然后边 缘用普通胶布粘贴密封。 A commercially available polyacrylonitrile acrylate tube having a diameter of 1.6 mm was used as the first polymer insulating layer 33. Commercially available polyethylene terephthalate particles having a diameter of 1 μηη are used as the separator 35, and the polyethylene terephthalate particles are adhered at 1 X 10 5 /m 2 using a conductive adhesive. On the surface of the first electrode core 31, the first electrode core 31 is then coaxially placed in a polymethyl methacrylate tube to form a cavity 32, and then the edges are sealed with a common tape.
将铟锡氧化物(ITO )磁控溅镀到聚曱基丙烯酸曱酯管外表面上, 形成第 二电极层 34, 得到压力感应电缆 2#。  Magnetron sputtering of indium tin oxide (ITO) onto the outer surface of the polyfluorenyl acrylate tube to form a second electrode layer 34, resulting in a pressure sensing cable 2#.
采用与实施例 1相同的方法, 测得样品 2#的最大输出电压和电流信号分 别达到了 12V和 3 μΑ。 实施例 3  In the same manner as in Example 1, the maximum output voltage and current signals of the sample 2# were measured to reach 12 V and 3 μΑ, respectively. Example 3
本实施例结构与实施例 1基本相同, 不同之处在于, 选用三根直径 1 mm 的表面镀有金属金的光纤平行设置, 作为第一电极芯。 采用导电胶将聚对苯 二曱酸乙二醇酯颗粒按照 1 X 104个 /m2粘在第一电极芯 31的表面上, 然后采 用其他步骤与实施例 1相同的制备方法得到压力感应电缆 3#。 The structure of this embodiment is basically the same as that of the embodiment 1, except that three optical fibers coated with metal gold having a diameter of 1 mm are arranged in parallel as the first electrode core. The polyethylene terephthalate particles were adhered to the surface of the first electrode core 31 at a rate of 1×10 4 /m 2 using a conductive paste, and then pressure-sensing was obtained by the same preparation method as in Example 1 by other steps. Cable 3#.
采用与实施例 1相同的方法, 测得样品 3#的最大输出电压和电流信号分 别达到了 18 V和 6 μΑ。  In the same manner as in Example 1, the maximum output voltage and current signals of the sample 3# were measured to reach 18 V and 6 μΑ, respectively.
该感应电缆 3#能够传导光学信号。 实施例 4  The sensing cable 3# is capable of transmitting optical signals. Example 4
本实施例压力感应电缆直径为 1.6 mm。选用纯度 99.5%,直径 1.5 mm的 工业铜作为第一电极芯。  The pressure sensing cable of this embodiment has a diameter of 1.6 mm. Industrial copper with a purity of 99.5% and a diameter of 1.5 mm was used as the first electrode core.
市购直径 1.6 mm的聚酰亚胺管用作第一聚合物绝缘层。市购直径 500 nm 的聚对苯二曱酸乙二醇酯线, 将聚对苯二曱酸乙二醇酯线以间距为 Ι μ ηι缠 绕在第一电极芯表面上, 然后将第一电极芯同轴的放入的聚酰亚胺管内, 形 成空腔, 然后边缘用普通胶布粘贴密封。 A polyimide tube having a diameter of 1.6 mm was commercially available as the first polymer insulating layer. Commercially available polyethylene terephthalate wire with a diameter of 500 nm, wrapped with polyethylene terephthalate at a pitch of Ι μ ηι Wrap around the surface of the first electrode core, and then place the first electrode core coaxially into the polyimide tube to form a cavity, and then the edge is sealed with a common tape.
将铟锡氧化物( ITO )磁控溅镀到聚酰亚胺管外表面上,形成第二电极层, 得到压力感应电缆 4#。  Magnetron sputtering of indium tin oxide (ITO) was sputtered onto the outer surface of the polyimide tube to form a second electrode layer, and a pressure sensing cable 4# was obtained.
采用与实施例 1相同的方法, 测得最大输出电压和电流信号分别达到了 In the same way as in Embodiment 1, the maximum output voltage and current signals were measured respectively.
35 V和 12 μΑ。 实施例 5 35 V and 12 μΑ. Example 5
本实施例压力感应电缆直径为 1.6 mm。选用纯度 99.5%,直径 1.5 mm的 工业铜作为第一电极芯。  The pressure sensing cable of this embodiment has a diameter of 1.6 mm. Industrial copper with a purity of 99.5% and a diameter of 1.5 mm was used as the first electrode core.
市购直径 1.6 mm的聚酰亚胺管用作第一聚合物绝缘层。 市购直径 2 μ ηι 的聚对苯二曱酸乙二醇酯线, 将聚对苯二曱酸乙二醇酯线以间距为 5 μ ηι缠 绕在第一电极芯表面上, 然后将第一电极芯同轴的放入的聚酰亚胺管内, 形 成空腔, 然后边缘用普通胶布粘贴密封。  A polyimide tube having a diameter of 1.6 mm was commercially available as the first polymer insulating layer. Commercially available polyethylene terephthalate wire of 2 μ ηι diameter, wrapped with polyethylene terephthalate at a pitch of 5 μηη on the surface of the first electrode core, and then first The electrode core is coaxially placed in the polyimide tube to form a cavity, and then the edge is sealed with a common tape.
将铟锡氧化物( ΙΤΟ )磁控溅镀到聚酰亚胺管外表面上,形成第二电极层, 得到压力感应电缆 5#。  Magnetic control of indium tin oxide ( ΙΤΟ ) was sputtered onto the outer surface of the polyimide tube to form a second electrode layer, and a pressure sensing cable 5# was obtained.
采用与实施例 1相同的方法, 测得最大输出电压和电流信号分别达到了 18 V和 5μΑ。 实施例 6  In the same manner as in the first embodiment, the maximum output voltage and current signals were measured to reach 18 V and 5 μ, respectively. Example 6
如图 7所示压力感应电缆 4直径为 2.2 mm。选用纯度 99.5%,直径 1.5 mm 的工业铝作为第一电极芯 41。 在厚度 0.25 mm的聚对苯二曱酸乙二醇酯薄膜 的一个表面上设置凸起高度 150nm的微纳凹凸结构, 然后将聚对苯二曱酸乙 二醇酯薄膜设置到第一电极芯 41表面上, 形成厚度是 500 nm的第二聚合物 层 45。  The pressure sensing cable 4 shown in Figure 7 has a diameter of 2.2 mm. Industrial aluminum having a purity of 99.5% and a diameter of 1.5 mm was used as the first electrode core 41. A micro-nano-convex structure having a convex height of 150 nm is disposed on one surface of a polyethylene terephthalate film having a thickness of 0.25 mm, and then a polyethylene terephthalate film is disposed on the first electrode core On the surface of 41, a second polymer layer 45 having a thickness of 500 nm was formed.
市购直径 2.2 mm的聚曱基丙烯酸曱酯管用作第一聚合物绝缘层 43。 将 第一电极芯 41 同轴的放入的聚曱基丙烯酸曱酯管内, 形成空腔 42, 然后边 缘用普通胶布粘贴密封。 将铟锡氧化物(ITO )磁控溅镀到聚曱基丙烯酸曱酯管外表面上, 形成第 二电极层 44, 得到压力感应电缆 6#。 A commercially available polyfluorenyl acrylate tube having a diameter of 2.2 mm was used as the first polymer insulating layer 43. The first electrode core 41 is coaxially placed in a polyacrylonitrile acrylate tube to form a cavity 42, and then the edges are sealed with a common tape. Magnetron sputtering (ITO) was sputter-deposited onto the outer surface of the polyfluorenyl acrylate tube to form a second electrode layer 44, and a pressure sensing cable 6# was obtained.
采用与实施例 1相同的方法, 测得最大输出电压和电流信号分别达到了 3 V和 1 μΑ。 实施例 7  In the same manner as in Embodiment 1, the maximum output voltage and current signals were measured to reach 3 V and 1 μΑ, respectively. Example 7
选用纯度 99.5% ,直径 1.5 mm的工业铝作为第一电极芯。市购直径 1.6 mm 的聚曱基丙烯酸曱酯管用作第一聚合物绝缘层。 将第一电极芯同轴的放入的 聚曱基丙烯酸曱酯管内并形成空腔, 然后边缘用普通胶布粘贴密封。  Industrial aluminum with a purity of 99.5% and a diameter of 1.5 mm was used as the first electrode core. A commercially available polyfluorenyl acrylate tube having a diameter of 1.6 mm was used as the first polymer insulating layer. The first electrode core was coaxially placed in a polyacrylic acid acrylate tube and formed into a cavity, and then the edges were sealed with a common tape.
将铟锡氧化物( ITO )磁控溅镀到聚曱基丙烯酸曱酯管外表面上, 形成第 二电极层, 得到压力感应电缆 7#。  Magnetron sputtering of indium tin oxide (ITO) was sputtered onto the outer surface of the polyfluorenyl acrylate tube to form a second electrode layer, and a pressure sensing cable 7# was obtained.
采用与实施例 1相同的方法, 测得最大输出电压和电流信号分别达到了 5 V和 2 μΑ。  In the same manner as in Embodiment 1, the maximum output voltage and current signals were measured to reach 5 V and 2 μΑ, respectively.
本发明的基于摩擦电的压力感应电缆, 在受力条件下, 通过聚合物和聚 合物间摩擦或者聚合物与金属间摩擦, 能够产生与施加到压力感应电缆上的 压力成正比的电压信号, 具有生产工艺筒单、 灵敏度高、 响应速度快、 使用 寿命长的特点。  The triboelectric-based pressure sensing cable of the present invention can generate a voltage signal proportional to the pressure applied to the pressure sensing cable under frictional conditions by friction between the polymer and the polymer or between the polymer and the metal. It has the characteristics of single production process, high sensitivity, fast response and long service life.

Claims

权 利 要 求 书 Claim
1. 一种基于摩擦电的压力感应电缆, 其特征在于, 该压力感应电缆包括 依次同轴设置的第一电极芯、 空腔、 第一聚合物绝缘层以及第二电极层; 其 中在空腔中设有第二聚合物间隔物; 1. A triboelectric-based pressure sensing cable, characterized in that the pressure sensing cable comprises a first electrode core, a cavity, a first polymer insulating layer and a second electrode layer which are arranged coaxially in sequence; wherein in the cavity Providing a second polymer spacer therein;
所述第一电极芯和第二电极层为基于摩擦电的压力感应电缆的电压和电 The first electrode core and the second electrode layer are voltage and electricity of a triboelectric-based pressure sensing cable
¾输出电极。 3⁄4 output electrode.
2. 根据权利要求 1所述的基于摩擦电的压力感应电缆, 其特征在于, 所 述第二聚合物间隔物是第二聚合物绝缘层, 设置在第一电极芯表面上。  2. The triboelectric-based pressure sensing cable according to claim 1, wherein the second polymer spacer is a second polymer insulating layer disposed on a surface of the first electrode core.
3. 根据权利要求 2所述的基于摩擦电的压力感应电缆, 其特征在于, 所 述第二聚合物绝缘层的厚度是 300 nm到 1μηι。  3. The triboelectric-based pressure sensing cable according to claim 2, wherein the second polymer insulating layer has a thickness of 300 nm to 1 μm.
4. 根据权利要求 1-3任一项所述的基于摩擦电的压力感应电缆, 其特征 在于, 所述第一聚合物绝缘层所用材料选自聚酰亚胺薄膜、 苯胺曱醛树脂薄 膜、 聚曱醛薄膜、 乙基纤维素薄膜、 聚酰胺薄膜、 三聚氰胺曱醛薄膜、 聚乙 二醇丁二酸酯薄膜、 纤维素薄膜、 纤维素乙酸酯薄膜、 聚己二酸乙二醇酯薄 膜、 聚邻苯二曱酸二烯丙酯薄膜、 纤维 (再生)海绵薄膜、 聚氨酯弹性体薄 膜、 苯乙烯丙烯共聚物薄膜、 苯乙烯丁二烯共聚物薄膜、 人造纤维薄膜、 聚 曱基丙烯酸曱酯薄膜、 聚乙烯醇薄膜、 聚异丁烯薄膜、 聚对苯二曱酸乙二醇 酯薄膜、 聚乙烯醇缩丁醛薄膜、 曱醛苯酚缩聚物薄膜、 氯丁橡胶薄膜、 丁二 烯丙烯共聚物薄膜、 天然橡胶薄膜、 聚丙烯腈薄膜、 丙烯腈氯乙烯共聚物薄 膜中的任意一种。  The triboelectric-based pressure sensing cable according to any one of claims 1 to 3, wherein the material of the first polymer insulating layer is selected from the group consisting of a polyimide film, an aniline furfural resin film, Polyacetal film, ethyl cellulose film, polyamide film, melamine furfural film, polyethylene glycol succinate film, cellulose film, cellulose acetate film, polyethylene adipate film , polydiphenyl phthalate film, fiber (recycled) sponge film, polyurethane elastomer film, styrene propylene copolymer film, styrene butadiene copolymer film, rayon film, bismuth acrylate Ester film, polyvinyl alcohol film, polyisobutylene film, polyethylene terephthalate film, polyvinyl butyral film, furfural phenol condensation film, neoprene film, butadiene propylene copolymer Any one of a film, a natural rubber film, a polyacrylonitrile film, and an acrylonitrile vinyl chloride copolymer film.
5. 根据权利要求 4所述的基于摩擦电的压力感应电缆, 其特征在于, 所 述第二聚合物绝缘层所用材料与第一聚合物绝缘层不同,选自聚酰亚胺薄膜、 苯胺曱醛树脂薄膜、 聚曱醛薄膜、 乙基纤维素薄膜、 聚酰胺薄膜、 三聚氰胺 曱醛薄膜、 聚乙二醇丁二酸酯薄膜、 纤维素薄膜、 纤维素乙酸酯薄膜、 聚己 二酸乙二醇酯薄膜、 聚邻苯二曱酸二烯丙酯薄膜、 纤维 (再生) 海绵薄膜、 聚氨酯弹性体薄膜、 苯乙烯丙烯共聚物薄膜、 苯乙烯丁二烯共聚物薄膜、 人 造纤维薄膜、 聚曱基丙烯酸曱酯薄膜、 聚乙烯醇薄膜、 聚异丁烯薄膜、 聚对 苯二曱酸乙二醇酯薄膜、 聚乙烯醇缩丁醛薄膜、 曱醛苯酚缩聚物薄膜、 氯丁 橡胶薄膜、 丁二烯丙烯共聚物薄膜、 天然橡胶薄膜、 聚丙烯腈薄膜、 丙烯腈 氯乙烯共聚物薄膜中的任意一种。 The triboelectric-based pressure sensing cable according to claim 4, wherein the second polymer insulating layer is made of a material different from the first polymer insulating layer, and is selected from the group consisting of a polyimide film and an anisidine. Aldehyde resin film, polyacetal film, ethyl cellulose film, polyamide film, melamine furfural film, polyethylene glycol succinate film, cellulose film, cellulose acetate film, polyadipate B Glycol ester film, poly(phenylene terephthalate) film, fiber (recycled) sponge film, polyurethane elastomer film, styrene propylene copolymer film, styrene butadiene copolymer film, human Fibrous film, polydecyl acrylate film, polyvinyl alcohol film, polyisobutylene film, polyethylene terephthalate film, polyvinyl butyral film, furfural phenol condensation film, chloroprene Any one of a rubber film, a butadiene propylene copolymer film, a natural rubber film, a polyacrylonitrile film, and an acrylonitrile vinyl chloride copolymer film.
6. 根据权利要求 5所述的基于摩擦电的压力感应电缆, 其特征在于, 所 述第一聚合物绝缘层和第二聚合物绝缘层相对表面中的至少一个面上设置有 纳米级至 米级的 纳凹凸结构, 优选凸起高度 50nm-300nm的纳米凹凸结 构。  The friction-electric-based pressure sensing cable according to claim 5, wherein at least one of the opposite surfaces of the first polymer insulating layer and the second polymer insulating layer is provided with nanometer to meter The nano-convex structure of the order is preferably a nano-concave structure having a protrusion height of 50 nm to 300 nm.
7. 根据权利要求 1所述的基于摩擦电的压力感应电缆, 其特征在于, 所 述第二聚合物间隔物是设置在空腔内的聚合物隔点,所述隔点凸起高度为 100
Figure imgf000018_0001
7. The triboelectric-based pressure sensing cable according to claim 1, wherein the second polymer spacer is a polymer spacer disposed in the cavity, and the height of the spacer is 100.
Figure imgf000018_0001
8. 根据权利要求 7所述的基于摩擦电的压力感应电缆, 其特征在于, 所 述隔点凸起高度为 200 ηηι -1μηι。  8. The triboelectric-based pressure sensing cable according to claim 7, wherein the height of the spacer protrusion is 200 ηηι -1μηι.
9. 根据权利要求 7或 8所述的基于摩擦电的压力感应电缆,其特征在于, 单位面积上隔点数量为 2χ 104个 /m2至 2χ 107个 /m2The friction-electric-based pressure sensing cable according to claim 7 or 8, wherein the number of upper points per unit area is 2 χ 10 4 / m 2 to 2 χ 10 7 / m 2 .
10. 根据权利要求 7-9任一项所述的基于摩擦电的压力感应电缆,其特征 在于, 所述隔点所用材料是聚合物, 且与第一聚合物绝缘层所用材料不同。  10. A triboelectric-based pressure sensing cable according to any one of claims 7-9, wherein the material used for the spacer is a polymer and is different from the material used for the first polymer insulating layer.
1 1. 根据权利要求 10所述的基于摩擦电的压力感应电缆, 其特征在于, 所述隔点所用材料选自聚酰亚胺薄膜、 苯胺曱醛树脂薄膜、 聚曱醛薄膜、 乙 基纤维素薄膜、 聚酰胺薄膜、 三聚氰胺曱醛薄膜、 聚乙二醇丁二酸酯薄膜、 纤维素薄膜、 纤维素乙酸酯薄膜、 聚己二酸乙二醇酯薄膜、 聚邻苯二曱酸二 烯丙酯薄膜、 纤维 (再生)海绵薄膜、 聚氨酯弹性体薄膜、 苯乙烯丙烯共聚 物薄膜、 苯乙烯丁二烯共聚物薄膜、 人造纤维薄膜、 聚曱基丙烯酸曱酯薄膜、 聚乙烯醇薄膜、 聚异丁烯薄膜、 聚对苯二曱酸乙二醇酯薄膜、 聚乙烯醇缩丁 醛薄膜、 曱醛苯酚缩聚物薄膜、 氯丁橡胶薄膜、 丁二烯丙烯共聚物薄膜、 天 然橡胶薄膜、 聚丙烯腈薄膜、 丙烯腈氯乙烯共聚物薄膜中的任意一种。  1 1. The triboelectric-based pressure sensing cable according to claim 10, wherein the material used for the spacer is selected from the group consisting of a polyimide film, an aniline furfural resin film, a polyacetal film, and an ethyl fiber. Film, polyamide film, melamine furfural film, polyethylene glycol succinate film, cellulose film, cellulose acetate film, polyethylene adipate film, polyphthalic acid Allyl ester film, fiber (recycled) sponge film, polyurethane elastomer film, styrene propylene copolymer film, styrene butadiene copolymer film, rayon film, polydecyl acrylate film, polyvinyl alcohol film, Polyisobutylene film, polyethylene terephthalate film, polyvinyl butyral film, furfural phenol condensation film, neoprene film, butadiene propylene copolymer film, natural rubber film, polypropylene Any one of a nitrile film and an acrylonitrile vinyl chloride copolymer film.
12. 根据权利要求 6-1 1任一项所述的基于摩擦电的压力感应电缆, 其特 征在于, 所述隔点设置在第一电极芯表面。 12. A triboelectric-based pressure sensing cable according to any of claims 6-1 1 The spacer is disposed on the surface of the first electrode core.
13. 根据权利要求 1 所述的基于摩擦电的压力感应电缆, 其特征在于, 所述第二聚合物间隔物是缠绕在第一电极芯表面上的聚合物线, 所述聚合物 线的直径是 500 nm到 2μηι。  13. The triboelectric-based pressure sensing cable according to claim 1, wherein the second polymer spacer is a polymer wire wound on a surface of the first electrode core, the diameter of the polymer wire It is 500 nm to 2μηι.
14. 根据权利要求 13所述的基于摩擦电的压力感应电缆, 其特征在于, 所述聚合物线在第一电极芯表面上的缠绕间距为 Ο. ΐμηι到 5μηι。  The triboelectric-based pressure sensing cable according to claim 13, wherein the winding pitch of the polymer wires on the surface of the first electrode core is Ο. ημηι to 5μηι.
15. 根据权利要求 14所述的基于摩擦电的压力感应电缆, 其特征在于, 所述聚合物线在第一电极芯表面上的缠绕间距为 Ιμηι到 5μηι。  15. The triboelectric-based pressure sensing cable according to claim 14, wherein a winding pitch of the polymer wire on a surface of the first electrode core is Ιμηι to 5μηι.
16. 根据权利要求 13-15任一项所述的基于摩擦电的压力感应电缆,其特 征在于, 所述聚合物线所用材料与第一聚合物绝缘层不同。  16. A triboelectric-based pressure sensing cable according to any of claims 13-15, wherein the polymer wire is made of a different material than the first polymeric insulating layer.
17. 根据权利要求 16所述的基于摩擦电的压力感应电缆, 其特征在于, 所述聚合物线所用材料选自聚酰亚胺薄膜、 苯胺曱 树脂薄膜、 聚曱醛薄膜、 乙基纤维素薄膜、 聚酰胺薄膜、 三聚氰胺曱醛薄膜、 聚乙二醇丁二酸酯薄膜、 纤维素薄膜、 纤维素乙酸酯薄膜、 聚己二酸乙二醇酯薄膜、 聚邻苯二曱酸二 烯丙酯薄膜、 纤维 (再生)海绵薄膜、 聚氨酯弹性体薄膜、 苯乙烯丙烯共聚 物薄膜、 苯乙烯丁二烯共聚物薄膜、 人造纤维薄膜、 聚曱基丙烯酸曱酯薄膜、 聚乙烯醇薄膜、 聚异丁烯薄膜、 聚对苯二曱酸乙二醇酯薄膜、 聚乙烯醇缩丁 醛薄膜、 曱醛苯酚缩聚物薄膜、 氯丁橡胶薄膜、 丁二烯丙烯共聚物薄膜、 天 然橡胶薄膜、 聚丙烯腈薄膜、 丙烯腈氯乙烯共聚物薄膜中的任意一种。  The triboelectric-based pressure sensing cable according to claim 16, wherein the material of the polymer wire is selected from the group consisting of a polyimide film, an anisole resin film, a polyacetal film, and an ethyl cellulose. Film, polyamide film, melamine furfural film, polyethylene glycol succinate film, cellulose film, cellulose acetate film, polyethylene adipate film, polyphthalic acid diene Propyl ester film, fiber (recycled) sponge film, polyurethane elastomer film, styrene propylene copolymer film, styrene butadiene copolymer film, rayon film, polydecyl acrylate film, polyvinyl alcohol film, poly Isobutylene film, polyethylene terephthalate film, polyvinyl butyral film, furfural phenol condensation film, neoprene film, butadiene propylene copolymer film, natural rubber film, polyacrylonitrile Any one of a film or an acrylonitrile vinyl chloride copolymer film.
18. 根据权利要求 1-17任一项所述的基于摩擦电的压力感应电缆, 其特 征在于, 所述第一电极芯是单芯结构。  The triboelectric-based pressure sensing cable according to any one of claims 1 to 17, wherein the first electrode core is a single core structure.
19. 根据权利要求 1-17任一项所述的基于摩擦电的压力感应电缆, 其特 征在于, 所述第一电极芯是平行设置的多芯结构。  The triboelectric-based pressure sensing cable according to any one of claims 1 to 17, wherein the first electrode core is a multi-core structure arranged in parallel.
20. 根据权利要求 1-17任一项所述的基于摩擦电的压力感应电缆, 其特 征在于, 所述第一电极芯是缠绕设置的多芯结构。  The triboelectric-based pressure sensing cable according to any one of claims 1 to 17, wherein the first electrode core is a wound multi-core structure.
21. 根据权利要求 1-20任一项所述的基于摩擦电的压力感应电缆, 其特 征在于, 所述第一电极芯所用材料是金属或合金, 其中金属是金、 银、 铂、 钯、 铝、 镍、 铜、 钛、 铬、 锡、 铁、 锰、 相、 钨或钒; 合金是铝合金、 钛合 金、 镁合金、 铍合金、 铜合金、 辞合金、 锰合金、 镍合金、 铅合金、 锡合金、 镉合金、 铋合金、 铟合金、 镓合金、 钨合金、 钼合金、 铌合金或钽合金。 The triboelectric-based pressure sensing cable according to any one of claims 1 to 20, wherein the material of the first electrode core is a metal or an alloy, wherein the metal is gold, silver, platinum, Palladium, aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium; alloys are aluminum alloys, titanium alloys, magnesium alloys, niobium alloys, copper alloys, alloys, manganese alloys, nickel alloys, Lead alloy, tin alloy, cadmium alloy, niobium alloy, indium alloy, gallium alloy, tungsten alloy, molybdenum alloy, niobium alloy or niobium alloy.
22. 根据权利要求 1-20任一项所述的基于摩擦电的压力感应电缆, 其特 征在于, 所述第一电极芯所用材料是表面设有导电层的聚合物、 玻璃或纤维。  The triboelectric-based pressure sensing cable according to any one of claims 1 to 20, wherein the material for the first electrode core is a polymer, glass or fiber having a conductive layer on its surface.
23. 根据权利要求 22所述的基于摩擦电的压力感应电缆, 其特征在于, 所述导电层是铟锡氧化物膜、 石墨烯膜、 银纳米线膜或金属膜, 其中所述金 属膜所用金属材料是金、 银、 铂、 钯、 铝、 镍、 铜、 钛、 铬、 锡、 铁、 锰、 相、 钨或钒。  The triboelectric-based pressure sensing cable according to claim 22, wherein the conductive layer is an indium tin oxide film, a graphene film, a silver nanowire film or a metal film, wherein the metal film is used The metal material is gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium.
24. 根据权利要求 1-23任一项所述的基于摩擦电的压力感应电缆, 其特 征在于, 所述第二电极层所用材料选自铟锡氧化物、 石墨烯电极、 银纳米线 膜, 以及金属或合金, 其中金属是金、 银、 铂、 钯、 铝、 镍、 铜、 钛、 铬、 锡、 铁、 锰、 相、 钨或钒; 合金是铝合金、 钛合金、 镁合金、 铍合金、 铜合 金、 辞合金、 锰合金、 镍合金、 铅合金、 锡合金、 镉合金、 铋合金、 铟合金、 镓合金、 钨合金、 钼合金、 铌合金或钽合金。  The triboelectric-based pressure sensing cable according to any one of claims 1 to 23, wherein the material of the second electrode layer is selected from the group consisting of indium tin oxide, graphene electrode, and silver nanowire film. And a metal or an alloy, wherein the metal is gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium; the alloy is an aluminum alloy, a titanium alloy, a magnesium alloy, a tantalum Alloys, copper alloys, alloys, manganese alloys, nickel alloys, lead alloys, tin alloys, cadmium alloys, niobium alloys, indium alloys, gallium alloys, tungsten alloys, molybdenum alloys, niobium alloys or niobium alloys.
PCT/CN2013/079461 2012-10-19 2013-07-16 Triboelectricity-based pressure-sensitive cable WO2014059807A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210402293.7A CN103776567B (en) 2012-10-19 2012-10-19 Pressure sensitive cable based on franklinic electricity
CN201210402293.7 2012-10-19

Publications (1)

Publication Number Publication Date
WO2014059807A1 true WO2014059807A1 (en) 2014-04-24

Family

ID=50487528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/079461 WO2014059807A1 (en) 2012-10-19 2013-07-16 Triboelectricity-based pressure-sensitive cable

Country Status (2)

Country Link
CN (1) CN103776567B (en)
WO (1) WO2014059807A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015043226A1 (en) * 2013-09-26 2015-04-02 纳米新能源(唐山)有限责任公司 Triboelectric pressure sensing cable and intelligent ground mat based on same
CN104811084B (en) * 2014-06-13 2017-05-03 纳米新能源(唐山)有限责任公司 Friction generator, and touch pressure sensor and manufacture method thereof
CN104966571A (en) * 2015-05-11 2015-10-07 江苏士林电气设备有限公司 Novel tubular bus
CN106602921B (en) * 2016-05-19 2019-05-17 北京纳米能源与系统研究所 A kind of friction generator and preparation method thereof
CN106602922B (en) 2016-06-23 2018-09-14 北京纳米能源与系统研究所 A kind of tubulose friction nanometer power generator and apply its cloth and energy shoes
KR102026170B1 (en) * 2016-12-29 2019-09-27 서강대학교산학협력단 electrical energy harvester capable of measuring deformation and tactile force
CN107706300B (en) * 2017-07-29 2020-12-15 安徽华菱新材料科技有限公司 Composite piezoelectric material for detecting external pressure of cable and manufacturing method thereof
DE102017223195A1 (en) * 2017-12-19 2019-06-19 Contitech Vibration Control Gmbh Elastic bearing element
CN112577646A (en) * 2020-10-21 2021-03-30 贵州电网有限责任公司 Mutual inductor wiring forgetting-prevention alarm device
CN114285319B (en) * 2021-12-16 2024-02-02 北京纳米能源与系统研究所 Cable-shaped friction nano generator, sensor and underwater sensing method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4568851A (en) * 1984-09-11 1986-02-04 Raychem Corporation Piezoelectric coaxial cable having a helical inner conductor
US4609845A (en) * 1984-07-06 1986-09-02 Raychem Corporation Stretched piezoelectric polymer coaxial cable
CN1030330A (en) * 1987-06-30 1989-01-11 法国石油研究所 The PZT (piezoelectric transducer) that comprises a plurality of responsive coaxial components
CN1707934A (en) * 2004-06-10 2005-12-14 米其林技术公司 Piezoelectric ceramic fibers having metallic cores
CN201298564Y (en) * 2008-10-27 2009-08-26 安徽新亚特电缆集团有限公司 Cable linear macromolecular sensitive piezoelectric sensor
CN102684546A (en) * 2012-05-15 2012-09-19 纳米新能源(唐山)有限责任公司 Friction generator
CN102710166A (en) * 2012-04-13 2012-10-03 纳米新能源(唐山)有限责任公司 Friction generator
CN102749158A (en) * 2012-04-13 2012-10-24 纳米新能源(唐山)有限责任公司 Self-powered pressure sensor
CN202856656U (en) * 2012-05-15 2013-04-03 纳米新能源(唐山)有限责任公司 Friction generator and friction generator unit
CN103107732A (en) * 2013-01-30 2013-05-15 天津理工大学 Organism medical disposable micro friction motor and manufacture method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005098851A (en) * 2003-09-25 2005-04-14 Matsushita Electric Ind Co Ltd Apparatus for polarizing cable pressure sensor and polarizing method of the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4609845A (en) * 1984-07-06 1986-09-02 Raychem Corporation Stretched piezoelectric polymer coaxial cable
US4568851A (en) * 1984-09-11 1986-02-04 Raychem Corporation Piezoelectric coaxial cable having a helical inner conductor
CN1030330A (en) * 1987-06-30 1989-01-11 法国石油研究所 The PZT (piezoelectric transducer) that comprises a plurality of responsive coaxial components
CN1707934A (en) * 2004-06-10 2005-12-14 米其林技术公司 Piezoelectric ceramic fibers having metallic cores
CN201298564Y (en) * 2008-10-27 2009-08-26 安徽新亚特电缆集团有限公司 Cable linear macromolecular sensitive piezoelectric sensor
CN102710166A (en) * 2012-04-13 2012-10-03 纳米新能源(唐山)有限责任公司 Friction generator
CN102749158A (en) * 2012-04-13 2012-10-24 纳米新能源(唐山)有限责任公司 Self-powered pressure sensor
CN102684546A (en) * 2012-05-15 2012-09-19 纳米新能源(唐山)有限责任公司 Friction generator
CN202856656U (en) * 2012-05-15 2013-04-03 纳米新能源(唐山)有限责任公司 Friction generator and friction generator unit
CN103107732A (en) * 2013-01-30 2013-05-15 天津理工大学 Organism medical disposable micro friction motor and manufacture method thereof

Also Published As

Publication number Publication date
CN103776567A (en) 2014-05-07
CN103776567B (en) 2016-08-03

Similar Documents

Publication Publication Date Title
WO2014059807A1 (en) Triboelectricity-based pressure-sensitive cable
WO2014044077A1 (en) Multi-layer high-power nano friction-based generator
CN103840700B (en) A kind of subsphaeroidal nano friction generator of multilayer high power and application thereof
CN104374498B (en) Pressure sensor and pressure capsule system based on triboelectricity
KR102058038B1 (en) Flexible Conductive Diaphragm, Flexible Vibration Sensor, and Manufacturing Method and Application thereof
CN202818150U (en) Nano friction generator
CN102692288B (en) Preparation method of flexible force sensitive sensor
CN102749158B (en) Self-powered pressure sensor
KR101821585B1 (en) Sliding-friction power generator, power generation method and vector displacement sensor
WO2014012403A1 (en) Piezoelectric-triboelectric hybrid-film nanogenerator
CN109576905A (en) A kind of flexible polyurethane tunica fibrosa strain transducer based on MXene
WO2014154017A1 (en) Triboelectricity nanosensor
WO2015035788A1 (en) Liquid-based friction generator, generation method, sensor, and sensing method
Garcia et al. Real-time diagnosis of small energy impacts using a triboelectric nanosensor
CN104578893B (en) Frictional power generator employing dual-polymer composite film, preparation method thereof and vibration sensor
CN111174945B (en) Pressure sensor based on friction nano generator
CN104426419B (en) Triboelectricity and the hybrid power system of Electromagnetic generation
WO2015024392A1 (en) Friction generator with improved power generation effect and preparation method therefor
WO2013181952A1 (en) A hybrid piezoelectric and triboelectric nanogenerator
WO2014086144A1 (en) High-power nano-friction generator and preparation method thereof
CN107014526A (en) A kind of Zinc oxide-base micro nanometer fiber array flexible pressure sensor and preparation method thereof
Luo et al. A flexible electrostatic nanogenerator and self-powered capacitive sensor based on electrospun polystyrene mats and graphene oxide films
CN204361933U (en) A kind of based on piezoelectricity and the electric energy collecting device that rubs
CN111895902B (en) Ultrathin transparent carbon nanofiber membrane flexible strain sensor and preparation method thereof
CN111150367A (en) Graphene/polymer nanofiber composite membrane and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13846791

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13846791

Country of ref document: EP

Kind code of ref document: A1