WO2014059628A1 - 一种检测超级电容的方法、装置和电路 - Google Patents

一种检测超级电容的方法、装置和电路 Download PDF

Info

Publication number
WO2014059628A1
WO2014059628A1 PCT/CN2012/083094 CN2012083094W WO2014059628A1 WO 2014059628 A1 WO2014059628 A1 WO 2014059628A1 CN 2012083094 W CN2012083094 W CN 2012083094W WO 2014059628 A1 WO2014059628 A1 WO 2014059628A1
Authority
WO
WIPO (PCT)
Prior art keywords
super capacitor
tested
control module
supercapacitor
strobe
Prior art date
Application number
PCT/CN2012/083094
Other languages
English (en)
French (fr)
Inventor
陈勇军
陈曦
吴汇梅
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2012/083094 priority Critical patent/WO2014059628A1/zh
Priority to CN201280002131.2A priority patent/CN103180744B/zh
Publication of WO2014059628A1 publication Critical patent/WO2014059628A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/64Testing of capacitors

Definitions

  • the present invention relates to the field of capacitance detection, and in particular, to a method, device and circuit for detecting a super capacitor. Background technique
  • Supercapacitor is a new type of passive device with fast charge and discharge, reusable and long life. It is widely used in backup power systems.
  • the so-called backup power supply system is a device that temporarily supplies power to the electric equipment when the main power of the system cannot be normally supplied by the electric equipment.
  • the so-called system mains refers to equipment that normally supplies current to electrical equipment, such as utility power.
  • the supercapacitor is a major component of the backup power system and determines the power supply capability of the backup system to a large extent. In general, a single supercapacitor is difficult to meet the power requirements of a consumer, so supercapacitors are often used in series.
  • the relationship between the backup power supply system and the main power of the system is shown in Figure 1. The backup power supply system and the main system of the system are switched by the combined circuit.
  • the combined power supply automatically connects the backup power supply.
  • the backup power system supplies power to the power equipment through the super capacitors connected in series.
  • the supercapacitance detector is used to detect whether the supercapacitor is in normal working condition, and usually uses a voltmeter or a circuit for detecting voltage to achieve the purpose of detection.
  • Supercapacitors have two important parameters, voltage and capacitance. Two important indicators of the backup power system: Whether the electrical equipment can work normally, how long the electrical equipment can continue to work normally, is affected by the above two parameters, namely the voltage value and the capacitance value.
  • One of the main failure modes of the super capacitor is that the capacitance of the super capacitor is reduced, and only the voltage value of the super capacitor is detected, which does not reflect the actual value of the super capacitor.
  • One embodiment of the present invention provides a method, apparatus, and circuit for detecting a supercapacitor that solves the technical problem that the capacitance of the supercapacitor cannot be detected.
  • the embodiment of the present invention adopts the following technical solutions:
  • a method of detecting a supercapacitor including:
  • the handover control command carries an identifier of the to-be-measured supercapacitor to be disconnected from the series supercapacitor bank, so that the handover control module sends a gating command according to the gating control module
  • the strobe command carries the identifier of the super capacitor to be tested, so that the strobe control module connects the super capacitor to be tested and the voltage detecting module in parallel according to the strobe command, so that the voltage detecting module Performing voltage detection during the discharging process of the super capacitor to be tested;
  • ⁇ ⁇ is two The difference in voltage values at different times, ⁇ t is the difference between the two different times, and i is the constant current of the detection circuit.
  • the method further includes:
  • the information indicating that the capacitance of the supercapacitor to be tested is normal is displayed through a user interface
  • the information about the abnormal capacitance value of the to-be-tested capacitor is displayed through a user interface.
  • a second possible implementation manner after the detecting the supercapacitance to be tested is completed, sending a gating termination instruction to the gating control module, so as to The strobe control module interrupts parallel connection of the super capacitor to be tested and the voltage detecting module;
  • the second aspect provides a device for detecting a super capacitor, comprising: a switching instruction sending unit, a strobe command sending unit, a voltage detecting unit, and a calculating unit; wherein:
  • a switching instruction control unit configured to send a switching control instruction to the switching control module;
  • the switching control instruction carries an identifier of the super capacitor to be tested that needs to be disconnected from the series super capacitor group, so that the switching control module controls according to the switching Directing, disconnecting the super capacitor to be tested from the series super capacitor group;
  • a strobe command sending unit configured to send a strobe command to the strobe control module;
  • the strobe command carries an identifier of the super capacitor to be tested, so that the strobe control module according to the strobe command
  • the super capacitor to be tested is connected in parallel with the voltage detecting module, so that the voltage detecting module performs voltage detection during the discharging process of the super capacitor to be tested;
  • a voltage detecting unit configured to acquire voltage values of at least two different times from the voltage detecting module during discharging of the super capacitor to be tested;
  • a calculation unit configured to calculate a detection value c of the super capacitor to be tested according to the formula - ⁇ ; wherein ⁇ ⁇ is a voltage value difference between two different moments, and A t is a difference between the two different moments, i To detect the constant current of the circuit.
  • the foregoing apparatus further includes: a determining unit, a display unit;
  • a determining unit configured to determine whether the detected value C is in a range of a value of a normal supercapacitor; and a display unit, configured to: when the detected value C is within a range of the normal supercapacitor, the super The information indicating that the capacitance value is normal is displayed through the user interface. When the detection value C is outside the value range of the normal super capacitor, the information about the abnormal capacitance value of the super capacitor to be tested is displayed through the user interface.
  • the strobe command sending unit is further used to select the The strobing control module sends a strobe termination command, so that the strobe control module interrupts the parallel connection of the supercapacitor to be tested and the voltage detection module;
  • the switching instruction control unit is further configured to send a switching recovery instruction to the switching control module So that the switching control module connects the super capacitor to be tested Going to the series super capacitor group; after the super capacitor to be tested is connected to the series super capacitor group, continuing to send a switching control instruction to the switching control module, so as to be other super in the series super capacitor group The capacitor continues to be tested.
  • a circuit for detecting a super capacitor including:
  • a processor a voltage detecting module, a gate control module, a switching control module, and a series super capacitor group, wherein the series super capacitor group includes N series super capacitors, wherein N is an integer not less than 2;
  • the processor is connected to the voltage detecting module, and configured to receive a voltage value measured by the voltage detecting module at both ends of the super capacitor to be tested;
  • the processor is further connected to the strobe control module, and configured to send a strobe command to the strobe control module, so that the strobe control module compares the supercapacitor to be tested according to the strobe command
  • the voltage detecting modules are connected in parallel, so that the voltage detecting module performs voltage detection during the discharging process of the super capacitor to be tested;
  • the processor is further connected to the switching control module, and configured to send a switching control instruction to the switching control module;
  • the switching control instruction carries an identifier of a super capacitor to be tested that needs to be disconnected from the series super capacitor group, so that The switching control module disconnects the super capacitor to be tested from the series super capacitor group according to the switching control instruction;
  • the supercapacitance detection circuit further includes N+1 combination switches, the combination switch is connected in series in the series super capacitor group, and each super capacitor is connected in series with a combination switch; each combination switch and the switching control respectively Modules are connected to connect the two gates to the gate control module respectively under the control of the switching control module, so that the super capacitor to be tested disconnected from the series super capacitor group is connected in parallel to the voltage detection The module performs voltage measurements.
  • the voltage detecting module is a voltmeter or a circuit capable of detecting a voltage.
  • the embodiment provided by the present invention provides a method, device and circuit for detecting a super capacitor, and transmitting a switching control command to the switching control module to disconnect the super capacitor to be tested from the series super capacitor group; to the gating control module Send a strobe command to cause the voltage detection module to discharge the super capacitor to be tested
  • the voltage detection is performed in the process; the voltage value of at least two different times is obtained from the voltage detecting module, the detection value C of the super capacitor to be tested is calculated, and finally the detection result is obtained through judgment.
  • Figure 1 is a schematic diagram showing the relationship between the backup power supply system and the main power of the system
  • FIG. 2 is a schematic diagram of a circuit for detecting a super capacitor according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic diagram of connection of switches in a super capacitor group according to Embodiment 1 of the present invention.
  • FIG. 5 is a flowchart of another method for detecting a super capacitor according to Embodiment 2 of the present invention
  • FIG. 6 is a flowchart of another method for detecting a super capacitor according to Embodiment 2 of the present invention
  • FIG. 7 is a flowchart of Embodiment 3 of the present invention
  • a block diagram of a device for detecting a supercapacitor
  • FIG. 8 is a block diagram of another apparatus for detecting a super capacitor in Embodiment 3 of the present invention. detailed description
  • An embodiment of the present invention provides a circuit for detecting a super capacitor, as shown in FIG. 2, including: a processor 11, a voltage detecting module 12, a gate control module 13, a series super capacitor group 14, and a switching control module 15,
  • the series super capacitor group includes N series super capacitors, wherein
  • N is an integer not less than 2.
  • the processor 11 is connected to the voltage detecting module 12 for receiving the voltage detecting mode The measured voltage value across the supercapacitor to be tested.
  • the processor 11 is further connected to the strobe control module 13 for sending a strobe command to the strobe control module, so that the strobe control module according to the strobe command
  • the measuring super capacitor is connected in parallel with the voltage detecting module, so that the voltage detecting module performs voltage detection during the discharging process of the super capacitor to be tested.
  • the processor 11 is further connected to the switching control module 15 and configured to send a switching control instruction to the switching control module; the switching control instruction carries a super capacitor to be tested that needs to be disconnected from the series super capacitor group. Identification, so that the switching control module 15 further includes N+1 combination switches 16 according to the switching control instruction. As shown in FIG. 3, the combination switch is connected in series to the series super capacitor group.
  • each super capacitor is connected in series with a combination switch; each combination switch is respectively connected to the switching control module 15 to be disconnected in the switching control; each combination switch and the gating control module respectively 1 3 connection, so as to take the example of the detection of the super capacitor 1 from the series, the purpose of the combination switch is explained in detail:
  • the connection mode of the combination switch is: AOBO, A1B1, A2B2, A3B3, A4B4.
  • A0BO is turned off, A1B1 is turned off, A0C0 is closed, and B1 C1 is closed, so that the super capacitor 1 is disconnected from the super capacitor group.
  • the super capacitor 1 is connected to the voltage detecting means, that is, BO, A1 is connected to the voltage detecting means. After the detection is completed, the supercapacitor 1 is connected in series to the series supercapacitor bank 14.
  • the super capacitor 1 is disconnected from the voltage detecting means, that is, the BO, A1 is turned off by the voltage detecting means.
  • A0C0 is turned off
  • B1C1 is turned off
  • A0BO is closed
  • A1B1 is closed, thereby completing detection of the super capacitor 1.
  • the voltage detecting module 12 may be a voltmeter or a circuit that realizes voltage measurement by other prior art techniques.
  • Embodiments of the present invention provide a circuit for detecting a super capacitor, wherein a processor and a voltage detection module a block connection, configured to receive a voltage value measured by the voltage detecting module and measured by the voltage detecting module; the processor is connected to the gate control module, and configured to connect the super capacitor to be tested and the voltage detecting module in parallel, so that The voltage detecting module performs voltage detection during the discharging process of the super capacitor to be tested; the processor is further connected to the switching control module, and is configured to disconnect the super capacitor to be tested from the series super capacitor group The processor obtains the data required to calculate the capacitance value of the supercapacitor from the above module, and then calculates the capacitance value, thereby obtaining the detection result.
  • a method for detecting a super capacitor is also provided, as shown in FIG. 4, including the following steps:
  • the switching control command carries an identifier of the super capacitor to be tested that needs to be disconnected from the series super capacitor group, so that the switching control module is based on
  • the strobe command carries the identifier of the super capacitor to be tested, so that the strobe control module connects the super capacitor to be tested in parallel with the voltage detecting module according to the strobe command, so that the voltage detecting module is The voltage detection is performed during the discharging process of the super capacitor to be tested.
  • An embodiment of the present invention provides a method for detecting a super capacitor, first switching to a control
  • An embodiment of the present invention provides a method for detecting a super capacitor. As shown in FIG. 5, the method includes the following steps:
  • the handover control command carries an identifier of the supercapacitor to be tested that needs to be disconnected from the series supercapacitor group, so that the handover control module is configured according to
  • the strobe command carries an identifier of the super capacitor to be tested, so that the strobe control module compares the super capacitor and the voltage to be tested according to the strobe command.
  • the detecting modules are connected in parallel, so that the voltage detecting module performs voltage detection during the discharging process of the super capacitor to be tested.
  • the detection value C is in the range of the normal supercapacitance
  • the information indicating that the capacitance of the supercapacitor to be tested is normal is displayed through a user interface.
  • the information about the abnormal capacitance value of the to-be-measured is displayed through a user interface.
  • An embodiment of the present invention provides a method for detecting a super capacitor, first switching to a control
  • an embodiment of the present invention further provides a method for detecting a super capacitor, as shown in FIG. 6 . As shown, it includes the following steps:
  • the handover control command carries an identifier of the supercapacitor to be tested that needs to be disconnected from the series supercapacitor group, so that the handover control module is configured according to
  • the strobe command carries an identifier of the super capacitor to be tested, so that the strobe control module compares the super capacitor and the voltage to be tested according to the strobe command.
  • the detecting modules are connected in parallel, so that the voltage detecting module performs voltage detection during the discharging process of the super capacitor to be tested.
  • the detection value C is in the range of the normal supercapacitance
  • the information indicating that the capacitance of the supercapacitor to be tested is normal is displayed through a user interface.
  • the information about the abnormal capacitance value of the to-be-measured is displayed through a user interface.
  • An embodiment of the present invention provides a method for detecting a super capacitor, first switching to a control Sending a strobe command to the strobe control module to cause the voltage detecting module to perform voltage detection during the discharging process of the super capacitor to be tested; obtaining voltage values of at least two different times from the voltage detecting module, and calculating the super capacitor to be tested.
  • the detection value C by judging the detection result, starts to detect the next super capacitor.
  • An embodiment of the present invention provides an apparatus for detecting a supercapacitor.
  • the apparatus includes: a switching instruction transmitting unit 41, a strobe command transmitting unit 42, a voltage detecting unit 43, and a calculating unit 44. among them:
  • a switching instruction control unit 41 configured to send a switching control instruction to the switching control module; the switching control instruction carries an identifier of the to-be-measured supercapacitor to be disconnected from the series supercapacitor group, so that the switching control module switches according to the And controlling a command to disconnect the super capacitor to be tested from the series super capacitor group.
  • the strobe command sending unit 42 is configured to send a strobe command to the strobe control module, where the strobe command carries the identifier of the super capacitor to be tested, so that the strobe control module according to the strobe command
  • the super capacitor to be tested is connected in parallel with the voltage detecting module, so that the voltage detecting module performs voltage detection during the discharging process of the super capacitor to be tested.
  • the voltage detecting unit 43 is configured to acquire voltage values of the at least two different times from the voltage detecting module during the discharging of the super capacitor to be tested.
  • Calculating unit 44 according to the formula [Delta] [mu] _, calculating the measured value detected supercapacitor C; ⁇ ⁇ wherein the voltage difference between the values of the two different times, A t is the difference of the two different times , i is the constant current of the detection circuit.
  • An embodiment of the present invention provides a device for detecting a super capacitor.
  • the switching instruction control unit sends a switching control command to the switching control module to disconnect the super capacitor to be tested from the series super capacitor group.
  • the unit sends a strobe command to the strobe control module to cause the voltage detection module to perform voltage detection during the discharge process of the super capacitor to be tested; finally, the calculation unit checks from the voltage
  • the measurement module acquires voltage values of at least two different moments, and calculates a detection value c of the supercapacitor to be tested.
  • the device further includes: a determining unit 45 and a display unit 46. Its towel:
  • the determining unit 45 is configured to determine whether the detected value C is within a range of a normal super capacitor.
  • the display unit 46 is configured to: when the detection value C is in the range of the normal supercapacitance value, display the information indicating that the capacitance of the supercapacitor to be tested is normal through a user interface; when the detection value C is in the When the value of the normal supercapacitor is outside the range, the information about the abnormal capacitance of the supercapacitor to be tested is displayed through the user interface.
  • the strobe command sending unit 42 is further configured to send a strobe termination command to the strobe control module, so that the strobe control module interrupts parallel connection of the supercapacitor to be tested and the voltage detecting module.
  • the switching instruction control unit 41 is further configured to send a switching recovery instruction to the switching control module, so that the switching control module connects the to-be-measured super capacitor to the series super capacitor group; After the super capacitor is connected to the series super capacitor group, the switching control module continues to send a switching control command to continue detecting the other super capacitors in the series super capacitor group.
  • the device for detecting the super capacitor provided by the embodiment of the present invention may be integrated into the processor 11 as shown in FIG. 2, and the processor may be a CPU (centra l proces s ing uni t, central processing unit) or an MCU (mi cro) Control uni t, micro control unit), the embodiment of the present invention is not limited.
  • the processor may be a CPU (centra l proces s ing uni t, central processing unit) or an MCU (mi cro) Control uni t, micro control unit), the embodiment of the present invention is not limited.
  • An embodiment of the present invention provides a device for detecting a super capacitor.
  • a switching instruction control unit sends a switching control command to a switching control module to disconnect the super capacitor to be tested from the series super capacitor group;
  • the command sending unit sends a strobe command to the strobe control module to cause the voltage detecting module to perform voltage detection during the discharging process of the super capacitor to be tested;
  • the calculating unit acquires voltage values of at least two different times from the voltage detecting module, and calculates the to-be-tested The detection value of the super capacitor C.
  • the judging unit judges the supercapacitance capacitance value, and the display unit displays the detection result.
  • the present invention can be implemented by means of software plus necessary general hardware, and of course, by hardware, but in many cases, the former is a better implementation. .
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a readable storage medium, such as a floppy disk of a computer.
  • a hard disk or optical disk or the like includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.

Abstract

一种检测超级电容的方法、装置和电路。一种检测超级电容的方法,首先向切换控制模块发送切换控制指令,将待测超级电容从串联超级电容组中断开;向选通控制模块发送选通指令使电压检测模块在待测超级电容的放电过程中进行电压检测;从电压检测模块获取至少两个不同时刻的电压值,计算待测超级电容的检测值,通过判断得出检测结果。

Description

一种检测超级电容的方法、 装置和电路 技术领域 本发明涉及电容检测领域, 特别涉及一种检测超级电容的方法、 装置和 电路。 背景技术
超级电容是一种新型无源器件, 具有快速充放电, 可重复使用, 使用寿 命长的性质, 被广泛应用于备电电源系统中。
所谓备电电源系统是在系统主电不能为用电设备正常供电的情况下, 向 用电设备临时提供电源的装置。 所谓系统主电是指通常情况下为用电设备提 供电流的设备, 比如市电。 超级电容是备电电源系统的主要组成部分, 在很 大程度上决定备电系统的供电能力。 一般情况下, 单独的超级电容难以满足 用电设备的用电需求, 因此超级电容通常串联使用。 备电电源系统与系统主 电的关系如图 1 所示, 备电电源系统和系统主电通过合路切换, 当系统主电 不能为用电设备提供电源时, 合路自动将备电电源接入用电设备, 备电电源 系统通过串联的超级电容为用电设备供电。 超级电容检测装置用于检测超级 电容是否处于正常工作状态下, 通常使用电压表或者用于检测电压的电路来 实现检测的目的。
超级电容有两个重要参数, 电压值和容值。 备电电源系统的两个重要指 标: 能否使用电设备正常工作, 能使用电设备持续正常工作多长时间, 受到 上述两个参数, 即电压值和容值的共同影响。
在实现上述方案的过程中, 发明人发现现有技术中至少存在以下问题: 超级电容的主要失效形式之一是超级电容的容值降低, 仅仅检测超级电 容的电压值, 不能反映超级电容的实际工作状态。 发明内容
本发明的一个实施例提供一种检测超级电容的方法、 装置和电路, 解决 不能检测超级电容容值的技术问题。 为达到上述目的, 本发明实施例采用如下技术方案:
第一方面, 提供一种检测超级电容的方法, 包括:
向切换控制模块发送切换控制指令; 所述切换控制指令携带需要从串联 超级电容组中断开的待测超级电容的标识, 以便所述切换控制模块根据所述 向选通控制模块发送选通指令; 所述选通指令携带所述待测超级电容的 标识, 以便所述选通控制模块根据所述选通指令, 将所述待测超级电容与电 压检测模块并联, 从而使所述电压检测模块在所述待测超级电容的放电过程 中进行电压检测;
在所述待测超级电容的放电过程中, 从所述电压检测模块获取至少两个 不同时刻的电压值; 根据公式 ― , 计算所述待测超级电容的检测值 C; 其中 Δ ιι为两个 不同时刻的电压值差值, △ t为所述两个不同时刻的差值, i为检测电路的恒 定电流。
在第一方面的第一种可能的实现方式中, 在计算所述待测超级电容的检 测值 C后, 还包括:
判断所述检测值 C是否处于正常超级电容取值范围内;
当所述检测值 C处于所述正常超级电容取值范围内时, 将所述待测超级 电容容值正常的信息通过用户界面进行显示;
当所述检测值 C处于所述正常超级电容取值范围之外时, 将所述待测超 级电容容值异常的信息通过用户界面进行显示。
结合第一方面的第一种可能的实现方式, 在第二种可能的实现方式中, 在对所述待测超级电容检测完成后, 向所述选通控制模块发送选通终止指令, 以便所述选通控制模块中断所述待测超级电容与电压检测模块的并联;
向所述切换控制模块发送切换恢复指令, 以便所述切换控制模块将所述 待测超级电容连接到所述串联超级电容组中;
在所述待测超级电容连接到所述串联超级电容组后, 向所述切换控制模 块继续发送切换控制指令, 以便对所述串联超级电容组中的其他超级电容继 续进行检测。
第二方面, 提供一种检测超级电容的装置, 包括: 切换指令发送单元, 选通指令发送单元, 电压检测单元, 计算单元; 其中:
切换指令控制单元, 用于向切换控制模块发送切换控制指令; 所述切换 控制指令携带需要从串联超级电容组中断开的待测超级电容的标识, 以便所 述切换控制模块根据所述切换控制指令, 将所述待测超级电容从所述串联超 级电容组中断开;
选通指令发送单元, 用于向选通控制模块发送选通指令; 所述选通指令 携带所述待测超级电容的标识, 以便所述选通控制模块根据所述选通指令, 将所述待测超级电容与电压检测模块并联, 从而使所述电压检测模块在所述 待测超级电容的放电过程中进行电压检测;
电压检测单元, 用于在所述待测超级电容的放电过程中, 从所述电压检 测模块获取至少两个不同时刻的电压值;
c = i*At
计算单元, 用于根据公式 —^ , 计算所述待测超级电容的检测值 c; 其中 Δ ιι 为两个不同时刻的电压值差值, A t 为所述两个不同时刻的差值, i 为检测电路的恒定电流。
在第二方面的第一种可能的实现方式中, 上述装置还包括: 判断单元, 显示单元; 其中:
判断单元, 用于判断所述检测值 C是否处于正常超级电容取值范围内; 显示单元, 用于当所述检测值 C处于所述正常超级电容取值范围内时, 将所述待测超级电容容值正常的信息通过用户界面进行显示; 当所述检测值 C 处于所述正常超级电容取值范围之外时, 将所述待测超级电容容值异常的信 息通过用户界面进行显示。
结合第二方面的第一种可能的实现方式, 在第二种可能的实现方式中, 在对所述待测超级电容检测完成后, 所述选通指令发送单元, 还用于向所述 选通控制模块发送选通终止指令, 以便所述选通控制模块中断所述待测超级 电容与电压检测模块的并联; 所述切换指令控制单元, 还用于向所述切换控 制模块发送切换恢复指令, 以便所述切换控制模块将所述待测超级电容连接 到所述串联超级电容组中; 在所述待测超级电容连接到所述串联超级电容组 后, 向所述切换控制模块继续发送切换控制指令, 以便对所述串联超级电容 组中的其他超级电容继续进行检测。
第三方面, 提供一种检测超级电容的电路, 包括:
处理器、 电压检测模块、 选通控制模块、 切换控制模块以及串联超级电 容组, 所述串联超级电容组中包括 N个串联的超级电容, 其中 N为不小于 2 的整数; 所述处理器包括上述第二方面的装置;
所述处理器与所述电压检测模块连接, 用于接收所述电压检测模块测得 的待测超级电容两端的电压值;
所述处理器还与所述选通控制模块连接, 用于向所述选通控制模块发送 选通指令, 以便所述选通控制模块根据所述选通指令, 将所述待测超级电容 与电压检测模块并联, 从而使所述电压检测模块在所述待测超级电容的放电 过程中进行电压检测;
所述处理器还与所述切换控制模块连接, 用于向所述切换控制模块发送 切换控制指令; 所述切换控制指令携带需要从串联超级电容组中断开的待测 超级电容的标识, 以便所述切换控制模块根据所述切换控制指令, 将所述待 测超级电容从所述串联超级电容组中断开;
所述超级电容检测电路还包括 N+1 个组合开关, 所述组合开关串联在所 述串联超级电容组中, 每个超级电容左右各串联一个组合开关; 每个组合开 关分别与所述切换控制模块连接, 以便在所述切换控制模块的控制下, 使两 关分别与所述选通控制模块连接, 以便将从所述串联超级电容组中断开的待 测超级电容并联至所述电压检测模块进行电压测量。
在第三方面的第一种可能的实现方式中, 所述电压检测模块为电压表或 可以检测电压的电路。
本发明提供的实施例提供一种检测超级电容的方法、 装置和电路, 向切 换控制模块发送切换控制指令将所述待测超级电容从所述串联超级电容组中 断开; 向选通控制模块发送选通指令使电压检测模块在待测超级电容的放电 过程中进行电压检测; 从电压检测模块获取至少两个不同时刻的电压值,计算 所述待测超级电容的检测值 C , 最后通过判断得出检测结果。 通过上述技术方 案, 解决超级电容容值检测的问题, 使超级电容处于更可靠的工作状态。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为备电电源系统与系统主电的关系示意图;
图 2为本发明实施例 1中一种检测超级电容的电路的示意图;
图 3为本发明实施例 1中超级电容组中开关的连接示意图;
图 4为本发明实施例 1中一种检测超级电容的方法的流程图;
图 5为本发明实施例 2中另一种检测超级电容的方法的流程图; 图 6为本发明实施例 2中另一种检测超级电容的方法的流程图; 图 7为本发明实施例 3中一种检测超级电容的装置的框图;
图 8为本发明实施例 3中另一种检测超级电容的装置的框图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作 出创造性劳动前提下所获得的所有其他实施例 , 都属于本发明保护的范围。
实施例 1:
本发明的一个实施例提供一种检测超级电容的电路, 如图 2所示, 包括: 处理器 11、 电压检测模块 12、 选通控制模块 1 3、 串联超级电容组 14以 及切换控制模块 15 , 所述串联超级电容组中包括 N个串联的超级电容, 其中
N为不小于 2的整数。
所述处理器 11与所述电压检测模块 12连接, 用于接收所述电压检测模 块测得的待测超级电容两端的电压值。
所述处理器 1 1还与所述选通控制模块 1 3连接, 用于向所述选通控制模 块发送选通指令, 以便所述选通控制模块根据所述选通指令, 将所述待测超 级电容与电压检测模块并联, 从而使所述电压检测模块在所述待测超级电容 的放电过程中进行电压检测。
所述处理器 1 1还与所述切换控制模块 15连接, 用于向所述切换控制模 块发送切换控制指令; 所述切换控制指令携带需要从串联超级电容组中断开 的待测超级电容的标识, 以便所述切换控制模块 15根据所述切换控制指令, 所述超级电容检测电路还包括 N+1个组合开关 16 , 如图 3所示, 所述组 合开关串联在所述串联超级电容组 14中, 每个超级电容左右各串联一个组合 开关; 每个组合开关分别与所述切换控制模块 15连接, 以便在所述切换控制 中断开; 每个组合开关分别与所述选通控制模块 1 3连接, 以便将从所述串联 现以检测超级电容 1 为例, 详细说明组合开关的用途: 在默认情况下, 所述组合开关的连接方式是: AOBO , A1B1 , A2B2 , A3B3 , A4B4。 首先, 根据 所述切换控制指令, 将 A0BO断开, A1B1断开, A0C0闭合, B1 C1闭合,使超 级电容 1脱离所述超级电容组。 然后, 根据所述选通指令, 使超级电容 1与 所述电压检测装置连通, 即, 使 BO , A1接入所述电压检测装置。检测完成后, 使超级电容 1 串联入所述串联超级电容组 14。 首先, 根据所述选通指令, 使 超级电容 1与所述电压检测装置断开, 即,使 BO , A1断开所述电压检测装置。 然后, 根据所述切换控制指令, 将 A0C0断开, B1C1断开, A0BO闭合, A1B1 闭合, 从而完成对超级电容 1的检测。
所述电压检测模块 12可以是电压表, 也可以是通过其它现有技术实现电 压测量的电路。
本发明实施例提供一种检测超级电容的电路, 其中处理器与电压检测模 块连接, 用于接收所述电压检测模块测得的待测超级电容两端的电压值; 所 述处理器与选通控制模块连接, 用于将所述待测超级电容与电压检测模块并 联, 使所述电压检测模块在所述待测超级电容的放电过程中进行电压检测; 所述处理器还与切换控制模块连接, 用于将所述待测超级电容从所述串联超 级电容组中断开; 处理器从上述模块中获取计算超级电容容值所需的数据, 然后计算容值, 从而得出检测结果。 通过上述方案, 解决超级电容容值检测 的问题, 使超级电容处于更可靠的工作状态。
另外, 为实现图 2结构的功能, 还提供一种检测超级电容的方法, 如图 4 所示, 包括如下步骤:
201、 向切换控制模块发送切换控制指令。 所述切换控制指令携带需要从 串联超级电容组中断开的待测超级电容的标识, 以便所述切换控制模块根据
202、 向选通控制模块发送选通指令。 所述选通指令携带所述待测超级电 容的标识, 以便所述选通控制模块根据所述选通指令, 将所述待测超级电容 与电压检测模块并联, 从而使所述电压检测模块在所述待测超级电容的放电 过程中进行电压检测。
203、 在所述待测超级电容的放电过程中, 从所述电压检测模块获取至少 两个不同时刻的电压值。
c = i* At
204、 根据公式 ~ , 计算所述待测超级电容的检测值 C; 其中 Δ ιι为 两个不同时刻的电压值差值, A t为所述两个不同时刻的差值, i为检测电路 的恒定电流。
本发明提供的一个实施例提供一种检测超级电容的方法, 首先向切换控
开; 向选通控制模块发送选通指令使电压检测模块在待测超级电容的放电过 程中进行电压检测; 从电压检测模块获取至少两个不同时刻的电压值,最后计 算所述待测超级电容的检测值 C。 通过上述技术方案, 解决超级电容容值检测 的问题, 使超级电容处于更可靠的工作状态。 实施例 2:
本发明实施例提供一种检测超级电容的方法, 如图 5 所示, 包括如下步 骤:
301、 向切换控制模块发送切换控制指令; 所述切换控制指令携带需要从 串联超级电容组中断开的待测超级电容的标识, 以便所述切换控制模块根据
302、 向选通控制模块发送选通指令; 所述选通指令携带所述待测超级电 容的标识, 以便所述选通控制模块根据所述选通指令, 将所述待测超级电容 与电压检测模块并联, 从而使所述电压检测模块在所述待测超级电容的放电 过程中进行电压检测。
303、 在所述待测超级电容的放电过程中, 从所述电压检测模块获取至少 两个不同时刻的电压值。
304、 根据公式 ~ , 计算所述待测超级电容的检测值 C; 其中 Δ ιι为 两个不同时刻的电压值差值, A t为所述两个不同时刻的差值, i为检测电路 的恒定电流。
305、 判断所述检测值 C是否处于正常超级电容取值范围内。
306、 当所述检测值 C处于所述正常超级电容取值范围内时, 将所述待测 超级电容容值正常的信息通过用户界面进行显示。
307、 当所述检测值 C处于所述正常超级电容取值范围之外时, 将所述待 测超级电容容值异常的信息通过用户界面进行显示。
本发明提供的一个实施例提供一种检测超级电容的方法, 首先向切换控
开; 向选通控制模块发送选通指令使电压检测模块在待测超级电容的放电过 程中进行电压检测; 从电压检测模块获取至少两个不同时刻的电压值,计算所 述待测超级电容的检测值 C,最后通过判断得出检测结果。通过上述技术方案, 解决超级电容容值检测的问题, 使超级电容处于更可靠的工作状态。
进一步的, 本发明的一个实施例还提供一种检测超级电容的方法, 如图 6 所示, 包括如下步骤:
301、 向切换控制模块发送切换控制指令; 所述切换控制指令携带需要从 串联超级电容组中断开的待测超级电容的标识, 以便所述切换控制模块根据
302、 向选通控制模块发送选通指令; 所述选通指令携带所述待测超级电 容的标识, 以便所述选通控制模块根据所述选通指令, 将所述待测超级电容 与电压检测模块并联, 从而使所述电压检测模块在所述待测超级电容的放电 过程中进行电压检测。
303、 在所述待测超级电容的放电过程中, 从所述电压检测模块获取至少 两个不同时刻的电压值。
304、 根据公式 ~ , 计算所述待测超级电容的检测值 C; 其中 Δ ιι为 两个不同时刻的电压值差值, A t为所述两个不同时刻的差值, i为检测电路 的恒定电流。
305、 判断所述检测值 C是否处于正常超级电容取值范围内。
306、 当所述检测值 C处于所述正常超级电容取值范围内时, 将所述待测 超级电容容值正常的信息通过用户界面进行显示。
307、 当所述检测值 C处于所述正常超级电容取值范围之外时, 将所述待 测超级电容容值异常的信息通过用户界面进行显示。
308、 在对所述待测超级电容检测完成后, 向所述选通控制模块发送选通 终止指令, 以便所述选通控制模块中断所述待测超级电容与电压检测模块的 并联。
309、 向所述切换控制模块发送切换恢复指令, 以便所述切换控制模块将 所述待测超级电容连接到所述串联超级电容组中。
31 0、 在所述待测超级电容连接到所述串联超级电容组后, 向所述切换控 制模块继续发送切换控制指令, 以便对所述串联超级电容组中的其他超级电 容继续进行检测。
本发明提供的一个实施例提供一种检测超级电容的方法, 首先向切换控 开; 向选通控制模块发送选通指令使电压检测模块在待测超级电容的放电过 程中进行电压检测; 从电压检测模块获取至少两个不同时刻的电压值,计算所 述待测超级电容的检测值 C , 通过判断得出检测结果, 既而开始检测下一个超 级电容。 通过上述技术方案, 解决超级电容容值检测的问题, 使超级电容处 于更可靠的工作状态。
实施例 3:
本发明的一个实施例提供一种检测超级电容的装置, 如图 7所示, 包括: 切换指令发送单元 41 , 选通指令发送单元 42 , 电压检测单元 43 , 计算单元 44。 其中:
切换指令控制单元 41 , 用于向切换控制模块发送切换控制指令; 所述切 换控制指令携带需要从串联超级电容组中断开的待测超级电容的标识, 以便 所述切换控制模块根据所述切换控制指令, 将所述待测超级电容从所述串联 超级电容组中断开。
选通指令发送单元 42 , 用于向选通控制模块发送选通指令; 所述选通指 令携带所述待测超级电容的标识, 以便所述选通控制模块根据所述选通指令, 将所述待测超级电容与电压检测模块并联, 从而使所述电压检测模块在所述 待测超级电容的放电过程中进行电压检测。
电压检测单元 43 , 用于在所述待测超级电容的放电过程中, 从所述电压 检测模块获取至少两个不同时刻的电压值。 计算单元 44 ,用于根据公式 _ ΔΜ ,计算所述待测超级电容的检测值 C; 其中 Δ ιι 为两个不同时刻的电压值差值, A t 为所述两个不同时刻的差值, i 为检测电路的恒定电流。
本发明提供的一个实施例提供一种检测超级电容的装置, 切换指令控制 单元向切换控制模块发送切换控制指令将所述待测超级电容从所述串联超级 电容组中断开; 选通指令发送单元向选通控制模块发送选通指令使电压检测 模块在待测超级电容的放电过程中进行电压检测; 最后, 计算单元从电压检 测模块获取至少两个不同时刻的电压值,计算所述待测超级电容的检测值 c。 通过上述技术方案, 解决超级电容容值检测的问题, 使超级电容处于更可靠 的工作状态。
进一步的, 如图 8所示, 所述装置还包括: 判断单元 45 , 显示单元 46。 其巾:
判断单元 45 ,用于判断所述检测值 C是否处于正常超级电容取值范围内。 显示单元 46 ,用于当所述检测值 C处于所述正常超级电容取值范围内时, 将所述待测超级电容容值正常的信息通过用户界面进行显示; 当所述检测值 C 处于所述正常超级电容取值范围之外时, 将所述待测超级电容容值异常的信 息通过用户界面进行显示。
再一步的, 所述选通指令发送单元 42 , 还用于向所述选通控制模块发送 选通终止指令, 以便所述选通控制模块中断所述待测超级电容与电压检测模 块的并联。
所述切换指令控制单元 41 , 还用于向所述切换控制模块发送切换恢复指 令, 以便所述切换控制模块将所述待测超级电容连接到所述串联超级电容组 中; 在所述待测超级电容连接到所述串联超级电容组后, 向所述切换控制模 块继续发送切换控制指令, 以便对所述串联超级电容组中的其他超级电容继 续进行检测。
本发明实施例提供的检测超级电容的装置, 可以集成在如图 2 所示的处 理器 11 中, 处理器具体可以是 CPU (centra l proces s ing uni t,中央处理器) 或 MCU ( mi cro control uni t , 微控制单元) , 本发明实施例不做限定。
本发明的一个实施例提供一种检测超级电容的装置, 首先切换指令控制 单元向切换控制模块发送切换控制指令将所述待测超级电容从所述串联超级 电容组中断开; 然后, 选通指令发送单元向选通控制模块发送选通指令使电 压检测模块在待测超级电容的放电过程中进行电压检测; 计算单元从电压检 测模块获取至少两个不同时刻的电压值,计算所述待测超级电容的检测值 C。 最后, 判断单元对超级电容容值进行判断, 显示单元显示检测结果。 通过上 述技术方案, 解决超级电容容值检测的问题, 使超级电容处于更可靠的工作 状态。
通过以上的实施方式的描述, 所属领域的技术人员可以清楚地了解到本 发明可借助软件加必需的通用硬件的方式来实现, 当然也可以通过硬件, 但 很多情况下前者是更佳的实施方式。 基于这样的理解, 本发明的技术方案本 质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来, 该 计算机软件产品存储在可读取的存储介质中, 如计算机的软盘, 硬盘或光盘 等, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述的方法。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保 护范围应以所述权利要求的保护范围为准。

Claims

权利 要求 书
1、 一种检测超级电容的方法, 其特征在于,包括:
向切换控制模块发送切换控制指令; 所述切换控制指令携带需要从串联超 级电容组中断开的待测超级电容的标识, 以便所述切换控制模块根据所述切换
向选通控制模块发送选通指令; 所述选通指令携带所述待测超级电容的标 识, 以便所述选通控制模块根据所述选通指令, 将所述待测超级电容与电压检 测模块并联, 从而使所述电压检测模块在所述待测超级电容的放电过程中进行 电压检测;
在所述待测超级电容的放电过程中, 从所述电压检测模块获取至少两个不 同时刻的电压值; 根据公式 ― , 计算所述待测超级电容的检测值 C; 其中 Δ ιι为两个不 同时刻的电压值差值, △ t为所述两个不同时刻的差值, i为检测电路的恒定电 流。
2、 根据权利要求 1所述的方法, 其特征在于, 在计算所述待测超级电容的 检测值 C后, 还包括:
判断所述检测值 C是否处于正常超级电容取值范围内;
当所述检测值 C处于所述正常超级电容取值范围内时, 将所述待测超级电 容容值正常的信息通过用户界面进行显示;
当所述检测值 C处于所述正常超级电容取值范围之外时, 将所述待测超级 电容容值异常的信息通过用户界面进行显示。
3、 根据权利要求 2所述的方法, 其特征在于, 还包括:
在对所述待测超级电容检测完成后, 向所述选通控制模块发送选通终止指 令, 以便所述选通控制模块中断所述待测超级电容与电压检测模块的并联; 向所述切换控制模块发送切换恢复指令, 以便所述切换控制模块将所述待 测超级电容连接到所述串联超级电容组中;
在所述待测超级电容连接到所述串联超级电容组后, 向所述切换控制模块 继续发送切换控制指令, 以便对所述串联超级电容组中的其他超级电容继续进 行检测。
4、 一种检测超级电容的装置, 其特征在于, 包括: 切换指令发送单元, 选 通指令发送单元, 电压检测单元, 计算单元; 其中:
切换指令控制单元, 用于向切换控制模块发送切换控制指令; 所述切换控 制指令携带需要从串联超级电容组中断开的待测超级电容的标识, 以便所述切 换控制模块根据所述切换控制指令, 将所述待测超级电容从所述串联超级电容 组中断开;
选通指令发送单元, 用于向选通控制模块发送选通指令; 所述选通指令携 带所述待测超级电容的标识, 以便所述选通控制模块根据所述选通指令, 将所 述待测超级电容与电压检测模块并联, 从而使所述电压检测模块在所述待测超 级电容的放电过程中进行电压检测;
电压检测单元, 用于在所述待测超级电容的放电过程中, 从所述电压检测 模块获取至少两个不同时刻的电压值; 计算单元, 用于根据公式 ― ΔΜ , 计算所述待测超级电容的检测值 C; 其 中 Δ ιι为两个不同时刻的电压值差值, A t为所述两个不同时刻的差值, i为检 测电路的恒定电流。
5、 根据权利要求 4所述的装置, 其特征在于, 还包括: 判断单元, 显示单 元; 其中:
判断单元, 用于在所述计算单元计算所述待测超级电容的检测值 C后, 判 断所述检测值 C是否处于正常超级电容取值范围内;
显示单元, 用于当所述检测值 C处于所述正常超级电容取值范围内时, 将 所述待测超级电容容值正常的信息通过用户界面进行显示; 当所述检测值 C 处 于所述正常超级电容取值范围之外时, 将所述待测超级电容容值异常的信息通 过用户界面进行显示。
6、 根据权利要求 5所述的装置, 其特征在于:
所述选通指令发送单元, 还用于在对所述待测超级电容检测完成后, 向所 述选通控制模块发送选通终止指令, 以便所述选通控制模块中断所述待测超级 电容与电压检测模块的并联; 所述切换指令控制单元, 还用于向所述切换控制模块发送切换恢复指令, 以便所述切换控制模块将所述待测超级电容连接到所述串联超级电容组中; 所述切换指令控制单元还用于在所述待测超级电容连接到所述串联超级电 容组后, 向所述切换控制模块继续发送切换控制指令, 以便对所述串联超级电 容组中的其他超级电容继续进行检测。
7、 一种检测超级电容的电路, 其特征在于, 包括:
处理器、 电压检测模块、 选通控制模块、 切换控制模块以及串联超级电容 组, 所述串联超级电容组中包括 N个串联的超级电容, 其中 N为不小于 2的整 数; 所述处理器包括权利要求 4至 6所述的任意一项装置;
所述处理器与所述电压检测模块连接, 用于接收所述电压检测模块测得的 待测超级电容两端的电压值;
所述处理器还与所述选通控制模块连接, 用于向所述选通控制模块发送选 通指令, 以便所述选通控制模块根据所述选通指令, 将所述待测超级电容与电 压检测模块并联, 从而使所述电压检测模块在所述待测超级电容的放电过程中 进行电压检测;
所述处理器还与所述切换控制模块连接, 用于向所述切换控制模块发送切 换控制指令; 所述切换控制指令携带需要从串联超级电容组中断开的待测超级 电容的标识, 以便所述切换控制模块根据所述切换控制指令, 将所述待测超级 电容从所述串联超级电容组中断开;
所述超级电容检测电路还包括 N+1 个组合开关, 所述组合开关串联在所述 串联超级电容组中, 每个超级电容左右各串联一个组合开关; 每个组合开关分 别与所述切换控制模块连接, 以便在所述切换控制模块的控制下, 使两个组合 所述选通控制模块连接, 以便将从所述串联超级电容组中断开的待测超级电容 并联至所述电压检测模块进行电压测量。
8、 根据权利要求 7所述的检测超级电容的电路, 其特征在于, 所述电压检 测模块为电压表或可以检测电压的电路。
PCT/CN2012/083094 2012-10-17 2012-10-17 一种检测超级电容的方法、装置和电路 WO2014059628A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2012/083094 WO2014059628A1 (zh) 2012-10-17 2012-10-17 一种检测超级电容的方法、装置和电路
CN201280002131.2A CN103180744B (zh) 2012-10-17 2012-10-17 一种检测超级电容的方法、装置和电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/083094 WO2014059628A1 (zh) 2012-10-17 2012-10-17 一种检测超级电容的方法、装置和电路

Publications (1)

Publication Number Publication Date
WO2014059628A1 true WO2014059628A1 (zh) 2014-04-24

Family

ID=48639385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083094 WO2014059628A1 (zh) 2012-10-17 2012-10-17 一种检测超级电容的方法、装置和电路

Country Status (2)

Country Link
CN (1) CN103180744B (zh)
WO (1) WO2014059628A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103675468A (zh) * 2013-12-26 2014-03-26 天津市松正电动汽车技术股份有限公司 一种动态检测超级电容容值的方法
CN103941102A (zh) * 2014-04-28 2014-07-23 肇庆绿宝石电子有限公司 一种电双层超级电容容量测量电路及其测量方法
CN104062504B (zh) * 2014-06-13 2017-02-22 华为技术有限公司 一种超级电容检测电路
CN106802371A (zh) * 2015-11-25 2017-06-06 中船重工(重庆)海装风电设备有限公司 一种超级电容的健康状态监测方法、系统和风电机组
CN107422674A (zh) * 2017-08-30 2017-12-01 陕西千山航空电子有限责任公司 一种并联超级电容组故障测控电路及其故障处理方法
WO2019043828A1 (ja) * 2017-08-30 2019-03-07 三菱電機株式会社 コンデンサ容量測定装置及び電力用機器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2725903Y (zh) * 2004-09-09 2005-09-14 上海瑞华(集团)有限公司 一种车载超级电容动态监测装置
CN102375628A (zh) * 2010-08-17 2012-03-14 陈哲明 电容检测方法
CN102520277A (zh) * 2011-12-01 2012-06-27 北京金风科创风电设备有限公司 风力发电机变桨系统的超级电容检测方法和检测系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2407218B (en) * 2003-03-17 2005-11-02 Mitsubishi Electric Corp Inverter device
DE10342472B4 (de) * 2003-09-15 2008-01-31 Infineon Technologies Ag Schaltungsanordnung und Verfahren zum Testen eines Kapazitätsfeldes in einer integrierten Schaltung
JP2008224533A (ja) * 2007-03-14 2008-09-25 Yaskawa Electric Corp 電解コンデンサ劣化診断システムおよび電解コンデンサ劣化診断方法
CN201191308Y (zh) * 2008-05-18 2009-02-04 锦州百纳电气有限公司 大功率超级电容测试系统
US8866499B2 (en) * 2009-08-27 2014-10-21 Analog Devices, Inc. System and method for measuring capacitance
CN102072989B (zh) * 2010-11-03 2014-04-09 北京普源精电科技有限公司 一种具有电容测量功能的测量装置
CN102253286A (zh) * 2011-06-27 2011-11-23 郑军 电阻电容测量方法及其装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2725903Y (zh) * 2004-09-09 2005-09-14 上海瑞华(集团)有限公司 一种车载超级电容动态监测装置
CN102375628A (zh) * 2010-08-17 2012-03-14 陈哲明 电容检测方法
CN102520277A (zh) * 2011-12-01 2012-06-27 北京金风科创风电设备有限公司 风力发电机变桨系统的超级电容检测方法和检测系统

Also Published As

Publication number Publication date
CN103180744A (zh) 2013-06-26
CN103180744B (zh) 2015-07-08

Similar Documents

Publication Publication Date Title
WO2014059628A1 (zh) 一种检测超级电容的方法、装置和电路
US10859636B2 (en) Uninterruptible power supply (UPS) modules for testing systems
CN108802494B (zh) 绝缘电阻的检测电路、检测方法和装置
JP5499200B2 (ja) 劣化判定装置、劣化判定方法、及びプログラム
CN102479979B (zh) 动力电池组管理方法以及系统
WO2015085812A1 (zh) 一种在线电池内阻测量装置及其测量方法
CN105510833B (zh) 蓄电池健康状态检测方法、装置及系统
EP2503343A1 (en) Systems, methods, and apparatus for detecting theft and status of electrical power
CN106708003B (zh) 一种电机控制器故障检测系统及方法
CN102997838A (zh) 一种基于扫频短路特征的变压器绕组变形故障诊断方法
CN103185850A (zh) 用于检测逆变器中切换设备故障的装置和方法
CN107290669A (zh) 一种退役电动汽车动力电池箱的诊断方法
CN106970333A (zh) 电池内阻检测的方法及装置
CN105319524A (zh) 一种高压开关柜局放带电检测有效性判断方法
WO2014018220A1 (en) Open circuit voltage checking for a battery system
CN103135063A (zh) 一种铅酸蓄电池的检测及监控方法
CN105954555A (zh) 一种断零线窃电的检测方法及装置
TW201828556A (zh) 電池狀態測試方法及其系統
CN104682354B (zh) 检测短接二极管
CN105403842A (zh) 一种多次放电精密测量蓄电池内阻的方法
US9519560B2 (en) Method for automatic mapping of AC phase conductors and identification of AC buses in a multi-bus power system
CN104101787A (zh) 便携式低压无功补偿标准检测系统及检测方法
CN103403640B (zh) 一种适配器及设定适配器电压的方法
CN102998536A (zh) 一种高可靠性的直流母线绝缘电阻检测方法
JP2013228272A (ja) 抵抗測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12886553

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12886553

Country of ref document: EP

Kind code of ref document: A1