WO2014058200A2 - 도금 강연선 및 그 제조 방법 - Google Patents

도금 강연선 및 그 제조 방법 Download PDF

Info

Publication number
WO2014058200A2
WO2014058200A2 PCT/KR2013/008965 KR2013008965W WO2014058200A2 WO 2014058200 A2 WO2014058200 A2 WO 2014058200A2 KR 2013008965 W KR2013008965 W KR 2013008965W WO 2014058200 A2 WO2014058200 A2 WO 2014058200A2
Authority
WO
WIPO (PCT)
Prior art keywords
strand
wire
plating
less
heat treatment
Prior art date
Application number
PCT/KR2013/008965
Other languages
English (en)
French (fr)
Other versions
WO2014058200A3 (ko
Inventor
정진영
제환승
김진호
Original Assignee
고려제강 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50478023&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014058200(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 고려제강 주식회사 filed Critical 고려제강 주식회사
Priority to CN201380052568.1A priority Critical patent/CN104755671A/zh
Priority to EP13845159.6A priority patent/EP2907915A4/en
Publication of WO2014058200A2 publication Critical patent/WO2014058200A2/ko
Publication of WO2014058200A3 publication Critical patent/WO2014058200A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/066Reinforcing cords for rubber or plastic articles the wires being made from special alloy or special steel composition
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0693Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core having a strand configuration
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/12Ropes or cables with a hollow core
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/10Rope or cable structures
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2001Wires or filaments
    • D07B2201/2006Wires or filaments characterised by a value or range of the dimension given
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2023Strands with core
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2051Cores characterised by a value or range of the dimension given
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3021Metals
    • D07B2205/3025Steel
    • D07B2205/3046Steel characterised by the carbon content
    • D07B2205/3057Steel characterised by the carbon content having a high carbon content, e.g. greater than 0,8 percent respectively SHT or UHT wires
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2015Construction industries
    • D07B2501/203Bridges

Definitions

  • the present invention relates to a high-strength plated steel strand used in cable-stayed bridges and civil engineering structures, and to a method of manufacturing the same. It relates to a stranded wire and a method of manufacturing the same.
  • Plating strands for cable-stayed bridges and structures are used as important materials to support the load of the structure.
  • a stranded steel wire is usually manufactured by a method of performing a heat treatment to remove residual strain in a final process by twisting a plurality of wires together after cold drawing the wire rod.
  • the wire is generally galvanized, and unplated strands are also used.
  • the strands have a strength of about 1800 MPa.
  • the fatigue characteristics are very important, in addition to the high strength of the above-described plated steel wire, there is little activity for improving the fatigue properties. That is, by devising the composition, drawing method, zinc-aluminum alloy plating and secondary drawing and stranding process for producing high strength and plated stranded wire used for bridges, it has not only predetermined tensile strength and elongation but also excellent fatigue properties. Plating strands need to be provided.
  • the present invention has been made to solve the above-mentioned problems, the high-strength plated steel strands used for cable-stayed bridges and civil engineering structures, the plating having excellent fatigue characteristics while improving the strength of about 20% or more compared to the conventional 1800MPa graded steel strands
  • An object of the present invention is to provide a stranded wire and a method of manufacturing the same.
  • the plated steel strand according to the present invention in the plated steel strand including several strands, includes one center line and several side lines stranded outside the center line,
  • the center line and the side line in weight%, C: 0.9 to 1.2%, Mn: 0.4 to 0.7%, Si: 1.0 to 1.5%, Cr: 0.4 to 0.7%, P: 0.01% or less, S: 0.01% or less It is characterized by being composed of Fe and other unavoidable impurities.
  • the plated strand has a tensile strength of 2200 MPa or more and an elongation of 7% or more.
  • the side line is composed of six element wires.
  • the method for producing a plated steel wire according to the present invention in weight%, C: 0.9 ⁇ 1.2%, Mn: 0.4 ⁇ 0.7%, Si: 1.0 ⁇ 1.5%, Cr: 0.4 ⁇ 0.7%, P: 0.01% or less, S: 0.01% or less, carrying out constant temperature transformation heat treatment and primary cold drawing of the wire rod containing the remaining Fe and other unavoidable impurities; Zinc-aluminum alloy plating the wire; Secondary drawing the wire rod; Including, but the secondary fresh, characterized in that the fresh in the range of 12% to 25% reduction rate.
  • the method of manufacturing the plated strand wire further comprising the step of performing a stress relaxation heat treatment, the stress relaxation heat treatment temperature and the holding time is in accordance with the following Equation 1.
  • the plated strand of the present invention has a relatively low surface residual stress.
  • This low surface residual stress resolves the processing unevenness, and the elongation shows high toughness, which is excellent in torsion and fatigue characteristics.
  • the plated steel wire of the present invention can be effectively used to support the stress of bridges and building structures, such as cable-stayed bridge, and the high strength of such steel wire increases the main span distance of the bridge, it is possible to build a large bridge, safety and Aesthetic design can be made possible.
  • FIG. 1 is a view showing a plated strand in an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a plated steel wire according to an embodiment of the present invention.
  • 3 is a table showing the test results according to the strand production conditions.
  • the plated steel strand according to the present invention in the plated steel strand including several strands, includes one center line and several side lines stranded outside the center line,
  • the center line and the side line in weight%, C: 0.9 to 1.2%, Mn: 0.4 to 0.7%, Si: 1.0 to 1.5%, Cr: 0.4 to 0.7%, P: 0.01% or less, S: 0.01% or less It is characterized by being composed of Fe and other unavoidable impurities.
  • spatially relative terms “bottom”, “top”, “side”, etc., as shown in the figures, may be used to easily describe the correlation of one member or component with another member or component.
  • Spatially relative terms should be understood to include terms that differ in orientation of the device in use or operation in addition to the directions shown in the figures, for example, when inverting the elements shown in the figures, other elements.
  • a member described as “top” of may be placed at the “bottom” of another member, thus, the exemplary term “top” may include both the up and down directions. And, accordingly, spatially relative terms may be interpreted according to orientation.
  • FIG. 1 and 2 is a view showing a plated strand 1 according to an embodiment of the present invention.
  • the plated strand 1 of the present invention includes a center line 10 and a plurality of side lines 20 that are stranded outside the center line 10 to form an outer layer edge.
  • the plated strand 1 of the present invention includes, but is not limited to, one centerline 10 and six sidelines 20.
  • the center line 10 and the side line 20 may be formed to have the same configuration, or may be configured differently from the inner diameter, material, etc., but is not limited thereto.
  • Each sideline 20 has a predetermined twist pitch P and is periodically stranded outside the centerline 10.
  • Carbon (C) is the most effective and economical element to increase the strength of steel.
  • the carbon content increases, the fraction of high strength cementite increases, and the pearlite lamellar spacing becomes fine, thereby increasing strength. Therefore, in order to secure the strength of 2200 MPa or more, it is necessary to make it 0.9% or more.
  • carbon is added in excess of 1.2%, the precipitation of cementite cementite is feared, so the required ductility drops rapidly, so the upper limit is made 1.2%.
  • Manganese (Mn) is dissolved in ferrite structure to increase the strength of steel and increase the hardenability to delay the transformation of pearlite.It is 0.2% or more to make it easy to secure fine pearlite structure even at a slow cooling rate. Manganese has an upper limit of 0.7% because central segregation occurs and martensite tissue is generated at the center, thereby inhibiting freshness.
  • Silicon (Si) is an element that enhances the solid solution of ferrite in pearlite and is effective for high strength, and serves to prevent the effect of strength by inhibiting the decomposition of cementite during zinc or zinc-aluminum alloy plating. Therefore, it is necessary to participate at 1.0 or higher for high strength, and if it exceeds 1.5%, the ductility of ferrite may be drastically reduced and surface tissue defects may be caused, so the upper limit is 1.5%.
  • Chromium (Cr) has the effect of suppressing the decomposition of cementite at the same time by miniaturizing the pearlite lamellar layer spacing, and when the content of chromium is less than 0.4%, sufficient strength is not obtained. Longer time periods reduce productivity and increase the likelihood of triggering martensite tissue. Therefore, chromium is added at about 0.4 to 0.7 wt%.
  • sulfur (S) exceeds 0.01%, it is preferable to manage at 0.01% or less because it precipitates at the grain boundary in the form of low melting point precipitates to cause hot embrittlement.
  • the remainder is composed of iron (Fe) and other unavoidable impurities.
  • the wire rod of the above components is subjected to constant temperature transformation heat treatment, and then primary cold drawing is performed over 9 passes. After primary cold drawing, zinc-aluminum alloy plating is performed, followed by secondary drawing. Through the secondary wire, the center line 10 and the side line 20 for the stranded wire with the ultimate tensile strength of 2200 MPa or more are finally manufactured.
  • the secondary wire is drawn in the range that does not generate a spiral crack in the torsion test while the strength of the center line 10 and the side line 20 is 2200 MPa or more. That is, if the reduction rate of wire after plating is more than 12%, the tensile strength 2200 MPa can be secured. Therefore, the minimum reduction rate is 12% when drawing after plating, but the side line 20 and center line (10) ), The torsional properties of) and spiral cracking can reduce fatigue properties and elongation. Therefore, the fresh reduction ratio after plating is limited to 12 to 25%.
  • T is the temperature (K)
  • tr is the time (hr)
  • C is the constant 20.
  • the reason why the P (LM) is set to 10800 or more and 11280 or less according to the stress relaxation heat treatment temperature and the holding time is that when the P (LM) is 10800 or less, sufficient stress relaxation heat treatment is insufficient and the fatigue property is lowered. This is because the plating layer may melt in excess of the zinc-aluminum melting point 382 ° C.
  • Figure 3 is a table showing the fatigue recovery in accordance with the stress relaxation heat treatment conditions.
  • Fatigue test results for the high strength zinc-aluminum plated strand 1 having excellent fatigue properties prepared under such a manufacturing method and processing conditions are as shown in FIG. 4.
  • 4 is a table showing the test results according to the strand production conditions. At this time, the fatigue test was carried out with a 50 ton hydraulic tester, the maximum load was 45% of the tensile strength, the stress amplitude was carried out to 300 MPa to determine the pass if the test proceeds without disconnection up to 2,000,000 times.
  • Inventive Examples 1 and 2 exhibit higher elongation (%) than Comparative Examples 1, 2 and 3, and it can be confirmed that surface residual stress is also relatively low.
  • the low residual stress on the surface eliminates processing unevenness, and the elongation shows high toughness, which is excellent for torsion and fatigue characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ropes Or Cables (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명에 따른 도금 강연선은, 수개의 소선을 포함하는 도금 강연선에 있어서, 상기 도금 강연선은 1개의 중심선과 상기 중심선의 외측에 연선되는 수개의 측선을 포함하며, 상기 중심선 및 소선은, 중량%로, C : 0.9~1.2%, Mn : 0.4~0.7%, Si : 1.0~1.5%, Cr : 0.4~0.7%, P :0.01% 이하, S : 0.01%이하, 잔부 Fe 및 기타 불가피한 불순물로 조성된다.

Description

도금 강연선 및 그 제조 방법
본 발명은 사장교 교량 및 토목 구조물에 사용되는 고강도 도금 강연선 및 그 제조 방법에 관한 것으로, 보다 구체적으로 종래에 사용되는 1800 MPa 급 도금 강연선에 비해 약 20 % 이상의 강도를 향상시키면서 우수한 피로특성을 갖는 도금 강연선 및 그 제조 방법에 관한 것이다.
사장교 및 건축물 지지용 도금 강연선은 구조물의 하중을 지지하는 중요한 소재로 사용된다. 이러한 도금 강연선은 통상적으로 선재를 냉간 신선 후 복수개의 소선을 서로 꼬아, 최종 공정에서 잔류 변형을 제거하기 위한 열처리를 행하는 방법으로 제조된다. 소선은 아연 도금이 일반적이며, 도금되지 않은 강연선도 사용되고, 통상적으로 강연선은 1800 MPa 정도의 강도를 갖는다.
이러한 도금 강연선의 고강도화를 위해 블루잉 처리와 같은 특수 공정을 행하거나, 또는 도금 강연선을 형성하는 재질의 종류 및 비율을 조정하는 등의 각종 공정이 수행되었다.
그러나, 사장교 등에 사용되는 도금 강연선의 경우 피로특성이 매우 중요함에도 불구하고 상기와 같은 도금 강연선의 고강도화 외에 이러한 피로특성의 개선을 위한 활동은 미미하다. 즉, 교량용으로 사용되는 고강도이면서 도금 강연선을 제조하기 위한 성분 조성, 신선 방법, 아연-알루미늄 합금 도금 및 2차 신선, 연선 공정을 고안함으로써 소정의 인장강도 및 신율을 가질 뿐만 아니라 피로특성 또한 우수한 도금 강연선이 제공될 필요가 있다.
본 발명은 전술한 문제점을 해결하기 위해 안출된 것으로서 사장교 교량 및 토목 구조물에 사용되는 고강도 도금 강연선에 있어서 종래에 사용되는 1800MPa 급 도금 강연선에 비해 약 20% 이상의 강도를 향상하면서 우수한 피로특성을 가지는 도금 강연선 및 그 제조 방법을 제공하는 데 목적이 있다.
상술한 목적을 달성하기 위하여, 본 발명에 따른 도금 강연선은, 수개의 소선을 포함하는 도금 강연선에 있어서, 1 개의 중심선과 상기 중심선의 외측에 연선되는 수개의 측선을 포함하며,
상기 중심선 및 측선은, 중량%로, C : 0.9~1.2%, Mn : 0.4~0.7%, Si : 1.0~1.5%, Cr : 0.4~0.7%, P :0.01% 이하, S : 0.01%이하 잔부 Fe 및 기타 불가피한 불순물로 조성되는 것을 특징으로 한다.
바람직하게는, 상기 도금 강연선은 인장강도가 2200 MPa 이상이며 연신율이 7% 이상으로 구성된다.
바람직하게는, 상기 측선은 6개의 소선으로 구성된다.
상술한 목적을 달성하기 위하여, 본 발명에 따른 도금 강연선 제조 방법은, 중량%로, C : 0.9~1.2%, Mn : 0.4~0.7%, Si : 1.0~1.5%, Cr : 0.4~0.7%, P :0.01% 이하, S : 0.01%이하 잔부 Fe 및 기타 불가피한 불순물을 포함하는 선재를 항온변태 열처리 및 1차 냉간 신선을 실시하는 단계; 상기 선재를 아연-알루미늄 합금 도금하는 단계; 상기 선재를 2차 신선하는 단계; 를 포함하되, 상기 2차 신선은, 감면율 12% 내지 25% 범위에서 신선하는 것을 특징으로 한다.
바람직하게는, 상기 도금 강연선 제조 방법은, 응력완화 열처리를 수행하는 단계;를 더 포함하며, 상기 응력완화 열처리 온도 및 유지시간은 하기 식 1에 따른다.
P(L.M.)=T[logtr + C] (식 1)
10800 < P(L.M.) < 11280
(P(L.M.)은 열처리 parameter, T 는 온도(K), tr 은 시간(hr), C 는 상수 20)
본 발명의 도금 강연선에 의하면, 상대적으로 낮은 표면 잔류응력을 가지며. 이러한 낮은 표면 잔류응력은 가공 불균일을 해소하며, 연신율은 높은 인성을 나타내어 비틀림 및 피로특성치에 우수한 작용이 가능하다.
따라서, 본 발명의 도금 강연선은 사장교 등의 교량 및 건축 구조물의 응력을 지지하는 데 효과적으로 사용될 수 있으며, 이러한 강연선의 고강도화는 교량의 주 경간 거리를 증가시켜 초대형 교량의 건설이 가능하게 되며, 안전성 및 미적 설계를 가능하게 할 수 있다.
도 1 은 본 발명의 일 실시예에 도금 강연선을 나타낸 도면이다.
도 2 는 본 발명의 일 실시예에 따른 도금 강연선의 단면을 나타낸 도면이다.
도 3 은 강연선 제조 조건별 시험 결과를 나타낸 표이다.
도 4 는 응력완화 열처리 조건에 따른 피로회수를 나타낸 표이다.
상술한 목적을 달성하기 위하여, 본 발명에 따른 도금 강연선은, 수개의 소선을 포함하는 도금 강연선에 있어서, 1 개의 중심선과 상기 중심선의 외측에 연선되는 수개의 측선을 포함하며,
상기 중심선 및 측선은, 중량%로, C : 0.9~1.2%, Mn : 0.4~0.7%, Si : 1.0~1.5%, Cr : 0.4~0.7%, P :0.01% 이하, S : 0.01%이하 잔부 Fe 및 기타 불가피한 불순물로 조성되는 것을 특징으로 한다.
이하, 첨부된 도면을 참조하여, 본 발명에 따른 바람직한 실시예에 대하여 설명한다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
공간적으로 상대적인 용어인 “하부", "상부", “측부” 등은 도면에 도시되어 있는 바와 같이 하나의 부재 또는 구성 요소들과 다른 부재 또는 구성 요소들과의 상관관계를 용이하게 기술하기 위해 사용될 수 있다. 공간적으로 상대적인 용어는 도면에 도시되어 있는 방향에 더하여 사용시 또는 동작 시 소자의 서로 다른 방향을 포함하는 용어로 이해되어야 한다. 예를 들면, 도면에 도시되어 있는 부재를 뒤집을 경우, 다른 부재의 “상부"로 기술된 부재는 다른 부재의 "하부”에 놓여질 수 있다. 따라서, 예시적인 용어인 "상부"는 아래와 위의 방향을 모두 포함할 수 있다. 부재는 다른 방향으로도 배향될 수 있고, 이에 따라 공간적으로 상대적인 용어들은 배향에 따라 해석될 수 있다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다" 및/또는 "포함하는”은 언급된 부재 외의 하나 이상의 다른 부재의 존재 또는 추가를 배제하지 않는다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않은 한 이상적으로 또는 과도하게 해석되지 않는다.
도면에서 각부의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었다. 또한 각 구성요소의 크기와 면적은 실제크기나 면적을 전적으로 반영하는 것은 아니다.
또한, 실시예에서 본 발명의 구조를 설명하는 과정에서 언급하는 방향은 도면에 기재된 것을 기준으로 한다. 명세서에서 본 발명을 이루는 구조에 대한 설명에서, 방향에 대한 기준점과 위치관계를 명확히 언급하지 않은 경우, 관련 도면을 참조하도록 한다.
도 1 및 도 2 는 본 발명의 일 실시예에 따른 도금 강연선(1)을 나타낸 도면이다.
도 1 및 도 2 를 참조하면, 본 발명의 도금 강연선(1)은 중심선(10) 및 상기 중심선(10)의 외측에 연선되어 외층연을 구성하는 복수의 측선(20)을 포함하게 구성된다.
바람직하게는, 도 1 및 도 2 에 도시된 바와 같이, 본 발명의 도금 강연선(1)은 1 본의 중심선(10) 및 6 본의 측선(20)을 포함하여 구성되며, 이에 한정하지 아니한다.
중심선(10)과 측선(20)은 동일한 구성을 갖게 형성되거나, 또는 내경, 재질 등이 서로 상이하게 구성될 수 있으며, 이에 한정하지 아니한다. 각각의 측선(20)은 소정의 꼬임 피치(P)를 가지며 상기 중심선(10)의 외측에 주기적으로 연선된다.
이하에서는, 본 발명의 중심선(10) 및 측선(20)을 구성하는 재질의 성분계 및 조성범위에 대하여 상세히 설명한다.
C (탄소) : 0.9~1.2중량%
탄소(C)는 강의 강도를 높이는 가장 효과적이면서 경제적인 원소이다. 강에 있어서 펄라이트 조직 중의 세멘타이트를 형성하는 원소로, 탄소함량이 증가할수록 고강도인 세멘타이트의 분율이 증가되고, 펄라이트 라멜라 간격이 미세하게 되어 강도를 증가시킬 수 있다. 따라서, 2200MPa 이상의 강도를 확보하기 위해 0.9% 이상으로 하는 것이 필요하고, 1.2%를 초과하여 탄소를 첨가할 때는 초석 세멘타이트의 석출이 우려되므로 필요한 연성이 급격히 저하되기 때문에 상한을 1.2%로 한다.
Mn(망간) : 0.2~0.7중량%
망간(Mn)은 페라이트 조직에 고용되어 강의 강도 증가를 증가시키며 소입성을 증가시켜 펄라이트의 변태를 지연시키는 원소로 다소 느린 냉각 속도에서도 미세 펄라이트 조직을 확보하기 쉽게 하기 위해서 0.2% 이상으로 하고, 과도한 망간은 중심 편석이 발생하여 중심부에 마르텐사이트 조직을 발생하여 신선성을 저해하기 때문에 그 상한을 0.7%로 한다.
Si(규소) : 0.4~0.7중량%
규소(Si)는 펄라이트 중의 페라이트를 고용 강화하는 원소로 고강도화에 효과적이며, 아연 또는 아연-알루미늄 합금 도금시 세멘타이트의 분해를 억제하여 강도 효과를 방지하는 역할을 한다. 따라서 고강도화를 위해 1.0 이상으로참가하는 것이 필요하고, 1.5%를 초과하는 경우에는 페라이트의 연성을 급격히 감소시키고 표면 조직결함을 유발할 수 있으므로, 1.5%로 상한을 둔다.
Cr(크롬) : 0.4~0.7중량%
크롬(Cr)은 펄라이트 라멜라 층상 간격을 미세화시켜 강도와 연성을 동시에 세멘타이트의 분해를 억제하는 효과가 있으며, 크롬의 함량이 0.4% 미만인 경우에는 충분한 강도를 얻지 못하며, 0.7% 초과시에는 항온 변태 종료 시간이 길어져 생산성이 떨어질 뿐만 아니라 마르텐사이트 조직을 유발할 가능성이 높아진다. 따라서 크롬은 0.4~0.7중량% 정도로 첨가한다.
S(황) : 0.01% 이하
황(S)은 0.01% 를 초과하는 경우, 저융점 석출물의 형태로 결정립계에 석출하여 열간취화를 유발하므로 0.01% 이하로 관리하는 것이 바람직하다.
P(인) : 0.01% 이하
인(P)DMS 0.01% 를 초과하는 경우, 주상정 사이에 편석되어 열간 취화를 일으키고, 냉간 신선중에 균열을 유발하므로 0.01% 이하로 관리하는 것이 바람직하다.
상기한 조성 외에 나머지는 철(Fe) 및 기타 불가피한 불순물로 조성된 것이다.
이하에서는 본 발명에 따른 피로특성이 우수한 고강도 아연-알루미늄 도금 강연선(1)의 제조 방법에 대해 설명한다.
먼저, 상기 성분의 선재를 항온변태 열처리를 실시한 후 9 패스에 걸쳐 1 차 냉간 신선을 실시한다. 1차 냉간 신선 후 아연-알루미늄 합금 도금을 실시한 후, 2차 신선을 실시한다. 2차 신선을 통해 최종적으로 목표하는 인장강도 2200 MPa 이상의 강연선용 중심선(10)과 측선(20)을 제조한다.
이때, 2 차 신선은 중심선(10)과 측선(20)의 강도가 2200 MPa 이상이 되면서 비틀림 시험에서 나선 균열을 발생시키지 않는 범위에서 신선을 수행한다. 즉, 도금 후 신선 감면율이 12% 이상인 경우 인장강도 2200 MPa 를 확보할 수 있으므로 도금 후 신선시 최저 감면율은 12% 로 유지하나, 신선 가공량이 25 % 를 초과할 경우 측선(20) 및 중심선(10)의 비틀림 특성이 감소하고, 나선 균열이 발생하여 강연선을 제조할 경우 피로특성과 연신율이 저하할 수 있다. 따라서, 도금 후 신선 감면율은 12 내지 25 % 로 한정한다.
한편, 측선(20)을 꼬아 본 발명에 따른 피로특성이 우수한 고강도 아연- 알루미늄 도금 강연선(1) 제조시 응력완화 열처리를 수행하되, 이러한 응력완화 열처리 온도 및 유지시간은 하기 식 1 과 같게 수행한다.
여기서, P(L.M.)은 열처리 parameter 이고, T 는 온도(K)이며, tr 은 시간(hr)이고, C 는 상수 20이다.
이러한 응력완화 열처리 온도 및 유지시간에 따라서 상기 P(L.M.)을 10800 이상 11280 이하로 설정하는 이유는, 상기 P(L.M.)이 10800 이하일 경우 충분한 응력완화 열처리가 부족하여 피로특성이 저하되며, 11208 이상의 경우에는 아연-알루미늄 융용점 382 ℃을 초과하여 도금층이 녹을 수 있기 때문이다.
도 3 은 이러한 응력완화 열처리 조건에 따른 피로회수를 나타낸 표이다.
도 3 에 도시된 바와 같이, P(L.M.) 수치를 약 10800 이상으로 할 경우 피로회수가 개선되는 것을 확인할 수 있다.
이러한 제조방법 및 처리 조건 하에서 제조된 피로특성이 우수한 고강도 아연-알루미늄 도금 강연선(1)에 관한 피로시험 결과는 하기 도 4 와 같다. 도 4 는 강연선 제조 조건별 시험 결과를 나타낸 표이다. 이때, 피로시험은 50톤 유압식 시험기로 수행하였으며, 최대하중은 인장강도의 45% 하중이고, 응력 진폭은 300 MPa 로 수행하여 2,000,000 회까지 단선 없이 시험이 진행되면 합격으로 판정하도록 수행하였다.
아울러, 도 4 에 나타난 강연선의 연신율(%) 측정은 Instron 50ton 인장시험기의 Extension Meter 로 측정하였으며, 잔류응력은 XRD (X-ray diffractometer)으로 측정하였다.
도 4 를 참조하면, 발명예 1, 2 가 비교예 1, 2, 3 에 비해 높은 연신율(%)을 나타내고 있으며, 표면 잔류응력도 상대적으로 낮음을 확인할 수 있다. 표면에 낮은 잔류응력은 가공 불균일을 해소하며, 연신율은 높은 인성을 나타내어 비틀림 및 피로특성치에 우수한 작용이 가능하다.
따라서, 사장교 등의 교량 및 건축 구조물의 응력을 지지하는 데 효과적으로 사용될 수 있으며, 이러한 강연선의 고강도화는 교량의 주 경간 거리를 증가시켜 초대형 교량의 건설이 가능하게 되며, 안전성 및 미적 설계를 가능하게 할 수 있다.
이상에서는 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.

Claims (5)

  1. 수개의 소선을 포함하는 도금 강연선에 있어서,
    상기 도금 강연선은 1개의 중심선과 상기 중심선의 외측에 연선되는 수개의 측선을 포함하며,
    상기 중심선 및 측선은,
    중량%로, C : 0.9~1.2%, Mn : 0.4~0.7%, Si : 1.0~1.5%, Cr : 0.4~0.7%, P :0.01% 이하, S : 0.01%이하, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 도금 강연선.
  2. 제1항에 있어서,
    상기 도금 강연선은
    인장강도가 2200 MPa 이상이며 연신율이 7% 이상인 도금 강연선.
  3. 제1항에 있어서,
    상기 도금 강연선은,
    아연-알루미늄을 포함한 도금층을 포함하는 도금 강연선.
  4. 중량%로, C : 0.9~1.2%, Mn : 0.4~0.7%, Si : 1.0~1.5%, Cr : 0.4~0.7%, P :0.01% 이하, S : 0.01%이하 잔부 Fe 및 기타 불가피한 불순물을 포함하는 선재를 항온변태 열처리 및 1차 냉간 신선을 실시하는 단계;
    상기 선재를 아연-알루미늄 합금 도금하는 단계;
    상기 선재를 2차 신선하는 단계; 를 포함하되,
    상기 2차 신선은,
    감면율 12% 내지 25% 범위에서 신선하는 도금 강연선 제조 방법.
  5. 제4항에 있어서,
    응력완화 열처리를 수행하는 단계;를 더 포함하며,
    상기 응력완화 열처리 온도 및 유지시간은 하기 식 1에 따르는 도금 강연선 제조 방법.
    P(L.M.)=T[logtr + C] (식 1)
    10800 < P(L.M.) < 11280
    (P(L.M.)은 열처리 parameter, T 는 온도(K), tr 은 시간(hr), C 는 상수 20)
PCT/KR2013/008965 2012-10-09 2013-10-08 도금 강연선 및 그 제조 방법 WO2014058200A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380052568.1A CN104755671A (zh) 2012-10-09 2013-10-08 镀层钢绞线及其制造方法
EP13845159.6A EP2907915A4 (en) 2012-10-09 2013-10-08 TORSDATED STEEL CABLE COATED AND METHOD FOR MANUFACTURING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120112102A KR101420281B1 (ko) 2012-10-09 2012-10-09 도금 강연선 및 그 제조 방법
KR10-2012-0112102 2012-10-09

Publications (2)

Publication Number Publication Date
WO2014058200A2 true WO2014058200A2 (ko) 2014-04-17
WO2014058200A3 WO2014058200A3 (ko) 2014-06-19

Family

ID=50478023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/008965 WO2014058200A2 (ko) 2012-10-09 2013-10-08 도금 강연선 및 그 제조 방법

Country Status (4)

Country Link
EP (1) EP2907915A4 (ko)
KR (1) KR101420281B1 (ko)
CN (1) CN104755671A (ko)
WO (1) WO2014058200A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105483550A (zh) * 2014-10-07 2016-04-13 高丽制钢株式会社 预应力混凝土钢绞线

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101595937B1 (ko) * 2014-10-07 2016-02-19 고려제강 주식회사 가공송전선 보강용 고강도 도금 강선 및 강연선의 제조방법 및 이에 따라 제조된 강선 및 강연선

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261430A (ja) * 1985-05-14 1986-11-19 Shinko Kosen Kogyo Kk 高強度高靭性鋼線の製造方法
JP2500947B2 (ja) * 1991-01-28 1996-05-29 新日本製鐵株式会社 吊構造用高強度鋼線の製造方法
KR100635326B1 (ko) * 2005-11-14 2006-10-18 주식회사 효성 고강도 스틸코드 및 그의 제조방법
KR100717150B1 (ko) * 2005-11-14 2007-05-10 주식회사 효성 고강도 스틸코드 및 그의 제조방법
KR100711469B1 (ko) 2005-12-12 2007-04-24 주식회사 포스코 2000MPa급 과공석 강선의 제조방법
CN100535164C (zh) * 2006-10-23 2009-09-02 宝山钢铁股份有限公司 一种Fe-36Ni为基的合金线材及其制造方法
KR100928786B1 (ko) * 2007-12-27 2009-11-25 주식회사 포스코 고강도 교량용 아연도금강선 및 그 제조방법
JP4782246B2 (ja) * 2009-06-25 2011-09-28 新日本製鐵株式会社 耐食性と疲労特性に優れた橋梁用高強度Zn−Alめっき鋼線及びその製造方法
CN102292460B (zh) * 2010-01-25 2014-03-26 新日铁住金株式会社 线材、钢丝及线材的制造方法
KR20120090605A (ko) * 2011-02-08 2012-08-17 고려제강 주식회사 청동도금 초고강도 케이블 비드

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2907915A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105483550A (zh) * 2014-10-07 2016-04-13 高丽制钢株式会社 预应力混凝土钢绞线
JP2016074978A (ja) * 2014-10-07 2016-05-12 高麗製鋼株式会社 応力腐食特性にすぐれる高強度pc鋼撚線

Also Published As

Publication number Publication date
EP2907915A4 (en) 2016-09-21
KR101420281B1 (ko) 2014-08-14
WO2014058200A3 (ko) 2014-06-19
KR20140046657A (ko) 2014-04-21
EP2907915A2 (en) 2015-08-19
CN104755671A (zh) 2015-07-01

Similar Documents

Publication Publication Date Title
KR910001324B1 (ko) 고강도와 고인성을 구비한 봉강, 강환봉 및 강선의 제조방법
CN103008385B (zh) 用82b盘条生产超高强架空电缆钢芯用钢丝的方法
WO2011055919A2 (en) Wire rod for drawing having excellent drawability, super-high-strength steel wire and manufacturing method thereof
US9994940B2 (en) High carbon steel wire rod having excellent drawability
JP6485612B1 (ja) 高強度鋼線
CN105839030B (zh) 桥梁用不锈钢丝热铸锚索及其所用拉索
WO2014058200A2 (ko) 도금 강연선 및 그 제조 방법
JP5977699B2 (ja) 生引き性に優れた高強度鋼線用線材、高強度鋼線、高強度亜鉛めっき鋼線、およびその製造方法
ES2404160T3 (es) Tendón de pretensado de alta resistencia, método para la fabricación del mismo y construcción de hormigón usando el mismo
CN109604368B (zh) 一种架空导线用超特高强镀锌钢丝及其制造方法
CN109174997A (zh) 一种能提高Rm≥1860MPa桥梁钢缆索用镀层钢丝的生产方法
US4769886A (en) Concrete reinforcing element and method of making a concrete reinforcement
JP4527913B2 (ja) 高強度高炭素鋼線用線材及びその製造方法
JP6250751B2 (ja) 強度及び耐食性に優れた高炭素鋼線材、高炭素鋼鋼線及びこれらの製造方法
KR101353864B1 (ko) 선재, 강선 및 강선의 제조 방법
WO2017090939A1 (ko) 가공송전선용 알루미늄 합금
KR20010064990A (ko) 내후성 강선과 강연선 및 그 제조 방법
KR101597756B1 (ko) 응력부식특성이 우수한 고강도 pc 강연선
JPH0124208B2 (ko)
KR101316198B1 (ko) 고연성 선재, 강재 및 그 제조방법
CN114182166B (zh) 一种390MPa级低合金耐蚀钢及其制备方法
WO2018117471A1 (ko) 고강도 고내식 강선 및 이의 제조방법
JPH04289127A (ja) 高強度高延性線材の製造方法
JPH07286244A (ja) 高強度亜鉛めっき鋼線およびその製造方法
CA2065310C (en) Method of producing steel wires each having very small diameter, high strength and excellent ductility

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13845159

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2013845159

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013845159

Country of ref document: EP