WO2014058173A1 - 전력기기의 부분방전위치 검출방법 - Google Patents

전력기기의 부분방전위치 검출방법 Download PDF

Info

Publication number
WO2014058173A1
WO2014058173A1 PCT/KR2013/008804 KR2013008804W WO2014058173A1 WO 2014058173 A1 WO2014058173 A1 WO 2014058173A1 KR 2013008804 W KR2013008804 W KR 2013008804W WO 2014058173 A1 WO2014058173 A1 WO 2014058173A1
Authority
WO
WIPO (PCT)
Prior art keywords
partial discharge
power device
arrival time
signal
sensor
Prior art date
Application number
PCT/KR2013/008804
Other languages
English (en)
French (fr)
Inventor
황경록
정재룡
김영민
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to US14/434,299 priority Critical patent/US9658273B2/en
Publication of WO2014058173A1 publication Critical patent/WO2014058173A1/ko
Priority to SA515360256A priority patent/SA515360256B1/ar

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1254Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of gas-insulated power appliances or vacuum gaps
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1236Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of surge arresters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • G01R31/1272Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of cable, line or wire insulation, e.g. using partial discharge measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/62Testing of transformers

Definitions

  • the present invention relates to partial discharge position detection of power equipment, and more particularly, to an apparatus and method for detecting partial discharge position of power equipment to accurately detect the position of partial discharge generated in a power equipment such as a transformer.
  • the technique of measuring the partial discharge position is a very important technique in preventing the failure of the power equipment.
  • the technique for measuring the partial discharge position can be largely divided into a method using attenuation according to the propagation of the electromagnetic discharge signal generated by the discharge and a method using a time difference when the electromagnetic discharge signal reaches the partial discharge sensor.
  • an object of the present invention is to provide a method for detecting a partial discharge position of a power device, which has been proposed to solve the above-described problems of the prior art, so as to accurately detect the position of the partial discharge generated in the power device.
  • the present invention when measuring the partial discharge position by using the simultaneous equation numerical analysis algorithm, the partial discharge position detection method of the power device to be able to quickly detect the partial discharge position by applying a reliable initial value close to the actual solution There is another purpose to provide.
  • Another object of the present invention is to provide a method for detecting a partial discharge position of a power device, which enables accurate detection of a partial discharge position by compensating for an error in arrival time of a partial discharge signal by an internal structure of the power device.
  • a partial discharge position detection method of a power device that detects a partial discharge position by using partial discharge signals arriving at a plurality of partial discharge sensors installed on an outer surface of a power device, wherein the power device is divided into a plurality of spatial regions having the same volume.
  • Doing Measuring the arrival sequence of the partial discharge signals and the arrival time difference of the partial discharge signals for each of the partial discharge sensors; Determining a spatial region in which the partial discharge position exists among the divided spatial regions by using the arrival order of the measured partial discharge signals and calculating a representative position value of the determined spatial region; Coordinates (x, y, z) of the partial discharge position and the partial discharge signal arrival time (T1) in the first partial discharge sensor that the partial discharge signal arrives first are unknown and the partial discharge signal for each partial discharge sensor Setting a four-way simultaneous equation for the distance for each partial discharge sensor at the partial discharge location using the arrival time difference of the; And calculating coordinates (x, y, z) of the partial discharge positions from the four-way simultaneous equations using a simultaneous equation numerical analysis algorithm, wherein the representative position values of the determined spatial domain are initial values of the simultaneous equation numerical analysis algorithm. Calculating the coordinates of the partial discharge position.
  • the plurality of partial discharge sensors are respectively installed at positions corresponding to X, Y, Z axes of 3D rectangular coordinates based on the origin and the origin set at a specific point on the outer surface of the power device.
  • the space area of the power device is divided into 4 to 16.
  • the step of determining the spatial region by comparing the arrival order of the partial discharge signal between the origin and the X-axis partial discharge sensor to determine one of the left / right space region of the power device, and the origin and Y axis
  • the arrival order of the partial discharge signals between the partial discharge sensors is determined to determine one of the front / rear space regions of the power device, and the arrival order of the partial discharge signals between the origin and the Z-axis partial discharge sensors is compared. Determining one of the lower spatial regions; And determining a spatial region in which the partial discharge position exists using the determined left / right, front / rear and up / down spatial regions.
  • the step of measuring the time difference of arrival of the partial discharge signal of each of the partial discharge sensor, the partial discharge signal arrival time (T1) of the first partial discharge sensor that the partial discharge signal arrived first and other remaining partial discharge sensor It is characterized in that the time difference DELTA t1, DELTA t2, DELTA t3 between the partial discharge signal arrival times T2, T3, and T4.
  • the partial discharge signal arrival time T1 in the first partial discharge sensor is a time taken from the time when the partial discharge occurs to the time when the partial discharge signal arrives at the first partial discharge sensor.
  • the partial discharge signal corresponding to the determined spatial region of the partial discharge signal arrival time difference for each partial discharge sensor preset for each spatial region of the power device. Extracting an arrival time difference compensation value; And applying the arrival time compensation value of the extracted partial discharge signal to the arrival time difference of each partial discharge signal of each partial discharge sensor of the set four-way simultaneous equation; Further comprising, and calculates the coordinates of the partial discharge position by the simultaneous equation numerical analysis algorithm from the four-way simultaneous equation to which the arrival time compensation value is applied.
  • the preset compensation value of the partial discharge signal arrival time for each partial discharge sensor is set by the order of arrival time difference of the partial discharge signals for each partial discharge sensor and for each spatial region.
  • the spatial region in which the partial discharge occurs is primarily selected, and the representative position values of the spatial regions are combined.
  • the initial value of equation numerical analysis algorithm is applied, fast and accurate partial discharge position detection is possible.
  • FIG. 1 is a block diagram of an apparatus to which the partial discharge position detection method according to the present invention is applied.
  • FIG. 2 is a flowchart showing a method for detecting a partial discharge position of a power device according to the present invention.
  • FIG 3 is an exemplary diagram in which a power device according to the present invention is set to a plurality of spatial regions.
  • FIG. 4 is a diagram illustrating a process of determining a spatial region in which partial discharge occurs in a power device according to an embodiment of the present invention.
  • FIG. 5 is a view for explaining a compensation value of the arrival time difference of the partial discharge signal for each partial discharge generating space region according to an embodiment of the present invention.
  • a device for detecting a partial discharge position in the power device 10 includes a plurality of partial discharge sensors 20 and a signal analysis device 30.
  • the partial discharge sensor 20 is preferably provided in plurality on the outer surface of the power device (10).
  • the plurality of partial discharge sensors 20 detects a partial discharge signal generated by the power device 10 and transmits it to the signal analysis device 30.
  • the signal analysis device 30 uses the partial discharge signals input from the plurality of partial discharge sensors 20 to determine a position where partial discharge (PD) occurs in the power device 10 through a predetermined analysis algorithm. The measurement is accurate.
  • the power device 10 may be installed to correspond to the three-dimensional rectangular coordinates X, Y, and Z axes. That is, the specific point is set as the origin O on the outer surface of the power device 10, and the partial discharge sensors 20 are respectively installed at positions corresponding to the X, Y, and Z axes including the origin. Will be.
  • the present invention is not limited to this installation position and the installation position is changeable.
  • the power device 10 is shown in a hexahedral shape in FIG. 1, the present embodiment is not limited thereto. Even in power devices having various shapes, a plurality of partial discharge sensors 20 may be installed at positions corresponding to origins and X, Y, and Z axes in a three-dimensional space. In the present embodiment, for convenience of description, the hexahedral power device 10 will be described as an example.
  • the signal analysis device 30 detects the partial discharge position using various information regarding the partial discharge signals received from the plurality of partial discharge sensors 20.
  • the accuracy of the partial discharge position detection is improved by using the arrival sequence and the arrival time difference of the partial discharge signals for each partial discharge sensor 20 in the signal analysis device 30.
  • the signal analysis device 30 of the present invention stores basic information about the power device 10 to measure the partial discharge position in advance. For example, the shape, size, signal propagation speed, position (coordinate) of the partial discharge sensor 20, and the like of the power device 10 are stored in advance.
  • a method of detecting the partial discharge position will be described in detail.
  • FIG. 2 is a flowchart illustrating a method of detecting a partial discharge position of a power device according to an embodiment of the present invention.
  • the signal analysis device 30 divides the power device 10 into a plurality of spatial regions (S101).
  • FIG. 3 shows an example in which the power device 10 is divided into eight spatial areas A to H.
  • a to H spatial regions
  • the present invention is not limited thereto and may be divided into, for example, 4 to 16 spatial regions.
  • each partial discharge sensor 20 when partial discharge occurs at an arbitrary position of the power device 10 (S103), when the partial discharge signal arrives at the plurality of partial discharge sensors 20, each partial discharge sensor 20 performs such partial discharge. The signal is detected (S105). Subsequently, each partial discharge sensor 20 transmits the partial discharge signal detection information including the arrival time of the partial discharge signal to the signal analysis device 30 (S107).
  • the signal analysis device 30 measures the arrival sequence of the partial discharge signal and the arrival time difference of the partial discharge signal for each partial discharge sensor 20 (S109).
  • the arrival order of the partial discharges means the order in which the partial discharge signals arrive for each of the plurality of partial discharge sensors 20, and the arrival time difference of the partial discharge signals is the interval of the time when the partial discharge signals arrive between the respective partial discharge sensors 20. Means.
  • the signal analyzing apparatus 30 determines one spatial region in which the partial discharge positions exist among the spatial regions A to H classified in step S101 by using the arrival order of the measured partial discharge signals (S111).
  • the representative position value of the determined spatial region is calculated.
  • the representative position value of the spatial region refers to the coordinate of any one point existing in the corresponding spatial region. 4 illustrates an example of a process of determining a spatial region in which a partial discharge position exists in the power device 10.
  • the order of arrival of the partial discharge signals is compared between the partial discharge sensor 21 of the origin O and the partial discharge sensor 22 of the X-axis, and the left / right space of the corresponding power device 10 is compared.
  • One of the areas 41, 42 is determined.
  • the partial discharge signal arrival order between the partial discharge sensor 21 of the origin O and the partial discharge sensor 23 of the Y axis is compared, and the space areas 43 and 44 before and after the corresponding power device 10 are compared. ) Is determined.
  • the sequence of arrival of the partial discharge signals between the partial discharge sensor 21 of the origin O and the partial discharge sensor 24 of the Z axis is compared, and the upper and lower spatial areas 45 and 46 of the power device 10 are compared.
  • the partial discharge sensor 22 of the X axis has the origin of the origin. Assuming that the partial discharge signal arrives at the partial discharge sensor 21 first, it can be determined that the partial discharge position is relatively closer to the partial discharge sensor 21 at the origin than the partial discharge sensor 22 on the X axis.
  • the position in which the partial discharge occurs among the plurality of spatial regions A to H is determined from the sequence of arrival of the partial discharge signals in each partial discharge sensor 20. It is primarily for screening if you are in an area.
  • this method sets the representative position value of the selected spatial domain as an initial value when solving a four-way simultaneous equation through a numerical system of simultaneous equations, which will be described later. This is to set the value close to.
  • the system of simultaneous equations solves the convergence and divergence of the speed of convergence in the solution depending on the initial value. Therefore, as shown in the present embodiment, the spatial region in which the partial discharge position exists is primarily selected so that the system can converge to the solution in the simultaneous equation numerical analysis algorithm.
  • a four-way simultaneous equation for the distance of each partial discharge sensor 20 is set at the partial discharge position by using the arrival time difference of the partial discharge signals for each partial discharge sensor 20 (S115).
  • the partial discharge signal arrives at the first partial discharge sensor (any one of 21 to 24) where the coordinates (x, y, z) of the partial discharge position P and the partial discharge signal arrive first.
  • T1 the time T1
  • a four-way simultaneous equation for each distance between the partial discharge position and the partial discharge sensors is set. This four-way simultaneous equation is represented by Equation 1 below.
  • (x, y, z) is the coordinate of the partial discharge position to be detected, (x0, y0, z0), (x1, y1, z1), (x2, y2, z2), (x3, y3, z3)
  • T1 is the arrival time of the partial discharge signal in the first partial discharge sensor that the partial discharge signal arrived first
  • ⁇ t1, ⁇ t2, ⁇ t3 is the first The time difference of arrival between the arrival time at the partial discharge sensor and the arrival time at the other remaining partial discharge sensor
  • c is the propagation speed of the partial discharge signal at the corresponding power equipment.
  • a compensation value is applied to the arrival time difference of the partial discharge signal in the four-way simultaneous equation (S117). That is, the time difference of arrival of the partial discharge signal applied to the four-way simultaneous equation is applied when the partial discharge signal is transmitted in a straight path on the condition that there is no structure inside the power device 10.
  • S117 the time difference of arrival of the partial discharge signal applied to the four-way simultaneous equation is applied when the partial discharge signal is transmitted in a straight path on the condition that there is no structure inside the power device 10.
  • partial discharge signals are not transmitted to each partial discharge sensor 20 in an ideal linear path, and thus, theoretical An error occurs between the arrival time of the partial discharge signal and the arrival time difference of the actual partial discharge signal.
  • An example of such a real power device 10 is shown in FIG. 5.
  • FIG 5 is a view for explaining a compensation value of the arrival time difference of the partial discharge signal in the power device according to an embodiment of the present invention.
  • the partial discharge signal does not propagate in an ideal linear path but propagates while reflection or refraction occurs in various structures. Therefore, the propagation speed of the partial discharge signal, that is, the arrival time of the partial discharge signal to the partial discharge sensors 21 to 24 becomes slower than the theoretical case ( ⁇ t1 '> ⁇ t1, ⁇ t2'> ⁇ t2).
  • ⁇ ti is the theoretical time difference of arrival of the partial discharge signal when the partial discharge signal is propagated in a straight line
  • ⁇ ti ' is the partial discharge signal in the actual power device in which various internal structures exist. Is the actual time of arrival of the partial discharge signal when is propagated.
  • ⁇ t1, ⁇ t2, and ⁇ t3 indicate a theoretical arrival time difference between the first partial discharge sensor, to which the partial discharge signal first arrives, and the other second, third and fourth partial discharge sensors, and ⁇ t1 'and ⁇ t2.
  • ⁇ t3' means the actual arrival time difference between the first partial discharge sensor and the other second, third and fourth partial discharge sensors.
  • Gij is a time difference between the arrival time of the individual partial discharge signal to the power device 10 and the compensation value according to the spatial area
  • i is the order of time difference of arrival between the first partial discharge sensor and the other second, third and fourth partial discharge sensors
  • Each compensation value is applied to DELTA t1 ', DELTA t2' and DELTA t3 ')
  • j is the position of the spatial region.
  • the compensation value of the partial discharge signal arrival time difference is preferably set in advance for each spatial region of the power device 10. From this, when the spatial region in which the partial discharge position exists is determined as described above, the signal analysis device 30 extracts the arrival time difference compensation value of the partial discharge signal corresponding to the determined spatial region, and applies the compensation value in a four-way simultaneous equation. The solution is obtained by using the arrival time difference of the partial discharge signal. As a result, an error does not occur in the detection of the partial discharge position, and a more reliable detection result can be obtained.
  • the compensation value of the partial discharge signal arrival time difference for each partial discharge sensor preset for each spatial region of the power device 10 may be represented, for example, as shown in the following table, which is according to the structure or characteristics of the power device 10. It is natural that various changes can be made.
  • the power device 10 uses the compensation value of the partial time of arrival of the partial discharge signal according to the order (i) and the space area (j) of the individual arrival time difference of the power device 10.
  • the reliability of the partial discharge position detection can be improved. Therefore, in the present embodiment, the actual partial discharge signal arrival time difference to which the compensation value is applied is applied to the partial discharge signal arrival time difference in the four-way simultaneous equation.
  • the coordinates (x, y, z) of the partial discharge position P are calculated from the four-way simultaneous equation set by the simultaneous equation numerical analysis algorithm, but the spatial domain determined in step S113 is calculated.
  • the coordinate position (x, y, z) of the partial discharge position P is calculated by applying the representative position value as the initial value of the simultaneous equation numerical analysis algorithm (S119).
  • a known simultaneous equation numerical analysis algorithm is used to detect the partial discharge position.
  • a number of such known simultaneous equation numerical analysis algorithms that can be applied in the present embodiment are presented.
  • the Newton method or the Newton-Raphson method algorithm may be used.
  • simultaneous numerical analysis is the most efficient way to find the actual or approximate value of a function. It is likely to converge to a solution that does not converge to the wrong solution, or is difficult to find if the derivative of the function is difficult to obtain.
  • Partial discharges may occur in various power equipment used in power facilities. Partial discharge is a cause of failure of power equipment, so it is important to accurately detect the location of the partial discharge and eliminate the cause of partial discharge in advance. To this end, power equipment requires a technique for accurately measuring the position of partial discharge.
  • the present invention can accurately measure the partial discharge position in a power device such as a transformer, it can be very useful in the field of power equipment as well as power equipment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

본 발명은 전력기기의 부분방전위치를 정확하게 검출하는 방법을 제공한다. 이를 위한 본 발명은, 전력기기의 외면에 설치된 다수의 부분방전센서별로 부분방전신호의 도착순서 및 부분방전신호의 도착시간차를 측정하고, 전력기기를 다수의 공간영역으로 구분하여 부분방전신호의 도착순서로부터 부분방전위치가 존재하는 공간영역을 결정한 후 그 공간영역의 대표위치값을 산출하고, 각 공간영역별로 적용할 도착시간차의 보상치를 결정한다. 이어, 보상치를 적용한 부분방전센서별 부분방전신호의 도착시간차를 이용하여 부분방전위치에서 부분방전센서별 거리에 대한 4원 연립방정식을 설정하고 연립방정식 수치해석 알고리즘에 의해 상기 4원 연립방정식으로부터 상기 부분방전위치의 좌표(x,y,z)를 계산하되, 상기 결정된 공간영역의 대표위치값을 상기 연립방정식 수치해석 알고리즘의 초기값으로 적용하여 상기 부분방전위치의 좌표를 계산한다.

Description

전력기기의 부분방전위치 검출방법
본 발명은 전력기기의 부분방전 위치 검출에 관한 것으로서, 특히 변압기와 같은 전력기기에서 발생한 부분방전의 위치를 정확하게 검출하도록 하는 전력기기의 부분방전 위치 검출장치 및 검출방법에 관한 것이다.
전력기기에서 부분방전을 일으키는 방전원의 크기가 대부분 매우 작기 때문에 부분방전의 위치를 정확하게 측정하기가 어렵고 방전원을 발견하여 제거하는데도 어려움이 있다. 따라서, 부분방전위치를 측정하는 기술은 전력기기의 고장을 예방하는데 있어서 매우 중요한 기술이다.
부분방전위치를 측정하는 기술은 크게 방전에 의해 발생한 전자파 방전신호의 전파에 따른 감쇠를 이용하는 방법과 전자파 방전신호가 부분방전센서에 도달하는 시간차를 이용한 방법으로 구분할 수 있다.
전자의 전파 감쇠를 이용하는 방법에서는 부분방전센서의 간격유지가 어려우며 부분방전센서에서 감지한 신호가 계측기로 전달되는 동안 감쇠나 변형되어 방전위치의 신뢰도가 낮아지는 문제점이 있고, 후자의 부분방전센서에 도달한 시간차를 이용하는 방법에서는 전력기기의 내부 구조물에 의해 부분방전신호가 직선경로로 부분방전센서에 전달되지 않기 때문에 이론상의 도착시간과 실제 도착시간 간에 오차가 발생하여 위치추정의 정확도가 떨어지는 문제점이 있다.
특히, 부분방전신호의 도착 시간차를 연립방정식 수치해석 알고리즘에 적용하여 부분방전위치를 계산하는 방법이 제시되고 있으나, 종래에는 연립방정식 수치해석 알고리즘의 초기값을 잘못 설정하는 경우 수렴속도가 느리고 실제 부분방전위치에 수렴하지 않고 발산하는 문제점이 있다.
이에, 본 발명은 상기한 종래기술의 문제점을 해결하기 위해 제안된 것으로서, 전력기기에서 발생한 부분방전의 위치를 정확하게 검출하도록 하는 전력기기의 부분방전위치 검출방법을 제공하는데 그 목적이 있다.
또한, 본 발명은 연립방정식 수치해석 알고리즘을 이용하여 부분방전위치를 측정하는 경우 실제 해에 근접한 신뢰성이 있는 초기값을 적용함으로써 빠르게 부분방전위치를 검출할 수 있도록 하는 전력기기의 부분방전위치 검출방법을 제공하는데 다른 목적이 있다.
또한, 본 발명은 전력기기의 내부 구조물에 의한 부분방전신호의 도착시간에 대한 오차를 보상함으로써 정확한 부분방전위치 검출이 가능하도록 하는 전력기기의 부분방전위치 검출방법을 제공하는데 또 다른 목적이 있다.
상기 목적의 달성을 위한 본 발명의 전력기기 부분방전위치 검출방법은,
전력기기의 외면에 설치된 다수의 부분방전센서에 도착한 부분방전신호를 이용하여 부분방전위치를 검출하는 전력기기의 부분방전위치 검출방법에 있어서, 상기 전력기기를 동일한 부피를 갖는 다수의 공간영역으로 구분하는 단계; 상기 각 부분방전센서별로 부분방전신호의 도착순서 및 부분방전신호의 도착시간차를 측정하는 단계; 상기 측정된 부분방전신호의 도착순서를 이용하여 상기 구분된 공간영역 중 상기 부분방전위치가 존재하는 공간영역을 결정하고 상기 결정된 공간영역의 대표위치값을 산출하는 단계; 상기 부분방전위치의 좌표(x,y,z) 및 상기 부분방전신호가 가장 먼저 도착한 제1 부분방전센서에서의 부분방전신호 도착시간(T1)을 미지수로 하고 상기 각 부분방전센서별 부분방전신호의 도착시간차를 이용하여 상기 부분방전위치에서 각 부분방전센서별 거리에 대한 4원 연립방정식을 설정하는 단계; 및 연립방정식 수치해석 알고리즘에 의해 상기 4원 연립방정식으로부터 상기 부분방전위치의 좌표(x,y,z)를 계산하되, 상기 결정된 공간영역의 대표위치값을 상기 연립방정식 수치해석 알고리즘의 초기값으로 적용하여 상기 부분방전위치의 좌표를 계산하는 단계를 포함한다.
본 발명에서, 상기 다수의 부분방전센서는 상기 전력기기의 외면의 특정시점에 설정된 원점 및 상기 원점을 기준으로 3차원 직교좌표 X,Y,Z축에 대응하는 위치에 각각 설치된다.
본 발명에서, 상기 전력기기의 공간영역은 4~16개로 구분된다.
본 발명에서, 상기 공간영역을 결정하는 단계는, 상기 원점 및 X축 부분방전센서 간의 부분방전신호 도착순서를 비교하여 상기 전력기기의 좌/우 공간영역 중 하나를 결정하고, 상기 원점 및 Y축 부분방전센서 간의 부분방전신호 도착순서를 비교하여 상기 전력기기의 전/후 공간영역 중 하나를 결정하며, 상기 원점 및 Z축 부분방전센서 간의 부분방전신호 도착순서를 비교하여 상기 전력기기의 상/하 공간영역 중 하나를 결정하는 단계; 및 상기 결정된 좌/우, 전/후 및 상/하의 공간영역을 이용하여 상기 부분방전위치가 존재하는 공간영역을 결정하는 단계를 포함한다.
본 발명에서, 상기 각 부분방전센서의 부분방전신호의 도착시간차를 측정하는 단계는, 상기 부분방전신호가 가장 먼저 도착한 제1 부분방전센서의 부분방전신호 도착시간(T1)과 다른 나머지 부분방전센서의 부분방전신호 도착시간(T2,T3,T4) 간의 시간차(△t1,△t2,△t3)인 것을 특징으로 한다.
본 발명에서, 상기 제1부분방전센서에서의 부분방전신호 도착시간(T1)은 부분방전이 발생한 시점에서 상기 제1부분방전센서에 부분방전신호가 도착한 시점까지 소요된 시간이다.
본 발명에서, 상기 4원 연립방정식을 설정하는 단계 이후에, 상기 전력기기의 공간영역별로 각각 미리 설정된 부분방전센서별 부분방전신호 도착시간차의 보상치에서 상기 결정된 공간영역에 대응하는 부분방전신호의 도착시간차 보상치를 추출하는 단계; 및 상기 추출된 부분방전신호의 도착시간 보상치를 상기 설정된 4원 연립방정식의 상기 각 부분방전센서별 부분방전신호의 도착시간차에 적용하는 단계; 를 더 포함하고, 상기 도착시간 보상치가 적용된 상기 4원 연립방정식으로부터 상기 연립방정식 수치해석 알고리즘에 의해 상기 부분방전위치의 좌표를 계산한다.
본 발명에서, 상기 미리 설정된 부분방전센서별 부분방전신호 도착시간의 보상치는, 상기 각 부분방전센서별 부분방전신호의 도착시간차의 순서 및 상기 공간영역별로 설정된다.
상기와 같은 구성에 의한 본 발명에 따른 전력기기의 부분방전위치 검출방법에서는 다음과 같은 효과가 있다.
본 발명에서는 전력기기에서 부분방전신호의 도착 시간차를 연립방정식 수치해석 알고리즘에 적용하여 부분방전위치를 검출하는 경우 부분방전이 발생한 공간영역을 1차적으로 선정하고, 그 공간영역의 대표위치값을 연립방정식 수치해석 알고리즘의 초기값으로 적용하므로 빠르고 정확한 부분방전위치 검출이 가능하다.
또한, 본 발명에서는 전력기기의 내부 구조물에 의한 부분방전신호의 도착시간에 대한 오차를 보상함으로써 실제 전력기기에서 정확한 부분방전위치 검출이 가능하다.
도 1은 본 발명에 따른 부분방전위치 검출방법이 적용되는 장치의 구성도.
도 2는 본 발명에 따른 전력기기의 부분방전위치 검출방법을 보이는 흐름도.
도 3은 본 발명에 따른 전력기기를 다수의 공간영역으로 설정한 예시도.
도 4는 본 발명의 실시 예에 따른 전력기기에서 부분방전이 발생한 공간영역을 결정하는 과정을 나타낸 도면.
도 5는 본 발명의 실시 예에 따른 부분방전 발생 공간영역별 부분방전신호의 도착시간차의 보상치를 설명하기 위한 도면.
이하에서, 본 발명의 바람직한 실시 예가 첨부된 도면들을 참조하여 설명할 것이다. 또한, 본 발명을 설명함에 있어서 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.
도 1은 본 발명에 따른 전력기기에서의 부분방전위치 검출방법을 수행하기 위한 장치의 구성도이다. 도 1에서와 같이 전력기기(10)에서 부분방전위치를 검출하기 위한 장치로는 다수의 부분방전센서(20) 및 신호분석장치(30)를 포함한다.
부분방전센서(20)는 바람직하게는 전력기기(10)의 외부면에 다수 개로 설치된다. 이러한 다수의 부분방전센서(20)는 전력기기(10)에서 발생하는 부분방전신호를 검출하여 신호분석장치(30)로 전송한다. 신호분석장치(30)는 다수의 부분방전센서(20)로부터 입력되는 부분방전신호를 이용하여 미리 설정된 소정의 분석알고리즘을 통해 전력기기(10)에서 부분방전(PD:Partial Discharge)이 발생한 위치를 정확하게 측정하게 된다.
본 발명의 실시 예에서 부분방전센서(20)는 4개(21~24)가 설치된다. 이러한 개수는 일례에 불과하며 그 이상으로도 설치될 수 있지만 부분방전센서(20)의 설치비용 및 신호처리의 속도 및 복잡성을 고려하면 4개가 바람직하다. 특히, 도 1에서 나타난 일례와 같이 전력기기(10)에 대하여 3차원 직교좌표 X,Y,Z축에 대응하도록 설치될 수 있다. 즉, 전력기기(10)의 외면에서 특정지점을 원점(O)으로 설정하고, 그 원점을 비롯한 3차원 직교좌표 X,Y,Z축 상에 대응하는 위치에 각각 부분방전센서(20)가 설치되는 것이다. 물론, 본 발명은 이러한 설치위치에 한정되는 것은 아니며 설치위치는 변경이 가능하다.
여기서, 도 1에서는 전력기기(10)가 육면체 형상으로 도시되어 있으나 본 실시 예는 이러한 형상에 한정되지 않는다. 다양한 형상의 전력기기에서도 실질적으로 3차원 공간상에 원점과 X,Y,Z축에 대응하는 위치에 다수의 부분방전센서(20)를 설치할 수 있다. 본 실시 예에서는 설명의 편의상 육면체 형상의 전력기기(10)를 예로 들어 설명하기로 한다.
신호분석장치(30)는 다수의 부분방전센서(20)로부터 수신되는 부분방전신호에 관한 다양한 정보를 이용하여 부분방전위치를 검출하게 된다. 특히, 본 실시 예에서는 신호분석장치(30)에서 각각의 부분방전센서(20)별 부분방전신호의 도착순서 및 도착시간차를 이용하여 부분방전위치 검출의 정확성을 높이도록 한다. 이때, 본 발명의 신호분석장치(30)에서는 부분방전위치를 측정하고자 하는 전력기기(10)에 대해 기본적인 정보를 미리 저장한다. 예컨대, 전력기기(10)의 형상, 사이즈, 신호전파속도, 부분방전센서(20)의 위치(좌표) 등을 미리 저장하고 있다. 이하에서 부분방전위치를 검출하는 방법을 상세하게 설명한다.
도 2는 본 발명의 실시 예에 따른 전력기기의 부분방전위치 검출방법을 보이는 흐름도이다. 도 2를 참조하면, 본 발명의 실시 예에서 신호분석장치(30)는 전력기기(10)를 다수의 공간영역으로 구분한다(S101). 예컨대, 도 3에 전력기기(10)를 8개의 공간영역(A~H)으로 구분한 일례가 도시되어 있다. 도면에는 바람직한 실시 예로 8개(A~H)의 공간영역으로 구분한 예를 도시하고 있으나, 본 발명은 이에 한정되지 않으며, 예컨대 4~16개의 공간영역으로 구분할 수 있다. 이와 같이 임의로 구분된 공간영역(A~H)은 서로 동일한 부피를 갖는 것이 바람직하다.
다시, 도 2에서 전력기기(10)의 임의의 위치에서 부분방전이 발생하여(S103) 부분방전신호가 다수의 부분방전센서(20)에 도착하게 되면 각 부분방전센서(20)에서는 이러한 부분방전신호를 검출하게 된다(S105). 이어, 각각의 부분방전센서(20)는 부분방전신호의 도착시간을 포함한 부분방전신호 검출정보를 신호분석장치(30)로 전송한다(S107).
계속해서, 신호분석장치(30)에서는 각각의 부분방전센서(20)별로 부분방전신호의 도착순서 및 부분방전신호의 도착시간차를 측정한다(S109). 이때, 부분방전의 도착순서는 다수의 부분방전센서(20)별로 부분방전신호가 도착한 순서를 의미하고, 부분방전신호의 도착시간차는 각 부분방전센서(20) 간에 부분방전신호가 도착한 시간의 간격을 의미한다.
이어, 신호분석장치(30)는 측정된 부분방전신호의 도착순서를 이용하여 상기한 S101 단계에서 구분한 공간영역(A~H) 중 부분방전위치가 존재하는 하나의 공간영역을 결정하고(S111), 그 결정된 공간영역의 대표위치값을 산출한다(S113). 본 실시 예에서 공간영역의 대표위치값이라 함은 해당 공간영역 내에 존재하는 어느 일 지점의 좌표를 의미한다. 도 4에 전력기기(10)에서 부분방전위치가 존재하는 공간영역을 결정하는 과정을 나타낸 일례가 도시된다.
도 4의 일례에서와 같이, 먼저 원점(O)의 부분방전센서(21)와 X축의 부분방전센서(22) 간에 부분방전신호의 도착순서를 비교하여 해당 전력기기(10)의 좌/우 공간영역(41,42) 중 하나를 결정한다. 또한, 이와 동일하게 원점(O)의 부분방전센서(21)와 Y축의 부분방전센서(23) 간의 부분방전신호 도착순서를 비교하여 해당 전력기기(10)의 전/후 공간영역(43,44) 중 하나를 결정한다. 나아가, 이와 동일하게 원점(O)의 부분방전센서(21)와 Z축의 부분방전센서(24) 간의 부분방전신호 도착순서를 비교하여 해당 전력기기(10)의 상/하 공간영역(45,46) 중 하나를 결정하도록 한다. 이를 구체적으로 설명하면, 예컨대, 원점(O)의 부분방전센서(21)와 X축의 부분방전센서(22) 간에 부분방전신호의 도착순서를 비교하는 경우 X축의 부분방전센서(22)보다 원점의 부분방전센서(21)에 부분방전신호가 먼저 도착하였다고 가정하면 부분방전위치는 X축의 부분방전센서(22)보다 원점의 부분방전센서(21)에 상대적으로 더 가까이 있다는 것으로 판단할 수 있다. 이는 도 4에서와 같이 원점의 부분방전센서(21)와 X축의 부분방전센서(22)가 동일면에 부착되기 때문에 부분방전위치가 좌/우 공간영역(41,42) 중에서는 좌측 공간영역(41)에 더 가까운 것으로 판단할 수 있기 때문이다. 이러한 판단과정은 Y축 및 Z축의 부분방전센서(23,24)에도 동일하게 적용할 수 있다. 상기에서와 같이 결정된 좌/우 공간영역(41,42), 전/후 공간영역(43,44) 및 상/하 공간영역(45,46)에서 공통으로 적용되는 어느 하나의 공간영역을 부분방전위치가 존재하는 공간영역으로 결정하는 것이다.
여기서, 이러한 부분방전위치의 공간영역을 결정하는 단계(S111)는 각 부분방전센서(20)에서의 부분방전신호 도착순서로부터 다수의 공간영역(A~H) 중 부분방전이 발생한 위치가 어느 공간영역에 있는지를 1차로 선별하기 위한 것이다. 특히, 이는 후술하는 연립방정식 수치해석 알고리즘을 통해 4원 연립방정식의 해를 구할 때 선별된 공간영역의 대표위치값을 초기값으로 설정함으로써 그 설정된 초기값을 보다 신뢰성 있는 값, 즉 상대적으로 해에 근접한 값으로 설정하기 위한 것이다. 연립방정식 수치해석 알고리즘은 초기값을 어떤 값으로 설정하느냐에 따라 해에 수렴하는 속도가 달라지고 수렴하기도 하고 발산하기도 한다. 따라서, 본 실시 예와 같이 1차적으로 부분방전위치가 존재하는 공간영역을 1차적으로 선정함으로써 연립방정식 수치해석 알고리즘에서 해에 수렴할 수 있도록 하기 위한 것이다.
이어, 각 부분방전센서(20)별 부분방전신호의 도착시간차를 이용하여 부분방전위치에서 각 부분방전센서(20)별 거리에 대한 4원 연립방정식을 설정한다(S115). 이때, 이러한 4원 연립방정식에서는 부분방전위치(P)의 좌표(x,y,z) 및 부분방전신호가 가장 먼저 도착한 제1부분방전센서(21~24 중 어느 하나)에서의 부분방전신호 도착시간(T1)을 미지수로 하여 부분방전위치와 부분방전센서들 간의 각각의 거리에 대한 4원 연립방정식을 설정하는 것이다. 이러한 4원 연립방정식은 하기 수학식 1과 같이 나타난다.
수학식 1
Figure PCTKR2013008804-appb-M000001
여기서, (x,y,z)은 검출하고자 하는 부분방전위치의 좌표, (x0,y0,z0), (x1,y1,z1), (x2,y2,z2), (x3,y3,z3)은 전력기기의 외면에 설치된 다수의 부분방전센서의 좌표, T1은 부분방전신호가 가장 먼저 도착한 제1부분방전센서에서의 부분방전신호 도착시간, △t1,△t2,△t3은 각각 상기 제1부분방전센서에서의 도착시간과 다른 나머지 부분방전센서에서의 도착시간 간의 도착시간차, c는 해당 전력기기에서의 부분방전신호 전파속도이다.
이때, (x0,y0,z0),(x1,y1,z1),(x2,y2,z2),(x3,y3,z3) 좌표, △t1,△t2,△t3 값, 그리고 전파속도(c)는 이미 알려진 값이고, (x,y,z)와 T1는 미지수이다. 이러한 4개의 미지수를 이용하여 부분방전위치의 좌표로부터 각 부분방전센서(20)까지의 각 거리에 대한 4원 연립방정식을 설정하는 것이다. 여기서, 상기 각 거리는 주지된 바와 같이 부분방전신호의 도착시간과 전파속도를 이용하여 구할 수 있다.
다시, 도 2를 참조하면 본 실시 예에서는 상기의 4원 연립방정식에서 부분방전신호의 도착시간차에 대하여 보상치를 적용한다(S117). 즉, 상술한 4원 연립방정식에 적용된 부분방전신호의 도착시간차는 전력기기(10)의 내부에 아무런 구조물이 없는 것을 조건으로 하여 부분방전신호가 직선경로 전달되는 경우에 적용되는 것이다. 그러나, 실제로는 전력기기(10)의 내부에는 다양한 구조물(예:내부부품, 절연유 등)이 존재하므로 부분방전신호가 이상적인 직선경로로 각 부분방전센서(20)에 전달되지 않으며, 이로 인해 이론적인 부분방전신호 도착시간차와 실제 부분방전신호 도착시간차 간의 오차가 발생한다. 이러한 실제 전력기기(10)의 일례가 도 5에 도시되어 있다. 도 5는 본 발명의 실시 예에 따른 전력기기 내부에서 부분방전신호의 도착시간차의 보상치를 설명하기 위한 도면이다. 실제 전력기기(10)의 내부에는 구조물(13)과 절연유(미도시) 등이 있다. 이 경우, 부분방전이 발생하면 상술한 바와 같이 부분방전신호가 이상적인 직선경로로 전파되는 것이 아니라 여러 구조물에서 반사가 일어나거나 굴절되면서 전파되는 것이다. 따라서, 부분방전신호가 전파속도, 즉 부분방전센서(21~24)에 부분방전신호의 도착시간은 이론적인 경우에 비해 늦어진다(△t1'>△t1,△t2'>△t2). 이로 인해 각 부분방전센서 간의 부분방전신호 도착시간차에도 이론적인 경우에 비해 오차가 발생하게 된다(T+△t1'>T+△t1). 본 실시 예에서는 이러한 오차를 보상하기 위한 게인 스케줄링(gain scheduling)을 수행하도록 하는 것이다. 이는 실제 전력기기(10)에서의 실질적인 부분방전신호 도착시간(△t1')에 보상치(G)를 적용함으로써 상기 4원 연립방정식에 나타난 이론적인 부분방전신호 도착시간차(△t1)에 근사하도록 보상을 하는 것이다. 이들 관계는 하기 수학식 2와 같이 나타낼 수 있다.
수학식 2
Figure PCTKR2013008804-appb-M000002
여기서, △ti는 전력기기에 내부 구조물이 없는 상태, 즉 부분방전신호가 직선으로 전파될 때의 이론적인 부분방전신호 도착시간차, △ti'는 다양한 내부 구조물이 존재하는 실제 전력기기에서 부분방전신호가 전파될 때의 실제 부분방전신호 도착시간차이다. 이때, △t1,△t2,△t3은 부분방전신호가 가장 먼저 도착한 제1부분방전센서와 나머지 다른 제2,3,4 부분방전센서 간의 이론적인 도착시간차를 의미하고, △t1',△t2',△t3'은 제1부분방전센서와 나머지 다른 제2,3,4 부분방전센서 간의 실제 도착시간차를 의미한다.
또한, Gij는 전력기기(10)로의 개별 부분방전신호 도착시간차 및 공간영역에 따른 보상치, i는 제1부분방전센서와 나머지 다른 제2,3,4 부분방전센서 간의 도착시간차 순서(도착시간차 △t1',△t2',△t3'에 각각 개별적인 보상치가 적용됨), j는 공간영역의 위치이다.
상술한 바와 같은 부분방전신호 도착시간차의 보상치는 전력기기(10)의 공간영역별로 각각 미리 설정되어 있음이 바람직하다. 이로부터 신호분석장치(30)는 상기와 같이 부분방전위치가 존재하는 공간영역이 결정되면, 그 결정된 공간영역에 대응하는 부분방전신호의 도착시간차 보상치를 추출하여 4원 연립방정식에서 상기 보상치가 적용된 부분방전신호의 도착시간차를 이용하여 해를 구하게 된다. 이로써, 부분방전위치의 검출에 오차가 발생하는 것을 방지하여 보다 신뢰성 있는 검출결과를 얻을 수 있게 되는 것이다.
여기서, 전력기기(10)의 공간영역별로 각각 미리 설정된 부분방전센서별 부분방전신호 도착시간차의 보상치는 예컨대, 하기 표와 같이 나타낼 수 있으며, 이러한 표는 전력기기(10)의 구조나 특징에 따라 다양하게 변경될 수 있음은 당연한 것이다.
표 1
j i A B C D E F G H
1 G1A G1B G1C G1D G1E G1F G1G G1H
2 G2A G2B G2C G2D G2E G2F G2G G2H
3 G3A G3B G3C G3D G3E G3F G3G G3H
본 실시 예에서는 상기한 표에서와 같이 전력기기(10)의 개별 도착시간차의 순서(i) 및 공간영역(j)에 따라 미리 설정된 부분방전신호 도착시간차의 보상치를 이용함으로써 전력기기(10)에서의 부분방전위치 검출의 신뢰성을 높일 수 있도록 한다. 따라서, 본 실시 예에서는 보상치가 적용된 실제 부분방전신호 도착시간차를 상기한 4원 연립방정식에서 부분방전신호 도착시간차에 적용하는 것이다.
다시 도 2를 참조하여, 이후에는 연립방정식 수치해석 알고리즘에 의해 상기 설정된 4원 연립방정식으로부터 부분방전위치(P)의 좌표(x,y,z)를 계산하되, 상기 S113 단계에서 결정된 공간영역의 대표위치값을 그 연립방정식 수치해석 알고리즘의 초기값으로 적용하여 부분방전위치(P)의 좌표(x,y,z)를 계산한다(S119).
여기서, 상술한 바와 같이 본 발명에서는 부분방전위치가 존재하는 어느 하나의 공간영역이 결정되면 그 부분방전위치의 검출을 위해 공지의 연립방정식 수치해석 알고리즘을 이용한다. 본 실시 예에서 적용할 수 있는 이러한 공지의 연립방정식 수치해석 알고리즘은 많이 제시되어 있다. 예컨대 뉴턴법(Newton Method) 또는 뉴턴-랩슨법(Newton-Raphson Method) 알고리즘 등을 이용할 수도 있다. 일반적으로 연립방정식 수치해석은 함수의 실제값 또는 근사값을 찾는데 가장 효율적인 방법으로서 해에 수렴하지 않거나 엉뚱한 해에 수렴할 가능성이 있으며, 함수의 도함수를 구하기 곤란한 경우에는 적용하기 어렵다.
이러한 연립방정식 수치해석 알고리즘은, 어떤 해의 초기치에 대해서 이것이 근과 가깝다면 이것의 접선(tangent line)과 y=0과의 교점은 현재 x(i)보다 훨씬 더 근에 가깝다는 것을 이용하는 것이다. 이 과정을 반복하는 것이다. 이로써 실제값 또는 그의 근사값을 구하는 것이다. 이때, 근사값은 실제값에서 미리 설정된 범위 내의 값으로 설정할 수 있다.
이상에서 설명한 본 발명은 바람직한 실시 예들을 통하여 상세하게 설명되었지만, 본 발명은 이러한 실시 예들의 내용에 한정되는 것이 아님을 밝혀둔다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면, 비록 실시 예에 제시되지 않았지만 첨부된 청구항의 기재 범위 내에서 다양한 본 발명에 대한 모조나 개량이 가능하며, 이들 모두 본 발명의 기술적 범위에 속함은 너무나 자명하다 할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.
전력설비에 사용되는 다양한 전력기기에서는 부분방전이 발생하는 경우가 있다. 부분방전은 전력기기 고장의 원인이 되므로 그 부분방전위치를 정확하게 검출하여 부분방전의 원인을 사전에 제거하는 것이 중요하다. 이를 위하여 전력기기에서는 부분방전의 위치를 정확하게 측정하는 기술이 요구된다.
이러한 측면에서 볼 때, 본 발명은 변압기 등과 같은 전력기기에서 부분방전위치를 정확하게 측정할 수 있으므로, 전력기기뿐만 아니라 전력설비 분야에서 매우 유용하게 이용될 수 있다.

Claims (8)

  1. 전력기기의 외면에 설치된 다수의 부분방전센서에 도착한 부분방전신호를 이용하여 부분방전위치를 검출하는 전력기기의 부분방전위치 검출방법에 있어서,
    상기 전력기기를 동일한 부피를 갖는 다수의 공간영역으로 구분하는 단계;
    상기 각 부분방전센서별로 부분방전신호의 도착순서 및 부분방전신호의 도착시간차를 측정하는 단계;
    상기 측정된 부분방전신호의 도착순서를 이용하여 상기 구분된 공간영역 중 상기 부분방전위치가 존재하는 공간영역을 결정하고 상기 결정된 공간영역의 대표위치값을 산출하는 단계;
    상기 부분방전위치의 좌표(x,y,z) 및 상기 부분방전신호가 가장 먼저 도착한 제1 부분방전센서에서의 부분방전신호 도착시간(T1)을 미지수로 하고 상기 각 부분방전센서별 부분방전신호의 도착시간차를 이용하여 상기 부분방전위치에서 각 부분방전센서별 거리에 대한 4원 연립방정식을 설정하는 단계; 및
    연립방정식 수치해석 알고리즘에 의해 상기 4원 연립방정식으로부터 상기 부분방전위치의 좌표(x,y,z)를 계산하되, 상기 결정된 공간영역의 대표위치값을 상기 연립방정식 수치해석 알고리즘의 초기값으로 적용하여 상기 부분방전위치의 좌표를 계산하는 단계; 를 포함하는 전력기기의 부분방전위치 검출방법.
  2. 제1항에 있어서,
    상기 다수의 부분방전센서는 상기 전력기기의 외면의 특정시점에 설정된 원점 및 상기 원점을 기준으로 3차원 직교좌표 X,Y,Z축에 대응하는 위치에 각각 설치되는 것을 특징으로 하는 전력기기의 부분방전위치 검출방법.
  3. 제2항에 있어서,
    상기 전력기기의 공간영역은 4~16개로 구분되는 것을 특징으로 하는 전력기기의 부분방전위치 검출방법.
  4. 제3항에 있어서,
    상기 공간영역을 결정하는 단계는,
    상기 원점 및 X축 부분방전센서 간의 부분방전신호 도착순서를 비교하여 상기 전력기기의 좌/우 공간영역 중 하나를 결정하고, 상기 원점 및 Y축 부분방전센서 간의 부분방전신호 도착순서를 비교하여 상기 전력기기의 전/후 공간영역 중 하나를 결정하며, 상기 원점 및 Z축 부분방전센서 간의 부분방전신호 도착순서를 비교하여 상기 전력기기의 상/하 공간영역 중 하나를 결정하는 단계; 및
    상기 결정된 좌/우, 전/후 및 상/하의 공간영역을 이용하여 상기 부분방전위치가 존재하는 공간영역을 결정하는 단계; 를 포함하는 전력기기의 부분방전위치 검출방법.
  5. 제1항에 있어서,
    상기 각 부분방전센서의 부분방전신호의 도착시간차를 측정하는 단계는,
    상기 부분방전신호가 가장 먼저 도착한 제1 부분방전센서의 부분방전신호 도착시간(T1)과 다른 나머지 부분방전센서의 부분방전신호 도착시간(T2,T3,T4) 간의 시간차(△t1,△t2,△t3)인 것을 특징으로 하는 전력기기의 부분방전위치 검출방법.
  6. 제6항에 있어서,
    상기 제1부분방전센서에서의 부분방전신호 도착시간(T1)은 부분방전이 발생한 시점에서 상기 제1부분방전센서에 부분방전신호가 도착한 시점까지 소요된 시간임을 특징으로 하는 전력기기의 부분방전위치 검출방법.
  7. 제1항에 있어서,
    상기 4원 연립방정식을 설정하는 단계 이후에,
    상기 전력기기의 공간영역별로 각각 미리 설정된 부분방전센서별 부분방전신호 도착시간차의 보상치에서 상기 결정된 공간영역에 대응하는 부분방전신호의 도착시간차 보상치를 추출하는 단계; 및
    상기 추출된 부분방전신호의 도착시간 보상치를 상기 설정된 4원 연립방정식의 상기 각 부분방전센서별 부분방전신호의 도착시간차에 적용하는 단계; 를 더 포함하고,
    상기 도착시간 보상치가 적용된 상기 4원 연립방정식으로부터 상기 연립방정식 수치해석 알고리즘에 의해 상기 부분방전위치의 좌표를 계산하는 것을 특징으로 하는 전력기기의 부분방전위치 검출방법.
  8. 제7항에 있어서,
    상기 미리 설정된 부분방전센서별 부분방전신호 도착시간의 보상치는,
    상기 각 부분방전센서별 부분방전신호의 도착시간차의 순서 및 상기 공간영역별로 설정된 것을 특징으로 하는 전력기기의 부분방전위치 검출방법.
PCT/KR2013/008804 2012-10-09 2013-10-02 전력기기의 부분방전위치 검출방법 WO2014058173A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/434,299 US9658273B2 (en) 2012-10-09 2013-10-02 Method of detecting partial discharging location of power device
SA515360256A SA515360256B1 (ar) 2012-10-09 2015-04-08 طريقة للكشف عن موقع تفريغ جزئي لجهاز طاقة

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120111696A KR101364114B1 (ko) 2012-10-09 2012-10-09 전력기기의 부분방전위치 검출방법
KR10-2012-0111696 2012-10-09

Publications (1)

Publication Number Publication Date
WO2014058173A1 true WO2014058173A1 (ko) 2014-04-17

Family

ID=50271270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/008804 WO2014058173A1 (ko) 2012-10-09 2013-10-02 전력기기의 부분방전위치 검출방법

Country Status (4)

Country Link
US (1) US9658273B2 (ko)
KR (1) KR101364114B1 (ko)
SA (1) SA515360256B1 (ko)
WO (1) WO2014058173A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106338674A (zh) * 2016-08-24 2017-01-18 上海交通大学 基于改进ecoc分类器的直流电缆接头绝缘故障诊断方法及系统

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10488487B2 (en) * 2015-03-25 2019-11-26 Pdp-Technologies Ltd. System for mapping electromagnetic discharge fields
CN105717432B (zh) * 2016-04-28 2019-12-10 广州供电局有限公司 局部放电定位装置及方法
CN106019078A (zh) * 2016-05-18 2016-10-12 昆明理工大学 一种基于经验波速的无效时刻点剔除方法
CN105866631B (zh) * 2016-05-19 2019-02-05 昆明理工大学 一种基于模糊匹配的新型双端行波测距方法
KR102056241B1 (ko) * 2016-07-06 2019-12-16 현대일렉트릭앤에너지시스템(주) 부분방전 위치검출 장치 및 그 방법
CN108896893B (zh) * 2018-09-13 2024-04-26 国网安徽省电力有限公司电力科学研究院 一种电气设备中的局部放电源的定位系统及定位方法
CN109031076A (zh) * 2018-09-13 2018-12-18 国网安徽省电力有限公司电力科学研究院 一种电气设备上传感器检测部署系统及部署方法
CN111289861B (zh) * 2020-03-26 2022-01-25 云南电网有限责任公司电力科学研究院 一种局部放电源位置的检测方法
EP3943958A1 (en) * 2020-07-20 2022-01-26 ABB Schweiz AG Methods for determining the presence of an electrical discharge in at least one predetermined area of an electrical apparatus and system therefor
CN112763868B (zh) * 2020-12-26 2022-11-08 广东电网有限责任公司电力科学研究院 一种基于免疫粒子群的局部放电源定位方法和系统
WO2023274503A1 (de) * 2021-06-29 2023-01-05 Siemens Aktiengesellschaft Ortung eines lichtbogens

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5680059A (en) * 1994-02-25 1997-10-21 The Kansai Electric Power Co., Inc. Abnormality detecting method and apparatus for electric equipment, particularly for a rotating electric machine
JPH1054862A (ja) * 1996-08-09 1998-02-24 Toshiba Corp 放電発生位置標定方法
KR20110046226A (ko) * 2009-10-27 2011-05-04 주식회사 태광이엔시 변압기의 복합적 부분방전 감시 시스템 및 방법
KR20110105963A (ko) * 2010-03-22 2011-09-28 엘에스전선 주식회사 케이블의 결함위치 추정 장치 및 그 방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5416418A (en) * 1993-08-02 1995-05-16 Electric Power Research Institute, Inc. Method and apparatus for determining partial discharge sites in cables
US5475312A (en) * 1994-06-07 1995-12-12 Iris Power Engineering Inc. Method and device for distinguishing between partial discharge and electrical noise
SE9404209L (sv) * 1994-12-05 1996-06-06 Abb Research Ltd Förfarande och anordning för lokalisering av partiella urladdningar hos en elektrisk högspänningsapparat
CN1777814B (zh) * 2003-05-09 2010-06-23 西门子公司 定位局部放电的测量装置及其应用
KR101051099B1 (ko) * 2008-09-30 2011-07-21 한국전력공사 고전압 전력 기기의 극 초단파 부분 방전 및 방전위치 측정장치
KR101095778B1 (ko) * 2009-12-28 2011-12-21 주식회사 효성 전력 변압기를 위한 부분방전 검출장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5680059A (en) * 1994-02-25 1997-10-21 The Kansai Electric Power Co., Inc. Abnormality detecting method and apparatus for electric equipment, particularly for a rotating electric machine
JPH1054862A (ja) * 1996-08-09 1998-02-24 Toshiba Corp 放電発生位置標定方法
KR20110046226A (ko) * 2009-10-27 2011-05-04 주식회사 태광이엔시 변압기의 복합적 부분방전 감시 시스템 및 방법
KR20110105963A (ko) * 2010-03-22 2011-09-28 엘에스전선 주식회사 케이블의 결함위치 추정 장치 및 그 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106338674A (zh) * 2016-08-24 2017-01-18 上海交通大学 基于改进ecoc分类器的直流电缆接头绝缘故障诊断方法及系统
CN106338674B (zh) * 2016-08-24 2018-12-21 上海交通大学 基于改进ecoc分类器的直流电缆接头绝缘故障诊断方法及系统

Also Published As

Publication number Publication date
SA515360256B1 (ar) 2016-10-06
KR101364114B1 (ko) 2014-02-20
US20150268292A1 (en) 2015-09-24
US9658273B2 (en) 2017-05-23

Similar Documents

Publication Publication Date Title
WO2014058173A1 (ko) 전력기기의 부분방전위치 검출방법
Wei et al. A novel 1D target-based calibration method with unknown orientation for structured light vision sensor
CN104835141B (zh) 一种激光测距建立立体模型的移动终端及方法
EP3049751B1 (en) System and method for determining the position of a bullet projectile on a target plane
WO2011118923A2 (en) Apparatus for predicting defect location of cable and method thereof
CS90092A3 (en) Opto-electronic method of checking dimensions of a prismatic object
US8442803B2 (en) Method of measuring radiation doses on different directions
CN108918944B (zh) 一种基于电场传感器判断电压等级的方法、装置和系统
WO2018161537A1 (zh) 触控力检测方法、触控力检测装置、触控面板及显示装置
WO2018159902A1 (ko) 복수의 라이다 센서 캘리브레이션 방법 및 장치
US20210003625A1 (en) Traveling Wave Based Fault Location Using Unsynchronized Measurements for Transmission Lines
CN108802746A (zh) 一种抗干扰的测距方法及装置
CN109187763A (zh) 一种基于四传感器阵列对声发射源定位的方法
WO2011149258A2 (ko) 기지국 전자파의 인체영향 평가 방법 및 장치
KR20180005350A (ko) 부분방전 위치검출 장치 및 그 방법
WO2020209513A1 (ko) 부분방전 진단 및 위치 검출 방법
CN106643975A (zh) 分体电极连续料位计及其测量方法
WO2019212065A1 (ko) 다중 라이다 신호 보정 방법 및 시스템
WO2018139900A1 (ko) 계량 방식 판단 장치
JP2006105862A (ja) リアルタイム地震危険度予測の方法
CN110458228A (zh) 一种信源数时变和自适应盲源分离的危险品检测方法
CN104569942A (zh) 一种单站雷达目标特性测量同步散射点位置识别方法
CN104407344B (zh) 一种确定建筑物监测点空间位置的测量系统及方法
Wells et al. Acoustic emission in aerospace structures
CN207652752U (zh) 易于检测的Frit线路结构及检测Frit是否异常的系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13845410

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14434299

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13845410

Country of ref document: EP

Kind code of ref document: A1