WO2014058145A1 - Soil stabilization and improvement method using biopolymer - Google Patents

Soil stabilization and improvement method using biopolymer Download PDF

Info

Publication number
WO2014058145A1
WO2014058145A1 PCT/KR2013/006906 KR2013006906W WO2014058145A1 WO 2014058145 A1 WO2014058145 A1 WO 2014058145A1 KR 2013006906 W KR2013006906 W KR 2013006906W WO 2014058145 A1 WO2014058145 A1 WO 2014058145A1
Authority
WO
WIPO (PCT)
Prior art keywords
soil
biopolymer
weight
parts
polymer
Prior art date
Application number
PCT/KR2013/006906
Other languages
French (fr)
Korean (ko)
Inventor
조계춘
장일한
Original Assignee
한국과학기술원
한국건설기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원, 한국건설기술연구원 filed Critical 한국과학기술원
Priority to US14/434,188 priority Critical patent/US9944855B2/en
Priority to CN201380064168.2A priority patent/CN105143400A/en
Priority claimed from KR1020130090883A external-priority patent/KR101551920B1/en
Priority claimed from KR1020130090894A external-priority patent/KR101544145B1/en
Publication of WO2014058145A1 publication Critical patent/WO2014058145A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F11/00Other organic fertilisers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/40Soil-conditioning materials or soil-stabilising materials containing mixtures of inorganic and organic compounds

Definitions

  • the present application relates to a method of stabilizing and improving soil using a polymer viscous biopolymer, a soil composition for promoting germination or growth of vegetation, a composition for preventing soil erosion, and a soil building material or member.
  • the present application is to provide a method of stabilizing and improving the soil, which can promote vegetation growth while preventing erosion of the soil and enhancing strength and durability by using a polymer viscous biopolymer.
  • a first aspect of the present application provides a method of stabilizing and improving soil, comprising adding a polymeric viscous biopolymer to the soil.
  • the second aspect of the present application provides a soil composition for promoting germination or growth of vegetation, which is prepared by the method of stabilizing and improving the soil of the first aspect of the present application, and which comprises a polymer viscous biopolymer.
  • the third aspect of the present application is prepared by the method of stabilizing and improving the soil of the first aspect of the present application, and provides a composition for preventing soil erosion, comprising a polymer viscous biopolymer.
  • a fourth aspect of the present application provides an earth building material or member, prepared by the soil stabilization and improvement method of the first aspect of the present application, and comprising a polymer viscous biopolymer.
  • Soil erosion is affected by soil moisture, particle size distribution, organic matter content, and surface vegetation. In the case of deserts with severe soil loss, all of these conditions are poor, so in order to improve the resistance to soil erosion, the properties of the soil itself must be improved rather than blocking external factors. To this end, an environmentally friendly method is required to maintain soil moisture for a long time, increase the bonding strength (adhesive force) between soil particles, and to grow vegetation smoothly in the future.
  • Existing chemical treatment methods focus only on primary soil strength enhancement, and there is a lack of consideration of creating a vegetation environment to prevent permanent erosion.
  • the soil stabilization and improvement methods of the present application not only rely on existing nitrogen-based or phosphorus-based chemical fertilizers or artificial soils, but also promote vegetation germination and growth in an environmentally friendly manner, as well as stabilizing vegetation (sufficient rooting of roots).
  • the physical stabilization of the sowing soil can be realized simultaneously until
  • the soil stabilization and remediation method of the present application maintains the initial stabilization of the soil, there is no fear of contamination and eutrophication of groundwater or rivers, and the environment in which the biopolymers are naturally biodegraded and returned to the original soil over time. It has friendly advantages. Accordingly, the soil stabilization and improvement method of the present application is not only in the field of eco-friendly vegetation, but also in the construction of vegetation surface at large construction sites, river banks and waterfront greening projects, initial stabilization of road and rail slopes, large-scale farmland formation, rooftops and cities. It can be effectively used in various fields such as agriculture.
  • the present application can contribute greatly to the full-scale commercialization of biopolymers by providing new uses for applying environmentally friendly biopolymers to soil stabilization and improvement.
  • 1 is a view showing a soil sample after a single rainfall simulation according to an embodiment of the present application. Untreated loess, xanthan gum treated loess, and beta-1,3 / 1,6-glucan treated loess from the left.
  • Figure 2 shows an indoor experimental configuration for rainfall erosion simulation according to an embodiment of the present application.
  • Figure 3 shows a test cultivation picture of the biopolymer treated soil according to an embodiment of the present application.
  • Figure 4 shows the vegetation growth results of the biopolymer treated soil over time according to an embodiment of the present application.
  • Figure 5a shows an electron projection micrograph of the untreated loess and vegetation roots according to an embodiment of the present application.
  • Figure 5b is an electron projection microscope photograph of the beta glucan treated loess and vegetation roots according to an embodiment of the present application.
  • Figure 5c is an electron projection micrograph showing the xanthan gum treated loess and vegetation roots according to an embodiment of the present application.
  • FIG. 6 shows a biopolymer treatment process through heat treatment according to an embodiment of the present application.
  • FIG. 7 is a graph showing the results of measuring the strength of the biopolymer-treated soil (ocher) according to an embodiment of the present application.
  • FIG. 8 is a graph showing a result of measuring the strength of the biopolymer-treated soil (sand) according to an embodiment of the present application.
  • Figure 9 shows the rapid cooling and curing conditions of the biopolymer-treated soil according to an embodiment of the present application.
  • FIG. 10 is a graph showing the behavior under rapid cooling and curing conditions of the biopolymer-treated soil according to an embodiment of the present application.
  • FIG. 11 is a conceptual diagram illustrating a method for manufacturing an environmentally friendly soil building material using a thermal gelling biopolymer according to one embodiment of the present application.
  • FIG. 12 is a conceptual diagram of a ground treatment method using a thermal gelling biopolymer according to one embodiment of the present application.
  • FIG. 13 shows a conceptual diagram of a biopolymer-treated vegetation ground composition using a spraying method according to an embodiment of the present application.
  • FIG. 14 shows a conceptual diagram of a biopolymer-treated vegetation ground composition using a wet mixing and spreading method according to an embodiment of the present application.
  • FIG. 15 shows a conceptual diagram of a biopolymer-treated vegetation ground composition using a dry mixing / spray method according to an embodiment of the present application.
  • FIG. 16 illustrates a conceptual diagram of partition division for eco-friendly waterside space composition using a biopolymer according to one embodiment of the present application.
  • 17 is a graph showing the bending strength of the building material using a biopolymer according to an embodiment of the present application.
  • the term "combination (s) thereof" included in the representation of a makushi form refers to one or more mixtures or combinations selected from the group consisting of the components described in the representation of makushi form, It means to include one or more selected from the group consisting of the above components.
  • cationic aqueous solution means an aqueous solution containing a cation, and may include, for example, an aqueous solution containing an alkali metal or alkaline earth metal ion, but may not be limited thereto.
  • the alkali metal comprises a Group 1 metal consisting of Li, Na, K, Rb, and Cs, which may provide monovalent cations, and the alkaline earth metals may provide divalent cations, Be, Mg, Ca , Group 2 metals consisting of Sr, Ba, and Ra.
  • Hwang-to means yellowish or yellowish brown granite, in which fine grains of rock broken by weathering in the interior of the continent are blown off and stacked.
  • soil is used in the same sense as the soil.
  • a first aspect of the present application provides a method of stabilizing and improving soil, comprising adding a polymeric viscous biopolymer to the soil.
  • the polymer viscous biopolymer may be used without limitation as long as it is a polymer material produced from an organism, but may not be limited thereto.
  • the polymer viscous biopolymer may include a substance having glucose as a basic unit, and may be broadly classified into a polysaccharide and an amino-acid series.
  • Biopolymers can be classified into high-molecular chains and gelation biopolymers according to their shape.
  • the high molecular chain biopolymer may include beta-1,3 / 1,6-glucan (Polycan TM ), alpha glucan, curdlan, and the like.
  • the amino acid-based biopolymer may include chitosan and gamma fiji, ⁇ PGA, but may not be limited thereto.
  • the polymeric viscous biopolymer is about 20 parts by weight or less, for example, about 0.00001 parts by weight to about 15 parts by weight, about 0.00001 parts by weight to about 10 parts by weight based on about 100 parts by weight of soil.
  • the polymer viscous biopolymer may be to expand the pores in the soil, to maintain the water-containing properties, and to increase the bonding strength between the soil particles, but may not be limited thereto.
  • adding the polymer viscous biopolymer to the soil is performed by mixing the polymer viscous biopolymer with the soil, spraying on the surface of the soil, or injecting into the soil It may be, but may not be limited thereto.
  • the present application may include adding the polymer viscous biopolymer to the soil in a powder state, but may not be limited thereto.
  • the polymer viscous biopolymer may be directly mixed with the soil, or the polymer viscous biopolymer powder or suspension or aqueous solution may be applied to the surface of the soil to form a coating, or injected into the soil, but is not limited thereto. You may not.
  • after directly mixing the polymer viscous biopolymer with the soil it may be installed on the surface of the target area, but may not be limited thereto.
  • it may include adding the polymer viscous biopolymer to the soil in the form of an aqueous solution or a basic aqueous solution, but may not be limited thereto.
  • a suspension or an aqueous solution of the polymer viscous gelling polysaccharide biopolymer may be added as it is, or a salt may be added to the suspension or the aqueous solution of the biopolymer to prepare a basic aqueous solution, for example, a basic aqueous solution having a pH of about 9 or more. It may be added to the soil by lowering the viscosity, but may not be limited thereto.
  • the acidic aqueous solution may be sprayed to promote aggregation of the infiltrating polymer viscous gelled polysaccharide biopolymer, but may not be limited thereto.
  • the polymer viscous biopolymer after adding the polymer viscous biopolymer to the soil, it may further include adding a cation of an alkali metal or alkaline earth metal, but may not be limited thereto.
  • a cation of an alkali metal such as Na + , K + or an alkali earth metal such as Ca 2+ , Mg 2+ may be added to induce gelation of the biopolymer to form a solid soil-biopolymer mixture.
  • this may not be limited.
  • the polymer viscous biopolymer after adding the polymer viscous biopolymer to the soil, it may further include adding an acidic aqueous solution or a cationic aqueous solution of pH about 5 or less, but is not limited thereto.
  • the cationic aqueous solution may include, for example, an aqueous solution containing alkali metal or alkaline earth metal ions.
  • the addition of alkali metal or alkaline earth metal ions to the soil may further improve the binding properties with the soil. Can be.
  • the method may further include heating and cooling the soil, but may not be limited thereto.
  • the polymer viscous biopolymer may be added to the soil, and then sufficiently heated at about 80 ° C. to about 120 ° C., and then cooled to about 40 ° C. to about 60 ° C. or less to induce gelation of the biopolymer.
  • the method may further include adding a cation of an alkali metal or an alkaline earth metal, for example, an alkali metal cation such as Na + , K + , or an alkali earth metal such as Ca 2+ , Mg 2+, or the like. It may be, but may not be limited thereto.
  • after spraying the polymer viscous biopolymer on the surface of the soil may further include spraying water, acidic aqueous solution, and / or cationic aqueous solution, but may not be limited thereto.
  • water, acidic aqueous solution, and / or cationic aqueous solution may not be limited thereto.
  • an acidic aqueous solution having a pH of about 5 or less may be sprayed to strengthen the gel structure of the biopolymer in the soil, but may not be limited thereto.
  • the soil stabilization and improvement method may be to promote germination or growth of vegetation, but may not be limited thereto.
  • the soil stabilization and improvement method may be to enhance the soil erosion resistance, but may not be limited thereto.
  • the polymer viscous biopolymer may be added to the soil in various ways as follows according to the type and purpose of the polymer viscous biopolymer used, but may not be limited thereto:
  • Polymeric viscous chain polysaccharide biopolymers are generally polymers having a molecular weight of about 10,000 Da or more, and the fibers are entangled with each other in suspension or aqueous solution to show high viscosity. These polymer viscous chain polysaccharides have a property of binding well with soil particles, especially clay soil particles, due to the electrical properties of the surface. This mutual behavior can be used to enhance the soil stiffness and resistance to erosion by using polymer viscous chain polysaccharides. Soil erosion resistance enhancement method using the polymer viscous chain polysaccharide according to the present application is as follows:
  • the water After spraying the powdery polymer viscous chain polysaccharide on the soil surface, the water is sprinkled to induce penetration into the soil, and also causes the hydrophilic polymer viscous chain polysaccharide to expand and entangle with each other. It is a method of forming a polymer film.
  • the viscosity is controlled by varying the concentration of the suspension or aqueous solution according to the type of soil. It can facilitate infiltration, combine with soil upon infiltration to form a soil-biopolymer matrix, and increase the soil's stiffness as moisture dries.
  • the soil or transported soil is mixed with biopolymer and water to make a soil mixture.
  • the biopolymer is added at a ratio of about 0.0001% to about 5% of the dry weight of the soil, and water is about 10% to about 200 by weight of the soil, depending on the type of soil (sand or clay).
  • a soil-biopolymer mixture soil while spraying or injecting powder or liquid biopolymer while stirring soil with a plow or auger, by mixing the surface of the soil with the biopolymer while simultaneously stirring the surface of the soil. How to formulate.
  • Soil-bio is obtained by injecting a polymer viscous chain polysaccharide suspension or aqueous solution having a concentration of about 0.00001% to about 10% into the soil at high pressure by infiltrating and diffusing the biopolymer suspension or aqueous solution into the soil.
  • the polymer treatment ground is formed.
  • the soil-biopolymer mixture surface was compacted and then compacted to improve adhesion to the original layer of the soil-biopolymer mixture soil, as well as to increase the density of the soil-biopolymer mixture soil, thereby improving rigidity and durability. You can.
  • a high molecular viscous chain polysaccharide biopolymer is used.
  • Polymeric viscous chain-type polysaccharides have high hydrophilicity to maintain the moisture environment in the soil, as well as improve the aeration and water permeability of the soil, and further improve the growth of plant roots, thereby promoting overall vegetation.
  • Specific implementation method is as follows.
  • Promoting the germination and growth of the plant by directly cultivating the plant using a mixed soil containing a polymer viscous chain polysaccharide biopolymer of about 0.0001% to about 5% relative to the dry weight of the soil as vegetation soil.
  • the use of a polymer viscous chain polysaccharide suspension or an aqueous solution of about 0.00001% to about 10% as a growing water is used to suppress the loss of water supplied and to improve the durability of the soil around plants. At the same time it is effective in preventing plant growth.
  • Polymeric viscous gelled polysaccharides refer to materials that show low viscosity in suspension or aqueous solution, but form a gel with high stiffness through chemical or heat treatment. Specifically, the following methods are suggested as ways to increase the strength.
  • the polymer viscous gelled polysaccharide suspension or aqueous solution at a concentration of about 0.00001% to about 10% is sufficiently heated to about 80 ° C. to about 120 ° C., followed by soil and water content in the range of about 10% (sand) to about 200% (clay). Cooling while mixing with soil in the conditions to induce gel formation at a temperature of about 40 °C to about 60 °C or less to form a solid soil-biopolymer mixed soil.
  • Polymeric viscous gelled polysaccharide biopolymers generally exhibit low viscosity in an untreated neutral (pH about 7) suspension or in water, but form gels with high stiffness through chemical or thermal treatment. These polymer viscous gelled polysaccharides combine well with soil particles, especially clay soil particles, due to the electrical properties of the surface to form a robust soil-biopolymer matrix. By using this mutual behavior, it is possible to enhance the soil stiffness and resistance to erosion by using a polymer viscous gelled polysaccharide.
  • the specific form is as follows:
  • the water After spraying the powdery polymer viscous gelled polysaccharide on the soil surface, the water is sprinkled to induce penetration into the soil and at the same time, the hydrophilic polymer viscous gelled polysaccharide is induced to expand and coagulate with each other. Can be formed.
  • first spraying water uses pure water and the second spraying water sprays an acidic or cationic aqueous solution of low pH (pH about 5 or less)
  • second spraying water sprays an acidic or cationic aqueous solution of low pH (pH about 5 or less)
  • an acidic aqueous solution pH of about 5 or less
  • a cationic aqueous solution is directly sprayed.
  • the viscosity is controlled by varying the concentration of the suspension or the aqueous solution according to the type of soil. It is easy to infiltrate, combine with soil upon infiltration to form soil-biopolymer matrix, and increase the soil's stiffness as the moisture dries.
  • three suspension or aqueous solution sprinkling methods exist. First, spraying the biopolymer suspension or the aqueous solution as it is, second, adding the salt to the biopolymer suspension or the aqueous solution to increase the pH (about 9 or more) to lower the viscosity of the suspension or the aqueous solution, and then spraying to increase the permeability in the ground; Third, the first polymer of the biopolymer suspension or the aqueous solution of which the pH was raised to about 9 or more by adding salts to the soil, and then sprinkled with an acidic aqueous solution having a low pH (pH of about 5 or less) by the second spray, was infiltrated. There is a method for promoting the aggregation of gelling polysaccharides.
  • a method of pre-mixing soil and high-molecular viscous gelled polysaccharides and placing them on the surface to form a package or coating wherein the soil or transported soil is viscous gelled polysaccharide biopolymer, neutral or alkaline water (pH about 6 to about 13) is mixed with the 13) to create a soil dough (mixture), and then poured on site, specifically, the biopolymer is added in a ratio of about 0.0001% to 5% of the dry weight of the soil, water is the type of soil (sand or clay quality) )
  • the method to form the soil dough mixed in a ratio of about 10% to about 200% of the weight of the soil and then pour the desired thickness to the site.
  • a low pH acidic aqueous solution (pH up to about 5) or a cationic aqueous solution can be sprayed onto the surface to induce penetration to enhance the gel structure of the viscous gelled biopolymer in the mixed soil.
  • a high pressure spraying polymer viscous gelled polysaccharide suspension or aqueous solution (pH about 6 to about 13) at a concentration of about 0.00001% to about 10% is applied to slopes (surfaces, etc.) that are difficult to surface-treat by spraying or premixing. It is a method of forming a soil-biopolymer mixed soil coating on slopes by promoting disturbance of slope soils and simultaneously penetration of biopolymers. After sparging, a low pH acidic aqueous solution (pH up to about 5) or a cationic aqueous solution may be sprayed on the surface to strengthen the gel structure of the viscous gelled biopolymer in the mixed soil coating.
  • a pressure to grout the polymer viscous gelled polysaccharide suspension or aqueous solution (pH about 6 to about 13) to the ground at a high pressure of about 0.00001% to about 10%
  • an additional low pH acidic aqueous solution (pH of about 5 or less) or a cationic aqueous solution may be further injected to strengthen the gel structure of the viscous gelled biopolymer of the soil-biopolymer mixed soil in the soil.
  • the soil-biopolymer mixed surface layer is prepared after compaction to improve adhesion to the original layer of the soil-biopolymer mixed soil, as well as to increase the density of the soil-biopolymer mixed soil, thereby improving rigidity and durability. Can be.
  • Polymeric viscous chain polysaccharide biopolymers are generally polymers having a molecular weight of about 10,000 Da or more, and the fibers are entangled with each other in a neutral or acidic suspension (pH of about 7 or less) or in an aqueous solution to show high viscosity.
  • the viscous chain-type polysaccharides having a negative charge on the surface has a characteristic of increasing viscosity as the pH is lowered.
  • Polymeric viscous chain polysaccharide biopolymers on the other hand, swell due to high hydrophilicity and become very viscous suspensions or aqueous solutions.
  • the present application proposes the following methods.
  • Increasing the pH of the polymer viscous chain or gelled polysaccharide suspension or aqueous solution at a concentration of about 0.00001% to about 10% results in a lower viscosity.
  • Injecting low-viscosity biopolymer suspensions or aqueous solutions into the ground by spraying or pressure can improve penetration or diffusion into the ground.
  • a bead mill or the like can be used to lower the viscosity of the polymer viscous chain polysaccharide biopolymer solution, and the tangled polysaccharide chains can be released by stirring the solution using the beads at a rate of about 10,000 ppm or more.
  • polymer viscous chain polysaccharide biopolymer solution may be collided at high pressure (about 150 bar or more) to release physically entangled polysaccharide chains.
  • Polycan TM a chain polysaccharide biopolymer solution, has a viscosity of about 1,000 cps, and when it is collided with a homogenizer at 200 bar, the viscosity decreases to about 30 cps, and the liquid of about 30 cps is again returned. Collision reduces the viscosity to about 16 cps.
  • Viscous properties in soil-biopolymer mixed soils by mixing or injecting a physically low-viscosity polymer viscous chain polysaccharide biopolymer with soil, followed by additional spraying or injection of a low pH acidic aqueous solution (pH below 5) or a cationic aqueous solution Aggregation between chained biopolymers can be enhanced.
  • a physically low-viscosity polymer viscous chain polysaccharide biopolymer with soil, followed by additional spraying or injection of a low pH acidic aqueous solution (pH below 5) or a cationic aqueous solution
  • Aggregation between chained biopolymers can be enhanced.
  • the biopolymer may be added to the soil in various ways for various purposes in various target areas as follows, but may not be limited thereto:
  • biopolymer suspension By spraying the biopolymer suspension directly onto the surface, it can be easily applied to slopes or slopes as well as flat, diluting solid or liquid biopolymers in certain proportions, and pumps, transfer tubes and nozzles. It sprays by using, and it is a method of forming a coating
  • This method has the advantage of forming a homogeneous coating on the site, and through the compaction to increase the adhesion to the base.
  • the method consists of a device for diluting solid and liquid biopolymers at a certain rate and laying them at the same time, and a compaction device for spreading and laying of soil.
  • the compaction device can be either roller or vibratory.
  • This method can improve the coating power of the coating surface in parallel with 1-1. This method is useful when a large amount of on-site soil is available on site.
  • This method is applicable when the surface soil is dried, such as a dry area, is a method of dry mixing the dry soil and the powdered biopolymer in the field immediately after spraying water to form a coating.
  • biopolymer treatment technology can be used very effectively for suppressing soil loss of cropland and stockland.
  • plowing When plowing cropland before sowing, plowing is performed with biopolymer powder or suspension.
  • pre-sowing cropland has a hard surface, so spraying a biopolymer suspension in advance can improve the working efficiency of the plowing, and can also increase the resistance to erosion of the whole cropland as the topsoil and the biopolymer are evenly mixed. .
  • a method may be proposed in which a direct injection nozzle is attached to the head of the plow to plow and at the same time a biopolymer suspension is supplied from the tip to enhance local efficiency.
  • Waterside spaces are adjacent to water, so there is always a possibility of water erosion. Therefore, the improvement of the soil using biopolymers in the construction of waterside space is expected to reduce the overall soil loss.
  • Biopolymer treatment enhances the germination and growth of vegetation, so it can be applied to the field in various forms.
  • the method of spraying the biopolymer suspension at high pressure can be easily applied not only to flat lands but also to inclined slopes or slopes, and dilutes the solid or liquid biopolymer at a predetermined ratio, and optionally mixes additives homogeneously. It consists of a mixing tank, a high pressure pump suitable for the high viscosity characteristics of the biopolymer suspension, a delivery tube system, and a special nozzle which can effectively spray the biopolymer mixture (FIG. 13). Special nozzles must meet the conditions for spraying fine particles, such as vegetation seeds.
  • This method has the advantage of forming a homogeneous coating on the site, and through the compaction to increase the adhesion to the base.
  • the method consists of a device for diluting a solid or liquid biopolymer in a proportion and diluting with soil and other additives at the same time, and a compaction device for unfolding the installed soil (FIG. 14).
  • the compaction device can be either roller or vibratory.
  • This method can improve the coating power of the coating surface in parallel with Method 5-1. This method is useful when a large amount of on-site soil is available on site.
  • This method is sprayed by dry spraying method using dual transfer system without pre-mixing, and mixed with liquid biopolymer, soil and other additives, and then attached to the ground. Use it to maximize the effect.
  • the core of the method is the dual transport of the spreading material, the wet transport system transports and spreads the liquid biopolymer suspension, and the dry transport system transports and sprays dry soil and other additives, thereby clogging in the transfer pipe. Its purpose is to reduce construction problems and to maximize the efficiency of field work.
  • the system of the method includes a mixing tank for largely forming a biopolymer suspension in a liquid state, a high pressure pump and conveying tube system suitable for the high viscosity characteristics of the biopolymer suspension, a mixing tank for uniformly mixing solid soil and other additives, and a high pressure. It consists of a dual-nozzle capable of independently injecting a solids pump and a delivery tube system, a liquid biopolymer and a solid soil and other additives that can be transferred to the furnace (FIG. 15).
  • Method 3 and 4 according to an embodiment of the present application it is confirmed that the treatment of the polymer viscous polysaccharide biopolymer is effective in promoting germination and growth of vegetation. Therefore, the present application proposes an environment-friendly landscape composition method using a biopolymer that does not depend on the existing chemical fertilizer.
  • rapeseed After forming a polymer viscous polysaccharide biopolymer coating layer on the surface layer, the seeds are directly sprayed or a vegetation mat is installed. After seeding, the seed is left without post treatment or a toffee of a certain thickness is formed to protect the seed from the external environment and to induce the germination of the seed.
  • a biopolymer coating layer is formed on the surface, and then the seeds are directly sprayed or a vegetation mat is applied. After sowing the seeds, they can be left without post-treatment or additional coatings of a certain thickness can be used to protect the seeds from the external environment and to promote germination.
  • Biopolymers are environmentally friendly and biodegradable over time, resulting in extremely low water and water ecosystem disturbances when applied to the waterfront compared to conventional cement or chemical materials. Active utilization in the furtherance is expected.
  • the general shape of the river and waterside space is shown in FIG. It is usually divided into a bank (B), a ciliary site (C) inside the bank, and a periphery (A) outside the bank to prevent flooding.
  • B bank
  • C ciliary site
  • A periphery
  • the present invention performs the following implementation method for each space.
  • Soil stabilization and improvement methods using biopolymers according to the present application can be applied as an environmentally friendly soil reinforcement method using biopolymers in surrounding grounds to suppress back erosion due to river dredging and water level change.
  • the soil stabilization and improvement method using the biopolymer according to the present application can be applied as a dike and revetment method using the biopolymer mixture soil.
  • the soil stabilization and improvement method according to the present application may be applied as a bank surface coating method using a biopolymer in order to suppress the water penetration into the bank in the high water level or flood level.
  • the soil stabilization and remediation method according to the present application can be applied as a method for improving the soil erosion resistance using biopolymers to suppress irregular soil erosion such as partial erosion of the inflow portion or gully on the flat land. have.
  • an environment-friendly vegetation-promoting soil composition and / or a composition for preventing soil erosion can be prepared.
  • the vegetation enhancement method according to the present application by using an eco-friendly and beneficial to the human body, by improving the structure and water conditions of the soil through the interaction between the soil and the biopolymer, as well as to improve the resistance to erosion, Enhance the vegetation and stabilize the vegetation (sufficient rooting).
  • the second aspect of the present application provides a soil composition for promoting germination or growth of vegetation, which is prepared by the method of stabilizing and improving the soil of the first aspect of the present application, and which comprises a polymer viscous biopolymer.
  • about 100 parts by weight of soil may include about 20 parts by weight or less of the polymer viscous biopolymer, but may not be limited thereto.
  • the polymer viscous biopolymer may be used in an amount of about 0.00001 parts by weight to about 15 parts by weight, about 0.00001 parts by weight to about 10 parts by weight, about 0.00001 parts by weight to about 5 parts by weight, based on about 100 parts by weight of soil.
  • the third aspect of the present application is prepared by the method of stabilizing and improving the soil of the first aspect of the present application, and provides a composition for preventing soil erosion, comprising a polymer viscous biopolymer.
  • about 100 parts by weight of soil may include about 20 parts by weight or less, but may not be limited thereto.
  • the polymer viscous biopolymer may be used in an amount of about 0.00001 parts by weight to about 15 parts by weight, about 0.00001 parts by weight to about 10 parts by weight, about 0.00001 parts by weight to about 5 parts by weight, based on about 100 parts by weight of soil.
  • a fourth aspect of the present application provides an earth building material or member, prepared by the soil stabilization and improvement method of the first aspect of the present application, and comprising a polymer viscous biopolymer.
  • the strength and durability enhancement effect of the soil using the biopolymer according to the present application can be utilized in the field of construction and building materials using the soil.
  • biopolymer blending ensures higher strength and durability than soil-based soil construction (walls or columns, etc.), and biodegradation of organic materials (compared with traditional methods of straw, etc.). It is possible to overcome the problem of functional degradation due to degradation, and it is possible to construct a highly environmentally friendly building construction compared to the method using chemical additives (gypsum, cement, etc.).
  • the soil building material and member may include, for example, a wall, a floor, a brick, a block, a board, a panel, and the like, but may not be limited thereto.
  • the member means a construction subsidiary material.
  • the soil construction is a form of mixing the natural soil with water to secure workability, and then molded into a brick or block form, or directly applied to the wall or floor.
  • a method of adding fibers such as straw or mixing chemical additives is used.
  • Soil wall construction method using the biopolymer according to the present application is different from the existing method.
  • the soil may be selected from the group consisting of fine (clay), coarse (sand), and combinations thereof, but may not be limited thereto.
  • about 100 parts by weight of soil may include about 20 parts by weight or less, but may not be limited thereto.
  • the polymer viscous biopolymer may be used in an amount of about 0.00001 parts by weight to about 15 parts by weight, about 0.00001 parts by weight to about 10 parts by weight, about 0.00001 parts by weight to about 5 parts by weight, based on about 100 parts by weight of soil.
  • a beta-1,3 / 1,6-glucan-based liquid product (8.9 g / L beta glucan content; glucan) was used as the polymer chain biopolymer material.
  • xanthan gum (Sigma-Aldrich; CAS 1138-66-2) in a pure powder state, which is widely used as a food curing agent, was applied to this example.
  • Xanthan gum's greatest feature is its stability at various temperature and pH conditions.
  • the basic method for carrying out the invention was to measure the soil loss amount in each case by mixing the soil with the biopolymer and reproducing rainfall conditions, to evaluate the resistance to the soil erosion in general. Details are as follows.
  • a granite residue (ocher) which is a main component of Halloysite: Al 2 Si 2 O 5 (OH) 4 , which is a representative soil of Korea, was used as a representative soil sample. After the natural drying, the clay was ground to a size of 0.07 mm to 0.15 mm, and then dried at 110 ° C. to remove residual organic matter.
  • A 1,200 g (60% by weight of soil)
  • B 1,200 g of liquid beta-1 10 g of powdered xanthan gum and 1,200 g of distilled water were uniformly mixed with soil in, 3 / 1,6-glucan (0.5% beta glucan to soil weight ratio) and C, respectively.
  • a watering machine as shown in FIG. 2 was used, and the angle of the sample plate was set to 20 ° C.
  • the total weight of the sample plate was measured before rainfall simulation, and the volume and mass were measured by collecting the outflow slurry after 500 mL of rainfall simulation. After rainfall simulation, the total weight of the sample plate was measured to calculate the amount of soil absorption.
  • the outflow slurry was dried immediately to derive soil erosion based on the mass difference before and after drying. Rainfall simulation was carried out in a two-day cycle for a total of 10 times.
  • Table 2 shows the results of converting the soil loss by the number of rainfall in Table 1 to the cumulative loss rate (%) relative to the initial total soil weight (2,000 g).
  • the biopolymer-treated soil had a cumulative loss rate of 0% to 1% for a total of 10 rainfall simulations, while the soil without any treatment was found to lose 21% of soil.
  • beta-1,3 / 1,6-glucan had a cumulative loss rate of only 0.1%, indicating that resistance to erosion was significantly higher.
  • samples of the same conditions in the same condition of the specific content for the practice of the present invention were prepared and then simulated the concentrated rainfall.
  • 500 mL of rainfall was sprinkled 15 times at 10 minute intervals, and the total sample weight and soil loss before and after the rainfall were measured as above.
  • the basic method for carrying out the invention is to mix the soil with the corresponding biopolymer, sowing crops and cultivating under constant temperature and humidity conditions to check the germination and growth of seeds, further analyzing the structure of the soil and how the biopolymer treated soil is planted. It was confirmed whether it affects the growth of. Details are as follows.
  • a granite residue (ocher) which is a main component of Halloysite: Al 2 Si 2 O 5 (OH) 4 , which is a representative soil of Korea, was used as a representative soil sample. After the natural drying, the clay was ground to a size of 0.07 mm to 0.15 mm, and then dried at 110 ° C. to remove residual organic matter.
  • FIG. 5a shows that the ocher particles and the vegetation roots are densely attached as a result of the ocher not treated at all.
  • beta glucan treated ocher of Figure 5b it is determined that the polymer beta glucan chains have an effect of improving the air permeability and moisture permeability of the soil as a whole by expanding the pores in the soil.
  • xanthan gum treated soil FIG. 5C
  • the overall soil structure is denser than that of the beta glucan treated soil of FIG. 5B, but due to gelation, the soil particles form agglomerates, resulting in a looser structure than the untreated soil of FIG. 5A. Visibility is observed. Therefore, it could be confirmed that the biopolymer treatment broadens the pores of the soil to create an environment in which the roots of the vegetation can grow well.
  • Example 3 Polymer Viscous Gelled Polysaccharide Biopolymer-Soil Mixing Using Heat Treatment
  • an aqueous solution of the polymer viscous gelled polysaccharide biopolymer and soil at high temperature were prepared.
  • the powdered biopolymer was dissolved in a solvent (water) at a high temperature (80 ° C.), and then mixed with the heated soil to prevent premature gelation due to rapid temperature drop during mixing.
  • An important point in forming a high temperature aqueous solution of biopolymer is that the concentration of the biopolymer (solvent-to-solvent) must be properly adjusted.
  • agar absorbs water equivalent to 20 times its mass due to hydrophilic at room temperature, and its solubility increases with increasing temperature. It is desirable to formulate high temperature solutions up to 10% (10 g / 100 mL) for agar and up to 3% (3 g / 100 mL) for gellan gum, because further powders are not completely soluble in water. Because it does not.
  • the high temperature gelled biopolymer solution was uniformly mixed with high temperature soil, and mixed with soil such as ocher (viscosity soil type) at 60% (solution weight to soil weight) or less, and sand soil at 30% or less. After mixing, it can be molded to the desired purpose and then cured in air or in quartz. The summary of this process is as shown in FIG.
  • Figure 11 shows a conceptual diagram of a method for manufacturing environmentally friendly soil building material using a thermal gelling biopolymer according to an embodiment of the present application.
  • a thermal gelling biopolymer according to an embodiment of the present application.
  • thermal gelling is characterized by low viscosity at temperatures above 80 ° C and the formation of highly viscous Gel-matrices when cooled below 40 ° C. It is important not to lose high temperatures until.
  • the soil and the aqueous solution of biopolymers are respectively heated and mixed at a specific temperature (for example, 80 ° C.) or higher, and the biopolymer-soil mixture thus formed is poured into a molding mold, and then cooled.
  • a specific temperature for example, 80 ° C.
  • the biopolymer-soil mixture thus formed is poured into a molding mold, and then cooled.
  • Various shapes can be realized according to the mold. After being poured into the mold, it is hardened while cooling to 40 ° C. or lower. In this case, it is hardened by natural cooling in air or by metal cooling using water or other refrigerant.
  • the thermal gelled biopolymer according to the present embodiment the water permeability is very low, so it was confirmed that the soil structure is not disturbed even when soaked in water initially. I can make it.
  • the biopolymer-soil composition presented in the present invention can be confirmed to have excellent durability against water. Therefore, the present technology can be applied in the form of injecting or stirring a high temperature biopolymer solution directly into the ground for the purpose of ordering and shielding the ground or other reinforcement.
  • the specific implementation method is the same as FIG.
  • the flexural strength was less than 100 kPa in the dry state of the soil which had not been treated, and the polymer viscous biopolymer according to the present embodiment was not shown, even when the gypsum 10% was mixed.
  • the mixed specimens showed a marked increase in flexural strength.
  • the strength of about 200 kPa is shown, and when it is included in the 1% weight ratio, it has been confirmed that the bending strength is close to 400 kPa.
  • the soil construction and the construction using the polymer viscous biopolymer The use of materials is considered to be a good alternative to overcome the low strength and low durability problems of conventional soil construction.

Abstract

The present application concerns: a soil stabilization and improvement method using a macromolecular mucilaginous biopolymer; a soil composition for promoting the germination or growth of vegetation; a composition for soil erosion prevention; and a soil construction material and member.

Description

바이오폴리머를 이용한 토양 안정화 및 개량 방법Soil Stabilization and Improvement Using Biopolymers
본원은 고분자 점질성 바이오폴리머를 이용한 토양 안정화 및 개량 방법, 식생의 발아 또는 생장 증진용 토양 조성물, 토양 침식 방지용 조성물, 및 토양 건축 재료 또는 부재에 대한 것이다.The present application relates to a method of stabilizing and improving soil using a polymer viscous biopolymer, a soil composition for promoting germination or growth of vegetation, a composition for preventing soil erosion, and a soil building material or member.
흙의 지반공학적 구성, 엄밀히 말하면 입도분포, 함수비, 유기질 함량은 흙의 침식에 직접적인 영향을 미친다 [Bissonnais, 1996, "Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology", European Journal of Soil Science, 제47권, 425-437쪽]. 오늘날 흙의 침식이 중요한 환경 문제로 대두됨은 토양의 침식이 사막화 및 기후변화와 직간접적인 영향이 있기 때문이다 [Gisladottir and Stocking, 2005, "Land degradation control and its global environmental benefits", Land Degradation & Development, 제16권, 99-112쪽]. 현재 토양 침식이 수반되는 사막화는 전세계 육지의 1/3에서 진행 중이며, 매년 1천 2백만 ha의 새로운 사막을 생성하며 그 영역을 확대하고 있다 [UNEP (United Nations Environment Programme), 2006, "Deserts & Drylands", TUNZA the UNEP Magazine for Youth, 제4권, 제1호, 1-24쪽]. 토양의 침식은 생태계 교란뿐만 아니라 농경지의 생산력 저하를 초래 [Gisladottir and Stocking, 2005, "Land degradation control and its global environmental benefits", Land Degradation & Development, 제16권, 99-112쪽]하기 때문에 이를 저감 또는 억제할 수 있는 기술 개발이 시급한 실정이다.Geotechnical composition of soil, strictly speaking particle size distribution, water content, and organic content directly affect soil erosion [Bissonnais, 1996, "Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology", European Journal of Soil Science, Vol. 47, pp. 425-437]. Soil erosion is an important environmental issue today because soil erosion has direct and indirect effects on desertification and climate change [Gisladottir and Stocking, 2005, "Land degradation control and its global environmental benefits", Land Degradation & Development, 16, pp. 99-112]. Currently, desertification, accompanied by soil erosion, is occurring in one third of the world's land, creating 12 million ha of new desert annually and expanding the area [UNEP (United Nations Environment Program, 2006), "Deserts & Drylands ", TUNZA the UNEP Magazine for Youth, Vol. 4, No. 1, pp. 1-24]. Soil erosion not only reduces ecosystem degradation, but also reduces cropland productivity [Gisladottir and Stocking, 2005, "Land degradation control and its global environmental benefits", Land Degradation & Development, Vol. 16, pp. 99-112]. Or development of technology that can be suppressed is urgent.
통상의 흙 침식 억제 방법은 토양 표면에 망 (mesh 또는 net) 등을 설치하여 침식을 유발하는 외부 요인 (물 또는 바람)을 차단하는 방법이 주로 제안되어 있다 [미국특허 제3867250호; 미국특허 제4071400호; 미국특허 제4486120호]. 하지만 이런 외부 설치 구조물은 그 성능이 한시적일 뿐만 아니라, 비용 소모가 많은 한계가 있다. 따라서 최근에는 흙을 개량하여 침식에 대한 저항력을 높이고자 하는 기술들이 제안되고 있다 [미국특허 제4663067호; 미국특허 제5860770호; 미국특허 제7407993호]. 그러나 상기의 기술들은 화학계열 제품을 주입 또는 살포하는 방법에 의존하고 있어서 환경친화적 관점과는 상이한 기술들이다. 토양 침식은 1차적으로 표층의 생태계 파괴 및 난개발 (화전 또는 방목)에 따른 부작용의 성격이 강하다. 따라서 효과적인 토양 침식 억제를 위해서는 토양의 생태환경을 복원시켜야 한다.Conventional soil erosion suppression method is mainly proposed to block the external factors (water or wind) causing erosion by installing a mesh (mesh or net), etc. on the soil surface [US Patent No. 3867250; US Patent No. 4041400; US Patent No. 4486120]. However, these external installation structures are limited in their performance and costly. Therefore, in recent years, techniques have been proposed to improve the soil resistance to erosion [US Patent No. 4466,67; U.S. Patent No. 5860770; US Patent No. 7407993]. However, these techniques are different from environmentally friendly ones because they rely on the method of injecting or spraying chemical products. Soil erosion is primarily characterized by the adverse effects of surface destruction and poor development (fire or grazing). Therefore, in order to effectively suppress soil erosion, the ecological environment of the soil should be restored.
또한, 흙의 지반공학적 구조는 식생의 생장에 직접적인 영향을 미친다. 일반적으로 흙의 구조가 느슨할수록, 그리고 흙 속 함수비가 높을수록 식물의 생장이 증진된다 [Passioura, 1991, "Soil structure and plant growth", Australian Journal of Soil Research, 제28권, 제6호, 717-728쪽]. 따라서 농업의 경우 파종 전 농토를 교반하거나, 효율적인 관개 (灌漑) 체계를 유지하는 것이 중요하다. 한국의 표토의 대부분은 화강암의 최종 풍화 산물인 화강잔류토로서, 황토도 이의 일종이다 [황진연 외, 2000, "우리 나라 황토 (풍화토)의 구성광물 및 화학성분, 한국광물학회지, 제13권, 제3호, 146-163쪽]. 황토는 주로 할로이사이트 (halloysite)로 구성되어 흙의 구조가 조밀하여 예로부터 건축재료로는 사용되어 왔으나, 식생 생장에는 적합하지 않은 흙으로 인식되어 왔다.In addition, the geotechnical structure of soil directly affects vegetation growth. In general, the looser the soil structure and the higher the water content in the soil, the better the plant growth [Passioura, 1991, "Soil structure and plant growth", Australian Journal of Soil Research, Vol. 28, No. 6, 717 -P. 728]. Therefore, in agriculture, it is important to stir the farmland before sowing or to maintain an efficient irrigation system. Most of the topsoil in Korea is granite residue, which is the final weathering product of granite. Hwang Jin Yeon et al., 2000, "Organic Minerals and Chemical Components of Korean Ocher (Weathered Soil), Korean Mineral Society, Vol. 13, No. 3, pp. 146-163] Ocher is composed mainly of halloysite and its compact structure has been used as a building material since ancient times, but it has been recognized as not suitable for vegetation growth.
이에, 흙의 침식을 방지하면서도, 식생 생장을 증가시키도록 토양을 개량시키기 위한 연구에 대한 관심이 증가되고 있다.Thus, while preventing the erosion of the soil, there is increasing interest in research to improve the soil to increase vegetation growth.
이에, 본원은 고분자 점질성 바이오폴리머를 이용하여, 토양의 침식을 방지하고 강도 및 내구성을 강화시키면서도 식생 생장을 증진시킬 수 있는, 토양의 안정화 및 개량 방법을 제공하고자 한다.Accordingly, the present application is to provide a method of stabilizing and improving the soil, which can promote vegetation growth while preventing erosion of the soil and enhancing strength and durability by using a polymer viscous biopolymer.
그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에 의해 명확하게 이해될 수 있을 것이다.However, the problem to be solved by the present application is not limited to the above-mentioned problem, another task that is not mentioned will be clearly understood by those skilled in the art from the following description.
본원의 제 1 측면은, 고분자 점질성 바이오폴리머를 토양에 첨가하는 것을 포함하는, 토양 안정화 및 개량 방법을 제공한다.A first aspect of the present application provides a method of stabilizing and improving soil, comprising adding a polymeric viscous biopolymer to the soil.
본원의 제 2 측면은, 상기 본원의 제 1 측면의 토양 안정화 및 개량 방법에 의해 제조되며, 고분자 점질성 바이오폴리머를 포함하는, 식생의 발아 또는 생장 증진용 토양 조성물을 제공한다.The second aspect of the present application provides a soil composition for promoting germination or growth of vegetation, which is prepared by the method of stabilizing and improving the soil of the first aspect of the present application, and which comprises a polymer viscous biopolymer.
본원의 제 3 측면은, 상기 본원의 제 1 측면의 토양 안정화 및 개량 방법에 의해 제조되며, 고분자 점질성 바이오폴리머를 포함하는, 토양 침식 방지용 조성물을 제공한다.The third aspect of the present application is prepared by the method of stabilizing and improving the soil of the first aspect of the present application, and provides a composition for preventing soil erosion, comprising a polymer viscous biopolymer.
본원의 제 4 측면은, 상기 본원의 제 1 측면의 토양 안정화 및 개량 방법에 의해 제조되며, 고분자 점질성 바이오폴리머를 포함하는, 흙 건축 재료 또는 부재를 제공한다.A fourth aspect of the present application provides an earth building material or member, prepared by the soil stabilization and improvement method of the first aspect of the present application, and comprising a polymer viscous biopolymer.
토양의 침식은 흙의 보유 수분, 입도 분포, 유기물 함량, 표면 식생 등의 영향을 받는다. 토양 유실이 심각한 사막의 경우 이 모든 조건들이 열악하다는 점에서 알 수 있듯이 토양의 침식에 대한 저항성을 증진시키기 위해서는 외부 요인 차단보다는 토양 자체의 성질을 개량시켜야 한다. 이를 위해서는 흙의 보유 수분을 오래 유지하고, 흙 입자 간 결합력 (점착력)을 높임과 동시에, 향후 식생이 원활히 생장할 수 있는 친환경적인 방법이 요구된다. 기존의 화학계열 처리방법들은 1차적인 흙 강도 증진에만 초점이 맞춰져 있어 영구적인 침식을 억제하기 위한 식생 환경 조성에 대한 고려는 부족한 실정이다. Soil erosion is affected by soil moisture, particle size distribution, organic matter content, and surface vegetation. In the case of deserts with severe soil loss, all of these conditions are poor, so in order to improve the resistance to soil erosion, the properties of the soil itself must be improved rather than blocking external factors. To this end, an environmentally friendly method is required to maintain soil moisture for a long time, increase the bonding strength (adhesive force) between soil particles, and to grow vegetation smoothly in the future. Existing chemical treatment methods focus only on primary soil strength enhancement, and there is a lack of consideration of creating a vegetation environment to prevent permanent erosion.
이에, 본원에서는 토양에 고분자 점질성 바이오폴리머를 첨가함으로써, 토양의 초기 안정화뿐만 아니라 중ㆍ장기 침식 억제 및 내구성 확보에 탁월한 효과를 나타냈다. Therefore, in the present application, by adding a polymer viscous biopolymer to the soil, it showed an excellent effect not only for the initial stabilization of the soil, but also for the inhibition of middle and long-term erosion and securing durability.
또한, 본원의 토양 안정화 및 개량 방법은, 기존의 질소 계열 또는 인 계열의, 화학비료 또는 인공배양토에 의존하지 않고 환경친화적으로 식생 발아 및 생장을 증진시킬 뿐만 아니라, 식생 안정화 (뿌리의 충분한 활착)가 이루어지기 전까지 파종 흙의 물리적 안정화를 동시에 실현할 수 있다.In addition, the soil stabilization and improvement methods of the present application not only rely on existing nitrogen-based or phosphorus-based chemical fertilizers or artificial soils, but also promote vegetation germination and growth in an environmentally friendly manner, as well as stabilizing vegetation (sufficient rooting of roots). The physical stabilization of the sowing soil can be realized simultaneously until
본원의 토양 안정화 및 개량 방법은, 지반의 초기 안정화를 유지하고, 지하수 또는 하천에 대한 오염 및 부영양화 우려가 없을 뿐만 아니라, 시간이 경과됨에 따라 바이오폴리머들이 자연적으로 생분해되어 원래의 토양으로 회귀되는 환경친화적인 장점들을 지니고 있다. 이에 따라, 본원의 토양 안정화 및 개량 방법은 친환경 식생 조성 분야뿐만 아니라, 대형 건설 현장에서의 식생 법면 조성, 하천 제방 및 수변 공간 녹화사업, 도로 및 철도 사면의 초기 안정화, 대규모 농지 조성, 옥상 및 도시 농업 등 다양한 분야에 효과적으로 사용될 수 있을 것으로 판단된다.The soil stabilization and remediation method of the present application maintains the initial stabilization of the soil, there is no fear of contamination and eutrophication of groundwater or rivers, and the environment in which the biopolymers are naturally biodegraded and returned to the original soil over time. It has friendly advantages. Accordingly, the soil stabilization and improvement method of the present application is not only in the field of eco-friendly vegetation, but also in the construction of vegetation surface at large construction sites, river banks and waterfront greening projects, initial stabilization of road and rail slopes, large-scale farmland formation, rooftops and cities. It can be effectively used in various fields such as agriculture.
또한, 본원은 친환경적인 바이오폴리머를 토양 안정화 및 개량에 적용시키는 새로운 용도를 제공함으로써, 바이오폴리머의 본격적인 상용화에 크게 기여할 수 있다.In addition, the present application can contribute greatly to the full-scale commercialization of biopolymers by providing new uses for applying environmentally friendly biopolymers to soil stabilization and improvement.
도 1은, 본원의 일 실시예에 따른 1 회 강우 모사 후의 흙 시료 전경을 나타낸 것이다. 좌로부터 무처리 황토, 잔탄검 처리 황토, 그리고 베타-1,3/1,6-글루칸 처리 황토이다.1 is a view showing a soil sample after a single rainfall simulation according to an embodiment of the present application. Untreated loess, xanthan gum treated loess, and beta-1,3 / 1,6-glucan treated loess from the left.
도 2는, 본원의 일 실시예에 따른 강우 침식 모사를 위한 실내 실험 구성을 나타낸 것이다.Figure 2 shows an indoor experimental configuration for rainfall erosion simulation according to an embodiment of the present application.
도 3은, 본원의 일 실시예에 따른 바이오폴리머 처리토의 시험 재배 사진을 나타낸 것이다.Figure 3 shows a test cultivation picture of the biopolymer treated soil according to an embodiment of the present application.
도 4는, 본원의 일 실시예에 따른 시간에 따른 바이오폴리머 처리토의 식생 생장 결과 사진을 나타낸 것이다.Figure 4 shows the vegetation growth results of the biopolymer treated soil over time according to an embodiment of the present application.
도 5a는, 본원의 일 실시예에 따른 무처리 황토와 식생 뿌리를 촬영한 전자투사현미경 사진을 나타낸 것이다.Figure 5a shows an electron projection micrograph of the untreated loess and vegetation roots according to an embodiment of the present application.
도 5b는, 본원의 일 실시예에 따른 베타글루칸 처리 황토와 식생 뿌리를 촬영한 전자투사현미경 사진을 나타낸 것이다.Figure 5b is an electron projection microscope photograph of the beta glucan treated loess and vegetation roots according to an embodiment of the present application.
도 5c는, 본원의 일 실시예에 따른 잔탄검 처리 황토와 식생 뿌리를 촬영한 전자투사현미경 사진을 나타낸 것이다.Figure 5c is an electron projection micrograph showing the xanthan gum treated loess and vegetation roots according to an embodiment of the present application.
도 6은, 본원의 일 구현예에 따른 열처리를 통한 바이오폴리머 처리 공정을 나타낸 것이다.6 shows a biopolymer treatment process through heat treatment according to an embodiment of the present application.
도 7은, 본원의 일 실시예에 따른 바이오폴리머 처리 토양 (황토)의 강도 측정 결과를 나타낸 그래프이다. 7 is a graph showing the results of measuring the strength of the biopolymer-treated soil (ocher) according to an embodiment of the present application.
도 8은, 본원의 일 실시예에 따른 바이오폴리머 처리 토양 (모래)의 강도 측정 결과를 나타낸 그래프이다.8 is a graph showing a result of measuring the strength of the biopolymer-treated soil (sand) according to an embodiment of the present application.
도 9는, 본원의 일 실시예에 따른 바이오폴리머 처리 토양의 급속냉각 및 수중양생 조건 처리 방법을 나타낸 것이다.Figure 9 shows the rapid cooling and curing conditions of the biopolymer-treated soil according to an embodiment of the present application.
도 10은, 본원의 일 실시예에 따른 바이오폴리머 처리 토양의 급속 냉각 및 수중양생 조건에서의 거동을 나타낸 그래프이다.10 is a graph showing the behavior under rapid cooling and curing conditions of the biopolymer-treated soil according to an embodiment of the present application.
도 11은, 본원의 일 구현예에 따른 열적 겔화 바이오폴리머를 이용한 친환경 흙 건축 재료 제작 방법에 대한 개념도를 나타낸 것이다.FIG. 11 is a conceptual diagram illustrating a method for manufacturing an environmentally friendly soil building material using a thermal gelling biopolymer according to one embodiment of the present application.
도 12는, 본원의 일 구현예에 따른 열적 겔화 바이오폴리머를 이용한 지반 처리 방법에 대한 개념도를 나타낸 것이다.12 is a conceptual diagram of a ground treatment method using a thermal gelling biopolymer according to one embodiment of the present application.
도 13은, 본원의 일 구현예에 따른 살포 방식을 이용한 바이오폴리머 처리 식생 지반 조성에 관한 개념도를 나타낸 것이다.FIG. 13 shows a conceptual diagram of a biopolymer-treated vegetation ground composition using a spraying method according to an embodiment of the present application.
도 14는, 본원의 일 구현예에 따른 습식혼합·포설 방식을 이용한 바이오폴리머 처리 식생 지반 조성에 관한 개념도를 나타낸 것이다.14 shows a conceptual diagram of a biopolymer-treated vegetation ground composition using a wet mixing and spreading method according to an embodiment of the present application.
도 15는, 본원의 일 구현예에 따른 건식혼합·살포 방식을 이용한 바이오폴리머 처리 식생 지반 조성에 관한 개념도를 나타낸 것이다.15 shows a conceptual diagram of a biopolymer-treated vegetation ground composition using a dry mixing / spray method according to an embodiment of the present application.
도 16은, 본원의 일 구현예에 따른 바이오폴리머를 이용한 친환경 수변 공간 조성을 위한 구획 구분에 관한 개념도를 나타낸 것이다.FIG. 16 illustrates a conceptual diagram of partition division for eco-friendly waterside space composition using a biopolymer according to one embodiment of the present application.
도 17은, 본원의 일 실시예에 따른 바이오폴리머를 이용한 건축재의 휨강도를 나타내는 그래프이다.17 is a graph showing the bending strength of the building material using a biopolymer according to an embodiment of the present application.
이하, 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 구현예 및 실시예를 상세히 설명한다.Hereinafter, embodiments and examples of the present disclosure will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present disclosure.
그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예 및 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted for simplicity of explanation, and like reference numerals designate like parts throughout the specification.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. Throughout this specification, when a portion is "connected" to another portion, this includes not only "directly connected" but also "electrically connected" with another element in between. do.
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.Throughout this specification, when a member is located "on" another member, this includes not only when one member is in contact with another member but also when another member exists between the two members.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.Throughout this specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding the other components unless specifically stated otherwise.
본 명세서에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 또한, 본원 명세서 전체에서, "~ 하는 단계" 또는 "~의 단계"는 "~를 위한 단계"를 의미하지 않는다.As used herein, the terms "about", "substantially", and the like, are used at, or in close proximity to, numerical values when manufacturing and material tolerances inherent in the meanings indicated are provided to aid the understanding herein. In order to prevent the unfair use of unscrupulous infringers. In addition, throughout this specification, "step to" or "step of" does not mean "step for."
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합(들)"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.Throughout this specification, the term "combination (s) thereof" included in the representation of a makushi form refers to one or more mixtures or combinations selected from the group consisting of the components described in the representation of makushi form, It means to include one or more selected from the group consisting of the above components.
본원 명세서 전체에서, "A 및/또는 B"의 기재는, "A 또는 B, 또는 A 및 B"를 의미한다.Throughout this specification, the description of "A and / or B" means "A or B, or A and B."
본원 명세서 전체에서, 용어 "양이온계 수용액"은, 양이온을 포함하는 수용액을 의미하는 것으로서, 예를 들어, 알칼리 금속 또는 알칼리 토금속 이온을 함유하는 수용액을 포함할 수 있으나, 이에 제한되지 않을 수 있다. 상기 알칼리 금속은 1 가의 양이온을 제공할 수 있는, Li, Na, K, Rb, 및 Cs으로 이루어진 1 족 금속을 포함하고, 상기 알칼리 토금속은 2 가의 양이온을 제공할 수 있는, Be, Mg, Ca, Sr, Ba, 및 Ra으로 이루어진 2 족 금속을 포함한다.Throughout this specification, the term “cationic aqueous solution” means an aqueous solution containing a cation, and may include, for example, an aqueous solution containing an alkali metal or alkaline earth metal ion, but may not be limited thereto. The alkali metal comprises a Group 1 metal consisting of Li, Na, K, Rb, and Cs, which may provide monovalent cations, and the alkaline earth metals may provide divalent cations, Be, Mg, Ca , Group 2 metals consisting of Sr, Ba, and Ra.
본원 명세서 전체에서, 용어 "황토 (Hwang-to)"는 대륙의 내부에서 풍화로 부서진 암석의 미세한 알갱이들이 바람에 날려와 쌓인 누런빛이나 누런 갈색을 띠는 화강잔류토를 의미한다. Throughout this specification, the term "Hwang-to" means yellowish or yellowish brown granite, in which fine grains of rock broken by weathering in the interior of the continent are blown off and stacked.
본원 명세서 전체에서, 용어 "토양"은 흙과 동일한 의미로 사용된다.Throughout this specification, the term "soil" is used in the same sense as the soil.
이하, 본원의 구현예를 상세히 설명하였으나, 본원이 이에 제한되지 않을 수 있다.Hereinafter, embodiments of the present disclosure have been described in detail, but the present disclosure may not be limited thereto.
본원의 제 1 측면은, 고분자 점질성 바이오폴리머를 토양에 첨가하는 것을 포함하는, 토양 안정화 및 개량 방법을 제공한다.A first aspect of the present application provides a method of stabilizing and improving soil, comprising adding a polymeric viscous biopolymer to the soil.
본원의 일 구현예에 있어서, 상기 고분자 점질성 바이오폴리머는 생물체로부터 생성되는 고분자 물질이라면 제한없이 사용될 수 있으나, 이에 제한되지 않을 수 있다. 상기 고분자 점질성 바이오폴리머는 글루코오스 (glucose)를 기본 단위 (monomer)로서 가지는 물질을 포함하는 것일 수 있고, 크게 다당류 (polysaccharide)와 아미노산 (amino-acid) 계열로 분류할 수 있으며, 상기 다당류 계열의 바이오폴리머는 그 형상에 따라 고분자 사슬형 (high-molecular chains)과 겔화 (gelation) 바이오폴리머로 구분할 수 있다. 예를 들어, 상기 고분자 사슬형 바이오폴리머는 베타-1,3/1,6-글루칸 (PolycanTM), 알파글루칸, 커들란 (Curdlan) 등을 포함할 수 있고, 상기 겔화 바이오폴리머로는 웰란 (Wellan gum), 젤란검 (Gellan gum), 잔탄검 (Xanthan gum), 아가 (Agar gum), 석시노글리칸 (Succinoglycan gum) 등을 포함할 수 있으나, 이에 제한되지 않을 수 있다. 상기 아미노산 계열의 바이오폴리머는 키토산 (Chitosan)과 감마피지에이 (γPGA) 등을 포함할 수 있으나, 이에 제한되지 않을 수 있다. In one embodiment of the present disclosure, the polymer viscous biopolymer may be used without limitation as long as it is a polymer material produced from an organism, but may not be limited thereto. The polymer viscous biopolymer may include a substance having glucose as a basic unit, and may be broadly classified into a polysaccharide and an amino-acid series. Biopolymers can be classified into high-molecular chains and gelation biopolymers according to their shape. For example, the high molecular chain biopolymer may include beta-1,3 / 1,6-glucan (Polycan ), alpha glucan, curdlan, and the like. Wellan gum, gellan gum, gelant gum, Xanthan gum, Agar gum, Succinoglycan gum, and the like, but may not be limited thereto. The amino acid-based biopolymer may include chitosan and gamma fiji, γPGA, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 고분자 점질성 바이오폴리머를 토양 약 100 중량부에 대해 약 20 중량부 이하, 예를 들어, 약 0.00001 중량부 내지 약 15 중량부, 약 0.00001 중량부 내지 약 10 중량부, 약 0.00001 중량부 내지 약 5 중량부, 약 0.00001 중량부 내지 약 1 중량부, 약 0.00001 중량부 내지 약 0.5 중량부, 약 0.00001 중량부 내지 약 0.1 중량부, 약 0.0001 중량부 내지 약 20 중량부, 약 0.01 중량부 내지 약 20 중량부, 약 0.05 중량부 내지 약 20 중량부, 약 0.1 중량부 내지 약 20 중량부, 약 0.5 중량부 내지 약 20 중량부, 약 1 중량부 내지 약 20 중량부, 약 5 중량부 내지 약 20 중량부, 또는 약 10 중량부 내지 약 20 중량부로 첨가하는 것을 포함할 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the polymeric viscous biopolymer is about 20 parts by weight or less, for example, about 0.00001 parts by weight to about 15 parts by weight, about 0.00001 parts by weight to about 10 parts by weight based on about 100 parts by weight of soil. About 0.00001 parts by weight to about 5 parts by weight, about 0.00001 parts by weight to about 1 parts by weight, about 0.00001 parts by weight to about 0.5 parts by weight, about 0.00001 parts by weight to about 0.1 parts by weight, about 0.0001 parts by weight to about 20 parts by weight About 0.01 parts by weight to about 20 parts by weight, about 0.05 parts by weight to about 20 parts by weight, about 0.1 parts by weight to about 20 parts by weight, about 0.5 parts by weight to about 20 parts by weight, about 1 parts by weight to about 20 parts by weight Part, about 5 parts by weight to about 20 parts by weight, or about 10 parts by weight to about 20 parts by weight, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 고분자 점질성 바이오폴리머는 상기 토양 내의 공극을 확장시키고, 토양 내 함수 특성을 유지시켜주며, 흙 입자간 결합력을 증가시키는 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the polymer viscous biopolymer may be to expand the pores in the soil, to maintain the water-containing properties, and to increase the bonding strength between the soil particles, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 고분자 점질성 바이오폴리머를 토양에 첨가하는 것은, 상기 고분자 점질성 바이오폴리머를 상기 토양과 혼합하거나, 상기 토양의 표면에 살포하거나, 또는 상기 토양 내에 주입하여 수행되는 것일 수 있으나, 이에 제한되지 않을 수 있다. In one embodiment of the present application, adding the polymer viscous biopolymer to the soil is performed by mixing the polymer viscous biopolymer with the soil, spraying on the surface of the soil, or injecting into the soil It may be, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 고분자 점질성 바이오폴리머를 분말 상태로 토양에 첨가하는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 상기 고분자 점질성 바이오폴리머는 토양과 직접 혼합하여 사용하거나, 고분자 점질성 바이오폴리머 분말 또는 현탁액 또는 수용액을 토양의 표면에 도포하여 피복을 형성하도록 하거나, 또는 상기 토양 내에 주입할 수 있으나, 이에 제한되지 않을 수 있다. 또한, 상기 고분자 점질성 바이오폴리머를 상기 토양과 직접 혼합한 후에, 이를 대상 지역의 지표면에 포설할 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, but may include adding the polymer viscous biopolymer to the soil in a powder state, but may not be limited thereto. The polymer viscous biopolymer may be directly mixed with the soil, or the polymer viscous biopolymer powder or suspension or aqueous solution may be applied to the surface of the soil to form a coating, or injected into the soil, but is not limited thereto. You may not. In addition, after directly mixing the polymer viscous biopolymer with the soil, it may be installed on the surface of the target area, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 고분자 점질성 바이오폴리머를 수용액 또는 염기성 수용액 상태로 토양에 첨가하는 것을 포함할 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 고분자 점질성 겔화 다당류 바이오폴리머의 현탁액 또는 수용액을 그대로 첨가하거나, 상기 바이오폴리머의 현탁액 또는 수용액에 염을 첨가하여, 염기성 수용액, 예를 들어, pH 약 9 이상의 염기성 수용액 상태로 제조하여 점성을 낮추어 토양에 첨가할 수 있으나, 이에 제한되지 않을 수 있다. 상기 바이오폴리머의 염기성 수용액을 토양에 첨가한 후, 산성 수용액을 살수하여 침투된 고분자 점질성 겔화 다당류 바이오폴리머의 응집을 촉진시킬 수 있으나, 이에 제한되지 않을 수 있다. In one embodiment of the present application, it may include adding the polymer viscous biopolymer to the soil in the form of an aqueous solution or a basic aqueous solution, but may not be limited thereto. For example, a suspension or an aqueous solution of the polymer viscous gelling polysaccharide biopolymer may be added as it is, or a salt may be added to the suspension or the aqueous solution of the biopolymer to prepare a basic aqueous solution, for example, a basic aqueous solution having a pH of about 9 or more. It may be added to the soil by lowering the viscosity, but may not be limited thereto. After the basic aqueous solution of the biopolymer is added to the soil, the acidic aqueous solution may be sprayed to promote aggregation of the infiltrating polymer viscous gelled polysaccharide biopolymer, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 고분자 점질성 바이오폴리머를 상기 토양에 첨가한 후, 알칼리 금속 또는 알칼리토 금속의 양이온을 첨가하는 것을 추가 포함할 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, Na+, K+ 등과 같은 알칼리 금속의 양이온 또는 Ca2+, Mg2+ 등과 같은 알칼리 토금속의 양이온을 첨가하여 바이오폴리머의 겔화를 유도하여 견고한 흙-바이오폴리머 혼합물을 조성할 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, after adding the polymer viscous biopolymer to the soil, it may further include adding a cation of an alkali metal or alkaline earth metal, but may not be limited thereto. For example, a cation of an alkali metal such as Na + , K + or an alkali earth metal such as Ca 2+ , Mg 2+ may be added to induce gelation of the biopolymer to form a solid soil-biopolymer mixture. However, this may not be limited.
본원의 일 구현예에 있어서, 상기 고분자 점질성 바이오폴리머를 상기 토양에 첨가한 후, pH 약 5 이하의 산성 수용액 또는 양이온계 (cationic) 수용액을 첨가하는 것을 추가 포함할 수 있으나, 이에 제한되지 않을 수 있다. 상기 양이온계 수용액은, 예를 들어, 알칼리 금속 또는 알칼리 토금속 이온을 함유하는 수용액을 포함할 수 있다.In one embodiment of the present application, after adding the polymer viscous biopolymer to the soil, it may further include adding an acidic aqueous solution or a cationic aqueous solution of pH about 5 or less, but is not limited thereto. Can be. The cationic aqueous solution may include, for example, an aqueous solution containing alkali metal or alkaline earth metal ions.
본원에 따른 바이오폴리머를 이용한 토양 안정화 및 개량 방법에 사용되는 상기 바이오폴리머는 표면이 음전하를 띠고 있기 때문에, 토양에 첨가된 후 알칼리 금속 또는 알칼리 토금속 이온을 추가하면 토양과의 결합 특성이 더욱 향상될 수 있다.Since the surface of the biopolymer used in the method of stabilizing and improving the soil using the biopolymer according to the present invention has a negative charge, the addition of alkali metal or alkaline earth metal ions to the soil may further improve the binding properties with the soil. Can be.
본원의 일 구현예에 있어서, 상기 고분자 점질성 바이오폴리머를 토양에 첨가한 후, 토양을 가열 및 냉각하는 것을 추가 포함할 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 고분자 점질성 바이오폴리머를 토양에 첨가한 후 약 80℃ 내지 약 120℃에서 충분히 가열한 후 약 40℃ 내지 약 60℃ 이하로 냉각하여 상기 바이오폴리머의 겔화를 유도할 수 있으나, 이에 제한되지 않을 수 있다. 또한, 상기 냉각 후, 알칼리 금속 또는 알칼리 토금속의 양이온, 예를 들어, Na+, K+ 등과 같은 알칼리 금속의 양이온 또는 Ca2+, Mg2+ 등과 같은 알칼리 토금속의 양이온을 첨가하는 것을 추가 포함할 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, after adding the polymer viscous biopolymer to the soil, may further include heating and cooling the soil, but may not be limited thereto. For example, the polymer viscous biopolymer may be added to the soil, and then sufficiently heated at about 80 ° C. to about 120 ° C., and then cooled to about 40 ° C. to about 60 ° C. or less to induce gelation of the biopolymer. This may not be limited. Further, after the cooling, the method may further include adding a cation of an alkali metal or an alkaline earth metal, for example, an alkali metal cation such as Na + , K + , or an alkali earth metal such as Ca 2+ , Mg 2+, or the like. It may be, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 고분자 점질성 바이오폴리머를 상기 토양의 표면에 살포한 후, 물, 산성 수용액, 및/또는 양이온계 수용액을 살수하는 것을 추가 포함할 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, pH 약 5 이하의 산성 수용액을 살수하여 토양 내의 바이오폴리머의 겔 구조를 강화시킬 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, after spraying the polymer viscous biopolymer on the surface of the soil, and may further include spraying water, acidic aqueous solution, and / or cationic aqueous solution, but may not be limited thereto. have. For example, an acidic aqueous solution having a pH of about 5 or less may be sprayed to strengthen the gel structure of the biopolymer in the soil, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 토양 안정화 및 개량 방법이 식생의 발아 또는 생장을 증진시키는 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the soil stabilization and improvement method may be to promote germination or growth of vegetation, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 토양 안정화 및 개량 방법이 토양 침식 저항을 증진시키는 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the soil stabilization and improvement method may be to enhance the soil erosion resistance, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 고분자 점질성 바이오폴리머는, 사용되는 고분자 점질성 바이오폴리머의 종류 및 사용 목적에 따라 하기와 같이 다양한 방법으로 토양에 첨가될 수 있으나, 이에 제한되지 않을 수 있다:In one embodiment of the present application, the polymer viscous biopolymer may be added to the soil in various ways as follows according to the type and purpose of the polymer viscous biopolymer used, but may not be limited thereto:
1. 고분자 점질성 사슬형 다당류를 이용한 흙 침식 저항성 증진 방법1. Method for Enhancing Soil Erosion Resistance Using Polymer Viscous Chain Polysaccharides
고분자 점질성 사슬형 다당류 바이오폴리머는 일반적으로 분자량이 약 10,000 Da 이상의 고분자들로서 현탁액 또는 수용액 상태에서 사슬 (fiber)들끼리 서로 엉켜 높은 점성을 보이게 된다. 이런 고분자 점질성 사슬형 다당류들은 표면의 전기적 특성으로 인해 흙 입자, 특히 점토질 흙 입자와 잘 결합하는 성질이 있다. 이러한 상호거동을 이용하여 고분자 점질성 사슬형 다당류를 이용하여 흙의 강성과 침식에 대한 저항성을 증진시킬 수 있다. 본원에 따른 고분자 점질성 사슬형 다당류를 이용한 흙 침식 저항 증진 방법은 다음과 같다:Polymeric viscous chain polysaccharide biopolymers are generally polymers having a molecular weight of about 10,000 Da or more, and the fibers are entangled with each other in suspension or aqueous solution to show high viscosity. These polymer viscous chain polysaccharides have a property of binding well with soil particles, especially clay soil particles, due to the electrical properties of the surface. This mutual behavior can be used to enhance the soil stiffness and resistance to erosion by using polymer viscous chain polysaccharides. Soil erosion resistance enhancement method using the polymer viscous chain polysaccharide according to the present application is as follows:
1) 살포를 통한 표면 처리1) Surface treatment by spraying
분말상태의 고분자 점질성 사슬형 다당류를 흙 표면에 살포한 후, 물을 살수하여 흙 속 침투를 유도함과 동시에 친수성이 높은 고분자 점질성 사슬형 다당류의 팽창과 상호간 엉킴을 유발하여 전체적으로 흙 표면에 바이오폴리머 막을 형성하는 방법이다.After spraying the powdery polymer viscous chain polysaccharide on the soil surface, the water is sprinkled to induce penetration into the soil, and also causes the hydrophilic polymer viscous chain polysaccharide to expand and entangle with each other. It is a method of forming a polymer film.
고분자 점질성 사슬형 다당류를 물에 녹여 약 0.00001% 내지 약 10% 농도의 현탁액 또는 수용액 상태로 흙 표면에 살수하는 방법으로, 흙의 종류에 따라 현탁액 또는 수용액의 농도를 달리하여 점성을 조절하여 지반 내 침투를 용이하게 하고, 침투 즉시 흙과 결합하여 흙-바이오폴리머 매트릭스를 형성하고, 수분이 건조되면서 그 흙의 강성을 증가시킬 수 있다.A method of dissolving high-molecular viscous chain polysaccharides in water and spraying them on the soil surface in the form of a suspension or an aqueous solution of about 0.00001% to about 10%. The viscosity is controlled by varying the concentration of the suspension or aqueous solution according to the type of soil. It can facilitate infiltration, combine with soil upon infiltration to form a soil-biopolymer matrix, and increase the soil's stiffness as moisture dries.
2) 표층 혼합 처리2) surface layer mixing treatment
흙과 고분자 점질성 사슬형 다당류를 사전 혼합한 후 표면에 타설하여 포장 또는 피복을 형성하는 방법으로, 현장의 흙 또는 수송해 온 흙을 바이오폴리머, 물과 혼합하여 흙 반죽 (mixture)를 만든 후 현장에 타설하는 방법으로, 구체적으로 흙의 건조 중량 대비 약 0.0001% 내지 약 5% 비율로 바이오폴리머를 첨가하고, 물은 흙의 종류 (모래질 또는 점토질)에 따라 흙 중량 대비 약 10% 내지 약 200% 의 비율로 혼합한 흙 반죽을 조성한 후 현장에 원하는 두께만큼 타설한다. 경우에 따라서, 타설한 피복을 다지는 공정을 추가 실시할 수 있다.After mixing soil and high molecular viscous chain polysaccharides and placing them on the surface to form a package or coating, the soil or transported soil is mixed with biopolymer and water to make a soil mixture. As a method of pouring on-site, specifically, the biopolymer is added at a ratio of about 0.0001% to about 5% of the dry weight of the soil, and water is about 10% to about 200 by weight of the soil, depending on the type of soil (sand or clay). After mixing the earth dough mixed in the ratio of%, pour the desired thickness on site. In some cases, a step of compacting the poured coating may be further performed.
현장 흙의 표면을 교반하면서 동시에 바이오폴리머와 혼합하는 방법으로 쟁기 (plough) 또는 오거 (auger) 등의 장비로 흙을 교반하면서 동시에 분말 또는 액상 상태의 바이오폴리머를 살포 또는 주입하면서 흙-바이오폴리머 혼합토를 조성하는 방법이다.A soil-biopolymer mixture soil, while spraying or injecting powder or liquid biopolymer while stirring soil with a plow or auger, by mixing the surface of the soil with the biopolymer while simultaneously stirring the surface of the soil. How to formulate.
3) 압력을 이용한 방법3) Method using pressure
살포나 사전 혼합을 이용하여 표층 처리를 하기 어려운 경사지 (법면 등)에 대해서 약 0.00001% 내지 약 10% 농도의 고분자 점질성 사슬형 다당류 현탁액 또는 수용액을 고압으로 분사하여 압력으로 인한 경사지 흙의 교란과 그와 동시에 바이오폴리머의 침투를 촉진시켜 경사지에 대한 흙-바이오폴리머 혼합토 피복을 조성하는 방법이다.Scattering the slope soil due to pressure by spraying high pressure viscous chain polysaccharide suspension or aqueous solution in the concentration of about 0.00001% to about 10% on slopes (surfaces, etc.) that are difficult to surface-treat by spraying or premixing. At the same time it is a method of promoting the penetration of biopolymers to form a soil-biopolymer mixed soil coating on the slope.
농도 약 0.00001% 내지 약 10% 상태의 고분자 점질성 사슬형 다당류 현탁액 또는 수용액을 고압으로 지반에 주입 (grouting)하는 방법으로 압력을 이용하여 바이오폴리머 현탁액 또는 수용액을 흙 깊숙이 침투 및 확산시켜 흙-바이오폴리머 처리 지반을 조성한다.Soil-bio is obtained by injecting a polymer viscous chain polysaccharide suspension or aqueous solution having a concentration of about 0.00001% to about 10% into the soil at high pressure by infiltrating and diffusing the biopolymer suspension or aqueous solution into the soil. The polymer treatment ground is formed.
상기의 경우 모두 흙-바이오폴리머 혼합 표층 조성 후 다짐을 통해 흙-바이오폴리머 혼합토의 원지반 (original layer)과의 부착력을 증진시킴은 물론 흙-바이오폴리머 혼합토의 밀도를 증진시킴으로써 강성과 내구성을 동시에 향상시킬 수 있다.In all of the above cases, the soil-biopolymer mixture surface was compacted and then compacted to improve adhesion to the original layer of the soil-biopolymer mixture soil, as well as to increase the density of the soil-biopolymer mixture soil, thereby improving rigidity and durability. You can.
2. 고분자 점질성 사슬형 다당류의 토양 식생 증진 방법2. Soil Vegetation Enhancement Method of Polymer Viscous Chain Polysaccharides
토양의 식생을 증진시키기 위해 고분자 점질성 사슬형 다당류 바이오폴리머를 이용하는 방법이다. 고분자 점질성 사슬형 다당류는 친수성이 높아 흙 속의 수분 환경을 좋게 유지할 뿐만 아니라, 흙 속의 통기, 통수성을 개선하고 나아가 식물 뿌리의 생장을 좋게 해주는 효과가 있어 전체적으로 식생을 증진시킨다. 구체적인 실시 방법은 다음과 같다.In order to improve the vegetation of the soil, a high molecular viscous chain polysaccharide biopolymer is used. Polymeric viscous chain-type polysaccharides have high hydrophilicity to maintain the moisture environment in the soil, as well as improve the aeration and water permeability of the soil, and further improve the growth of plant roots, thereby promoting overall vegetation. Specific implementation method is as follows.
1) 바이오폴리머 혼합토를 이용한 식생토 조성1) Composition of Vegetation Soil Using Biopolymer Mixed Soil
흙의 건조 중량 대비 약 0.0001% 내지 약 5%의 고분자 점질성 사슬형 다당류 바이오폴리머를 함유한 혼합토를 식생토로 직접 사용하여 식물을 재배함으로써 식물의 발아 및 생장을 촉진시킨다. Promoting the germination and growth of the plant by directly cultivating the plant using a mixed soil containing a polymer viscous chain polysaccharide biopolymer of about 0.0001% to about 5% relative to the dry weight of the soil as vegetation soil.
2) 바이오폴리머 현탁액 또는 수용액을 이용한 식생 재배2) Vegetation cultivation using biopolymer suspension or aqueous solution
식생 재배 시 약 0.00001% 내지 약 10% 농도의 고분자 점질성 사슬형 다당류 현탁액 또는 수용액을 재배수로 사용하는 방법으로 공급된 수분의 손실을 억제하고 식물 주변 흙의 내구성을 향상시킴으로써 농경지 흙의 유실을 방지함과 동시에 식물의 생장을 증진시키는 효과가 있다.In the vegetation cultivation method, the use of a polymer viscous chain polysaccharide suspension or an aqueous solution of about 0.00001% to about 10% as a growing water is used to suppress the loss of water supplied and to improve the durability of the soil around plants. At the same time it is effective in preventing plant growth.
3. 고분자 점질성 겔화 (gelation) 다당류를 이용한 흙의 강도 증진 방법3. Method of Enhancing Soil Strength Using Polymer Viscous Gelation Polysaccharides
고분자 점질성 겔화 다당류들은 현탁액 또는 수용액 상태에서는 낮은 점성을 보이나 화학적 또는 열 처리를 통해 높은 강성을 가진 겔 (gel)을 형성하는 물질들을 통칭하는 것으로, 상기 고분자 점질성 겔화 다당류 바이오폴리머를 이용하여 흙의 강도를 증진시키는 방법으로 구체적으로 다음과 같은 방법들을 제시한다.Polymeric viscous gelled polysaccharides refer to materials that show low viscosity in suspension or aqueous solution, but form a gel with high stiffness through chemical or heat treatment. Specifically, the following methods are suggested as ways to increase the strength.
1) 화학적 처리를 통한 흙-고분자 점질성 겔화 다당류 혼합토의 강도 증진1) Strengthening of Soil-Polymer Viscous Gelled Polysaccharide Soils by Chemical Treatment
흙의 건조 중량 대비 약 0.0001% 내지 약 5%의 고분자 점질성 겔화 다당류를 흙과 혼합한 후 흙의 종류에 따라 함수비 약 10% (모래질) 내지 약 200% (점토질) 상태의 혼합 반죽을 조성한 후 알칼리 금속 (Na+, K+ 등) 또는 알칼리 토금속 (Ca2+, Mg2+ 등) 계열의 양이온을 첨가하여 바이오폴리머의 겔화를 유도하여 견고한 흙-바이오폴리머 혼합물을 조성하는 방법이다.After mixing about 0.0001% to about 5% of the polymer viscous gelled polysaccharide with the soil with the soil, and forming a mixed dough having a water content of about 10% (sand) to about 200% (clay) according to the type of soil It is a method of forming a solid soil-biopolymer mixture by inducing gelation of a biopolymer by adding a cation of an alkali metal (Na + , K +, etc.) or alkaline earth metal (Ca 2+ , Mg 2+, etc.) series.
2) 열 처리를 이용한 흙-고분자 점질성 겔화 다당류 혼합토의 강도 증진2) Strengthening of Soil-Polymer Viscous Gelled Polysaccharide Mixture Soil Using Heat Treatment
흙의 건조 중량 대비 약 0.0001% 내지 약 5%의 고분자 점질성 겔화 다당류를 흙과 혼합한 후 흙의 종류에 따라 함수비 약 10% (모래질) 내지 약 200% (점토질) 상태의 혼합 반죽을 조성한 후 이를 약 80℃ 내지 약 120℃ 조건으로 충분히 가열한 후 약 40℃ 내지 약 60℃ 이하로 냉각하면서 겔을 형성하여 견고한 흙-바이오폴리머 혼합토를 조성한다.After mixing about 0.0001% to about 5% of the polymer viscous gelled polysaccharide with the soil with the soil, and forming a mixed dough having a water content of about 10% (sand) to about 200% (clay) according to the type of soil This is sufficiently heated to about 80 ℃ to about 120 ℃ condition and then cooled to about 40 ℃ to about 60 ℃ or less to form a gel to form a solid soil-biopolymer mixed soil.
또는, 약 0.00001% 내지 약 10% 농도의 고분자 점질성 겔화 다당류 현탁액 또는 수용액을 약 80℃ 내지 약 120℃ 조건으로 충분히 가열한 후 흙과 함수비 약 10% (모래질) 내지 약 200% (점토질) 범위 조건에서 흙과 혼합하면서 냉각시켜 약 40℃ 내지 약 60℃ 이하 온도에서 겔 형성을 유도하여 견고한 흙-바이오폴리머 혼합토를 조성한다.Alternatively, the polymer viscous gelled polysaccharide suspension or aqueous solution at a concentration of about 0.00001% to about 10% is sufficiently heated to about 80 ° C. to about 120 ° C., followed by soil and water content in the range of about 10% (sand) to about 200% (clay). Cooling while mixing with soil in the conditions to induce gel formation at a temperature of about 40 ℃ to about 60 ℃ or less to form a solid soil-biopolymer mixed soil.
상기 두 경우 모두 혼합 시 3-1에서 제시한 알칼리 금속 또는 알칼리 토금속 물질을 첨가하면 더욱 강한 흙-바이오폴리머 혼합토를 조성할 수 있다.In both cases, when the alkali metal or alkaline earth metal material shown in 3-1 is added to the mixture, a stronger soil-biopolymer mixed soil may be formed.
4. 고분자 점질성 겔화 (gelation) 다당류를 이용한 흙의 내구성 증진 방법4. Method for Improving Durability of Soil Using Polymer Viscous Gelation Polysaccharides
고분자 점질성 겔화 다당류 바이오폴리머는 일반적으로 아무런 처리를 하지 않은 중성 (pH 약 7) 현탁액 또는 수용 상태에서는 낮은 점성을 보이나 화학적 또는 열 처리를 통해 높은 강성을 가진 겔 (gel)을 형성하게 된다. 이런 고분자 점질성 겔화 다당류들은 표면의 전기적 특성으로 인해 흙 입자, 특히 점토질 흙 입자와 잘 결합하여 견고한 흙-바이오폴리머 매트릭스를 형성한다. 이러한 상호거동을 이용하여 고분자 점질성 겔화 다당류를 이용하여 흙의 강성과 침식에 대한 저항성을 증진시킬 수 있다. 그 구체적인 형태는 다음과 같다:Polymeric viscous gelled polysaccharide biopolymers generally exhibit low viscosity in an untreated neutral (pH about 7) suspension or in water, but form gels with high stiffness through chemical or thermal treatment. These polymer viscous gelled polysaccharides combine well with soil particles, especially clay soil particles, due to the electrical properties of the surface to form a robust soil-biopolymer matrix. By using this mutual behavior, it is possible to enhance the soil stiffness and resistance to erosion by using a polymer viscous gelled polysaccharide. The specific form is as follows:
1) 살포를 통한 표면 처리1) Surface treatment by spraying
분말상태의 고분자 점질성 겔화 다당류를 흙 표면에 살포한 후, 물을 살수하여 흙 속 침투를 유도함과 동시에 친수성이 높은 고분자 점질성 겔화 다당류의 팽창과 상호간 응집을 유발하여 전체적으로 흙 표면에 바이오폴리머 막을 형성할 수 있다.After spraying the powdery polymer viscous gelled polysaccharide on the soil surface, the water is sprinkled to induce penetration into the soil and at the same time, the hydrophilic polymer viscous gelled polysaccharide is induced to expand and coagulate with each other. Can be formed.
이 경우 세 가지 살수 방법이 있다. 첫째, 순수한 (중성 또는 약 알칼리성) 물을 사용하는 방법이 있으며, 둘째, 1차 살수는 순수한 물을 사용하고 2차 살수로 낮은 pH (pH 약 5 이하)의 산성 수용액 또는 양이온계 수용액을 살수하여 침투된 고분자 점질성 겔화 다당류들의 응집을 촉진시키는 방법이 있다. 마지막으로, 산성 수용액 (pH 약 5 이하) 또는 양이온계 수용액을 바로 살수하는 방법이다.In this case, there are three ways to live. First, there is a method of using pure (neutral or weakly alkaline) water, and secondly, the first spraying water uses pure water and the second spraying water sprays an acidic or cationic aqueous solution of low pH (pH about 5 or less) There is a method of promoting aggregation of the infiltrated polymer viscous gelling polysaccharides. Finally, an acidic aqueous solution (pH of about 5 or less) or a cationic aqueous solution is directly sprayed.
고분자 점질성 겔화 다당류를 물에 녹여 약 0.00001% 내지 약 10% 농도의 현탁액 또는 수용액 상태로 흙 표면에 살수하는 방법으로, 흙의 종류에 따라 현탁액 또는 수용액의 농도를 달리하여 점성을 조절하여 지반 내 침투를 용이하게 하고, 침투 즉시 흙과 결합하여 흙-바이오폴리머 매트릭스를 형성하고, 수분이 건조되면서 그 흙의 강성을 증가시킬 수 있다.A method of dissolving a high-molecular viscous gelled polysaccharide in water and spraying it on the soil surface in the form of a suspension or an aqueous solution of about 0.00001% to about 10% concentration. The viscosity is controlled by varying the concentration of the suspension or the aqueous solution according to the type of soil. It is easy to infiltrate, combine with soil upon infiltration to form soil-biopolymer matrix, and increase the soil's stiffness as the moisture dries.
이 경우 세 가지 현탁액 또는 수용액 살수 방법이 존재한다. 첫째, 바이오폴리머 현탁액 또는 수용액을 그대로 살수하는 방법, 둘째, 바이오폴리머 현탁액 또는 수용액에 염을 첨가하여 pH를 높여 (약 9 이상) 현탁액 또는 수용액의 점성을 낮춘 후 살수하여 지반 내 침투성을 높이는 방법, 셋째, 염을 첨가하여 pH를 약 9 이상으로 높인 바이오폴리머 현탁액 또는 수용액을 흙에 1차 살수한 후, 2차 살수로 낮은 pH (pH 약 5 이하)의 산성 수용액을 살수하여 침투된 고분자 점질성 겔화 다당류의 응집을 촉진시키는 방법이 있다.In this case, three suspension or aqueous solution sprinkling methods exist. First, spraying the biopolymer suspension or the aqueous solution as it is, second, adding the salt to the biopolymer suspension or the aqueous solution to increase the pH (about 9 or more) to lower the viscosity of the suspension or the aqueous solution, and then spraying to increase the permeability in the ground; Third, the first polymer of the biopolymer suspension or the aqueous solution of which the pH was raised to about 9 or more by adding salts to the soil, and then sprinkled with an acidic aqueous solution having a low pH (pH of about 5 or less) by the second spray, was infiltrated. There is a method for promoting the aggregation of gelling polysaccharides.
2) 표층 혼합 처리2) surface layer mixing treatment
흙과 고분자 점질성 겔화 다당류를 사전 혼합한 후 표면에 타설하여 포장 또는 피복을 형성하는 방법으로, 현장의 흙 또는 수송해온 흙을 점질성 겔화 다당류 바이오폴리머, 중성 또는 알칼리성 물 (pH 약 6 내지 약 13)과 혼합하여 흙 반죽 (mixture)을 만든 후 현장에 타설하는 방법으로, 구체적으로 흙의 건조 중량 대비 약 0.0001% 내지 5% 비율로 바이오폴리머를 첨가하고, 물은 흙의 종류 (모래질 또는 점토질)에 따라 흙 중량 대비 약 10% 내지 약 200% 의 비율로 혼합한 흙 반죽을 조성한 후 현장에 원하는 두께만큼 타설하는 방법이다. 타설 후에는 낮은 pH의 산성 수용액 (pH 약 5 이하) 또는 양이온계 수용액을 표면에 살수하여 침투를 유도함으로써 혼합토 내의 점질성 겔화 바이오폴리머의 겔 구조를 강화시킬 수 있다.A method of pre-mixing soil and high-molecular viscous gelled polysaccharides and placing them on the surface to form a package or coating, wherein the soil or transported soil is viscous gelled polysaccharide biopolymer, neutral or alkaline water (pH about 6 to about 13) is mixed with the 13) to create a soil dough (mixture), and then poured on site, specifically, the biopolymer is added in a ratio of about 0.0001% to 5% of the dry weight of the soil, water is the type of soil (sand or clay quality) ) According to the method to form the soil dough mixed in a ratio of about 10% to about 200% of the weight of the soil and then pour the desired thickness to the site. After pouring, a low pH acidic aqueous solution (pH up to about 5) or a cationic aqueous solution can be sprayed onto the surface to induce penetration to enhance the gel structure of the viscous gelled biopolymer in the mixed soil.
현장 흙의 표면을 교반하면서 동시에 바이오폴리머와 혼합하는 방법으로 쟁기 (plough) 또는 오거 (auger) 등의 장비로 흙을 교반하면서 동시에 분말 또는 액상 상태 (pH 약 7 내지 약 13)의 바이오폴리머를 살포 또는 주입하면서 흙-바이오폴리머 혼합토를 조성하는 방법이다. 혼합 교반 후에는 낮은 pH의 산성 수용액 (pH 약 5 이하) 또는 양이온계 수용액을 표면에 살수하여 침투를 유도함으로써 혼합토 내의 점질성 겔화 바이오폴리머의 겔 구조를 강화시킬 수 있다.By stirring the surface of the field soil and mixing it with the biopolymer at the same time, while spraying the soil with equipment such as a plow or auger, spraying the biopolymer in powder or liquid state (pH about 7 to about 13) Or it is a method of forming a soil-biopolymer mixed soil while injecting. After mixing and stirring, a low pH acidic aqueous solution (pH of about 5 or less) or a cationic aqueous solution may be sprayed on the surface to induce penetration, thereby strengthening the gel structure of the viscous gelled biopolymer in the mixed soil.
3) 압력을 이용한 방법3) Method using pressure
살포나 사전 혼합을 이용하여 표층 처리를 하기 어려운 경사지 (법면 등)에 대해서 약 0.00001% 내지 약 10% 농도의 고분자 점질성 겔화 다당류 현탁액 또는 수용액(pH 약 6 내지 약 13)을 고압으로 분사하여 압력으로 인한 경사지 흙의 교란과 그와 동시에 바이오폴리머의 침투를 촉진시켜 경사지에 대한 흙-바이오폴리머 혼합토 피복을 조성하는 방법이다. 살포 후에는 낮은 pH의 산성 수용액 (pH 약 5 이하) 또는 양이온계 수용액을 표면에 살수하여 혼합토 피복 내의 점질성 겔화 바이오폴리머의 겔 구조를 강화시킬 수 있다.A high pressure spraying polymer viscous gelled polysaccharide suspension or aqueous solution (pH about 6 to about 13) at a concentration of about 0.00001% to about 10% is applied to slopes (surfaces, etc.) that are difficult to surface-treat by spraying or premixing. It is a method of forming a soil-biopolymer mixed soil coating on slopes by promoting disturbance of slope soils and simultaneously penetration of biopolymers. After sparging, a low pH acidic aqueous solution (pH up to about 5) or a cationic aqueous solution may be sprayed on the surface to strengthen the gel structure of the viscous gelled biopolymer in the mixed soil coating.
농도 약 0.00001% 내지 약 10% 상태의 고분자 점질성 겔화 다당류 현탁액 또는 수용액 (pH 약 6 내지 약 13)을 고압으로 지반에 주입 (grouting)하는 방법으로 압력을 이용하여 바이오폴리머 현탁액 또는 수용액을 흙 깊숙이 침투 및 확산시켜 흙-바이오폴리머 처리 지반을 조성하는 방법이다. 주입 후에는 낮은 pH의 산성 수용액 (pH 약 5 이하) 또는 양이온계 수용액을 추가로 주입하여 지반 내 흙-바이오폴리머 혼합토의 점질성 겔화 바이오폴리머의 겔 구조를 강화시킬 수 있다.Using a pressure to grout the polymer viscous gelled polysaccharide suspension or aqueous solution (pH about 6 to about 13) to the ground at a high pressure of about 0.00001% to about 10%, It is a method of penetrating and diffusing to form soil-biopolymer treated ground. After the injection, an additional low pH acidic aqueous solution (pH of about 5 or less) or a cationic aqueous solution may be further injected to strengthen the gel structure of the viscous gelled biopolymer of the soil-biopolymer mixed soil in the soil.
상기 경우 모두 흙-바이오폴리머 혼합 표층 조성 후 다짐을 통해 흙-바이오폴리머 혼합토의 원지반 (original layer)과의 부착력을 증진시킴은 물론 흙-바이오폴리머 혼합토의 밀도를 증진시킴으로써 강성과 내구성을 동시에 향상시킬 수 있다.In this case, the soil-biopolymer mixed surface layer is prepared after compaction to improve adhesion to the original layer of the soil-biopolymer mixed soil, as well as to increase the density of the soil-biopolymer mixed soil, thereby improving rigidity and durability. Can be.
5. 고분자 점질성 바이오폴리머의 흙 속 침투 향상을 위한 방법5. Method for Improving Penetration of Dirt Viscous Biopolymers in Soil
고분자 점질성 사슬형 다당류 바이오폴리머는 일반적으로 분자량이 약 10,000 Da 이상의 고분자들로서 중성 또는 산성 (pH 약 7 이하) 현탁 또는 수용액 상태에서 사슬 (fiber)들끼리 서로 엉켜 높은 점성을 보이게 된다. 특히 표면이 음전하를 띄고 있는 점질성 사슬형 다당류들은 pH가 낮아질수록 점성이 높아지는 특징이 있다. 한편 고분자 점질성 사슬형 다당류 바이오폴리머는 높은 친수성으로 인해 팽창하고 매우 점성이 높은 현탁액 또는 수용액이 된다. Polymeric viscous chain polysaccharide biopolymers are generally polymers having a molecular weight of about 10,000 Da or more, and the fibers are entangled with each other in a neutral or acidic suspension (pH of about 7 or less) or in an aqueous solution to show high viscosity. In particular, the viscous chain-type polysaccharides having a negative charge on the surface has a characteristic of increasing viscosity as the pH is lowered. Polymeric viscous chain polysaccharide biopolymers, on the other hand, swell due to high hydrophilicity and become very viscous suspensions or aqueous solutions.
이처럼 고분자 점질성 바이오폴리머의 흙 속 침투성을 높이기 위해서는 점성을 낮춰야 한다. 이를 위해 본원에서는 다음과 같은 방법들을 제시한다.Thus, in order to increase the permeability of the polymer viscous biopolymer in the soil, the viscosity must be lowered. To this end, the present application proposes the following methods.
1) 화학적 처리를 이용하는 방법1) Method using chemical treatment
농도 약 0.00001% 내지 약 10% 상태의 고분자 점질성 사슬형 또는 겔화 다당류 현탁액 또는 수용액의 pH를 약 9 이상으로 증가시키면 점성이 낮아진다. 점성을 낮춘 바이오폴리머 현탁액 또는 수용액을 지반에 살수 또는 압력으로 주입하면 지반 내 침투 또는 확산을 개선할 수 있다.Increasing the pH of the polymer viscous chain or gelled polysaccharide suspension or aqueous solution at a concentration of about 0.00001% to about 10% results in a lower viscosity. Injecting low-viscosity biopolymer suspensions or aqueous solutions into the ground by spraying or pressure can improve penetration or diffusion into the ground.
염기성의 고분자 점질성 사슬형 다당류 현탁액 또는 수용액을 흙에 살수 또는 주입한 후에는 낮은 pH의 산성 수용액 (pH 약 5 이하)을 추가 살수 또는 주입하여 흙-바이오폴리머 혼합토 내의 점질성 사슬형 바이오폴리머 간 응집과 점질성 겔화 바이오폴리머 간 겔화를 증진시킬 수 있다After sprinkling or injecting a basic polymer viscous chain polysaccharide suspension or aqueous solution into the soil, additionally spraying or injecting a low pH acidic aqueous solution (pH of about 5 or less) to the viscous chain biopolymer in the soil-biopolymer mixed soil. Can enhance coagulation and gelling between viscous gelling biopolymers
2) 물리적 처리를 이용하는 방법2) using physical processing
비드밀 (Beadmill) 등을 이용하여 고분자 점질성 사슬형 다당류 바이오폴리머 용액의 점성을 낮추는 방법으로, 약 10,000 ppm 이상의 속도로 비드를 이용하여 용액을 교반함으로써 엉켜있는 다당류 사슬들을 풀어줄 수 있다. A bead mill or the like can be used to lower the viscosity of the polymer viscous chain polysaccharide biopolymer solution, and the tangled polysaccharide chains can be released by stirring the solution using the beads at a rate of about 10,000 ppm or more.
또한, 고압 (약 150 bar 이상)으로 고분자 점질성 사슬형 다당류 바이오폴리머 용액을 충돌시켜 물리적으로 엉켜있는 다당류 사슬들을 풀어줄 수 있다. 사슬형 다당류 바이오폴리머 용액인 PolycanTM의 경우 원액의 점성이 약 1,000 cps 정도인데, 균질기 (homogenizer)를 이용하여 200 bar로 충돌시키면 약 30 cps로 점도가 낮아지고, 약 30 cps의 액체를 다시 충돌시키면 약 16 cps로 점도가 감소한다. 물리적으로 점성을 낮춘 고분자 점질성 사슬형 다당류 바이오폴리머를 흙과 혼합 또는 주입한 후 낮은 pH의 산성 수용액 (pH 약 5 이하) 또는 양이온계 수용액을 추가 살수 또는 주입하여 흙-바이오폴리머 혼합토 내의 점질성 사슬형 바이오폴리머 간 응집을 증진시킬 수 있다.In addition, the polymer viscous chain polysaccharide biopolymer solution may be collided at high pressure (about 150 bar or more) to release physically entangled polysaccharide chains. Polycan TM , a chain polysaccharide biopolymer solution, has a viscosity of about 1,000 cps, and when it is collided with a homogenizer at 200 bar, the viscosity decreases to about 30 cps, and the liquid of about 30 cps is again returned. Collision reduces the viscosity to about 16 cps. Viscous properties in soil-biopolymer mixed soils by mixing or injecting a physically low-viscosity polymer viscous chain polysaccharide biopolymer with soil, followed by additional spraying or injection of a low pH acidic aqueous solution (pH below 5) or a cationic aqueous solution Aggregation between chained biopolymers can be enhanced.
3) 열 처리를 이용하는 방법3) How to use heat treatment
약 0.00001% 내지 약 10% 농도의 고분자 점질성 겔화 다당류 현탁액 또는 수용액을 약 80℃ 내지 약 120℃ 조건으로 충분히 가열하면 바이오폴리머 현탁액 또는 수용액의 점성이 낮아진다. 이를 고온 상태에서 흙에 혼합 또는 주입을 하게 되면 자연스럽게 냉각이 되면서 약 40℃ 내지 약 60℃ 이하 온도에서 겔을 형성하여 견고한 흙-바이오폴리머 혼합토를 조성하게 된다.Sufficient heating of the polymer viscous gelled polysaccharide suspension or aqueous solution at a concentration of about 0.00001% to about 10% to about 80 ° C. to about 120 ° C. lowers the viscosity of the biopolymer suspension or aqueous solution. When the mixture is mixed or injected into the soil at a high temperature, it cools naturally and forms a gel at a temperature of about 40 ° C. to about 60 ° C. or less to form a solid soil-biopolymer mixed soil.
본원의 일 구현예에 있어서, 상기 바이오폴리머는, 하기와 같이 다양한 대상 지역에 여러 목적을 위해 다양한 방법으로 토양에 첨가될 수 있으나, 이에 제한되지 않을 수 있다:In one embodiment of the present disclosure, the biopolymer may be added to the soil in various ways for various purposes in various target areas as follows, but may not be limited thereto:
1. 고분자 점질성 다당류 바이오폴리머를 이용한 지표면 피복 공법1.Surface coating method using polymer viscous polysaccharide biopolymer
1-1. 살포 또는 살수 방식을 이용한 방법1-1. Method using spraying or sprinkling
바이오폴리머 현탁액을 지표면에 직접 살포하는 방식으로 평지뿐만 아니라 경사진 사면 또는 법면에도 손쉽게 적용할 수 있는 방법으로, 고형 또는 액상 상태의 바이오폴리머를 일정 비율로 희석하고, 펌프, 이송관, 그리고 노즐을 이용하여 살포하여, 바이오폴리머 현탁액이 중력에 의해 지반에 침투하면서 흙 입자와 결속하여 피복을 형성하는 방법이다.By spraying the biopolymer suspension directly onto the surface, it can be easily applied to slopes or slopes as well as flat, diluting solid or liquid biopolymers in certain proportions, and pumps, transfer tubes and nozzles. It sprays by using, and it is a method of forming a coating | coating by binding with soil particle, while a biopolymer suspension penetrates into the ground by gravity.
1-2. 습식혼합·포설 방식을 이용한 방법1-2. Method using wet mixing and spreading method
사전 혼합을 통해 바이오폴리머 혼합토를 조성한 후, 대상 지역에 포설 후 다짐을 통해 특정 두께의 피복을 형성하는 방법이다. 이 공법은 현장에 균질한 품질의 피복을 형성할 수 있는 장점이 있으며, 다짐을 통해 원지반과의 부착력을 높이게 된다.It is a method of forming a biopolymer mixture soil through pre-mixing, and then laying it in a target area and forming a coating having a specific thickness through compaction. This method has the advantage of forming a homogeneous coating on the site, and through the compaction to increase the adhesion to the base.
본 방법은 고형 또는 액상 상태의 바이오폴리머를 일정 비율로 희석하고 동시에 포설할 수 있는 장치, 포설된 흙을 펴서 다질 수 있는 다짐 장치로 구성된다. 다짐 장치는 롤러식 또는 진동식 모두 가능하다. The method consists of a device for diluting solid and liquid biopolymers at a certain rate and laying them at the same time, and a compaction device for spreading and laying of soil. The compaction device can be either roller or vibratory.
본 방법은 1-1과 병행하여 피복 표면의 코팅력을 향상시킬 수 있다. 본 방법은 현장에 다량의 현장 발생토 이용이 가능한 경우 유용하다.This method can improve the coating power of the coating surface in parallel with 1-1. This method is useful when a large amount of on-site soil is available on site.
1-3. 건식혼합·살포 방식을 이용한 방법1-3. Dry mix and spray method
본 방법은 건조 지역과 같이 지표면 토양이 건조되어 있는 경우 적용 가능한 방법으로, 건조된 흙과 분말 상태의 바이오폴리머를 현장에서 바로 건식 혼합한 후 물을 살포하여 피복을 형성하는 방법이다. This method is applicable when the surface soil is dried, such as a dry area, is a method of dry mixing the dry soil and the powdered biopolymer in the field immediately after spraying water to form a coating.
2. 고분자 점질성 다당류 바이오폴리머를 이용한 농경 또는 방목지 보호2. Protection of farmland or pasture using high-molecular viscous polysaccharide biopolymers
농경과 방목으로 인한 토지 이용 변화가 토양 유실의 가장 큰 원인으로 지목되고 있다. 따라서, 농경지 및 목축지의 토양 유실 억제를 위해 바이오폴리머 처리 기술이 매우 효과적으로 사용될 수 있다.Changes in land use due to farming and grazing are the leading causes of soil loss. Therefore, biopolymer treatment technology can be used very effectively for suppressing soil loss of cropland and stockland.
2-1. 고분자 점질성 다당류 바이오폴리머를 이용한 논밭 갈기2-1. Grinding Paddy Fields Using Polymer Viscous Polysaccharide Biopolymers
파종 전 농경지를 갈 때, 바이오폴리머 분말 또는 현탁액과 함께 쟁기질을 하는 방법이다. 통상 파종 전 농경지의 경우 표면이 단단하기 때문에 바이오폴리머 현탁액을 사전에 살포하면 쟁기질의 작업 효율을 높일 수 있을 뿐만 아니라, 표토와 바이오폴리머가 고루 혼합되면서 농경지 전체의 침식에 대한 저항성이 증대될 수 있다. When plowing cropland before sowing, plowing is performed with biopolymer powder or suspension. In general, pre-sowing cropland has a hard surface, so spraying a biopolymer suspension in advance can improve the working efficiency of the plowing, and can also increase the resistance to erosion of the whole cropland as the topsoil and the biopolymer are evenly mixed. .
또는 쟁기의 머리부분에 직접 분사 노즐을 장착하여 쟁기질을 함과 동시에 선단부에서 바이오폴리머 현탁액이 공급됨으로써 국부적인 효율을 증진시키는 방법도 제안될 수 있다. Alternatively, a method may be proposed in which a direct injection nozzle is attached to the head of the plow to plow and at the same time a biopolymer suspension is supplied from the tip to enhance local efficiency.
2-2. 항공기를 이용한 농경 또는 방목지 보호2-2. Farm or Pasture Protection by Aircraft
최근 현대 농업은 방대한 농경 또는 방목지의 경우 항공기를 이용한 살충·제초제 살포 사례가 증가하고 있다. 따라서 본 발명에서 제안된 바이오폴리머를 이용한 흙 침식 저항 증진을 위해 농경 및 방목지에서 대해서도 필요에 따라 항공기를 이용한 바이오폴리머 현탁액을 살포하는 기술을 제안할 수 있다.In recent years, modern agriculture has been increasing the use of pesticides and herbicides in the case of large farms or pastures. Therefore, in order to improve soil erosion resistance using the biopolymer proposed in the present invention, a technique of spraying a biopolymer suspension using an aircraft may be proposed as needed even in farming and pasture.
3. 고분자 점질성 다당류 바이오폴리머를 이용한 친환경 수변 공간 조성3. Environment-friendly Waterfront Space Using Polymer Viscous Polysaccharide Biopolymer
수변 공간의 경우 물과 인접해 있어 물에 의한 침식 가능성이 늘 존재하고 있다. 따라서 수변 공간 조성 시 바이오폴리머를 이용해 지반을 개량하게 되면 전체적인 흙 유실을 낮출 수 있을 것으로 기대된다.Waterside spaces are adjacent to water, so there is always a possibility of water erosion. Therefore, the improvement of the soil using biopolymers in the construction of waterside space is expected to reduce the overall soil loss.
4. 고분자 점질성 다당류 바이오폴리머를 이용한 연안 토양 보호4. Coastal Soil Protection Using Polymer Viscous Polysaccharide Biopolymers
바이오폴리머 처리를 이용한 해안 백사장 및 연안 사구 등의 해안 지반 보호를 위해 이용될 수 있다.It can be used for coastal ground protection such as coastal white sand and coastal sand dunes using biopolymer treatment.
5. 고분자 점질성 다당류 바이오폴리머를 이용한 식생 지반 조성 공법5. Vegetation ground composition method using polymer viscous polysaccharide biopolymer
바이오폴리머 처리는 식생의 발아 및 생장을 증진시키므로 다양한 형태로 현장에 적용이 가능하다.Biopolymer treatment enhances the germination and growth of vegetation, so it can be applied to the field in various forms.
5-1. 살포 방식을 이용한 방법5-1. Method using spray method
바이오폴리머 현탁액을 고압으로 살포하는 방식으로 평지뿐만 아니라 경사진 사면 또는 법면에도 손쉽게 적용할 수 있는 방법으로, 고형 또는 액상 상태의 바이오폴리머를 일정 비율로 희석하고, 경우에 따라 첨가제 등을 균질하게 혼합할 수 있는 혼합조, 바이오폴리머 현탁액의 고점성 특성에 맞는 고압펌프와 이송관 시스템, 그리고 바이오폴리머 혼합액을 효과적으로 살포할 수 있는 특수 노즐로 구성된다 (도 13). 특수 노즐은 식생 씨앗과 같은 미세 입자들을 분사할 수 있는 조건을 만족시켜야 한다.The method of spraying the biopolymer suspension at high pressure can be easily applied not only to flat lands but also to inclined slopes or slopes, and dilutes the solid or liquid biopolymer at a predetermined ratio, and optionally mixes additives homogeneously. It consists of a mixing tank, a high pressure pump suitable for the high viscosity characteristics of the biopolymer suspension, a delivery tube system, and a special nozzle which can effectively spray the biopolymer mixture (FIG. 13). Special nozzles must meet the conditions for spraying fine particles, such as vegetation seeds.
5-2. 습식혼합 포설 방식을 이용한 방법5-2. Method using wet mixed laying method
사전 혼합을 통해 바이오폴리머 혼합토를 조성한 후, 대상 지역에 포설 후 다짐을 통해 특정 두께의 피복을 형성하는 방법이다. 이 공법은 현장에 균질한 품질의 피복을 형성할 수 있는 장점이 있으며, 다짐을 통해 원지반과의 부착력을 높이게 된다.It is a method of forming a biopolymer mixture soil through pre-mixing, and then laying it in a target area and forming a coating having a specific thickness through compaction. This method has the advantage of forming a homogeneous coating on the site, and through the compaction to increase the adhesion to the base.
본 방법은 고형 또는 액상 상태의 바이오폴리머를 일정 비율로 희석하고 흙과 기타 첨가제와 혼합과 동시에 포설할 수 있는 장치, 포설된 흙을 펴서 다질 수 있는 다짐 장치로 구성된다 (도 14). 다짐 장치는 롤러식 또는 진동식 모두 가능하다.The method consists of a device for diluting a solid or liquid biopolymer in a proportion and diluting with soil and other additives at the same time, and a compaction device for unfolding the installed soil (FIG. 14). The compaction device can be either roller or vibratory.
본 방법은 방법 5-1과 병행하여 피복 표면의 코팅력을 향상시킬 수 있다. 본 방법은 현장에 다량의 현장 발생토 이용이 가능한 경우 유용하다.This method can improve the coating power of the coating surface in parallel with Method 5-1. This method is useful when a large amount of on-site soil is available on site.
5-3. 건식혼합·살포 방식을 이용한 방법5-3. Dry mix and spray method
본 방법은 사전 혼합 없이 이중 이송 시스템을 이용한 건식 혼합 살포방식으로 분사됨과 동시에 액상 바이오폴리머와 흙 및 기타 첨가제 간 혼합이 이루어진 후 원지반에 부착되는 방법으로 자연현장토보다는 건조상태의 분말토 또는 배양토를 사용하면 그 효과가 극대화 된다.This method is sprayed by dry spraying method using dual transfer system without pre-mixing, and mixed with liquid biopolymer, soil and other additives, and then attached to the ground. Use it to maximize the effect.
본 방법의 핵심은 살포 물질의 이중 이송으로, 습식 이송 시스템에서는 액상 상태의 바이오폴리머 현탁액을 이송 및 살포하고, 건식 이송 시스템은 건조 상태의 흙 및 기타 첨가제를 이송 및 분사함으로써, 이송관에서의 막힘 등 시공상 문제점들을 저감하고 나아가 현장 작업 효율을 극대화하는데 그 목적이 있다.The core of the method is the dual transport of the spreading material, the wet transport system transports and spreads the liquid biopolymer suspension, and the dry transport system transports and sprays dry soil and other additives, thereby clogging in the transfer pipe. Its purpose is to reduce construction problems and to maximize the efficiency of field work.
본 방법의 시스템은 크게 액상 상태의 바이오폴리머 현탁액을 조성하는 혼합조, 바이오폴리머 현탁액의 고점성 특성에 맞는 고압펌프와 이송관 시스템, 고체 상태의 흙 및 기타 첨가제를 균일하게 혼합하는 혼합조, 고압으로 이송할 수 있는 고체용 펌프와 이송관 시스템, 액상 상태 바이오폴리머와 고체 상태의 흙 및 기타 첨가제를 독립적으로 분사할 수 있는 이중노즐로 구성된다 (도 15).The system of the method includes a mixing tank for largely forming a biopolymer suspension in a liquid state, a high pressure pump and conveying tube system suitable for the high viscosity characteristics of the biopolymer suspension, a mixing tank for uniformly mixing solid soil and other additives, and a high pressure. It consists of a dual-nozzle capable of independently injecting a solids pump and a delivery tube system, a liquid biopolymer and a solid soil and other additives that can be transferred to the furnace (FIG. 15).
6. 고분자 점질성 다당류 바이오폴리머를 이용한 친환경 조경6. Environment-friendly Landscaping Using Polymer Viscous Polysaccharide Biopolymer
본원의 일 구현예에 따른 상기 방법 3과 4에 의해 고분자 점질성 다당류 바이오폴리머 처리가 식생의 발아 및 생장 증진에 효과가 있음이 확인된다. 따라서 본원에서는 기존 화학 비료에 의존하지 않는 바이오폴리머를 이용한 친환경 조경 조성 방법을 제시한다. Method 3 and 4 according to an embodiment of the present application it is confirmed that the treatment of the polymer viscous polysaccharide biopolymer is effective in promoting germination and growth of vegetation. Therefore, the present application proposes an environment-friendly landscape composition method using a biopolymer that does not depend on the existing chemical fertilizer.
평지의 경우 표층에 고분자 점질성 다당류 바이오폴리머 피복층을 형성한 후, 그 위에 씨앗을 직접 뿌리거나 식생매트를 설치한다. 씨앗을 파종한 후에는 후처리 없이 그대로 두거나, 일정 두께의 토피를 조성해 외부 환경으로부터 씨앗을 보호해줌과 동시에 씨앗의 발아를 촉진하는 효과를 유도하게 된다. In the case of rapeseed, after forming a polymer viscous polysaccharide biopolymer coating layer on the surface layer, the seeds are directly sprayed or a vegetation mat is installed. After seeding, the seed is left without post treatment or a toffee of a certain thickness is formed to protect the seed from the external environment and to induce the germination of the seed.
법면 또는 사면과 같은 경사지의 경우 표면에 바이오폴리머 피복층을 형성한 후, 그 위에 씨앗을 직접 살포하거나 식생매트를 시공한다. 씨앗을 파종한 후에는 후처리 없이 그대로 두거나, 일정 두께의 피복을 추가로 조성해 외부 환경으로부터 씨앗을 보호하고 발아를 촉진한다.In the case of slopes such as a slope or a slope, a biopolymer coating layer is formed on the surface, and then the seeds are directly sprayed or a vegetation mat is applied. After sowing the seeds, they can be left without post-treatment or additional coatings of a certain thickness can be used to protect the seeds from the external environment and to promote germination.
7. 고분자 점질성 다당류 바이오폴리머를 이용한 친환경 수변 공간 조성7. Environment-friendly Waterfront Space Utilizing Polymer Viscous Polysaccharide Biopolymer
바이오폴리머는 환경친화적이고, 시간이 경과함에 따라 생분해 (biodegradation) 되는 특성이 있기 때문에 기존 시멘트 (cement) 또는 화학 계열 재료와 비교해 수변 공간에 적용했을 때 수질 및 수생태계 교란 효과가 극히 적어 친환경 수변 공간 조성에서의 적극적인 활용이 기대된다. 하천 및 수변 공간의 일반적인 형상은 도 16과 같다. 보통 하천과 하천의 범람을 막기 위한 제방 (B), 제방 안쪽의 고수부지 (C), 그리고 제방 바깥의 주변공간 (A)으로 구분된다. 친환경 수변 공간 조성을 위한 방법으로 본 발명에서는 각 공간에 대해 다음과 같은 실시 방법을 수행한다.Biopolymers are environmentally friendly and biodegradable over time, resulting in extremely low water and water ecosystem disturbances when applied to the waterfront compared to conventional cement or chemical materials. Active utilization in the furtherance is expected. The general shape of the river and waterside space is shown in FIG. It is usually divided into a bank (B), a ciliary site (C) inside the bank, and a periphery (A) outside the bank to prevent flooding. As a method for creating an environment-friendly waterfront space, the present invention performs the following implementation method for each space.
A (주변공간): 현장 조건에 따라 방법 5의 모든 방법 적용 가능A (ambient space): All methods of method 5 can be applied depending on site conditions.
하천 준설 및 수위고 변화로 인한 역행 침식 억제를 위하여 본원에 따른 바이오폴리머를 이용한 토양 안정화 및 개량 방법이 주변 지반에 바이오폴리머를 이용하여 친환경 지반 보강 방법으로서 적용될 수 있다.Soil stabilization and improvement methods using biopolymers according to the present application can be applied as an environmentally friendly soil reinforcement method using biopolymers in surrounding grounds to suppress back erosion due to river dredging and water level change.
B (제방): 방법 5-1 또는 5-3의 방법 적용 가능B (bank): Applicable to method 5-1 or 5-3
제방 및 호안벽 조성에 사용되는 콘크리트 블록 또는 사석을 대체할 수 있는 대안으로, 본원에 따른 바이오폴리머를 이용한 토양 안정화 및 개량 방법이 바이오폴리머 혼합토를 이용한 제방 및 호안벽 조성 방법으로서 적용될 수 있다.As an alternative to the concrete blocks or sandstones used for the embankment and the revetment wall, the soil stabilization and improvement method using the biopolymer according to the present application can be applied as a dike and revetment method using the biopolymer mixture soil.
아울러, 본원에 따른 토양 안정화 및 개량 방법은 만수위 또는 홍수위 시 제방으로의 물 침투를 억제하기 위하여 바이오폴리머를 이용한 제방 표면 피복 공법으로서 적용될 수 있다.In addition, the soil stabilization and improvement method according to the present application may be applied as a bank surface coating method using a biopolymer in order to suppress the water penetration into the bank in the high water level or flood level.
C (고수부지): 현장 조건에 따라 방법 5의 모든 방법 적용 가능C (Fixed ground): All methods of method 5 can be applied depending on site conditions
하천 유입수로 인한 유입부분의 부분 침식 또는 평지 (고수부지)에서의 도랑 (gully)과 같은 불규칙 토양 침식 억제를 위하여 본원에 따른 토양 안정화 및 개량 방법은 바이오폴리머를 이용한 표토 침식 저항성 향상 공법으로서 적용될 수 있다.The soil stabilization and remediation method according to the present application can be applied as a method for improving the soil erosion resistance using biopolymers to suppress irregular soil erosion such as partial erosion of the inflow portion or gully on the flat land. have.
본원의 바이오폴리머를 이용한 토양 안정화 및 개량 방법에 따르면 환경친화적인 식생 증진용 토양 조성물 및/또는 토양 침식 방지용 조성물을 제조할 수 있다. 아울러, 본원에 따른 식생 증진 방법은 친환경적이고 인체에 유익한 바이오폴리머를 사용함으로써, 토양 및 바이오폴리머 간의 상호작용을 통해 토양의 구조 및 함수조건을 개선시켜 침식에 대한 저항성을 향상시킬 수 있을 뿐만 아니라, 식생의 증진, 식생 안정화 (뿌리의 충분한 활착)를 동시에 실현할 수 있다. According to the method of stabilizing and improving the soil using the biopolymer of the present application, an environment-friendly vegetation-promoting soil composition and / or a composition for preventing soil erosion can be prepared. In addition, the vegetation enhancement method according to the present application by using an eco-friendly and beneficial to the human body, by improving the structure and water conditions of the soil through the interaction between the soil and the biopolymer, as well as to improve the resistance to erosion, Enhance the vegetation and stabilize the vegetation (sufficient rooting).
본원의 제 2 측면은, 상기 본원의 제 1 측면의 토양 안정화 및 개량 방법에 의해 제조되며, 고분자 점질성 바이오폴리머를 포함하는, 식생의 발아 또는 생장 증진용 토양 조성물을 제공한다.The second aspect of the present application provides a soil composition for promoting germination or growth of vegetation, which is prepared by the method of stabilizing and improving the soil of the first aspect of the present application, and which comprises a polymer viscous biopolymer.
본원의 일 구현예에 있어서, 토양 약 100 중량부에 대해 상기 고분자 점질성 바이오폴리머 약 20 중량부 이하를 포함할 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 고분자 점질성 바이오폴리머는 토양 약 100 중량부에 대해, 약 0.00001 중량부 내지 약 15 중량부, 약 0.00001 중량부 내지 약 10 중량부, 약 0.00001 중량부 내지 약 5 중량부, 약 0.00001 중량부 내지 약 1 중량부, 약 0.00001 중량부 내지 약 0.5 중량부, 약 0.00001 중량부 내지 약 0.1 중량부, 약 0.0001 중량부 내지 약 20 중량부, 약 0.01 중량부 내지 약 20 중량부, 약 0.05 중량부 내지 약 20 중량부, 약 0.1 중량부 내지 약 20 중량부, 약 0.5 중량부 내지 약 20 중량부, 약 1 중량부 내지 약 20 중량부, 약 5 중량부 내지 약 20 중량부, 또는 약 10 중량부 내지 약 20 중량부로 포함될 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, about 100 parts by weight of soil may include about 20 parts by weight or less of the polymer viscous biopolymer, but may not be limited thereto. For example, the polymer viscous biopolymer may be used in an amount of about 0.00001 parts by weight to about 15 parts by weight, about 0.00001 parts by weight to about 10 parts by weight, about 0.00001 parts by weight to about 5 parts by weight, based on about 100 parts by weight of soil. 0.00001 parts by weight to about 1 part by weight, about 0.00001 parts by weight to about 0.5 parts by weight, about 0.00001 parts by weight to about 0.1 parts by weight, about 0.0001 parts by weight to about 20 parts by weight, about 0.01 parts by weight to about 20 parts by weight, about 0.05 parts by weight to about 20 parts by weight, about 0.1 parts by weight to about 20 parts by weight, about 0.5 parts by weight to about 20 parts by weight, about 1 part by weight to about 20 parts by weight, about 5 parts by weight to about 20 parts by weight, or About 10 parts by weight to about 20 parts by weight, but may not be limited thereto.
본원의 제 3 측면은, 상기 본원의 제 1 측면의 토양 안정화 및 개량 방법에 의해 제조되며, 고분자 점질성 바이오폴리머를 포함하는, 토양 침식 방지용 조성물을 제공한다.The third aspect of the present application is prepared by the method of stabilizing and improving the soil of the first aspect of the present application, and provides a composition for preventing soil erosion, comprising a polymer viscous biopolymer.
본원의 일 구현예에 있어서, 토양 약 100 중량부에 대해 약 20 중량부 이하를 포함할 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 고분자 점질성 바이오폴리머는 토양 약 100 중량부에 대해, 약 0.00001 중량부 내지 약 15 중량부, 약 0.00001 중량부 내지 약 10 중량부, 약 0.00001 중량부 내지 약 5 중량부, 약 0.00001 중량부 내지 약 1 중량부, 약 0.00001 중량부 내지 약 0.5 중량부, 약 0.00001 중량부 내지 약 0.1 중량부, 약 0.0001 중량부 내지 약 20 중량부, 약 0.01 중량부 내지 약 20 중량부, 약 0.05 중량부 내지 약 20 중량부, 약 0.1 중량부 내지 약 20 중량부, 약 0.5 중량부 내지 약 20 중량부, 약 1 중량부 내지 약 20 중량부, 약 5 중량부 내지 약 20 중량부, 또는 약 10 중량부 내지 약 20 중량부로 포함될 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, about 100 parts by weight of soil may include about 20 parts by weight or less, but may not be limited thereto. For example, the polymer viscous biopolymer may be used in an amount of about 0.00001 parts by weight to about 15 parts by weight, about 0.00001 parts by weight to about 10 parts by weight, about 0.00001 parts by weight to about 5 parts by weight, based on about 100 parts by weight of soil. 0.00001 parts by weight to about 1 part by weight, about 0.00001 parts by weight to about 0.5 parts by weight, about 0.00001 parts by weight to about 0.1 parts by weight, about 0.0001 parts by weight to about 20 parts by weight, about 0.01 parts by weight to about 20 parts by weight, about 0.05 parts by weight to about 20 parts by weight, about 0.1 parts by weight to about 20 parts by weight, about 0.5 parts by weight to about 20 parts by weight, about 1 part by weight to about 20 parts by weight, about 5 parts by weight to about 20 parts by weight, or About 10 parts by weight to about 20 parts by weight, but may not be limited thereto.
본원의 제 4 측면은, 상기 본원의 제 1 측면의 토양 안정화 및 개량 방법에 의해 제조되며, 고분자 점질성 바이오폴리머를 포함하는, 흙 건축 재료 또는 부재를 제공한다.A fourth aspect of the present application provides an earth building material or member, prepared by the soil stabilization and improvement method of the first aspect of the present application, and comprising a polymer viscous biopolymer.
본원에 따른 바이오폴리머를 이용한 토양의 강도 및 내구성 증진 효과는 토양을 이용한 건축 및 건축자재 분야에 활용될 수 있다. 특히, 바이오폴리머 혼합을 통해서 단순히 토양만 이용한 흙 건축 (벽 또는 기둥 등)보다 높은 강도와 내구성을 확보할 수 있으며, 전통적 방법인 짚 (straw) 등을 이용한 방법과 비교했을 시 유기재료들의 생분해 (degradation)로 인한 기능성 저하 문제를 극복할 수 있고, 화학적 첨가물 (석고, 시멘트 등)을 이용한 방법에 비해서 친환경성이 높은 건축 시공이 가능한 장점이 있다. 상기 흙 건축 재료 및 부재는, 예를 들어, 벽체, 바닥제, 벽돌, 블록, 보드, 패널 등을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 상기 부재는 건축용 부자재를 의미한다.The strength and durability enhancement effect of the soil using the biopolymer according to the present application can be utilized in the field of construction and building materials using the soil. In particular, biopolymer blending ensures higher strength and durability than soil-based soil construction (walls or columns, etc.), and biodegradation of organic materials (compared with traditional methods of straw, etc.). It is possible to overcome the problem of functional degradation due to degradation, and it is possible to construct a highly environmentally friendly building construction compared to the method using chemical additives (gypsum, cement, etc.). The soil building material and member may include, for example, a wall, a floor, a brick, a block, a board, a panel, and the like, but may not be limited thereto. The member means a construction subsidiary material.
보통 흙 건축은 자연상태의 흙을 물과 혼합하여 작업성을 확보한 후 벽돌 또는 블록 형식으로 성형하거나, 직접 벽 또는 바닥에 바르는 형식을 취하고 있다. 이 경우 벽체 또는 바닥재의 강도 및 내구성을 향상시키기 위해 짚 등의 섬유를 첨가하거나, 화학적 첨가물을 혼합하는 방법을 사용하고 있다. 본원에 따른 바이오폴리머를 이용한 흙 벽체 시공 방법은 기존 방법과 차별화된 것이다.In general, the soil construction is a form of mixing the natural soil with water to secure workability, and then molded into a brick or block form, or directly applied to the wall or floor. In this case, in order to improve the strength and durability of the wall or flooring material, a method of adding fibers such as straw or mixing chemical additives is used. Soil wall construction method using the biopolymer according to the present application is different from the existing method.
본원의 일 구현예에 있어서, 상기 토양은 세립질 (점토), 조립질 (모래), 및 이들의 조합들로 이루어진 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the soil may be selected from the group consisting of fine (clay), coarse (sand), and combinations thereof, but may not be limited thereto.
본원의 일 구현예에 있어서, 토양 약 100 중량부에 대해 약 20 중량부 이하를 포함할 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 고분자 점질성 바이오폴리머는 토양 약 100 중량부에 대해, 약 0.00001 중량부 내지 약 15 중량부, 약 0.00001 중량부 내지 약 10 중량부, 약 0.00001 중량부 내지 약 5 중량부, 약 0.00001 중량부 내지 약 1 중량부, 약 0.00001 중량부 내지 약 0.5 중량부, 약 0.00001 중량부 내지 약 0.1 중량부, 약 0.0001 중량부 내지 약 20 중량부, 약 0.01 중량부 내지 약 20 중량부, 약 0.05 중량부 내지 약 20 중량부, 약 0.1 중량부 내지 약 20 중량부, 약 0.5 중량부 내지 약 20 중량부, 약 1 중량부 내지 약 20 중량부, 약 5 중량부 내지 약 20 중량부, 또는 약 10 중량부 내지 약 20 중량부로 포함될 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, about 100 parts by weight of soil may include about 20 parts by weight or less, but may not be limited thereto. For example, the polymer viscous biopolymer may be used in an amount of about 0.00001 parts by weight to about 15 parts by weight, about 0.00001 parts by weight to about 10 parts by weight, about 0.00001 parts by weight to about 5 parts by weight, based on about 100 parts by weight of soil. 0.00001 parts by weight to about 1 part by weight, about 0.00001 parts by weight to about 0.5 parts by weight, about 0.00001 parts by weight to about 0.1 parts by weight, about 0.0001 parts by weight to about 20 parts by weight, about 0.01 parts by weight to about 20 parts by weight, about 0.05 parts by weight to about 20 parts by weight, about 0.1 parts by weight to about 20 parts by weight, about 0.5 parts by weight to about 20 parts by weight, about 1 part by weight to about 20 parts by weight, about 5 parts by weight to about 20 parts by weight, or About 10 parts by weight to about 20 parts by weight, but may not be limited thereto.
이하, 본원에 대하여, 실시예를 이용하여 자세히 설명한다. 그러나, 본원이 이에 제한되는 것은 아니다.Hereinafter, this application is demonstrated in detail using an Example. However, the present application is not limited thereto.
실시예 1: 바이오폴리머를 이용한 토양 침식 저항성 측정Example 1 Soil Erosion Resistance Measurement Using Biopolymer
바이오폴리머의 토양 침식 억제 효과를 검증하기 위해 다양한 실내 실험을 수행하였다. 본 실시예에서는 고분자 사슬형 바이오폴리머 물질로 베타-1,3/1,6-글루칸 계열의 액상 제품 (8.9 g/L 베타글루칸 함량; ㈜글루칸)을 사용하였다. Various indoor experiments were conducted to verify the soil erosion inhibitory effects of biopolymers. In the present embodiment, a beta-1,3 / 1,6-glucan-based liquid product (8.9 g / L beta glucan content; glucan) was used as the polymer chain biopolymer material.
겔화 (gelation) 폴리머로는 식품 경화제로 널리 사용되는 순수 분말상태의 잔탄검 (Sigma-Aldrich; CAS 1138-66-2)을 본 실시예에 적용하였다. 잔탄검의 가장 큰 특징은 다양한 온도 및 pH 조건에서의 안정성이다. As a gelation polymer, xanthan gum (Sigma-Aldrich; CAS 1138-66-2) in a pure powder state, which is widely used as a food curing agent, was applied to this example. Xanthan gum's greatest feature is its stability at various temperature and pH conditions.
발명 실시를 위한 기본적인 방법은 흙을 해당 바이오폴리머와 혼합한 후 강우 조건을 재현하여 각 경우에 대한 흙 유실량을 측정하여, 전반적인 흙의 침식에 대한 저항성을 평가하였다. 구체적인 내용들은 아래와 같다.The basic method for carrying out the invention was to measure the soil loss amount in each case by mixing the soil with the biopolymer and reproducing rainfall conditions, to evaluate the resistance to the soil erosion in general. Details are as follows.
1. 바이오폴리머 처리토의 반복 강우에 대한 침식 저항성1. Erosion Resistance to Repeated Rainfall of Biopolymer Treated Soils
본 실시예에서는 우리나라의 대표 흙인 할로이사이트 [halloysite: Al2Si2O5(OH)4]가 주성분인 화강잔류토 (황토)를 대표 흙 시료로 사용하였다. 황토는 자연건조 후, 입자들을 0.07 mm 내지 0.15 mm 크기로 분쇄한 후, 110℃ 온도에서 노건조시켜 잔류 유기물질을 제거하였다.In the present embodiment, a granite residue (ocher), which is a main component of Halloysite: Al 2 Si 2 O 5 (OH) 4 , which is a representative soil of Korea, was used as a representative soil sample. After the natural drying, the clay was ground to a size of 0.07 mm to 0.15 mm, and then dried at 110 ° C. to remove residual organic matter.
세 개의 시료판 (A, B, C; 도 1 참조)을 준비해 각각에 2,000 g의 흙을 채운 후, A는 1,200 g (흙 중량대비 60%)의 증류수, B는 1,200 g의 액상 베타-1,3/1,6-글루칸 (0.5%의 베타글루칸: 흙 중량비), C에는 10 g의 분말 잔탄검 및 1,200 g의 증류수를 각각 흙과 균일하게 혼합하였다.Prepare three sample plates (A, B, C; see Figure 1) and fill each with 2,000 g of soil, A is 1,200 g (60% by weight of soil), B is 1,200 g of liquid beta-1 10 g of powdered xanthan gum and 1,200 g of distilled water were uniformly mixed with soil in, 3 / 1,6-glucan (0.5% beta glucan to soil weight ratio) and C, respectively.
강우 모사를 위해 도 2에 보이는 바와 같은 살수기를 사용하였으며, 시료판의 각도는 20℃로 설정하였다. 강우 모사 전에 시료판의 전체 무게를 측정하고, 500 mL의 강우 모사 후 유출슬러리를 집수하여 부피와 질량을 측정하였다. 강우 모사 후 시료판의 전체 무게를 측정하여 지반의 흡수량을 산출하였다. 유출 슬러리는 즉시 건조하여 건조 전·후의 질량 차이를 토대로 토양침식량을 도출하였다. 강우 모사는 이틀의 주기로 수행하여 총 10 번을 수행하였다.For rainfall simulation, a watering machine as shown in FIG. 2 was used, and the angle of the sample plate was set to 20 ° C. The total weight of the sample plate was measured before rainfall simulation, and the volume and mass were measured by collecting the outflow slurry after 500 mL of rainfall simulation. After rainfall simulation, the total weight of the sample plate was measured to calculate the amount of soil absorption. The outflow slurry was dried immediately to derive soil erosion based on the mass difference before and after drying. Rainfall simulation was carried out in a two-day cycle for a total of 10 times.
각 강우 모사에 따른 토양 유실량은 표 1과 같다.The soil loss according to each rainfall simulation is shown in Table 1.
표 1
Figure PCTKR2013006906-appb-T000001
Table 1
Figure PCTKR2013006906-appb-T000001
표 1의 각 강우 횟수 별 토양 유실량을 초기 전체 흙 중량 (2,000 g)에 대한 누적 유실률 (%)로 환산한 결과는 표 2와 같다.Table 2 shows the results of converting the soil loss by the number of rainfall in Table 1 to the cumulative loss rate (%) relative to the initial total soil weight (2,000 g).
표 2
Figure PCTKR2013006906-appb-T000002
TABLE 2
Figure PCTKR2013006906-appb-T000002
실험 결과 바이오폴리머 처리 흙은 총 10 번의 강우 모사에 대해 누적 유실률이 0% 내지 1% 수준인 반면, 아무런 처리를 하지 않은 흙은 21%의 흙이 유실됨을 확인할 수 있었다. 특히 바이오폴리머 중에서도 베타-1,3/1,6-글루칸의 경우 누적 유실률이 0.1% 밖에 되지 않아 침식에 대한 저항이 월등히 높음을 확인할 수 있었다.As a result, the biopolymer-treated soil had a cumulative loss rate of 0% to 1% for a total of 10 rainfall simulations, while the soil without any treatment was found to lose 21% of soil. In particular, among the biopolymers, beta-1,3 / 1,6-glucan had a cumulative loss rate of only 0.1%, indicating that resistance to erosion was significantly higher.
2. 바이오폴리머 처리토의 집중 강우에 대한 침식 저항성2. Erosion resistance against concentrated rainfall of biopolymer treated soil
주기적인 강우 외 강도 높은 집중 강우에 대한 침식 저항성을 검증하기 위해 상기 발명의 실시를 위한 구체적인 내용 1의 동일한 조건의 시료 A, B, C를 조성한 후 집중 강우를 모사하였다. 집중 강우를 위해서는 500 mL의 강우를 10 분 간격으로 15 회 살수하여 상기와 마찬가지로 강우 전·후의 전체 시료 중량과 흙 유실량을 측정하였다. In order to verify the erosion resistance to high concentration rainfall other than the periodic rainfall, samples of the same conditions in the same condition of the specific content for the practice of the present invention were prepared and then simulated the concentrated rainfall. For intensive rainfall, 500 mL of rainfall was sprinkled 15 times at 10 minute intervals, and the total sample weight and soil loss before and after the rainfall were measured as above.
집중 강우 모사에 따른 흙의 누적 유실률 (%)은 표 3과 같다.The cumulative loss rate (%) of soil by intensive rainfall simulation is shown in Table 3.
표 3
Figure PCTKR2013006906-appb-T000003
TABLE 3
Figure PCTKR2013006906-appb-T000003
표 2와 표 3의 결과들을 비교해보면, 집중 강우 조건에서 아무런 처리를 하지 않은 흙의 누적 유실률이 월등히 증가 (21.2 → 31.8; 10 회 누적 강우 기준) 함을 확인할 수 있다. 특이한 점은 바이오폴리머 처리 토양의 집중 강우에 대한 저항이 여전히 높다는 사실 (1% 미만)을 확인할 수 있었다. Comparing the results of Table 2 and Table 3, it can be seen that the cumulative loss rate of the soil without any treatment under the concentrated rainfall condition is significantly increased (21.2 → 31.8; based on 10 cumulative rainfall). What was unusual was the fact that the resistance to concentrated rainfall in biopolymer-treated soils was still high (<1%).
이로써 바이오폴리머 처리가 반복 및 집중 강우 조건 모두에 대해 흙의 침석에 대한 저항을 획기적으로 높임을 확인할 수 있었다.As a result, it was confirmed that the biopolymer treatment drastically increased the resistance to soil sedimentation for both repetitive and concentrated rainfall conditions.
실시예 2: 바이오폴리머를 이용한 식생 증진 효과 측정Example 2 Measurement of Vegetation Enhancement Effect Using Biopolymer
본 실시예에서는 바이오폴리머의 식생 증진 효과를 검증하기 위해 다양한 실내 실험을 수행하였다. 본 실시예에서는 고분자 사슬형 바이오폴리머 물질로 베타-1,3/1,6-글루칸 계열의 액상 제품 (㈜글루칸)을 사용하였다. 또한 겔화(gelation) 폴리머로는 식품 경화제로 널리 사용되는 순수 분말 상태의 잔탄검(Sigma-Aldrich; CAS 1138-66-2)을 본 실시예에 적용하였다.In this example, various indoor experiments were conducted to verify the vegetation enhancement effect of the biopolymer. In this embodiment, beta-1,3 / 1,6-glucan-based liquid product (glucan Co., Ltd.) was used as the polymer chain biopolymer material. In addition, as a gelation polymer, xanthan gum (Sigma-Aldrich; CAS 1138-66-2) in a pure powder state, which is widely used as a food curing agent, was applied to this example.
발명 실시를 위한 기본적인 방법은 흙을 해당 바이오폴리머와 혼합한 후 작물을 파종한 후 항온항습 조건에서 재배하여 씨앗의 발아 및 생장을 확인하고, 나아가 흙의 구조를 분석하여 바이오폴리머 처리토가 어떻게 식물의 생장에 영향을 미치는지를 확인하였다. 구체적인 내용들은 아래와 같다.The basic method for carrying out the invention is to mix the soil with the corresponding biopolymer, sowing crops and cultivating under constant temperature and humidity conditions to check the germination and growth of seeds, further analyzing the structure of the soil and how the biopolymer treated soil is planted. It was confirmed whether it affects the growth of. Details are as follows.
1. 바이오폴리머 처리토에 대한 씨앗 발아1. Seed Germination for Biopolymer Treated Soil
본 실시예에서는 우리나라의 대표 흙인 할로이사이트 [halloysite: Al2Si2O5(OH)4]가 주성분인 화강잔류토 (황토)를 대표 흙 시료로 사용하였다. 황토는 자연건조 후, 입자들을 0.07 mm 내지 0.15 mm 크기로 분쇄한 후, 110℃ 온도에서 노건조시켜 잔류 유기물질을 제거하였다.In the present embodiment, a granite residue (ocher), which is a main component of Halloysite: Al 2 Si 2 O 5 (OH) 4 , which is a representative soil of Korea, was used as a representative soil sample. After the natural drying, the clay was ground to a size of 0.07 mm to 0.15 mm, and then dried at 110 ° C. to remove residual organic matter.
여섯 개의 화분을 준비해 3 개 (A, B, C)는 황토를 기본 흙으로 채우고, 비교를 위해 나머지 3 개 (D, E, F)에는 시중에서 보편적으로 시판되고 있는 인공배양토를 사용하였다. A, D는 아무런 처리를 하지 않은 순수 흙 조건, B와 E는 흙 무게의 1%에 해당하는 잔탄검 (Xanthan gum)을 혼합하였고, 마지막으로 C와 F는 흙 무게의 0.5%에 해당하는 베타글루칸 (Beta-glucan)을 혼합하였다. 그 위에 시험작물로 귀리 (oat) 씨앗을 약 600 개씩 고루 뿌린 후, 복토 (覆土)하였다. A, B, C, D, E, F 모두 초기 함수비 (흙의 무게 대비 물의 양) 조건이 60%가 되도록 물을 뿌려준 후 동일한 온도 및 일조 조건의 온실에 안치하였다 (도 3). 발아 및 생장 경향은 매일 관찰하였고, 급수 시 각 화분에 동일한 양의 물을 공급해주었다.Six pots were prepared and three (A, B, and C) were filled with basic soil, and the remaining three (D, E, and F) were artificially commercially available. A and D are pure soil conditions without any treatment, B and E are mixed with Xanthan gum, which is equivalent to 1% of soil weight. Finally, C and F are beta equivalent to 0.5% of soil weight. Glucan (Beta-glucan) was mixed. On top of that, about 600 seeds of oat were evenly sown with test crops, and then covered. A, B, C, D, E, F were all sprinkled with water so that the initial water content (the amount of water to the weight of the soil) is 60% and placed in a greenhouse at the same temperature and sunshine conditions (Fig. 3). Germination and growth trends were observed daily and the same amount of water was supplied to each pot when watering.
각 화분의 재배 일에 따른 씨앗 발아 결과는 표 4와 같다.Seed germination results according to the cultivation day of each pot is shown in Table 4.
표 4
Figure PCTKR2013006906-appb-T000004
Table 4
Figure PCTKR2013006906-appb-T000004
관찰 결과 황토 및 배양토 모두에서 바이오폴리머를 처리한 흙에서 씨앗의 발아가 촉진됨을 확인할 수 있었다. 바이오폴리머 중에는 잔탄검보다는 베타글루칸의 효율이 더 좋았다. 특히, 전체적으로 배양토의 발아가 황토보다 양호한 상황에서, 베타글루칸을 처리한 황토(C)의 발아가 아무런 처리를 하지 않은 배양토 (D)보다 좋은 결과를 보여 베타글루칸 처리가 전반적으로 토양의 발아조건을 개선시킴을 확인할 수 있었다.As a result, it was confirmed that seed germination was promoted in biopolymer-treated soil in both loess and cultured soil. Among the biopolymers, beta glucan was more efficient than xanthan gum. In particular, when the germination of the cultured soil was better than the loess, the germination of the ocher (C) treated with betaglucan showed better results than that of the cultured soil (D) without any treatment. Improvement could be confirmed.
2. 바이오폴리머 처리토에 대한 식물 생장2. Plant Growth for Biopolymer Treated Soil
상기 실시예에서 씨앗 발아를 관찰함과 동시에 전체 식생의 생장을 관찰하였다. 관찰 방법은 각 화분을 8 구역으로 나눈 후, 각 구역에서 식생의 평균 생장 길이를 측정하여 전체의 평균을 구하는 방법을 사용하였다. 각 화분의 재배 일에 따른 생장 결과는 표 5과 같다.In the above example, seed germination was observed and growth of the entire vegetation was observed. As a method of observation, each pollen was divided into 8 zones, and the average growth length of the vegetation was measured in each zone to obtain the average of the whole. Growth results according to the cultivation day of each pot are shown in Table 5.
표 5
Figure PCTKR2013006906-appb-T000005
Table 5
Figure PCTKR2013006906-appb-T000005
재배 결과, 황토 및 배양토 모두에서 바이오폴리머를 처리한 흙에서 식생의 생장이 증진됨을 확인할 수 있었다 (도 4). 바이오폴리머 중에서는 잔탄검 보다는 베타글루칸의 효과가 월등히 좋았다. 황토의 경우 초기 (0 일 내지 12 일) 단계에서는 베타글루칸 처리 흙에서 식물 생장이 최대 5 배 촉진됨을 확인할 수 있었다. 특히 베타글루칸을 처리한 황토 (C)의 생장이 아무런 처리를 하지 않은 배양토 (D)와 생장에서 비슷한 경향을 보여, 베타글루칸 처리가 식물 생장에 적합하지 않은 흙의 성능을 상당히 개선시킴을 확인할 수 있었다.As a result of the cultivation, it was confirmed that the growth of vegetation in the soil treated with the biopolymer in both ocher and cultured soil (FIG. 4). Among the biopolymers, the effect of beta glucan was much better than xanthan gum. In the case of ocher, it was confirmed that plant growth was promoted up to 5 times in beta glucan treated soil in the early stage (day 0 to 12). In particular, the growth of beta glucan-treated ocher (C) showed similar trends in the growth of untreated soil (D), indicating that beta-glucan treatment significantly improved soil performance not suitable for plant growth. there was.
3. 바이오폴리머 처리토의 미시구조 분석3. Microstructure Analysis of Biopolymer Treated Soil
바이오폴리머가 흙 속에서 흙과 어떤 상호거동을 보여 식생의 생장을 증진시키는지 확인하기 위해 전자투사현미경 (SEM; Philips XL30SFEG) 장비를 이용하여 흙-바이오폴리머-식생뿌리의 상호 거동을 관찰하였다 (도 5a 내지 도 5c).To determine how biopolymers interact with soils in soils to enhance vegetation growth, the interaction of soil-biopolymer-vegetation roots was observed using an electron projection microscope (SEM; Philips XL30SFEG). 5a-5c).
도 5a는 아무런 처리를 하지 않은 황토의 결과로 황토 입자와 식생 뿌리가 매우 조밀하게 붙어있음을 확인할 수 있다. 도 5b의 베타글루칸 처리 황토의 경우, 고분자 베타글루칸 사슬들이 흙 속의 공극을 확장시켜 전체적으로 흙의 통기·통습성을 개선시키는 효과를 보이는 것으로 판단된다. 잔탄검 처리 흙의 경우 (도 5c) 전체 흙 구조는 도 5b의 베타글루칸 처리 흙보다는 조밀하지만, 겔화 (gelation)로 인해 흙 입자들이 군데군데 덩어리를 형성하여 도 5a의 무처리 흙보다는 느슨한 구조를 보임이 관찰된다. 따라서 바이오폴리머 처리가 전반적으로 흙의 공극을 확장시켜 식생의 뿌리가 잘 생장할 수 있는 환경을 조성함을 확인할 수 있었다.5a shows that the ocher particles and the vegetation roots are densely attached as a result of the ocher not treated at all. In the case of beta glucan treated ocher of Figure 5b, it is determined that the polymer beta glucan chains have an effect of improving the air permeability and moisture permeability of the soil as a whole by expanding the pores in the soil. In the case of xanthan gum treated soil (FIG. 5C), the overall soil structure is denser than that of the beta glucan treated soil of FIG. 5B, but due to gelation, the soil particles form agglomerates, resulting in a looser structure than the untreated soil of FIG. 5A. Visibility is observed. Therefore, it could be confirmed that the biopolymer treatment broadens the pores of the soil to create an environment in which the roots of the vegetation can grow well.
4. 바이오폴리머 처리토의 함수량 유지 성능 검증4. Verification of water retention performance of biopolymer treated soil
식생의 생장과 흙의 함수량은 밀접한 관련이 있다. 적절한 흙의 함수량이 오래 유지될수록 식물의 초기 생장에 순기능을 하기 때문에, 바이오폴리머 처리토와 일반 흙의 함수량 유지 특성을 비교하는 실험을 실시하였다.Vegetation growth and soil water content are closely related. The longer soil moisture content is maintained, the better the initial growth of the plant. Therefore, experiments were conducted to compare the water retention characteristics of biopolymer treated soil and soil.
동일한 양 (200 g)의 황토흙 시료 3 개를 준비한 후, 각각 흙 무게의 0.5%에 해당하는 베타글루칸 처리, 흙 무게의 0.5%에 해당하는 잔탄검 처리, 그리고 무처리 조건에 대해서 초기 함수비를 60%로 일치시킨 후 실온에서 건조시켰다. 시간에 따라 시편의 무게를 측정하여 손실 (증발)된 수분량을 측정하였다. 시간에 따른 증발율 [%; 초기 함수량(120 g) 대비] 결과는 표 6와 같다.Three samples of the same amount (200 g) of ocher soil were prepared, and the initial water content was determined for the beta glucan treatment, 0.5% of the soil weight, xanthan gum treatment, and 0.5% of the soil weight, respectively. Matched to 60% and dried at room temperature. The weight of the specimen was weighed over time to determine the amount of water lost (evaporated). Evaporation rate over time [%; Initial water content (120 g)] The results are shown in Table 6.
표 6
Figure PCTKR2013006906-appb-T000006
Table 6
Figure PCTKR2013006906-appb-T000006
표 6에 의하면 본원에 따른 바이오폴리머들은 모두 아무런 처리를 하지 않은 흙에 비해 흙 내부의 함수량을 좋게 유지시킴을 확인할 수 있다. 초기의 경우 주로 흙 표면의 수분이 증발되므로 바이오폴리머 처리토와 무처리 흙의 차이가 크지 않으나, 흙 내부의 물이 손실되는 중장기 거동에서는 바이오폴리머 처리가 흙 내부 수분 손실 억제에 우수한 효과가 있음을 확인할 수 있었다.According to Table 6 it can be seen that all the biopolymers according to the present application maintain a good moisture content in the soil as compared to the soil without any treatment. In the early stages, the moisture of the soil surface evaporated mainly, so the difference between the biopolymer treated soil and the untreated soil was not large.However, in the medium and long-term behavior in which water in the soil is lost, the biopolymer treatment has an excellent effect on suppressing moisture loss in the soil. I could confirm it.
실시예 3: 열 처리를 이용한 고분자 점질성 겔화 다당류 바이오폴리머-흙 혼합Example 3: Polymer Viscous Gelled Polysaccharide Biopolymer-Soil Mixing Using Heat Treatment
흙의 종류와 상관없이 열적 겔화를 이용하여 고분자 점질성 겔화 바이오폴리머와 흙을 혼합하기 위해서는 일단 고온 상태의 고분자 점질성 겔화 다당류 바이오폴리머 수용액과 흙을 각각 준비하였다. 고온 (80℃)의 용매 (물)에 분말 상태의 바이오폴리머를 녹인 후 이를 가열된 흙과 혼합함으로써 혼합 시 급격한 온도 하강으로 인한 조기 겔화 (gelation)를 막았다. 고온의 바이오폴리머 수용액 형성 시 중요한 점은 바이오폴리머의 농도 (용매 대비 용질량)를 적절히 조절해야 한다는 점이다. 통상적으로 아가 (agar)는 상온에서는 친수성 (hydrophilic)으로 인해 자기 질량의 20 배에 해당하는 물을 흡수하며 그 용해도는 온도가 높아짐에 따라 증가한다. 아가의 경우 10% (10 g / 100 mL) 이하, 젤란검의 경우 3% (3 g / 100 mL) 이하로 고온 용액을 조성하는 것이 바람직한데, 그 이유는 그 이상의 분말은 물에 완전히 용해되지 않기 때문이다.Regardless of the type of soil, in order to mix the polymer viscous gelled biopolymer and soil using thermal gelation, an aqueous solution of the polymer viscous gelled polysaccharide biopolymer and soil at high temperature were prepared. The powdered biopolymer was dissolved in a solvent (water) at a high temperature (80 ° C.), and then mixed with the heated soil to prevent premature gelation due to rapid temperature drop during mixing. An important point in forming a high temperature aqueous solution of biopolymer is that the concentration of the biopolymer (solvent-to-solvent) must be properly adjusted. Typically, agar absorbs water equivalent to 20 times its mass due to hydrophilic at room temperature, and its solubility increases with increasing temperature. It is desirable to formulate high temperature solutions up to 10% (10 g / 100 mL) for agar and up to 3% (3 g / 100 mL) for gellan gum, because further powders are not completely soluble in water. Because it does not.
고온의 겔화 바이오폴리머 용액은 고온의 흙과 균일하게 혼합시키고, 황토 등의 흙 (점성토 계열)과는 60% (흙 중량 대비 용액 중량) 이하, 모래질 흙과는 30% 이하로 혼합하였다. 혼합 후 원하는 목적에 맞게 성형한 후 공기 또는 수정에서 양생할 수 있다. 본 과정의 요약은 도 6에 도시한 바와 같다. The high temperature gelled biopolymer solution was uniformly mixed with high temperature soil, and mixed with soil such as ocher (viscosity soil type) at 60% (solution weight to soil weight) or less, and sand soil at 30% or less. After mixing, it can be molded to the desired purpose and then cured in air or in quartz. The summary of this process is as shown in FIG.
실시예 4: 열적 겔화 바이오폴리머-흙 조성물의 냉각 및 양생 방법Example 4 Cooling and Curing Methods of Thermally Gelled Biopolymer-Soil Compositions
실내 조건에서 황토와 모래를 이용해 다양한 고분자 점질성 열적 겔화 다당류 바이오폴리머-흙 시편을 제작하고 강도를 측정하였다. 각 흙에 대해 아가 및 젤란검 함량을 흙 중량 대비 각각 1% 및 3%에 맞춰 배합하였으며, 황토의 경우 초기 물/흙 배합비 60%, 모래의 경우 혼합 시 물/흙 배합비를 30%로 하였다. 배합 후 공기 중에 자연 냉각 및 공기양생을 시킨 시편의 강도는 도 7 (황토) 및 도 8 (모래)과 같았다. 도 7 및 도 8의 결과에 의하면 열적 겔화 바이오폴리머 혼합으로 흙의 압축강도가 월등히 증가함을 확인할 수 있다. 특히, 황토의 경우 그 최대 강도가 12 MPa 에 도달하여 매우 단단한 흙 조성물을 형성함을 확인할 수 있었다. 이는 아가 및 젤란검 모두 음전하를 띄고 있어, 표면 전하를 지니고 있는 황토 입자와 더 단단한 결합을 형성한다는 사실을 보여준다.Various indoor viscous thermal gelled polysaccharide biopolymer-soil specimens were prepared and measured for strength using clay and sand under room conditions. For each soil, the agar and gellan gum contents were blended at 1% and 3% of the soil weight, respectively. For the ocher, the initial water / soil mixture ratio was 60%, and in the case of sand, the water / soil mixture ratio was 30%. The strength of the specimens subjected to spontaneous cooling and air curing in the air after mixing were as shown in FIGS. 7 (ocher) and 8 (sand). According to the results of FIGS. 7 and 8, it can be seen that the compressive strength of the soil is significantly increased by the thermal gelation biopolymer mixture. In particular, in the case of ocher it was confirmed that the maximum strength reaches 12 MPa to form a very hard soil composition. This shows that both agar and gellan gum are negatively charged, forming tighter bonds with ocher particles that carry surface charges.
그러나, 공기 중에 자연 냉각 및 공기양생을 시킨 황토 시편의 경우 최대 20%의 건조수축 (volumetric strain) 거동을 보여 이를 해결하기 위해 고온 배합 후 초기 냉각 방법을 달리하는 방안을 모색하였다. 도 6의 과정과 같이 배합 및 성형 직후 시편 (아가 3% 및 젤란검 3%)을 급속 냉각시키는 방법으로 시편을 냉수에 냉각시켰다 (도 9). 충분한 냉각 후 시편을 공기양생시킨 결과, 최종 건조수축이 10% 이하로 격감됨을 확인하였다. 따라서 건조수축을 방지하기 위해 바이오폴리머-흙 조성물의 초기 겔화가 매우 중요함을 확인할 수 있었으며, 이를 위해 냉수, 냉매, 냉기, 냉장 등 다양한 방법이 적용 가능하다.However, in the case of the ocher specimens subjected to natural cooling and air curing in air, up to 20% of the dry shrinkage (volumetric strain) behavior was found to solve this problem. The specimens were cooled in cold water by rapid cooling of the specimens (3% agar and 3% gellan gum) immediately after compounding and molding as in the procedure of FIG. 6 (FIG. 9). As a result of air curing the specimen after sufficient cooling, it was confirmed that the final dry shrinkage was reduced to 10% or less. Therefore, it was confirmed that the initial gelation of the biopolymer-soil composition is very important to prevent dry shrinkage, and various methods, such as cold water, refrigerant, cold air, and refrigeration, may be applied.
마지막으로, 급속냉각 및 수중양생 조건에 대한 거동을 확인하기 위해 시편을 제작한 후 바로 물에 침수시킨 후 장기간 수중양생을 시켰다. 장기간 침수 및 포화된 흙의 경우 압축강도가 거의 없는 반면, 열적 겔화 바이오폴리머를 처리한 흙의 경우 28 일 침수 조건에서도 약 50 kPa 내지 약 200 kPa의 압축강도를 보여, 수중 상태에서도 열적 겔화 바이오폴리머-흙 조성물이 효과적임을 확인할 수 있다 (도 10). 특이 사항은 급속냉각 및 수중양생의 경우 부피변화가 0%에 가깝다는 점이다. 이로써 열적 겔화 바이오폴리머가 수중 및 침수 상태의 적용 시 부피 변화가 없어 매우 안정적인 지반주입 및 처리제로 활용될 수 있음을 확인하였다. Finally, in order to confirm the behavior of rapid cooling and underwater curing conditions, the specimens were immediately submerged in water and subjected to long-term underwater curing. Long-term immersion and saturated soils have almost no compressive strength, whereas soils treated with thermally gelled biopolymers have compressive strengths of about 50 kPa to about 200 kPa under 28-day immersion conditions, and thermally gelled biopolymers in water. It can be seen that the soil composition is effective (FIG. 10). The peculiarity is that the volume change is close to 0% for rapid cooling and aquatic curing. As a result, it was confirmed that the thermal gelling biopolymer can be used as a very stable ground injection and treatment agent because there is no volume change in the application of water and submerged state.
실시예 5: 물에 대한 내구성 검토Example 5: Durability Review for Water
열적 겔화 바이오폴리머 처리토의 물에 대한 내구성을 검토하기 위해 가장 민감한 조건인 자연 냉각 및 공기양생 시편에 대한 재침수 및 강도 측정을 수행하였다. 양생된 지 두 달이 지난 시편을 물에 담아 일주일 동안 침수상태를 유지하였다. 침수 후 7 일째에 일축압축강도 및 부피 팽창률을 평가하였다.In order to examine the water resistance of the thermally gelled biopolymer treated soil, re-immersion and strength measurements were performed on the most sensitive conditions, natural cooling and air curing specimens. Two months after curing, the specimens were immersed in water for one week. The uniaxial compressive strength and volume expansion rate were evaluated at 7 days after immersion.
아가 3% 처리 흙의 경우 건조 상태의 최종 강도가 12 MPa을 보였던 것이, 침수 후 600 kPa로 저하되었으며, 젤란검 3% 처리 흙의 경우 건조 상태 강도가 10 MPa에서 침수 후 500 kPa로 낮아지는 결과를 보였다. 중요한 점은 모든 경우에서 시편들이 원래의 모양을 유지하면서 수분 흡수로 인한 부피팽창이 약간 발생했다는 사실이다 (표 7 참조).In the case of 3% agar treated soil, the final strength of the dry state was 12 MPa, which was lowered to 600 kPa after immersion, and in the case of 3% treated gellan gum, the dry strength was lowered to 500 kPa after immersion at 10 MPa. Showed. It is important to note that in all cases, the specimens retained their original shape, with slight volume expansion due to water absorption (see Table 7).
표 7
Figure PCTKR2013006906-appb-T000007
TABLE 7
Figure PCTKR2013006906-appb-T000007
이와 관련하여, 도 11은, 본원의 일 구현예에 따른 열적 겔화 바이오폴리머를 이용한 친환경 흙 건축 재료 제작 방법에 대한 개념도를 나타낸 것이다. 도 11에 나타낸 방법으로, 열적 젤화 바이오폴리머를 이용하여 흙 건축 재료 (벽체, 패널, 또는 벽돌 등)를 제작할 시 고강도, 고내구성의 건축 재료를 구현할 수 있다. 열적 젤화의 경우 80℃ 이상의 온도에서 저점성을 띠고 있다가 40℃ 이하로 냉각될 때 고점성의 Gel(젤)-매트릭스(matrices)를 형성하는 특징이 있기 때문에, 흙 혼합(반죽) 및 성형 이전 단계까지 고온을 잃지 않는 것이 중요하다. 따라서 흙과 바이오폴리머 수용액을 각각 가열 처리하여 특정온도 (예를 들어, 80℃) 이상으로 유지한 상태에서 혼합하고, 이렇게 형성된 바이오폴리머-흙 혼합물을 성형 틀에 부운 후, 냉각을 시키게 되면 원하는 성형틀 (mold)에 맞춰 다양한 모양을 구현할 수 있다. 상기 성형틀에 부운 후에는 40℃ 이하로 냉각시키면서 굳게 되는데, 이 때는 공기 중에 자연 냉각을 시키거나, 물 또는 기타 냉매를 이용하여 금속 냉각시켜 굳힐 수 있다. 본 실시예에 따른 열적 젤화 바이오폴리머의 경우 투수성이 매우 낮아, 초기에 물에 담가도 흙의 조직이 흐트러지지 않음이 확인되었으므로, 이러한 장점들을 활용하여, 다양한 모양으로 성형이 가능한 흙 건축 재료를 만들 수 있다.In this regard, Figure 11 shows a conceptual diagram of a method for manufacturing environmentally friendly soil building material using a thermal gelling biopolymer according to an embodiment of the present application. With the method shown in FIG. 11, when constructing soil building materials (walls, panels, bricks, etc.) using thermal gelled biopolymers, high strength, high durability building materials can be implemented. Thermal gelling is characterized by low viscosity at temperatures above 80 ° C and the formation of highly viscous Gel-matrices when cooled below 40 ° C. It is important not to lose high temperatures until. Therefore, the soil and the aqueous solution of biopolymers are respectively heated and mixed at a specific temperature (for example, 80 ° C.) or higher, and the biopolymer-soil mixture thus formed is poured into a molding mold, and then cooled. Various shapes can be realized according to the mold. After being poured into the mold, it is hardened while cooling to 40 ° C. or lower. In this case, it is hardened by natural cooling in air or by metal cooling using water or other refrigerant. In the case of the thermal gelled biopolymer according to the present embodiment, the water permeability is very low, so it was confirmed that the soil structure is not disturbed even when soaked in water initially. I can make it.
전체적으로 본 발명에서 제시된 바이오폴리머-흙 조성물의 경우 물에 대한 내구성이 월등히 우수함을 확인할 수 있다. 따라서 본 기술은 지반 내 차수 및 차폐의 목적 또는 기타 보강의 이유로 고온의 바이오폴리머 용액을 직접 지반에 주입 또는 교반하는 형태로 적용할 수 있다. 그 구체적인 실시 방법은 도 12와 같다.Overall, the biopolymer-soil composition presented in the present invention can be confirmed to have excellent durability against water. Therefore, the present technology can be applied in the form of injecting or stirring a high temperature biopolymer solution directly into the ground for the purpose of ordering and shielding the ground or other reinforcement. The specific implementation method is the same as FIG.
실시예 6: 바이오폴리머 혼합 흙 건축재 (패널)에 대한 강도 검토Example 6: Strength Review of Biopolymer Mixed Soil Building Materials (Panels)
바이오폴리머 처리 흙의 건축재료로서의 타당성을 검토하기 위해 흙 건축에서 가장 널리 사용되는 황토를 이용하여 두께 15 mm 의 패널 시편을 제작하고 표준시험법 (KS F 3504)에 의해 각 패널의 휨 강도 (flexural strength)를 측정하였다.In order to examine the feasibility of biopolymer-treated soil as a building material, 15 mm thick panel specimens were made using the most widely used soil in soil construction, and flexural strength of each panel was tested by the standard test method (KS F 3504). strength) was measured.
비교를 위해 아무런 첨가물이 없는 상태, 석고 10%를 혼합한 흙, 그리고 고분자 점질성 바이오폴리머의 일종인 베타-글루칸과 잔탄검을 각각 0.5%와 1.0% 첨가한 조건에 대한 휨 강도를 비교하였다. 그 결과는 도 17에 나타내었다.For comparison, the flexural strengths were compared for the condition of no additives, 10% gypsum soil, and 0.5% and 1.0% of beta-glucan and xanthan gum, respectively. The results are shown in FIG.
도 17에 나타난 바와 같이, 아무런 처리를 하지 않은 흙의 건조 상태에서 휨강도가 100 kPa 미만이었고, 석고 10%를 혼합한 조건에서도 큰 증가를 보이지 않은 반면, 본 실시예에 따른 고분자 점질성 바이오폴리머를 혼합한 시편들은 휨 강도가 눈에 띄게 증가함을 알 수 있었다. 대체로, 0.5% 중량비로 포함된 경우 200 kPa 내외의 강도를 보이고, 1%의 중량비로 포함된 경우 400 kPa 가까운 휨강도를 가짐을 확인할 수 있었으며, 이를 바탕으로 고분자 점질성 바이오폴리머를 이용한 흙 건축 및 건축 재료의 사용은 매우 기존 흙 건축이 지니고 있는 저강도 및 저내구성 문제를 극복하는 좋은 대안이 될 수 있을 것으로 판단된다.As shown in FIG. 17, the flexural strength was less than 100 kPa in the dry state of the soil which had not been treated, and the polymer viscous biopolymer according to the present embodiment was not shown, even when the gypsum 10% was mixed. The mixed specimens showed a marked increase in flexural strength. In general, when it is included in the 0.5% weight ratio, the strength of about 200 kPa is shown, and when it is included in the 1% weight ratio, it has been confirmed that the bending strength is close to 400 kPa. Based on this, the soil construction and the construction using the polymer viscous biopolymer The use of materials is considered to be a good alternative to overcome the low strength and low durability problems of conventional soil construction.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The foregoing description of the application is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present application is shown by the claims below rather than the detailed description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included in the scope of the present invention. .

Claims (23)

  1. 고분자 점질성 바이오폴리머를 토양에 첨가하는 것을 포함하는, 토양 안정화 및 개량 방법.A method of soil stabilization and improvement comprising adding a polymeric viscous biopolymer to the soil.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 고분자 점질성 바이오폴리머는 다당류 계열 또는 아미노산 계열의 바이오폴리머를 포함하는, 토양 안정화 및 개량 방법.The polymer viscous biopolymer comprises a polysaccharide-based or amino acid-based biopolymer, soil stabilization and improvement method.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 다당류 계열의 고분자 점질성 바이오폴리머는 고분자 사슬형 바이오폴리머 또는 겔화 바이오폴리머를 포함하는, 토양 안정화 및 개량 방법.The polysaccharide-based polymer viscous biopolymer comprises a polymer chain biopolymer or a gelled biopolymer, soil stabilization and improvement method.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 고분자 점질성 바이오폴리머는 글루코오스 (glucose)를 기본 단위 (monomer)로서 가지는 물질을 포함하는 것으로서, 베타글루칸, 알파글루칸, 잔탐검, 젤란검, 웰란, 아가, 석시노글리칸, 커들란, 및 이들의 조합들로 이루어진 군으로부터 선택된 것을 포함하는, 토양 안정화 및 개량 방법.The polymer viscous biopolymer includes a substance having glucose as a monomer, and includes beta glucan, alpha glucan, xantham gum, gellan gum, wellan, agar, succinoglycan, curdlan, and A method of stabilizing and improving soil, comprising one selected from the group consisting of combinations thereof.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 고분자 점질성 바이오폴리머는 키토산, 감마피지에이 (γPGA), 및 이들의 조합들로 이루어진 군으로부터 선택된 것을 포함하는, 토양 안정화 및 개량 방법.Wherein said polymeric viscous biopolymer comprises one selected from the group consisting of chitosan, gamma fiji A (γPGA), and combinations thereof.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 고분자 점질성 바이오폴리머를 토양 100 중량부에 대해 20 중량부 이하로 첨가하는 것을 포함하는, 토양 안정화 및 개량 방법.A method of stabilizing and improving the soil comprising adding the polymer viscous biopolymer to 20 parts by weight or less based on 100 parts by weight of the soil.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 고분자 점질성 바이오폴리머는 상기 토양 내의 공극을 확장시키고, 토양 내 함수 특성을 유지시켜주며, 흙 입자간 결합력을 증가시키는 것인, 토양 안정화 및 개량 방법.The polymer viscous biopolymer is to expand the pores in the soil, to maintain the soil water properties, and to increase the bonding force between the soil particles, soil stabilization and improvement method.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 고분자 점질성 바이오폴리머를 토양에 첨가하는 것은, 상기 고분자 점질성 바이오폴리머를 상기 토양과 혼합하거나, 상기 토양의 표면에 살포하거나, 또는 상기 토양 내에 주입하여 수행되는 것인, 토양 안정화 및 개량 방법.Adding the polymer viscous biopolymer to the soil is performed by mixing the polymer viscous biopolymer with the soil, spraying on the surface of the soil, or injecting into the soil. .
  9. 제 1 항에 있어서,The method of claim 1,
    상기 고분자 점질성 바이오폴리머를 수용액 또는 염기성 수용액 상태로 토양에 첨가하는 것을 포함하는, 토양 안정화 및 개량 방법.And adding the polymer viscous biopolymer to the soil in an aqueous or basic aqueous solution.
  10. 제 1 항에 있어서,The method of claim 1,
    상기 고분자 점질성 바이오폴리머를 분말 상태로 토양에 첨가하는 것을 포함하는 것인, 토양 안정화 및 개량 방법.Soil stabilization and improvement comprising the addition of the polymer viscous biopolymer to the soil in powder form.
  11. 제 1 항에 있어서,The method of claim 1,
    상기 고분자 점질성 바이오폴리머를 토양에 첨가한 후, 알칼리 금속 또는 알칼리 토금속의 양이온을 첨가하는 것을 추가 포함하는, 토양 안정화 및 개량 방법.And adding the polymer viscous biopolymer to the soil, and then adding a cation of an alkali metal or an alkaline earth metal.
  12. 제 1 항에 있어서,The method of claim 1,
    상기 고분자 점질성 바이오폴리머를 토양에 첨가한 후, 산성 수용액 또는 양이온계 (cationic) 수용액을 첨가하는 것을 추가 포함하는, 토양 안정화 및 개량 방법.After adding the polymer viscous biopolymer to the soil, further comprising adding an acidic aqueous solution or cationic aqueous solution, soil stabilization and improvement method.
  13. 제 1 항에 있어서,The method of claim 1,
    상기 고분자 점질성 바이오폴리머를 토양에 첨가한 후, 토양을 가열 및 냉각하는 것을 추가 포함하는, 토양 안정화 및 개량 방법.Adding the polymer viscous biopolymer to the soil, and then further heating and cooling the soil.
  14. 제 13 항에 있어서,The method of claim 13,
    상기 냉각 후, 알칼리 금속 또는 알칼리 토금속의 양이온을 첨가하는 것을 추가 포함하는, 토양 안정화 및 개량 방법.And after the cooling, further comprising adding a cation of an alkali metal or an alkaline earth metal.
  15. 제 8 항에 있어서,The method of claim 8,
    상기 고분자 점질성 바이오폴리머를 상기 토양의 표면에 살포한 후 물 산성 수용액, 및/또는 양이온계 수용액을 살수하는 것을 추가 포함하는, 토양 안정화 및 개량 방법.And spraying the polymer viscous biopolymer onto the surface of the soil and then watering the water acidic aqueous solution and / or the cationic aqueous solution.
  16. 제 1 항에 있어서,The method of claim 1,
    상기 토양 안정화 및 개량 방법이 식생의 발아 또는 생장을 증진시키는 것인, 토양 안정화 및 개량 방법.The soil stabilization and improvement method is to improve the germination or growth of vegetation, soil stabilization and improvement method.
  17. 제 1 항에 있어서,The method of claim 1,
    상기 토양 안정화 및 개량 방법이 토양 침식 저항을 증진시키는 것인, 토양 안정화 및 개량 방법.The soil stabilization and improvement method is to promote soil erosion resistance, soil stabilization and improvement method.
  18. 제 1 항 내지 제 17 항 중 어느 한 항의 토양 안정화 및 개량 방법에 의해 제조되며, 고분자 점질성 바이오폴리머를 포함하는, 식생의 발아 또는 생장 증진용 토양 조성물.A soil composition prepared by the method for stabilizing and improving the soil of any one of claims 1 to 17, comprising a polymer viscous biopolymer.
  19. 제 18 항에 있어서,The method of claim 18,
    토양 100 중량부에 대해 상기 고분자 점질성 바이오폴리머 20 중량부 이하를 포함하는, 식생의 발아 또는 생장 증진용 토양 조성물.Containing 20 parts by weight or less of the polymer viscous biopolymer with respect to 100 parts by weight of soil, soil composition for promoting germination or growth of vegetation.
  20. 제 1 항 내지 제 17 항 중 어느 한 항의 토양 안정화 및 개량 방법에 의해 제조되며, 고분자 점질성 바이오폴리머를 포함하는, 토양 침식 방지용 조성물.18. A method for preventing soil erosion, which is prepared by the method for stabilizing and improving the soil of any one of claims 1 to 17, comprising a polymer viscous biopolymer.
  21. 제 20 항에 있어서,The method of claim 20,
    토양 100 중량부에 대해 상기 고분자 점질성 바이오폴리머 20 중량부 이하를 포함하는, 토양 침식 방지용 조성물.A composition for preventing soil erosion comprising 20 parts by weight or less of the polymer viscous biopolymer with respect to 100 parts by weight of soil.
  22. 제 1 항 내지 제 17 항 중 어느 한 항의 토양 안정화 및 개량 방법에 의해 제조되며, 고분자 점질성 바이오폴리머를 포함하는, 흙 건축 재료 또는 부재.A soil building material or member prepared by the soil stabilization and remediation method of any one of claims 1 to 17 and comprising a polymeric viscous biopolymer.
  23. 제 22 항에 있어서,The method of claim 22,
    토양 100 중량부에 대해 상기 고분자 점질성 바이오폴리머 20 중량부 이하를 포함하는, 흙 건축 재료 또는 부재.A soil building material or member comprising less than 20 parts by weight of said polymeric viscous biopolymer relative to 100 parts by weight of soil.
PCT/KR2013/006906 2012-10-09 2013-07-31 Soil stabilization and improvement method using biopolymer WO2014058145A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/434,188 US9944855B2 (en) 2012-10-09 2013-07-31 Soil stabilization and improvement method using biopolymer
CN201380064168.2A CN105143400A (en) 2012-10-09 2013-07-31 Soil stabilization and improvement method using biopolymer

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR20120112059 2012-10-09
KR20120112060 2012-10-09
KR10-2012-0112060 2012-10-09
KR10-2012-0112059 2012-10-09
KR10-2013-0090883 2013-07-31
KR10-2013-0090894 2013-07-31
KR1020130090883A KR101551920B1 (en) 2012-10-09 2013-07-31 Germination or growth improvement method of vegetation using biopolymer
KR1020130090894A KR101544145B1 (en) 2012-10-09 2013-07-31 Improvement method of soil erosion resistance using biopolymer

Publications (1)

Publication Number Publication Date
WO2014058145A1 true WO2014058145A1 (en) 2014-04-17

Family

ID=50477580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/006906 WO2014058145A1 (en) 2012-10-09 2013-07-31 Soil stabilization and improvement method using biopolymer

Country Status (1)

Country Link
WO (1) WO2014058145A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105061068A (en) * 2015-08-18 2015-11-18 山东中瀚生物科技有限公司 Moringa oleifera polysaccharide-rich biological liquid fertilizer and preparation method thereof
CN105350414A (en) * 2015-09-24 2016-02-24 北京林业大学 Desert highway construction method benefitting for vegetation recovery
CN108059573A (en) * 2018-01-26 2018-05-22 四川省农业科学院植物保护研究所 It is a kind of to be used to improve fertilizer of leek yield and preparation method and application
CN113533084A (en) * 2021-06-02 2021-10-22 河海大学 Method for enhancing soil-dressing ecological characteristics based on biopolymer and evaluation method
CN113735658A (en) * 2021-07-30 2021-12-03 中国科学院重庆绿色智能技术研究院 Green composite material for sandy soil ecological improvement and restoration and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10513491A (en) * 1995-02-01 1998-12-22 ケイビー テクノロジーズ リミティッド Polymer soil supported fluid compositions and methods of using them
US20090242833A1 (en) * 2008-03-31 2009-10-01 Rhodia Inc. Self-situating stimuli-responsive polymer compositions in soil additives and methods for use
JP2010275697A (en) * 2009-05-26 2010-12-09 Taisei Corp Soil stabilization method
US20110113983A1 (en) * 2009-11-16 2011-05-19 Chemstar Products Company Soil stabilization compositions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10513491A (en) * 1995-02-01 1998-12-22 ケイビー テクノロジーズ リミティッド Polymer soil supported fluid compositions and methods of using them
US20090242833A1 (en) * 2008-03-31 2009-10-01 Rhodia Inc. Self-situating stimuli-responsive polymer compositions in soil additives and methods for use
JP2010275697A (en) * 2009-05-26 2010-12-09 Taisei Corp Soil stabilization method
US20110113983A1 (en) * 2009-11-16 2011-05-19 Chemstar Products Company Soil stabilization compositions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NORTON, SYLVAIN ET AL.: "Gellan gum gel as entrapment matrix for high temperature fermentation processes: a rheological study.", BIOTECHNOLOGY TECHNIQUES, vol. 4, no. 5, 1990, pages 351 - 356 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105061068A (en) * 2015-08-18 2015-11-18 山东中瀚生物科技有限公司 Moringa oleifera polysaccharide-rich biological liquid fertilizer and preparation method thereof
CN105061068B (en) * 2015-08-18 2018-08-03 河北大广生物科技有限公司 A kind of Moringa polysaccharide enriched biological liquid fertilizer and preparation method thereof
CN105350414A (en) * 2015-09-24 2016-02-24 北京林业大学 Desert highway construction method benefitting for vegetation recovery
CN108059573A (en) * 2018-01-26 2018-05-22 四川省农业科学院植物保护研究所 It is a kind of to be used to improve fertilizer of leek yield and preparation method and application
CN113533084A (en) * 2021-06-02 2021-10-22 河海大学 Method for enhancing soil-dressing ecological characteristics based on biopolymer and evaluation method
CN113735658A (en) * 2021-07-30 2021-12-03 中国科学院重庆绿色智能技术研究院 Green composite material for sandy soil ecological improvement and restoration and preparation method and application thereof

Similar Documents

Publication Publication Date Title
WO2014058145A1 (en) Soil stabilization and improvement method using biopolymer
US20060128839A1 (en) Process for the stabilization of dusting surfaces
CN101747902B (en) Green and environment-friendly soil stabilizer taking industrial waste as raw material and application method thereof
CN102031786B (en) Greening vegetation concrete and construction method thereof
US9944855B2 (en) Soil stabilization and improvement method using biopolymer
CA2888422C (en) Method for preventing soil erosion
KR101544145B1 (en) Improvement method of soil erosion resistance using biopolymer
KR101283514B1 (en) Restoration method based on reinforecment and organic vegetation material
JP2007330114A (en) Weed growth-suppressing material
CN108457241A (en) A kind of salt-soda soil man-made lake ecotype waterproof subtracts the method oozed
KR102237837B1 (en) Biopolymer-containing gel bar, producing method of the same, and construction method for soil erosion resistance improvement using the same
KR100755901B1 (en) Surface curing agent for anti-scattering of dust and process thereof
US8277682B2 (en) Inorganic, static electric binder composition, use thereof and method for the preparation of said binder composition
KR101551920B1 (en) Germination or growth improvement method of vegetation using biopolymer
JP6948263B2 (en) Weed control material and how to use it
Yongxiang et al. An experimental study of the ecological restoration of rock slope based on polyurethane composite-based materials
JP4351719B2 (en) Ground covering method and ground covering method
JPH07327484A (en) Material for greening
JP7014511B2 (en) Weed control material and how to use it
KR101875304B1 (en) Drought resistance soil composition and Preparation method thereof
KR100783013B1 (en) A road packing materials
KR100798957B1 (en) Mixed composition with good fluidity for fabric form tube
KR101930177B1 (en) vegetation basement board for restoring stony mountain development area and preparing method thereof
KR101135217B1 (en) Composition for Environmental-friendly molding blocks
JP2009057718A (en) Material for pavement and spraying

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380064168.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13845154

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14434188

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13845154

Country of ref document: EP

Kind code of ref document: A1