WO2014058004A1 - Variable capacitance capacitor - Google Patents

Variable capacitance capacitor Download PDF

Info

Publication number
WO2014058004A1
WO2014058004A1 PCT/JP2013/077562 JP2013077562W WO2014058004A1 WO 2014058004 A1 WO2014058004 A1 WO 2014058004A1 JP 2013077562 W JP2013077562 W JP 2013077562W WO 2014058004 A1 WO2014058004 A1 WO 2014058004A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable
drive electrode
electrode portion
fulcrum
electrode
Prior art date
Application number
PCT/JP2013/077562
Other languages
French (fr)
Japanese (ja)
Inventor
尚信 大川
村田 眞司
矢澤 久幸
亨 宮武
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to JP2014540884A priority Critical patent/JP5922249B2/en
Publication of WO2014058004A1 publication Critical patent/WO2014058004A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G5/00Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
    • H01G5/16Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture using variation of distance between electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0035Constitution or structural means for controlling the movement of the flexible or deformable elements
    • B81B3/0056Adjusting the distance between two elements, at least one of them being movable, e.g. air-gap tuning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0221Variable capacitors

Definitions

  • the present invention relates to a variable capacitor, and more particularly to a variable capacitor having a large variable capacitance range.
  • variable capacitor can be mass-produced by a micro device technology called MEMS (Micro Electro Mechanical Systems). MEMS is suitable for downsizing and can be made relatively inexpensive if mass-produced. Therefore, it is expected to contribute to downsizing and high performance of portable devices. Furthermore, since the frequency band used for mobile phones is a wide band such as 700 MHz to 2.5 GHz, a variable capacitor having a variable ratio of about 10 times the maximum capacitance to the minimum capacitance is desired. Has been.
  • FIG. 9 is a perspective view of the variable capacitor 110 of the first conventional example described in Patent Document 1.
  • FIG. 9 in the variable capacitor 110 of the first conventional example, the fixed portion 120 and the movable portion 130 are arranged to face each other with a space therebetween.
  • a beam 150 is provided at the center of the movable portion 130 in the X1-X2 direction, and the movable portion 130 and the fixed portion 120 are fixed by the beam 150.
  • the movable part 130 can be rotated by twisting of the beam 150.
  • the fixed portion 120 is provided with a drive electrode 121 and a capacitive electrode 122 as fixed electrodes so as to face the movable portion 130.
  • a movable electrode 131 is formed as a common electrode facing the drive electrode 121 and the capacitor electrode 122.
  • FIG. 10 shows a schematic cross-sectional view of the variable capacitor 111 of the second conventional example when the variable range is enlarged.
  • the side on which the drive electrode 121 is provided is the movable drive electrode part 130a with the beam 150 as the rotation axis
  • the side on which the capacitive electrode 122 is provided is the movable capacitive electrode part 130b.
  • the second conventional example variable capacitor 111 of the is provided with a length of the movable capacitor electrode portion 130b of the (L b) to be longer than the length of the drive electrode portion 130a (L a).
  • variable capacitor 111 of the second conventional example shown in FIG. 10 when acceleration is applied from the outside, the beam 150 is rotated around the axis of rotation according to the respective moments of inertia of the drive electrode portion 130 a and the capacitor electrode portion 130 b. As a result, a moment of force acts in the direction of rotating the drive electrode portion 130a and the capacitor electrode portion 130b.
  • the magnitude of the moment of inertia of the drive electrode portion 130a and the capacitive electrode portion 130b is a value obtained by integrating the product of the square of the distance from the rotation axis and the mass per unit distance. Therefore, as shown in FIG.
  • variable capacitor 111 of the conventional example since the length L b of the length L a and the capacitance electrode part 130b of the driving electrode portions 130a are different, it shifted the balance of the magnitude of the moment of inertia. Therefore, when acceleration is applied from the outside, the moments of the forces acting in the rotational direction of the drive electrode portion 130a and the capacitive electrode portion 130b are different, and the distance between the capacitive electrode 122 and the capacitive electrode portion 130b varies. For this reason, the capacitance of the variable capacitor 111 varies, resulting in a value that deviates from the desired capacitance value.
  • An object of the present invention is to solve the above-described problems and to provide a variable capacitor capable of increasing the variable capacitance range and suppressing capacitance fluctuation due to the influence of externally applied acceleration.
  • the variable capacitance capacitor of the present invention includes a movable drive electrode portion and a fixed drive electrode portion arranged to face each other, and a movable capacitance electrode portion and a fixed capacitance electrode portion arranged to face each other, and the movable drive electrode
  • the movable capacitive electrode portion and the movable drive electrode portion are formed by a link portion provided with the fulcrum portion.
  • the link portion rotates with the fulcrum portion as a fulcrum so that the movable capacitance electrode portion is separated from the fixed capacitance electrode portion when the movable drive electrode portion is connected to the fixed drive electrode portion.
  • the rotation radius of the link portion on the side connected to the movable capacitive electrode portion with the fulcrum portion serving as a fulcrum is set to the link portion on the side connected to the movable drive electrode portion.
  • the fulcrum part is provided so as to be larger than the rotation radius, and the mass per unit area of the movable capacitive electrode part is smaller than the mass per unit area of the movable drive electrode part.
  • the movable capacitor electrode part and the movable drive electrode part are formed.
  • the rotation radius of the link portion connected to the movable capacitive electrode portion is larger than the rotation radius of the link portion connected to the movable drive electrode portion with the fulcrum portion as the fulcrum, the movable drive When the distance between the electrode portion and the fixed drive electrode portion is displaced, the displacement amount of the distance between the movable capacitance electrode portion and the fixed capacitance electrode portion can be further increased. Therefore, the variable capacitance range of the variable capacitor can be increased. Further, the rotation radius of the link portion connected to the movable capacitance electrode portion is larger than the rotation radius of the link portion connected to the movable drive electrode portion, and the movable capacitance electrode portion is larger than the movable drive electrode portion. The mass per unit area is small.
  • the difference between the moment of inertia of the movable capacitive electrode portion and the moment of inertia of the movable drive electrode portion can be reduced, so that when acceleration is applied from the outside, the movable capacitive electrode portion and the movable drive electrode portion The difference in moment of working force can be reduced. Therefore, it is possible to suppress the displacement of the capacitance by suppressing the displacement of the movable capacitance electrode portion and the movable drive electrode portion due to the influence of the acceleration applied from the outside.
  • variable capacitor of the present invention it is possible to increase the variable capacitance range and suppress capacitance fluctuation due to the influence of acceleration applied from the outside.
  • the product of the square of the rotational radius of the link portion on the side connected to the movable capacitance electrode portion and the mass of the movable capacitance electrode portion is connected to the movable drive electrode portion. It is preferable that it is formed to be equal to the product of the square of the radius of rotation of the link portion on the side and the mass of the movable drive electrode portion. According to this, since the moment of inertia of the movable capacitor electrode portion becomes equal to the moment of inertia of the movable drive electrode portion, it is possible to suppress the displacement of the movable capacitor electrode portion and the movable drive electrode portion due to the influence of externally applied acceleration. it can.
  • the movable capacitor electrode part and the movable drive electrode part are formed in a flat plate shape, and the thickness of the movable capacitor electrode part is formed thinner than the movable drive electrode part. Is preferred.
  • variable capacitor of the present invention it is preferable that a hole is provided in the movable capacitor electrode portion.
  • variable capacitor of the present invention it is preferable that a mass adjusting unit is provided in the movable drive electrode unit.
  • the variable capacitance capacitor of the present invention includes a movable drive electrode portion and a fixed drive electrode portion arranged to face each other, and a movable capacitance electrode portion and a fixed capacitance electrode portion arranged to face each other, and the movable drive electrode
  • the rotational radius of the movable capacitive electrode portion is larger than the rotational radius of the movable drive electrode portion.
  • the movable capacitance electrode is provided such that the fulcrum portion is provided so that the mass per unit area of the movable capacitance electrode portion is smaller than the mass per unit area of the movable drive electrode portion. Part and the movable drive electrode part are formed.
  • the movable capacitive electrode portion since the rotational radius of the movable capacitive electrode portion is larger than the rotational radius of the movable drive electrode portion, the movable capacitive electrode portion is fixed to the movable capacitive electrode portion when the distance between the movable drive electrode portion and the fixed drive electrode portion is displaced.
  • the displacement amount of the distance with the capacitive electrode part can be increased. Therefore, the variable capacitance range of the variable capacitor can be increased.
  • the movable capacitance electrode part has a larger radius of rotation and a smaller mass per unit area than the movable drive electrode part.
  • the difference between the moment of inertia of the movable capacitive electrode portion and the moment of inertia of the movable drive electrode portion can be reduced, so that when acceleration is applied from the outside, the movable capacitive electrode portion and the movable drive electrode portion The difference in moment of working force can be reduced. Therefore, it is possible to suppress the displacement of the capacitance by suppressing the displacement of the movable capacitance electrode portion and the movable drive electrode portion due to the influence of the acceleration applied from the outside.
  • variable capacitor of the present invention it is possible to increase the variable capacitance range and suppress capacitance fluctuation due to the influence of acceleration applied from the outside.
  • FIG. 3 is a cross-sectional view taken along the line III-III in FIG. It is a schematic diagram for demonstrating the moment of inertia of the variable capacitor of 1st Embodiment. It is a top view of the variable capacitor in the 1st modification. It is sectional drawing of the variable capacitor in a 2nd modification. It is sectional drawing of the variable capacitor in a 3rd modification. It is sectional drawing of the variable capacitor in 2nd Embodiment. It is a perspective view which shows the variable capacitor of the 1st prior art example. It is sectional drawing of the variable capacitor of the 2nd prior art example.
  • variable capacitor according to an embodiment of the present invention will be described in detail with reference to the drawings.
  • the dimension of each drawing is changed and shown suitably.
  • FIG. 1 is an exploded perspective view of the variable capacitor 10 of the first embodiment.
  • FIG. 2 is a plan view of the variable capacitor 10 of the first embodiment.
  • the variable capacitor 10 of the present embodiment includes a fixed portion 20, a movable capacitance electrode portion 30, and a movable drive electrode portion 31.
  • the fixed portion 20 includes a fixed capacitance electrode portion 20a and a fixed drive electrode portion 20b.
  • the fixed drive electrode portion 20b is disposed to face the movable drive electrode portion 31, and the fixed capacitance electrode portion 20a is movable.
  • the capacitor electrode part 30 is disposed opposite to the capacitor electrode part 30.
  • the movable capacitor electrode part 30 and the movable drive electrode part 31 are connected by a first link part 51 and a second link part 52.
  • the first link portion 51 is connected to the first connection portion 36 a provided in the movable drive electrode portion 31 and is provided at the X1 side end portion of the movable capacitance electrode portion 30. It is connected to the first connecting portions 36b and 36c.
  • the second link portion 52 is provided point-symmetrically with the first link portion 51.
  • the movable capacitance electrode unit 30 and the movable drive electrode unit 31 are connected by the first link unit 51 and the second link unit 52.
  • the first auxiliary link portion 53 and the second auxiliary link portion 54 for supporting the movable capacitive electrode portion 30 and the movable drive electrode portion 31 by assisting the first link portion 51 and the second link portion 52.
  • the first link 51 and the joints 65a and 65c are connected by fulcrum parts 61a and 61c
  • the second link part 52 and the joints 65b and 65d are connected by fulcrum parts 61b and 61d.
  • the joint support portions 26 a, 26 b, 26 c, and 26 d formed on the fixed portion 20 are joined to the joint portions 65 a, 65 b, 65 c, and 65 d, respectively.
  • the drive electrode portion 31 and the fixed portion 20 are joined.
  • the first link portion 51 and the second link portion 52 are provided so as to be rotatable with the fulcrum portions 61a to 61d as fulcrums. Therefore, the movable capacitor electrode part 30 and the movable drive electrode part 31 connected by the first link part 51 and the second link part 52 operate so as to rotate in conjunction with the fulcrum parts 61a to 61d as fulcrums.
  • a first link portion 51 and a second link portion 52 are provided.
  • the first auxiliary link portion 53 is connected to a fulcrum portion 63 a provided in the joint portion 65 a and can be interlocked with the first link portion 51.
  • the second auxiliary link portion 54 can be interlocked with the second link portion 52.
  • the movable capacitive electrode part 30, the movable drive electrode part 31, the first link part 51, the second link part 52, and the like are formed using a silicon substrate that is a rectangular flat plate. First, a resist layer corresponding to the shape of each member is formed on a silicon substrate. Then, the silicon substrate is cut by an etching process such as deep RIE (deep reactive ion etching) at a portion where the resist layer is not present, so that the movable capacitor electrode portion 30, the movable drive electrode portion 31 and the like are cut. Each member is formed.
  • RIE deep reactive ion etching
  • the movable capacitor electrode portion 30 and the movable drive electrode portion 31 are very small.
  • the length of the movable drive electrode portion 31 in the X1-X2 direction is 1 mm or less, and the length in the Y1-Y2 direction is 0.8 mm or less. is there.
  • the thickness dimension is 0.1 mm or less.
  • FIG. 3 is a cross-sectional view for explaining the operation of the movable capacitor electrode portion 30 and the movable drive electrode portion 31, and is a cross-sectional view taken along the line III-III in FIG. .
  • FIG. 3A shows a state in which no drive voltage is applied between the movable drive electrode portion 31 and the fixed drive electrode portion 20b
  • FIG. 3B shows a cross section in a state where the drive voltage is applied and displaced.
  • the variable capacitor 10 of this embodiment is configured to have a pair of capacitive electrodes and a pair of drive electrodes.
  • the fixed capacitance electrode portion 20a is provided with a fixed capacitance electrode 24, and the movable capacitance electrode portion 30 is formed on the movable capacitance electrode portion 30 opposite to the fixed capacitance electrode portion 20a.
  • a fixed drive electrode 25 is formed on the fixed drive electrode portion 20b, and a movable drive electrode 35 is formed on the movable drive electrode portion 31.
  • the movable capacitive electrode unit 30 and the movable drive electrode unit 31 are conductive materials, the material of the movable capacitive electrode unit 30 functions as the movable capacitive electrode 34, and the material of the movable drive electrode unit 31 is the movable drive electrode. 35 is functioning.
  • variable capacitor 10 is connected to a control unit (not shown) for controlling the electric capacity, and the drive voltage for generating an electrostatic force between the fixed drive electrode 25 and the movable drive electrode 35 is controlled. Given by the department.
  • the distance D1 ′ between the movable drive electrode 35 and the fixed drive electrode 25 is equal to the distance D2 ′ between the movable capacitance electrode 34 and the fixed capacitance electrode 24.
  • the movable drive electrode portion 31 and the movable capacitive electrode portion 30 are stationary in a state that is substantially the same as the above.
  • the movable drive electrode portion 31 When a drive voltage is applied to the fixed drive electrode 25 and the movable drive electrode 35 that are a pair of drive electrodes, as shown in FIG. 3B, the movable drive electrode portion 31 is displaced by ⁇ D1 in the Z2 direction due to electrostatic force. To do. Then, the movable capacitive electrode portion 30 connected by the first link portion 51 and the second link portion 52 rotates in conjunction with the movable drive electrode portion 31 with the fulcrum portions 61a to 61d as fulcrums. It is displaced by ⁇ D2 in the direction. At this time, the first connecting portions 36a to 36d, the second connecting portions 37a to 37d, and the fulcrum portions 61a to 61d are torsionally deformed.
  • This torsional deformation is an elastic deformation, and each of the connecting portions and the fulcrum portions 61a to 61d has a restoring force for returning to the original with respect to the torsional deformation.
  • the movable capacitive electrode 30 and the movable drive electrode 31 are stationary at a position where the electrostatic force and the restoring force are balanced, and the capacitance formed by the fixed capacitive electrode 24 and the movable capacitive electrode 34 at this time is a variable capacitive capacitor.
  • the electric capacity is 10.
  • the displacement of the movable capacitor electrode 30 and the movable drive electrode 31 is controlled by the balance between the electrostatic force and the restoring force generated by the drive voltage, and the electric capacity of the variable capacitor 10 is set to a desired value. Can do.
  • the displacement ⁇ D1 of the movable drive electrode portion 31 due to the drive voltage is limited to 1/3 of the interelectrode distance D1 ′ in the initial state due to a so-called pull-in effect. Therefore, the movable range of the movable capacitive electrode unit 30 connected to the movable drive electrode unit 31 by the first link unit 51 and the second link unit 52 is also limited.
  • the variable capacitor 10 of the present embodiment as shown in FIG. 2, the distance between the fulcrum portion 61a and the first connecting portion 36a and L 1, and the fulcrum portion 61a and the first connecting portion 36b the distance is taken as L 2, the first link portion 51 so that L 2 is greater than L 1 is provided.
  • the second link portion 52 is similarly provided.
  • the link part 51 on the side connected to the movable drive electrode part 31 with the fulcrum part 61a as a fulcrum is the distance of the first link part 51 from the fulcrum part 61a to the movable drive electrode part 31, that is, the fulcrum part 61a and the first fulcrum part 61a. the distance L 1 between the connecting portion 36a as the rotation radius, operates to rotate.
  • the link portion 51 on the side connected to the movable capacitance electrode portion 30 is a first link portion from the fulcrum portion 61a to the movable capacitance electrode portion 30 with the fulcrum portion 61a as a fulcrum in conjunction with the movable drive electrode portion 31.
  • FIG. 4 is a schematic side view for explaining the moment of inertia of the movable capacitance electrode part 30 and the movable drive electrode part 31 of the present embodiment.
  • FIG. 4 shows a state in which the first link portion 51 is stationary by rotating by an angle ⁇ with the fulcrum portion 61a as a fulcrum.
  • the movable capacitive electrode unit 30 is coupled to the first coupling part 36b, and the movable drive electrode unit 31 is coupled to the first coupling part 36a.
  • the fulcrum part 61a as a fulcrum
  • the inertia moment of the movable drive electrode part 31 connected to the first link part 51 is I 1
  • the inertia moment of the movable capacitor electrode part 30 is I 2
  • the movable drive electrode part 31 the mass M 1, the mass of the movable capacitor electrode 30 and M 2.
  • the mass of the first link portion 51 is assumed to be negligibly small.
  • the movable capacitor electrode portion 30 is formed thinner than the movable drive electrode portion 31. Therefore, the mass per unit area of the movable capacitive electrode part 30 is formed to be smaller than the mass per unit area of the movable drive electrode part 31. Therefore, as compared with the case where the movable capacitor electrode portion 130b and the movable drive electrode portion 130a are formed to have the same thickness as in the variable capacitor 111 of the second conventional example shown in FIG. The mass M 2 of 30 is reduced.
  • the movable capacitance electrode part 30 and the movable drive electrode part 31 are formed so as to be smaller.
  • mass per unit area refers to a value obtained by dividing the mass of the entire movable capacitive electrode unit 30 by the area of the surface of the movable capacitive electrode unit 30 facing the fixed unit 20. The same applies to the movable drive electrode portion 31.
  • the thickness of the movable capacitor electrode portion 30 can be appropriately adjusted and processed by etching such as deep RIE (deep reactive ion etching).
  • the rotational radius (L 2 ) of the movable capacitive electrode portion 30 is larger than the rotational radius (L 1 ) of the movable drive electrode portion 31, and therefore the movable drive electrode
  • the movable capacitive electrode section 30 has a larger radius of rotation and a smaller mass per unit area than the movable drive electrode section 31.
  • FIG. 5 is a plan view of the variable capacitor 10 in the first modification of the present embodiment.
  • the mass M 2 of the movable capacitive electrode unit 30 can be reduced also by forming a plurality of holes 32 in the movable capacitive electrode unit 30.
  • the difference in the moment of inertia between the movable capacitor electrode portion 30 and the movable drive electrode portion 31 can be reduced, so that the capacitance variation can be suppressed.
  • the hole 32 is provided so as to penetrate the movable capacitance electrode portion 30, the area of the movable capacitance electrode 34 (not shown in FIG. 5) forming the capacitance is reduced, and the capacitance may be reduced. In this case, it is preferable to form a plurality of recesses so as not to affect the electrode area of the movable capacitance electrode 34.
  • FIG. 6 is a cross-sectional view of the variable capacitor 10 in the second modification of the present embodiment.
  • the movable capacitor electrode portion 30 and the movable drive electrode portion 31 are formed to have the same thickness.
  • a mass adjusting unit 33 is formed on the movable drive electrode unit 31. Thereby, the mass of the mass adjusting unit 33 is added to the mass M 1 of the movable drive electrode unit 31, and the inertia moment I 1 of the movable drive electrode unit 31 is determined by the total mass, so that the inertia moment I 1 and the inertia The difference from the moment I 2 can be reduced.
  • the mass adjusting unit 33 is not particularly limited, but can be formed as a thin film using an insulating material such as SiO 2 .
  • FIG. 7 is a cross-sectional view of the variable capacitor 10 in the third modification.
  • the configuration of the movable capacitance electrode unit 30, the movable drive electrode unit 31, the first link unit 51, the second link unit 52, and the like is the same as that in FIGS. The difference is that 28 is provided.
  • the protection unit 28 is provided so as to cover the movable capacitance electrode unit 30 and the movable drive electrode unit 31.
  • the fixed capacitance electrode 24 is provided in the protection portion 28 at a position facing the movable capacitance electrode portion 30. That is, in the variable capacitor 10 of the third modification, the protection unit 28 is provided to function as the fixed capacitance electrode unit 20a.
  • the movable drive electrode 35 and the fixed drive electrode 25 when a drive voltage is applied between the movable drive electrode 35 and the fixed drive electrode 25, the movable drive electrode portion 31 moves in the Z2 direction, and the movable capacitive electrode portion 30 moves in the Z1 direction.
  • the opposing distance between the fixed capacitor electrode 24 and the movable capacitor electrode 34 changes so as to decrease, the capacitance value can be changed so as to increase.
  • FIG. 8 is a cross-sectional view of the variable capacitor 11 of the second embodiment.
  • the movable capacitor electrode portion 80 and the movable drive electrode portion 81 are provided in a common movable portion 82, and the movable portion 82 is joined. It is connected to the fixed part 70 via the support part 71.
  • the fixed portion 70 includes a fixed capacitance electrode portion 70a that faces the movable capacitance electrode portion 80 with a space therebetween, and a fixed drive electrode portion 70b that faces the movable drive electrode portion 81 with a space therebetween.
  • the fulcrum portion 72 is formed so that the movable drive electrode portion 81 and the movable capacitance electrode portion 80 rotate in conjunction with the fulcrum portion 72 as a fulcrum.
  • the movable drive electrode portion 81 When a drive voltage is applied between the fixed drive electrode 75 and the movable drive electrode 85, the movable drive electrode portion 81 is displaced in the Z2 direction with the fulcrum portion 72 as a fulcrum by electrostatic force. In conjunction with this, the movable capacitor electrode part 80 is displaced in the Z1 direction with the fulcrum part 72 as a fulcrum. That is, the distance between the fixed capacitor electrode 74 and the movable capacitor electrode 84 is increased and the capacitance is displaced so as to be reduced.
  • the rotation radius (the length from the fulcrum part 72 to the end of the movable drive electrode part 81) of the movable drive electrode part 81 of the variable capacitor 11 of the present embodiment is L 3
  • the rotation radius (fulcrum part) of the movable capacitor electrode part 80 When from 72 to the end portion of the movable capacitor electrode 80 length) and L 4, L 4> L 3 become as fulcrum portion 72 is provided. Therefore, when the distance between the movable drive electrode portion 81 and the fixed drive electrode portion 70b is displaced, the displacement amount of the distance between the movable capacitance electrode portion 80 and the fixed capacitance electrode portion 70a can be increased. 11 variable capacity ranges can be increased.
  • variable capacitor 11 of the present embodiment when the mass of the movable drive electrode portion 81 is M 3 and the mass of the movable capacitance electrode portion 80 is M 4 , the magnitude of the moment of inertia of the movable drive electrode portion 81 is (M 3 ⁇ L 3 2 ) / 3, and the magnitude of the moment of inertia of the movable electrode portion 80 is represented as (M 4 ⁇ L 4 2 ) / 3.
  • the movable capacitor electrode portion 80 is formed thinner than the movable drive electrode portion 81.
  • the movable capacitor electrode part 80 is formed so as to have a larger radius of rotation than the movable drive electrode part 81 and to have a smaller mass per unit area.
  • the movable capacitor electrode 130b and the movable drive electrode portion 130a are compared with the case where the thicknesses are formed to be equal.
  • the difference in moment of inertia between the portion 80 and the movable drive electrode portion 81 can be reduced. Therefore, it is possible to suppress the displacement of the capacitance by suppressing the displacement of the movable capacitor electrode portion 80 and the movable drive electrode portion 81 due to the influence of the acceleration applied from the outside.
  • a hole 32 (not shown) or a recess is formed in the movable capacitor electrode unit 80, as in the first embodiment.
  • a method of providing the mass adjusting unit 33 (not shown) in the movable drive electrode unit 81 may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Micromachines (AREA)

Abstract

[Problem] The purpose of the present invention is to provide a variable capacitance capacitor configured so that a range of a variable capacitance can be increased and capacitance fluctuations due to influences of acceleration exerted from outside can be suppressed. [Solution] In this variable capacitance capacitor, a movable capacitor electrode part (30) and a movable driving electrode part (31) are linked by linking parts (51) and (52) at which a fulcrum part (61c) is provided; the linking parts (51) and (52) are provided rotatably around the fulcrum part (61c) as a fulcrum; the fulcrum part (61c) is provided so that a rotation radius of the linking parts (51) and (52) linked to the movable capacitor electrode part (30) around the fulcrum part (61c) as a fulcrum is greater than a rotation radius of the linking parts (51) and (52) linked to the movable driving electrode part (31); and the movable capacitor electrode part (30) and the movable driving electrode part (31)are formed so that the mass per unit area of the movable capacitor electrode part (30) is smaller than that of the movable driving electrode part (31).

Description

可変容量コンデンサVariable capacitor
 本発明は、可変容量コンデンサに関し、特に、大きな可変容量範囲を有する可変容量コンデンサに関する。 The present invention relates to a variable capacitor, and more particularly to a variable capacitor having a large variable capacitance range.
 携帯電話機などの携帯機器において、発振回路や制御回路に可変容量コンデンサを使用することにより、部品点数を削減して機器の小型化を図ることが期待されている。 In portable devices such as mobile phones, it is expected to reduce the number of components and reduce the size of the device by using variable capacitors in the oscillation circuit and control circuit.
 このような可変容量コンデンサは、MEMS(Micro Electro Mechanical Systems)と呼ばれる微小デバイス技術によって大量生産することが可能である。MEMSは小型化に適していて、大量生産すれば比較的安価な製品にすることができるので、携帯機器の小型化や高性能化に寄与することが期待される。さらに、携帯電話に使用されている周波数帯域は700MHz~2.5GHz等の広い帯域であるため、最小の電気容量に対して最大の電気容量が10倍程度の可変比を有する可変容量コンデンサが要望されている。 Such a variable capacitor can be mass-produced by a micro device technology called MEMS (Micro Electro Mechanical Systems). MEMS is suitable for downsizing and can be made relatively inexpensive if mass-produced. Therefore, it is expected to contribute to downsizing and high performance of portable devices. Furthermore, since the frequency band used for mobile phones is a wide band such as 700 MHz to 2.5 GHz, a variable capacitor having a variable ratio of about 10 times the maximum capacitance to the minimum capacitance is desired. Has been.
 図9は、特許文献1に記載されている第1の従来例の可変容量コンデンサ110の斜視図である。図9に示すように、第1の従来例の可変容量コンデンサ110において、固定部120と可動部130とが間隔を設けて対向配置されている。可動部130のX1-X2方向の中央部には梁150が設けられており、可動部130と固定部120とは梁150により固定されている。可動部130は梁150のねじれによって回転可能になっている。固定部120には、固定電極として駆動電極121及び容量電極122が、可動部130に対向して設けられている。可動部130の裏面には、駆動電極121及び容量電極122と対向する共通電極として可動電極131が形成されている。 FIG. 9 is a perspective view of the variable capacitor 110 of the first conventional example described in Patent Document 1. FIG. As shown in FIG. 9, in the variable capacitor 110 of the first conventional example, the fixed portion 120 and the movable portion 130 are arranged to face each other with a space therebetween. A beam 150 is provided at the center of the movable portion 130 in the X1-X2 direction, and the movable portion 130 and the fixed portion 120 are fixed by the beam 150. The movable part 130 can be rotated by twisting of the beam 150. The fixed portion 120 is provided with a drive electrode 121 and a capacitive electrode 122 as fixed electrodes so as to face the movable portion 130. On the back surface of the movable portion 130, a movable electrode 131 is formed as a common electrode facing the drive electrode 121 and the capacitor electrode 122.
 駆動電極121と可動電極131との間に駆動電圧を印加すると、駆動電極121と可動電極131との間に電位差が生じて、静電力(ク-ロン力)が発生する。この静電力により、可動部130は梁150を回転軸として駆動電極121に引き寄せられる。これにより、容量電極122と可動電極131との距離は大きくなる方向に変化するため、容量電極122と可動電極131とで形成される静電容量が変化する。可動部130は、ク-ロン力と梁150のねじれに対する復元力とが均衡する位置まで変位して静止する。よって、駆動電極121と可動電極131との間に印加する電圧値によって、可動部130の変位する位置を変えることができ、所望の静電容量値に調整することができる。 When a drive voltage is applied between the drive electrode 121 and the movable electrode 131, a potential difference is generated between the drive electrode 121 and the movable electrode 131, and an electrostatic force (cron force) is generated. Due to this electrostatic force, the movable part 130 is attracted to the drive electrode 121 with the beam 150 as the rotation axis. As a result, the distance between the capacitive electrode 122 and the movable electrode 131 changes in the increasing direction, so that the capacitance formed by the capacitive electrode 122 and the movable electrode 131 changes. The movable part 130 is displaced and stopped at a position where the Clone force and the restoring force against the torsion of the beam 150 are balanced. Therefore, the position where the movable portion 130 is displaced can be changed by the voltage value applied between the drive electrode 121 and the movable electrode 131, and can be adjusted to a desired capacitance value.
 従来例の可変容量コンデンサ110の可変容量範囲を大きくする方法として、駆動電極121と梁150との距離に対して、容量電極122と梁150との距離をより大きくする方法が挙げられる。図10には、可変範囲を大きくした場合の第2の従来例の可変容量コンデンサ111の模式断面図を示す。図10に示すように、可動部130のうち、梁150を回転軸として、駆動電極121が設けられた側を可動駆動電極部130aとし、容量電極122が設けられた側を可動容量電極部130bとする。第2の従来例の可変容量コンデンサ111は、可動容量電極部130bの長さ(L)を駆動電極部130aの長さ(L)に対して長くなるように設けている。これにより、駆動電極121と可動電極131との変位量に対して、容量電極122と可動電極131との変位量を大きくすることができるため、可変容量範囲をより大きくすることができる。 As a method of increasing the variable capacitance range of the variable capacitor 110 of the conventional example, there is a method of increasing the distance between the capacitive electrode 122 and the beam 150 with respect to the distance between the drive electrode 121 and the beam 150. FIG. 10 shows a schematic cross-sectional view of the variable capacitor 111 of the second conventional example when the variable range is enlarged. As shown in FIG. 10, in the movable part 130, the side on which the drive electrode 121 is provided is the movable drive electrode part 130a with the beam 150 as the rotation axis, and the side on which the capacitive electrode 122 is provided is the movable capacitive electrode part 130b. And The second conventional example variable capacitor 111 of the is provided with a length of the movable capacitor electrode portion 130b of the (L b) to be longer than the length of the drive electrode portion 130a (L a). Thereby, since the displacement amount of the capacitive electrode 122 and the movable electrode 131 can be increased with respect to the displacement amount of the drive electrode 121 and the movable electrode 131, the variable capacitance range can be further increased.
特開平9-153436号公報JP-A-9-153436
 しかしながら、図10に示す第2の従来例の可変容量コンデンサ111において、外部から加速度が加えられた場合、駆動電極部130a及び容量電極部130bのそれぞれの慣性モーメントに応じて、梁150を回転軸として駆動電極部130a及び容量電極部130bを回転させる方向に力のモーメントが働く。駆動電極部130a及び容量電極部130bの慣性モーメントの大きさは、回転軸からの距離の2乗と単位距離あたりの質量との積を、積分した値となる。よって、図10に示すように、駆動電極部130aの長さをL、質量をMとし、容量電極部130bの長さをL、質量をMとすると、駆動電極部130aの慣性モーメントは(M×L )/3と表され、容量電極部130bの慣性モーメントは(M×L )/3となる。駆動電極部130aと容量電極部130bとの慣性モーメントが等しい場合には、互いに逆方向の等しい力のモーメントが働くため、外部から加速度が加えられた場合にも、駆動電極部130a及び容量電極部130bは回転しない。 However, in the variable capacitor 111 of the second conventional example shown in FIG. 10, when acceleration is applied from the outside, the beam 150 is rotated around the axis of rotation according to the respective moments of inertia of the drive electrode portion 130 a and the capacitor electrode portion 130 b. As a result, a moment of force acts in the direction of rotating the drive electrode portion 130a and the capacitor electrode portion 130b. The magnitude of the moment of inertia of the drive electrode portion 130a and the capacitive electrode portion 130b is a value obtained by integrating the product of the square of the distance from the rotation axis and the mass per unit distance. Therefore, as shown in FIG. 10, the length L a of the driving electrode portions 130a, mass and M a, the length L b of the capacitor electrode portion 130b, mass When M b, the inertia of the driving electrode portions 130a The moment is expressed as (M a × L a 2 ) / 3, and the moment of inertia of the capacitor electrode portion 130b is (M b × L b 2 ) / 3. When the moments of inertia of the drive electrode portion 130a and the capacitive electrode portion 130b are equal, moments of equal forces in opposite directions work, so even when acceleration is applied from the outside, the drive electrode portion 130a and the capacitive electrode portion 130b does not rotate.
 従来例の可変容量コンデンサ111において、駆動電極部130aの長さLと容量電極部130bの長さLとが異なっているため、慣性モーメントの大きさのバランスがずれてしまう。よって、外部から加速度が加えられた場合、駆動電極部130aと容量電極部130bとの回転方向に働く力のモーメントが異なることとなり、容量電極122と容量電極部130bとの距離が変動する。このため、可変容量コンデンサ111の容量変動が生じて、所望の静電容量値からずれた値となってしまう。 In the variable capacitor 111 of the conventional example, since the length L b of the length L a and the capacitance electrode part 130b of the driving electrode portions 130a are different, it shifted the balance of the magnitude of the moment of inertia. Therefore, when acceleration is applied from the outside, the moments of the forces acting in the rotational direction of the drive electrode portion 130a and the capacitive electrode portion 130b are different, and the distance between the capacitive electrode 122 and the capacitive electrode portion 130b varies. For this reason, the capacitance of the variable capacitor 111 varies, resulting in a value that deviates from the desired capacitance value.
 本発明は、上記課題を解決して、可変容量範囲を大きくするとともに、外部から加えられる加速度の影響による容量変動を抑制することが可能な可変容量コンデンサを提供することを目的とする。 An object of the present invention is to solve the above-described problems and to provide a variable capacitor capable of increasing the variable capacitance range and suppressing capacitance fluctuation due to the influence of externally applied acceleration.
 本発明の可変容量コンデンサは、対向して配置された可動駆動電極部及び固定駆動電極部と、対向して配置された可動容量電極部及び固定容量電極部と、を有し、前記可動駆動電極部と前記可動容量電極部とが、支点部を支点として連動するように形成された可変容量コンデンサにおいて、前記可動容量電極部と前記可動駆動電極部とは前記支点部が設けられたリンク部によって連結されており、前記可動駆動電極部が前記固定駆動電極部に接近するときに、前記可動容量電極部が前記固定容量電極部から離れるように、前記リンク部は前記支点部を支点として回転動作可能に設けられており、前記支点部を支点として、前記可動容量電極部に連結された側の前記リンク部の回転半径が、前記可動駆動電極部に連結された側の前記リンク部の回転半径よりも大きくなるように、前記支点部が設けられているとともに、前記可動容量電極部の単位面積あたりの質量が、前記可動駆動電極部の単位面積あたりの質量よりも小さくなるように、前記可動容量電極部及び前記可動駆動電極部が形成されていることを特徴とする。 The variable capacitance capacitor of the present invention includes a movable drive electrode portion and a fixed drive electrode portion arranged to face each other, and a movable capacitance electrode portion and a fixed capacitance electrode portion arranged to face each other, and the movable drive electrode In the variable capacitor formed so that the movable portion and the movable capacitive electrode portion are interlocked with a fulcrum portion as a fulcrum, the movable capacitive electrode portion and the movable drive electrode portion are formed by a link portion provided with the fulcrum portion. The link portion rotates with the fulcrum portion as a fulcrum so that the movable capacitance electrode portion is separated from the fixed capacitance electrode portion when the movable drive electrode portion is connected to the fixed drive electrode portion. The rotation radius of the link portion on the side connected to the movable capacitive electrode portion with the fulcrum portion serving as a fulcrum is set to the link portion on the side connected to the movable drive electrode portion. The fulcrum part is provided so as to be larger than the rotation radius, and the mass per unit area of the movable capacitive electrode part is smaller than the mass per unit area of the movable drive electrode part. The movable capacitor electrode part and the movable drive electrode part are formed.
 これによれば、支点部を支点として、可動容量電極部に連結された側のリンク部の回転半径が、可動駆動電極部に連結された側のリンク部の回転半径よりも大きいため、可動駆動電極部と固定駆動電極部との距離を変位させたときに、可動容量電極部と固定容量電極部との距離の変位量をより大きくすることができる。よって、可変容量コンデンサの可変容量範囲を大きくすることが可能である。さらに、可動容量電極部に連結された側のリンク部の回転半径が、可動駆動電極部に連結された側のリンク部の回転半径よりも大きく、かつ、可動容量電極部は可動駆動電極部よりも単位面積あたりの質量が小さい。これにより、可動容量電極部の慣性モーメントと可動駆動電極部の慣性モーメントとの差を小さくすることができるため、外部から加速度が加えられた場合に、可動容量電極部及び可動駆動電極部に対して働く力のモーメントの差を小さくすることができる。よって、外部から加えられる加速度の影響による可動容量電極部及び可動駆動電極部の変位を抑制して、容量変動を抑制することが可能である。 According to this, since the rotation radius of the link portion connected to the movable capacitive electrode portion is larger than the rotation radius of the link portion connected to the movable drive electrode portion with the fulcrum portion as the fulcrum, the movable drive When the distance between the electrode portion and the fixed drive electrode portion is displaced, the displacement amount of the distance between the movable capacitance electrode portion and the fixed capacitance electrode portion can be further increased. Therefore, the variable capacitance range of the variable capacitor can be increased. Further, the rotation radius of the link portion connected to the movable capacitance electrode portion is larger than the rotation radius of the link portion connected to the movable drive electrode portion, and the movable capacitance electrode portion is larger than the movable drive electrode portion. The mass per unit area is small. As a result, the difference between the moment of inertia of the movable capacitive electrode portion and the moment of inertia of the movable drive electrode portion can be reduced, so that when acceleration is applied from the outside, the movable capacitive electrode portion and the movable drive electrode portion The difference in moment of working force can be reduced. Therefore, it is possible to suppress the displacement of the capacitance by suppressing the displacement of the movable capacitance electrode portion and the movable drive electrode portion due to the influence of the acceleration applied from the outside.
 したがって、本発明の可変容量コンデンサによれば、可変容量範囲を大きくするとともに、外部から加えられる加速度の影響による容量変動を抑制することが可能である。 Therefore, according to the variable capacitor of the present invention, it is possible to increase the variable capacitance range and suppress capacitance fluctuation due to the influence of acceleration applied from the outside.
 本発明の可変容量コンデンサは、前記可動容量電極部に連結された側の前記リンク部の回転半径の2乗と前記可動容量電極部の質量との積が、前記可動駆動電極部に連結された側の前記リンク部の回転半径の2乗と前記可動駆動電極部の質量との積と等しくなるように形成されていることが好適である。これによれば、可動容量電極部の慣性モーメントと可動駆動電極部の慣性モーメントとが等しくなるため、外部から加えられる加速度の影響による可動容量電極部及び可動駆動電極部の変位を抑制することができる。 In the variable capacitor of the present invention, the product of the square of the rotational radius of the link portion on the side connected to the movable capacitance electrode portion and the mass of the movable capacitance electrode portion is connected to the movable drive electrode portion. It is preferable that it is formed to be equal to the product of the square of the radius of rotation of the link portion on the side and the mass of the movable drive electrode portion. According to this, since the moment of inertia of the movable capacitor electrode portion becomes equal to the moment of inertia of the movable drive electrode portion, it is possible to suppress the displacement of the movable capacitor electrode portion and the movable drive electrode portion due to the influence of externally applied acceleration. it can.
 本発明の可変容量コンデンサにおいて、前記可動容量電極部及び前記可動駆動電極部は平板状に形成されており、前記可動容量電極部の厚さが前記可動駆動電極部よりも薄く形成されていることが好ましい。 In the variable capacitor of the present invention, the movable capacitor electrode part and the movable drive electrode part are formed in a flat plate shape, and the thickness of the movable capacitor electrode part is formed thinner than the movable drive electrode part. Is preferred.
 本発明の可変容量コンデンサにおいて、前記可動容量電極部に孔部が設けられていることが好ましい。 In the variable capacitor of the present invention, it is preferable that a hole is provided in the movable capacitor electrode portion.
 本発明の可変容量コンデンサにおいて、前記可動駆動電極部に質量調整部が設けられていることが好ましい。 In the variable capacitor of the present invention, it is preferable that a mass adjusting unit is provided in the movable drive electrode unit.
 これらの態様によれば、可動容量電極部の質量を小さくする、または可動駆動電極部の質量を大きくすることによって、可動容量電極部と可動駆動電極部との慣性モーメントの差を小さくして、容量変動を抑制することができる。 According to these aspects, by reducing the mass of the movable capacitive electrode part or increasing the mass of the movable drive electrode part, the difference in the moment of inertia between the movable capacitive electrode part and the movable drive electrode part is reduced, Capacitance fluctuation can be suppressed.
 本発明の可変容量コンデンサは、対向して配置された可動駆動電極部及び固定駆動電極部と、対向して配置された可動容量電極部及び固定容量電極部と、を有し、前記可動駆動電極部と前記可動容量電極部とが、支点部を支点として連動して回転動作するように形成された可変容量コンデンサにおいて、前記可動容量電極部の回転半径が前記可動駆動電極部の回転半径よりも大きくなるように、前記支点部が設けられているとともに、前記可動容量電極部の単位面積あたりの質量が、前記可動駆動電極部の単位面積あたりの質量よりも小さくなるように、前記可動容量電極部及び前記可動駆動電極部が形成されていることを特徴とする。 The variable capacitance capacitor of the present invention includes a movable drive electrode portion and a fixed drive electrode portion arranged to face each other, and a movable capacitance electrode portion and a fixed capacitance electrode portion arranged to face each other, and the movable drive electrode In the variable capacitance capacitor formed so that the movable portion and the movable capacitive electrode portion rotate in conjunction with the fulcrum portion as a fulcrum, the rotational radius of the movable capacitive electrode portion is larger than the rotational radius of the movable drive electrode portion. The movable capacitance electrode is provided such that the fulcrum portion is provided so that the mass per unit area of the movable capacitance electrode portion is smaller than the mass per unit area of the movable drive electrode portion. Part and the movable drive electrode part are formed.
 これによれば、可動容量電極部の回転半径が可動駆動電極部の回転半径よりも大きいため、可動駆動電極部と固定駆動電極部との距離を変位させたときに、可動容量電極部と固定容量電極部との距離の変位量を大きくすることができる。よって、可変容量コンデンサの可変容量範囲を大きくすることが可能である。さらに、可動容量電極部は可動駆動電極部に対して、回転半径が大きく、かつ、単位面積あたりの質量が小さい。これにより、可動容量電極部の慣性モーメントと可動駆動電極部の慣性モーメントとの差を小さくすることができるため、外部から加速度が加えられた場合に、可動容量電極部及び可動駆動電極部に対して働く力のモーメントの差を小さくすることができる。よって、外部から加えられる加速度の影響による可動容量電極部及び可動駆動電極部の変位を抑制して、容量変動を抑制することが可能である。 According to this, since the rotational radius of the movable capacitive electrode portion is larger than the rotational radius of the movable drive electrode portion, the movable capacitive electrode portion is fixed to the movable capacitive electrode portion when the distance between the movable drive electrode portion and the fixed drive electrode portion is displaced. The displacement amount of the distance with the capacitive electrode part can be increased. Therefore, the variable capacitance range of the variable capacitor can be increased. Furthermore, the movable capacitance electrode part has a larger radius of rotation and a smaller mass per unit area than the movable drive electrode part. As a result, the difference between the moment of inertia of the movable capacitive electrode portion and the moment of inertia of the movable drive electrode portion can be reduced, so that when acceleration is applied from the outside, the movable capacitive electrode portion and the movable drive electrode portion The difference in moment of working force can be reduced. Therefore, it is possible to suppress the displacement of the capacitance by suppressing the displacement of the movable capacitance electrode portion and the movable drive electrode portion due to the influence of the acceleration applied from the outside.
本発明の可変容量コンデンサによれば、可変容量範囲を大きくするとともに、外部から加えられる加速度の影響による容量変動を抑制することが可能である。 According to the variable capacitor of the present invention, it is possible to increase the variable capacitance range and suppress capacitance fluctuation due to the influence of acceleration applied from the outside.
本発明の第1の実施形態における可変容量コンデンサの分解斜視図である。It is a disassembled perspective view of the variable capacitor in the 1st Embodiment of this invention. 第1の実施形態の可変容量コンデンサの平面図である。It is a top view of the variable capacitor of a 1st embodiment. 図2のIII-III線で切断して矢印方向から見たときの断面図である。FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 第1の実施形態の可変容量コンデンサの慣性モーメントを説明するための模式図である。It is a schematic diagram for demonstrating the moment of inertia of the variable capacitor of 1st Embodiment. 第1の変形例における可変容量コンデンサの平面図である。It is a top view of the variable capacitor in the 1st modification. 第2の変形例における可変容量コンデンサの断面図である。It is sectional drawing of the variable capacitor in a 2nd modification. 第3の変形例における可変容量コンデンサの断面図である。It is sectional drawing of the variable capacitor in a 3rd modification. 第2の実施形態における可変容量コンデンサの断面図である。It is sectional drawing of the variable capacitor in 2nd Embodiment. 第1の従来例の可変容量コンデンサを示す斜視図である。It is a perspective view which shows the variable capacitor of the 1st prior art example. 第2の従来例の可変容量コンデンサの断面図である。It is sectional drawing of the variable capacitor of the 2nd prior art example.
  以下、本発明の実施形態の可変容量コンデンサについて図面を用いて詳細に説明する。なお、各図面の寸法は適宜変更して示している。 Hereinafter, a variable capacitor according to an embodiment of the present invention will be described in detail with reference to the drawings. In addition, the dimension of each drawing is changed and shown suitably.
 <第1の実施形態>
 図1は、第1の実施形態の可変容量コンデンサ10の分解斜視図である。図2は、第1の実施形態の可変容量コンデンサ10の平面図である。
<First Embodiment>
FIG. 1 is an exploded perspective view of the variable capacitor 10 of the first embodiment. FIG. 2 is a plan view of the variable capacitor 10 of the first embodiment.
 図1に示すように本実施形態の可変容量コンデンサ10は、固定部20と、可動容量電極部30と、可動駆動電極部31とを有して構成されている。固定部20は、固定容量電極部20aと固定駆動電極部20bとを有しており、固定駆動電極部20bは可動駆動電極部31に対向して配置されており、固定容量電極部20aは可動容量電極部30に対向して配置されている。また、可動容量電極部30と可動駆動電極部31とは、第1のリンク部51及び第2のリンク部52によって連結されている。 As shown in FIG. 1, the variable capacitor 10 of the present embodiment includes a fixed portion 20, a movable capacitance electrode portion 30, and a movable drive electrode portion 31. The fixed portion 20 includes a fixed capacitance electrode portion 20a and a fixed drive electrode portion 20b. The fixed drive electrode portion 20b is disposed to face the movable drive electrode portion 31, and the fixed capacitance electrode portion 20a is movable. The capacitor electrode part 30 is disposed opposite to the capacitor electrode part 30. In addition, the movable capacitor electrode part 30 and the movable drive electrode part 31 are connected by a first link part 51 and a second link part 52.
 図2に示すように、第1のリンク部51は、可動駆動電極部31に設けられた第1の連結部36aに連結されるとともに、可動容量電極部30のX1側端部に設けられた第1の連結部36b、36cに連結されている。また、第2のリンク部52は、第1のリンク部51と点対称に設けられている。このように、第1のリンク部51、及び第2のリンク部52によって、可動容量電極部30と可動駆動電極部31とが連結されている。さらに、第1のリンク部51及び第2のリンク部52を補助して可動容量電極部30及び可動駆動電極部31を支持するための第1の補助リンク部53、第2の補助リンク部54が設けられている。また、第1のリンク部51と接合部65a、65cとは、支点部61a、61cで連結されており、第2のリンク部52と接合部65b、65dとは、支点部61b、61dで連結されている。 As shown in FIG. 2, the first link portion 51 is connected to the first connection portion 36 a provided in the movable drive electrode portion 31 and is provided at the X1 side end portion of the movable capacitance electrode portion 30. It is connected to the first connecting portions 36b and 36c. The second link portion 52 is provided point-symmetrically with the first link portion 51. As described above, the movable capacitance electrode unit 30 and the movable drive electrode unit 31 are connected by the first link unit 51 and the second link unit 52. Further, the first auxiliary link portion 53 and the second auxiliary link portion 54 for supporting the movable capacitive electrode portion 30 and the movable drive electrode portion 31 by assisting the first link portion 51 and the second link portion 52. Is provided. The first link 51 and the joints 65a and 65c are connected by fulcrum parts 61a and 61c, and the second link part 52 and the joints 65b and 65d are connected by fulcrum parts 61b and 61d. Has been.
 図1に示すように、固定部20に形成された接合支持部26a、26b、26c、26dは、それぞれ接合部65a、65b、65c、65dと接合され、これにより、可動容量電極部30及び可動駆動電極部31と固定部20とが接合される。第1のリンク部51及び第2のリンク部52は、それぞれ支点部61a~61dを支点として回転動作可能に設けられている。よって、第1のリンク部51及び第2のリンク部52によって連結された可動容量電極部30及び可動駆動電極部31は、支点部61a~61dを支点として連動して回転するように動作する。すなわち、可動駆動電極部31がZ2方向に変位して固定部20に接近するとき可動容量電極部30が固定部20から離れるようにZ1方向に変位し、または、その逆の動作が可能なように第1のリンク部51及び第2のリンク部52が設けられている。なお、第1の補助リンク部53は接合部65aに設けられた支点部63aと連結されて、第1のリンク部51と連動可能となっている。第2の補助リンク部54についても同様に第2のリンク部52と連動可能となっている。 As shown in FIG. 1, the joint support portions 26 a, 26 b, 26 c, and 26 d formed on the fixed portion 20 are joined to the joint portions 65 a, 65 b, 65 c, and 65 d, respectively. The drive electrode portion 31 and the fixed portion 20 are joined. The first link portion 51 and the second link portion 52 are provided so as to be rotatable with the fulcrum portions 61a to 61d as fulcrums. Therefore, the movable capacitor electrode part 30 and the movable drive electrode part 31 connected by the first link part 51 and the second link part 52 operate so as to rotate in conjunction with the fulcrum parts 61a to 61d as fulcrums. That is, when the movable drive electrode part 31 is displaced in the Z2 direction and approaches the fixed part 20, the movable capacitive electrode part 30 is displaced in the Z1 direction so as to be separated from the fixed part 20, or vice versa. A first link portion 51 and a second link portion 52 are provided. Note that the first auxiliary link portion 53 is connected to a fulcrum portion 63 a provided in the joint portion 65 a and can be interlocked with the first link portion 51. Similarly, the second auxiliary link portion 54 can be interlocked with the second link portion 52.
 可動容量電極部30、可動駆動電極部31、第1のリンク部51、第2のリンク部52等は、長方形の平板であるシリコン基板を用いて形成される。まず、シリコン基板に、各部材の形状に対応するレジスト層を形成する。そして、レジスト層が存在していない部分で、シリコン基板をディープRIE(ディープ・リアクティブ・イオン・エッチング)等のエッチング工程で切断することにより、可動容量電極部30、可動駆動電極部31等の各部材が形成される。 The movable capacitive electrode part 30, the movable drive electrode part 31, the first link part 51, the second link part 52, and the like are formed using a silicon substrate that is a rectangular flat plate. First, a resist layer corresponding to the shape of each member is formed on a silicon substrate. Then, the silicon substrate is cut by an etching process such as deep RIE (deep reactive ion etching) at a portion where the resist layer is not present, so that the movable capacitor electrode portion 30, the movable drive electrode portion 31 and the like are cut. Each member is formed.
 可動容量電極部30及び可動駆動電極部31は微小であり、たとえば、可動駆動電極部31のX1-X2方向の長さは1mm以下であり、Y1-Y2方向の長さは0.8mm以下である。さらに、厚み寸法は0.1mm以下である。 The movable capacitor electrode portion 30 and the movable drive electrode portion 31 are very small. For example, the length of the movable drive electrode portion 31 in the X1-X2 direction is 1 mm or less, and the length in the Y1-Y2 direction is 0.8 mm or less. is there. Furthermore, the thickness dimension is 0.1 mm or less.
 図3は、可動容量電極部30及び可動駆動電極部31の動作を説明するための断面図であって、図2のIII-III線で切断して矢印方向から見たときの断面図である。図3(a)は可動駆動電極部31と固定駆動電極部20bとの間に駆動電圧が印加されていない状態であり、図3(b)は駆動電圧が印加されて変位した状態での断面図である。 FIG. 3 is a cross-sectional view for explaining the operation of the movable capacitor electrode portion 30 and the movable drive electrode portion 31, and is a cross-sectional view taken along the line III-III in FIG. . FIG. 3A shows a state in which no drive voltage is applied between the movable drive electrode portion 31 and the fixed drive electrode portion 20b, and FIG. 3B shows a cross section in a state where the drive voltage is applied and displaced. FIG.
 図3(a)に示すように、本実施形態の可変容量コンデンサ10は、1対の容量電極と、1対の駆動電極とを有して構成されている。図3(a)に示すように、固定容量電極部20aには固定容量電極24が設けられており、固定容量電極部20aと対向する可動容量電極部30には可動容量電極34が形成されている。また、固定駆動電極部20bには固定駆動電極25が形成され、可動駆動電極部31には可動駆動電極35が形成されている。 As shown in FIG. 3 (a), the variable capacitor 10 of this embodiment is configured to have a pair of capacitive electrodes and a pair of drive electrodes. As shown in FIG. 3A, the fixed capacitance electrode portion 20a is provided with a fixed capacitance electrode 24, and the movable capacitance electrode portion 30 is formed on the movable capacitance electrode portion 30 opposite to the fixed capacitance electrode portion 20a. Yes. A fixed drive electrode 25 is formed on the fixed drive electrode portion 20b, and a movable drive electrode 35 is formed on the movable drive electrode portion 31.
 なお、可動容量電極部30及び可動駆動電極部31は導電性材料であり、可動容量電極部30の材料が可動容量電極34として機能して、また、可動駆動電極部31の材料が可動駆動電極35として機能している。 The movable capacitive electrode unit 30 and the movable drive electrode unit 31 are conductive materials, the material of the movable capacitive electrode unit 30 functions as the movable capacitive electrode 34, and the material of the movable drive electrode unit 31 is the movable drive electrode. 35 is functioning.
 可変容量コンデンサ10には、電気容量を制御するための制御部(図示しない)が接続されており、固定駆動電極25と可動駆動電極35との間において静電力を発生させるための駆動電圧が制御部から与えられる。 The variable capacitor 10 is connected to a control unit (not shown) for controlling the electric capacity, and the drive voltage for generating an electrostatic force between the fixed drive electrode 25 and the movable drive electrode 35 is controlled. Given by the department.
 図3(a)に示すように、駆動電圧が印加されていない状態では、可動駆動電極35と固定駆動電極25との間隔D1’が、可動容量電極34と固定容量電極24との間隔D2’とほぼ同じくなるよう状態で、可動駆動電極部31と可動容量電極部30とが静止する。 As shown in FIG. 3A, in a state where the drive voltage is not applied, the distance D1 ′ between the movable drive electrode 35 and the fixed drive electrode 25 is equal to the distance D2 ′ between the movable capacitance electrode 34 and the fixed capacitance electrode 24. The movable drive electrode portion 31 and the movable capacitive electrode portion 30 are stationary in a state that is substantially the same as the above.
 1対の駆動電極である固定駆動電極25と可動駆動電極35とに駆動電圧が与えられると、図3(b)に示すように、静電力により可動駆動電極部31はZ2方向にΔD1だけ変位する。そして、第1のリンク部51及び第2のリンク部52により連結された可動容量電極部30は、支点部61a~61dを支点として可動駆動電極部31と連動して回転動作するように、Z1方向にΔD2だけ変位する。このとき、第1の連結部36a~36d、第2の連結部37a~37d、及び支点部61a~61dは、ねじれ変形する。このねじれ変形は弾性変形であって、各連結部及び支点部61a~61dは、ねじれ変形に対して元に戻ろうとする復元力を有している。静電力と復元力とが釣り合った位置で可動容量電極部30及び可動駆動電極部31は静止して、このときの固定容量電極24と可動容量電極34とで形成される容量が、可変容量コンデンサ10の電気容量となる。このように、駆動電圧により生じる静電力と復元力との均衡によって可動容量電極部30及び可動駆動電極部31の変位量を制御して、可変容量コンデンサ10の電気容量を所望の値とすることができる。 When a drive voltage is applied to the fixed drive electrode 25 and the movable drive electrode 35 that are a pair of drive electrodes, as shown in FIG. 3B, the movable drive electrode portion 31 is displaced by ΔD1 in the Z2 direction due to electrostatic force. To do. Then, the movable capacitive electrode portion 30 connected by the first link portion 51 and the second link portion 52 rotates in conjunction with the movable drive electrode portion 31 with the fulcrum portions 61a to 61d as fulcrums. It is displaced by ΔD2 in the direction. At this time, the first connecting portions 36a to 36d, the second connecting portions 37a to 37d, and the fulcrum portions 61a to 61d are torsionally deformed. This torsional deformation is an elastic deformation, and each of the connecting portions and the fulcrum portions 61a to 61d has a restoring force for returning to the original with respect to the torsional deformation. The movable capacitive electrode 30 and the movable drive electrode 31 are stationary at a position where the electrostatic force and the restoring force are balanced, and the capacitance formed by the fixed capacitive electrode 24 and the movable capacitive electrode 34 at this time is a variable capacitive capacitor. The electric capacity is 10. As described above, the displacement of the movable capacitor electrode 30 and the movable drive electrode 31 is controlled by the balance between the electrostatic force and the restoring force generated by the drive voltage, and the electric capacity of the variable capacitor 10 is set to a desired value. Can do.
 駆動電圧による可動駆動電極部31の変位量ΔD1は、いわゆるプルイン効果により、初期状態の電極間距離D1’の1/3に制限されている。そのため、第1のリンク部51及び第2のリンク部52によって可動駆動電極部31と連結された可動容量電極部30の可動範囲も制限される。しかし、本実施形態の可変容量コンデンサ10によれば、図2に示すように、支点部61aと第1の連結部36aとの距離をLとし、支点部61aと第1の連結部36bとの距離をLとしたときに、LがLよりも大きくなるように第1のリンク部51が設けられている。第2のリンク部52についても同様に設けられている。 The displacement ΔD1 of the movable drive electrode portion 31 due to the drive voltage is limited to 1/3 of the interelectrode distance D1 ′ in the initial state due to a so-called pull-in effect. Therefore, the movable range of the movable capacitive electrode unit 30 connected to the movable drive electrode unit 31 by the first link unit 51 and the second link unit 52 is also limited. However, according to the variable capacitor 10 of the present embodiment, as shown in FIG. 2, the distance between the fulcrum portion 61a and the first connecting portion 36a and L 1, and the fulcrum portion 61a and the first connecting portion 36b the distance is taken as L 2, the first link portion 51 so that L 2 is greater than L 1 is provided. The second link portion 52 is similarly provided.
 支点部61aを支点として、可動駆動電極部31に連結された側のリンク部51は、支点部61aから可動駆動電極部31までの第1のリンク部51の距離、つまり支点部61aと第1の連結部36aとの距離Lを回転半径として、回転するように動作する。また、可動容量電極部30に連結された側のリンク部51は、可動駆動電極部31と連動して支点部61aを支点として、支点部61aから可動容量電極部30までの第1のリンク部51の距離、つまり支点部61aと第1の連結部36bとの距離Lを回転半径として回転するように動作する。よって、Lに対してLが大きくなるように、第1のリンク部51、第2のリンク部52、及び各支点部61a~61dを設けることにより、図3(b)に示す可動駆動電極部31の変位量ΔD1に対して、可動容量電極部30の変位量ΔD2を大きくすることができる。したがって本実施形態の可変容量コンデンサ10の可変容量範囲を大きくすることができる。 The link part 51 on the side connected to the movable drive electrode part 31 with the fulcrum part 61a as a fulcrum is the distance of the first link part 51 from the fulcrum part 61a to the movable drive electrode part 31, that is, the fulcrum part 61a and the first fulcrum part 61a. the distance L 1 between the connecting portion 36a as the rotation radius, operates to rotate. Further, the link portion 51 on the side connected to the movable capacitance electrode portion 30 is a first link portion from the fulcrum portion 61a to the movable capacitance electrode portion 30 with the fulcrum portion 61a as a fulcrum in conjunction with the movable drive electrode portion 31. 51 distance, that operates to rotate the distance L 2 between the fulcrum portion 61a and the first connecting portion 36b as a rotational radius. Therefore, as L 2 becomes large with respect to L 1, the first link portion 51, the second link unit 52, and by providing the respective fulcrum 61a ~ 61d, the movable drive shown in FIG. 3 (b) The displacement amount ΔD2 of the movable capacitive electrode portion 30 can be made larger than the displacement amount ΔD1 of the electrode portion 31. Therefore, the variable capacitance range of the variable capacitor 10 of this embodiment can be increased.
 本実施形態の可変容量コンデンサ10において、外部から加速度が加えられると、可動容量電極部30及び可動駆動電極部31の慣性モーメントの差がある場合、各支点部61a~61dを中心として第1のリンク部51が回転しようとする力のモーメントが働く。図4は、本実施形態の可動容量電極部30及び可動駆動電極部31の慣性モーメントについて説明するための模式側面図である。図4では、第1のリンク部51が支点部61aを支点として角度θだけ回転して静止している状態を示す。図4では省略して示すが、第1の連結部36bには可動容量電極部30が連結されており、第1の連結部36aには可動駆動電極部31が連結されている。 In the variable capacitor 10 of the present embodiment, when acceleration is applied from the outside, if there is a difference in the moment of inertia between the movable capacitor electrode part 30 and the movable drive electrode part 31, the first fulcrum 61a to 61d is used as the center. A moment of force that the link portion 51 tries to rotate acts. FIG. 4 is a schematic side view for explaining the moment of inertia of the movable capacitance electrode part 30 and the movable drive electrode part 31 of the present embodiment. FIG. 4 shows a state in which the first link portion 51 is stationary by rotating by an angle θ with the fulcrum portion 61a as a fulcrum. Although not shown in FIG. 4, the movable capacitive electrode unit 30 is coupled to the first coupling part 36b, and the movable drive electrode unit 31 is coupled to the first coupling part 36a.
 この状態で、Z2方向に加速度aが加えられた場合、第1のリンク部51と直交する方向にa’(=a×cosθ)の加速度が加わる。ここで、支点部61aを支点として、第1のリンク部51と連結された可動駆動電極部31の慣性モーメントをI、可動容量電極部30の慣性モーメントをIとし、可動駆動電極部31の質量をM、可動容量電極部30の質量をMとする。また、第1のリンク部51の質量は無視できるほど小さいとする。このとき、I=L ×M、I=L ×Mと近似して表される。ここで、慣性モーメントIと慣性モーメントIとのバランスがずれると、回転方向(a’の方向)に発生する力のモーメントにずれが生じて、第1のリンク部51が回転して静電容量値の変動が生じることとなる。 In this state, when an acceleration a is applied in the Z2 direction, an acceleration a ′ (= a × cos θ) is applied in a direction orthogonal to the first link portion 51. Here, with the fulcrum part 61a as a fulcrum, the inertia moment of the movable drive electrode part 31 connected to the first link part 51 is I 1 , the inertia moment of the movable capacitor electrode part 30 is I 2 , and the movable drive electrode part 31 the mass M 1, the mass of the movable capacitor electrode 30 and M 2. Further, the mass of the first link portion 51 is assumed to be negligibly small. At this time, it is expressed by approximating I 1 = L 1 2 × M 1 and I 2 = L 2 2 × M 2 . Here, if the balance between the moment of inertia I 1 and the moment of inertia I 2 is shifted, a shift occurs in the moment of force generated in the rotation direction (direction of a ′), and the first link portion 51 is rotated to be static. The capacitance value will fluctuate.
 本実施形態において、図3(a)及び図3(b)に示すように、可動容量電極部30の厚さが可動駆動電極部31よりも薄く形成されている。よって、可動容量電極部30の単位面積あたりの質量が可動駆動電極部31の単位面積あたりの質量よりも小さくなるように形成されている。よって、図10に示す第2の従来例の可変容量コンデンサ111のように、可動容量電極部130bと可動駆動電極部130aとの厚さが同等に形成された場合に比べて、可動容量電極部30の質量Mが小さくなる。本実施形態においては、LがLよりも大きくなるように第1のリンク部51、第2のリンク部52及び各支点部61a~61dが設けられているとともに、MがMよりも小さくなるように可動容量電極部30及び可動駆動電極部31が形成されている。これにより、慣性モーメントIと慣性モーメントIとの差を小さくすることができる。したがって、外部から加えられる加速度の影響による可動容量電極部30及び可動駆動電極部31の変位を抑制して、容量変動を抑制することが可能である。 In the present embodiment, as shown in FIGS. 3A and 3B, the movable capacitor electrode portion 30 is formed thinner than the movable drive electrode portion 31. Therefore, the mass per unit area of the movable capacitive electrode part 30 is formed to be smaller than the mass per unit area of the movable drive electrode part 31. Therefore, as compared with the case where the movable capacitor electrode portion 130b and the movable drive electrode portion 130a are formed to have the same thickness as in the variable capacitor 111 of the second conventional example shown in FIG. The mass M 2 of 30 is reduced. In the present embodiment, the first link portion 51 so that L 2 is greater than L 1, together with the second link part 52 and the fulcrum 61a ~ 61d are provided, M 2 is from M 1 The movable capacitance electrode part 30 and the movable drive electrode part 31 are formed so as to be smaller. Thus, it is possible to reduce the difference between the moment of inertia I 1 and moment of inertia I 2. Therefore, it is possible to suppress the displacement of the capacitance by suppressing the displacement of the movable capacitance electrode portion 30 and the movable drive electrode portion 31 due to the influence of the acceleration applied from the outside.
 なお、本明細書において「単位面積あたりの質量」とは、可動容量電極部30全体の質量を、可動容量電極部30のうち固定部20と対向する面の面積で割った値をいう。可動駆動電極部31についても同様である。 In this specification, “mass per unit area” refers to a value obtained by dividing the mass of the entire movable capacitive electrode unit 30 by the area of the surface of the movable capacitive electrode unit 30 facing the fixed unit 20. The same applies to the movable drive electrode portion 31.
 また、I=L ×MとI=L ×Mとが等しくなるように、可動容量電極部30及び可動駆動電極部31の厚さを変えて形成することがより好ましい。こうすれば、可動容量電極部30及び可動駆動電極部31の慣性モーメントが等しくなるため、確実に容量変動が抑制される。 Further, it is more preferable to form the movable capacitor electrode portion 30 and the movable drive electrode portion 31 with different thicknesses so that I 1 = L 1 2 × M 1 and I 2 = L 2 2 × M 2 are equal. preferable. By so doing, the moments of inertia of the movable capacitor electrode portion 30 and the movable drive electrode portion 31 are equalized, so that the capacitance fluctuation is reliably suppressed.
 なお、可動容量電極部30の厚さは、ディープRIE(ディープ・リアクティブ・イオン・エッチング)等のエッチングによって、適宜調整して加工することができる。 It should be noted that the thickness of the movable capacitor electrode portion 30 can be appropriately adjusted and processed by etching such as deep RIE (deep reactive ion etching).
 以上のように、本実施形態の可変容量コンデンサ10によれば、可動容量電極部30の回転半径(L)が可動駆動電極部31の回転半径(L)よりも大きいため、可動駆動電極部31と固定駆動電極部20bとの距離を変位させたときに、可動容量電極部30と固定容量電極部20aとの距離の変位量を大きくすることができる。よって、可変容量コンデンサ10の可変容量範囲を大きくすることが可能である。さらに、可動容量電極部30は可動駆動電極部31に対して、回転半径が大きく、かつ、単位面積あたりの質量が小さい。これにより、外部から加速度が加えられた場合に可動容量電極部30及び可動駆動電極部31に生じる慣性モーメントの差を小さくすることができる。よって、外部から加えられる加速度の影響による可動容量電極部30及び可動駆動電極部31の変位を抑制して、容量変動を抑制することが可能である。 As described above, according to the variable capacitor 10 of the present embodiment, the rotational radius (L 2 ) of the movable capacitive electrode portion 30 is larger than the rotational radius (L 1 ) of the movable drive electrode portion 31, and therefore the movable drive electrode When the distance between the portion 31 and the fixed drive electrode portion 20b is displaced, the amount of displacement of the distance between the movable capacitance electrode portion 30 and the fixed capacitance electrode portion 20a can be increased. Therefore, the variable capacitance range of the variable capacitor 10 can be increased. Further, the movable capacitive electrode section 30 has a larger radius of rotation and a smaller mass per unit area than the movable drive electrode section 31. Thereby, the difference of the moment of inertia which arises in the movable capacity electrode part 30 and the movable drive electrode part 31 when acceleration is applied from the outside can be made small. Therefore, it is possible to suppress the displacement of the capacitance by suppressing the displacement of the movable capacitance electrode portion 30 and the movable drive electrode portion 31 due to the influence of the acceleration applied from the outside.
 図5は、本実施形態の第1の変形例における可変容量コンデンサ10の平面図である。図5に示すように、可動容量電極部30に複数の孔部32を形成することによっても、可動容量電極部30の質量Mを小さくすることが可能である。このような態様であっても、可動容量電極部30及び可動駆動電極部31の慣性モーメントの差を小さくすることができるため、容量変動を抑制することが可能である。なお、可動容量電極部30を貫通するように孔部32を設けた場合、容量を形成する可動容量電極34(図5では図示しない)の面積が小さくなり、容量が小さくなるおそれがある。この場合、可動容量電極34の電極面積に影響を与えないように、複数の凹部を形成することが好ましい。 FIG. 5 is a plan view of the variable capacitor 10 in the first modification of the present embodiment. As shown in FIG. 5, the mass M 2 of the movable capacitive electrode unit 30 can be reduced also by forming a plurality of holes 32 in the movable capacitive electrode unit 30. Even in such an aspect, the difference in the moment of inertia between the movable capacitor electrode portion 30 and the movable drive electrode portion 31 can be reduced, so that the capacitance variation can be suppressed. In addition, when the hole 32 is provided so as to penetrate the movable capacitance electrode portion 30, the area of the movable capacitance electrode 34 (not shown in FIG. 5) forming the capacitance is reduced, and the capacitance may be reduced. In this case, it is preferable to form a plurality of recesses so as not to affect the electrode area of the movable capacitance electrode 34.
 図6は、本実施形態の第2の変形例における可変容量コンデンサ10の断面図である。第2の変形例における可変容量コンデンサ10では、可動容量電極部30及び可動駆動電極部31の厚さが同等になるように形成されている。そして、可動駆動電極部31に質量調整部33が形成されている。これにより、可動駆動電極部31の質量Mに質量調整部33の質量が付加されて、合計の質量により可動駆動電極部31の慣性モーメントIが決定されるため、慣性モーメントIと慣性モーメントIとの差を小さくすることができる。質量調整部33は特に限定されるものではないが、SiO等の絶縁材料を用いて薄膜で形成することができる。 FIG. 6 is a cross-sectional view of the variable capacitor 10 in the second modification of the present embodiment. In the variable capacitor 10 in the second modification, the movable capacitor electrode portion 30 and the movable drive electrode portion 31 are formed to have the same thickness. A mass adjusting unit 33 is formed on the movable drive electrode unit 31. Thereby, the mass of the mass adjusting unit 33 is added to the mass M 1 of the movable drive electrode unit 31, and the inertia moment I 1 of the movable drive electrode unit 31 is determined by the total mass, so that the inertia moment I 1 and the inertia The difference from the moment I 2 can be reduced. The mass adjusting unit 33 is not particularly limited, but can be formed as a thin film using an insulating material such as SiO 2 .
 また、本実施形態の可変容量コンデンサ10において、共通の固定部20に固定容量電極部20a及び固定駆動電極部20bが配置された構成について示したが、これに限定されるものではない。図7は、第3の変形例における可変容量コンデンサ10の断面図である。第3の変形例において、可動容量電極部30、可動駆動電極部31、第1のリンク部51、及び第2のリンク部52等の構成は図1から図6と同様であるが、保護部28が設けられている点が異なっている。 Further, in the variable capacitor 10 of the present embodiment, the configuration in which the fixed capacitor electrode portion 20a and the fixed drive electrode portion 20b are arranged in the common fixed portion 20 is shown, but the present invention is not limited to this. FIG. 7 is a cross-sectional view of the variable capacitor 10 in the third modification. In the third modification, the configuration of the movable capacitance electrode unit 30, the movable drive electrode unit 31, the first link unit 51, the second link unit 52, and the like is the same as that in FIGS. The difference is that 28 is provided.
 図7に示すように、保護部28は可動容量電極部30及び可動駆動電極部31を覆うように設けられている。そして、可動容量電極部30と対向する位置において、保護部28に固定容量電極24が設けられている。つまり、第3の変形例の可変容量コンデンサ10では、保護部28が固定容量電極部20aとしての機能をかねて設けられている。この場合、可動駆動電極35と固定駆動電極25との間に駆動電圧が印加されると、可動駆動電極部31はZ2方向に移動し、可動容量電極部30はZ1方向に移動する。すなわち、固定容量電極24と可動容量電極34との対向距離が小さくなるように変化するため、容量値が大きくなるように変化可能である。 As shown in FIG. 7, the protection unit 28 is provided so as to cover the movable capacitance electrode unit 30 and the movable drive electrode unit 31. In addition, the fixed capacitance electrode 24 is provided in the protection portion 28 at a position facing the movable capacitance electrode portion 30. That is, in the variable capacitor 10 of the third modification, the protection unit 28 is provided to function as the fixed capacitance electrode unit 20a. In this case, when a drive voltage is applied between the movable drive electrode 35 and the fixed drive electrode 25, the movable drive electrode portion 31 moves in the Z2 direction, and the movable capacitive electrode portion 30 moves in the Z1 direction. In other words, since the opposing distance between the fixed capacitor electrode 24 and the movable capacitor electrode 34 changes so as to decrease, the capacitance value can be changed so as to increase.
 <第2の実施形態>
 図8は、第2の実施形態の可変容量コンデンサ11の断面図である。図8に示すように、第2の実施形態の可変容量コンデンサ11において、可動容量電極部80と可動駆動電極部81とは、共通の可動部82に設けられており、可動部82は、接合支持部71を介して固定部70と連結されている。固定部70は、可動容量電極部80と間隔を設けて対向する固定容量電極部70a、及び可動駆動電極部81と間隔を設けて対向する固定駆動電極部70bを有している。そして、可動駆動電極部81と可動容量電極部80とが、支点部72を支点として連動して回転動作するように支点部72が形成されている。
<Second Embodiment>
FIG. 8 is a cross-sectional view of the variable capacitor 11 of the second embodiment. As shown in FIG. 8, in the variable capacitor 11 according to the second embodiment, the movable capacitor electrode portion 80 and the movable drive electrode portion 81 are provided in a common movable portion 82, and the movable portion 82 is joined. It is connected to the fixed part 70 via the support part 71. The fixed portion 70 includes a fixed capacitance electrode portion 70a that faces the movable capacitance electrode portion 80 with a space therebetween, and a fixed drive electrode portion 70b that faces the movable drive electrode portion 81 with a space therebetween. The fulcrum portion 72 is formed so that the movable drive electrode portion 81 and the movable capacitance electrode portion 80 rotate in conjunction with the fulcrum portion 72 as a fulcrum.
 固定駆動電極75と可動駆動電極85との間に駆動電圧が印加されると、静電力によって、可動駆動電極部81が支点部72を支点としてZ2方向に変位する。これに連動して、可動容量電極部80は支点部72を支点としてZ1方向に変位する。つまり、固定容量電極74と可動容量電極84との距離が大きくなり、容量が小さくなるように変位する。 When a drive voltage is applied between the fixed drive electrode 75 and the movable drive electrode 85, the movable drive electrode portion 81 is displaced in the Z2 direction with the fulcrum portion 72 as a fulcrum by electrostatic force. In conjunction with this, the movable capacitor electrode part 80 is displaced in the Z1 direction with the fulcrum part 72 as a fulcrum. That is, the distance between the fixed capacitor electrode 74 and the movable capacitor electrode 84 is increased and the capacitance is displaced so as to be reduced.
本実施形態の可変容量コンデンサ11の可動駆動電極部81の回転半径(支点部72から可動駆動電極部81の端部までの長さ)をL、可動容量電極部80の回転半径(支点部72から可動容量電極部80の端部までの長さ)をLとすると、L>Lとなるように支点部72が設けられている。よって、可動駆動電極部81と固定駆動電極部70bとの距離を変位させたときの、可動容量電極部80と固定容量電極部70aとの距離の変位量を大きくすることができ、可変容量コンデンサ11の可変容量範囲を大きくすることが可能である。 The rotation radius (the length from the fulcrum part 72 to the end of the movable drive electrode part 81) of the movable drive electrode part 81 of the variable capacitor 11 of the present embodiment is L 3 , and the rotation radius (fulcrum part) of the movable capacitor electrode part 80. When from 72 to the end portion of the movable capacitor electrode 80 length) and L 4, L 4> L 3 become as fulcrum portion 72 is provided. Therefore, when the distance between the movable drive electrode portion 81 and the fixed drive electrode portion 70b is displaced, the displacement amount of the distance between the movable capacitance electrode portion 80 and the fixed capacitance electrode portion 70a can be increased. 11 variable capacity ranges can be increased.
 また、本実施形態の可変容量コンデンサ11において、可動駆動電極部81の質量をM、可動容量電極部80の質量をMとすると、可動駆動電極部81の慣性モーメントの大きさは(M×L )/3と表され、可動容量電極部80の慣性モーメントの大きさは(M×L )/3と表される。本実施形態において、図8に示すように、可動容量電極部80の厚さが可動駆動電極部81よりも薄く形成されている。すなわち、可動容量電極部80は、可動駆動電極部81に対して回転半径が大きく、かつ、単位面積あたりの質量が小さくなるように形成されている。これにより、図10に示す第2の従来例の可変容量コンデンサ111のように、可動容量電極部130bと可動駆動電極部130aとの厚さを同等に形成した場合と比較して、可動容量電極部80と可動駆動電極部81との慣性モーメントの差を小さくすることができる。よって、外部から加えられる加速度の影響による可動容量電極部80及び可動駆動電極部81の変位を抑制して、容量変動を抑制することが可能である。 In the variable capacitor 11 of the present embodiment, when the mass of the movable drive electrode portion 81 is M 3 and the mass of the movable capacitance electrode portion 80 is M 4 , the magnitude of the moment of inertia of the movable drive electrode portion 81 is (M 3 × L 3 2 ) / 3, and the magnitude of the moment of inertia of the movable electrode portion 80 is represented as (M 4 × L 4 2 ) / 3. In the present embodiment, as shown in FIG. 8, the movable capacitor electrode portion 80 is formed thinner than the movable drive electrode portion 81. That is, the movable capacitor electrode part 80 is formed so as to have a larger radius of rotation than the movable drive electrode part 81 and to have a smaller mass per unit area. Thereby, as in the variable capacitor 111 of the second conventional example shown in FIG. 10, the movable capacitor electrode 130b and the movable drive electrode portion 130a are compared with the case where the thicknesses are formed to be equal. The difference in moment of inertia between the portion 80 and the movable drive electrode portion 81 can be reduced. Therefore, it is possible to suppress the displacement of the capacitance by suppressing the displacement of the movable capacitor electrode portion 80 and the movable drive electrode portion 81 due to the influence of the acceleration applied from the outside.
なお、可動容量電極部80と可動駆動電極部81との慣性モーメントの差を小さくする方法として、第1の実施形態と同様に、可動容量電極部80に孔部32(図示しない)又は凹部を設ける方法や、可動駆動電極部81に質量調整部33(図示しない)を設ける方法等も可能である。 As a method for reducing the difference in moment of inertia between the movable capacitor electrode unit 80 and the movable drive electrode unit 81, a hole 32 (not shown) or a recess is formed in the movable capacitor electrode unit 80, as in the first embodiment. For example, a method of providing the mass adjusting unit 33 (not shown) in the movable drive electrode unit 81 may be used.
 10、11 可変容量コンデンサ
 20、70 固定部
 20a、70a 固定容量電極部
 20b、70b 固定駆動電極部
 24、74 固定容量電極
 25、75 固定駆動電極
 26a、26b、26c、26d、71 接合支持部
 28 保護部
 30、80 可動容量電極部
 31、81 可動駆動電極部
 32 孔部
 33質量調整部
 34、84 可動容量電極
 35、85 可動駆動電極
 36a、36b、36c、36d 第1の連結部
 51 第1のリンク部
 52 第2のリンク部
 61a、61b、61c、61d、63a、63b、72 支点部
 65a、65b、65c、65d 接合部
10, 11 Variable capacitor 20, 70 Fixed portion 20a, 70a Fixed capacitance electrode portion 20b, 70b Fixed drive electrode portion 24, 74 Fixed capacitance electrode 25, 75 Fixed drive electrode 26a, 26b, 26c, 26d, 71 Junction support portion 28 Protection part 30, 80 Movable capacity electrode part 31, 81 Movable drive electrode part 32 Hole part 33 Mass adjustment part 34, 84 Movable capacity electrode 35, 85 Movable drive electrode 36a, 36b, 36c, 36d First connection part 51 First 52 second link part 61a, 61b, 61c, 61d, 63a, 63b, 72 fulcrum part 65a, 65b, 65c, 65d joint part

Claims (6)

  1.  対向して配置された可動駆動電極部及び固定駆動電極部と、
    対向して配置された可動容量電極部及び固定容量電極部と、を有し、
    前記可動駆動電極部と前記可動容量電極部とが、支点部を支点として連動するように形成された可変容量コンデンサにおいて、
    前記可動容量電極部と前記可動駆動電極部とは前記支点部が設けられたリンク部によって連結されており、
    前記可動駆動電極部が前記固定駆動電極部に接近するときに、前記可動容量電極部が前記固定容量電極部から離れるように、前記リンク部は前記支点部を支点として回転動作可能に設けられており、
    前記支点部を支点として、前記可動容量電極部に連結された側の前記リンク部の回転半径が、前記可動駆動電極部に連結された側の前記リンク部の回転半径よりも大きくなるように、前記支点部が設けられているとともに、
    前記可動容量電極部の単位面積あたりの質量が、前記可動駆動電極部の単位面積あたりの質量よりも小さくなるように、前記可動容量電極部及び前記可動駆動電極部が形成されていることを特徴とする可変容量コンデンサ。
    A movable drive electrode portion and a fixed drive electrode portion disposed opposite to each other;
    A movable capacitance electrode portion and a fixed capacitance electrode portion disposed to face each other,
    In the variable capacitance capacitor formed so that the movable drive electrode portion and the movable capacitance electrode portion are interlocked with a fulcrum portion as a fulcrum,
    The movable capacitor electrode part and the movable drive electrode part are connected by a link part provided with the fulcrum part,
    When the movable drive electrode part approaches the fixed drive electrode part, the link part is provided so as to be rotatable about the fulcrum part so that the movable capacitive electrode part is separated from the fixed capacitive electrode part. And
    With the fulcrum portion as a fulcrum, the rotation radius of the link portion connected to the movable capacitive electrode portion is larger than the rotation radius of the link portion connected to the movable drive electrode portion. The fulcrum part is provided,
    The movable capacitor electrode part and the movable drive electrode part are formed so that the mass per unit area of the movable capacitor electrode part is smaller than the mass per unit area of the movable drive electrode part. A variable capacitor.
  2.  前記可動容量電極部に連結された側の前記リンク部の回転半径の2乗と前記可動容量電極部の質量との積が、前記可動駆動電極部に連結された側の前記リンク部の回転半径の2乗と前記可動駆動電極部の質量との積と等しくなるように形成されていることを特徴とする請求項1に記載の可変容量コンデンサ。 The product of the square of the rotational radius of the link portion on the side connected to the movable capacitive electrode portion and the mass of the movable capacitive electrode portion is the rotational radius of the link portion on the side connected to the movable drive electrode portion. The variable capacitor according to claim 1, wherein the capacitor is formed so as to be equal to a product of a square of λ and a mass of the movable drive electrode portion.
  3.  前記可動容量電極部及び前記可動駆動電極部は平板状に形成されており、前記可動容量電極部の厚さが前記可動駆動電極部よりも薄く形成されていることを特徴とする請求項1または請求項2に記載の可変容量コンデンサ。 The movable capacitive electrode part and the movable drive electrode part are formed in a flat plate shape, and the thickness of the movable capacitive electrode part is formed thinner than the movable drive electrode part. The variable capacitor according to claim 2.
  4.  前記可動容量電極部に孔部が設けられていることを特徴とする請求項1から請求項3のいずれか1項に記載の可変容量コンデンサ The variable capacitor according to any one of claims 1 to 3, wherein a hole is provided in the movable capacitor electrode portion.
  5.  前記可動駆動電極部に質量調整部が設けられていることを特徴とする請求項1から請求項4のいずれか1項に記載の可変容量コンデンサ The variable capacitor according to any one of claims 1 to 4, wherein a mass adjustment unit is provided in the movable drive electrode unit.
  6.  対向して配置された可動駆動電極部及び固定駆動電極部と、
    対向して配置された可動容量電極部及び固定容量電極部と、を有し、
    前記可動駆動電極部と前記可動容量電極部とが、支点部を支点として連動して回転動作するように形成された可変容量コンデンサにおいて、
    前記支点部を支点としたときの前記可動容量電極部の回転半径が前記可動駆動電極部の回転半径よりも大きくなるように、前記支点部が設けられているとともに、
    前記可動容量電極部の単位面積あたりの質量が、前記可動駆動電極部の単位面積あたりの質量よりも小さくなるように、前記可動容量電極部及び前記可動駆動電極部が形成されていることを特徴とする可変容量コンデンサ。
    A movable drive electrode portion and a fixed drive electrode portion disposed opposite to each other;
    A movable capacitance electrode portion and a fixed capacitance electrode portion disposed to face each other,
    In the variable capacitor formed so that the movable drive electrode portion and the movable capacitance electrode portion rotate in conjunction with a fulcrum portion as a fulcrum,
    The fulcrum part is provided so that the rotation radius of the movable capacitive electrode part when the fulcrum part is used as a fulcrum is larger than the rotation radius of the movable drive electrode part,
    The movable capacitor electrode part and the movable drive electrode part are formed so that the mass per unit area of the movable capacitor electrode part is smaller than the mass per unit area of the movable drive electrode part. A variable capacitor.
PCT/JP2013/077562 2012-10-11 2013-10-10 Variable capacitance capacitor WO2014058004A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014540884A JP5922249B2 (en) 2012-10-11 2013-10-10 Variable capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012225708 2012-10-11
JP2012-225708 2012-10-11

Publications (1)

Publication Number Publication Date
WO2014058004A1 true WO2014058004A1 (en) 2014-04-17

Family

ID=50477471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077562 WO2014058004A1 (en) 2012-10-11 2013-10-10 Variable capacitance capacitor

Country Status (2)

Country Link
JP (1) JP5922249B2 (en)
WO (1) WO2014058004A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014212159A (en) * 2013-04-17 2014-11-13 アルプス電気株式会社 Variable capacitance capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10149950A (en) * 1996-11-15 1998-06-02 Murata Mfg Co Ltd Variable capacitance capacitor
JP2003243254A (en) * 2002-02-14 2003-08-29 Murata Mfg Co Ltd Variable capacitor
JP2009190150A (en) * 2008-02-18 2009-08-27 Sanyo Electric Co Ltd Microelectromechanical device and its manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4100283B2 (en) * 2003-08-22 2008-06-11 セイコーエプソン株式会社 MEMS, tilt mirror MEMS, spatial light modulator, and projector
CN102084258B (en) * 2008-07-04 2012-08-08 阿尔卑斯电气株式会社 Capacitance detection type movable sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10149950A (en) * 1996-11-15 1998-06-02 Murata Mfg Co Ltd Variable capacitance capacitor
JP2003243254A (en) * 2002-02-14 2003-08-29 Murata Mfg Co Ltd Variable capacitor
JP2009190150A (en) * 2008-02-18 2009-08-27 Sanyo Electric Co Ltd Microelectromechanical device and its manufacturing method

Also Published As

Publication number Publication date
JPWO2014058004A1 (en) 2016-09-05
JP5922249B2 (en) 2016-05-24

Similar Documents

Publication Publication Date Title
US11105829B2 (en) MEMS accelerometer
US9851373B2 (en) Vibrator and vibrating gyroscope
EP2315039A1 (en) Capacitance detection type movable sensor
JP5936941B2 (en) Rotary actuator
US20130093527A1 (en) Transverse acoustic wave resonator, oscillator having the resonator and method for making the resonator
US20130247667A1 (en) Accelerometer
WO2015146145A1 (en) Drive apparatus
WO2017047207A1 (en) Resonator and resonance device
JP5922249B2 (en) Variable capacitor
US20110187231A1 (en) Ultrasonic motor
CN109617449B (en) Six-foot actuator based on piezoelectric drive and working method thereof
WO2013108705A1 (en) Finely movable mechanism and variable capacitor
US8304962B2 (en) Ultrasonic motor
JP2013068678A (en) Optical deflector and optical deflector array
WO2014203903A1 (en) Resonance frequency adjustment module
US20070139599A1 (en) Comb-type electrode structure capable of large linear-displacement motion
WO2014054751A1 (en) Variable capacitor
WO2015146146A1 (en) Drive apparatus
JP6787437B2 (en) Piezo ring gyroscope
JP4775412B2 (en) Semiconductor physical quantity sensor
JP2013217844A (en) Microelectromechanical system (mems) device
JP2015099039A (en) Piezoelectric acceleration sensor
WO2018235719A1 (en) Vibration type angular velocity sensor
JP2006064538A (en) Gyroscope sensor
JP2014212159A (en) Variable capacitance capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13845636

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014540884

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13845636

Country of ref document: EP

Kind code of ref document: A1