WO2014057952A1 - Vehicle brake device - Google Patents

Vehicle brake device Download PDF

Info

Publication number
WO2014057952A1
WO2014057952A1 PCT/JP2013/077394 JP2013077394W WO2014057952A1 WO 2014057952 A1 WO2014057952 A1 WO 2014057952A1 JP 2013077394 W JP2013077394 W JP 2013077394W WO 2014057952 A1 WO2014057952 A1 WO 2014057952A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
pressure
fluid pressure
hydraulic pressure
booster
Prior art date
Application number
PCT/JP2013/077394
Other languages
French (fr)
Japanese (ja)
Inventor
崇史 飯田
卓士 石本
哲也 本多
一哉 牧
理治 西井
上中 智史
啓太 中野
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Publication of WO2014057952A1 publication Critical patent/WO2014057952A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/10Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels by utilising wheel movement for accumulating energy, e.g. driving air compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/58Combined or convertible systems
    • B60T13/585Combined or convertible systems comprising friction brakes and retarders
    • B60T13/586Combined or convertible systems comprising friction brakes and retarders the retarders being of the electric type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/04Brake-action initiating means for personal initiation foot actuated
    • B60T7/042Brake-action initiating means for personal initiation foot actuated by electrical means, e.g. using travel or force sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/44Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition co-operating with a power-assist booster means associated with a master cylinder for controlling the release and reapplication of brake pressure through an interaction with the power assist device, i.e. open systems
    • B60T8/441Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition co-operating with a power-assist booster means associated with a master cylinder for controlling the release and reapplication of brake pressure through an interaction with the power assist device, i.e. open systems using hydraulic boosters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/60Regenerative braking
    • B60T2270/604Merging friction therewith; Adjusting their repartition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/48Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition connecting the brake actuator to an alternative or additional source of fluid pressure, e.g. traction control systems
    • B60T8/4809Traction control, stability control, using both the wheel brakes and other automatic braking systems
    • B60T8/4827Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems
    • B60T8/4863Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems closed systems
    • B60T8/4872Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems closed systems pump-back systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a vehicle brake device that includes a brake booster and generates a required vehicle braking force by a hydraulic braking force by a hydraulic braking device and a regenerative braking force by a regenerative braking device.
  • a vehicle brake device that includes a brake booster and performs control (regenerative cooperative control) to generate a required vehicle braking force by a hydraulic braking force by a hydraulic braking device and a regenerative braking force by a regenerative braking device.
  • control regenerative cooperative control
  • a control valve is provided in the hydraulic pressure path between the master cylinder and the wheel cylinder, and a portion on the master cylinder side with respect to the control valve in the hydraulic pressure path and a portion on the wheel cylinder side with respect to the control valve in the hydraulic pressure path are provided.
  • a pump is provided in between, and the control valve is controlled by the pump while discharging brake fluid in a portion closer to the master cylinder than the control valve in the hydraulic pressure path to a portion closer to the wheel cylinder than the control valve in the hydraulic pressure path.
  • this vehicle brake device is provided with a brake booster (for example, the hydro booster 250 of Patent Document 1)
  • a brake booster for example, the hydro booster 250 of Patent Document 1
  • the master piston M / C piston 54
  • the amount of operation of the brake operation member may increase significantly.
  • the driver may feel uncomfortable with the movement of the brake pedal at an unexpected timing.
  • This invention is made in view of the said subject, Comprising: It aims at providing the brake device for vehicles with a favorable brake operation feeling.
  • the invention of the vehicle brake device according to claim 1 that solves the above-mentioned problem is connected to a brake operation member, and a fluid pressure path between the fluid pressure source (24, 93, Z3) and the booster chamber (100, R2).
  • a fluid pressure corresponding to the operation amount of the brake operation member (21) is generated in the booster chamber (100, R2), and a force corresponding to the fluid pressure is generated.
  • the basic hydraulic pressure supply device (S, S) is configured to have a booster device (91, 122) for driving the master piston (23b, 23c), and supplies a basic hydraulic pressure corresponding to the operation amount to the wheel cylinder (WC).
  • T and a hydraulic pressure path between the basic hydraulic pressure supply device and the wheel cylinder (WC), and a differential pressure between the hydraulic pressure on the basic hydraulic pressure supply device side and the hydraulic pressure on the wheel cylinder side
  • a hydraulic pressure addition device (Ad) for adding an additional hydraulic pressure to the basic hydraulic pressure by operating at least one of the control valve and the pump.
  • a regenerative braking force generator that applies a regenerative braking force to the wheels, and in a maintenance state in which the operation amount is maintained, at least the control valve and the pump Even if the valve device is operated by any one of the controls, if the operation amount of the valve device based on the state of the valve device at the time of transition to the maintenance state is equal to or less than a predetermined valve operation amount, By valve device Serial fluid pressure path is configured not opened.
  • the vehicle brake device according to the first aspect, wherein the movement amount of the master piston and the operation amount of the valve device are linked to each other, and in the maintained state, Even if the master piston is moved by either control, the movement amount of the master piston based on the position of the master piston at the time of transition to the maintenance state is not more than a predetermined master movement amount ( ⁇ m).
  • the operation amount of the valve device is configured to be equal to or less than the valve operation amount.
  • the vehicle brake device according to the second aspect, wherein the booster device (91) generates a hydraulic pressure in the booster chamber according to an operation of the brake operation member (21).
  • the spool (94) slides in the sleeve (96), and the fluid pressure source (24, 93) as the fluid pressure path is formed by relative movement of the spool with respect to the sleeve.
  • the spool and the sleeve are connected to the master piston (23b).
  • the fluid pressure supply path is configured to be closed when the movement amount is less than or equal to a predetermined spool movement amount ( ⁇ sf), and the spool movement amount is set based on the master movement amount ( ⁇ m). Has been.
  • the vehicle brake device according to the second or third aspect, wherein the booster device (91) applies a hydraulic pressure to the booster chamber (100) according to the operation of the brake operation member (21).
  • the valve device (97) includes a booster chamber (100) in which the spool (94) slides in the sleeve (96), and the spool moves relative to the sleeve.
  • a fluid pressure supply path for supplying fluid pressure, and a fluid pressure discharge path for discharging the fluid pressure from the booster chamber as the fluid pressure path to the fluid pressure source, and the spool and the sleeve are connected to the master.
  • the spool and the three sleeves are moved relative to each other by the movement of the pistons (23b, 23c), and are changed from the increased state in which the operation amount is increased.
  • the relative movement is caused by the movement of the master piston, the relative pressure is increased when the basic hydraulic pressure is increased based on the relative position at the time when the fluid pressure supply path is closed in accordance with the transition to the maintenance state. If the movement amount in the moving direction is equal to or less than a predetermined spool movement amount ( ⁇ sr), the fluid pressure discharge path is configured to be closed, and the spool movement amount is set based on the master movement amount. Has been.
  • the booster device (122) includes a negative pressure chamber (R1) connected to a negative pressure source in the booster shell (181) and the booster chamber.
  • a piston portion (183) that is partitioned into a variable pressure chamber (R2) as the above and interlocks with the movement of the master piston (23b, 23c), and a valve portion (184) that is interlocked with the operation of the brake operating member (21).
  • a negative pressure booster that generates an air pressure in the variable pressure chamber according to a relative position between the piston portion and the valve portion, and the valve device (118) is an external device serving as the variable pressure chamber and the fluid pressure source.
  • the vehicle brake device is the vehicle brake device according to the fifth aspect, wherein the valve portion is provided so as to be movable with respect to the valve main body (184a) connected to the brake operation member and the valve main body.
  • the valve seat (852) of the atmospheric pressure valve is provided on the valve body (186b) side of the atmospheric pressure valve of the movable part, and the piston is moved in the maintenance state after the transition from the reduced state.
  • the basic hydraulic pressure is reduced based on the relative position at the time when the negative pressure valve is closed in accordance with the transition to the maintenance state, even if the valve portion and the valve portion are relatively moved by the movement of the master piston. If the movement amount in the relative movement direction is equal to or less than a predetermined valve movement amount, the movable portion is urged by the urging member, and the valve body of the atmospheric pressure valve is moved to the valve seat. It is configured to be seated.
  • the vehicle brake device is the vehicle brake device according to the first aspect, wherein the booster device is a hydraulic pressure booster that generates a hydraulic pressure in the booster chamber according to the operation of the brake operation member, and the valve device.
  • the spool is based on the relative position of the spool to the sleeve at the time of transition to the maintenance state. Relative movement with respect to the sleeve is equal to or less spool moving amount as the valve operation amount, the fluid pressure supply passage is configured to be closed.
  • the invention of a vehicle brake device is the vehicle brake device according to claim 1, wherein the booster device divides the booster shell into a negative pressure chamber connected to a negative pressure source and a variable pressure chamber as the booster chamber.
  • a negative pressure that has a piston portion that is interlocked with the movement of the master piston and a valve portion that is interlocked with the operation of the brake operation member, and generates an atmospheric pressure in the variable pressure chamber according to the relative position of the piston portion with respect to the valve portion
  • the booster is a booster, and the valve device opens and closes an atmospheric pressure valve that opens and closes the fluid pressure path between the variable pressure chamber and the external space as the fluid pressure source, and opens and closes the passage between the variable pressure chamber and the negative pressure chamber.
  • a valve seat of the atmospheric pressure valve is provided in the valve portion, a valve seat of the negative pressure valve is provided in the piston portion, and the operation amount is maintained in the maintenance state, Control valve and said Even if the piston part is moved relative to the valve part by the control of at least one of the pumps, the piston part is based on the relative position of the piston part with respect to the valve part when the piston part is maintained in the maintenance state.
  • the relative movement amount with respect to the valve portion is equal to or less than the valve movement amount as the valve operation amount, the atmospheric pressure valve is closed.
  • the vehicle brake device includes a pressure increasing port as the fluid pressure supply path and a fluid pressure discharge path.
  • the pressure reducing port is formed, and the distance in the sliding direction of the spool between the pressure increasing port and the pressure reducing port is set based on the amount of movement of the spool.
  • the vehicle brake device is the vehicle brake device according to the fifth or eighth aspect, wherein the valve portion is provided so as to be movable with respect to the valve main body connected to the brake operation member and the valve main body.
  • the valve body includes a main body protruding portion that projects toward the movable portion.
  • the movable portion includes the valve.
  • the distance in the movement direction with respect to is set based on the valve movement amount.
  • the vehicle brake device is the vehicle brake device according to any one of the first to tenth aspects, wherein the predetermined valve actuation amount is a maximum value of the regenerative braking force generated by the regenerative braking force generating device. Is set based on.
  • a vehicle brake device is the vehicle brake apparatus according to any one of the first to eleventh aspects, including the master hydraulic pressure chamber (23d, 23f) for determining a pressure-volume characteristic of the basic hydraulic pressure.
  • the rigidity of the hydraulic pressure generating container (Vm) is set to be lower than the rigidity of the fluid pressure generating container (Vf) including the booster chamber that determines the pressure-volume characteristic of the fluid pressure of the booster chamber.
  • the invention of a vehicle brake device is the vehicle brake device according to any one of the first to twelfth aspects, wherein the pressing portion is connected to the brake operation member and moves according to the operation amount of the brake operation member; An elastic body that is pressed by the pressing portion and presses the master piston, and an area ratio between an area of an end surface of the pressing portion that presses the elastic body and an area of the end surface of the elastic body that presses the master piston. Is set so that the change in the operation amount of the valve device with respect to the change in the master cylinder pressure is suppressed.
  • the invention of a vehicle brake device is the vehicle brake device according to any one of the first to thirteenth aspects, wherein the pressing portion is connected to the brake operation member and moves according to the operation amount of the brake operation member; And an elastic body that presses against the master piston, and the hardness of the elastic body is set so that a change in the operation amount of the valve device with respect to a change in the master cylinder pressure is suppressed.
  • the valve device since the master cylinder pressure changes when the additional hydraulic pressure is changed by controlling at least one of the pump and the control valve, the valve device is maintained even when the operation amount is maintained. May be activated. Even if this amount of operation is so small that it does not affect the brake operation feeling, if the fluid pressure path is released with the operation of this valve device, the brake operation will be caused by the change in the fluid pressure in the booster chamber. The operation amount of a member will change a lot.
  • the amount of operation is determined based on the state of the valve device at the time when the brake operation transitions to the maintenance state. If it is less than the operation amount, the fluid pressure path is not opened by the valve device, so that the operation amount of the brake operation member does not move greatly, and the brake operation feeling becomes good.
  • the master piston moves even if the operation amount is maintained. Even if this amount of movement is so small that it does not affect the brake operation feeling, if the fluid pressure path is opened by the valve device as the master piston moves, the fluid pressure in the booster chamber will change. It is conceivable that the operation amount of the brake operation member changes greatly. According to the second aspect of the present invention, even if the master piston moves as described above, the movement amount is not more than a predetermined master movement amount based on the position of the master piston at the time of transition to the maintenance state. For example, since the fluid pressure path is not opened by the valve device, the operation amount of the brake operation member does not move greatly, and the brake operation feeling is good.
  • the fluid pressure discharge path is closed at the time of the transition to the maintenance state. If the movement amount in the direction in which the base hydraulic pressure decreases with the relative position as a base point is equal to or less than a predetermined spool movement amount, the fluid pressure supply path is closed.
  • the spool movement amount is set based on the master movement amount. Therefore, when the additional hydraulic pressure is increased in the transitioned maintenance state from the reduced operation amount state, the operation amount can be prevented from greatly increasing.
  • the fluid pressure supply path is closed along with the transition to the maintained state. If the movement amount in the direction in which the base hydraulic pressure increases with the relative position at the base point as the base point is less than or equal to a predetermined spool movement amount, the fluid pressure supply path is closed.
  • the spool movement amount is set based on the master movement amount. For this reason, when the additional hydraulic pressure is decreased in the maintenance state transitioned from the increase state of the operation amount, it is possible to prevent the operation amount from greatly decreasing.
  • the negative pressure valve is closed along with the transition to the maintained state. If the movement amount in the direction in which the base hydraulic pressure decreases with the relative position at the time point as the base point is less than or equal to the predetermined valve movement amount, the atmospheric pressure valve is closed.
  • the valve movement amount is set based on the master movement amount. Therefore, the brake operation feeling in the case where the additional hydraulic pressure is increased in the transitioned maintenance state from the reduced operation amount state is improved.
  • the negative pressure valve is closed along with the transition to the maintained state. If the amount of movement in the direction in which the base hydraulic pressure decreases with respect to the relative position at the time point is less than or equal to the predetermined valve movement amount, the movable part is urged by the urging member, and the valve body of the atmospheric pressure valve Is seated on the valve seat and the atmospheric pressure valve is closed.
  • the spool even when the master piston does not move in the operation amount maintaining state, even if the spool moves relative to the sleeve, the spool relative to the sleeve at the time of transition to the maintaining state.
  • the relative movement amount of the spool with respect to the position relative to the sleeve is equal to or smaller than the predetermined spool movement amount, the fluid pressure supply path is closed. Therefore, it is possible to improve the brake operation feeling when changing the additional hydraulic pressure while maintaining the operation amount.
  • the piston portion even when the master piston does not move in the operation amount maintaining state, even if the piston portion moves relative to the valve portion, the piston portion at the time of transition to the maintaining state If the relative movement amount of the piston portion relative to the valve portion with respect to the relative position with respect to the valve portion is equal to or less than a predetermined valve movement amount, the atmospheric pressure valve is closed. Therefore, it is possible to improve the brake operation feeling when increasing the additional hydraulic pressure while maintaining the operation amount.
  • the spool movement amount can be made based on the distance in the sliding direction of the spool between the pressure increasing port and the pressure reducing port.
  • the amount of valve movement can be created by the distance in the moving direction of the movable portion between the main body protruding portion and the movable protruding portion with respect to the valve main body.
  • the predetermined valve operation amount is set based on the maximum value of the regenerative braking force. For this reason, for example, it becomes difficult to generate the regenerative braking force when the vehicle is at a low vehicle speed, and even when it is necessary to replace all of the braking force corresponding to the regenerative braking force with the additional hydraulic braking force FS, the valve device reliably It is possible to prevent the route from being opened.
  • the rigidity of the basic hydraulic pressure generating container including the master hydraulic pressure chamber that determines the pressure-volume characteristic of the basic hydraulic pressure is determined, and the booster that determines the pressure-volume characteristic of the hydraulic pressure in the booster chamber. Even if the master piston moves as described above by reducing the operation amount of the valve device relative to the movement amount of the master piston by making it lower than the rigidity of the fluid pressure generating container including the chamber, the fluid pressure path is changed by the valve device. It is possible not to be opened.
  • the valve device can be reduced in size by suppressing the change in the operation amount of the valve device with respect to the change in the master cylinder pressure and setting the valve operation amount to be small.
  • FIG. 1 is a schematic diagram showing a configuration of a hybrid vehicle to which a vehicle brake device according to a first embodiment of the present invention is applied. It is a schematic diagram showing the composition of the brake device for vehicles of a 1st embodiment. It is sectional drawing explaining the structure of the hydraulic booster apparatus and master cylinder in the state in which depression of a brake pedal is not operated.
  • A It is a figure which shows the pressure P-volume V characteristic of a fluid pressure generation container.
  • (B) It is a figure which shows the pressure P-volume V characteristic of a basic
  • FIG. 1 is a schematic diagram showing a configuration of a hybrid vehicle to which a vehicle brake device CB according to an embodiment of the present invention is applied.
  • the hybrid vehicle is a vehicle that drives drive wheels, for example, left and right front wheels FR, FL, by a hybrid system.
  • the hybrid system is a power train that uses a combination of two types of power sources, the engine 11 and the motor 12.
  • a parallel hybrid system in which wheels are directly driven by both the engine 11 and the motor 12 is employed.
  • there is a serial hybrid system wheels are driven by a motor, and the engine acts as a power supply source to the motor.
  • the engine 11 is controlled by an engine ECU (electronic control unit) 18.
  • the engine ECU 18 outputs an opening degree command to the electronic control throttle according to an engine output request value from a hybrid ECU (electronic control unit) 19 described later, and adjusts the rotational speed of the engine 11.
  • the driving force of the engine 11 is transmitted to driving wheels (in this embodiment, left and right front wheels FR and FL) via a power split mechanism 13 and a power transmission mechanism 14.
  • the power split mechanism 13 appropriately splits the driving force of the engine 11 into a vehicle driving force and a generator driving force.
  • the driving force of the motor 12 is transmitted to the driving wheel via the power transmission mechanism 14.
  • the power transmission mechanism 14 appropriately integrates the driving forces of the engine 11 and the motor 12 according to traveling conditions and transmits them to the driving wheels.
  • the power transmission mechanism 14 adjusts the driving force ratio transmitted between the engine 11 and the motor 12 between 0: 100 and 100: 0. Further, the power transmission mechanism 14 has a speed change function.
  • the motor 12 increases the driving force by assisting the output of the engine 11, or takes on the entire driving force independently. On the other hand, the motor 12 generates power by regeneration during braking of the vehicle.
  • the generator 15 generates power based on the output of the engine 11 and also has a starter function when starting the engine.
  • the motor 12 and the generator 15 are each connected to an inverter 16.
  • the inverter 16 is connected to a battery 17 as a DC power source.
  • the inverter 16 converts the AC voltage input from the motor 12 and the generator 15 into a DC voltage and supplies it to the battery 17. Conversely, the inverter 16 converts the DC voltage from the battery 17 into an AC voltage and outputs the AC voltage to the motor 12 and the generator 15.
  • the motor 12, inverter 16 and battery 17 constitute a regenerative braking device A (corresponding to the regenerative braking force generating device of the present invention).
  • the regenerative braking device A applies a regenerative braking force FK based on the operation position of the brake pedal 21 (corresponding to the brake operation member of the present invention) detected by the pedal stroke sensor 21a to any of the wheels FR, FL, RL, RR. Or, in this embodiment, it is given to the left and right front wheels FR and FL.
  • the hybrid ECU 19 is connected to the inverter 16 so as to communicate with each other.
  • the hybrid ECU 19 obtains information on the accelerator opening from an accelerator opening sensor (not shown), and obtains information on the shift shift position of the power transmission mechanism 14 from a shift position sensor (not shown). Based on this information, the hybrid ECU 19 requires an engine output request value required for the engine 11, a motor output request value required for the motor 12, and a generator input request value required for the generator 15. Is derived. Then, the hybrid ECU 19 transmits the engine output request value to the engine ECU 18 to control the engine 11, and controls the motor 12 and the generator 15 via the inverter 16 according to the motor output request value and the generator input request value. To do. Further, the hybrid ECU 19 monitors the state of charge of the battery 17 and the charging current.
  • FIG. 2 is a schematic diagram showing a part of the configuration of the vehicle brake device CB (hereinafter referred to as only the brake device CB).
  • the brake device CB includes a hydraulic braking force generator B and a regenerative braking force generator A (see FIG. 1).
  • the hydraulic braking force generator B includes a basic hydraulic pressure supply device S that supplies a basic hydraulic pressure corresponding to the operation amount of the brake pedal 21 to the wheel cylinders WC1, WC2, WC3, and WC4. And a hydraulic pressure adding device Ad for adding an additional hydraulic pressure to the basic hydraulic pressure.
  • FIG. 3 is a schematic cross-sectional view illustrating the structure of the hydraulic braking force generator B.
  • FIG. 3 shows an unoperated state in which the brake pedal 21 is not depressed.
  • the hydraulic braking force generator B uses brake fluid as hydraulic fluid.
  • the basic hydraulic pressure supply device S is connected to the brake pedal 21. Further, as shown in FIG. 3, the basic hydraulic pressure supply device S is configured to include a booster device 91.
  • the booster device 91 includes a pressure source 93 (which constitutes the fluid pressure source of the present invention together with the reservoir 24), a booster chamber 100, a valve device 97, and the like.
  • the valve device 97 is provided in a fluid pressure supply path (which is also a fluid pressure path of the present invention), which will be described later, formed between the pressure source 93 and the booster chamber 100.
  • a fluid pressure supply path which is also a fluid pressure path of the present invention
  • the fluid pressure supply path is opened / closed (connected / disconnected).
  • a predetermined fluid pressure is supplied from the pressure source 93 to the booster chamber 100 via the fluid pressure supply path.
  • fluid pressure corresponding to the operation amount of the brake pedal 21 is generated in the booster chamber 100.
  • the master piston 23b is driven with a force corresponding to the fluid pressure.
  • the booster device 91 assists the pedaling force (operation force) corresponding to the depression operation amount of the brake pedal 21 with the fluid pressure generated in the booster chamber 100, and the first piston 23b and the second piston 23c of the master cylinder 23 (whichever Is also equivalent to the master piston of the present invention), and the basic hydraulic pressure is generated in the master cylinder 23. Then, the basic hydraulic pressure generated in the master cylinder 23 is applied to the wheel cylinders WC1, WC2, WC3, WC4 of each wheel FR, FL, RR, RL via the brake actuator 25. As a result, a basic hydraulic braking force FE corresponding to the basic hydraulic pressure is generated in each of the wheels FR, FL, RR, and RL. Note that the base hydraulic pressure is constantly monitored by a pressure sensor SP (described later) of the brake actuator 25 shown in FIG. As described above, in the present embodiment, the booster device 91 is a hydraulic booster device.
  • the hydraulic pressure adding device Ad shown in FIG. 2 includes electric pumps 37 and 47 (corresponding to the pump of the present invention) that operate independently from the master cylinder 23 in the brake actuator 25 and hydraulic pressure control valves 31 and 41 (main Corresponding to the control valve of the invention.
  • the hydraulic control valves 31 and 41 are provided in oil paths Lf and Lr (corresponding to the hydraulic path of the present invention) between the basic hydraulic pressure supply device S and the wheel cylinders WC1, WC2, WC3, and WC4. .
  • the hydraulic control valves 31 and 41 are configured such that the hydraulic pressure in the oil path (hydraulic pressure path) on the basic hydraulic pressure supply device S side and the hydraulic pressure in the oil path (hydraulic pressure path) on the wheel cylinders WC1, WC2, WC3, WC4 side It is a control valve that adjusts the differential pressure.
  • the electric pumps 37 and 47 use the brake fluid in the oil path (hydraulic path) on the basic hydraulic pressure supply device S side relative to the hydraulic pressure control valves 31 and 41, and the oil on the wheel cylinder side relative to the hydraulic pressure control valves 31 and 41. Discharge to the path (hydraulic pressure path).
  • the differential pressure is adjusted by controlling the hydraulic pressure control valves 31 and 41 based on a command value from the control device while operating the electric pumps 37 and 47 at a constant speed. Then, the additional hydraulic pressure formed by the control of the hydraulic control valves 31 and 41 is added to the basic hydraulic pressure.
  • the additional hydraulic braking force FS is added to the basic hydraulic braking force FE of each wheel FR, FL, RR, RL.
  • the brake pedal 21 is provided with a pedal stroke sensor 21a that detects an operation amount when the brake pedal 21 is depressed.
  • the pedal stroke sensor 21a is connected to the brake ECU 60 and transmits a detection signal (see FIG. 1).
  • a rubber boot 29 is mounted between the operating rod 26 and an outer peripheral cylinder 92 of a booster device 91 described later.
  • One end of the boot 29 is fitted in the outer peripheral end groove portion on the brake pedal 21 side of the operating rod 26, and the other end is fitted in the outer peripheral end groove portion on the brake pedal 21 side of the outer peripheral cylinder 92.
  • a bellows is formed between one end and the other end of the boot 29. As a result, entry of dust and water into the booster device 91 is prevented.
  • the left side in the drawing is the front in the sliding direction in which a sleeve 96 and a spool 94 to be described later move in response to an increase in the operation amount of the brake pedal 21.
  • the right side in the figure is the rear in the sliding direction in which the sleeve 96 and the spool 94 move in accordance with a decrease in the operation amount of the brake pedal 21.
  • the depression direction of the brake pedal 21 may be referred to as the front
  • the return direction of the brake pedal 21 may be referred to as the rear.
  • the booster device 91 will be described in detail with reference to FIG.
  • the booster device 91 includes an outer peripheral cylinder 92, a pressure source 93, an operating member 99, a plunger 98, an elastic body 107, a push rod 95, a booster chamber 100, a valve device 97, and the like.
  • the valve device 97 includes a spool 94, a sleeve 96, and the like.
  • the valve device 97 is opened when the brake pedal 21 is depressed more than a non-operation stroke L (to be described later) and the operation force and the operation amount are increased, connects the fluid pressure supply path, and discharges the fluid pressure.
  • the route is set to a blocking state. Then, the increased brake fluid is supplied from the pressure source 93 to the booster chamber 100 through the fluid pressure supply path.
  • the length of the non-operating stroke L is determined by the distance between the plunger 98 and the elastic body 107 when the brake pedal 21 is not operated, the configuration of the valve device 97, and the like.
  • valve device 97 When the operation force and the operation amount of the brake pedal 21 are reduced, the valve device 97 is closed to shut off the fluid pressure supply path and connect the fluid pressure discharge path to brake the booster chamber 100. The liquid is discharged into the reservoir 24.
  • the booster device 91 presses the sleeve 96 by generating a fluid pressure corresponding to the operation amount of the brake pedal 21 in the booster chamber 100 by the operation of the valve device 97. Then, the sleeve 96 drives the first piston 23 b of the master cylinder 23 via the push rod 95 to increase or decrease the basic hydraulic pressure according to the operation amount of the brake pedal 21.
  • the outer cylinder 92 of the booster device 91 is shared with the outer cylinder of the master cylinder 23.
  • the outer peripheral cylinder 92 is formed of a bottomed cylinder, and a first inner diameter portion 92a (right side in FIG. 4) is formed on the inner periphery.
  • a sleeve support wall 92d having a reduced diameter in the inner diameter direction of the outer cylinder 92 is formed in front of the first inner diameter portion 92a.
  • the outer peripheral cylinder 92 is formed with a radial oil hole 921 penetrating in the radial direction.
  • the pressure source 93 is provided outside the outer cylinder 92 and communicates with the radial oil hole 921 of the outer cylinder 92 to supply the stored fluid pressure.
  • the pressure source 93 includes an accumulator 931 that accumulates brake fluid and accumulates fluid pressure, and an electric pump 932 that pumps brake fluid from the atmospheric pressure reservoir 24 attached to the master cylinder 23 to the accumulator 931. Further, the pressure source 93 is provided with a pressure sensor 933 for detecting the accumulated pressure of the accumulator 931 and a relief valve 934 for returning the brake fluid to the atmospheric pressure reservoir 24 when the accumulated pressure is excessive.
  • the sleeve 96 is disposed inside the outer cylinder 92.
  • the sleeve 96 has a cylindrical shape, and is connected to a large-diameter first cylindrical portion 96a, a small-diameter second cylindrical portion 96b formed at the front, and a part of the first cylindrical portion 96a, and is connected to a brake pedal from the first cylindrical portion 96a. It has the 3rd cylindrical part 96c extended to 21 side.
  • the third cylindrical portion 96c includes a disk-shaped fixing portion 96c1 formed on the first cylindrical portion 96a side, and a bottomed cylindrical protruding portion 96c2 protruding rearward from the center portion of the fixing portion 96c1. Have. And a part of fixed part 96c1 and a part of back end surface of the 1st cylindrical part 96a are connected.
  • the first cylindrical portion 96a is engaged with the first inner diameter portion 92a of the outer cylinder 92.
  • the second cylindrical portion 96b is engaged with the inner diameter portion of the sleeve support wall 92d.
  • the projecting portion 96 c 2 of the third cylindrical portion 96 c is inserted into the through hole 92 e 1 that is penetrated by the bottom wall 92 e of the outer cylinder 92.
  • the fixed portion 96c1 of the third cylindrical portion 96c is engaged with a support hole 92e2 that is engraved from the front of the bottom wall 92e and has a larger diameter than the through hole 92e1.
  • the sleeve 96 is restricted from moving rearward by the rear end surface of the fixed portion 96c1 of the third cylindrical portion 96c coming into contact with the end surface connecting the support hole 92e2 and the through hole 92e1.
  • Seal members 102, 101, and 103 formed of an elastic member such as rubber are disposed on the outer periphery of each of the first cylindrical portion 96a, the second cylindrical portion 96b, and the third cylindrical portion 96c. Is sealed.
  • the sleeve 96 is supported on the inner periphery of the outer cylinder 92 in a liquid-tight manner and slidable in the axial direction.
  • a space is formed between the second cylindrical portion 96 b of the sleeve 96 and the first inner diameter portion 92 a of the outer peripheral cylinder 92.
  • the space communicates with the radial oil hole 921 and forms an axial oil passage 28 extending in the axial direction.
  • fluid pressure is always supplied from the pressure source 93 to the axial oil passage 28.
  • the outer periphery of the second cylindrical portion 96b is connected to a supply port 961 that communicates with the inner diameter portion 96j of the sleeve 96 (the pressure increasing port of the present invention). Is equivalent to).
  • the opening to the inner diameter portion 96j of the supply port 961 is a first valve port 961a.
  • the first valve port 961a is closed, the fluid pressure is supplied to the supply port 961.
  • the first valve port 961 a is opened, fluid pressure is supplied to the booster chamber 100.
  • a path including the supply port 961 through which the fluid pressure is supplied from the pressure source 93 as a fluid path to the booster chamber 100 is referred to as a fluid pressure supply path.
  • a large-diameter portion for drain 96d (corresponding to the decompression port of the present invention) having a diameter larger than that of the inner diameter portion 96j from a rear end surface of the sleeve 96 to a position where it has entered a predetermined distance forward is part of the circumferential direction of the inner diameter portion 96j. Is formed.
  • the predetermined distance from the rear end surface where the drain large-diameter portion 96d is formed is determined based on the positional relationship between the supply port 961 and a later-described discharge port 94e provided in the spool 94, which will be described in detail later.
  • the valve device 97 is constituted by the sleeve 96, the supply port 961, the spool 94, the discharge port 94e, the drain large-diameter portion 96d, and the like.
  • a stepped cylinder 105 having a large-diameter cylindrical portion 96f and a small-diameter cylindrical portion 96g is disposed in the front portion of the sleeve 96.
  • the large diameter cylindrical portion 96f is coaxially disposed in a large diameter inner diameter portion 96h drilled from the front of the sleeve 96.
  • a part of the outer periphery of the large diameter cylindrical part 96f and a part of the large diameter inner diameter part 96h are connected and fixed.
  • the small-diameter cylindrical portion 96g is disposed coaxially with the inner diameter portion 96j with a predetermined gap between the inner diameter portion 96j of the sleeve 96 and the inner diameter portion 96j.
  • the spool 94 is disposed on the inner side of the inner diameter portion 96j of the sleeve 96, and can be moved back and forth in the sliding direction.
  • the spool 94 has a stepped cylindrical shape with a reduced diameter at the center in the axial direction. That is, the spool 94 is formed with a first land portion 94a having a large diameter, a small diameter portion 94b, and a second land portion 94c having the same diameter as the first land portion 94a in order from the front.
  • a drain hole 94d is formed at the center of the front end surface of the spool 94 so as to reach the second land portion 94c rearward.
  • the discharge port 94e described above is drilled from the outer peripheral surface of the second land portion 94c so as to communicate with the drain hole 94d.
  • an operating member 99 that is disposed inside the third cylindrical portion 96c and slides and moves on the inner peripheral surface of the third cylindrical portion 96c is interposed.
  • a seal member 104 made of, for example, rubber is disposed in the outer circumferential groove provided in the operating member 99, and the space between the inner circumferential surface of the third cylindrical portion 96c is liquid-tightly sealed.
  • the SR-shaped concave surface is formed on the rear end surface of the actuating member 99, and the SR end portion of the operating rod 26 is in contact with the bottom surface of the third cylindrical portion 96c.
  • the front end surface of the actuating member 99 is in contact with the rear end surface of the spool 94.
  • the sleeve 96 has an inner diameter portion 96j and a drain large diameter portion 96d, seal members 102 and 103, a first land portion 94a, a small diameter portion 94b, a second land portion 94c of the spool 94, and a bottom of the outer cylinder 92.
  • the above-described booster chamber 100 (corresponding to the fluid pressure generating container Vf of the present invention) whose axial length changes, that is, whose volume changes, is formed by the space surrounded by the wall 92e.
  • the booster chamber 100 (fluid pressure generating container Vf) has a small volume and is made of a member that is not easily deformed when a fluid pressure is applied.
  • the pressure P-volume V characteristic of the booster chamber 100 when a certain amount of brake fluid is sealed is as shown in FIG. 4 (a), and by increasing or decreasing the volume (volume) of the booster chamber 100 slightly, It can be seen that the pressure suddenly decreases.
  • the booster chamber 100 is configured to have the characteristics as shown in FIG.
  • the characteristic of FIG. 4A is an example for explanation, and is not limited to this characteristic.
  • the elastic body 107 has a columnar shape and is disposed inside the large-diameter cylindrical portion 96 f of the stepped cylinder 105 provided in the sleeve 96.
  • the elastic body 107 is formed of an elastic member such as rubber, for example, and a plunger 98 (corresponding to a pressing portion of the present invention) is interposed between the elastic body 107 and the spool 94.
  • the plunger 98 is disposed inside the small-diameter cylindrical portion 96g of the stepped cylinder 105, and can be moved back and forth in the sliding direction.
  • the plunger 98 has a plunger large-diameter portion 98a and a plunger small-diameter portion 98b, and the outer periphery of the plunger large-diameter portion 98a is engaged inside the small-diameter cylindrical portion 96g of the cylinder 105 so as to be slidable in the front-rear direction. .
  • a space 106 is formed between the inside of the small diameter cylindrical portion 96g and the plunger small diameter portion 98b.
  • the rear end surface of the plunger 98 is in contact with the front end surface of the spool 94.
  • the front end surface of the plunger 98 (corresponding to the end surface that presses the elastic body of the present invention) is configured to be able to contact the rear end surface of the elastic body 107.
  • Inside the plunger 98 there is provided a drain hole 98 c that communicates with the drain hole 94 d of the spool 94 and opens on the outer peripheral surface of the small diameter portion 98 b in a state where the rear end surface of the plunger 98 and the front end surface of the spool 94 are in contact with each other. ing.
  • the discharged brake fluid passes through the space 106 and is stored in the atmospheric pressure reservoir. 24 is discharged.
  • the opening in which the discharge port 94e is opened to the drain large diameter portion 96d is referred to as a second valve port 94e1.
  • the rear end surface of the push rod 95 disposed between the sleeve 96 and the master cylinder 23 is in contact with the front end surface of the elastic body 107 (corresponding to the end surface that presses the master piston of the present invention).
  • the rear end surface of the push rod 95 is formed on a disk, and the outer periphery of the disk part is engaged with the inside of the large-diameter cylindrical part 96 f of the cylinder 105.
  • the push rod 95 configured in this way is pushed through the elastic body 107 pushed by the stepped portion of the cylinder 105 of the sleeve 96 and the front end surface of the plunger 98.
  • the front end of the push rod 95 in the sliding direction (left side in the figure) abuts on and pushes the first piston 23b (corresponding to the master piston of the present invention) of the master cylinder 23. .
  • the push rod 95 and the sleeve 96 are configured to be interlocked when the sleeve 96 moves back and forth.
  • the area of the end surface of the plunger large-diameter portion 98a of the plunger 98 (pressing portion), that is, the front end surface of the plunger 98 that contacts the rear end surface of the elastic body 107 is A1. Further, the area of the front end surface of the elastic body 107 that contacts the rear end surface of the push rod 95 is A2. The area of the rear end surface of the push rod 95 that contacts the front end surface of the elastic body 107 is also A2.
  • the driver depresses the brake pedal 21 and presses the plunger 98 forward with a predetermined operating force.
  • the elastic body 107 has a predetermined hardness (elastic force). Therefore, when the plunger 98 presses the rear end surface of the elastic body 107 with the front end surface of the plunger large diameter portion 98a, the pressure P1 generated in the elastic body 107 is applied to the front end surface of the elastic body 107 at a ratio corresponding to the hardness. Propagated. It has been found that this propagation rate decreases with increasing hardness.
  • the master cylinder 23 is a tandem type as shown in FIG. 3, and is housed side by side in a housing 23a (shared with the outer cylinder 92) formed in a bottomed cylinder and liquid-tight and slidable in the housing 23a.
  • the first and second pistons 23b and 23c (master pistons).
  • a first hydraulic chamber 23d (corresponding to the master hydraulic chamber of the present invention) formed between the first piston 23b and the second piston 23c, 2 connected to be extendable within a predetermined length.
  • a first spring 23e that is pre-compressed and held between the members is disposed.
  • a second hydraulic pressure chamber 23f (corresponding to the master hydraulic pressure chamber of the present invention) formed between the second piston 23c and the closed end of the housing 23a is connected to be extendable within a predetermined length.
  • a second spring 23g that is pre-compressed and held between the two members is disposed.
  • the second piston 23c is urged toward the first piston 23b by the second spring 23g.
  • the first piston 23b is urged toward the booster device 91 by the first spring 23e.
  • One end of the first piston 23b on the booster device 91 side is pushed by the tip of the push rod 95 and interlocks.
  • the housing 23a of the master cylinder 23 has a first port 23h for communicating the first hydraulic pressure chamber 23d and the atmospheric pressure reservoir 24, and a second port for communicating the second hydraulic pressure chamber 23f and the atmospheric pressure reservoir 24. Port 23i. Further, the housing 23a includes a third port 23j for communicating the first hydraulic pressure chamber 23d with an oil path Lr (corresponding to the hydraulic pressure path of the present invention) constituting the rear wheel system of the brake actuator 25, and a second port 23j. A fourth port 23k is provided for communicating the hydraulic chamber 23f with an oil path Lf (hydraulic path) constituting the front wheel system of the brake actuator 25.
  • the brake actuator 25 includes hydraulic pressure control valves 31, 41 (corresponding to the control valve of the present invention), pressure increase control valves 32, 33, 42, 43 and pressure reduction control valves 35, 36, 45, constituting an ABS control valve. 46, pressure regulating reservoirs 34 and 44, electric pumps 37 and 47 (corresponding to the pump of the present invention), motor M and the like are packaged in one case.
  • the oil path Lf that connects the master cylinder 23 and the wheel cylinders WC1 to WC4 is provided with a hydraulic control valve 31 that includes a differential pressure control valve.
  • the hydraulic pressure control valve 31 is switched between a communication state and a differential pressure state under the control of the brake ECU 60.
  • the hydraulic control valve 31 is normally in a communication state, and by switching to the differential pressure state, the hydraulic pressure of the oil path Lf2 on the wheel cylinders WC1 and WC2 side of the hydraulic pressure control valve 31 in the oil path Lf is changed to the master. It can be maintained at a pressure higher by a predetermined differential pressure than the basic hydraulic pressure of the oil path Lf1 on the cylinder 23 side.
  • the oil path Lf1 is provided with a pressure sensor SP that detects the basic hydraulic pressure generated by the master cylinder 23.
  • the pressure sensor SP is connected to the brake ECU 60. Note that the pressure sensor SP may be provided in the oil path Lr1 of the rear wheel system.
  • the oil path Lf2 is branched into two and connected to the wheel cylinders WC1 and WC2, respectively.
  • a pressure increase control valve 32 that controls the increase of the brake fluid pressure to the wheel cylinder WC1 in the pressure increase mode of the ABS control.
  • the other connected to the wheel cylinder WC2 is provided with a pressure increase control valve 33 that controls the increase of the brake fluid pressure to the wheel cylinder WC2 in the pressure increase mode of the ABS control.
  • the pressure increase control valves 32 and 33 are configured as two-position valves that can be switched and controlled between the communication state and the cutoff state by the brake ECU 60.
  • the pressure increase control valves 32 and 33 When the pressure increase control valves 32 and 33 are controlled to be in communication, the basic hydraulic pressure of the master cylinder 23 and / or the additional hydraulic pressure formed by the drive of the electric pump 37 and the control of the hydraulic pressure control valve 31 are applied. It can be added to each wheel cylinder WC1, WC2.
  • Portions of the oil path Lf2 between the pressure increase control valves 32 and 33 and the wheel cylinders WC1 and WC2 are communicated with the pressure regulating reservoir 34 via the oil path Lf3.
  • the oil path Lf3 is provided with pressure reduction control valves 35 and 36 that can be switched and controlled between the communication state and the cutoff state by the brake ECU 60, respectively.
  • the decompression control valves 35 and 36 are always cut off in the normal brake state (when the ABS is not operating).
  • a portion of the oil path Lf2 between the hydraulic pressure control valve 31 and the pressure increase control valves 32 and 33 is communicated with the master cylinder 23 and the pressure regulating reservoir 34 via the oil path Lf4.
  • the oil path Lf4 is branched into two. One of the branch portions of the oil path Lf4 communicates with the oil path Lf1.
  • a portion of the oil path Lf3 between the pressure reducing control valves 35 and 36 and the pressure regulating reservoir 34 is communicated.
  • an electric pump 37 that discharges brake fluid closer to the master cylinder 23 than to the hydraulic control valve 31 to the wheel cylinders WC1 and WC2 is disposed together with a safety valve 37a.
  • a damper 37b is disposed on the discharge side of the electric pump 37 in the oil path Lf4.
  • a check valve 37c is disposed on the suction side portion of the electric pump 37 in the non-branching portion of the oil path Lf4.
  • a check valve 37d is disposed in a portion communicating with the pressure regulating reservoir 34 in the branch portion of the oil path Lf4.
  • the electric pump 37 operates when forming an additional hydraulic pressure for stably controlling the posture of the vehicle such as ESC control, traction control, and brake assist. Further, as described above, when the vehicle speed is a predetermined value (for example, 14 km / h) or less, the electric pump 37 is used when the target target regenerative braking force FK cannot be obtained by the regenerative braking device A. It also operates when a braking force corresponding to the difference between the actual regenerative braking force FKr actually applied to the wheel (corresponding to FK4 of X4 in FIG. 7) and the required braking force FT is applied to the wheel cylinders WC1 and WC2. .
  • the electric pump 37 obtains a braking force corresponding to the difference between the actual regenerative braking force FKr and the required braking force FT, and the additional hydraulic braking force FS that is insufficient with respect to the basic hydraulic braking force FE at that time. It also operates when forming an additional hydraulic pressure corresponding to.
  • the additional hydraulic braking force FS at this time is a value including both the difference between the target regenerative braking force FK and the actual regenerative braking force FKr, and the reduced basic hydraulic braking force FE (in FIG. 7, FS4 of X4). Equivalent).
  • the basic hydraulic braking force FE is always grasped by acquiring the data of the sensor SP included in the brake actuator 25 as described above.
  • the hydraulic pressure control valve 31 is switched to the differential pressure state, so that the oil path Lf2 on the wheel cylinders WC1 and WC2 side of the hydraulic pressure control valve 31 in the oil path Lf. Is maintained at a pressure higher than the basic hydraulic pressure in the oil path Lf1 on the master cylinder 23 side by a predetermined differential pressure. Then, a pressure higher by the predetermined differential pressure is applied to the wheel cylinders WC1 and WC2 via the oil passages Lf4 and Lf2 and the communication pressure increase control valves 32 and 33 to generate the additional hydraulic braking force FS.
  • the above-described configuration for forming the additional hydraulic pressure to generate the additional hydraulic braking force FS is referred to as a hydraulic pressure adding device Ad.
  • the rear wheel system of the brake actuator 25 has the same configuration as that of the front wheel system described above, and the oil path Lr constituting the rear wheel system is composed of oil paths Lr1 to Lr5, similar to the oil path Lf.
  • the hydraulic pressure control valve 41 and the pressure regulating reservoir 44 are provided in the oil path Lr
  • the pressure increase control valves 42 and 43 are provided in the oil paths Lr2 and Lr2
  • the pressure reduction control valves 45 and 46 are provided in the oil path Lr3, and the oil path.
  • a pump 47 is provided in Lr4, and an electromagnetic on-off valve 48 is provided in the oil path Lr5.
  • the basic hydraulic pressure of the master cylinder 23 and the additional hydraulic pressure formed by the drive of the electric pumps 37 and 47 and the control of the hydraulic pressure control valves 31 and 41 are converted into the wheel cylinders WC1 and WC1 of the wheels FR, FL, RR and RL. It can be given to WC2, WC3, WC4.
  • the brake means is operated to apply hydraulic braking force (basic to each wheel FR, FL, RR, RL).
  • a hydraulic braking force FE and an additional hydraulic braking force FS) are added.
  • the brake means includes a disc brake, a drum brake, and the like, and friction members such as a brake pad and a brake shoe regulate the rotation of the disc rotor, the brake drum, etc. integrated with the wheels.
  • the first hydraulic pressure chamber 23d (or the second hydraulic pressure chamber 23f) of the master cylinder 23 that generates the basic hydraulic pressure and the additional hydraulic pressure is provided with the oil path Lf1 (or Lr1), the electromagnetic on-off valve 38 (or electromagnetic A basic hydraulic pressure generating container Vm according to the present invention is formed connected to the on-off valve 48).
  • the basic hydraulic pressure generating container Vm Since the basic hydraulic pressure generating container Vm has such a large capacity space and is composed of members having many volume change factors, it can be said that the rigidity is low. Therefore, the pressure P-volume V characteristic of the basic hydraulic pressure generation container Vm when a certain amount of brake fluid is sealed is as shown in FIG. 4B. If the volume is not greatly increased or decreased, the pressure increases. It turns out that it does not change.
  • the basic hydraulic pressure generating container Vm is configured to have such characteristics.
  • the rigidity of the basic hydraulic pressure generating container Vm is set to be smaller than the rigidity of the booster chamber 100 (fluid pressure generating container Vf) described above.
  • the characteristic of FIG. 4B is an example for explanation, and is not limited to this characteristic.
  • the rigidity ratio between the basic hydraulic pressure generating container Vm and the fluid pressure generating container Vf is determined by the first hydraulic pressure chamber 23d and the second hydraulic pressure chamber 23f (The booster pressure is set so as to balance the basal fluid pressure in a short time even when the basal fluid pressure of the master fluid pressure chamber of the present invention decreases.
  • the ratio of the sleeve 96 and the brake pedal 21 is set such that the booster pressure is sufficiently reduced in a state where the driver advances slightly to such an extent that the driver does not feel uncomfortable, and can be suitably balanced with the reduced basic fluid pressure. .
  • the basic fluid pressure generating container Vm and the fluid pressure generating container Vf constitute a variable basic fluid pressure absorbing mechanism.
  • the variable basic hydraulic pressure absorbing mechanism absorbs the fluctuation of the basic hydraulic pressure and suppresses the movement amount of the brake pedal 21 to a predetermined amount or less. Is to do.
  • the predetermined amount is an amount that prevents the driver from feeling uncomfortable and may be set arbitrarily. Thereby, the brake pedal 21 does not move forward beyond a predetermined amount, and it is preferably suppressed that the driver feels uncomfortable.
  • the operating rod 26 starts operating (advancing). Then, the operating rod 26 pushes the operating member 99, the spool 94, and the plunger 98.
  • the plunger 98 comes into contact with the elastic body 107. Then, the plunger 98 compresses the elastic body 107 until the depression force of the brake pedal 21 and the predetermined elastic force (repulsive force) of the elastic body 107 are balanced. Then, after the elastic body 107 is compressed and balances with the depression force of the brake pedal 21, the plunger 98 and the elastic body 107 start moving forward integrally. At this time, the elastic force of the elastic body 107 presses the plunger 98, whereby a reaction force is applied to the spool 94, that is, the brake pedal 21.
  • the spool 94 is relatively displaced with respect to the sleeve 96, and when the brake pedal 21 is depressed by a predetermined amount or more, the first valve port of the supply port 961 (pressure increasing port) provided in the sleeve 96. 961a opens to the small diameter portion 94b of the spool 94, that is, opens to the booster chamber 100.
  • the second valve port 94e1 of the spool 94 that forms the fluid pressure discharge path is closed by the inner diameter portion 96j of the sleeve 96.
  • the sleeve 96 is urged forward by the pressure in the booster chamber 100, and the elastic body 107 engaged with the large-diameter cylindrical portion 96f of the sleeve 96 is pressed against the bottom surface of the large-diameter cylindrical portion 96f.
  • the elastic body 107 presses the push rod 95 to push the first piston 23 b of the master cylinder 23 and generate a base hydraulic pressure in the master cylinder 23.
  • the master cylinder 23 generates a base hydraulic pressure.
  • the movement amount of the first piston 23b of the master cylinder 23 and the operation amount of the valve device 97 are linked in this way.
  • the operation position (operation amount) transitions to the maintenance state in order to balance with the basic hydraulic pressure of the master cylinder 23.
  • the sleeve 96 advances. As shown in FIG. 8, immediately after the first valve port 961a is closed by the first land portion 94a of the spool 94, the relative displacement between the spool 94 and the sleeve 96 stops. At this time, the second valve port 94e1 of the second land portion 94c of the spool 94 is kept closed.
  • the fluid pressure remains in the booster chamber 100, and the sleeve 96 presses the first piston 23b with a force corresponding to the fluid pressure remaining in the booster chamber 100.
  • the sleeve 96 and the first piston 23b of the master cylinder 23 are balanced, and the increase is maintained (see FIG. 8).
  • the first valve port 961a is closed by the outer periphery of the first land portion 94a of the spool 94, and the fluid pressure supply path for the fluid pressure is shut off.
  • the second valve port 94e1 opens to the drain large diameter portion 96d (pressure reduction port), that is, opens to the booster chamber 100, and the fluid pressure discharge path communicates.
  • the fluid pressure in the booster chamber 100 is adjusted so that the fluid in the booster chamber 100 passes through the large-diameter portion for drain 96d (decompression port), the discharge port 94e, the drain holes 94d, 94e, 98c, the space 106, and the like. Reduced by being discharged to 24.
  • the opening of the second valve port 94e1 is maintained for the first time, so that the pressure in the booster chamber 100 further decreases, and the sleeve 96 is pressed by the first piston 23 b of the master cylinder 23 and gradually displaced rearward relative to the spool 94.
  • the second valve port 94e1 is closed by the inner diameter portion 96j of the sleeve 96, the sleeve 96 balances and stops with the first piston 23b and is maintained in the reduced maintaining state as shown in FIG.
  • FIG. 10 the positional relationship between the first valve port 961a and the first land portion 94a of the spool 94 when the brake pedal 21 is maintained in the reduced maintenance state will be described later.
  • FIG. 7 is a characteristic diagram of the hydraulic braking force generator B with the horizontal axis representing the operation amount (stroke) of the brake pedal 21 and the vertical axis representing the braking force.
  • the brake ECU 60 grasps the operation amount from the detection signal of the pedal stroke sensor 21a, and calculates the corresponding required braking force FT.
  • the required braking force FT is a value obtained by adding the target regenerative braking force FK and the basic hydraulic braking force FE.
  • the required braking force FT indicated by a broken line in FIG. 7 is a required value of the braking force determined by the operation position of the brake pedal 21 and is stored in the brake ECU 60 as data in advance.
  • the operating point Xi in the figure indicates that the required braking force FTi is the sum of the regenerative braking force FKi and the basic hydraulic braking force FEi when the brake pedal 21 is operated by the operation amount Li.
  • the brake ECU 60 grasps the operation amount from the detection signal of the pedal stroke sensor 21a and obtains the corresponding required braking force FT.
  • a required braking force FT is generated as shown in the figure.
  • the fluid pressure supply path remains closed due to the relative positional relationship between the spool 94 and the sleeve 96, and the booster device 91 and the master cylinder 23 do not operate.
  • the regenerative braking device A is controlled so as to generate a regenerative braking force FK2 that matches the required braking force FT2, as exemplified by the operating point X1 in the figure.
  • the regenerative braking force FK2 is calculated by the target regenerative braking force calculation unit 108 of the hybrid ECU 19 (see FIG. 1).
  • the required braking force FT3 becomes larger than the maximum regenerative braking force FKmax as exemplified by the operating point X3 in the figure.
  • the first valve port 961a of the supply port 961 of the sleeve 96 opens into the booster chamber 100, and fluid pressure is applied to the booster chamber 100 via the fluid pressure supply path. Is supplied and the master cylinder 23 is driven.
  • the hydraulic braking force generator B generates a basic hydraulic pressure corresponding to the basic hydraulic braking force FE3 obtained by subtracting the maximum regenerative braking force FKmax from the required braking force FT3. Note that the basic hydraulic pressure braking force FE at this time is always accurately grasped by the basic hydraulic pressure detection data acquired from the pressure sensor SP of the brake actuator 25.
  • regenerative braking force FK is used while the brake pedal 21 is operated in the range up to the non-operation stroke L, and maximum regeneration is performed when the brake pedal 21 is operated beyond the non-operation stroke L.
  • the brake ECU 60 drives the hydraulic pressure adding device Ad configured by the electric pumps 37 and 47 and the like, and the hydraulic pressure control valves 31 and 41 provided in the hydraulic pressure path.
  • the brake fluid is sucked from the hydraulic pressure path on the master cylinder 23 side.
  • the sucked brake fluid is discharged to the wheel cylinders WC1, WC3, WC2, WC4 side from the hydraulic pressure control valves 31, 41 provided in the hydraulic pressure path, and the hydraulic pressure control valves 31, 41 are controlled.
  • An additional hydraulic pressure according to the present invention is generated.
  • an additional hydraulic braking force FS corresponding to the additional hydraulic pressure is generated and added to the basic hydraulic braking force FE after the pressure drop.
  • a required braking force FT4 is obtained by adding an additional hydraulic braking force FS4 to which the basic hydraulic braking force up to FE4 is added.
  • the master cylinder 23 side rather than the hydraulic pressure control valves 31 and 41 provided in the hydraulic pressure path.
  • the basic hydraulic pressure in the hydraulic pressure path decreases according to the amount of brake fluid sucked into the electric pump 37. That is, the urging force to the rear of the first piston 23b of the master cylinder 23, which has been urged by the basal fluid pressure before the basal fluid pressure is lowered, decreases according to the amount of brake fluid sucked. .
  • the urging force of the brake pedal 21 and the sleeve 96 that has been balanced with the first piston 23b until then becomes larger than the urging force of the first piston 23b.
  • the present invention is for suppressing the forward movement amount of the brake pedal 21 to such an extent that the driver does not feel uncomfortable.
  • the maximum regenerative braking amount FKmax target regenerative braking force FK
  • FKr target regenerative braking amount
  • the hydraulic pressure adding device Ad is started to operate at F, and as described above, the hydraulic pressure control valve 31 is switched to the differential pressure state when the electric pump 37 is operated. . Accordingly, the hydraulic pressure in the oil path Lf2 on the wheel cylinders WC1 and WC2 side in the oil path Lf is higher than the basic hydraulic pressure in the oil path Lf1 on the master cylinder 23 side by a predetermined differential pressure than the hydraulic pressure control valve 31. Hold at pressure.
  • the basic hydraulic pressure in the first and second hydraulic pressure chambers 23d, 23f of the master cylinder 23 at this time is as shown at H in FIG. 9 (e), and the basic hydraulic pressure is reduced to substantially zero. Yes.
  • the booster pressure Bp shown in FIG. 9E is higher than the basic hydraulic pressure because the booster pressure Bp is the spring force of the first and second springs 23e and 23g of the master cylinder 23 that urges the sleeve 96. This is because it is also formed by the sliding resistance of the first and second pistons 23b and 23c.
  • the basic hydraulic pressure is detected by the pressure sensor SP as described above.
  • the hydraulic pressure adding device Ad generates a differential pressure according to the control state of the hydraulic pressure control valve 31 that has been switched to the differential pressure state (see G in FIG. 9D), and the oil paths Lf4, Lf2.
  • the brake fluid is discharged to each of the wheel cylinders WC1 and WC2 via the pressure increase control valves 32 and 33 in communication with each other (see J in FIG. 9 (e)).
  • the magnitude of the additional hydraulic pressure is calculated by the brake ECU 60.
  • the brake ECU 60 calculates an additional hydraulic braking force FS obtained by adding the basic hydraulic braking force reduced at that time to the difference between the target regenerative braking force FK and the actual regenerative braking force FKr. In this way, the hydraulic pressure adding device Ad generates the additional hydraulic pressure Pa corresponding to the insufficient braking force and applies it to the wheel cylinders WC1 and WC2.
  • the electric pump 37 sucks the brake fluid from the oil path (hydraulic pressure path) on the master cylinder 23 side of the hydraulic pressure control valve 31 in the oil path Lf. .
  • the basic hydraulic pressure in the fluid path on the master cylinder 23 side decreases according to the amount of brake fluid sucked.
  • the rigidity of the fluid pressure generating container Vf (booster chamber 100) of the booster device 91 with respect to the rigidity of the basic hydraulic pressure generating container Vm including the master cylinder 23 that generates the basic hydraulic pressure is a predetermined ratio. It is set to be higher.
  • the capacity of the booster chamber 100 is slightly expanded by the advancement.
  • the pressure in the booster chamber 100 rapidly decreases as shown by K in FIG. 9 (e) and can be balanced with the base hydraulic pressure. Accordingly, the forward movement amounts of the spool 94 and the brake pedal 21 are also suppressed, so that the driver is prevented from feeling uncomfortable.
  • the difference in displacement between the first piston 23b and the sleeve 96 and the brake pedal 21 is absorbed by the elastic body 107 interposed therebetween.
  • the brake pedal 21 is operated to return (decrease), and at a predetermined position until the non-operation stroke L.
  • the case where it is stopped and maintained in the maintenance state will be described.
  • the maintenance state that has transitioned after the brake pedal 21 is operated to the return side is referred to as a reduction maintenance state.
  • the description of the process in which the depression of the brake pedal 21 is released (decrease) and the process of reaching the decrease maintaining state have been described above, the description thereof will be omitted.
  • the hydraulic pressure adding device Ad When the hydraulic pressure adding device Ad is operated to add a predetermined additional hydraulic pressure to the basic hydraulic pressure in the state maintained in the reduced maintenance state, the fluid path on the master cylinder 23 side sucked by the electric pump 37 is operated. The basal fluid pressure decreases with the amount of brake fluid sucked. Accordingly, if the brake pedal 21 moves forward unintentionally, compared to the unintended advancement of the brake pedal 21 from the increased maintenance state after the brake pedal 21 is actuated to the depression side (increase side). It is said that the driver is particularly uncomfortable feeling psychologically.
  • the relative positional relationship between the spool 94 and the sleeve 96 in the reduced maintaining state is set to have a predetermined relative positional relationship. That is, even if the hydraulic pressure application device Ad is operated and the spool 94 moves forward relative to the sleeve 96, the first valve port 961a of the supply port 961 provided in the sleeve 96 surely secures the booster chamber 100.
  • the relative positional relationship between the spool 94 and the sleeve 96 is set so as not to open. The setting method will be described below.
  • the relative position between the spool 94 and the sleeve 96 at the time when the fluid pressure discharge path is closed is used as a base point (see the state of FIG. 10).
  • the state in which the fluid pressure discharge path is closed means that the second valve port 94e1 of the discharge port 94e is not opened to the drain large-diameter portion 96d (decompression port), and the second valve port 94e1 is the sleeve 96. It is in a state of being closed by the inner diameter portion 96j.
  • the spool 94 does not move forward with respect to the sleeve 96 if the decrease in the basic hydraulic pressure on the master cylinder 23 side is sufficiently absorbed by the variable basic hydraulic pressure absorbing mechanism. Therefore, the following description corresponds to the movement of the spool 94 that cannot be absorbed by the variable base hydraulic pressure absorbing mechanism.
  • the valve device 97 connects the fluid pressure supply path to the booster chamber 100 even if the spool 94 moves from the base point with respect to the sleeve 96 by a relative movement amount corresponding to the master movement amount ⁇ m.
  • the valve device 97 does not connect the fluid pressure supply path to the booster chamber 100 and does not connect the fluid pressure discharge path.
  • a distance L1 between the supply port 961 (pressure increasing port) of the sleeve 96 and the drain large diameter portion 96d (pressure reducing port) in the sliding direction is set. That is, a predetermined spool movement amount ⁇ sf can be created by the distance between the pressure increasing port and the pressure reducing port.
  • the operation sensitivity of the valve device 97 is dulled, that is, by suppressing the operation amount of the valve device 97, the hydraulic pressure adding device Ad is operated, and the first piston 23b is set to a predetermined master.
  • the first valve port 961a is prevented from opening to the booster chamber 100 even if it moves forward by a movement amount ( ⁇ m). As a result, the brake pedal 21 is prevented from being sucked largely against the driver's intention.
  • the predetermined master movement amount ( ⁇ m) means, for example, that the vehicle speed decreases to a predetermined value or less and braking by the regenerative braking force FK becomes difficult, and the set maximum regenerative braking force FKmax is all the additional hydraulic braking force.
  • This is the amount of movement of the first piston 23b when it is switched to FS.
  • the hydraulic pressure adding device Ad operates to achieve the target additional hydraulic braking force FS (having the same magnitude as the maximum regenerative braking force FKmax), and the basic hydraulic pressure of the master cylinder 23 decreases, so that the master The amount of movement by which the first piston 23b of the cylinder 23 moves forward is assumed.
  • the predetermined master movement amount ( ⁇ m) is such that the first piston 23b moves when the regenerative braking force FK exceeding the set maximum regenerative braking force FKmax is replaced with the additional hydraulic braking force FS. It may be a moving amount. Further, the predetermined master movement amount ( ⁇ m) is a movement amount by which the first piston 23b moves when the regenerative braking force FK lower than the set maximum regenerative braking force FKmax is replaced with the additional hydraulic braking force FS. Good.
  • the master movement amount ⁇ m is not limited to the above-described mode, and for example, a maximum value of the master movement amount of the first piston 23b in various brake operation modes that occurs during actual vehicle travel is acquired, and the maximum value is set. It may be a value.
  • the method of setting the master movement amount ⁇ m and the magnitude of the set value are not limited to the above-described mode, and may be set in any manner.
  • the relative movement amount of the spool 94 to the sleeve 96 that moves according to the predetermined master movement amount ⁇ m is larger than the spool movement amount ⁇ sf. small. For this reason, the first valve port 961a does not open to the booster chamber 100. Then, the booster device 91 is operated, and the sleeve 96, the spool 94, the brake pedal 21 and the like are not moved forward greatly.
  • the hydraulic pressure application device Ad When the hydraulic pressure application device Ad is operated to apply a predetermined hydraulic pressure to the cylinder, the basic hydraulic pressure in the fluid path on the master cylinder 23 side decreases. As a result, the spool 94 relatively moves forward with respect to the sleeve 96.
  • the base hydraulic pressure is based on the relative position when the fluid pressure discharge path is closed in accordance with the transition to the reduced maintenance state (maintenance state). If the forward movement amount, which is the direction in which the pressure decreases, is less than or equal to a predetermined spool movement amount ⁇ sf (predetermined valve operation amount), the fluid pressure supply path is closed. Therefore, even if the hydraulic pressure adding device Ad increases the additional hydraulic pressure and decreases the basic hydraulic pressure in the reduced maintenance state (maintenance state), a large increase in the amount of operation of the brake pedal 21 ahead can be prevented. Thereby, the operation feeling of the driver's brake pedal 21 is improved.
  • the rigidity of the basic hydraulic pressure generating container Vm including the first hydraulic pressure chamber 23d and the second hydraulic pressure chamber 23f that determines the pressure-volume characteristic of the basic hydraulic pressure is set to the hydraulic pressure of the booster chamber 100.
  • the rigidity of the fluid pressure generating container Vf including the booster chamber 100 that determines the pressure-volume characteristics of the fluid is lower than that of the fluid pressure generating container Vf.
  • the spool movement amount ⁇ sf is set as shown in FIG. 10 when the brake pedal 21 is maintained in the reduced maintenance state.
  • the present invention is not limited to this mode, and as a first modification of the first embodiment, the spool movement amount ⁇ sf1 (predetermined valve operation amount) may be set as shown in FIG.
  • the front end of the first valve port 961a of the supply port 961 pressure increasing port
  • the spool movement amount ⁇ sf1 corresponding to the overlap is set to coincide with the length obtained by subtracting the opening diameter of the first valve port 961a from the axial length of the first land portion 94a.
  • the spool movement amount ⁇ sf1 becomes longer than the spool movement amount ⁇ sf shown in FIG. 10, so that the sensitivity of the operation of the valve device 97 is further reduced, and the opening of the fluid pressure supply path by the valve device 97 is further suppressed.
  • forward movement (suction) of the brake pedal 21 can be suppressed.
  • the distance L1 between the drain large-diameter portion 96d (pressure reduction port) of the sleeve 96 that forms the fluid pressure discharge path and the supply port 961 (pressure increase port) that forms the fluid pressure supply path is as shown in FIG. It is formed as shown in FIG. That is, in the present embodiment, the predetermined spool movement amount ⁇ sf can be created by adjusting the distance L1 between the supply port 961 (pressure increase port) and the drain large diameter portion 96d (pressure reduction port).
  • the basic hydraulic pressure is 0 when the brake pedal 21 is stopped at the non-operation stroke L or less in the depressed state of the plurality of brake pedals 21. .
  • the hydraulic pressure adding device Ad is operated in order to replace the regenerative braking force FK with the additional hydraulic pressure braking force FS, the basic hydraulic pressure immediately becomes negative.
  • the brake pedal 21 is most easily moved forward. For this reason, in this embodiment, the greatest effect is obtained when the brake pedal 21 is stopped at the non-operation stroke L or less.
  • the second embodiment is an embodiment in an increase maintaining state in which the brake pedal 21 is stopped after being depressed more than the non-operation stroke L among the depressed states of a plurality of brake pedals 21 and transitioned (see FIG. 8). ).
  • the second embodiment differs from the first embodiment only in the relative positional relationship between the spool 94 and the sleeve 96 in the depressed state of the brake pedal 21 and the increased maintaining state that transitions thereafter.
  • the description of the same part is omitted, and only the changed part is described.
  • the same parts are described with the same reference numerals.
  • the additional hydraulic pressure decreases or becomes zero.
  • the basic hydraulic pressure on the master cylinder 23 side which has been decreasing, increases according to the decrease degree of the additional hydraulic pressure.
  • the brake pedal 21 moves backward unintentionally, the driver may feel uncomfortable. Therefore, in the first modification, the relative positional relationship between the spool 94 and the sleeve 96 in the increase maintaining state is set.
  • the relative position between the spool 94 and the sleeve 96 at the time when the fluid pressure supply path is closed in the increase maintaining state is used as a base point.
  • the state where the fluid pressure supply path is closed refers to a state where the first valve port 961a of the supply port 961 (pressure increasing port) is closed by the first land portion 94a of the spool 94.
  • the basic hydraulic pressure on the master cylinder 23 side is increased according to the decrease degree of the additional hydraulic pressure.
  • the first piston 23b (master piston) is moved backward by the master movement amount ⁇ m according to the increase in the basic hydraulic pressure.
  • the master movement amount ⁇ m is set based on the maximum regenerative braking force FKmax.
  • the valve device 97 does not connect the fluid pressure discharge path to the booster chamber 100 even if the spool 94 moves by a relative movement amount relative to the sleeve 96 according to the master movement amount ⁇ m.
  • the operation amount of the device 97 that is, a predetermined spool movement amount ⁇ sr (corresponding to the predetermined valve operation amount of the present invention) is set. Then, even if the spool moves by the predetermined spool movement amount ⁇ sf (see FIG.
  • valve device 97 does not connect the fluid pressure discharge path to the booster chamber 100 and does not connect the fluid pressure supply path.
  • a distance L2 between the supply port 961 (pressure increasing port) of the sleeve 96 and the drain large diameter portion 96d (pressure reducing port) in the moving direction is set. In this way, a predetermined spool movement amount ⁇ sr can be created according to the distance between the pressure increasing port and the pressure reducing port.
  • the basic hydraulic pressure on the master cylinder 23 side increases, and even if the first piston 23b moves backward by the master movement amount ⁇ m, the relative movement of the spool 94 with respect to the sleeve 96 that moves according to the master movement amount ⁇ m.
  • the amount is smaller than the spool movement amount ⁇ sr.
  • the second valve port 94e1 does not open to the drain large-diameter portion 96d (pressure reduction port), that is, the booster chamber 100.
  • the pressure in the booster chamber 100 is discharged through the fluid pressure discharge path, and is further reduced, so that the sleeve 96, the spool 94, the brake pedal 21 and the like are not greatly moved rearward.
  • the brake pedal 21 is There will be no significant unintentional retreat, and there will be no uncomfortable feeling in the operation feeling of the brake pedal 21.
  • the predetermined spool movement amount ⁇ sr is set based on the master movement amount ⁇ m of the first piston 23b (master piston).
  • the master movement amount ⁇ m serving as a reference for setting the spool movement amount ⁇ sr is not set based on the maximum rotational braking force FKmax as described above, but is the first in various brake operation modes that occur during actual vehicle travel.
  • the maximum value of the master movement amount to the rear of the piston 23b may be acquired, and the maximum value may be set as the set value.
  • the method for setting the master movement amount ⁇ m and the size of the set value are not limited to this, and may be set in any manner.
  • the increase occurs.
  • the movement amount in the direction (backward) in which the base hydraulic pressure increases with the relative position at the time when the fluid pressure supply path is closed is the spool movement amount ⁇ sr (predetermined valve operation) If the amount is equal to or less than the amount, the fluid pressure discharge path is closed and the fluid pressure supply path is also closed. Therefore, when the additional hydraulic pressure to the oil path on the side of the wheel cylinders WC1, WC2 is decreased while the brake pedal 21 is maintained in an increased state, it is possible to prevent the amount of operation of the brake pedal 21 from greatly decreasing.
  • the relationship between the master movement amount ⁇ m and the spool movement amounts ⁇ sf and ⁇ sr and the rigidity relationship between the basic hydraulic pressure generation container Vm and the fluid pressure generation container Vf are set.
  • the mode to set was applied simultaneously.
  • the present invention is not limited to this mode, and only a mode in which the relationship between the master movement amount ⁇ m and the spool movement amounts ⁇ sf and ⁇ sr may be applied to the embodiment. This also provides a sufficient effect.
  • the spool 94 moves with respect to the sleeve 96 by the spool moving amount ⁇ sf by the predetermined master moving amount ⁇ m of the first piston 23 b (master piston) generated by the operation of the hydraulic pressure adding device Ad.
  • ⁇ sr and the relative relationship between the basic hydraulic pressure generating container Vm and the fluid pressure generating container Vf may be set so as not to move relative to each other.
  • the second valve port 94e1 can be prevented from opening to the booster chamber 100 by the amount of the spool movement amount ⁇ sr. Thereby, the pressure of the booster chamber 100 is prevented from greatly decreasing. For this reason, when the pressure in the booster chamber 100 decreases, the sleeve 96 is urged to the basic hydraulic pressure, moves relative to the spool 94, moves backward, and the first valve port 961a of the supply port 961 is opened to the booster chamber 100. Can be prevented. As a result, the sleeve 96, the spool 94, and the brake pedal 21 are restrained from being pushed forward by the fluid pressure in the booster chamber 100.
  • the relative positional relationship between the spool 94 and the sleeve 96 is set as shown in FIG.
  • the relative positional relationship between the spool 94 and the sleeve 96 is set as shown in FIG.
  • FIG. 8 a state at the moment when the spool 94 and the sleeve 96 are balanced immediately after the brake pedal 21 transitions to the increase maintaining state is shown. For this reason, the rear end of the first valve port 961a of the supply port 961 (pressure increasing port) and the rear end of the first land portion 94a of the spool 94 coincide with each other, and the first valve port 961a is closed.
  • a predetermined spool movement amount ⁇ sf2 is set.
  • the relationship between the predetermined master movement amount ⁇ m and the predetermined spool movement amount ⁇ sf2 is the same as the relationship between the predetermined master movement amount ⁇ m and the predetermined spool movement amount ⁇ sf in the first embodiment. is there. This also provides the same effect as that of the first embodiment.
  • a predetermined distance depends on the distance between the supply port 961 (pressure increase port) and the drain large diameter portion 96d (pressure reduction port).
  • the spool movement amount ⁇ sf2 can be created.
  • the configuration of the hybrid vehicle and the configuration of the master cylinder 23 and the brake actuator 25 in the fourth embodiment are the same as those in the first embodiment described with reference to FIGS. 1 and 2.
  • the vehicle brake device includes a hydraulic braking force generator D and a regenerative braking force generator A (see FIG. 1).
  • the hydraulic braking force generator D includes a basic hydraulic pressure supply device T that supplies basic hydraulic pressure corresponding to the operation amount of the brake pedal 21 to the wheel cylinders WC1, WC2, WC3, and WC4, and adds an additional hydraulic pressure to the basic hydraulic pressure. And a hydraulic pressure application device Ad.
  • the basic hydraulic pressure supply device T is connected to the brake pedal 21. Further, the basic hydraulic pressure supply device T is configured to include a booster device 122.
  • FIG. 13 is a cross-sectional view illustrating a negative pressure booster device 122 according to the fourth embodiment. In this embodiment, the direction in which the brake pedal 21 is depressed is referred to as the front, and the return direction of the brake pedal 21 is referred to as the rear.
  • the negative pressure booster device 122 includes a booster shell 181 composed of a front shell 181a and a rear shell 181b. Inside the booster shell 181, a partition member 182 is provided which is made of a rubber diaphragm 182 a and a metal plate 182 b and moves in the front-rear direction. Due to the partition member 182, the inside of the booster shell 181 is divided into a negative pressure chamber R 1 on the left side in the figure in which the internal volume changes and a booster room R 2 on the right side in the figure (corresponding to the transformer chamber and the booster chamber of the present invention). It is partitioned. The booster shell 181 is disposed on a coaxial line between the first piston 23b of the master cylinder 23 and the brake pedal 21 (not shown in FIG. 13).
  • the negative pressure inlet 122a provided in the front shell 181a communicates with the intake manifold of the engine 11 which is a negative pressure source. Therefore, the negative pressure chamber R1 is always in a negative pressure state while the engine 11 is operating.
  • the booster chamber R ⁇ b> 2 communicates with and is disconnected from the negative pressure chamber R ⁇ b> 1 through the valve device 118, and also communicates and is disconnected from the atmosphere through the valve device 118.
  • the negative pressure booster device 122 uses atmospheric air having a relatively high pressure relative to the negative pressure in the negative pressure chamber R1 as a pressure source (fluid pressure source).
  • the negative pressure booster device 122 is connected to the brake pedal 21 via the operating rod 126.
  • the negative pressure booster device 122 is connected to the master cylinder 23 via a push rod 127.
  • FIG. 14 is a partial cross-sectional view of the vicinity of the valve device 118 of the negative pressure booster device 122. After the brake pedal 21 is depressed beyond the non-operation stroke L and the base hydraulic pressure is generated, the brake pedal 21 is decreased. The transition state (decrease maintenance state) is shown. In the process of reaching the decrease maintaining state, the atmospheric pressure valve body 186b and the atmospheric pressure valve seat 852 first come into contact with each other, and then the negative pressure valve body 186a and the negative pressure valve seat 851 come into contact with each other.
  • the piston member 183 (corresponding to the piston portion of the present invention) includes a valve piston 182c in which a communication path 182d is formed, and a partition member whose inner peripheral side is fixed and interlocked with the valve piston 182c. 182. Further, the push rod 127 is moved in the direction of the master cylinder 23 through an end surface (corresponding to an end surface that presses the master piston of the present invention) formed by the valve piston 182c with an area A2 of the cylindrical elastic body 127a. It is arranged to be pushed.
  • the plunger 184a having a columnar shape (corresponding to the valve body of the present invention and corresponding to the pressing portion) is arranged to be pushed toward the master cylinder 23 by the operating rod 126.
  • a cylindrical reaction force member 845 is disposed in contact with a front end surface (corresponding to an end surface that presses the elastic body of the present invention) formed with an area A1 on the master cylinder 23 side of the plunger 184a.
  • the reaction force member 845 comes into contact with one end surface of the elastic body 127a and a front end surface formed with an area A1, receives reaction force from the elastic body 127a, and applies it to the plunger 184a.
  • the reaction force member 845 forms a pressing portion together with the plunger 184a.
  • the valve device 118 includes a negative pressure valve seat 851, an atmospheric pressure valve seat 852, and a valve body 186 provided with a negative pressure valve body 186a and an atmospheric pressure valve body 186b.
  • the atmospheric pressure valve body 186b and the atmospheric pressure valve seat 852 constitute an atmospheric pressure valve.
  • the negative pressure valve body 186a and the negative pressure valve seat 851 constitute a negative pressure valve.
  • the negative pressure valve seat 851 is formed at the end edge of the valve piston 182c near the outlet of the communication passage 182d.
  • the plunger 184a constitutes a valve portion 184 by an atmospheric pressure valve seat member 184b (corresponding to a movable portion of the present invention) and an urging member 184c that urges the atmospheric pressure valve seat member 184b toward the valve body side of the atmospheric pressure valve body 186b. is doing.
  • the atmospheric pressure valve seat 852 is formed on the outer peripheral edge on the right side of the atmospheric pressure valve seat member 184b in the drawing, that is, the outer peripheral edge on the negative pressure valve body 186a side.
  • a cylindrical portion 185 is formed on the plunger 184a, and a flange 185a is formed at the right end of the cylindrical portion 185 in FIG.
  • a protruding portion 185b (corresponding to the main body protruding portion of the present invention) is formed on the outer periphery of the cylindrical portion 185 on the left side of the flange 185a, and has the same outer diameter as the flange 185a and protrudes toward the movable portion.
  • the atmospheric pressure valve seat member 184b which is a movable part, is mounted on the outer periphery of the plunger 184a so as to be slidable in the axial direction.
  • the atmospheric pressure valve seat member 184b is formed in a cylindrical shape, and the end on the right side in the figure is expanded to form the valve seat part 195, and the end on the left side in the figure is reduced in diameter to the side of the plunger 184a that is the valve body.
  • a small-diameter portion 196 (corresponding to the valve protrusion portion of the present invention) is formed.
  • the above-described atmospheric pressure valve seat 852 is formed on the end surface of the valve seat portion 195 on the brake pedal 21 side.
  • the cylindrical inner diameter of the atmospheric pressure valve seat member 184b is formed to be slightly larger than the outer diameters of the flange 185a and the protruding portion 185b of the plunger 184a.
  • a distance L3 between the protruding portion 185b (main body protruding portion) and the small diameter portion 196 (valve protruding portion) is set based on a valve movement amount ⁇ v described later.
  • the inner diameter of the small diameter portion 196 of the atmospheric pressure valve seat member 184b is slightly larger than the outer diameter of the cylindrical portion 185 of the plunger 184a.
  • the flange 185a of the atmospheric pressure valve seat member 184b and the outer periphery of the projecting portion 185b and the inner periphery of the small diameter portion 196 are engaged with the outer periphery of the flange 185a and the projecting portion 185b of the plunger 184a so as to be slidable in the axial direction.
  • the atmospheric pressure valve seat member 184b is mounted on the plunger 184a so as to be slidable in the axial direction.
  • a seal member is disposed between the flange 185a of the plunger 184a and the projecting portion 185b, and the space between the plunger 184a and the atmospheric pressure valve seat member 184b is liquid-tightly sealed.
  • the valve body 186 is an annular member disposed between the operating rod 126 and the valve piston 182c, and is urged in the direction of the master cylinder 23 by the spring 863 so that it can move in the axial direction.
  • the negative pressure valve body 186 a provided in the valve body 186 is in contact with the negative pressure valve seat 851
  • the atmospheric pressure valve body 186 b provided in the valve body 186 is in contact with the atmospheric pressure valve seat 852. It is in contact.
  • the valve movement amount ⁇ v (corresponding to a predetermined valve operation amount)
  • the valve movement amount ⁇ v of the gap 187 is set so that the sensitivity of the operation of the valve device 118 is a predetermined sensitivity.
  • the valve movement amount ⁇ v is reduced in the booster device 122 in the state of maintaining the decrease, the hydraulic pressure adding device Ad operates, the basic hydraulic pressure on the master cylinder 23 side decreases, and the first piston 23b moves to the master movement amount.
  • the valve movement amount ⁇ v can be made by adjusting the distance L3.
  • the master movement amount ⁇ m may be set based on the maximum regenerative braking force FKmax as in the above embodiment.
  • the valve movement amount ⁇ v is set based on the master movement amount ⁇ m
  • the master movement amount ⁇ m is set based on the magnitude of the maximum regenerative braking force FKmax.
  • the setting of the master movement amount ⁇ m is arbitrary as in the above embodiment, and is not limited to this mode.
  • the space Z1 in the communication passage 182d formed in the valve piston 182c is always in communication with the negative pressure chamber R1.
  • a space Z2 between the valve piston 182c and the plunger 184a is always in communication with the booster chamber R2.
  • the space Z3 (fluid pressure source) on the inner peripheral side of the valve body 186 is always in communication with the atmosphere. Then, the space Z1 and the space Z2 are blocked, and the space Z2 and the space Z3 communicate with each other, whereby the pressure in the booster chamber R2 increases and the negative pressure booster device 122 is operated. As a result, the negative pressure booster device 122 drives the master cylinder 23 to generate a base hydraulic pressure in the master cylinder 23.
  • the negative pressure type booster device 122 is in the decrease maintaining state (see FIG. 13), as in the first embodiment, when the hydraulic pressure adding device Ad is operated, the basic hydraulic pressure on the master cylinder 23 side decreases. To do. As a result, the plunger 184a of the valve portion 184 is displaced forward by an amount corresponding to the master movement amount ⁇ m. However, between the plunger 184a and the atmospheric pressure valve seat member 184b, this corresponds to the valve movement amount ⁇ v (predetermined valve operation amount) set to be larger than the movement amount of the plunger 184a corresponding to the master movement amount ⁇ m.
  • ⁇ v predetermined valve operation amount
  • a gap portion 187 having a gap of the distance L3 is provided. For this reason, even if the plunger 184a is displaced forward by an amount corresponding to the master movement amount ⁇ m, the plunger 184a does not open the atmospheric pressure valve body 186b in conjunction with the atmospheric pressure valve seat member 184b. As a result, the booster chamber R2 communicates with the atmosphere (space Z3) to increase the pressure in the booster chamber R2, and the piston member 183 and the brake pedal 21 are moved (advanced) greatly to make the driver feel uncomfortable. There is no fear.
  • the booster device according to the fourth embodiment is a negative pressure type booster device 122 using negative pressure.
  • the hydraulic pressure adding device Ad is operated, and the plunger 184a brakes against the piston member 183.
  • the atmospheric pressure valve seat 852 is urged by the urging member 184c so as not to be separated from the atmospheric pressure valve body 186b during the valve movement amount ⁇ v (a predetermined valve movement amount ⁇ v (predetermined). Is set).
  • the atmospheric pressure valve seat 852 is separated from the atmospheric pressure valve body 186b, so that no new atmospheric pressure is introduced into the space Z2 (booster room). For this reason, it is possible to suppress the piston member 183 and the brake pedal 21 from being largely moved in the depression direction of the brake pedal 21. For this reason, when the brake pedal 21 transitions to the decrease maintaining state, the hydraulic pressure application device Ad is actuated, and the brake pedal 21 is prevented from moving forward.
  • the elastic body 107 interposed between the pressing portion (plunger 98, plunger 184a and reaction force member 845) and the push rods 95 and 127 is used.
  • the operation amount of the valve device 118 may be suppressed in the operation of the valve devices 97, 118 by the area ratio (A2 / A1). Since the area ratio (A2 / A1) has already been described in detail, detailed description thereof is omitted. Specifically, the area A1, that is, the outer diameter d of the pressing portion (plunger 98, plunger 184a, and reaction force member 845) is increased or the elastic bodies 107, 127a so that the area ratio (A2 / A1) is decreased.
  • the area ratio (A2 / A1) may be reduced by reducing the area A2 of the front end face, that is, the outer diameter D1, (see FIG. 5).
  • the amplification factor of the operating force when the driver depresses the brake pedal 21 decreases, so that the sensitivity of the operation of the valve devices 97 and 118 becomes dull, and the operation amount of the valve devices 97 and 118 can be suppressed. That is, the change in the operation amount of the valve devices 97 and 118 with respect to the change in the master cylinder pressure can be suppressed.
  • the area ratio (A2 / A1) may be set to be equal to or less than the operation amount (predetermined spool movement amount ⁇ sf, ⁇ sf1, ⁇ sf2, predetermined valve movement amount ⁇ v). This also provides the same effect as the other embodiments.
  • the hardness (elastic modulus) of the elastic bodies 107 and 127a is changed to change the sensitivity of the valve devices 97 and 118. May be set to be equal to or less than the predetermined valve operation amount (predetermined spool movement amount ⁇ sf, ⁇ sf1, ⁇ sf2, predetermined valve movement amount ⁇ v).
  • predetermined valve operation amount predetermined spool movement amount ⁇ sf, ⁇ sf1, ⁇ sf2, predetermined valve movement amount ⁇ v.
  • the pressure P1 generated inside is propagated to the front end face with the pressure P1 ′ at a rate corresponding to the hardness of the elastic bodies 107 and 127a (see FIG. 15). It has been found that this propagation rate decreases with increasing hardness. Thereby, it can be said that the sensitivity of the operation of the valve devices 97 and 118 has decreased. That is, by increasing the hardness, it is possible to suppress changes in the operation amounts of the valve devices 97 and 118 with respect to changes in the master cylinder pressure. Then, when the hydraulic pressure application device Ad is operated and the first piston 23b (master piston) of the master cylinder 23 is displaced forward by the master movement amount ⁇ m, the operation amounts of the valve devices 97 and 118 are the predetermined valve operation amounts.
  • the hardness of the elastic bodies 107 and 127a may be set to be equal to or less than (predetermined spool movement amounts ⁇ sf, ⁇ sf1, ⁇ sf2, predetermined valve movement amount ⁇ v). This also provides the same effects as those of the other embodiments described above.
  • another effect is also produced by increasing the hardness of the elastic bodies 107 and 127a. That is, the higher the hardness of the elastic bodies 107 and 127a, the more the elastic bodies 107 and 127a are compressed, and the pressing force of the plunger 98 and plunger 184a (including the reaction force member 845 in the fourth embodiment) and the elastic bodies 107 and 127a.
  • the distance that the plunger 98 and the plunger 184a (including the reaction force member 845 in the fourth embodiment) idle and move forward is shortened until the repulsive force is balanced. Thereby, it is possible to prevent the set predetermined spool movement amounts ⁇ sf, ⁇ sf1, ⁇ sf2 and the valve movement amount ⁇ v from becoming smaller than the set values due to idling.
  • the electric pumps 37 and 47 are always operated, and the additional hydraulic braking force FS is controlled by an instruction value to the hydraulic pressure control valves 31 and 41.
  • the invention is not limited thereto, and the electric pumps 37 and 47 are not limited thereto.
  • the additional hydraulic braking force FS may be controlled by controlling the amount of brake fluid discharged by.
  • the movement amount of the first and second pistons 23b, 23c (master piston) and the operation amount of the valve devices 97, 118 (the relative movement amount of the spool 94 with respect to the sleeve 96, the valve portion 184 of the valve piston 182c).
  • the present invention has been described by exemplifying a case in which the relative movement amount relative to the distance is interlocked. However, even if the first and second pistons 23b and 23c (master piston) do not move, it is conceivable that the valve devices 97 and 118 operate due to a change in the master cylinder pressure.
  • valve devices 97 and 118 are operated by the control of at least one of the hydraulic control valves 31 and 41 and the electric pumps 37 and 47 in the maintenance state where the operation amount of the brake operation member 21 is maintained. If the valve operation amount of the valve devices 97, 118 based on the state of the valve devices 97, 118 at the time of transition to the maintenance state is equal to or less than a predetermined valve operation amount, fluid pressure is supplied by the valve devices 97, 118. By configuring so that the path is not opened, the same effect as in the above-described plurality of embodiments can be obtained.
  • the brake piping system is configured by a front and rear division system, but may be configured by an X piping system. Moreover, it is applicable not only to a hybrid vehicle but also to an electric vehicle equipped with only a motor as a drive source.
  • control valve hydraulic pressure control
  • 37, 47 ... pump electric pump
  • 60 ... brake ECU 91 ... booster device (hydraulic booster device)
  • 92 ... Outer cylinder 93 ... Fluid pressure source (pressure source)
  • 94 ... Spool 95, 127 ... Push rod, 96 ... Sleeve, 97, 118 ... Valve device, 98 ... Plunger, 100, R2 ... Booster chamber, 122 ... Booster device (negative pressure type booster device), 181 ... Booster shell, 182 ... Partition member, 182c ... Piston part (valve piston), 183 ... Piston part (piston member), 184 ... Valve part, 184a ...
  • Valve body (plunger) , 184b ... movable part (atmospheric pressure valve seat member), 184c ... biasing member, 186 ... valve body, 186a ... negative pressure valve body, 186b ... atmospheric pressure valve body, 851 ... negative pressure valve seat, 852 ... atmospheric pressure valve seat,
  • a ... regenerative Brake force generator (regenerative brake device), B ... hydraulic brake force generator, CB ... vehicle brake device, FR, FL, RR, RL ... wheel Lf, Lr ... oil path, WC1, WC2, WC3, WC4 ... wheel cylinder, L ... non-operation stroke, R1 ... negative pressure chamber, R2 ... booster chamber (transformer chamber), S ... basic hydraulic pressure supply device, Z3 ... fluid Pressure source.

Abstract

This vehicle brake device, which exhibits a good brake feel, is equipped with: a base hydraulic pressure supply unit (S, T) which has a booster unit (91, 122) which connects to a brake-manipulating member (21) and drives a master piston (23b, 23c), said base hydraulic pressure supply unit (S, T) being for supplying wheel cylinders (WC) with a base hydraulic pressure that is based on the amount of manipulation; a hydraulic braking force generation unit (B, D) which includes a hydraulic pressure application unit (Ad) for adding additional hydraulic pressure to the base hydraulic pressure; and a regenerative braking force generation unit (A) for applying a regenerative braking force (FK) to the wheels. The vehicle brake device is configured such that even when controlling of a control valve (31, 41) and/or a pump (37, 47) results in actuation of a valve unit (97, 118) while the amount of manipulation is being maintained, the valve unit will not allow a pathway for hydraulic pressure to be opened if the amount of actuation of the valve unit relative to the state of the valve unit at the time of transition to the maintain state is equal to or smaller than a predetermined amount of valve actuation.

Description

車両用ブレーキ装置Brake device for vehicle
 本発明は、ブレーキブースタを備え、液圧ブレーキ装置による液圧制動力と回生ブレーキ装置による回生制動力とにより、要求される車両制動力を発生させる車両用ブレーキ装置に関する。 The present invention relates to a vehicle brake device that includes a brake booster and generates a required vehicle braking force by a hydraulic braking force by a hydraulic braking device and a regenerative braking force by a regenerative braking device.
 従来、ブレーキブースタを備え、液圧ブレーキ装置による液圧制動力と回生ブレーキ装置による回生制動力とにより、要求される車両制動力を発生させる制御(回生協調制御)を行なう車両用ブレーキ装置が知られている(例えば特許文献1参照)。 2. Description of the Related Art Conventionally, there is known a vehicle brake device that includes a brake booster and performs control (regenerative cooperative control) to generate a required vehicle braking force by a hydraulic braking force by a hydraulic braking device and a regenerative braking force by a regenerative braking device. (For example, refer to Patent Document 1).
 一方、マスタシリンダとホイールシリンダとの間の液圧経路に制御弁を設け、液圧経路の制御弁よりもマスタシリンダ側の部分と、液圧経路の制御弁よりもホイールシリンダ側の部分との間にポンプを設けて、ポンプにより、液圧経路の制御弁よりもマスタシリンダ側の部分のブレーキ液を、液圧経路の制御弁よりもホイールシリンダ側の部分に吐出しつつ制御弁を制御することにより、ホイール圧を基礎液圧以上の液圧にして、上記回生協調制御を行なうものが知られている。 On the other hand, a control valve is provided in the hydraulic pressure path between the master cylinder and the wheel cylinder, and a portion on the master cylinder side with respect to the control valve in the hydraulic pressure path and a portion on the wheel cylinder side with respect to the control valve in the hydraulic pressure path are provided. A pump is provided in between, and the control valve is controlled by the pump while discharging brake fluid in a portion closer to the master cylinder than the control valve in the hydraulic pressure path to a portion closer to the wheel cylinder than the control valve in the hydraulic pressure path. Thus, it is known to perform the regeneration cooperative control by setting the wheel pressure to a hydraulic pressure higher than the basic hydraulic pressure.
特開2001-63540号公報JP 2001-63540 A
 しかしながら、この車両用ブレーキ装置にブレーキブースタ(例えば、特許文献1のハイドロブースタ250)を備えた場合、このブレーキ操作フィーリングに改善の余地が生じる。すなわち、マスタシリンダ(M/C51)のブレーキ液がホイールシリンダに供給されると、マスタピストン(M/Cピストン54)が前進する。この前進量が、ブレーキ操作フィーリングに影響しない僅かなものであったとしても、マスタピストンの前進に伴ってブレーキブースタの流体圧源(アキュムレータ263)からブースタ室(ブースタ後室250b)に流体圧が供給されると、ブレーキ操作部材(ブレーキペダルBP)の操作量が大きく増大してしまうことが考えられる。これにより、運転者が、予期せぬタイミングでのブレーキペダルの移動に違和感を感じる虞がある。 However, when this vehicle brake device is provided with a brake booster (for example, the hydro booster 250 of Patent Document 1), there is room for improvement in the brake operation feeling. That is, when the brake fluid of the master cylinder (M / C 51) is supplied to the wheel cylinder, the master piston (M / C piston 54) moves forward. Even if the amount of advance is a small amount that does not affect the brake operation feeling, the fluid pressure from the fluid pressure source (accumulator 263) of the brake booster to the booster chamber (booster rear chamber 250b) as the master piston advances. Is supplied, the amount of operation of the brake operation member (brake pedal BP) may increase significantly. As a result, the driver may feel uncomfortable with the movement of the brake pedal at an unexpected timing.
 本発明は、上記課題に鑑みてなされたものであって、ブレーキ操作フィーリングが良好な車両用ブレーキ装置を提供することを目的とする。 This invention is made in view of the said subject, Comprising: It aims at providing the brake device for vehicles with a favorable brake operation feeling.
 上記課題を解決する請求項1に係る車両用ブレーキ装置の発明は、ブレーキ操作部材に接続され、流体圧源(24,93,Z3)とブースタ室(100,R2)との間の流体圧経路を開閉する弁装置(97,118)の作動により、前記ブースタ室(100,R2)に前記ブレーキ操作部材(21)の操作量に応じた流体圧を発生させ、その流体圧に対応する力でマスタピストン(23b,23c)を駆動するブースタ装置(91,122)を有して構成され、ホイールシリンダ(WC)に前記操作量に応じた基礎液圧を供給する基礎液圧供給装置(S,T)と、前記基礎液圧供給装置と前記ホイールシリンダ(WC)との間の液圧経路に設けられ、前記基礎液圧供給装置側の液圧と前記ホイールシリンダ側の液圧との差圧を調整する制御弁(31,41)と前記液圧経路の前記制御弁よりも前記基礎液圧供給装置側のブレーキ液を前記液圧経路の前記制御弁よりも前記ホイールシリンダ側に吐出するポンプ(37,47)とを有し、前記制御弁及び前記ポンプの少なくともいずれか一方の作動により前記基礎液圧に付加液圧を付加する液圧付加装置(Ad)と、を含んで構成されている液圧制動力発生装置(B,D)と、前記車輪に回生制動力を付与する回生制動力発生装置(A)と、を備え、前記操作量が維持されている維持状態で、前記制御弁及び前記ポンプの少なくともいずれか一方の制御により前記弁装置が作動したとしても、その維持状態に遷移した時点における前記弁装置の状態を基準とする前記弁装置の作動量が所定の弁作動量以下であれば、前記弁装置により前記流体圧経路が開放されないように構成されている。 The invention of the vehicle brake device according to claim 1 that solves the above-mentioned problem is connected to a brake operation member, and a fluid pressure path between the fluid pressure source (24, 93, Z3) and the booster chamber (100, R2). By operating the valve device (97, 118) that opens and closes, a fluid pressure corresponding to the operation amount of the brake operation member (21) is generated in the booster chamber (100, R2), and a force corresponding to the fluid pressure is generated. The basic hydraulic pressure supply device (S, S) is configured to have a booster device (91, 122) for driving the master piston (23b, 23c), and supplies a basic hydraulic pressure corresponding to the operation amount to the wheel cylinder (WC). T) and a hydraulic pressure path between the basic hydraulic pressure supply device and the wheel cylinder (WC), and a differential pressure between the hydraulic pressure on the basic hydraulic pressure supply device side and the hydraulic pressure on the wheel cylinder side Adjust the control (31, 41) and a pump (37, 47) for discharging the brake fluid closer to the basic hydraulic pressure supply device than the control valve of the hydraulic pressure path to the wheel cylinder side of the control valve of the hydraulic pressure path And a hydraulic pressure addition device (Ad) for adding an additional hydraulic pressure to the basic hydraulic pressure by operating at least one of the control valve and the pump. And a regenerative braking force generator (A) that applies a regenerative braking force to the wheels, and in a maintenance state in which the operation amount is maintained, at least the control valve and the pump Even if the valve device is operated by any one of the controls, if the operation amount of the valve device based on the state of the valve device at the time of transition to the maintenance state is equal to or less than a predetermined valve operation amount, By valve device Serial fluid pressure path is configured not opened.
 請求項2に係る車両用ブレーキ装置の発明は、請求項1において、前記マスタピストンの移動量と前記弁装置の作動量とは連動し、前記維持状態で、前記制御弁及び前記ポンプの少なくともいずれか一方の制御により前記マスタピストンが移動したとしても、その維持状態に遷移した時点における前記マスタピストンの位置を基点とする前記マスタピストンの移動量が所定のマスタ移動量(Δm)以下であれば、前記弁装置の作動量が前記弁作動量以下になるように構成されている。 According to a second aspect of the present invention, there is provided the vehicle brake device according to the first aspect, wherein the movement amount of the master piston and the operation amount of the valve device are linked to each other, and in the maintained state, Even if the master piston is moved by either control, the movement amount of the master piston based on the position of the master piston at the time of transition to the maintenance state is not more than a predetermined master movement amount (Δm). The operation amount of the valve device is configured to be equal to or less than the valve operation amount.
 請求項3に係る車両用ブレーキ装置の発明は、請求項2において、前記ブースタ装置(91)は、前記ブースタ室に前記ブレーキ操作部材(21)の操作に応じた液圧を発生させる液圧ブースタであり、前記弁装置(97)は、スプール(94)がスリーブ(96)内を摺動し、前記スプールの前記スリーブに対する相対移動により、前記流体圧経路としての前記流体圧源(24,93)から前記ブースタ室(100)に流体圧を供給する流体圧供給経路と、前記ブースタ室から流体圧を排出する流体圧排出経路とを開閉し、前記スプール及び前記スリーブは、前記マスタピストン(23b,23c)の移動により相対移動し、前記操作量が減少している減少状態から遷移した前記維持状態で、前記スプール及び前記スリーブが、前記マスタピストンの移動により相対移動したとしても、当該維持状態への遷移に伴って前記流体圧排出経路が閉止された時点における相対位置を基点とする、前記基礎液圧が減少した場合に相対移動する方向への移動量が、所定のスプール移動量(Δsf)以下であれば、前記流体圧供給経路が閉止されるように構成され、前記スプール移動量は、前記マスタ移動量(Δm)に基づいて設定されている。 According to a third aspect of the present invention, there is provided the vehicle brake device according to the second aspect, wherein the booster device (91) generates a hydraulic pressure in the booster chamber according to an operation of the brake operation member (21). In the valve device (97), the spool (94) slides in the sleeve (96), and the fluid pressure source (24, 93) as the fluid pressure path is formed by relative movement of the spool with respect to the sleeve. ) To open and close a fluid pressure supply path for supplying fluid pressure to the booster chamber (100) and a fluid pressure discharge path for discharging fluid pressure from the booster chamber. The spool and the sleeve are connected to the master piston (23b). , 23c), and the spool and the sleeve are moved to the mass in the maintenance state where the operation amount is changed from the reduction state where the operation amount is reduced. Even if the relative movement is caused by the movement of the piston, the direction of the relative movement when the basic hydraulic pressure is reduced is based on the relative position at the time when the fluid pressure discharge path is closed with the transition to the maintenance state. The fluid pressure supply path is configured to be closed when the movement amount is less than or equal to a predetermined spool movement amount (Δsf), and the spool movement amount is set based on the master movement amount (Δm). Has been.
 請求項4に係る車両用ブレーキ装置の発明は、請求項2または3において、前記ブースタ装置(91)は、前記ブースタ室(100)に前記ブレーキ操作部材(21)の操作に応じた液圧を発生させる液圧ブースタであり、前記弁装置(97)は、前記スプール(94)が前記スリーブ(96)内を摺動し、前記スプールの前記スリーブに対する相対移動により、前記ブースタ室(100)に流体圧を供給する流体圧供給経路と、前記流体圧経路としての前記ブースタ室から前記流体圧源に前記流体圧を排出する流体圧排出経路とを開閉し、前記スプール及び前記スリーブは、前記マスタピストン(23b,23c)の移動により相対移動し、前記操作量が増加している増加状態から遷移した前記維持状態で、前記スプール及び前記スリーブが前記マスタピストンの移動により相対移動したとしても、当該維持状態への遷移に伴って前記流体圧供給経路が閉止された時点における相対位置を基点とする、前記基礎液圧が増加した場合に相対移動する方向への移動量が、所定のスプール移動量(Δsr)以下であれば、前記流体圧排出経路が閉止されるように構成され、前記スプール移動量は、前記マスタ移動量に基づいて設定されている。 According to a fourth aspect of the present invention, there is provided the vehicle brake device according to the second or third aspect, wherein the booster device (91) applies a hydraulic pressure to the booster chamber (100) according to the operation of the brake operation member (21). The valve device (97) includes a booster chamber (100) in which the spool (94) slides in the sleeve (96), and the spool moves relative to the sleeve. A fluid pressure supply path for supplying fluid pressure, and a fluid pressure discharge path for discharging the fluid pressure from the booster chamber as the fluid pressure path to the fluid pressure source, and the spool and the sleeve are connected to the master. The spool and the three sleeves are moved relative to each other by the movement of the pistons (23b, 23c), and are changed from the increased state in which the operation amount is increased. Although the relative movement is caused by the movement of the master piston, the relative pressure is increased when the basic hydraulic pressure is increased based on the relative position at the time when the fluid pressure supply path is closed in accordance with the transition to the maintenance state. If the movement amount in the moving direction is equal to or less than a predetermined spool movement amount (Δsr), the fluid pressure discharge path is configured to be closed, and the spool movement amount is set based on the master movement amount. Has been.
 請求項5に係る車両用ブレーキ装置の発明は、請求項2において、前記ブースタ装置(122)は、ブースタシェル(181)内を負圧源に接続された負圧室(R1)と前記ブースタ室としての変圧室(R2)とに区画し前記マスタピストン(23b,23c)の移動に連動するピストン部(183)と、前記ブレーキ操作部材(21)の操作に連動するバルブ部(184)とを有し、前記ピストン部と前記バルブ部との相対位置に応じた気圧を前記変圧室に発生させる負圧ブースタであり、前記弁装置(118)は、前記変圧室と前記流体圧源としての外部空間との間の前記流体圧経路を開閉する大気圧弁(179)と、前記変圧室(R2)と前記負圧室(R1)との連通を開閉する負圧弁(178)とを有し、前記大気圧弁の弁座(179a)は前記バルブ部に設けられ、前記負圧弁の弁座(178a)は前記ピストン部に設けられ、前記操作量が減少している減少状態から遷移した前記維持状態で、前記ピストン部及び前記バルブ部が前記マスタピストンの移動により相対移動したとしても、当該維持状態への遷移に伴って前記負圧弁が閉弁した時点における相対位置を基点とする、前記基礎液圧が減少した場合に相対移動する方向への移動量が、所定のバルブ移動量(Δv)以下であれば、前記大気圧弁が閉弁されているように構成され、前記バルブ移動量は前記マスタ移動量に基づいて設定されている。 According to a fifth aspect of the present invention, the booster device (122) includes a negative pressure chamber (R1) connected to a negative pressure source in the booster shell (181) and the booster chamber. A piston portion (183) that is partitioned into a variable pressure chamber (R2) as the above and interlocks with the movement of the master piston (23b, 23c), and a valve portion (184) that is interlocked with the operation of the brake operating member (21). A negative pressure booster that generates an air pressure in the variable pressure chamber according to a relative position between the piston portion and the valve portion, and the valve device (118) is an external device serving as the variable pressure chamber and the fluid pressure source. An atmospheric pressure valve (179) that opens and closes the fluid pressure path between the space, and a negative pressure valve (178) that opens and closes communication between the variable pressure chamber (R2) and the negative pressure chamber (R1), Atmospheric valve seat (1 9a) is provided in the valve portion, and the valve seat (178a) of the negative pressure valve is provided in the piston portion, and the piston portion and the Even if the valve portion moves relatively by the movement of the master piston, when the basic hydraulic pressure decreases relative to the relative position at the time when the negative pressure valve is closed as the transition to the maintenance state occurs, When the movement amount in the moving direction is equal to or less than a predetermined valve movement amount (Δv), the atmospheric pressure valve is configured to be closed, and the valve movement amount is set based on the master movement amount. ing.
 請求項6に係る車両用ブレーキ装置の発明は、請求項5において、前記バルブ部は、前記ブレーキ操作部材に接続されているバルブ本体(184a)と、前記バルブ本体に対して移動可能に設けられた可動部(184b)と、前記可動部を前記大気圧弁の弁体側に付勢する付勢部材(184c)と、を有し、前記可動部は、前記減少状態から前記維持状態への遷移に伴って前記負圧弁が閉弁された時点における相対位置から、前記基礎液圧が減少した場合に前記ピストン部及び前記バルブ部が相対移動する方向に前記バルブ移動量(Δv)だけ、前記バルブ本体に対して移動可能であり、前記大気圧弁の弁座(852)は、前記可動部の前記大気圧弁の弁体(186b)側に設けられ、前記減少状態から遷移した前記維持状態で、前記ピストン部及び前記バルブ部が前記マスタピストンの移動により相対移動したとしても、当該維持状態への遷移に伴って前記負圧弁が閉弁した時点における相対位置を基点とする、前記基礎液圧が減少した場合に相対移動する方向への移動量が、所定のバルブ移動量以下であれば、前記可動部が、前記付勢部材に付勢されて、前記大気圧弁の前記弁体が前記弁座に着座するように構成されている。 The vehicle brake device according to a sixth aspect of the present invention is the vehicle brake device according to the fifth aspect, wherein the valve portion is provided so as to be movable with respect to the valve main body (184a) connected to the brake operation member and the valve main body. A movable portion (184b) and a biasing member (184c) that biases the movable portion toward the valve body of the atmospheric pressure valve, and the movable portion is in a transition from the reduced state to the maintained state. Accordingly, when the basic hydraulic pressure is reduced from the relative position at the time when the negative pressure valve is closed, the valve body is moved by the valve movement amount (Δv) in the direction in which the piston part and the valve part move relative to each other. The valve seat (852) of the atmospheric pressure valve is provided on the valve body (186b) side of the atmospheric pressure valve of the movable part, and the piston is moved in the maintenance state after the transition from the reduced state. The basic hydraulic pressure is reduced based on the relative position at the time when the negative pressure valve is closed in accordance with the transition to the maintenance state, even if the valve portion and the valve portion are relatively moved by the movement of the master piston. If the movement amount in the relative movement direction is equal to or less than a predetermined valve movement amount, the movable portion is urged by the urging member, and the valve body of the atmospheric pressure valve is moved to the valve seat. It is configured to be seated.
 請求項7に係る車両用ブレーキ装置の発明は、請求項1において、前記ブースタ装置は、前記ブースタ室に前記ブレーキ操作部材の操作に応じた液圧を発生させる液圧ブースタであり、前記弁装置は、スプールがスリーブ内を摺動し、前記スプールの前記スリーブに対する相対移動により、前記流体圧経路としての前記流体圧源から前記ブースタ室に流体圧を供給する流体圧供給経路と、前記ブースタ室から流体圧を排出する流体圧排出経路とを開閉し、前記操作量が維持されている維持状態で、前記制御弁及び前記ポンプの少なくともいずれか一方の制御により、前記スプールが前記スリーブに対して相対移動したとしても、当該維持状態に遷移した時点における前記スプールの前記スリーブに対する相対位置を基点とする、前記スプールの前記スリーブに対する相対移動量が、前記弁作動量としてのスプール移動量以下であれば、前記流体圧供給経路が閉止されるように構成されている。 The vehicle brake device according to a seventh aspect of the present invention is the vehicle brake device according to the first aspect, wherein the booster device is a hydraulic pressure booster that generates a hydraulic pressure in the booster chamber according to the operation of the brake operation member, and the valve device. A fluid pressure supply path for supplying fluid pressure from the fluid pressure source as the fluid pressure path to the booster chamber by sliding the spool in a sleeve and relative to the sleeve, and the booster chamber The spool is moved relative to the sleeve by controlling at least one of the control valve and the pump in a maintained state where the operation amount is maintained. Even if the spool moves relatively, the spool is based on the relative position of the spool to the sleeve at the time of transition to the maintenance state. Relative movement with respect to the sleeve is equal to or less spool moving amount as the valve operation amount, the fluid pressure supply passage is configured to be closed.
 請求項8に係る車両用ブレーキ装置の発明は、請求項1において、前記ブースタ装置は、ブースタシェル内を負圧源に接続された負圧室と前記ブースタ室としての変圧室とに区画し前記マスタピストンの移動に連動するピストン部と、前記ブレーキ操作部材の操作に連動するバルブ部とを有し、前記ピストン部の前記バルブ部に対する相対位置に応じた気圧を前記変圧室に発生させる負圧ブースタであり、前記弁装置は、前記変圧室と前記流体圧源としての外部空間との間の前記流体圧経路を開閉する大気圧弁と、前記変圧室と前記負圧室との遮通を開閉する負圧弁とを有し、前記大気圧弁の弁座は、前記バルブ部に設けられ、前記負圧弁の弁座は前記ピストン部に設けられ、前記操作量が維持されている維持状態で、前記制御弁及び前記ポンプの少なくとも一方の制御により、前記ピストン部が前記バルブ部に対して相対移動したとしても、当該維持状態に維持した時点における前記ピストン部の前記バルブ部に対する相対位置を基点とする、前記ピストン部の前記バルブ部に対する相対移動量が、前記弁作動量としてのバルブ移動量以下であれば、前記大気圧弁が閉弁されているように構成されている。 The invention of a vehicle brake device according to claim 8 is the vehicle brake device according to claim 1, wherein the booster device divides the booster shell into a negative pressure chamber connected to a negative pressure source and a variable pressure chamber as the booster chamber. A negative pressure that has a piston portion that is interlocked with the movement of the master piston and a valve portion that is interlocked with the operation of the brake operation member, and generates an atmospheric pressure in the variable pressure chamber according to the relative position of the piston portion with respect to the valve portion The booster is a booster, and the valve device opens and closes an atmospheric pressure valve that opens and closes the fluid pressure path between the variable pressure chamber and the external space as the fluid pressure source, and opens and closes the passage between the variable pressure chamber and the negative pressure chamber. And a valve seat of the atmospheric pressure valve is provided in the valve portion, a valve seat of the negative pressure valve is provided in the piston portion, and the operation amount is maintained in the maintenance state, Control valve and said Even if the piston part is moved relative to the valve part by the control of at least one of the pumps, the piston part is based on the relative position of the piston part with respect to the valve part when the piston part is maintained in the maintenance state. When the relative movement amount with respect to the valve portion is equal to or less than the valve movement amount as the valve operation amount, the atmospheric pressure valve is closed.
 請求項9に係る車両用ブレーキ装置の発明は、請求項3、4、7のいずれか1項において、前記スリーブには、前記流体圧供給経路としての増圧ポートと、前記流体圧排出経路としての減圧ポートとが形成され、前記増圧ポートと前記減圧ポートとの前記スプールの摺動方向の距離は、前記スプール移動量に基づいて設定されている。 According to a ninth aspect of the present invention, there is provided the vehicle brake device according to any one of the third, fourth, and seventh aspects, wherein the sleeve includes a pressure increasing port as the fluid pressure supply path and a fluid pressure discharge path. The pressure reducing port is formed, and the distance in the sliding direction of the spool between the pressure increasing port and the pressure reducing port is set based on the amount of movement of the spool.
 請求項10に係る車両用ブレーキ装置の発明は、請求項5または8において、前記バルブ部は、前記ブレーキ操作部材に接続されているバルブ本体と、前記バルブ本体に対して移動可能に設けられた可動部と、前記可動部を前記大気圧弁側に付勢する付勢部材とを有し、前記バルブ本体は、前記可動部側に突出した本体突出部を有し、前記可動部は、前記バルブ本体側に突出した可動突出部を有し、当該可動突出部が前記本体突出部に押圧されて前記バルブ本体とともに移動し、前記本体突出部と前記可動突出部との前記可動部の前記バルブ本体に対する移動方向の距離は、前記バルブ移動量に基づいて設定されている。 The vehicle brake device according to a tenth aspect of the present invention is the vehicle brake device according to the fifth or eighth aspect, wherein the valve portion is provided so as to be movable with respect to the valve main body connected to the brake operation member and the valve main body. A movable portion; and a biasing member that biases the movable portion toward the atmospheric pressure valve. The valve body includes a main body protruding portion that projects toward the movable portion. The movable portion includes the valve. A movable projecting portion projecting toward the main body side, the movable projecting portion being pressed by the main body projecting portion and moving together with the valve body, and the valve body of the movable portion of the main body projecting portion and the movable projecting portion; The distance in the movement direction with respect to is set based on the valve movement amount.
 請求項11に係る車両用ブレーキ装置の発明は、請求項1から10のいずれか1項において、前記所定の弁作動量は、前記回生制動力発生装置によって発生される回生制動力の最大値に基づいて設定されている。 The vehicle brake device according to an eleventh aspect is the vehicle brake device according to any one of the first to tenth aspects, wherein the predetermined valve actuation amount is a maximum value of the regenerative braking force generated by the regenerative braking force generating device. Is set based on.
 請求項12に係る車両用ブレーキ装置の発明は、請求項1から11のいずれか1項において、前記基礎液圧の圧力-体積特性を決定する前記マスタ液圧室(23d,23f)を含む基礎液圧発生容器(Vm)の剛性が、前記ブースタ室の流体圧の圧力-体積特性を決定する前記ブースタ室を含む流体圧発生容器(Vf)の剛性よりも低く設定されて構成される。 A vehicle brake device according to a twelfth aspect of the present invention is the vehicle brake apparatus according to any one of the first to eleventh aspects, including the master hydraulic pressure chamber (23d, 23f) for determining a pressure-volume characteristic of the basic hydraulic pressure. The rigidity of the hydraulic pressure generating container (Vm) is set to be lower than the rigidity of the fluid pressure generating container (Vf) including the booster chamber that determines the pressure-volume characteristic of the fluid pressure of the booster chamber.
 請求項13に係る車両用ブレーキ装置の発明は、請求項1から12のいずれか1項において、前記ブレーキ操作部材に接続され前記ブレーキ操作部材の前記操作量に応じて移動する押圧部と、当該押圧部に押圧されて前記マスタピストンを押圧する弾性体と、を備え、前記押圧部の前記弾性体を押圧する端面の面積と前記弾性体の前記マスタピストンを押圧する端面の面積との面積比がマスタシリンダ圧の変化に対する前記弁装置の作動量の変化が抑制されるように設定されている。 The invention of a vehicle brake device according to a thirteenth aspect is the vehicle brake device according to any one of the first to twelfth aspects, wherein the pressing portion is connected to the brake operation member and moves according to the operation amount of the brake operation member; An elastic body that is pressed by the pressing portion and presses the master piston, and an area ratio between an area of an end surface of the pressing portion that presses the elastic body and an area of the end surface of the elastic body that presses the master piston. Is set so that the change in the operation amount of the valve device with respect to the change in the master cylinder pressure is suppressed.
 請求項14に係る車両用ブレーキ装置の発明は、請求項1から13のいずれか1項において、前記ブレーキ操作部材に接続され前記ブレーキ操作部材の操作量に応じて移動する押圧部と、当該押圧部に押圧されて前記マスタピストンを押圧する弾性体とを備え、弾性体の硬度が、マスタシリンダ圧の変化に対する前記弁装置の作動量の変化が抑制されるように設定されている。 The invention of a vehicle brake device according to a fourteenth aspect is the vehicle brake device according to any one of the first to thirteenth aspects, wherein the pressing portion is connected to the brake operation member and moves according to the operation amount of the brake operation member; And an elastic body that presses against the master piston, and the hardness of the elastic body is set so that a change in the operation amount of the valve device with respect to a change in the master cylinder pressure is suppressed.
 請求項1に係る発明によれば、ポンプ及び制御弁の少なくともいずれか一方の制御により付加液圧を変化させると、マスタシリンダ圧が変化するため、操作量の維持状態であったとしても弁装置が作動することが考えられる。この作動量が、ブレーキ操作フィーリングに影響しない程度の僅かなものであったとしても、この弁装置の作動に伴って流体圧経路が開放されると、ブースタ室の流体圧の変化でブレーキ操作部材の操作量が大きく変化してしまう。この点、請求項1に係る発明によれば、上記の如く弁装置が作動したとしても、その作動量が、ブレーキ操作が維持状態に遷移した時点における弁装置の状態を基準に、所定の弁作動量以下であれば、弁装置により流体圧経路が開放されないようにしているため、ブレーキ操作部材の操作量は、大きく移動せず、ブレーキ操作フィーリングは良好なものとなる。 According to the first aspect of the present invention, since the master cylinder pressure changes when the additional hydraulic pressure is changed by controlling at least one of the pump and the control valve, the valve device is maintained even when the operation amount is maintained. May be activated. Even if this amount of operation is so small that it does not affect the brake operation feeling, if the fluid pressure path is released with the operation of this valve device, the brake operation will be caused by the change in the fluid pressure in the booster chamber. The operation amount of a member will change a lot. In this regard, according to the first aspect of the present invention, even if the valve device is operated as described above, the amount of operation is determined based on the state of the valve device at the time when the brake operation transitions to the maintenance state. If it is less than the operation amount, the fluid pressure path is not opened by the valve device, so that the operation amount of the brake operation member does not move greatly, and the brake operation feeling becomes good.
 請求項2に係る発明によれば、ポンプ及び制御弁の少なくともいずれか一方の制御により付加液圧を変化させると、操作量が維持状態であったとしても、マスタピストンが移動する。この移動量がブレーキ操作フィーリングに影響しない程度の僅かなものであったとしても、このマスタピストンの移動に伴って弁装置により流体圧経路が開放されると、ブースタ室の流体圧の変化でブレーキ操作部材の操作量が大きく変化してしまうことが考えられる。この点、請求項2に係る発明によれば、上記の如くマスタピストンが移動したとしても、その移動量が維持状態に遷移した時点におけるマスタピストンの位置を基準に所定のマスタ移動量以下であれば、弁装置により流体圧経路が開放されないようにしているため、ブレーキ操作部材の操作量は、大きく移動せず、ブレーキ操作フィーリングは良好なものとなる。 According to the second aspect of the present invention, when the additional fluid pressure is changed by controlling at least one of the pump and the control valve, the master piston moves even if the operation amount is maintained. Even if this amount of movement is so small that it does not affect the brake operation feeling, if the fluid pressure path is opened by the valve device as the master piston moves, the fluid pressure in the booster chamber will change. It is conceivable that the operation amount of the brake operation member changes greatly. According to the second aspect of the present invention, even if the master piston moves as described above, the movement amount is not more than a predetermined master movement amount based on the position of the master piston at the time of transition to the maintenance state. For example, since the fluid pressure path is not opened by the valve device, the operation amount of the brake operation member does not move greatly, and the brake operation feeling is good.
 請求項3に係る発明によれば、操作量の減少状態から遷移した維持状態で、スプール及びスリーブが相対移動したとしても、当該維持状態への遷移に伴って流体圧排出経路を閉止した時点における相対位置を基点とする、基礎液圧が減少する方向への移動量が、所定のスプール移動量以下であれば、流体圧供給経路が閉止される。ここで、スプール移動量はマスタ移動量に基づいて設定されている。そのため、操作量の減少状態から、遷移した維持状態で付加液圧を増大させる場合に、操作量が大きく増大することを防止することができる。 According to the third aspect of the present invention, even when the spool and the sleeve move relative to each other in the maintenance state where the operation amount has been reduced, the fluid pressure discharge path is closed at the time of the transition to the maintenance state. If the movement amount in the direction in which the base hydraulic pressure decreases with the relative position as a base point is equal to or less than a predetermined spool movement amount, the fluid pressure supply path is closed. Here, the spool movement amount is set based on the master movement amount. Therefore, when the additional hydraulic pressure is increased in the transitioned maintenance state from the reduced operation amount state, the operation amount can be prevented from greatly increasing.
 請求項4に係る発明によれば、操作量の増加状態から遷移した維持状態で、スプール及びスリーブが相対移動したとしても、当該維持状態への遷移に伴って、流体圧供給経路を閉止した時点における相対位置を基点とする、基礎液圧が増加する方向への移動量が、所定のスプール移動量以下であれば、流体圧供給経路が閉止される。ここで、スプール移動量はマスタ移動量に基づいて設定されている。そのため、操作量の増加状態から遷移した維持状態で付加液圧を減少させる場合に、操作量が大きく減少することを防止することができる。 According to the fourth aspect of the present invention, even when the spool and the sleeve are relatively moved in the maintained state that is shifted from the increased operation amount state, the fluid pressure supply path is closed along with the transition to the maintained state. If the movement amount in the direction in which the base hydraulic pressure increases with the relative position at the base point as the base point is less than or equal to a predetermined spool movement amount, the fluid pressure supply path is closed. Here, the spool movement amount is set based on the master movement amount. For this reason, when the additional hydraulic pressure is decreased in the maintenance state transitioned from the increase state of the operation amount, it is possible to prevent the operation amount from greatly decreasing.
 請求項5に係る発明によれば、操作量の減少状態から遷移した維持状態で、ピストン部及びバルブ部が相対移動したとしても、当該維持状態への遷移に伴って、負圧弁が閉弁された時点における相対位置を基点とする、基礎液圧が減少する方向への移動量が、所定のバルブ移動量以下であれば、大気圧弁が閉弁される。ここで、バルブ移動量はマスタ移動量に基づいて設定されている。そのため、操作量の減少状態から、遷移した維持状態で付加液圧を増大させる場合のブレーキ操作フィーリングが良好となる。 According to the fifth aspect of the present invention, even if the piston part and the valve part move relative to each other in the maintained state where the operation amount is reduced, the negative pressure valve is closed along with the transition to the maintained state. If the movement amount in the direction in which the base hydraulic pressure decreases with the relative position at the time point as the base point is less than or equal to the predetermined valve movement amount, the atmospheric pressure valve is closed. Here, the valve movement amount is set based on the master movement amount. Therefore, the brake operation feeling in the case where the additional hydraulic pressure is increased in the transitioned maintenance state from the reduced operation amount state is improved.
 請求項6に係る発明によれば、操作量の減少状態から遷移した維持状態で、ピストン部及びバルブ部が相対移動したとしても、当該維持状態への遷移に伴って、負圧弁が閉弁された時点における相対位置を基点とする、基礎液圧が減少する方向への移動量が、所定のバルブ移動量以下であれば、可動部が付勢部材に付勢されて、大気圧弁の弁体が弁座に着座して、大気圧弁が閉弁される。 According to the sixth aspect of the present invention, even if the piston part and the valve part move relative to each other in the maintained state where the operation amount is reduced, the negative pressure valve is closed along with the transition to the maintained state. If the amount of movement in the direction in which the base hydraulic pressure decreases with respect to the relative position at the time point is less than or equal to the predetermined valve movement amount, the movable part is urged by the urging member, and the valve body of the atmospheric pressure valve Is seated on the valve seat and the atmospheric pressure valve is closed.
 請求項7に係る発明によれば、操作量の維持状態で、マスタピストンが移動しない場合において、スプールがスリーブに対して相対移動したとしても、当該維持状態に遷移した時点におけるスプールのスリーブに対する相対位置を基点とする、スプールのスリーブに対する相対移動量が、所定のスプール移動量以下であれば、流体圧供給経路が閉止される。そのため、操作量の維持状態で付加液圧を変化させる場合のブレーキ操作フィーリングを向上させることができる。 According to the seventh aspect of the present invention, even when the master piston does not move in the operation amount maintaining state, even if the spool moves relative to the sleeve, the spool relative to the sleeve at the time of transition to the maintaining state. When the relative movement amount of the spool with respect to the position relative to the sleeve is equal to or smaller than the predetermined spool movement amount, the fluid pressure supply path is closed. Therefore, it is possible to improve the brake operation feeling when changing the additional hydraulic pressure while maintaining the operation amount.
 請求項8に係る発明によれば、操作量の維持状態で、マスタピストンが移動しない場合において、ピストン部がバルブ部に対して相対移動したとしても、当該維持状態に遷移した時点におけるピストン部のバルブ部に対する相対位置を基点とする、ピストン部のバルブ部に対する相対移動量が、所定のバルブ移動量以下であれば、大気圧弁が閉弁される。そのため、操作量の維持状態で付加液圧を増大させる場合のブレーキ操作フィーリングを向上させることができる。 According to the eighth aspect of the present invention, even when the master piston does not move in the operation amount maintaining state, even if the piston portion moves relative to the valve portion, the piston portion at the time of transition to the maintaining state If the relative movement amount of the piston portion relative to the valve portion with respect to the relative position with respect to the valve portion is equal to or less than a predetermined valve movement amount, the atmospheric pressure valve is closed. Therefore, it is possible to improve the brake operation feeling when increasing the additional hydraulic pressure while maintaining the operation amount.
 請求項9に係る発明によれば、増圧ポートと減圧ポートとのスプールの摺動方向の距離により、スプール移動量を作り込むことができる。 According to the ninth aspect of the present invention, the spool movement amount can be made based on the distance in the sliding direction of the spool between the pressure increasing port and the pressure reducing port.
 請求項10に係る発明によれば、本体突出部と可動突出部との可動部のバルブ本体に対する移動方向の距離により、バルブ移動量を作り込むことができる。 According to the invention of claim 10, the amount of valve movement can be created by the distance in the moving direction of the movable portion between the main body protruding portion and the movable protruding portion with respect to the valve main body.
 請求項11に係る発明によれば、所定の弁作動量が、回生制動力の最大値に基づいて設定される。このため、例えば車両が低車速時に回生制動力を発生させることが困難となり、回生制動力分の制動力を全て付加液圧制動力FSにすり替える必要がある場合においても、確実に弁装置が流体圧経路を開放させないようにすることができる。 According to the invention of claim 11, the predetermined valve operation amount is set based on the maximum value of the regenerative braking force. For this reason, for example, it becomes difficult to generate the regenerative braking force when the vehicle is at a low vehicle speed, and even when it is necessary to replace all of the braking force corresponding to the regenerative braking force with the additional hydraulic braking force FS, the valve device reliably It is possible to prevent the route from being opened.
 請求項12に係る発明によれば、基礎液圧の圧力-体積特性を決定するマスタ液圧室を含む基礎液圧発生容器の剛性を、ブースタ室の液圧の圧力-体積特性を決定するブースタ室を含む流体圧発生容器の剛性よりも低くすることにより、マスタピストンの移動量に対する弁装置の作動量を小さくして、上記の如くマスタピストンが移動したとしても、弁装置により流体圧経路が開放されないようにすることが可能である。 According to the twelfth aspect of the present invention, the rigidity of the basic hydraulic pressure generating container including the master hydraulic pressure chamber that determines the pressure-volume characteristic of the basic hydraulic pressure is determined, and the booster that determines the pressure-volume characteristic of the hydraulic pressure in the booster chamber. Even if the master piston moves as described above by reducing the operation amount of the valve device relative to the movement amount of the master piston by making it lower than the rigidity of the fluid pressure generating container including the chamber, the fluid pressure path is changed by the valve device. It is possible not to be opened.
 請求項13、14に係る発明によれば、付加液圧を変化させたことに伴ってマスタシリンダ圧が変化したとしても、マスタシリンダ圧の変化に対する弁装置の作動量の変化が抑制される。そのため、例えば、弁作動量とともに、請求項13に記載の発明の面積比や請求項14に記載の発明の弾性体の硬度を調整することにより、ブレーキ操作フィーリングを一層良好なものとすることができる。また、例えば、マスタシリンダ圧の変化に対する弁装置の作動量の変化を抑制して、弁作動量を小さく設定することにより、弁装置を小型化することができる。 According to the inventions according to claims 13 and 14, even if the master cylinder pressure changes with the change of the additional hydraulic pressure, the change in the operation amount of the valve device with respect to the change in the master cylinder pressure is suppressed. Therefore, for example, by adjusting the area ratio of the invention of claim 13 and the hardness of the elastic body of the invention of claim 14 together with the valve operation amount, the brake operation feeling is further improved. Can do. Further, for example, the valve device can be reduced in size by suppressing the change in the operation amount of the valve device with respect to the change in the master cylinder pressure and setting the valve operation amount to be small.
本発明に係る第1の実施形態の車両用ブレーキ装置を適用したハイブリッド車の構成を示す概要図である。1 is a schematic diagram showing a configuration of a hybrid vehicle to which a vehicle brake device according to a first embodiment of the present invention is applied. 第1の実施形態の車両用ブレーキ装置の構成を示す概要図である。It is a schematic diagram showing the composition of the brake device for vehicles of a 1st embodiment. ブレーキペダルの踏込みが未操作状態における油圧式のブースタ装置及びマスタシリンダの構造を説明する断面図である。It is sectional drawing explaining the structure of the hydraulic booster apparatus and master cylinder in the state in which depression of a brake pedal is not operated. (a)流体圧発生容器の圧力P-体積V特性を示す図である。(b)基礎液圧発生容器の圧力P-体積V特性を示す図である。(A) It is a figure which shows the pressure P-volume V characteristic of a fluid pressure generation container. (B) It is a figure which shows the pressure P-volume V characteristic of a basic | foundation hydraulic pressure generation container. 第1の実施形態における弁装置のブレーキペダル踏み込み(増加)操作中における状態を示す図である。It is a figure which shows the state in brake pedal depression (increase) operation of the valve apparatus in 1st Embodiment. 第1の実施形態における弁装置のブレーキペダル戻し(減少)操作中における状態を示す図である。It is a figure which shows the state in process of brake pedal return (decrease) of the valve apparatus in 1st Embodiment. 第1の実施形態の車両用ブレーキ装置の作用を説明する作動特性図である。It is an operation characteristic figure explaining an operation of the brake device for vehicles of a 1st embodiment. ブースタ装置及びマスタシリンダにおけるブレーキペダル踏み込み(増加)状態から遷移した増加維持状態を示す図であるとともに第2の実施形態の説明図である。It is a figure which shows the increase maintenance state which changed from the brake pedal depression (increase) state in a booster apparatus and a master cylinder, and is explanatory drawing of 2nd Embodiment. 第1の実施形態の車両用ブレーキ装置が増加維持状態にある場合における回生制御中の各データの例を示したものである。The example of each data in regeneration control in case the brake device for vehicles of 1st Embodiment is in the increase maintenance state is shown. 第1の実施形態のブースタ装置及びマスタシリンダにおけるブレーキペダル戻し(減少)状態から遷移した減少維持状態を示す図である。It is a figure which shows the reduction | decrease maintenance state which changed from the brake pedal return (decrease) state in the booster apparatus and master cylinder of 1st Embodiment. 第1の実施形態の変形例1におけるスリーブとスプールとの相対位置関係を示す図である。It is a figure which shows the relative positional relationship of the sleeve and spool in the modification 1 of 1st Embodiment. 第3の実施形態におけるスリーブとスプールとの相対位置関係を示す図である。It is a figure which shows the relative positional relationship of the sleeve and spool in 3rd Embodiment. 第4の実施形態における負圧式のブースタ装置及びマスタシリンダの構造を説明する断面図である。It is sectional drawing explaining the structure of the negative pressure type booster apparatus and master cylinder in 4th Embodiment. 負圧式のブースタ装置の弁装置付近の部分断面図であり、ブレーキペダルが戻し(減少)状態から遷移した減少維持状態を示す図である。It is a fragmentary sectional view near the valve device of a negative pressure type booster device, and is a figure showing a decrease maintenance state where a brake pedal changed from a return (decrease) state. 弾性体内に発生する圧力P1、P1'について説明する図である。It is a figure explaining the pressure P1 and P1 'which generate | occur | produce in an elastic body.
 1)第1の実施形態 
 以下、本発明に係る車両用ブレーキ装置の第1の実施形態について、図1~図10を参考にして説明する。図1は、本発明に係る実施形態の車両用ブレーキ装置CBを適用したハイブリッド車の構成を示す概要図である。図示されるように、ハイブリッド車は、ハイブリッドシステムによって駆動輪、例えば左右前輪FR、FLを駆動させる車両である。ハイブリッドシステムは、エンジン11及びモータ12の2種類の動力源を組み合わせて使用するパワートレーンである。本実施形態の場合、エンジン11及びモータ12の双方で車輪を直接駆動するパラレルハイブリッドシステムを採用している。なお、これ以外にシリアルハイブリッドシステムがあり、モータによって車輪が駆動され、エンジンはモータへの電力供給源として作用する。
1) First embodiment
A vehicle brake device according to a first embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a schematic diagram showing a configuration of a hybrid vehicle to which a vehicle brake device CB according to an embodiment of the present invention is applied. As shown in the figure, the hybrid vehicle is a vehicle that drives drive wheels, for example, left and right front wheels FR, FL, by a hybrid system. The hybrid system is a power train that uses a combination of two types of power sources, the engine 11 and the motor 12. In the case of this embodiment, a parallel hybrid system in which wheels are directly driven by both the engine 11 and the motor 12 is employed. In addition, there is a serial hybrid system, wheels are driven by a motor, and the engine acts as a power supply source to the motor.
 エンジン11はエンジンECU(電子制御ユニット)18によって制御されている。エンジンECU18は、後述するハイブリッドECU(電子制御ユニット)19からのエンジン出力要求値にしたがって電子制御スロットルに開度指令を出力し、エンジン11の回転数を調整する。エンジン11の駆動力は、動力分割機構13及び動力伝達機構14を介して駆動輪(本形態では左右前輪FR、FL)に伝達されるようになっている。動力分割機構13は、エンジン11の駆動力を車両駆動力と発電機駆動力に適切に分割する。モータ12の駆動力は、動力伝達機構14を介して駆動輪に伝達されるようになっている。動力伝達機構14は、走行条件に応じてエンジン11及びモータ12の駆動力を適切に統合して駆動輪に伝達する。動力伝達機構14は、エンジン11とモータ12の伝達される駆動力比を、0:100~100:0の間で調整する。さらに、この動力伝達機構14は変速機能を有している。 The engine 11 is controlled by an engine ECU (electronic control unit) 18. The engine ECU 18 outputs an opening degree command to the electronic control throttle according to an engine output request value from a hybrid ECU (electronic control unit) 19 described later, and adjusts the rotational speed of the engine 11. The driving force of the engine 11 is transmitted to driving wheels (in this embodiment, left and right front wheels FR and FL) via a power split mechanism 13 and a power transmission mechanism 14. The power split mechanism 13 appropriately splits the driving force of the engine 11 into a vehicle driving force and a generator driving force. The driving force of the motor 12 is transmitted to the driving wheel via the power transmission mechanism 14. The power transmission mechanism 14 appropriately integrates the driving forces of the engine 11 and the motor 12 according to traveling conditions and transmits them to the driving wheels. The power transmission mechanism 14 adjusts the driving force ratio transmitted between the engine 11 and the motor 12 between 0: 100 and 100: 0. Further, the power transmission mechanism 14 has a speed change function.
 モータ12は、エンジン11の出力を補助して駆動力を高め、あるいは単独で全駆動力を担う。一方、モータ12は、車両の制動時には回生による発電を行なう。発電機15は、エンジン11の出力により発電を行い、エンジン始動時のスタータの機能も有する。モータ12及び発電機15はそれぞれインバータ16に接続されている。インバータ16は、直流電源としてのバッテリ17に接続されている。インバータ16は、モータ12及び発電機15から入力された交流電圧を直流電圧に変換してバッテリ17に供給する。また、逆に、インバータ16は、バッテリ17からの直流電圧を交流電圧に変換してモータ12及び発電機15へ出力する。 The motor 12 increases the driving force by assisting the output of the engine 11, or takes on the entire driving force independently. On the other hand, the motor 12 generates power by regeneration during braking of the vehicle. The generator 15 generates power based on the output of the engine 11 and also has a starter function when starting the engine. The motor 12 and the generator 15 are each connected to an inverter 16. The inverter 16 is connected to a battery 17 as a DC power source. The inverter 16 converts the AC voltage input from the motor 12 and the generator 15 into a DC voltage and supplies it to the battery 17. Conversely, the inverter 16 converts the DC voltage from the battery 17 into an AC voltage and outputs the AC voltage to the motor 12 and the generator 15.
 本実施形態において、モータ12、インバータ16及びバッテリ17から回生ブレーキ装置A(本発明の回生制動力発生装置に相当する)が構成されている。回生ブレーキ装置Aは、ペダルストロークセンサ21aにより検出されたブレーキペダル21(本発明のブレーキ操作部材に相当する)の操作位置に基づいた回生制動力FKを各車輪FR、FL、RL、RRの何れか、本実施形態では左右前輪FR、FLに付与する。 In this embodiment, the motor 12, inverter 16 and battery 17 constitute a regenerative braking device A (corresponding to the regenerative braking force generating device of the present invention). The regenerative braking device A applies a regenerative braking force FK based on the operation position of the brake pedal 21 (corresponding to the brake operation member of the present invention) detected by the pedal stroke sensor 21a to any of the wheels FR, FL, RL, RR. Or, in this embodiment, it is given to the left and right front wheels FR and FL.
 ハイブリッドECU19は、インバータ16と相互に通信可能に接続されている。ハイブリッドECU19は、図示しないアクセル開度センサからアクセル開度の情報を入手し、図示しないシフトポジションセンサから動力伝達機構14の変速シフトポジションの情報を入手する。ハイブリッドECU19は、これらの情報を基にして、エンジン11に必要とされるエンジン出力要求値、モータ12に必要とされるモータ出力要求値、及び発電機15に必要とされる発電機入力要求値を導出する。そして、ハイブリッドECU19は、エンジン出力要求値をエンジンECU18に送信してエンジン11を制御し、また、モータ出力要求値及び発電機入力要求値に従い、インバータ16を介してモータ12及び発電機15を制御する。また、ハイブリッドECU19は、バッテリ17の充電状態、充電電流などを監視している。 The hybrid ECU 19 is connected to the inverter 16 so as to communicate with each other. The hybrid ECU 19 obtains information on the accelerator opening from an accelerator opening sensor (not shown), and obtains information on the shift shift position of the power transmission mechanism 14 from a shift position sensor (not shown). Based on this information, the hybrid ECU 19 requires an engine output request value required for the engine 11, a motor output request value required for the motor 12, and a generator input request value required for the generator 15. Is derived. Then, the hybrid ECU 19 transmits the engine output request value to the engine ECU 18 to control the engine 11, and controls the motor 12 and the generator 15 via the inverter 16 according to the motor output request value and the generator input request value. To do. Further, the hybrid ECU 19 monitors the state of charge of the battery 17 and the charging current.
 図2は、車両用ブレーキ装置CB(以後、ブレーキ装置CBとのみ称す)の構成の一部を示す概要図である。ブレーキ装置CBは、液圧制動力発生装置Bと、回生制動力発生装置A(図1参照)と、を備えている。 FIG. 2 is a schematic diagram showing a part of the configuration of the vehicle brake device CB (hereinafter referred to as only the brake device CB). The brake device CB includes a hydraulic braking force generator B and a regenerative braking force generator A (see FIG. 1).
 図2,図3に示すように、液圧制動力発生装置Bは、ホイールシリンダWC1,WC2,WC3,WC4にブレーキペダル21の操作量に応じた基礎液圧を供給する基礎液圧供給装置Sと、基礎液圧に付加液圧を付加する液圧付加装置Adとを備えている。なお、図3は、液圧制動力発生装置Bの構造を説明する模式断面図である。また、図3は、ブレーキペダル21の、踏込みがされていない未操作状態を示している。液圧制動力発生装置Bは、作動液としてブレーキ液を使用している。詳細は後述するが、基礎液圧供給装置Sは、ブレーキペダル21に接続されている。また、図3に示すように、基礎液圧供給装置Sは、ブースタ装置91を有して構成されている。 As shown in FIGS. 2 and 3, the hydraulic braking force generator B includes a basic hydraulic pressure supply device S that supplies a basic hydraulic pressure corresponding to the operation amount of the brake pedal 21 to the wheel cylinders WC1, WC2, WC3, and WC4. And a hydraulic pressure adding device Ad for adding an additional hydraulic pressure to the basic hydraulic pressure. FIG. 3 is a schematic cross-sectional view illustrating the structure of the hydraulic braking force generator B. FIG. 3 shows an unoperated state in which the brake pedal 21 is not depressed. The hydraulic braking force generator B uses brake fluid as hydraulic fluid. Although details will be described later, the basic hydraulic pressure supply device S is connected to the brake pedal 21. Further, as shown in FIG. 3, the basic hydraulic pressure supply device S is configured to include a booster device 91.
 図3に示すように、ブースタ装置91は、圧力源93(リザーバ24とともに本発明の流体圧源を構成する),ブースタ室100及び、弁装置97等を備えている。弁装置97は、圧力源93とブースタ室100との間で構成される後述する流体圧供給経路(本発明の流体圧経路でもある)に設けられている。弁装置97を開閉作動させることにより、流体圧供給経路が開閉(断接)する。流体圧供給経路が、開状態に制御されると、圧力源93から流体圧供給経路を介してブースタ室100に所定の流体圧が供給される。これにより、ブレーキペダル21の操作量に応じた流体圧がブースタ室100に発生する。そして、その流体圧に対応する力でマスタピストン23bを駆動する。 3, the booster device 91 includes a pressure source 93 (which constitutes the fluid pressure source of the present invention together with the reservoir 24), a booster chamber 100, a valve device 97, and the like. The valve device 97 is provided in a fluid pressure supply path (which is also a fluid pressure path of the present invention), which will be described later, formed between the pressure source 93 and the booster chamber 100. By opening / closing the valve device 97, the fluid pressure supply path is opened / closed (connected / disconnected). When the fluid pressure supply path is controlled to be in the open state, a predetermined fluid pressure is supplied from the pressure source 93 to the booster chamber 100 via the fluid pressure supply path. As a result, fluid pressure corresponding to the operation amount of the brake pedal 21 is generated in the booster chamber 100. Then, the master piston 23b is driven with a force corresponding to the fluid pressure.
 つまり、ブースタ装置91は、ブレーキペダル21の踏込み操作量に応じた踏力(操作力)をブースタ室100で発生した流体圧で助勢してマスタシリンダ23の第1ピストン23b及び第2ピストン23c(いずれも本発明のマスタピストンに相当する)を駆動し、マスタシリンダ23に基礎液圧を発生させる。そして、マスタシリンダ23で発生した基礎液圧を、ブレーキアクチュエータ25を介して各車輪FR,FL,RR,RLのホイールシリンダWC1,WC2,WC3,WC4に付与する。これにより、各車輪FR,FL,RR,RLには、基礎液圧に対応した基礎液圧制動力FEが発生する。なお、基礎液圧は、図2中に示す、ブレーキアクチュエータ25が有する後述の圧力センサSPによって常に監視されている。なお、上記で示したように本実施形態において、ブースタ装置91は、液圧用のブースタ装置である。 That is, the booster device 91 assists the pedaling force (operation force) corresponding to the depression operation amount of the brake pedal 21 with the fluid pressure generated in the booster chamber 100, and the first piston 23b and the second piston 23c of the master cylinder 23 (whichever Is also equivalent to the master piston of the present invention), and the basic hydraulic pressure is generated in the master cylinder 23. Then, the basic hydraulic pressure generated in the master cylinder 23 is applied to the wheel cylinders WC1, WC2, WC3, WC4 of each wheel FR, FL, RR, RL via the brake actuator 25. As a result, a basic hydraulic braking force FE corresponding to the basic hydraulic pressure is generated in each of the wheels FR, FL, RR, and RL. Note that the base hydraulic pressure is constantly monitored by a pressure sensor SP (described later) of the brake actuator 25 shown in FIG. As described above, in the present embodiment, the booster device 91 is a hydraulic booster device.
 図2に示す液圧付加装置Adは、ブレーキアクチュエータ25内にマスタシリンダ23から独立して作動する電動ポンプ37,47(本発明のポンプに相当する)と、液圧制御弁31,41(本発明の制御弁に相当する)とを備えている。液圧制御弁31,41は、基礎液圧供給装置SとホイールシリンダWC1,WC2,WC3,WC4との間の油経路Lf,Lr(本発明の液圧経路に相当する)に設けられている。液圧制御弁31,41は、基礎液圧供給装置S側の油経路(液圧経路)の液圧とホイールシリンダWC1,WC2,WC3,WC4側の油経路(液圧経路)の液圧との差圧を調整する制御弁である。 The hydraulic pressure adding device Ad shown in FIG. 2 includes electric pumps 37 and 47 (corresponding to the pump of the present invention) that operate independently from the master cylinder 23 in the brake actuator 25 and hydraulic pressure control valves 31 and 41 (main Corresponding to the control valve of the invention. The hydraulic control valves 31 and 41 are provided in oil paths Lf and Lr (corresponding to the hydraulic path of the present invention) between the basic hydraulic pressure supply device S and the wheel cylinders WC1, WC2, WC3, and WC4. . The hydraulic control valves 31 and 41 are configured such that the hydraulic pressure in the oil path (hydraulic pressure path) on the basic hydraulic pressure supply device S side and the hydraulic pressure in the oil path (hydraulic pressure path) on the wheel cylinders WC1, WC2, WC3, WC4 side It is a control valve that adjusts the differential pressure.
 電動ポンプ37,47は、液圧制御弁31,41よりも基礎液圧供給装置S側の油経路(液圧経路)のブレーキ液を、液圧制御弁31,41よりもホイールシリンダ側の油経路(液圧経路)に吐出する。本実施形態においては、電動ポンプ37,47を一定速度で作動させながら、液圧制御弁31,41を制御装置からの指令値に基づいて制御することにより、前記差圧を調整している。そして、液圧制御弁31,41の制御によって形成される付加液圧を基礎液圧に付加する。これによって、各車輪FR,FL,RR,RLの基礎液圧制動力FEに付加液圧制動力FSを付加する。 The electric pumps 37 and 47 use the brake fluid in the oil path (hydraulic path) on the basic hydraulic pressure supply device S side relative to the hydraulic pressure control valves 31 and 41, and the oil on the wheel cylinder side relative to the hydraulic pressure control valves 31 and 41. Discharge to the path (hydraulic pressure path). In the present embodiment, the differential pressure is adjusted by controlling the hydraulic pressure control valves 31 and 41 based on a command value from the control device while operating the electric pumps 37 and 47 at a constant speed. Then, the additional hydraulic pressure formed by the control of the hydraulic control valves 31 and 41 is added to the basic hydraulic pressure. As a result, the additional hydraulic braking force FS is added to the basic hydraulic braking force FE of each wheel FR, FL, RR, RL.
 ブレーキペダル21には、踏込んだときの操作量を検出するペダルストロークセンサ21aが設けられている。ペダルストロークセンサ21aは、ブレーキECU60に接続されており、検出信号を送信するようになっている(図1参照)。 The brake pedal 21 is provided with a pedal stroke sensor 21a that detects an operation amount when the brake pedal 21 is depressed. The pedal stroke sensor 21a is connected to the brake ECU 60 and transmits a detection signal (see FIG. 1).
 図3に示すように、オペレーティングロッド26と、後述するブースタ装置91の外周シリンダ92との間にはゴム製のブーツ29が装架されている。ブーツ29の一端は、オペレーティングロッド26のブレーキペダル21側の外周端溝部に嵌合され、他端は、外周シリンダ92のブレーキペダル21側の外周端溝部に嵌合されている。ブーツ29の一端と他端の間には蛇腹が形成されている。これによって、ブースタ装置91内部へのゴミや水の浸入を防止している。 As shown in FIG. 3, a rubber boot 29 is mounted between the operating rod 26 and an outer peripheral cylinder 92 of a booster device 91 described later. One end of the boot 29 is fitted in the outer peripheral end groove portion on the brake pedal 21 side of the operating rod 26, and the other end is fitted in the outer peripheral end groove portion on the brake pedal 21 side of the outer peripheral cylinder 92. A bellows is formed between one end and the other end of the boot 29. As a result, entry of dust and water into the booster device 91 is prevented.
 図3、図5及び図6において、図中左方がブレーキペダル21の操作量の増大に応じて、後述するスリーブ96及びスプール94が移動する摺動方向前方である。また、図中右方がブレーキペダル21の操作量の減少に応じてスリーブ96及びスプール94が移動する摺動方向後方となっている。なお、以降の説明においても、ブレーキペダル21の踏込み方向を前方と称し、ブレーキペダル21の戻し方向を後方と称す場合がある。 3, 5, and 6, the left side in the drawing is the front in the sliding direction in which a sleeve 96 and a spool 94 to be described later move in response to an increase in the operation amount of the brake pedal 21. Further, the right side in the figure is the rear in the sliding direction in which the sleeve 96 and the spool 94 move in accordance with a decrease in the operation amount of the brake pedal 21. In the following description, the depression direction of the brake pedal 21 may be referred to as the front, and the return direction of the brake pedal 21 may be referred to as the rear.
 図3に基づき、ブースタ装置91について詳細に説明する。ブースタ装置91は、外周シリンダ92,圧力源93,作動部材99,プランジャ98,弾性体107,プッシュロッド95,ブースタ室100及び弁装置97などにより構成されている。また、弁装置97は、スプール94及びスリーブ96などにより構成されている。 The booster device 91 will be described in detail with reference to FIG. The booster device 91 includes an outer peripheral cylinder 92, a pressure source 93, an operating member 99, a plunger 98, an elastic body 107, a push rod 95, a booster chamber 100, a valve device 97, and the like. Further, the valve device 97 includes a spool 94, a sleeve 96, and the like.
 弁装置97は、ブレーキペダル21が後述する不動作ストロークL以上踏込まれて操作力及び操作量が増加状態となる場合に、開状態となって、流体圧供給経路を接続するとともに、流体圧排出経路を遮断状態とする。そして、増圧されたブレーキ液を、圧力源93から流体圧供給経路を介してブースタ室100に供給する。なお、不動作ストロークLの長さは、ブレーキペダル21の未操作状態におけるプランジャ98と弾性体107との間の離間距離及び弁装置97の構成等により決定される。 The valve device 97 is opened when the brake pedal 21 is depressed more than a non-operation stroke L (to be described later) and the operation force and the operation amount are increased, connects the fluid pressure supply path, and discharges the fluid pressure. The route is set to a blocking state. Then, the increased brake fluid is supplied from the pressure source 93 to the booster chamber 100 through the fluid pressure supply path. The length of the non-operating stroke L is determined by the distance between the plunger 98 and the elastic body 107 when the brake pedal 21 is not operated, the configuration of the valve device 97, and the like.
 ブレーキペダル21の操作力及び操作量が減少状態となる場合には、弁装置97は、閉状態となって流体圧供給経路を遮断するとともに、流体圧排出経路を接続してブースタ室100のブレーキ液をリザーバ24に排出する。ブースタ装置91は、このような弁装置97の作動により、ブースタ室100にブレーキペダル21の操作量に応じた流体圧を発生させてスリーブ96を押圧する。そして、スリーブ96が、プッシュロッド95を介してマスタシリンダ23の第1ピストン23bを駆動し、基礎液圧をブレーキペダル21の操作量に応じて増圧または減圧する。 When the operation force and the operation amount of the brake pedal 21 are reduced, the valve device 97 is closed to shut off the fluid pressure supply path and connect the fluid pressure discharge path to brake the booster chamber 100. The liquid is discharged into the reservoir 24. The booster device 91 presses the sleeve 96 by generating a fluid pressure corresponding to the operation amount of the brake pedal 21 in the booster chamber 100 by the operation of the valve device 97. Then, the sleeve 96 drives the first piston 23 b of the master cylinder 23 via the push rod 95 to increase or decrease the basic hydraulic pressure according to the operation amount of the brake pedal 21.
 ブースタ装置91の外周シリンダ92は、マスタシリンダ23の外周シリンダと共通化されている。外周シリンダ92は、有底の円筒で形成され、内周に第1内径部92a(図4中右方)が形成されている。また、第1内径部92aの前方には、外周シリンダ92の内径方向に縮径されたスリーブ支持壁92dが形成されている。また、外周シリンダ92には、半径方向に貫通する径方向油孔921が形成されている。 The outer cylinder 92 of the booster device 91 is shared with the outer cylinder of the master cylinder 23. The outer peripheral cylinder 92 is formed of a bottomed cylinder, and a first inner diameter portion 92a (right side in FIG. 4) is formed on the inner periphery. In addition, a sleeve support wall 92d having a reduced diameter in the inner diameter direction of the outer cylinder 92 is formed in front of the first inner diameter portion 92a. The outer peripheral cylinder 92 is formed with a radial oil hole 921 penetrating in the radial direction.
 圧力源93は、外周シリンダ92の外側に設けられており、外周シリンダ92の径方向油孔921に連通して、蓄えた流体圧を供給する。圧力源93は、ブレーキ液を蓄積して流体圧を蓄えるアキュムレータ931と、マスタシリンダ23付属の大気圧リザーバ24からブレーキ液をアキュムレータ931に圧送する電動ポンプ932とで構成されている。また、圧力源93には、アキュムレータ931の蓄積圧を検出する圧力センサ933、及び蓄積圧が過昇したときにブレーキ液を大気圧リザーバ24に戻すレリーフ弁934が設けられている。 The pressure source 93 is provided outside the outer cylinder 92 and communicates with the radial oil hole 921 of the outer cylinder 92 to supply the stored fluid pressure. The pressure source 93 includes an accumulator 931 that accumulates brake fluid and accumulates fluid pressure, and an electric pump 932 that pumps brake fluid from the atmospheric pressure reservoir 24 attached to the master cylinder 23 to the accumulator 931. Further, the pressure source 93 is provided with a pressure sensor 933 for detecting the accumulated pressure of the accumulator 931 and a relief valve 934 for returning the brake fluid to the atmospheric pressure reservoir 24 when the accumulated pressure is excessive.
 図3に示すように、スリーブ96は、外周シリンダ92の内側に配置されている。スリーブ96は、円筒形状を呈し、大径の第1円筒部96a,前方に形成された小径の第2円筒部96b及び第1円筒部96aの一部に連結され第1円筒部96aからブレーキペダル21側に延在された第3円筒部96cを有している。第3円筒部96cは、第1円筒部96a側に形成された円板状の固定部96c1と、固定部96c1の中心部から後方に突設された有底円筒状の突設部96c2とを有している。そして、固定部96c1の一部と第1円筒部96aの後方端面の一部とが連結されている。 As shown in FIG. 3, the sleeve 96 is disposed inside the outer cylinder 92. The sleeve 96 has a cylindrical shape, and is connected to a large-diameter first cylindrical portion 96a, a small-diameter second cylindrical portion 96b formed at the front, and a part of the first cylindrical portion 96a, and is connected to a brake pedal from the first cylindrical portion 96a. It has the 3rd cylindrical part 96c extended to 21 side. The third cylindrical portion 96c includes a disk-shaped fixing portion 96c1 formed on the first cylindrical portion 96a side, and a bottomed cylindrical protruding portion 96c2 protruding rearward from the center portion of the fixing portion 96c1. Have. And a part of fixed part 96c1 and a part of back end surface of the 1st cylindrical part 96a are connected.
 第1円筒部96aは外周シリンダ92の第1内径部92aに係入される。また第2円筒部96bはスリーブ支持壁92dの内径部に係入される。また、第3円筒部96cの突設部96c2が、外周シリンダ92の底壁92eに貫通された貫通孔92e1に挿通される。そして、第3円筒部96cの固定部96c1が、底壁92eの前方から刻設され貫通孔92e1より大径に形成された支持穴92e2に係入される。スリーブ96は、第3円筒部96cの固定部96c1の後方端面が、支持穴92e2と貫通孔92e1とを連結する端面に当接することによって、後方への移動が規制されている。第1円筒部96a,第2円筒部96b及び第3円筒部96cのそれぞれ外周部には、例えばゴム等の弾性部材によって形成されたシール部材102,101,103が配設され、これらによって液密にシールされている。 The first cylindrical portion 96a is engaged with the first inner diameter portion 92a of the outer cylinder 92. The second cylindrical portion 96b is engaged with the inner diameter portion of the sleeve support wall 92d. Further, the projecting portion 96 c 2 of the third cylindrical portion 96 c is inserted into the through hole 92 e 1 that is penetrated by the bottom wall 92 e of the outer cylinder 92. Then, the fixed portion 96c1 of the third cylindrical portion 96c is engaged with a support hole 92e2 that is engraved from the front of the bottom wall 92e and has a larger diameter than the through hole 92e1. The sleeve 96 is restricted from moving rearward by the rear end surface of the fixed portion 96c1 of the third cylindrical portion 96c coming into contact with the end surface connecting the support hole 92e2 and the through hole 92e1. Seal members 102, 101, and 103 formed of an elastic member such as rubber are disposed on the outer periphery of each of the first cylindrical portion 96a, the second cylindrical portion 96b, and the third cylindrical portion 96c. Is sealed.
 これによって、スリーブ96は、外周シリンダ92の内周で液密、且つ軸線方向に摺動可能に支持される。スリーブ96の第2円筒部96bと外周シリンダ92の第1内径部92aとの間には空間が形成されている。当該空間は径方向油孔921に連通し、軸線方向に延在する軸方向油路28を形成している。つまり、圧力源93の作動中においては、軸方向油路28には常に圧力源93から流体圧が供給されている。 Thus, the sleeve 96 is supported on the inner periphery of the outer cylinder 92 in a liquid-tight manner and slidable in the axial direction. A space is formed between the second cylindrical portion 96 b of the sleeve 96 and the first inner diameter portion 92 a of the outer peripheral cylinder 92. The space communicates with the radial oil hole 921 and forms an axial oil passage 28 extending in the axial direction. In other words, during operation of the pressure source 93, fluid pressure is always supplied from the pressure source 93 to the axial oil passage 28.
 スリーブ96の第1円筒部96aと第2円筒部96bとの接続部近傍で、第2円筒部96bの外周には、スリーブ96の内径部96jに連通する供給ポート961(本発明の増圧ポートに相当する)が貫通されている。なお、供給ポート961の内径部96jへの開口は、第1弁口961aである。このため、第1弁口961aが閉止されれば、供給ポート961まで流体圧が供給された状態となる。第1弁口961aが開口されると、ブースタ室100に流体圧が供給される。このとき、流体経路としての圧力源93からブースタ室100まで流体圧が供給される、供給ポート961を含む経路を流体圧供給経路と称す。 In the vicinity of the connection portion between the first cylindrical portion 96a and the second cylindrical portion 96b of the sleeve 96, the outer periphery of the second cylindrical portion 96b is connected to a supply port 961 that communicates with the inner diameter portion 96j of the sleeve 96 (the pressure increasing port of the present invention). Is equivalent to). The opening to the inner diameter portion 96j of the supply port 961 is a first valve port 961a. For this reason, when the first valve port 961a is closed, the fluid pressure is supplied to the supply port 961. When the first valve port 961 a is opened, fluid pressure is supplied to the booster chamber 100. At this time, a path including the supply port 961 through which the fluid pressure is supplied from the pressure source 93 as a fluid path to the booster chamber 100 is referred to as a fluid pressure supply path.
 スリーブ96の後方端面から前方に所定距離進入した位置まで、内径部96jより拡径されたドレン用大径部96d(本発明の減圧ポートに相当する)が内径部96jの周方向の一部に形成されている。このとき、ドレン用大径部96dが形成される後方端面からの所定距離は、供給ポート961及びスプール94に設けられる後述する排出ポート94e等の位置関係に基づき決定されるものであり詳細は後述する。このように、スリーブ96、供給ポート961,スプール94,排出ポート94e及びドレン用大径部96dなどによって弁装置97が構成されている。 A large-diameter portion for drain 96d (corresponding to the decompression port of the present invention) having a diameter larger than that of the inner diameter portion 96j from a rear end surface of the sleeve 96 to a position where it has entered a predetermined distance forward is part of the circumferential direction of the inner diameter portion 96j. Is formed. At this time, the predetermined distance from the rear end surface where the drain large-diameter portion 96d is formed is determined based on the positional relationship between the supply port 961 and a later-described discharge port 94e provided in the spool 94, which will be described in detail later. To do. Thus, the valve device 97 is constituted by the sleeve 96, the supply port 961, the spool 94, the discharge port 94e, the drain large-diameter portion 96d, and the like.
 スリーブ96の前方部には、大径円筒部96f及び小径円筒部96gを有した段付きの円筒105が配置されている。大径円筒部96fはスリーブ96の前方から穿設された大径内径部96h内に同軸に配設されている。大径円筒部96fの外周の一部と大径内径部96hの一部とが連結固定されている。また、小径円筒部96gは、スリーブ96の内径部96j内に内径部96jとの間に所定の隙間がある状態で内径部96jと同軸に配置されている。 A stepped cylinder 105 having a large-diameter cylindrical portion 96f and a small-diameter cylindrical portion 96g is disposed in the front portion of the sleeve 96. The large diameter cylindrical portion 96f is coaxially disposed in a large diameter inner diameter portion 96h drilled from the front of the sleeve 96. A part of the outer periphery of the large diameter cylindrical part 96f and a part of the large diameter inner diameter part 96h are connected and fixed. The small-diameter cylindrical portion 96g is disposed coaxially with the inner diameter portion 96j with a predetermined gap between the inner diameter portion 96j of the sleeve 96 and the inner diameter portion 96j.
 スプール94は、スリーブ96の内径部96j内側に配設され、摺動方向前後に移動可能となっている。スプール94は、軸線方向中央が縮径された段付き円柱形状を呈している。つまり、スプール94には、前方から順に大径の第1ランド部94a,小径の径小部94b及び第1ランド部94aと同径の第2ランド部94cが形成されている。スプール94の前方端面中心部には、ドレン孔94dが後方に向かって第2ランド部94cに到達するよう穿設されている。そして、第2ランド部94cの外周面からは前述した排出ポート94eがドレン孔94dと連通するように穿設されている。 The spool 94 is disposed on the inner side of the inner diameter portion 96j of the sleeve 96, and can be moved back and forth in the sliding direction. The spool 94 has a stepped cylindrical shape with a reduced diameter at the center in the axial direction. That is, the spool 94 is formed with a first land portion 94a having a large diameter, a small diameter portion 94b, and a second land portion 94c having the same diameter as the first land portion 94a in order from the front. A drain hole 94d is formed at the center of the front end surface of the spool 94 so as to reach the second land portion 94c rearward. The discharge port 94e described above is drilled from the outer peripheral surface of the second land portion 94c so as to communicate with the drain hole 94d.
 スプール94とオペレーティングロッド26との間には第3円筒部96cの内側に配置され、第3円筒部96cの内周面を摺動して移動する作動部材99が介挿されている。作動部材99に設けられた外周溝には、例えばゴム等によって形成されたシール部材104が配設され、第3円筒部96cの内周面との間が液密にシールされている。 Between the spool 94 and the operating rod 26, an operating member 99 that is disposed inside the third cylindrical portion 96c and slides and moves on the inner peripheral surface of the third cylindrical portion 96c is interposed. A seal member 104 made of, for example, rubber is disposed in the outer circumferential groove provided in the operating member 99, and the space between the inner circumferential surface of the third cylindrical portion 96c is liquid-tightly sealed.
 作動部材99の後方端面にはSR状の凹面が形成され、オペレーティングロッド26のSR端部が第3円筒部96cの底面を貫通して当接している。作動部材99の前方端面は、スプール94の後方端面と当接している。 The SR-shaped concave surface is formed on the rear end surface of the actuating member 99, and the SR end portion of the operating rod 26 is in contact with the bottom surface of the third cylindrical portion 96c. The front end surface of the actuating member 99 is in contact with the rear end surface of the spool 94.
 そして、スリーブ96の内径部96j及びドレン用大径部96dと、シール部材102,103と、スプール94の第1ランド部94a,径小部94b,第2ランド部94cと、外周シリンダ92の底壁92eとによって囲繞される空間によって、軸方向長が変化する、即ち容積が変化する前述のブースタ室100(本発明の流体圧発生容器Vfに相当する)が形成されている。このようにブースタ室100(流体圧発生容器Vf)は、容積が小さく、且つ流体圧が付与されたときに変形のしにくい部材で構成されているので、剛性が高いということができる。そのため、一定量のブレーキ液が封入された場合におけるブースタ室100の圧力P-体積V特性は、図4(a)に示すようになり、ブースタ室100の少しの体積(容積)の増減によって、急激に圧力が減増することが判る。本発明においては、ブースタ室100が、このように、図4(a)に示すような特性を持つように構成される。ただし、図4(a)の特性は、説明のために一例を示したものであり、この特性に限るものではない。 The sleeve 96 has an inner diameter portion 96j and a drain large diameter portion 96d, seal members 102 and 103, a first land portion 94a, a small diameter portion 94b, a second land portion 94c of the spool 94, and a bottom of the outer cylinder 92. The above-described booster chamber 100 (corresponding to the fluid pressure generating container Vf of the present invention) whose axial length changes, that is, whose volume changes, is formed by the space surrounded by the wall 92e. As described above, the booster chamber 100 (fluid pressure generating container Vf) has a small volume and is made of a member that is not easily deformed when a fluid pressure is applied. Therefore, the pressure P-volume V characteristic of the booster chamber 100 when a certain amount of brake fluid is sealed is as shown in FIG. 4 (a), and by increasing or decreasing the volume (volume) of the booster chamber 100 slightly, It can be seen that the pressure suddenly decreases. In the present invention, the booster chamber 100 is configured to have the characteristics as shown in FIG. However, the characteristic of FIG. 4A is an example for explanation, and is not limited to this characteristic.
 図3に示すように、弾性体107は、円柱形状を呈し、スリーブ96に設けられた段付きの円筒105の大径円筒部96fの内側に配設されている。弾性体107は、例えばゴム等の弾性部材で形成され、弾性体107とスプール94との間には、プランジャ98(本発明の押圧部に相当する)が介挿されている。プランジャ98は、段付きの円筒105の小径円筒部96g内側に配置され、摺動方向前後に移動可能となっている。プランジャ98は、プランジャ大径部98aとプランジャ小径部98bとを有し、プランジャ大径部98aの外周が、円筒105の小径円筒部96gの内側に前後方向に摺動可能に係入されている。また、小径円筒部96gの内側とプランジャ小径部98bとの間には空間106が形成されている。 As shown in FIG. 3, the elastic body 107 has a columnar shape and is disposed inside the large-diameter cylindrical portion 96 f of the stepped cylinder 105 provided in the sleeve 96. The elastic body 107 is formed of an elastic member such as rubber, for example, and a plunger 98 (corresponding to a pressing portion of the present invention) is interposed between the elastic body 107 and the spool 94. The plunger 98 is disposed inside the small-diameter cylindrical portion 96g of the stepped cylinder 105, and can be moved back and forth in the sliding direction. The plunger 98 has a plunger large-diameter portion 98a and a plunger small-diameter portion 98b, and the outer periphery of the plunger large-diameter portion 98a is engaged inside the small-diameter cylindrical portion 96g of the cylinder 105 so as to be slidable in the front-rear direction. . A space 106 is formed between the inside of the small diameter cylindrical portion 96g and the plunger small diameter portion 98b.
 プランジャ98の後方端面はスプール94の前方端面と当接している。また、プランジャ98の前方端面(本発明の弾性体を押圧する端面に相当する)は弾性体107の後方端面と当接可能に構成されている。プランジャ98の内部には、プランジャ98の後方端面とスプール94の前方端面とが当接した状態で、スプール94のドレン孔94dと連通し、小径部98bの外周面に開口するドレン孔98cを備えている。このため、ブースタ室100からドレン用大径部96d,排出ポート94e,ドレン孔94dを介してドレン孔98cからブレーキ液が排出されたとき、排出されたブレーキ液は空間106を通って大気圧リザーバ24に排出される。ただし、これに限らず、ドレン孔98cと、円筒105の小径円筒部96gとの位置関係によっては、空間106を通過せずに大気圧リザーバ24に排出される。なお、上記において、排出ポート94eがドレン用大径部96dに開口した開口部を第2弁口94e1と称す。 The rear end surface of the plunger 98 is in contact with the front end surface of the spool 94. The front end surface of the plunger 98 (corresponding to the end surface that presses the elastic body of the present invention) is configured to be able to contact the rear end surface of the elastic body 107. Inside the plunger 98, there is provided a drain hole 98 c that communicates with the drain hole 94 d of the spool 94 and opens on the outer peripheral surface of the small diameter portion 98 b in a state where the rear end surface of the plunger 98 and the front end surface of the spool 94 are in contact with each other. ing. Therefore, when the brake fluid is discharged from the drain hole 98c from the booster chamber 100 through the drain large diameter portion 96d, the discharge port 94e, and the drain hole 94d, the discharged brake fluid passes through the space 106 and is stored in the atmospheric pressure reservoir. 24 is discharged. However, not limited to this, depending on the positional relationship between the drain hole 98c and the small-diameter cylindrical portion 96g of the cylinder 105, it is discharged to the atmospheric pressure reservoir 24 without passing through the space 106. In the above description, the opening in which the discharge port 94e is opened to the drain large diameter portion 96d is referred to as a second valve port 94e1.
 弾性体107の前方端面(本発明のマスタピストンを押圧する端面に相当する)には、スリーブ96とマスタシリンダ23との間に配置されるプッシュロッド95の後方端面が当接している。プッシュロッド95の後方端面は、円板上に形成され、円板部外周が円筒105の大径円筒部96fの内側に係合されている。このように構成されてプッシュロッド95は、スリーブ96が有する円筒105の段付き部及びプランジャ98の前方端面に押動される弾性体107を介して押動される。プッシュロッド95の摺動方向前方(図中左方)の先端は、マスタシリンダ23の第1ピストン23b(本発明のマスタピストンに相当する)に当接し、これを押動するようになっている。なお、スリーブ96が前後に移動したときにはプッシュロッド95とスリーブ96とは連動するよう構成されている。 The rear end surface of the push rod 95 disposed between the sleeve 96 and the master cylinder 23 is in contact with the front end surface of the elastic body 107 (corresponding to the end surface that presses the master piston of the present invention). The rear end surface of the push rod 95 is formed on a disk, and the outer periphery of the disk part is engaged with the inside of the large-diameter cylindrical part 96 f of the cylinder 105. The push rod 95 configured in this way is pushed through the elastic body 107 pushed by the stepped portion of the cylinder 105 of the sleeve 96 and the front end surface of the plunger 98. The front end of the push rod 95 in the sliding direction (left side in the figure) abuts on and pushes the first piston 23b (corresponding to the master piston of the present invention) of the master cylinder 23. . The push rod 95 and the sleeve 96 are configured to be interlocked when the sleeve 96 moves back and forth.
 上記において、プランジャ98(押圧部)のプランジャ大径部98aの端面、即ち弾性体107の後方端面と当接するプランジャ98の前方端面の面積をA1とする。また、プッシュロッド95の後方端面と当接する弾性体107の前方端面の面積をA2とする。弾性体107の前方端面と当接するプッシュロッド95の後方端面の面積もA2とする。このとき、運転者がブレーキペダル21を踏み、所定の操作力でプランジャ98を前方に押圧した押圧力は面積比A2/A1(=サーボ比)で増幅されてマスタシリンダ23の第1ピストン23bを押圧する。また、弾性体107は所定の硬度(弾性力)を有している。このため、プランジャ98がプランジャ大径部98aの前方端面によって弾性体107の後方端面を押圧したとき、弾性体107内に発生する圧力P1は弾性体107の前方端面に、硬度に応じた比率で伝搬される。この伝搬率は、硬度が大きい程低くなることが判っている。 In the above description, the area of the end surface of the plunger large-diameter portion 98a of the plunger 98 (pressing portion), that is, the front end surface of the plunger 98 that contacts the rear end surface of the elastic body 107 is A1. Further, the area of the front end surface of the elastic body 107 that contacts the rear end surface of the push rod 95 is A2. The area of the rear end surface of the push rod 95 that contacts the front end surface of the elastic body 107 is also A2. At this time, the driver depresses the brake pedal 21 and presses the plunger 98 forward with a predetermined operating force. The pressing force is amplified by the area ratio A2 / A1 (= servo ratio) and the first piston 23b of the master cylinder 23 is moved. Press. The elastic body 107 has a predetermined hardness (elastic force). Therefore, when the plunger 98 presses the rear end surface of the elastic body 107 with the front end surface of the plunger large diameter portion 98a, the pressure P1 generated in the elastic body 107 is applied to the front end surface of the elastic body 107 at a ratio corresponding to the hardness. Propagated. It has been found that this propagation rate decreases with increasing hardness.
 マスタシリンダ23は、図3に示されるようにタンデム式であり、有底筒状に形成されたハウジング23a(外周シリンダ92と共用)と、ハウジング23a内を液密かつ摺動可能に並べて収納された第1及び第2ピストン23b,23c(マスタピストン)とにより構成されている。第1ピストン23bと第2ピストン23cとの間に形成される第1液圧室23d(本発明のマスタ液圧室に相当する)内には、所定長さ以内で伸縮可能に連結された2部材間に予圧縮されて保持された第1スプリング23eが配設されている。第2ピストン23cとハウジング23aの閉塞端との間に形成される第2液圧室23f(本発明のマスタ液圧室に相当する)内には、所定長さ以内で伸縮可能に連結された2部材間に予圧縮されて保持された第2スプリング23gが配設されている。 The master cylinder 23 is a tandem type as shown in FIG. 3, and is housed side by side in a housing 23a (shared with the outer cylinder 92) formed in a bottomed cylinder and liquid-tight and slidable in the housing 23a. The first and second pistons 23b and 23c (master pistons). In a first hydraulic chamber 23d (corresponding to the master hydraulic chamber of the present invention) formed between the first piston 23b and the second piston 23c, 2 connected to be extendable within a predetermined length. A first spring 23e that is pre-compressed and held between the members is disposed. A second hydraulic pressure chamber 23f (corresponding to the master hydraulic pressure chamber of the present invention) formed between the second piston 23c and the closed end of the housing 23a is connected to be extendable within a predetermined length. A second spring 23g that is pre-compressed and held between the two members is disposed.
 これにより、第2ピストン23cは、第2スプリング23gによって第1ピストン23b側に付勢されている。第1ピストン23bは第1スプリング23eによってブースタ装置91側に付勢されている。第1ピストン23bのブースタ装置91側の一端は、プッシュロッド95の先端に押動されて連動するようになっている。 Thereby, the second piston 23c is urged toward the first piston 23b by the second spring 23g. The first piston 23b is urged toward the booster device 91 by the first spring 23e. One end of the first piston 23b on the booster device 91 side is pushed by the tip of the push rod 95 and interlocks.
 マスタシリンダ23のハウジング23aは、第1液圧室23dと大気圧リザーバ24とを連通するための第1ポート23hと、第2液圧室23fと大気圧リザーバ24とを連通するための第2ポート23iとを有している。さらに、ハウジング23aは、第1液圧室23dをブレーキアクチュエータ25の後輪系統を構成する油経路Lr(本発明の液圧経路に相当する)に連通するための第3ポート23jと、第2液圧室23fをブレーキアクチュエータ25の前輪系統を構成する油経路Lf(液圧経路)に連通するための第4ポート23kとを有している。 The housing 23a of the master cylinder 23 has a first port 23h for communicating the first hydraulic pressure chamber 23d and the atmospheric pressure reservoir 24, and a second port for communicating the second hydraulic pressure chamber 23f and the atmospheric pressure reservoir 24. Port 23i. Further, the housing 23a includes a third port 23j for communicating the first hydraulic pressure chamber 23d with an oil path Lr (corresponding to the hydraulic pressure path of the present invention) constituting the rear wheel system of the brake actuator 25, and a second port 23j. A fourth port 23k is provided for communicating the hydraulic chamber 23f with an oil path Lf (hydraulic path) constituting the front wheel system of the brake actuator 25.
 次に、ブレーキアクチュエータ25について、図2を参考にして詳述する。ブレーキアクチュエータ25は、液圧制御弁31,41(本発明の制御弁に相当する),ABS制御弁を構成する増圧制御弁32,33,42,43及び減圧制御弁35,36,45,46,調圧リザーバ34,44,電動ポンプ37,47(本発明のポンプに相当する),モータMなどが一つのケースにパッケージされて構成されている。 Next, the brake actuator 25 will be described in detail with reference to FIG. The brake actuator 25 includes hydraulic pressure control valves 31, 41 (corresponding to the control valve of the present invention), pressure increase control valves 32, 33, 42, 43 and pressure reduction control valves 35, 36, 45, constituting an ABS control valve. 46, pressure regulating reservoirs 34 and 44, electric pumps 37 and 47 (corresponding to the pump of the present invention), motor M and the like are packaged in one case.
 まず、ブレーキアクチュエータ25の前輪系統の構成について説明する。マスタシリンダ23とホイールシリンダWC1~WC4とを接続する油経路Lfには、差圧制御弁で構成される液圧制御弁31が備えられている。液圧制御弁31は、ブレーキECU60からの制御により、連通状態及び差圧状態に切り替わるものである。液圧制御弁31は通常連通状態とされており、差圧状態に切り替わることにより、油経路Lfのうち液圧制御弁31よりもホイールシリンダWC1,WC2側の油経路Lf2の液圧を、マスタシリンダ23側の油経路Lf1の基礎液圧よりも所定の差圧分高い圧力に保持することができる。 First, the configuration of the front wheel system of the brake actuator 25 will be described. The oil path Lf that connects the master cylinder 23 and the wheel cylinders WC1 to WC4 is provided with a hydraulic control valve 31 that includes a differential pressure control valve. The hydraulic pressure control valve 31 is switched between a communication state and a differential pressure state under the control of the brake ECU 60. The hydraulic control valve 31 is normally in a communication state, and by switching to the differential pressure state, the hydraulic pressure of the oil path Lf2 on the wheel cylinders WC1 and WC2 side of the hydraulic pressure control valve 31 in the oil path Lf is changed to the master. It can be maintained at a pressure higher by a predetermined differential pressure than the basic hydraulic pressure of the oil path Lf1 on the cylinder 23 side.
 油経路Lf1には、マスタシリンダ23で生成された基礎液圧を検出する圧力センサSPが設けられている。圧力センサSPは、ブレーキECU60に接続されている。なお、圧力センサSPは、後輪系統の油経路Lr1に設けてもよい。 The oil path Lf1 is provided with a pressure sensor SP that detects the basic hydraulic pressure generated by the master cylinder 23. The pressure sensor SP is connected to the brake ECU 60. Note that the pressure sensor SP may be provided in the oil path Lr1 of the rear wheel system.
 油経路Lf2は2つに分岐しており、それぞれホイールシリンダWC1,WC2に接続されている。一方には、ABS制御の増圧モード時においてホイールシリンダWC1へのブレーキ液圧の増圧を制御する増圧制御弁32が備えられている。ホイールシリンダWC2に接続されている他方には、ABS制御の増圧モード時においてホイールシリンダWC2へのブレーキ液圧の増圧を制御する増圧制御弁33が備えられている。増圧制御弁32,33は、ブレーキECU60により連通状態及び遮断状態を切り替え制御できる2位置弁として構成されている。そして、増圧制御弁32,33が連通状態に制御されているときには、マスタシリンダ23の基礎液圧又は/及び電動ポンプ37の駆動と液圧制御弁31の制御によって形成される付加液圧を各ホイールシリンダWC1,WC2に加えることができる。 The oil path Lf2 is branched into two and connected to the wheel cylinders WC1 and WC2, respectively. On the other hand, there is provided a pressure increase control valve 32 that controls the increase of the brake fluid pressure to the wheel cylinder WC1 in the pressure increase mode of the ABS control. The other connected to the wheel cylinder WC2 is provided with a pressure increase control valve 33 that controls the increase of the brake fluid pressure to the wheel cylinder WC2 in the pressure increase mode of the ABS control. The pressure increase control valves 32 and 33 are configured as two-position valves that can be switched and controlled between the communication state and the cutoff state by the brake ECU 60. When the pressure increase control valves 32 and 33 are controlled to be in communication, the basic hydraulic pressure of the master cylinder 23 and / or the additional hydraulic pressure formed by the drive of the electric pump 37 and the control of the hydraulic pressure control valve 31 are applied. It can be added to each wheel cylinder WC1, WC2.
 油経路Lf2のうち増圧制御弁32,33と各ホイールシリンダWC1,WC2との間の部分は、油経路Lf3を介して調圧リザーバ34に連通されている。油経路Lf3には、ブレーキECU60により連通状態及び遮断状態を切り替え制御できる減圧制御弁35,36がそれぞれ配設されている。減圧制御弁35,36はノーマルブレーキ状態(ABS非作動時)では常時遮断状態とされている。 Portions of the oil path Lf2 between the pressure increase control valves 32 and 33 and the wheel cylinders WC1 and WC2 are communicated with the pressure regulating reservoir 34 via the oil path Lf3. The oil path Lf3 is provided with pressure reduction control valves 35 and 36 that can be switched and controlled between the communication state and the cutoff state by the brake ECU 60, respectively. The decompression control valves 35 and 36 are always cut off in the normal brake state (when the ABS is not operating).
 油経路Lf2のうち液圧制御弁31と増圧制御弁32,33との間の部分は、油経路Lf4を介してマスタシリンダ23及び調圧リザーバ34に連通されている。図2では、油経路Lf4は2つに分岐している。そして、油経路Lf4の分岐部分の一方は、油経路Lf1に連通されている。また、他方は、油経路Lf3のうち減圧制御弁35,36と調圧リザーバ34との間の部分が連通されている。油経路Lf4には、液圧制御弁31よりもマスタシリンダ23側のブレーキ液をホイールシリンダWC1,WC2側に吐出する電動ポンプ37が安全弁37aとともに配設されている。油経路Lf4のうち電動ポンプ37の吐出側の部分には、ダンパ37bが配設されている。油経路Lf4の非分岐部のうち電動ポンプ37の吸入側部分には、逆止弁37cが配設されている。油経路Lf4の分岐部のうち調圧リザーバ34に連通する部分には、逆止弁37dが配設されている。 A portion of the oil path Lf2 between the hydraulic pressure control valve 31 and the pressure increase control valves 32 and 33 is communicated with the master cylinder 23 and the pressure regulating reservoir 34 via the oil path Lf4. In FIG. 2, the oil path Lf4 is branched into two. One of the branch portions of the oil path Lf4 communicates with the oil path Lf1. On the other hand, a portion of the oil path Lf3 between the pressure reducing control valves 35 and 36 and the pressure regulating reservoir 34 is communicated. In the oil path Lf4, an electric pump 37 that discharges brake fluid closer to the master cylinder 23 than to the hydraulic control valve 31 to the wheel cylinders WC1 and WC2 is disposed together with a safety valve 37a. A damper 37b is disposed on the discharge side of the electric pump 37 in the oil path Lf4. A check valve 37c is disposed on the suction side portion of the electric pump 37 in the non-branching portion of the oil path Lf4. A check valve 37d is disposed in a portion communicating with the pressure regulating reservoir 34 in the branch portion of the oil path Lf4.
 また、電動ポンプ37は、ESC制御、トラクションコントロール,ブレーキアシストなどの車両の姿勢を安定に制御するための付加液圧を形成する際にも作動する。さらに、電動ポンプ37は、前述したように、例えば、車速が所定値(例えば14km/h)以下であるときに、目標とする目標回生制動力FKが回生ブレーキ装置Aによって得られない場合において、実際に車輪に付与した実回生制動力FKr(図7においてはX4のFK4に相当する)と要求制動力FTとの差に相当する制動力をホイールシリンダWC1,WC2に付与する際にも作動する。つまり、電動ポンプ37は、実回生制動力FKrと要求制動力FTとの差に相当する制動力を得るために、そのときの基礎液圧制動力FEに対して不足する分の付加液圧制動力FSに相当する付加液圧を形成する際にも作動する。ただし、このときの付加液圧制動力FSは、目標回生制動力FKと実回生制動力FKrとの差、及び低下した基礎液圧制動力FE分の両者を含んだ値(図7においてX4のFS4に相当する)である。なお、このとき、基礎液圧制動力FEは、前述したように、ブレーキアクチュエータ25が有するセンサSPのデータを取得することによって常に把握されているものとする。 Also, the electric pump 37 operates when forming an additional hydraulic pressure for stably controlling the posture of the vehicle such as ESC control, traction control, and brake assist. Further, as described above, when the vehicle speed is a predetermined value (for example, 14 km / h) or less, the electric pump 37 is used when the target target regenerative braking force FK cannot be obtained by the regenerative braking device A. It also operates when a braking force corresponding to the difference between the actual regenerative braking force FKr actually applied to the wheel (corresponding to FK4 of X4 in FIG. 7) and the required braking force FT is applied to the wheel cylinders WC1 and WC2. . That is, the electric pump 37 obtains a braking force corresponding to the difference between the actual regenerative braking force FKr and the required braking force FT, and the additional hydraulic braking force FS that is insufficient with respect to the basic hydraulic braking force FE at that time. It also operates when forming an additional hydraulic pressure corresponding to. However, the additional hydraulic braking force FS at this time is a value including both the difference between the target regenerative braking force FK and the actual regenerative braking force FKr, and the reduced basic hydraulic braking force FE (in FIG. 7, FS4 of X4). Equivalent). At this time, it is assumed that the basic hydraulic braking force FE is always grasped by acquiring the data of the sensor SP included in the brake actuator 25 as described above.
 すなわち、電動ポンプ37が作動されている状態において、液圧制御弁31が、差圧状態に切り替わることにより、油経路Lfのうち液圧制御弁31よりもホイールシリンダWC1,WC2側の油経路Lf2の液圧を、マスタシリンダ23側の油経路Lf1の基礎液圧よりも所定の差圧分高い圧力に保持する。そして、当該所定の差圧分高い圧力を、油経路Lf4,Lf2及び連通状態の増圧制御弁32,33を介して各ホイールシリンダWC1,WC2に付与し付加液圧制動力FSを発生させる。なお、本発明においては、付加液圧制動力FSを発生させるために付加液圧を形成する上記構成を液圧付加装置Adと呼ぶ。 That is, when the electric pump 37 is operated, the hydraulic pressure control valve 31 is switched to the differential pressure state, so that the oil path Lf2 on the wheel cylinders WC1 and WC2 side of the hydraulic pressure control valve 31 in the oil path Lf. Is maintained at a pressure higher than the basic hydraulic pressure in the oil path Lf1 on the master cylinder 23 side by a predetermined differential pressure. Then, a pressure higher by the predetermined differential pressure is applied to the wheel cylinders WC1 and WC2 via the oil passages Lf4 and Lf2 and the communication pressure increase control valves 32 and 33 to generate the additional hydraulic braking force FS. In the present invention, the above-described configuration for forming the additional hydraulic pressure to generate the additional hydraulic braking force FS is referred to as a hydraulic pressure adding device Ad.
 また、ブレーキアクチュエータ25の後輪系統も前述した前輪系統と同様な構成であり、後輪系統を構成する油経路Lrは、油経路Lfと同様に油経路Lr1~Lr5から構成されている。弁類なども同様であり、油経路Lrに液圧制御弁41及び調圧リザーバ44,油経路Lr2,Lr2に増圧制御弁42,43,油経路Lr3に減圧制御弁45,46,油経路Lr4にポンプ47,油経路Lr5に電磁開閉弁48がそれぞれ備えられている。 Also, the rear wheel system of the brake actuator 25 has the same configuration as that of the front wheel system described above, and the oil path Lr constituting the rear wheel system is composed of oil paths Lr1 to Lr5, similar to the oil path Lf. The same applies to the valves and the like. The hydraulic pressure control valve 41 and the pressure regulating reservoir 44 are provided in the oil path Lr, the pressure increase control valves 42 and 43 are provided in the oil paths Lr2 and Lr2, the pressure reduction control valves 45 and 46 are provided in the oil path Lr3, and the oil path. A pump 47 is provided in Lr4, and an electromagnetic on-off valve 48 is provided in the oil path Lr5.
 これにより、マスタシリンダ23の基礎液圧及び電動ポンプ37,47の駆動と液圧制御弁31,41の制御によって形成された付加液圧を各車輪FR,FL,RR,RLのホイールシリンダWC1,WC2,WC3,WC4に付与できる。各ホイールシリンダWC1,WC2,WC3,WC4は、液圧(基礎液圧及び付加液圧)が供給されると、ブレーキ手段を作動させて各車輪FR,FL,RR,RLに液圧制動力(基礎液圧制動力FE及び付加液圧制動力FS)を付加する。なお、ブレーキ手段としては、ディスクブレーキ,ドラムブレーキ等があり、ブレーキパッド,ブレーキシュー等の摩擦部材が車輪に一体のディスクロータ,ブレーキドラム等の回転を規制するようになっている。 As a result, the basic hydraulic pressure of the master cylinder 23 and the additional hydraulic pressure formed by the drive of the electric pumps 37 and 47 and the control of the hydraulic pressure control valves 31 and 41 are converted into the wheel cylinders WC1 and WC1 of the wheels FR, FL, RR and RL. It can be given to WC2, WC3, WC4. When each wheel cylinder WC1, WC2, WC3, WC4 is supplied with hydraulic pressure (basic hydraulic pressure and additional hydraulic pressure), the brake means is operated to apply hydraulic braking force (basic to each wheel FR, FL, RR, RL). A hydraulic braking force FE and an additional hydraulic braking force FS) are added. The brake means includes a disc brake, a drum brake, and the like, and friction members such as a brake pad and a brake shoe regulate the rotation of the disc rotor, the brake drum, etc. integrated with the wheels.
 このように、基礎液圧及び付加液圧を発生させるマスタシリンダ23の第1液圧室23d(または第2液圧室23f)は、油経路Lf1(またはLr1),電磁開閉弁38(または電磁開閉弁48)に接続されて本発明に係る基礎液圧発生容器Vmが形成されている。 Thus, the first hydraulic pressure chamber 23d (or the second hydraulic pressure chamber 23f) of the master cylinder 23 that generates the basic hydraulic pressure and the additional hydraulic pressure is provided with the oil path Lf1 (or Lr1), the electromagnetic on-off valve 38 (or electromagnetic A basic hydraulic pressure generating container Vm according to the present invention is formed connected to the on-off valve 48).
 基礎液圧発生容器Vmは、このように容量の大きな空間を有し、且つ体積変化要因が多い部材で構成されているので、剛性が低いということができる。そのため、一定量のブレーキ液が封入された場合における基礎液圧発生容器Vmの圧力P-体積V特性は、図4(b)に示すようになり、大きく体積が増減されなければ、圧力が大きく変化しないことが判る。本発明においては、基礎液圧発生容器Vmがこのような特性を持つように構成される。そして、本発明においては、前述したブースタ室100(流体圧発生容器Vf)の剛性よりも、基礎液圧発生容器Vmの剛性のほうが小さくなるように設定されている。ただし、図4(b)の特性は、説明のために一例を示したものであり、この特性に限るものではない。 Since the basic hydraulic pressure generating container Vm has such a large capacity space and is composed of members having many volume change factors, it can be said that the rigidity is low. Therefore, the pressure P-volume V characteristic of the basic hydraulic pressure generation container Vm when a certain amount of brake fluid is sealed is as shown in FIG. 4B. If the volume is not greatly increased or decreased, the pressure increases. It turns out that it does not change. In the present invention, the basic hydraulic pressure generating container Vm is configured to have such characteristics. In the present invention, the rigidity of the basic hydraulic pressure generating container Vm is set to be smaller than the rigidity of the booster chamber 100 (fluid pressure generating container Vf) described above. However, the characteristic of FIG. 4B is an example for explanation, and is not limited to this characteristic.
 このとき、基礎液圧発生容器Vmと流体圧発生容器Vfとの剛性の比は、液圧付加装置Adの作動に伴い、マスタシリンダ23の第1液圧室23d及び第2液圧室23f(ともに本発明のマスタ液圧室に相当する)の基礎液圧が減少したときにも、ブースタ圧が短時間で基礎液圧とバランスするよう設定される。つまり、スリーブ96及びブレーキペダル21が、運転者が違和感を感じない程度に少し前進した状態でブースタ圧が十分減圧し、減圧した基礎液圧と好適にバランス可能となるような比率に設定される。これらは、事前の実験等によって任意に求めればよい。このとき、基礎液圧発生容器Vmと、流体圧発生容器Vfとによって変動基礎液圧吸収機構が構成される。このように、変動基礎液圧吸収機構は、液圧付加装置Adの作動により基礎液圧が減少したときに、基礎液圧の変動を吸収してブレーキペダル21の移動量を所定量以下に抑制するためのものである。このとき、所定量とは、運転者が違和感を感じないための量であり、任意に設定すればよい。これにより、ブレーキペダル21が所定量を超えて前進することはなく、運転者に違和感を与えることが好適に抑制される。 At this time, the rigidity ratio between the basic hydraulic pressure generating container Vm and the fluid pressure generating container Vf is determined by the first hydraulic pressure chamber 23d and the second hydraulic pressure chamber 23f ( The booster pressure is set so as to balance the basal fluid pressure in a short time even when the basal fluid pressure of the master fluid pressure chamber of the present invention decreases. In other words, the ratio of the sleeve 96 and the brake pedal 21 is set such that the booster pressure is sufficiently reduced in a state where the driver advances slightly to such an extent that the driver does not feel uncomfortable, and can be suitably balanced with the reduced basic fluid pressure. . These may be obtained arbitrarily by prior experiments or the like. At this time, the basic fluid pressure generating container Vm and the fluid pressure generating container Vf constitute a variable basic fluid pressure absorbing mechanism. As described above, when the basic hydraulic pressure is reduced by the operation of the hydraulic pressure adding device Ad, the variable basic hydraulic pressure absorbing mechanism absorbs the fluctuation of the basic hydraulic pressure and suppresses the movement amount of the brake pedal 21 to a predetermined amount or less. Is to do. At this time, the predetermined amount is an amount that prevents the driver from feeling uncomfortable and may be set arbitrarily. Thereby, the brake pedal 21 does not move forward beyond a predetermined amount, and it is preferably suppressed that the driver feels uncomfortable.
 次に、ブースタ装置91の基本的な作動について、図5,図6を参考にして説明する。まず、図5に基づきブレーキペダル21が踏込み操作されたときの、ブースタ装置91が行なう通常の加圧作動について説明する。なお、図3に示されたブレーキペダル21の未操作状態では、ブースタ室100にはブレーキ液が供給されていない。 Next, the basic operation of the booster device 91 will be described with reference to FIGS. First, a normal pressurizing operation performed by the booster device 91 when the brake pedal 21 is depressed will be described with reference to FIG. Note that when the brake pedal 21 is not operated as shown in FIG. 3, the brake fluid is not supplied to the booster chamber 100.
 図3に示された未操作状態の位置からブレーキペダル21が踏込み操作されると、オペレーティングロッド26が作動(前進)を開始する。そして、オペレーティングロッド26が作動部材99,スプール94,プランジャ98を押動する。ブレーキペダル21が所定量だけ踏込まれると、プランジャ98が弾性体107に当接する。そして、プランジャ98がブレーキペダル21の踏込み力と弾性体107の所定の弾性力(反発力)とが釣合った状態となるまで弾性体107を圧縮する。そして弾性体107が圧縮されブレーキペダル21の踏込み力と釣合った後、プランジャ98と弾性体107とが一体的に前方に移動を開始する。このとき、弾性体107の弾性力が、プランジャ98を押圧することにより、スプール94、つまりブレーキペダル21に反力が付与される。 When the brake pedal 21 is depressed from the unoperated position shown in FIG. 3, the operating rod 26 starts operating (advancing). Then, the operating rod 26 pushes the operating member 99, the spool 94, and the plunger 98. When the brake pedal 21 is depressed by a predetermined amount, the plunger 98 comes into contact with the elastic body 107. Then, the plunger 98 compresses the elastic body 107 until the depression force of the brake pedal 21 and the predetermined elastic force (repulsive force) of the elastic body 107 are balanced. Then, after the elastic body 107 is compressed and balances with the depression force of the brake pedal 21, the plunger 98 and the elastic body 107 start moving forward integrally. At this time, the elastic force of the elastic body 107 presses the plunger 98, whereby a reaction force is applied to the spool 94, that is, the brake pedal 21.
 また、このとき、スプール94は、スリーブ96に対して相対変位し、ブレーキペダル21が所定量以上踏込まれた状態では、スリーブ96に設けられた供給ポート961(増圧ポート)の第1弁口961aがスプール94の径小部94bに開口、すなわちブースタ室100に開口する。これにより、ブースタ室100には、圧力源93から流体圧供給経路を介して流体圧が供給され、ブースタ室100のブースタ圧が昇圧される(図5中ブースタ室100の矢印方向参照)。このとき、流体圧排出経路を形成するスプール94の第2弁口94e1は、スリーブ96の内径部96jによって閉止されている。 At this time, the spool 94 is relatively displaced with respect to the sleeve 96, and when the brake pedal 21 is depressed by a predetermined amount or more, the first valve port of the supply port 961 (pressure increasing port) provided in the sleeve 96. 961a opens to the small diameter portion 94b of the spool 94, that is, opens to the booster chamber 100. As a result, fluid pressure is supplied to the booster chamber 100 from the pressure source 93 via the fluid pressure supply path, and the booster pressure in the booster chamber 100 is increased (see the arrow direction of the booster chamber 100 in FIG. 5). At this time, the second valve port 94e1 of the spool 94 that forms the fluid pressure discharge path is closed by the inner diameter portion 96j of the sleeve 96.
 これにより、ブースタ室100の圧力によってスリーブ96が前方に付勢され、スリーブ96の大径円筒部96fに係入される弾性体107を大径円筒部96fの底面で押圧する。弾性体107は、プッシュロッド95を押圧することによって、マスタシリンダ23の第1ピストン23bを押動しマスタシリンダ23に基礎液圧を発生させる。このように、ブースタ圧により助勢されて、マスタシリンダ23は基礎液圧を生成する。また、このようにマスタシリンダ23の第1ピストン23bの移動量と、弁装置97の作動量とは、連動している。 Thus, the sleeve 96 is urged forward by the pressure in the booster chamber 100, and the elastic body 107 engaged with the large-diameter cylindrical portion 96f of the sleeve 96 is pressed against the bottom surface of the large-diameter cylindrical portion 96f. The elastic body 107 presses the push rod 95 to push the first piston 23 b of the master cylinder 23 and generate a base hydraulic pressure in the master cylinder 23. Thus, assisted by the booster pressure, the master cylinder 23 generates a base hydraulic pressure. In addition, the movement amount of the first piston 23b of the master cylinder 23 and the operation amount of the valve device 97 are linked in this way.
 その後、ブレーキペダル21が所定の操作位置(操作量)で停止して維持状態に維持されると、マスタシリンダ23の基礎液圧とバランスするため、操作位置(操作量)が維持状態に遷移した直後に、スリーブ96が前進する。そして、図8に示すように、第1弁口961aが、スプール94の第1ランド部94aによって閉止された直後、スプール94とスリーブ96との相対変位は停止する。このとき、スプール94の第2ランド部94cの第2弁口94e1は、閉止状態が維持されている。よって、ブースタ室100には流体圧が残留し、スリーブ96が第1ピストン23bを、ブースタ室100に残留した流体圧に応じた力で押圧する。これにより、スリーブ96とマスタシリンダ23の第1ピストン23bとがバランスし、増加維持状態となる(図8参照)。 After that, when the brake pedal 21 is stopped at the predetermined operation position (operation amount) and maintained in the maintenance state, the operation position (operation amount) transitions to the maintenance state in order to balance with the basic hydraulic pressure of the master cylinder 23. Immediately after, the sleeve 96 advances. As shown in FIG. 8, immediately after the first valve port 961a is closed by the first land portion 94a of the spool 94, the relative displacement between the spool 94 and the sleeve 96 stops. At this time, the second valve port 94e1 of the second land portion 94c of the spool 94 is kept closed. Therefore, the fluid pressure remains in the booster chamber 100, and the sleeve 96 presses the first piston 23b with a force corresponding to the fluid pressure remaining in the booster chamber 100. As a result, the sleeve 96 and the first piston 23b of the master cylinder 23 are balanced, and the increase is maintained (see FIG. 8).
 また、例えば、ブレーキペダル21が踏込み操作されたときを示す図5の状態からブレーキペダル21に作用する操作力及び操作量が減少した場合は、図6に示されるように、スプール94がスリーブ96に対して相対的に摺動方向後方に変位する。すると、第1弁口961aはスプール94の第1ランド部94aの外周によって閉止されて、流体圧の流体圧供給経路が遮断される。この後、第2弁口94e1がドレン用大径部96d(減圧ポート)に開口、即ちブースタ室100に開口して流体圧排出経路が連通する。これにより、ブースタ室100の流体圧は、ブースタ室100の流体がドレン用大径部96d(減圧ポート),排出ポート94e,ドレン孔94d,94e,98c及び空間106等を経由して大気圧リザーバ24へと排出されることにより低下する。 Further, for example, when the operation force and the operation amount acting on the brake pedal 21 are reduced from the state shown in FIG. 5 that shows when the brake pedal 21 is depressed, as shown in FIG. Is displaced rearward relative to the sliding direction. Then, the first valve port 961a is closed by the outer periphery of the first land portion 94a of the spool 94, and the fluid pressure supply path for the fluid pressure is shut off. Thereafter, the second valve port 94e1 opens to the drain large diameter portion 96d (pressure reduction port), that is, opens to the booster chamber 100, and the fluid pressure discharge path communicates. Thereby, the fluid pressure in the booster chamber 100 is adjusted so that the fluid in the booster chamber 100 passes through the large-diameter portion for drain 96d (decompression port), the discharge port 94e, the drain holes 94d, 94e, 98c, the space 106, and the like. Reduced by being discharged to 24.
 この後、ブレーキペダル21が所定の操作位置(操作量)で維持状態に維持されると、はじめ、第2弁口94e1の開口は維持されているので、ブースタ室100の圧力はさらに下がり、スリーブ96がマスタシリンダ23の第1ピストン23bに押圧され、スプール94に対して相対的に後方に徐々に変位される。やがて、第2弁口94e1がスリーブ96の内径部96jによって閉止された直後に、スリーブ96が第1ピストン23bとバランスし停止して図10に示すように減少維持状態に保持される。図10に示すように、ブレーキペダル21が減少維持状態に維持されたときの第1弁口961aとスプール94の第1ランド部94aとの位置関係については後述する。 Thereafter, when the brake pedal 21 is maintained in a maintained state at a predetermined operation position (operation amount), the opening of the second valve port 94e1 is maintained for the first time, so that the pressure in the booster chamber 100 further decreases, and the sleeve 96 is pressed by the first piston 23 b of the master cylinder 23 and gradually displaced rearward relative to the spool 94. Eventually, immediately after the second valve port 94e1 is closed by the inner diameter portion 96j of the sleeve 96, the sleeve 96 balances and stops with the first piston 23b and is maintained in the reduced maintaining state as shown in FIG. As shown in FIG. 10, the positional relationship between the first valve port 961a and the first land portion 94a of the spool 94 when the brake pedal 21 is maintained in the reduced maintenance state will be described later.
 次に、回生協調制御を伴うブレーキ装置CBの通常の作動について、図7のグラフに基づき簡単に説明しておく。なお、一例として説明する図7に示す特性は、ブレーキペダル21が増加維持状態に保持されている状態からスタートした実験の結果である。図7は、横軸をブレーキペダル21の操作量(ストローク),縦軸を制動力とした液圧制動力発生装置Bの特性図である。ブレーキECU60は、ペダルストロークセンサ21aの検出信号から操作量を把握し、対応する要求制動力FTを演算する。要求制動力FTは、目標回生制動力FKと基礎液圧制動力FEとを加算した値となるものである。 Next, the normal operation of the brake device CB with regenerative cooperative control will be briefly described based on the graph of FIG. The characteristic shown in FIG. 7 described as an example is the result of an experiment started from a state in which the brake pedal 21 is held in the increase maintaining state. FIG. 7 is a characteristic diagram of the hydraulic braking force generator B with the horizontal axis representing the operation amount (stroke) of the brake pedal 21 and the vertical axis representing the braking force. The brake ECU 60 grasps the operation amount from the detection signal of the pedal stroke sensor 21a, and calculates the corresponding required braking force FT. The required braking force FT is a value obtained by adding the target regenerative braking force FK and the basic hydraulic braking force FE.
 図7中に破線で示される要求制動力FTは、ブレーキペダル21の操作位置により定まる制動力の要求値であり、予めブレーキECU60内にデータとして保持されている。図中の作動点Xiは、ブレーキペダル21が操作量Liだけ操作されたとき、要求制動力FTiが回生制動力FKiと基礎液圧制動力FEiの和になっていることを示している。 The required braking force FT indicated by a broken line in FIG. 7 is a required value of the braking force determined by the operation position of the brake pedal 21 and is stored in the brake ECU 60 as data in advance. The operating point Xi in the figure indicates that the required braking force FTi is the sum of the regenerative braking force FKi and the basic hydraulic braking force FEi when the brake pedal 21 is operated by the operation amount Li.
 ブレーキペダル21が未操作位置(図中左端)から踏込み操作されると、ブレーキECU60は、ペダルストロークセンサ21aの検出信号から操作量を把握し、対応する要求制動力FTを求める。ブレーキペダル21が不動作ストロークL(=初期操作量)までの範囲内で操作されると、図示されるように要求制動力FTが発生する。このとき、スプール94及びスリーブ96の相対的な位置関係によって流体圧供給経路は閉止されたままとなっており、ブースタ装置91及びマスタシリンダ23は作動しない。したがって、図中の作動点X1に例示されるように、要求制動力FT2に一致した回生制動力FK2を発生するように回生ブレーキ装置Aが制御される。このとき、回生制動力FK2は、ハイブリッドECU19が有する目標回生制動力演算部108によって演算される(図1参照)。 When the brake pedal 21 is depressed from an unoperated position (the left end in the figure), the brake ECU 60 grasps the operation amount from the detection signal of the pedal stroke sensor 21a and obtains the corresponding required braking force FT. When the brake pedal 21 is operated within a range up to a non-operation stroke L (= initial operation amount), a required braking force FT is generated as shown in the figure. At this time, the fluid pressure supply path remains closed due to the relative positional relationship between the spool 94 and the sleeve 96, and the booster device 91 and the master cylinder 23 do not operate. Therefore, the regenerative braking device A is controlled so as to generate a regenerative braking force FK2 that matches the required braking force FT2, as exemplified by the operating point X1 in the figure. At this time, the regenerative braking force FK2 is calculated by the target regenerative braking force calculation unit 108 of the hybrid ECU 19 (see FIG. 1).
 ブレーキペダル21が、ちょうど不動作ストロークL(=初期操作量)だけ操作されると、作動点X2に達して、要求制動力FTは、目標回生制動力演算部108によって演算される最大回生制動力FKmax(=目標回生制動力FK)に一致する。そして、最大回生制動力FKmax(=目標回生制動力FK)を発生させるように回生ブレーキ装置Aが制御される。 When the brake pedal 21 is operated just by the non-operation stroke L (= initial operation amount), the operating point X2 is reached, and the required braking force FT is calculated as the maximum regenerative braking force calculated by the target regenerative braking force calculation unit 108. It corresponds to FKmax (= target regenerative braking force FK). Then, the regenerative braking device A is controlled so as to generate the maximum regenerative braking force FKmax (= target regenerative braking force FK).
 ブレーキペダル21が不動作ストロークLを超えて操作されると、図中の作動点X3に例示されるように、要求制動力FT3は最大回生制動力FKmaxよりも大きくなる。このとき、スプール94と、スリーブ96との間の相対変位によって、スリーブ96の供給ポート961の第1弁口961aがブースタ室100に開口し、流体圧供給経路を介してブースタ室100に流体圧が供給され、マスタシリンダ23が駆動される。これにより、液圧制動力発生装置Bは、要求制動力FT3から最大回生制動力FKmaxを差し引いた基礎液圧制動力FE3に対応する基礎液圧を発生させる。なお、このときの基礎液圧制動力FEは、ブレーキアクチュエータ25が有する圧力センサSPから取得された基礎液圧の検出データによって、常時、正確に把握されている。 When the brake pedal 21 is operated beyond the non-operation stroke L, the required braking force FT3 becomes larger than the maximum regenerative braking force FKmax as exemplified by the operating point X3 in the figure. At this time, due to the relative displacement between the spool 94 and the sleeve 96, the first valve port 961a of the supply port 961 of the sleeve 96 opens into the booster chamber 100, and fluid pressure is applied to the booster chamber 100 via the fluid pressure supply path. Is supplied and the master cylinder 23 is driven. Accordingly, the hydraulic braking force generator B generates a basic hydraulic pressure corresponding to the basic hydraulic braking force FE3 obtained by subtracting the maximum regenerative braking force FKmax from the required braking force FT3. Note that the basic hydraulic pressure braking force FE at this time is always accurately grasped by the basic hydraulic pressure detection data acquired from the pressure sensor SP of the brake actuator 25.
 上述より、通常は、ブレーキペダル21が不動作ストロークLまでの範囲で操作されている間は回生制動力FKのみが使用され、ブレーキペダル21が不動作ストロークLを超えて操作されると最大回生制動力FKmax(=目標回生制動力FK)と基礎液圧制動力FEとが併用される。 As described above, normally, only the regenerative braking force FK is used while the brake pedal 21 is operated in the range up to the non-operation stroke L, and maximum regeneration is performed when the brake pedal 21 is operated beyond the non-operation stroke L. The braking force FKmax (= target regenerative braking force FK) and the basic hydraulic braking force FE are used in combination.
 しかしながら、車速vが所定値以下に低下する、若しくは、バッテリ17の満充電などの理由で、十分な回生制動力FKを得られない場合がある。このように、回生制動力FKが低下すると、ブレーキECU60は、電動ポンプ37,47などにより構成される液圧付加装置Adを駆動して、液圧経路に設けられた液圧制御弁31,41よりもマスタシリンダ23側の液圧経路からブレーキ液を吸引する。そして、吸引したブレーキ液を、液圧経路に設けられた液圧制御弁31,41よりもホイールシリンダWC1,WC3,WC2,WC4側に吐出するとともに、液圧制御弁31,41を制御して本発明に係る付加液圧を発生させる。これにより、付加液圧に対応する付加液圧制動力FSを生成し圧力低下後の基礎液圧制動力FEに付加する。 However, sufficient regenerative braking force FK may not be obtained because the vehicle speed v decreases below a predetermined value or the battery 17 is fully charged. As described above, when the regenerative braking force FK decreases, the brake ECU 60 drives the hydraulic pressure adding device Ad configured by the electric pumps 37 and 47 and the like, and the hydraulic pressure control valves 31 and 41 provided in the hydraulic pressure path. The brake fluid is sucked from the hydraulic pressure path on the master cylinder 23 side. Then, the sucked brake fluid is discharged to the wheel cylinders WC1, WC3, WC2, WC4 side from the hydraulic pressure control valves 31, 41 provided in the hydraulic pressure path, and the hydraulic pressure control valves 31, 41 are controlled. An additional hydraulic pressure according to the present invention is generated. As a result, an additional hydraulic braking force FS corresponding to the additional hydraulic pressure is generated and added to the basic hydraulic braking force FE after the pressure drop.
 図7において、具体的に説明すると、図7の作動点X4に例示されるように、回生ブレーキ装置Aから最大回生制動力FKmax(=目標回生制動力FK)よりも小さな回生制動力FK4しか得られない場合が生じ得る。このとき、液圧制動力発生装置Bは、最大回生制動力FKmax(=目標回生制動力FK)と回生制動力FK4との差に、通常の基礎液圧制動力FEから、さらに低下した基礎液圧制動力FE4までの基礎液圧制動力を加えた付加液圧制動力FS4を付加して要求制動力FT4を得るものである。 Specifically, in FIG. 7, as exemplified by the operating point X4 in FIG. 7, only the regenerative braking force FK4 smaller than the maximum regenerative braking force FKmax (= target regenerative braking force FK) is obtained from the regenerative braking device A. There may be cases where it is not possible. At this time, the hydraulic braking force generating device B has a basic hydraulic braking force that is further reduced from the normal basic hydraulic braking force FE due to the difference between the maximum regenerative braking force FKmax (= target regenerative braking force FK) and the regenerative braking force FK4. A required braking force FT4 is obtained by adding an additional hydraulic braking force FS4 to which the basic hydraulic braking force up to FE4 is added.
 このように、ブレーキペダル21が、不動作ストロークL以上操作され、所定の基礎液圧が発生している状態では、液圧経路に設けられた液圧制御弁31,41よりもマスタシリンダ23側の液圧経路の基礎液圧は電動ポンプ37に吸入されたブレーキ液の量に応じて低下してしまう。つまり、基礎液圧低下前まで基礎液圧によって付勢されていたマスタシリンダ23の第1ピストン23bの後方への付勢力が、吸入されたブレーキ液の量に応じて減少してしまうことになる。これにより、それまで、第1ピストン23bとバランスしていたブレーキペダル21及びスリーブ96の付勢力が、第1ピストン23bの付勢力より大きくなる。これにより、ブレーキペダル21が踏込み方向に前進し、運転者が違和感を感じる虞がある。本発明は、このような場合に、ブレーキペダル21の前進量を運転者が違和感を感じない程度に抑制するためのものである。 Thus, in a state where the brake pedal 21 is operated for the inoperative stroke L or more and a predetermined basic hydraulic pressure is generated, the master cylinder 23 side rather than the hydraulic pressure control valves 31 and 41 provided in the hydraulic pressure path. The basic hydraulic pressure in the hydraulic pressure path decreases according to the amount of brake fluid sucked into the electric pump 37. That is, the urging force to the rear of the first piston 23b of the master cylinder 23, which has been urged by the basal fluid pressure before the basal fluid pressure is lowered, decreases according to the amount of brake fluid sucked. . As a result, the urging force of the brake pedal 21 and the sleeve 96 that has been balanced with the first piston 23b until then becomes larger than the urging force of the first piston 23b. As a result, the brake pedal 21 moves forward in the depression direction, and the driver may feel uncomfortable. In such a case, the present invention is for suppressing the forward movement amount of the brake pedal 21 to such an extent that the driver does not feel uncomfortable.
 次に、図8,図9に基づき、液圧付加装置Adが作動した場合について具体的に説明を行なう。一例として説明に用いる作動は、図8が示すブレーキペダル21を、不動作ストロークL直後まで増加させ、その後、ブレーキペダル21の操作量を一定にすることによって、基礎液圧とブースタ圧がバランスし、遷移した増加維持状態からの作動である。なお、図9は、上から順に(a)車速v,(b)回生制動力FK,(c)ブレーキペダル21のペダルストロークSt,(d)要求制動力FT及び液圧制御弁31,41の差圧Pd,(e)ブースタ圧Bp,基礎液圧Mp及びホイールシリンダWC1,WC3,WC2,WC4への吐出圧W/Cの実測データの一例を示している。そして、図9における各グラフの始点(左端)は、既に維持状態(増加維持状態)となっている。なお、ブレーキペダル21が踏込まれていく(増加していく)途中の説明及び増加維持状態に至る過程については、前述したので、説明は省略する。 Next, based on FIG. 8 and FIG. 9, the case where the hydraulic pressure adding device Ad is operated will be specifically described. The operation used for explanation as an example is that the basic hydraulic pressure and the booster pressure are balanced by increasing the brake pedal 21 shown in FIG. 8 until immediately after the non-operation stroke L and then making the operation amount of the brake pedal 21 constant. The operation from the increased maintenance state that has been transitioned. 9 shows (a) the vehicle speed v, (b) the regenerative braking force FK, (c) the pedal stroke St of the brake pedal 21, (d) the required braking force FT, and the hydraulic pressure control valves 31, 41 in order from the top. An example of measured data of differential pressure Pd, (e) booster pressure Bp, basic hydraulic pressure Mp, and discharge pressure W / C to wheel cylinders WC1, WC3, WC2, and WC4 is shown. And the starting point (left end) of each graph in FIG. 9 is already in the maintenance state (increase maintenance state). In addition, since it was mentioned above about the process in which the brake pedal 21 is stepped on (it increases), and the process to reach an increase maintenance state, description is abbreviate | omitted.
 増加維持状態に維持された状態で、図9(a)のNに示すように、車速が所定値以下に低下すると、回生制動量は、最大回生制動量FKmax(目標回生制動力FK)を達成できなくなり、やがて実回生制動量FKrに低下する(図9(b)参照)。なお、図9(b)においては、実回生制動量FKrの最小の値は0となっている。 When the vehicle speed decreases to a predetermined value or less as indicated by N in FIG. 9 (a) while maintaining the increased maintenance state, the maximum regenerative braking amount FKmax (target regenerative braking force FK) is achieved. It becomes impossible and eventually decreases to the actual regenerative braking amount FKr (see FIG. 9B). In FIG. 9B, the minimum value of the actual regenerative braking amount FKr is zero.
 同時に、図9に示すように、Fで液圧付加装置Adが作動を開始され、前述したように、電動ポンプ37が作動されている状態において、液圧制御弁31が、差圧状態に切り替わる。これにより、油経路Lfのうち液圧制御弁31よりもホイールシリンダWC1,WC2側の油経路Lf2の液圧を、マスタシリンダ23側の油経路Lf1の基礎液圧よりも所定の差圧分高い圧力に保持する。このときのマスタシリンダ23が有する、第1及び第2液圧室23d,23f内の基礎液圧は、図9(e)のHに示す通りであり、基礎液圧は略0まで低下している。なお、Fより手前においても、基礎液圧は、略0であるが、これは、図9に示す実験データが、ブレーキペダル21の操作量が初期操作量を若干超えた位置のものであるためである。このため、ブレーキペダル21の操作量を増加させれば、Fより手前における基礎液圧及びブースタ圧は操作量に応じて上昇する。 At the same time, as shown in FIG. 9, the hydraulic pressure adding device Ad is started to operate at F, and as described above, the hydraulic pressure control valve 31 is switched to the differential pressure state when the electric pump 37 is operated. . Accordingly, the hydraulic pressure in the oil path Lf2 on the wheel cylinders WC1 and WC2 side in the oil path Lf is higher than the basic hydraulic pressure in the oil path Lf1 on the master cylinder 23 side by a predetermined differential pressure than the hydraulic pressure control valve 31. Hold at pressure. The basic hydraulic pressure in the first and second hydraulic pressure chambers 23d, 23f of the master cylinder 23 at this time is as shown at H in FIG. 9 (e), and the basic hydraulic pressure is reduced to substantially zero. Yes. Note that even before F, the basic hydraulic pressure is substantially 0, because the experimental data shown in FIG. 9 is at a position where the operation amount of the brake pedal 21 slightly exceeds the initial operation amount. It is. For this reason, if the operation amount of the brake pedal 21 is increased, the basic fluid pressure and the booster pressure before F are increased according to the operation amount.
 また、図9(e)に示す、ブースタ圧Bpが基礎液圧よりも高いのは、ブースタ圧Bpが、スリーブ96を付勢するマスタシリンダ23の第1及び第2スプリング23e,23gのバネ力と第1及び第2ピストン23b、23cの摺動抵抗によっても形成されているためである。そして、基礎液圧は、前述の通り、圧力センサSPによって検出されている。 Further, the booster pressure Bp shown in FIG. 9E is higher than the basic hydraulic pressure because the booster pressure Bp is the spring force of the first and second springs 23e and 23g of the master cylinder 23 that urges the sleeve 96. This is because it is also formed by the sliding resistance of the first and second pistons 23b and 23c. The basic hydraulic pressure is detected by the pressure sensor SP as described above.
 これによって、液圧付加装置Adは、差圧状態に切り替えられている液圧制御弁31の制御状態に応じた差圧を発生させ(図9(d)のG参照)、油経路Lf4,Lf2と連通状態の増圧制御弁32,33を介して、各ホイールシリンダWC1,WC2にブレーキ液を吐出して付加液圧を付与する(図9(e)のJ参照)。このとき、付加液圧の大きさは、ブレーキECU60によって演算される。ブレーキECU60は、目標回生制動力FKと実回生制動力FKrとの差に、そのときに低下した基礎液圧制動力分を加えた付加液圧制動力FSを演算する。このようにして、液圧付加装置Adが、不足分の制動力に相当する付加液圧Paを生成しホイールシリンダWC1,WC2に付与する。 Thereby, the hydraulic pressure adding device Ad generates a differential pressure according to the control state of the hydraulic pressure control valve 31 that has been switched to the differential pressure state (see G in FIG. 9D), and the oil paths Lf4, Lf2. The brake fluid is discharged to each of the wheel cylinders WC1 and WC2 via the pressure increase control valves 32 and 33 in communication with each other (see J in FIG. 9 (e)). At this time, the magnitude of the additional hydraulic pressure is calculated by the brake ECU 60. The brake ECU 60 calculates an additional hydraulic braking force FS obtained by adding the basic hydraulic braking force reduced at that time to the difference between the target regenerative braking force FK and the actual regenerative braking force FKr. In this way, the hydraulic pressure adding device Ad generates the additional hydraulic pressure Pa corresponding to the insufficient braking force and applies it to the wheel cylinders WC1 and WC2.
 このように、液圧付加装置Adが作動されると、電動ポンプ37が、油経路Lfのうち液圧制御弁31よりもマスタシリンダ23側の油経路(液圧経路)からブレーキ液を吸引する。このため、マスタシリンダ23側の流体経路の基礎液圧が吸引したブレーキ液の量に応じて減少する。しかし、本実施形態においては、基礎液圧を発生させるマスタシリンダ23を含む基礎液圧発生容器Vmの剛性に対する、ブースタ装置91の流体圧発生容器Vf(ブースタ室100)の剛性が所定の比率で高くなるよう設定されている。これによって、例え、マスタシリンダ23側の基礎液圧が減少することによって、ブースタ装置91のスリーブ96及びブレーキペダル21が若干前進しても、当該前進によってブースタ室100の容量が少しだけ拡張されれば、ブースタ室100の圧力は図9(e)のKに示すように急激に減少し基礎液圧と釣合うことができる。これによって、スプール94及びブレーキペダル21の前進量も抑制されるので、運転者が違和感を感じることが抑制される。なお、このとき、第1ピストン23bとスリーブ96及びブレーキペダル21との間の変位量の差は、両者の間に介在する弾性体107によって吸収される。 As described above, when the hydraulic pressure adding device Ad is operated, the electric pump 37 sucks the brake fluid from the oil path (hydraulic pressure path) on the master cylinder 23 side of the hydraulic pressure control valve 31 in the oil path Lf. . For this reason, the basic hydraulic pressure in the fluid path on the master cylinder 23 side decreases according to the amount of brake fluid sucked. However, in this embodiment, the rigidity of the fluid pressure generating container Vf (booster chamber 100) of the booster device 91 with respect to the rigidity of the basic hydraulic pressure generating container Vm including the master cylinder 23 that generates the basic hydraulic pressure is a predetermined ratio. It is set to be higher. Thereby, for example, even if the sleeve 96 and the brake pedal 21 of the booster device 91 are slightly advanced by reducing the basic hydraulic pressure on the master cylinder 23 side, the capacity of the booster chamber 100 is slightly expanded by the advancement. For example, the pressure in the booster chamber 100 rapidly decreases as shown by K in FIG. 9 (e) and can be balanced with the base hydraulic pressure. Accordingly, the forward movement amounts of the spool 94 and the brake pedal 21 are also suppressed, so that the driver is prevented from feeling uncomfortable. At this time, the difference in displacement between the first piston 23b and the sleeve 96 and the brake pedal 21 is absorbed by the elastic body 107 interposed therebetween.
 次に、複数あるブレーキペダル21の踏込み状態のうち、ブレーキペダル21を不動作ストロークL以上踏込んだのちに戻し(減少)側に作動させて、不動作ストロークLまでの間の所定の位置で停止させ、維持状態に維持した場合について説明する。なお、ブレーキペダル21を戻し側に作動させた後に遷移した維持状態を、減少維持状態と呼ぶことにする。なお、ブレーキペダル21の踏込みが解除されていく(減少していく)途中の説明及び減少維持状態に至る過程については、前述したので、説明は省略する。 Next, among a plurality of depression states of the brake pedal 21, after the brake pedal 21 is depressed more than the non-operation stroke L, the brake pedal 21 is operated to return (decrease), and at a predetermined position until the non-operation stroke L. The case where it is stopped and maintained in the maintenance state will be described. Note that the maintenance state that has transitioned after the brake pedal 21 is operated to the return side is referred to as a reduction maintenance state. In addition, since the description of the process in which the depression of the brake pedal 21 is released (decrease) and the process of reaching the decrease maintaining state have been described above, the description thereof will be omitted.
 減少維持状態に維持された状態において、基礎液圧に所定の付加液圧を付加するために、液圧付加装置Adが作動されると、電動ポンプ37によって吸引されたマスタシリンダ23側の流体経路の基礎液圧が、吸引したブレーキ液の量に応じて減少する。これに伴ってブレーキペダル21が意図せず前進してしまうと、ブレーキペダル21を踏込み側(増加側)に作動させた後に遷移した増加維持状態からのブレーキペダル21の意図せぬ前進と比べて、運転者は、心理的に特に違和感を感じやすいとされている。そのため、本実施形態では、上記で説明した、基礎液圧発生容器Vmの剛性に対する、流体圧発生容器Vf(ブースタ室100)の剛性が所定の比率で高くなるよう設定したことに加え、さらに、減少維持状態でのスプール94とスリーブ96との間の相対位置関係が所定の相対位置関係を有するように設定されている。つまり、液圧付加装置Adが作動し、スプール94がスリーブ96に対して前進する相対移動が生じても、スリーブ96に設けられた供給ポート961の第1弁口961aが、確実にブースタ室100に開口しないようにスプール94とスリーブ96との間の相対位置関係が設定されている。以下に、その設定の方法について説明する。 When the hydraulic pressure adding device Ad is operated to add a predetermined additional hydraulic pressure to the basic hydraulic pressure in the state maintained in the reduced maintenance state, the fluid path on the master cylinder 23 side sucked by the electric pump 37 is operated. The basal fluid pressure decreases with the amount of brake fluid sucked. Accordingly, if the brake pedal 21 moves forward unintentionally, compared to the unintended advancement of the brake pedal 21 from the increased maintenance state after the brake pedal 21 is actuated to the depression side (increase side). It is said that the driver is particularly uncomfortable feeling psychologically. Therefore, in this embodiment, in addition to setting the rigidity of the fluid pressure generating container Vf (booster chamber 100) to be higher at a predetermined ratio with respect to the rigidity of the basic hydraulic pressure generating container Vm described above, The relative positional relationship between the spool 94 and the sleeve 96 in the reduced maintaining state is set to have a predetermined relative positional relationship. That is, even if the hydraulic pressure application device Ad is operated and the spool 94 moves forward relative to the sleeve 96, the first valve port 961a of the supply port 961 provided in the sleeve 96 surely secures the booster chamber 100. The relative positional relationship between the spool 94 and the sleeve 96 is set so as not to open. The setting method will be described below.
 相対位置関係の設定のためには、まず、減少維持状態において、流体圧排出経路が閉止された時点におけるスプール94とスリーブ96との相対位置を基点とする(図10の状態参照)。ここで、流体圧排出経路が閉止された状態とは、排出ポート94eの第2弁口94e1がドレン用大径部96d(減圧ポート)に開口されておらず、第2弁口94e1がスリーブ96の内径部96jによって閉止されている状態のことをいう。 In order to set the relative positional relationship, first, in the decrease maintaining state, the relative position between the spool 94 and the sleeve 96 at the time when the fluid pressure discharge path is closed is used as a base point (see the state of FIG. 10). Here, the state in which the fluid pressure discharge path is closed means that the second valve port 94e1 of the discharge port 94e is not opened to the drain large-diameter portion 96d (decompression port), and the second valve port 94e1 is the sleeve 96. It is in a state of being closed by the inner diameter portion 96j.
 その後、減少維持状態において、液圧付加装置Adが、ホイールシリンダWC1,WC2側の油経路の基礎液圧に所定の液圧を付加するよう作動されると、マスタシリンダ23側の流体経路の基礎液圧が低下する。マスタシリンダ23側の流体経路の基礎液圧が低下すると、第1ピストン23b(マスタピストン)が基礎液圧の低下分に応じてマスタ移動量Δmだけ前方に移動される。これに伴って、スプール94がスリーブ96に対して、第1ピストン23b側、つまり前方に移動する相対移動が生じる。なお、このとき、変動基礎液圧吸収機構によって、マスタシリンダ23側の基礎液圧の低下分が十分吸収されれば、スプール94がスリーブ96に対して、前方に移動することはない。よって、以降の説明は、変動基礎液圧吸収機構によって、吸収しきれない分のスプール94の移動に対応するものである。 Thereafter, when the hydraulic pressure adding device Ad is operated so as to add a predetermined hydraulic pressure to the basic hydraulic pressure of the oil path on the wheel cylinders WC1 and WC2 side in the decrease maintaining state, the basic of the fluid path on the master cylinder 23 side is operated. Fluid pressure decreases. When the basic hydraulic pressure in the fluid path on the master cylinder 23 side decreases, the first piston 23b (master piston) is moved forward by the master movement amount Δm according to the decrease in the basic hydraulic pressure. Along with this, relative movement occurs in which the spool 94 moves with respect to the sleeve 96 toward the first piston 23b, that is, forward. At this time, the spool 94 does not move forward with respect to the sleeve 96 if the decrease in the basic hydraulic pressure on the master cylinder 23 side is sufficiently absorbed by the variable basic hydraulic pressure absorbing mechanism. Therefore, the following description corresponds to the movement of the spool 94 that cannot be absorbed by the variable base hydraulic pressure absorbing mechanism.
 このとき、スリーブ96に対するスプール94の相対移動量は、マスタ移動量Δmに応じた大きさで基点から変動する。そして、本実施形態では、スプール94が、マスタ移動量Δmに応じた相対移動量だけスリーブ96に対して基点から移動しても、弁装置97が、ブースタ室100への流体圧供給経路を接続させないような弁装置97の作動量、即ち所定のスプール移動量Δsf(本発明の所定の弁作動量に相当する)を設定する。そして、この所定のスプール移動量Δsf(図10参照)だけ移動しても弁装置97が、ブースタ室100への流体圧供給経路を接続させず、かつ流体圧排出経路を接続させないようスプール94の摺動方向におけるスリーブ96の供給ポート961(増圧ポート)とドレン用大径部96d(減圧ポート)との間の距離L1が設定されている。つまり、増圧ポートと減圧ポートとの間の距離によって、所定のスプール移動量Δsfを作り込むことができる。 At this time, the relative movement amount of the spool 94 with respect to the sleeve 96 varies from the base point with a magnitude corresponding to the master movement amount Δm. In this embodiment, the valve device 97 connects the fluid pressure supply path to the booster chamber 100 even if the spool 94 moves from the base point with respect to the sleeve 96 by a relative movement amount corresponding to the master movement amount Δm. An operation amount of the valve device 97 that is not allowed to be set, that is, a predetermined spool movement amount Δsf (corresponding to the predetermined valve operation amount of the present invention) is set. Then, even if the spool device 97 moves by the predetermined spool movement amount Δsf (see FIG. 10), the valve device 97 does not connect the fluid pressure supply path to the booster chamber 100 and does not connect the fluid pressure discharge path. A distance L1 between the supply port 961 (pressure increasing port) of the sleeve 96 and the drain large diameter portion 96d (pressure reducing port) in the sliding direction is set. That is, a predetermined spool movement amount Δsf can be created by the distance between the pressure increasing port and the pressure reducing port.
 所定のスプール移動量Δsfを設けることにより、弁装置97の作動の感度はスプール移動量Δsfがない場合と比べて鈍くなるといえる。このように、本発明では、弁装置97の作動の感度を鈍くする、即ち、弁装置97の作動量を抑制することによって、液圧付加装置Adが作動され、第1ピストン23bが所定のマスタ移動量(Δm)だけ前方に移動しても第1弁口961aがブースタ室100に開口しないようにする。これによって、ブレーキペダル21が運転者の意図に反して大きく吸い込まれることを防止する。 By providing the predetermined spool movement amount Δsf, it can be said that the sensitivity of the operation of the valve device 97 becomes dull compared to the case where there is no spool movement amount Δsf. As described above, in the present invention, the operation sensitivity of the valve device 97 is dulled, that is, by suppressing the operation amount of the valve device 97, the hydraulic pressure adding device Ad is operated, and the first piston 23b is set to a predetermined master. The first valve port 961a is prevented from opening to the booster chamber 100 even if it moves forward by a movement amount (Δm). As a result, the brake pedal 21 is prevented from being sucked largely against the driver's intention.
 なお、本実施形態において所定のマスタ移動量(Δm)とは、例えば車速が所定値以下に低下し、回生制動力FKによる制動が困難となり設定された最大回生制動力FKmaxが全て付加液圧制動力FSにすり替えられた場合に、第1ピストン23bが移動する移動量のことをいう。つまり、目標とする付加液圧制動力FS(最大回生制動力FKmaxと同等の大きさを有する)を達成するため液圧付加装置Adが作動し、マスタシリンダ23の基礎液圧が低下することによってマスタシリンダ23の第1ピストン23bが前方に移動する移動量をいうものとする。 In the present embodiment, the predetermined master movement amount (Δm) means, for example, that the vehicle speed decreases to a predetermined value or less and braking by the regenerative braking force FK becomes difficult, and the set maximum regenerative braking force FKmax is all the additional hydraulic braking force. This is the amount of movement of the first piston 23b when it is switched to FS. In other words, the hydraulic pressure adding device Ad operates to achieve the target additional hydraulic braking force FS (having the same magnitude as the maximum regenerative braking force FKmax), and the basic hydraulic pressure of the master cylinder 23 decreases, so that the master The amount of movement by which the first piston 23b of the cylinder 23 moves forward is assumed.
 ただし、この態様に限らず、所定のマスタ移動量(Δm)は、設定された最大回生制動力FKmaxを越える回生制動力FKを付加液圧制動力FSにすり替えた場合に第1ピストン23bが移動する移動量であってもよい。また、所定のマスタ移動量(Δm)は、設定された最大回生制動力FKmaxを下回る回生制動力FKを付加液圧制動力FSにすり替えた場合に第1ピストン23bが移動する移動量であってもよい。なお、マスタ移動量Δmは、上記態様に限らず、実際の車両走行中に生じる様々なブレーキ操作モードにおける第1ピストン23bのマスタ移動量の、例えば、最大値を取得し、当該最大値を設定値としてもよい。また、上記態様に限らず、マスタ移動量Δmの設定の方法及び設定値の大きさは任意であり、どのように設定してもよい。 However, the present invention is not limited to this mode. The predetermined master movement amount (Δm) is such that the first piston 23b moves when the regenerative braking force FK exceeding the set maximum regenerative braking force FKmax is replaced with the additional hydraulic braking force FS. It may be a moving amount. Further, the predetermined master movement amount (Δm) is a movement amount by which the first piston 23b moves when the regenerative braking force FK lower than the set maximum regenerative braking force FKmax is replaced with the additional hydraulic braking force FS. Good. Note that the master movement amount Δm is not limited to the above-described mode, and for example, a maximum value of the master movement amount of the first piston 23b in various brake operation modes that occurs during actual vehicle travel is acquired, and the maximum value is set. It may be a value. Moreover, the method of setting the master movement amount Δm and the magnitude of the set value are not limited to the above-described mode, and may be set in any manner.
 上記により、第1ピストン23bが、所定のマスタ移動量Δmだけ作動しても、所定のマスタ移動量Δmに応じて移動する、スリーブ96に対するスプール94の相対移動量は、スプール移動量Δsfよりも小さい。このため、第1弁口961aが、ブースタ室100に開口することはない。そして、ブースタ装置91が作動し、スリーブ96、スプール94及びブレーキペダル21等を前方に大きく移動させることはない。よって、減少維持状態時に、液圧付加装置Adが作動され、ホイールシリンダWC1,WC2側の油経路の基礎液圧に所定の液圧を付加しても、ブレーキペダル21が意図せず大きく前進してしまうことはなく、ブレーキペダル21の操作フィーリングは良好な状態が維持される。 As described above, even if the first piston 23b is operated by the predetermined master movement amount Δm, the relative movement amount of the spool 94 to the sleeve 96 that moves according to the predetermined master movement amount Δm is larger than the spool movement amount Δsf. small. For this reason, the first valve port 961a does not open to the booster chamber 100. Then, the booster device 91 is operated, and the sleeve 96, the spool 94, the brake pedal 21 and the like are not moved forward greatly. Therefore, even when the hydraulic pressure adding device Ad is operated in the decrease maintaining state and the predetermined hydraulic pressure is added to the basic hydraulic pressure of the oil path on the wheel cylinders WC1 and WC2 side, the brake pedal 21 moves forward unintentionally. The operation feeling of the brake pedal 21 is maintained in a good state.
 上述の説明から明らかなように、第1の実施形態では、ブレーキペダル21の操作量の減少状態から遷移した減少維持状態(維持状態)で、ホイールシリンダWC1,WC2側の油経路の基礎液圧に所定の液圧を付加するために液圧付加装置Adが作動すると、マスタシリンダ23側の流体経路の基礎液圧が減少する。これにより、スプール94がスリーブ96に対して前方に相対移動する。 As is clear from the above description, in the first embodiment, the basic hydraulic pressure of the oil path on the wheel cylinders WC1 and WC2 side in the reduced maintenance state (maintenance state) transitioned from the reduced state of the operation amount of the brake pedal 21. When the hydraulic pressure application device Ad is operated to apply a predetermined hydraulic pressure to the cylinder, the basic hydraulic pressure in the fluid path on the master cylinder 23 side decreases. As a result, the spool 94 relatively moves forward with respect to the sleeve 96.
 しかし、スプール94がスリーブ96に対して前方に相対移動したとしても、減少維持状態(維持状態)への遷移に伴って流体圧排出経路を閉止した時点における相対位置を基点とする、基礎液圧が減少する場合の方向である前方への移動量が、所定のスプール移動量Δsf(所定の弁作動量)以下であれば、流体圧供給経路は閉止されている。そのため、減少維持状態(維持状態)において、液圧付加装置Adが付加液圧を増大させ基礎液圧を減少させても、前方へのブレーキペダル21の操作量の大きな増加を防止できる。これにより、運転者のブレーキペダル21の操作フィーリングは良好なものとなる。 However, even if the spool 94 moves forward relative to the sleeve 96, the base hydraulic pressure is based on the relative position when the fluid pressure discharge path is closed in accordance with the transition to the reduced maintenance state (maintenance state). If the forward movement amount, which is the direction in which the pressure decreases, is less than or equal to a predetermined spool movement amount Δsf (predetermined valve operation amount), the fluid pressure supply path is closed. Therefore, even if the hydraulic pressure adding device Ad increases the additional hydraulic pressure and decreases the basic hydraulic pressure in the reduced maintenance state (maintenance state), a large increase in the amount of operation of the brake pedal 21 ahead can be prevented. Thereby, the operation feeling of the driver's brake pedal 21 is improved.
 このように、液圧付加装置AdがホイールシリンダWC1,WC2側の油経路の付加液圧を増加させても、ブレーキペダル21の前方への操作量の増加を防止できる。このため、例えば、車速が所定値以下に減速してきた、若しくはバッテリが満充電であることにより、予定通りの回生制動力FKが得られない場合にも、ブレーキペダル21の操作フィーリングの悪化を気にすることなく、目標車両制動力を達成するため、液圧付加装置Adによって大きな付加液圧を付与できる。つまり、初期に設定する最大回生制動力FKmaxの設定値を大きな値とすることができ、良好に電力の回収を行なうことができ効率的である。 Thus, even if the hydraulic pressure adding device Ad increases the additional hydraulic pressure in the oil path on the side of the wheel cylinders WC1, WC2, an increase in the amount of operation forward of the brake pedal 21 can be prevented. For this reason, for example, even when the vehicle speed has decreased to a predetermined value or when the battery is fully charged and the regenerative braking force FK as planned cannot be obtained, the operation feeling of the brake pedal 21 is deteriorated. In order to achieve the target vehicle braking force without concern, a large additional hydraulic pressure can be applied by the hydraulic pressure adding device Ad. That is, the set value of the maximum regenerative braking force FKmax set initially can be set to a large value, and the power can be recovered satisfactorily and efficiently.
 また、本実施形態においては、基礎液圧の圧力-体積特性を決定する第1液圧室23d,第2液圧室23fを含む基礎液圧発生容器Vmの剛性を、ブースタ室100の液圧の圧力-体積特性を決定するブースタ室100を含む流体圧発生容器Vfの剛性よりも低くした。これにより、第1ピストン23b(マスタピストン)の移動量に対する弁装置97の作動量を小さくできるので、第1ピストン23b(マスタピストン)が所定のマスタ移動量Δmだけ移動したとしても、弁装置97による流体圧供給経路の開口を抑制することが可能である。これによっても、運転者のブレーキペダル21の操作フィーリングを良好なものとすることができる。 In the present embodiment, the rigidity of the basic hydraulic pressure generating container Vm including the first hydraulic pressure chamber 23d and the second hydraulic pressure chamber 23f that determines the pressure-volume characteristic of the basic hydraulic pressure is set to the hydraulic pressure of the booster chamber 100. The rigidity of the fluid pressure generating container Vf including the booster chamber 100 that determines the pressure-volume characteristics of the fluid is lower than that of the fluid pressure generating container Vf. As a result, the operation amount of the valve device 97 with respect to the movement amount of the first piston 23b (master piston) can be reduced. Therefore, even if the first piston 23b (master piston) moves by a predetermined master movement amount Δm, the valve device 97 It is possible to suppress the opening of the fluid pressure supply path. This also makes it possible to improve the operation feeling of the driver's brake pedal 21.
 なお、上記、第1の実施形態では、ブレーキペダル21を減少維持状態に維持した場合において、スプール移動量Δsfを図10に示すように設定した。しかし、この態様に限らず、第1の実施形態の変形例1として、スプール移動量Δsf1(所定の弁作動量)を、図11に示すよう設定してもよい。図11に示す弁装置97では、供給ポート961(増圧ポート)の第1弁口961aの前端と第1ランド部94aの前端とが一致するよう設定した。つまり、オーバーラップ分であるスプール移動量Δsf1が第1ランド部94aの軸線方向長さから第1弁口961aの開口径を減算した長さと一致するよう設定される。 In the first embodiment described above, the spool movement amount Δsf is set as shown in FIG. 10 when the brake pedal 21 is maintained in the reduced maintenance state. However, the present invention is not limited to this mode, and as a first modification of the first embodiment, the spool movement amount Δsf1 (predetermined valve operation amount) may be set as shown in FIG. In the valve device 97 shown in FIG. 11, the front end of the first valve port 961a of the supply port 961 (pressure increasing port) is set to coincide with the front end of the first land portion 94a. That is, the spool movement amount Δsf1 corresponding to the overlap is set to coincide with the length obtained by subtracting the opening diameter of the first valve port 961a from the axial length of the first land portion 94a.
 これにより、スプール移動量Δsf1は、図10に示すスプール移動量Δsfに対して長くなるので、弁装置97の作動の感度はさらに鈍くなり、弁装置97による流体圧供給経路の開口をさらに抑制してブレーキペダル21の前方への移動(吸込み)を抑制することができる。 As a result, the spool movement amount Δsf1 becomes longer than the spool movement amount Δsf shown in FIG. 10, so that the sensitivity of the operation of the valve device 97 is further reduced, and the opening of the fluid pressure supply path by the valve device 97 is further suppressed. Thus, forward movement (suction) of the brake pedal 21 can be suppressed.
 なお、このとき流体圧排出経路を形成するスリーブ96のドレン用大径部96d(減圧ポート)と流体圧供給経路を形成する供給ポート961(増圧ポート)との間の距離L1は、図11に示すように形成されている。つまり、本実施形態において所定のスプール移動量Δsfは、供給ポート961(増圧ポート)とドレン用大径部96d(減圧ポート)との間の距離L1を調整することによって作り込むことができる。 At this time, the distance L1 between the drain large-diameter portion 96d (pressure reduction port) of the sleeve 96 that forms the fluid pressure discharge path and the supply port 961 (pressure increase port) that forms the fluid pressure supply path is as shown in FIG. It is formed as shown in FIG. That is, in the present embodiment, the predetermined spool movement amount Δsf can be created by adjusting the distance L1 between the supply port 961 (pressure increase port) and the drain large diameter portion 96d (pressure reduction port).
 また、上記、第1の実施形態及び変形例1においては、複数あるブレーキペダル21の踏込み状態のうち、ブレーキペダル21を不動作ストロークL以下で停止させた場合には基礎液圧は0である。この場合には、回生制動力FKを付加液圧制動力FSにすり替えるために液圧付加装置Adを作動させると基礎液圧はすぐに負圧となる。このとき、ブレーキペダル21は最も前進し易い。このため、本実施形態では、ブレーキペダル21を不動作ストロークL以下で停止させた場合が最も大きな効果が得られる。 In the first embodiment and the first modified example, the basic hydraulic pressure is 0 when the brake pedal 21 is stopped at the non-operation stroke L or less in the depressed state of the plurality of brake pedals 21. . In this case, when the hydraulic pressure adding device Ad is operated in order to replace the regenerative braking force FK with the additional hydraulic pressure braking force FS, the basic hydraulic pressure immediately becomes negative. At this time, the brake pedal 21 is most easily moved forward. For this reason, in this embodiment, the greatest effect is obtained when the brake pedal 21 is stopped at the non-operation stroke L or less.
 2)第2の実施形態
 次に第2の実施形態について、図8に基づき説明する。第2の実施形態は、複数あるブレーキペダル21の踏込み状態のうち、ブレーキペダル21を不動作ストロークL以上踏込んだ後に停止させ、遷移させた増加維持状態における実施の形態である(図8参照)。なお、第2の実施形態は、第1の実施形態とはブレーキペダル21の踏込み状態及び、その後に遷移する増加維持状態でのスプール94及びスリーブ96の相対位置関係のみが異なる。これにより、同様の部分については説明を省略し、変更部分のみについて説明する。また、同様の部品については、同じ符号を付して説明する。
2) Second Embodiment Next, a second embodiment will be described with reference to FIG. The second embodiment is an embodiment in an increase maintaining state in which the brake pedal 21 is stopped after being depressed more than the non-operation stroke L among the depressed states of a plurality of brake pedals 21 and transitioned (see FIG. 8). ). Note that the second embodiment differs from the first embodiment only in the relative positional relationship between the spool 94 and the sleeve 96 in the depressed state of the brake pedal 21 and the increased maintaining state that transitions thereafter. Thus, the description of the same part is omitted, and only the changed part is described. In addition, the same parts are described with the same reference numerals.
 ブレーキペダル21が踏込まれている(増加している)途中の説明及び増加維持状態に至る過程については、第1の実施形態の説明の中で、既に説明したので、説明は省略する。 Since the explanation of the way in which the brake pedal 21 is depressed (increase) and the process of reaching the increased maintenance state have already been explained in the explanation of the first embodiment, the explanation is omitted.
 増加維持状態において、例えば、液圧付加装置Adの作動が減少または停止すると、付加液圧は減少または0になる。このため、液圧付加装置Adの作動中においては、減少傾向であったマスタシリンダ23側の基礎液圧が付加液圧の減少度合いに応じて増大する。これに伴って、ブレーキペダル21が意図せず後退してしまうと、運転者が違和感を感じる虞がある。そのため、変形例1では、増加維持状態でのスプール94とスリーブ96との間の相対位置関係が設定されている。つまり、スプール94がスリーブ96に対して後退する相対移動が生じても、スリーブ96に設けられた排出ポート94eの第2弁口94e1が、スリーブ96の内径部96jによって閉止されドレン用大径部96d(減圧ポート)、つまりブースタ室100に開口されないよう設定されている。以下に、その設定の方法について説明する。 In the increase maintaining state, for example, when the operation of the hydraulic pressure adding device Ad decreases or stops, the additional hydraulic pressure decreases or becomes zero. For this reason, during the operation of the hydraulic pressure adding device Ad, the basic hydraulic pressure on the master cylinder 23 side, which has been decreasing, increases according to the decrease degree of the additional hydraulic pressure. Along with this, if the brake pedal 21 moves backward unintentionally, the driver may feel uncomfortable. Therefore, in the first modification, the relative positional relationship between the spool 94 and the sleeve 96 in the increase maintaining state is set. In other words, even when the spool 94 is moved backward relative to the sleeve 96, the second valve port 94e1 of the discharge port 94e provided in the sleeve 96 is closed by the inner diameter portion 96j of the sleeve 96 and the large diameter portion for drainage. 96d (decompression port), that is, set so as not to open to the booster chamber 100. The setting method will be described below.
 設定のために、まず、増加維持状態において、流体圧供給経路が閉止された時点におけるスプール94とスリーブ96との相対位置を基点とする。ここで、流体圧供給経路が閉止された状態とは、供給ポート961(増圧ポート)の第1弁口961aがスプール94の第1ランド部94aによって閉止されている状態のことをいう。 For setting, first, the relative position between the spool 94 and the sleeve 96 at the time when the fluid pressure supply path is closed in the increase maintaining state is used as a base point. Here, the state where the fluid pressure supply path is closed refers to a state where the first valve port 961a of the supply port 961 (pressure increasing port) is closed by the first land portion 94a of the spool 94.
 その後、増加維持状態において、液圧付加装置Adの作動が減少または停止し、付加液圧の生成が減少すると、付加液圧の減少度合いに応じてマスタシリンダ23側の基礎液圧が増加する。マスタシリンダ23側の基礎液圧が増加すると、第1ピストン23b(マスタピストン)が、基礎液圧の増加分に応じてマスタ移動量Δmだけ後方に移動される。これに伴って、スプール94がスリーブ96に対して、後方に移動する相対移動が生じる。なお、マスタ移動量Δmは最大回生制動力FKmaxに基づいて設定される。 After that, when the operation of the hydraulic pressure addition device Ad is reduced or stopped in the increased maintenance state and the generation of the additional hydraulic pressure is reduced, the basic hydraulic pressure on the master cylinder 23 side is increased according to the decrease degree of the additional hydraulic pressure. When the basic hydraulic pressure on the master cylinder 23 side increases, the first piston 23b (master piston) is moved backward by the master movement amount Δm according to the increase in the basic hydraulic pressure. Along with this, a relative movement in which the spool 94 moves backward with respect to the sleeve 96 occurs. The master movement amount Δm is set based on the maximum regenerative braking force FKmax.
 このとき、スリーブ96に対するスプール94の相対移動量は、マスタ移動量Δmに応じた大きさで変動する。そして、本発明では、スプール94が、マスタ移動量Δmに応じて、スリーブ96に対する相対移動量だけ移動しても、弁装置97が、ブースタ室100への流体圧排出経路を接続させないような弁装置97の作動量、即ち所定のスプール移動量Δsr(本発明の所定の弁作動量に相当する)を設定する。そして、この所定のスプール移動量Δsf(図8参照)だけ移動しても弁装置97が、ブースタ室100への流体圧排出経路を接続させず、かつ流体圧供給経路を接続させないようスプール94摺動方向におけるスリーブ96の供給ポート961(増圧ポート)とドレン用大径部96d(減圧ポート)との間の距離L2が設定されている。このように、増圧ポートと減圧ポートとの間の距離によって、所定のスプール移動量Δsrを作り込むことができる。 At this time, the relative movement amount of the spool 94 with respect to the sleeve 96 varies in accordance with the master movement amount Δm. In the present invention, the valve device 97 does not connect the fluid pressure discharge path to the booster chamber 100 even if the spool 94 moves by a relative movement amount relative to the sleeve 96 according to the master movement amount Δm. The operation amount of the device 97, that is, a predetermined spool movement amount Δsr (corresponding to the predetermined valve operation amount of the present invention) is set. Then, even if the spool moves by the predetermined spool movement amount Δsf (see FIG. 8), the valve device 97 does not connect the fluid pressure discharge path to the booster chamber 100 and does not connect the fluid pressure supply path. A distance L2 between the supply port 961 (pressure increasing port) of the sleeve 96 and the drain large diameter portion 96d (pressure reducing port) in the moving direction is set. In this way, a predetermined spool movement amount Δsr can be created according to the distance between the pressure increasing port and the pressure reducing port.
 これにより、マスタシリンダ23側の基礎液圧が増加し、第1ピストン23bが、マスタ移動量Δmだけ後方に移動しても、マスタ移動量Δmに応じて移動するスリーブ96に対するスプール94の相対移動量は、スプール移動量Δsrよりも小さなものとなる。このため、第2弁口94e1が、ドレン用大径部96d(減圧ポート)、即ちブースタ室100に開口することはない。これにより、ブースタ室100の圧力が流体圧排出経路を介して排出されて、さらに減少し、スリーブ96,スプール94及びブレーキペダル21等を後方に大きく移動させることはない。 As a result, the basic hydraulic pressure on the master cylinder 23 side increases, and even if the first piston 23b moves backward by the master movement amount Δm, the relative movement of the spool 94 with respect to the sleeve 96 that moves according to the master movement amount Δm. The amount is smaller than the spool movement amount Δsr. For this reason, the second valve port 94e1 does not open to the drain large-diameter portion 96d (pressure reduction port), that is, the booster chamber 100. As a result, the pressure in the booster chamber 100 is discharged through the fluid pressure discharge path, and is further reduced, so that the sleeve 96, the spool 94, the brake pedal 21 and the like are not greatly moved rearward.
 これによって、増加維持状態時に、ホイールシリンダWC1,WC2側の油経路の基礎液圧に所定の液圧を付加するための液圧付加装置Adの作動が減少または停止されても、ブレーキペダル21が意図せず大きく後退してしまうことはなく、ブレーキペダル21の操作フィーリングに違和感を感じることはない。なお、このように、所定のスプール移動量Δsrは、第1ピストン23b(マスタピストン)のマスタ移動量Δmに基づいて設定する。スプール移動量Δsrを設定する基準となるマスタ移動量Δmは、上述したように最大回動制動力FKmaxに基づいて設定するのではなく、実際の車両走行中に生じる様々なブレーキ操作モードにおける第1ピストン23bの後方へのマスタ移動量の、例えば、最大値を取得し、当該最大値を設定値としてもよい。ただし、これに限らず、マスタ移動量Δmの設定の方法及び設定値の大きさは任意であり、どのように設定してもよい。 Accordingly, even when the operation of the hydraulic pressure adding device Ad for adding a predetermined hydraulic pressure to the basic hydraulic pressure in the oil path on the wheel cylinders WC1 and WC2 side is reduced or stopped in the increase maintaining state, the brake pedal 21 is There will be no significant unintentional retreat, and there will be no uncomfortable feeling in the operation feeling of the brake pedal 21. In this way, the predetermined spool movement amount Δsr is set based on the master movement amount Δm of the first piston 23b (master piston). The master movement amount Δm serving as a reference for setting the spool movement amount Δsr is not set based on the maximum rotational braking force FKmax as described above, but is the first in various brake operation modes that occur during actual vehicle travel. For example, the maximum value of the master movement amount to the rear of the piston 23b may be acquired, and the maximum value may be set as the set value. However, the method for setting the master movement amount Δm and the size of the set value are not limited to this, and may be set in any manner.
 上述の説明から明らかなように、第2の実施形態においては、ブレーキペダル21の操作量が操作量の増加状態から遷移した増加維持状態で、スプール94及びスリーブ96が相対移動しても、増加維持状態への遷移に伴って、流体圧供給経路を閉止した時点における相対位置を基点とする、基礎液圧が増加する方向(後方)への移動量が、スプール移動量Δsr(所定の弁作動量)以下であれば、流体圧排出経路が閉止されるとともに流体圧供給経路も閉止される。そのため、ブレーキペダル21の増加維持状態でホイールシリンダWC1,WC2側の油経路への付加液圧を減少させる場合に、ブレーキペダル21の操作量が大きく減少することを防止することができる。 As is apparent from the above description, in the second embodiment, even if the spool 94 and the sleeve 96 are relatively moved in the increase maintaining state in which the operation amount of the brake pedal 21 is shifted from the increase state of the operation amount, the increase occurs. Along with the transition to the maintenance state, the movement amount in the direction (backward) in which the base hydraulic pressure increases with the relative position at the time when the fluid pressure supply path is closed is the spool movement amount Δsr (predetermined valve operation) If the amount is equal to or less than the amount, the fluid pressure discharge path is closed and the fluid pressure supply path is also closed. Therefore, when the additional hydraulic pressure to the oil path on the side of the wheel cylinders WC1, WC2 is decreased while the brake pedal 21 is maintained in an increased state, it is possible to prevent the amount of operation of the brake pedal 21 from greatly decreasing.
 なお、第1及び第2の実施形態においては、マスタ移動量Δmとスプール移動量Δsf,Δsrとの関係を設定する態様と、基礎液圧発生容器Vm及び流体圧発生容器Vfの剛性の関係を設定する態様とを同時に適用した。しかし、この態様に限らず、マスタ移動量Δmとスプール移動量Δsf,Δsrとの関係を設定する態様のみを実施形態に適用させてもよい。これによっても効果は十分に得られる。 In the first and second embodiments, the relationship between the master movement amount Δm and the spool movement amounts Δsf and Δsr and the rigidity relationship between the basic hydraulic pressure generation container Vm and the fluid pressure generation container Vf are set. The mode to set was applied simultaneously. However, the present invention is not limited to this mode, and only a mode in which the relationship between the master movement amount Δm and the spool movement amounts Δsf and Δsr may be applied to the embodiment. This also provides a sufficient effect.
 また、第1及び第2の実施形態において、液圧付加装置Adの作動により生じる第1ピストン23b(マスタピストン)の所定のマスタ移動量Δmによって、スプール94がスリーブ96に対してスプール移動量Δsf,Δsr以上相対移動しないように、基礎液圧発生容器Vmと流体圧発生容器Vfとの間の剛性の関係を設定してもよい。 Further, in the first and second embodiments, the spool 94 moves with respect to the sleeve 96 by the spool moving amount Δsf by the predetermined master moving amount Δm of the first piston 23 b (master piston) generated by the operation of the hydraulic pressure adding device Ad. , Δsr and the relative relationship between the basic hydraulic pressure generating container Vm and the fluid pressure generating container Vf may be set so as not to move relative to each other.
 また、第2の実施形態において、液圧付加装置Adが作動を開始し、基礎液圧が減少した場合であって、スリーブ96がスプール94に対して相対移動し前進するような挙動をしたときには、スプール移動量Δsrの分だけ第2弁口94e1が、ブースタ室100に開口するのを防止することができる。これにより、ブースタ室100の圧力が大きく低下することが防止される。このため、ブースタ室100の圧力の低下によりスリーブ96が基礎液圧に付勢されスプール94に対し相対移動して後退し供給ポート961の第1弁口961aがブースタ室100に開口されることを防止できる。これにより、スリーブ96、スプール94及びブレーキペダル21がブースタ室100の流体圧に付勢されて前進することが抑制される。 Further, in the second embodiment, when the hydraulic pressure application device Ad starts to operate and the basic hydraulic pressure decreases, and when the sleeve 96 behaves so as to move relative to the spool 94 and move forward. The second valve port 94e1 can be prevented from opening to the booster chamber 100 by the amount of the spool movement amount Δsr. Thereby, the pressure of the booster chamber 100 is prevented from greatly decreasing. For this reason, when the pressure in the booster chamber 100 decreases, the sleeve 96 is urged to the basic hydraulic pressure, moves relative to the spool 94, moves backward, and the first valve port 961a of the supply port 961 is opened to the booster chamber 100. Can be prevented. As a result, the sleeve 96, the spool 94, and the brake pedal 21 are restrained from being pushed forward by the fluid pressure in the booster chamber 100.
 3)第3の実施形態
 次に第3の実施形態について、図12に基づき説明する。第2の実施形態では、ブレーキペダル21を増加維持状態に維持した状態において、基礎液圧が増加し、第1ピストン23bがマスタ移動量Δmだけ後方に移動する場合について説明した。しかし、第3の実施形態では、ブレーキペダル21を増加維持状態に維持した状態において、第1の実施形態と同様に基礎液圧が減少し、第1ピストン23bが所定のマスタ移動量Δmだけ前方に移動する場合について説明する。
3) Third Embodiment Next, a third embodiment will be described with reference to FIG. In the second embodiment, the case where the basic hydraulic pressure increases and the first piston 23b moves backward by the master movement amount Δm in the state where the brake pedal 21 is maintained in the increase maintaining state has been described. However, in the third embodiment, in the state where the brake pedal 21 is maintained in the increased maintenance state, the basic hydraulic pressure is reduced in the same manner as in the first embodiment, and the first piston 23b is moved forward by the predetermined master movement amount Δm. The case of moving to will be described.
 第2の実施形態では、スプール94とスリーブ96との相対位置関係を図8に示すように設定した。しかし、第3の実施形態では、スプール94とスリーブ96との相対位置関係を図12に示すように設定する。第2の実施形態(図8)では、ブレーキペダル21が増加維持状態に遷移した直後のスプール94とスリーブ96とがバランスされた瞬間の状態を示している。このため、供給ポート961(増圧ポート)の第1弁口961aの後方端とスプール94の第1ランド部94aの後方端とが一致して第1弁口961aが閉止されている。これにより、液圧付加装置Adの作動により基礎液圧が減少し、第1ピストン23bが所定のマスタ移動量Δmだけ前方に移動すると、スプール94がスリーブ96に対して前方に相対移動し、移動開始直後に第1弁口961aが開口してしまう。 In the second embodiment, the relative positional relationship between the spool 94 and the sleeve 96 is set as shown in FIG. However, in the third embodiment, the relative positional relationship between the spool 94 and the sleeve 96 is set as shown in FIG. In the second embodiment (FIG. 8), a state at the moment when the spool 94 and the sleeve 96 are balanced immediately after the brake pedal 21 transitions to the increase maintaining state is shown. For this reason, the rear end of the first valve port 961a of the supply port 961 (pressure increasing port) and the rear end of the first land portion 94a of the spool 94 coincide with each other, and the first valve port 961a is closed. Thus, when the basic hydraulic pressure is reduced by the operation of the hydraulic pressure application device Ad and the first piston 23b moves forward by a predetermined master movement amount Δm, the spool 94 moves forward relative to the sleeve 96 and moves. Immediately after the start, the first valve port 961a opens.
 しかし、この後、待機していると、時間の経過とともにスプール94がスリーブ96に対して徐々に後方に相対移動し中立状態まで移動してバランスすることが判っている。そこで、第3の実施形態では、この中立状態に遷移した場合において、所定のスプール移動量Δsf2を設定する。所定のマスタ移動量Δmと所定のスプール移動量Δsf2(所定の弁作動量)との関係は、第1の実施形態における所定のマスタ移動量Δmと所定のスプール移動量Δsfとの関係と同じである。これによっても、第1の実施形態と同様の効果が得られる。なお、第3の実施形態においても、第1及び第2の実施形態と同様に、供給ポート961(増圧ポート)とドレン用大径部96d(減圧ポート)との間の距離によって、所定のスプール移動量Δsf2を作り込むことができる。 However, after that, when waiting, it is known that the spool 94 gradually moves backward relative to the sleeve 96 and moves to the neutral state and balances over time. Therefore, in the third embodiment, when the transition is made to this neutral state, a predetermined spool movement amount Δsf2 is set. The relationship between the predetermined master movement amount Δm and the predetermined spool movement amount Δsf2 (predetermined valve operation amount) is the same as the relationship between the predetermined master movement amount Δm and the predetermined spool movement amount Δsf in the first embodiment. is there. This also provides the same effect as that of the first embodiment. In the third embodiment as well, as in the first and second embodiments, a predetermined distance depends on the distance between the supply port 961 (pressure increase port) and the drain large diameter portion 96d (pressure reduction port). The spool movement amount Δsf2 can be created.
 4)第4の実施形態
 次に、油圧式(液圧式)のブースタ装置91に代えて負圧式のブースタ装置122を用いる第4の実施形態について説明する。第4の実施形態におけるハイブリッド車の構成、マスタシリンダ23及びブレーキアクチュエータ25の構成は、図1及び図2を用いて説明した第1の実施形態と同様である。車両用ブレーキ装置は、液圧制動力発生装置Dと、回生制動力発生装置A(図1参照)と、を備えている。
4) Fourth Embodiment Next, a fourth embodiment using a negative pressure type booster device 122 instead of the hydraulic (hydraulic pressure) booster device 91 will be described. The configuration of the hybrid vehicle and the configuration of the master cylinder 23 and the brake actuator 25 in the fourth embodiment are the same as those in the first embodiment described with reference to FIGS. 1 and 2. The vehicle brake device includes a hydraulic braking force generator D and a regenerative braking force generator A (see FIG. 1).
 液圧制動力発生装置Dは、ホイールシリンダWC1,WC2,WC3,WC4にブレーキペダル21の操作量に応じた基礎液圧を供給する基礎液圧供給装置Tと、基礎液圧に付加液圧を付加する液圧付加装置Adとを備えている。基礎液圧供給装置Tは、ブレーキペダル21に接続されている。また、基礎液圧供給装置Tは、ブースタ装置122を有して構成されている。図13は、第4の実施形態における負圧式ブースタ装置122を説明する断面図である。なお、本実施形態においても、ブレーキペダル21の踏込み方向を前方とし、ブレーキペダル21の戻し方向を後方と称し説明する。 The hydraulic braking force generator D includes a basic hydraulic pressure supply device T that supplies basic hydraulic pressure corresponding to the operation amount of the brake pedal 21 to the wheel cylinders WC1, WC2, WC3, and WC4, and adds an additional hydraulic pressure to the basic hydraulic pressure. And a hydraulic pressure application device Ad. The basic hydraulic pressure supply device T is connected to the brake pedal 21. Further, the basic hydraulic pressure supply device T is configured to include a booster device 122. FIG. 13 is a cross-sectional view illustrating a negative pressure booster device 122 according to the fourth embodiment. In this embodiment, the direction in which the brake pedal 21 is depressed is referred to as the front, and the return direction of the brake pedal 21 is referred to as the rear.
 図13において、負圧式ブースタ装置122は、前方シェル181a及び後方シェル181bで構成されるブースタシェル181を備える。ブースタシェル181の内部には、ゴム製のダイヤフラム182aと金属製のプレート182bとから成り、前後方向に移動する区画部材182が設けられている。区画部材182により、ブースタシェル181の内部は、内容積が変化する図中左方の負圧室R1と図中右方のブースタ室R2(本発明の変圧室及びブースタ室に相当する)とに区画されている。ブースタシェル181はマスタシリンダ23の第1ピストン23bとブレーキペダル21(図13においては図略)との間で同軸線上に配設されている。 13, the negative pressure booster device 122 includes a booster shell 181 composed of a front shell 181a and a rear shell 181b. Inside the booster shell 181, a partition member 182 is provided which is made of a rubber diaphragm 182 a and a metal plate 182 b and moves in the front-rear direction. Due to the partition member 182, the inside of the booster shell 181 is divided into a negative pressure chamber R 1 on the left side in the figure in which the internal volume changes and a booster room R 2 on the right side in the figure (corresponding to the transformer chamber and the booster chamber of the present invention). It is partitioned. The booster shell 181 is disposed on a coaxial line between the first piston 23b of the master cylinder 23 and the brake pedal 21 (not shown in FIG. 13).
 前方シェル181aに設けられた負圧取入れ口122aは、負圧源であるエンジン11の吸気マニホールドに連通されている。したがって、エンジン11作動中、負圧室R1は常に負圧状態である。一方、ブースタ室R2は、弁装置118を介して負圧室R1と連通、遮断されるとともに、弁装置118を介して大気とも連通、遮断される。負圧式ブースタ装置122は、負圧室R1の負圧に対して相対的に圧力の高い大気を圧力源(流体圧源)としている。負圧式ブースタ装置122は、オペレーティングロッド126を介してブレーキペダル21に接続されている。また、負圧式ブースタ装置122は、プッシュロッド127を介してマスタシリンダ23に接続されている。 The negative pressure inlet 122a provided in the front shell 181a communicates with the intake manifold of the engine 11 which is a negative pressure source. Therefore, the negative pressure chamber R1 is always in a negative pressure state while the engine 11 is operating. On the other hand, the booster chamber R <b> 2 communicates with and is disconnected from the negative pressure chamber R <b> 1 through the valve device 118, and also communicates and is disconnected from the atmosphere through the valve device 118. The negative pressure booster device 122 uses atmospheric air having a relatively high pressure relative to the negative pressure in the negative pressure chamber R1 as a pressure source (fluid pressure source). The negative pressure booster device 122 is connected to the brake pedal 21 via the operating rod 126. The negative pressure booster device 122 is connected to the master cylinder 23 via a push rod 127.
 図14は、負圧式ブースタ装置122の弁装置118付近の部分断面図であり、ブレーキペダル21が不動作ストロークLを越えて踏込まれ、基礎液圧が発生した後に、ブレーキペダル21を減少させて遷移した状態(減少維持状態)を示している。減少維持状態に至る過程においては、まず大気圧弁体186bと大気圧弁座852が当接し、その後、負圧弁体186aと負圧弁座851とが当接する。 FIG. 14 is a partial cross-sectional view of the vicinity of the valve device 118 of the negative pressure booster device 122. After the brake pedal 21 is depressed beyond the non-operation stroke L and the base hydraulic pressure is generated, the brake pedal 21 is decreased. The transition state (decrease maintenance state) is shown. In the process of reaching the decrease maintaining state, the atmospheric pressure valve body 186b and the atmospheric pressure valve seat 852 first come into contact with each other, and then the negative pressure valve body 186a and the negative pressure valve seat 851 come into contact with each other.
 負圧式ブースタ装置122において、ピストン部材183(本発明のピストン部に相当する)は、連通路182dが形成されたバルブピストン182cと、バルブピストン182cに、その内周側が固定されて連動する区画部材182とを有している。また、プッシュロッド127は、バルブピストン182cにより、円柱形状の弾性体127aの面積A2で形成された端面(本発明のマスタピストンを押圧する端面に相当する)を介して、マスタシリンダ23の方向に押動されるように配置されている。一方、円柱状を呈するプランジャ184a(本発明のバルブ本体に相当するとともに押圧部に相当する)は、オペレーティングロッド126により、マスタシリンダ23に向けて押動されるように配置されている。プランジャ184aのマスタシリンダ23側の面積A1で形成された前端面(本発明の弾性体を押圧する端面に相当する)に当接して円柱形状の反力部材845が配置されている。反力部材845は、弾性体127aの一方の端面に面積A1で形成された前方端面が当接し、弾性体127aから反力を受けてプランジャ184aに付与するようになっている。反力部材845は、プランジャ184aとともに押圧部を構成している。 In the negative pressure type booster device 122, the piston member 183 (corresponding to the piston portion of the present invention) includes a valve piston 182c in which a communication path 182d is formed, and a partition member whose inner peripheral side is fixed and interlocked with the valve piston 182c. 182. Further, the push rod 127 is moved in the direction of the master cylinder 23 through an end surface (corresponding to an end surface that presses the master piston of the present invention) formed by the valve piston 182c with an area A2 of the cylindrical elastic body 127a. It is arranged to be pushed. On the other hand, the plunger 184a having a columnar shape (corresponding to the valve body of the present invention and corresponding to the pressing portion) is arranged to be pushed toward the master cylinder 23 by the operating rod 126. A cylindrical reaction force member 845 is disposed in contact with a front end surface (corresponding to an end surface that presses the elastic body of the present invention) formed with an area A1 on the master cylinder 23 side of the plunger 184a. The reaction force member 845 comes into contact with one end surface of the elastic body 127a and a front end surface formed with an area A1, receives reaction force from the elastic body 127a, and applies it to the plunger 184a. The reaction force member 845 forms a pressing portion together with the plunger 184a.
 弁装置118は、負圧弁座851と、大気圧弁座852と、負圧弁体186a及び大気圧弁体186bが設けられた弁体186とを有している。大気圧弁体186bと大気圧弁座852とによって、大気圧弁を構成している。また、負圧弁体186aと負圧弁座851とによって負圧弁を構成している。負圧弁座851は、バルブピストン182cの連通路182d出口付近の端縁に形成されている。プランジャ184aは、大気圧弁座部材184b(本発明の可動部に相当する)と、大気圧弁座部材184bを大気圧弁体186bの弁体側に付勢する付勢部材184cと、によってバルブ部184を構成している。そして、大気圧弁座852は、大気圧弁座部材184bの図中右側の外周端縁、つまり、負圧弁体186a側の外周端縁に形成されている。 The valve device 118 includes a negative pressure valve seat 851, an atmospheric pressure valve seat 852, and a valve body 186 provided with a negative pressure valve body 186a and an atmospheric pressure valve body 186b. The atmospheric pressure valve body 186b and the atmospheric pressure valve seat 852 constitute an atmospheric pressure valve. The negative pressure valve body 186a and the negative pressure valve seat 851 constitute a negative pressure valve. The negative pressure valve seat 851 is formed at the end edge of the valve piston 182c near the outlet of the communication passage 182d. The plunger 184a constitutes a valve portion 184 by an atmospheric pressure valve seat member 184b (corresponding to a movable portion of the present invention) and an urging member 184c that urges the atmospheric pressure valve seat member 184b toward the valve body side of the atmospheric pressure valve body 186b. is doing. The atmospheric pressure valve seat 852 is formed on the outer peripheral edge on the right side of the atmospheric pressure valve seat member 184b in the drawing, that is, the outer peripheral edge on the negative pressure valve body 186a side.
 プランジャ184aには、円筒部185が形成され、円筒部185の図14における右端に鍔185aが形成されている。鍔185aの左方で円筒部185の外周には、鍔185aと同じ外径で形成され可動部側に突出した突設部185b(本発明の本体突出部に相当する)が形成されている。 A cylindrical portion 185 is formed on the plunger 184a, and a flange 185a is formed at the right end of the cylindrical portion 185 in FIG. A protruding portion 185b (corresponding to the main body protruding portion of the present invention) is formed on the outer periphery of the cylindrical portion 185 on the left side of the flange 185a, and has the same outer diameter as the flange 185a and protrudes toward the movable portion.
 可動部である大気圧弁座部材184bは、プランジャ184aの外周に軸線方向に摺動可能に装架されている。大気圧弁座部材184bは、円筒状に形成され、図中右側の端部が拡径されて弁座部195が形成され、図中左側の端部が縮径されてバルブ本体であるプランジャ184a側に突出する径小部196(本発明のバルブ突出部に相当する)が形成されている。また、弁座部195のブレーキペダル21側の端面には、前述した大気圧弁座852が形成されている。大気圧弁座部材184bの円筒内径はプランジャ184aの鍔185a及び突設部185bの外径より若干大きく形成されている。突設部185b(本体突出部)と径小部196(バルブ突出部)との間の距離L3は、後述するバルブ移動量Δvに基づいて設定されている。 The atmospheric pressure valve seat member 184b, which is a movable part, is mounted on the outer periphery of the plunger 184a so as to be slidable in the axial direction. The atmospheric pressure valve seat member 184b is formed in a cylindrical shape, and the end on the right side in the figure is expanded to form the valve seat part 195, and the end on the left side in the figure is reduced in diameter to the side of the plunger 184a that is the valve body. A small-diameter portion 196 (corresponding to the valve protrusion portion of the present invention) is formed. Further, the above-described atmospheric pressure valve seat 852 is formed on the end surface of the valve seat portion 195 on the brake pedal 21 side. The cylindrical inner diameter of the atmospheric pressure valve seat member 184b is formed to be slightly larger than the outer diameters of the flange 185a and the protruding portion 185b of the plunger 184a. A distance L3 between the protruding portion 185b (main body protruding portion) and the small diameter portion 196 (valve protruding portion) is set based on a valve movement amount Δv described later.
 また、大気圧弁座部材184bの径小部196の内径はプランジャ184aの円筒部185の外径より若干大きく形成されている。そして、大気圧弁座部材184bの鍔185a及び突設部185bの外周及び径小部196の内周にプランジャ184aの鍔185a及び突設部185bの外周が軸線方向に摺動可能にそれぞれ係入されている。これにより、大気圧弁座部材184bがプランジャ184aに軸線方向に摺動可能に装架されている。プランジャ184aの鍔185aと突設部185bとの間にはシール部材が配設され大気圧弁座部材184bとの間が液密にシールされている。 Also, the inner diameter of the small diameter portion 196 of the atmospheric pressure valve seat member 184b is slightly larger than the outer diameter of the cylindrical portion 185 of the plunger 184a. The flange 185a of the atmospheric pressure valve seat member 184b and the outer periphery of the projecting portion 185b and the inner periphery of the small diameter portion 196 are engaged with the outer periphery of the flange 185a and the projecting portion 185b of the plunger 184a so as to be slidable in the axial direction. ing. Thereby, the atmospheric pressure valve seat member 184b is mounted on the plunger 184a so as to be slidable in the axial direction. A seal member is disposed between the flange 185a of the plunger 184a and the projecting portion 185b, and the space between the plunger 184a and the atmospheric pressure valve seat member 184b is liquid-tightly sealed.
 弁体186は、オペレーティングロッド126とバルブピストン182cとの間に配置された円環状の部材であり、スプリング863によりマスタシリンダ23の方向に付勢されて軸方向に移動できるようになっている。図14に示す減少維持状態においては、弁体186に設けられた負圧弁体186aは、負圧弁座851と当接しており、弁体186に設けられた大気圧弁体186bは大気圧弁座852と当接している。 The valve body 186 is an annular member disposed between the operating rod 126 and the valve piston 182c, and is urged in the direction of the master cylinder 23 by the spring 863 so that it can move in the axial direction. In the reduced maintenance state shown in FIG. 14, the negative pressure valve body 186 a provided in the valve body 186 is in contact with the negative pressure valve seat 851, and the atmospheric pressure valve body 186 b provided in the valve body 186 is in contact with the atmospheric pressure valve seat 852. It is in contact.
 このような構成によって、プランジャ184aが図14の左方に向かって移動するとき、プランジャ184aの突設部185b(本体突出部)の左端面が距離L3だけ移動し、大気圧弁座部材184bの径小部196(バルブ突出部)の右端面と当接すると径小部196(バルブ突出部)が突設部185b(本体突出部)に押圧されプランジャ184aと大気圧弁座部材184bとが連動して前進する。そして、大気圧弁体186bと大気圧弁座852とが離間し大気圧弁を開弁させる。これによって、流体圧源としての大気とブースタ室R2とを連通させる流体圧経路を接続する。 With such a configuration, when the plunger 184a moves toward the left in FIG. 14, the left end surface of the protruding portion 185b (main body protruding portion) of the plunger 184a moves by a distance L3, and the diameter of the atmospheric pressure valve seat member 184b. When contacting the right end surface of the small portion 196 (valve protruding portion), the small diameter portion 196 (valve protruding portion) is pressed by the protruding portion 185b (main body protruding portion), and the plunger 184a and the atmospheric pressure valve seat member 184b are interlocked. Advance. Then, the atmospheric pressure valve body 186b and the atmospheric pressure valve seat 852 are separated from each other to open the atmospheric pressure valve. As a result, a fluid pressure path that connects the atmosphere as a fluid pressure source and the booster chamber R2 is connected.
 このとき、本発明においては、減少維持状態を基点とする、プランジャ184aと、大気圧弁座部材184bとが連動に至るまでの移動距離であるバルブ移動量Δv(=距離L3)が設定されている。バルブ移動量Δv(所定の弁作動量に相当する)は、弁装置118の作動の感度を所定の感度とするために隙間部187のバルブ移動量Δvが設定されている。このとき、バルブ移動量Δvは、減少維持状態にある場合のブースタ装置122において、液圧付加装置Adが作動し、マスタシリンダ23側の基礎液圧が減少し、第1ピストン23bがマスタ移動量Δmだけ前進しても、プランジャ184aが空走し、大気圧弁を開弁させない値である。バルブ移動量Δvは、距離L3を調整することにより作り込むことができる。マスタ移動量Δmは、上記実施形態と同様に最大回生制動力FKmaxの大きさに基づいて設定すればよい。このように、バルブ移動量Δvは、マスタ移動量Δmに基づいて設定され、マスタ移動量Δmは最大回生制動力FKmaxの大きさに基づいて設定される。ただし、上記実施形態と同様にマスタ移動量Δmの設定は任意であり、この態様には限らない。 At this time, in the present invention, a valve movement amount Δv (= distance L3), which is a movement distance until the plunger 184a and the atmospheric pressure valve seat member 184b are interlocked with each other, based on the reduction maintaining state, is set. . As the valve movement amount Δv (corresponding to a predetermined valve operation amount), the valve movement amount Δv of the gap 187 is set so that the sensitivity of the operation of the valve device 118 is a predetermined sensitivity. At this time, the valve movement amount Δv is reduced in the booster device 122 in the state of maintaining the decrease, the hydraulic pressure adding device Ad operates, the basic hydraulic pressure on the master cylinder 23 side decreases, and the first piston 23b moves to the master movement amount. Even if the actuator moves forward by Δm, the plunger 184a runs idle and does not open the atmospheric pressure valve. The valve movement amount Δv can be made by adjusting the distance L3. The master movement amount Δm may be set based on the maximum regenerative braking force FKmax as in the above embodiment. Thus, the valve movement amount Δv is set based on the master movement amount Δm, and the master movement amount Δm is set based on the magnitude of the maximum regenerative braking force FKmax. However, the setting of the master movement amount Δm is arbitrary as in the above embodiment, and is not limited to this mode.
 バルブピストン182cに形成された連通路182d内の空間Z1は、常に負圧室R1に連通している。バルブピストン182cとプランジャ184aとの間の空間Z2は、常にブースタ室R2に連通している。また、弁体186の内周側の空間Z3(流体圧源)は、常に大気に連通している。そして、空間Z1と空間Z2が遮断され、空間Z2と空間Z3とが連通することにより、ブースタ室R2内の圧力が増大し、負圧式ブースタ装置122を作動させる。これにより、負圧式ブースタ装置122が、マスタシリンダ23を駆動して、マスタシリンダ23に基礎液圧を発生させる。 The space Z1 in the communication passage 182d formed in the valve piston 182c is always in communication with the negative pressure chamber R1. A space Z2 between the valve piston 182c and the plunger 184a is always in communication with the booster chamber R2. Further, the space Z3 (fluid pressure source) on the inner peripheral side of the valve body 186 is always in communication with the atmosphere. Then, the space Z1 and the space Z2 are blocked, and the space Z2 and the space Z3 communicate with each other, whereby the pressure in the booster chamber R2 increases and the negative pressure booster device 122 is operated. As a result, the negative pressure booster device 122 drives the master cylinder 23 to generate a base hydraulic pressure in the master cylinder 23.
 次に、減少維持状態における作動について説明する。なお、負圧式ブースタ装置122の通常の作動については周知であるので、説明は省略する。負圧式ブースタ装置122が、減少維持状態(図13参照)にある場合に、第1の実施形態と同様に、液圧付加装置Adが作動されると、マスタシリンダ23側の基礎液圧が低下する。これにより、バルブ部184のプランジャ184aがマスタ移動量Δmに応じた量だけ、前方に変位する。しかし、プランジャ184aと大気圧弁座部材184bとの間には、マスタ移動量Δmに応じたプランジャ184aの移動量よりも大きくなるよう設定されたバルブ移動量Δv(所定の弁作動量)に相当する距離L3の隙間を有した隙間部187が設けられている。このため、プランジャ184aが、マスタ移動量Δmに応じた量だけ前方に変位しても、プランジャ184aが大気圧弁座部材184bと連動して、大気圧弁体186bを開弁させることはない。これにより、ブースタ室R2が大気(空間Z3)に連通してブースタ室R2内の圧力を増大させ、ピストン部材183及びブレーキペダル21を大きく移動(前進)させることによって、運転者に違和感を感じさせる虞はない。 Next, the operation in the reduced maintenance state will be described. Since the normal operation of the negative pressure booster device 122 is well known, the description thereof is omitted. When the negative pressure type booster device 122 is in the decrease maintaining state (see FIG. 13), as in the first embodiment, when the hydraulic pressure adding device Ad is operated, the basic hydraulic pressure on the master cylinder 23 side decreases. To do. As a result, the plunger 184a of the valve portion 184 is displaced forward by an amount corresponding to the master movement amount Δm. However, between the plunger 184a and the atmospheric pressure valve seat member 184b, this corresponds to the valve movement amount Δv (predetermined valve operation amount) set to be larger than the movement amount of the plunger 184a corresponding to the master movement amount Δm. A gap portion 187 having a gap of the distance L3 is provided. For this reason, even if the plunger 184a is displaced forward by an amount corresponding to the master movement amount Δm, the plunger 184a does not open the atmospheric pressure valve body 186b in conjunction with the atmospheric pressure valve seat member 184b. As a result, the booster chamber R2 communicates with the atmosphere (space Z3) to increase the pressure in the booster chamber R2, and the piston member 183 and the brake pedal 21 are moved (advanced) greatly to make the driver feel uncomfortable. There is no fear.
 上述の説明から明らかなように、第4の実施形態のブースタ装置は、負圧を利用した負圧式のブースタ装置122である。そして、第1の実施形態と同様に、弁装置118の大気圧弁座852が減少維持状態に保持された状態において、液圧付加装置Adが作動されて、プランジャ184aがピストン部材183に対してブレーキペダル21の踏込み方向に相対変位しても、大気圧弁座852は、付勢部材184cに付勢されてバルブ移動量Δvの間だけ大気圧弁体186bから離間されないよう所定のバルブ移動量Δv(所定の弁作動量)が設定されている。これにより、大気圧弁座852が大気圧弁体186bから離間することによって空間Z2(ブースタ室)に新たに大気圧を導入しない。このため、ピストン部材183及びブレーキペダル21をブレーキペダル21の踏込み方向に大きく移動させることを抑制することができる。このため、ブレーキペダル21が減少維持状態に遷移した場合において、液圧付加装置Adが作動されて、ブレーキペダル21が前進することが抑制される。 As is clear from the above description, the booster device according to the fourth embodiment is a negative pressure type booster device 122 using negative pressure. Similarly to the first embodiment, in the state where the atmospheric pressure valve seat 852 of the valve device 118 is maintained in the reduced maintenance state, the hydraulic pressure adding device Ad is operated, and the plunger 184a brakes against the piston member 183. Even when the pedal 21 is relatively displaced in the depression direction, the atmospheric pressure valve seat 852 is urged by the urging member 184c so as not to be separated from the atmospheric pressure valve body 186b during the valve movement amount Δv (a predetermined valve movement amount Δv (predetermined). Is set). Thereby, the atmospheric pressure valve seat 852 is separated from the atmospheric pressure valve body 186b, so that no new atmospheric pressure is introduced into the space Z2 (booster room). For this reason, it is possible to suppress the piston member 183 and the brake pedal 21 from being largely moved in the depression direction of the brake pedal 21. For this reason, when the brake pedal 21 transitions to the decrease maintaining state, the hydraulic pressure application device Ad is actuated, and the brake pedal 21 is prevented from moving forward.
 なお、上記第1乃至第4の実施形態の別の実施例1として、押圧部(プランジャ98,プランジャ184a及び反力部材845)と、プッシュロッド95,127との間に介在される弾性体107,127aとの面積比(A2/A1)によって、弁装置97,118の作動において弁装置118の作動量を抑制してもよい。なお、面積比(A2/A1)については既に詳述したので詳細な説明は省略する。具体的には、面積比(A2/A1)が小さくなるように、押圧部(プランジャ98、プランジャ184a及び反力部材845)の面積A1、即ち外径dを大きくする、または弾性体107,127aの前方端面の面積A2、即ち外径D1を小さくすることによって面積比(A2/A1)を小さくすればよい(図5参照)。これによって、運転者がブレーキペダル21を踏込んだときの操作力の増幅率が減少するので、弁装置97,118の作動の感度が鈍くなり弁装置97,118の作動量が抑制できる。つまり、マスタシリンダ圧の変化に対する弁装置97,118の作動量の変化が抑制できる。そして、液圧付加装置Adが作動され、マスタシリンダ23の第1ピストン23b(マスタピストン)がマスタ移動量Δmだけ、前方に変位したときに、弁装置97,118の作動量が、所定の弁作動量(所定のスプール移動量Δsf,Δsf1,Δsf2,所定のバルブ移動量Δv)以下となるよう面積比(A2/A1)を設定すればよい。これによっても他の実施形態と同様の効果が得られる。 As another example 1 of the first to fourth embodiments, the elastic body 107 interposed between the pressing portion (plunger 98, plunger 184a and reaction force member 845) and the push rods 95 and 127 is used. , 127a, the operation amount of the valve device 118 may be suppressed in the operation of the valve devices 97, 118 by the area ratio (A2 / A1). Since the area ratio (A2 / A1) has already been described in detail, detailed description thereof is omitted. Specifically, the area A1, that is, the outer diameter d of the pressing portion (plunger 98, plunger 184a, and reaction force member 845) is increased or the elastic bodies 107, 127a so that the area ratio (A2 / A1) is decreased. The area ratio (A2 / A1) may be reduced by reducing the area A2 of the front end face, that is, the outer diameter D1, (see FIG. 5). As a result, the amplification factor of the operating force when the driver depresses the brake pedal 21 decreases, so that the sensitivity of the operation of the valve devices 97 and 118 becomes dull, and the operation amount of the valve devices 97 and 118 can be suppressed. That is, the change in the operation amount of the valve devices 97 and 118 with respect to the change in the master cylinder pressure can be suppressed. Then, when the hydraulic pressure application device Ad is operated and the first piston 23b (master piston) of the master cylinder 23 is displaced forward by the master movement amount Δm, the operation amounts of the valve devices 97 and 118 become the predetermined valve. The area ratio (A2 / A1) may be set to be equal to or less than the operation amount (predetermined spool movement amount Δsf, Δsf1, Δsf2, predetermined valve movement amount Δv). This also provides the same effect as the other embodiments.
 また、上記第1乃至第4の実施形態(別の実施例1を含む)の別の実施例2として、弾性体107,127aの硬度(弾性率)を変更して弁装置97,118の感度を鈍くして作動量を抑制し、前述した所定の弁作動量(所定のスプール移動量Δsf,Δsf1,Δsf2,所定のバルブ移動量Δv)以下となるよう設定してもよい。前述したように、押圧部であるプランジャ98、プランジャ184a(第4の実施形態では反力部材845を含む)が前方端面によって弾性体107、127aの後方端面を押圧したとき、弾性体107,127a内に発生する圧力P1は弾性体107,127aの硬度に応じた率で前方端面に圧力P1'で伝搬される(図15参照)。この伝搬率は、硬度が大きい程低くなることが判っている。これによって、弁装置97,118の作動の感度が鈍くなったといえる。つまり、硬度を大きくすることにより、マスタシリンダ圧の変化に対する弁装置97,118の作動量の変化が抑制できる。そして、液圧付加装置Adが作動され、マスタシリンダ23の第1ピストン23b(マスタピストン)がマスタ移動量Δmだけ前方に変位したときに、弁装置97,118の作動量が所定の弁作動量(所定のスプール移動量Δsf,Δsf1,Δsf2,所定のバルブ移動量Δv)以下となるよう弾性体107,127aの硬度を設定すればよい。これによっても上記他の実施形態と同様の効果が得られる。 As another example 2 of the first to fourth embodiments (including another example 1), the hardness (elastic modulus) of the elastic bodies 107 and 127a is changed to change the sensitivity of the valve devices 97 and 118. May be set to be equal to or less than the predetermined valve operation amount (predetermined spool movement amount Δsf, Δsf1, Δsf2, predetermined valve movement amount Δv). As described above, when the plunger 98 and the plunger 184a (including the reaction force member 845 in the fourth embodiment) as the pressing portions press the rear end face of the elastic bodies 107 and 127a by the front end face, the elastic bodies 107 and 127a are pressed. The pressure P1 generated inside is propagated to the front end face with the pressure P1 ′ at a rate corresponding to the hardness of the elastic bodies 107 and 127a (see FIG. 15). It has been found that this propagation rate decreases with increasing hardness. Thereby, it can be said that the sensitivity of the operation of the valve devices 97 and 118 has decreased. That is, by increasing the hardness, it is possible to suppress changes in the operation amounts of the valve devices 97 and 118 with respect to changes in the master cylinder pressure. Then, when the hydraulic pressure application device Ad is operated and the first piston 23b (master piston) of the master cylinder 23 is displaced forward by the master movement amount Δm, the operation amounts of the valve devices 97 and 118 are the predetermined valve operation amounts. The hardness of the elastic bodies 107 and 127a may be set to be equal to or less than (predetermined spool movement amounts Δsf, Δsf1, Δsf2, predetermined valve movement amount Δv). This also provides the same effects as those of the other embodiments described above.
 また、上記第1及び第2の実施形態では、弾性体107,127aの硬度を高くすることによって、別の効果も生じる。つまり、弾性体107,127aの硬度が高い程、弾性体107,127aが圧縮されてプランジャ98、プランジャ184a(第4の実施形態では反力部材845を含む)の押圧力と弾性体107,127aの反発力とが釣合い状態となるまでの間に、プランジャ98、プランジャ184a(第4の実施形態では反力部材845を含む)が前方に空走して移動する距離は短くなる。これにより、設定した所定のスプール移動量Δsf,Δsf1,Δsf2及びバルブ移動量Δvが空走によって設定値よりも小さくなってしまうことを防止できる。 Further, in the first and second embodiments, another effect is also produced by increasing the hardness of the elastic bodies 107 and 127a. That is, the higher the hardness of the elastic bodies 107 and 127a, the more the elastic bodies 107 and 127a are compressed, and the pressing force of the plunger 98 and plunger 184a (including the reaction force member 845 in the fourth embodiment) and the elastic bodies 107 and 127a. The distance that the plunger 98 and the plunger 184a (including the reaction force member 845 in the fourth embodiment) idle and move forward is shortened until the repulsive force is balanced. Thereby, it is possible to prevent the set predetermined spool movement amounts Δsf, Δsf1, Δsf2 and the valve movement amount Δv from becoming smaller than the set values due to idling.
 上記複数の実施形態では、電動ポンプ37,47を常時作動させるとともに、液圧制御弁31,41への指示値により付加液圧制動力FSを制御したが、これに限らず、電動ポンプ37,47によるブレーキ液の吐出量の制御により付加液圧制動力FSを制御してもよい。 In the above embodiments, the electric pumps 37 and 47 are always operated, and the additional hydraulic braking force FS is controlled by an instruction value to the hydraulic pressure control valves 31 and 41. However, the invention is not limited thereto, and the electric pumps 37 and 47 are not limited thereto. The additional hydraulic braking force FS may be controlled by controlling the amount of brake fluid discharged by.
 上記複数の実施形態では、第1,第2ピストン23b,23c(マスタピストン)の移動量と弁装置97,118の作動量(スプール94のスリーブ96に対する相対移動量、バルブピストン182cのバルブ部184に対する相対移動量)とが連動する場合を例示して、本願発明を説明した。しかしながら、第1,第2ピストン23b,23c(マスタピストン)が移動しない場合であったとしても、マスタシリンダ圧の変化により弁装置97,118が作動することが考えられる。この場合、「ブレーキ操作部材21の操作量が維持されている維持状態で、液圧制御弁31,41及び電動ポンプ37,47の少なくともいずれか一方の制御により弁装置97,118が作動したとしても、その維持状態に遷移した時点における弁装置97,118の状態を基準とする弁装置97,118の弁作動量が所定の弁作動量以下であれば、弁装置97,118により流体圧供給経路が開放されないように構成」することにより、上記複数の実施形態と同様の効果を得ることができる。 In the above embodiments, the movement amount of the first and second pistons 23b, 23c (master piston) and the operation amount of the valve devices 97, 118 (the relative movement amount of the spool 94 with respect to the sleeve 96, the valve portion 184 of the valve piston 182c). The present invention has been described by exemplifying a case in which the relative movement amount relative to the distance is interlocked. However, even if the first and second pistons 23b and 23c (master piston) do not move, it is conceivable that the valve devices 97 and 118 operate due to a change in the master cylinder pressure. In this case, it is assumed that the valve devices 97 and 118 are operated by the control of at least one of the hydraulic control valves 31 and 41 and the electric pumps 37 and 47 in the maintenance state where the operation amount of the brake operation member 21 is maintained. If the valve operation amount of the valve devices 97, 118 based on the state of the valve devices 97, 118 at the time of transition to the maintenance state is equal to or less than a predetermined valve operation amount, fluid pressure is supplied by the valve devices 97, 118. By configuring so that the path is not opened, the same effect as in the above-described plurality of embodiments can be obtained.
 本発明は、上述の実施の形態に限定されず、様々な変形、応用が可能である。例えば、図2に示されるようにブレーキ配管系は前後分割方式にて構成されているが、X配管方式にて構成されるようにしてもよい。また、ハイブリッド車でなく、駆動源としてモータのみを搭載した電気自動車にも適用可能である。 The present invention is not limited to the above-described embodiment, and various modifications and applications are possible. For example, as shown in FIG. 2, the brake piping system is configured by a front and rear division system, but may be configured by an X piping system. Moreover, it is applicable not only to a hybrid vehicle but also to an electric vehicle equipped with only a motor as a drive source.
 11…エンジン、12…モータ、13…動力分割機構、14…動力伝達機構、15…発電機、16…インバータ、17…バッテリ、18…エンジンECU、19…ハイブリッドECU、21…ブレーキ操作部材(ブレーキペダル)、21a…ペダルストロークセンサ、23…マスタシリンダ、23a…ハウジング、23b,23c…マスタピストン(第1及び第2ピストン)、23d…マスタ液圧室(第1液圧室)、23e…第1スプリング、23f…マスタ液圧室(第2液圧室)、24…流体圧源(大気圧リザーバ)、25…ブレーキアクチュエータ、26,126…オペレーティングロッド、31,41…制御弁(液圧制御弁)、37,47…ポンプ(電動ポンプ)、60…ブレーキECU、91…ブースタ装置(油圧式ブースタ装置)、92…外周シリンダ、93…流体圧源(圧力源)、94…スプール、95,127…プッシュロッド、96…スリーブ、97,118…弁装置、98…プランジャ、100,R2…ブースタ室、122…ブースタ装置(負圧式ブースタ装置)、181…ブースタシェル、182…区画部材、182c…ピストン部(バルブピストン)、183…ピストン部(ピストン部材)、184…バルブ部、184a…バルブ本体(プランジャ)、184b…可動部(大気圧弁座部材)、184c…付勢部材、186…弁体、186a…負圧弁体、186b…大気圧弁体、851…負圧弁座、852…大気圧弁座、A…回生制動力発生装置(回生ブレーキ装置)、B…液圧制動力発生装置、CB…車両用ブレーキ装置、FR,FL,RR,RL…車輪、Lf,Lr…油経路、WC1,WC2,WC3,WC4…ホイールシリンダ、L…不動作ストローク、R1…負圧室、R2…ブースタ室(変圧室)、S…基礎液圧供給装置、Z3…流体圧源。 DESCRIPTION OF SYMBOLS 11 ... Engine, 12 ... Motor, 13 ... Power split mechanism, 14 ... Power transmission mechanism, 15 ... Generator, 16 ... Inverter, 17 ... Battery, 18 ... Engine ECU, 19 ... Hybrid ECU, 21 ... Brake operation member (brake Pedal), 21a ... pedal stroke sensor, 23 ... master cylinder, 23a ... housing, 23b, 23c ... master piston (first and second pistons), 23d ... master hydraulic chamber (first hydraulic chamber), 23e ... first 1 spring, 23f ... master hydraulic chamber (second hydraulic chamber), 24 ... fluid pressure source (atmospheric pressure reservoir), 25 ... brake actuator, 26, 126 ... operating rod, 31, 41 ... control valve (hydraulic pressure control) Valve), 37, 47 ... pump (electric pump), 60 ... brake ECU, 91 ... booster device (hydraulic booster device) , 92 ... Outer cylinder, 93 ... Fluid pressure source (pressure source), 94 ... Spool, 95, 127 ... Push rod, 96 ... Sleeve, 97, 118 ... Valve device, 98 ... Plunger, 100, R2 ... Booster chamber, 122 ... Booster device (negative pressure type booster device), 181 ... Booster shell, 182 ... Partition member, 182c ... Piston part (valve piston), 183 ... Piston part (piston member), 184 ... Valve part, 184a ... Valve body (plunger) , 184b ... movable part (atmospheric pressure valve seat member), 184c ... biasing member, 186 ... valve body, 186a ... negative pressure valve body, 186b ... atmospheric pressure valve body, 851 ... negative pressure valve seat, 852 ... atmospheric pressure valve seat, A ... regenerative Brake force generator (regenerative brake device), B ... hydraulic brake force generator, CB ... vehicle brake device, FR, FL, RR, RL ... wheel Lf, Lr ... oil path, WC1, WC2, WC3, WC4 ... wheel cylinder, L ... non-operation stroke, R1 ... negative pressure chamber, R2 ... booster chamber (transformer chamber), S ... basic hydraulic pressure supply device, Z3 ... fluid Pressure source.

Claims (14)

  1.  ブレーキ操作部材に接続され、流体圧源とブースタ室との間の流体圧経路を開閉する弁装置の作動により、前記ブースタ室に前記ブレーキ操作部材の操作量に応じた流体圧を発生させ、その流体圧に対応する力でマスタピストンを駆動するブースタ装置を有して構成され、ホイールシリンダに前記操作量に応じた基礎液圧を供給する基礎液圧供給装置と、前記基礎液圧供給装置と前記ホイールシリンダとの間の液圧経路に設けられ、前記基礎液圧供給装置側の液圧と前記ホイールシリンダ側の液圧との差圧を調整する制御弁と前記液圧経路の前記制御弁よりも前記基礎液圧供給装置側のブレーキ液を前記液圧経路の前記制御弁よりも前記ホイールシリンダ側に吐出するポンプとを有し、前記制御弁及び前記ポンプの少なくともいずれか一方の作動により前記基礎液圧に付加液圧を付加する液圧付加装置と、を含んで構成されている液圧制動力発生装置と、
     前記車輪に回生制動力を付与する回生制動力発生装置と、
     を備え、
     前記操作量が維持されている維持状態で、前記制御弁及び前記ポンプの少なくともいずれか一方の制御により前記弁装置が作動したとしても、その維持状態に遷移した時点における前記弁装置の状態を基準とする前記弁装置の作動量が所定の弁作動量以下であれば、前記弁装置により前記流体圧経路が開放されないように構成されている車両用ブレーキ装置。
    By operating a valve device connected to the brake operation member and opening and closing a fluid pressure path between the fluid pressure source and the booster chamber, a fluid pressure corresponding to the operation amount of the brake operation member is generated in the booster chamber. A basic hydraulic pressure supply device configured to include a booster device that drives the master piston with a force corresponding to the fluid pressure, and supplies a basic hydraulic pressure corresponding to the operation amount to the wheel cylinder; and the basic hydraulic pressure supply device; A control valve that is provided in a hydraulic pressure path between the wheel cylinder and that adjusts a differential pressure between a hydraulic pressure on the basic hydraulic pressure supply device side and a hydraulic pressure on the wheel cylinder side; and the control valve in the hydraulic pressure path A pump that discharges brake fluid on the basic hydraulic pressure supply device side to the wheel cylinder side rather than the control valve of the hydraulic pressure path, and at least one of the control valve and the pump Hydraulic and pressure application device, and comprise Configured hydraulic braking force generating device for adding additional pressure to the base hydraulic pressure by moving,
    A regenerative braking force generator for applying a regenerative braking force to the wheel;
    With
    Even if the valve device is operated by the control of at least one of the control valve and the pump in the maintenance state where the operation amount is maintained, the state of the valve device at the time of transition to the maintenance state is used as a reference. If the operating amount of the valve device is less than or equal to a predetermined valve operating amount, the vehicle brake device is configured so that the fluid pressure path is not opened by the valve device.
  2.  請求項1において、
     前記マスタピストンの移動量と前記弁装置の作動量とは連動し、
     前記維持状態で、前記制御弁及び前記ポンプの少なくともいずれか一方の制御により前記マスタピストンが移動したとしても、その維持状態に遷移した時点における前記マスタピストンの位置を基点とする前記マスタピストンの移動量が所定のマスタ移動量以下であれば、前記弁装置の作動量が前記弁作動量以下になるように構成されている車両用ブレーキ装置。
    In claim 1,
    The movement amount of the master piston and the operation amount of the valve device are linked,
    Even if the master piston is moved by the control of at least one of the control valve and the pump in the maintained state, the master piston moves based on the position of the master piston at the time of transition to the maintained state. A vehicular brake device configured such that when the amount is equal to or less than a predetermined master movement amount, the operation amount of the valve device is equal to or less than the valve operation amount.
  3.  請求項2において、
     前記ブースタ装置は、前記ブースタ室に前記ブレーキ操作部材の操作に応じた液圧を発生させる液圧ブースタであり、
     前記弁装置は、スプールがスリーブ内を摺動し、前記スプールの前記スリーブに対する相対移動により、前記流体圧経路としての前記流体圧源から前記ブースタ室に流体圧を供給する流体圧供給経路と、前記ブースタ室から流体圧を排出する流体圧排出経路とを開閉し、
     前記スプール及び前記スリーブは、前記マスタピストンの移動により相対移動し、
     前記操作量が減少している減少状態から遷移した前記維持状態で、前記スプール及び前記スリーブが、前記マスタピストンの移動により相対移動したとしても、当該維持状態への遷移に伴って前記流体圧排出経路が閉止された時点における相対位置を基点とする、前記基礎液圧が減少した場合に相対移動する方向への移動量が、所定のスプール移動量以下であれば、前記流体圧供給経路が閉止されるように構成され、
     前記スプール移動量は、前記マスタ移動量に基づいて設定されている車両用ブレーキ装置。
    In claim 2,
    The booster device is a hydraulic booster that generates hydraulic pressure according to the operation of the brake operation member in the booster chamber,
    The valve device includes a fluid pressure supply path for supplying a fluid pressure from the fluid pressure source as the fluid pressure path to the booster chamber by a relative movement of the spool with respect to the sleeve when the spool slides inside the sleeve. Open and close the fluid pressure discharge path for discharging the fluid pressure from the booster chamber;
    The spool and the sleeve are relatively moved by the movement of the master piston,
    Even if the spool and the sleeve move relative to each other due to the movement of the master piston in the maintenance state in which the operation amount has decreased, the fluid pressure is discharged along with the transition to the maintenance state. If the amount of movement in the direction of relative movement when the basic hydraulic pressure decreases with the relative position at the time when the route is closed as a reference point is equal to or less than a predetermined spool movement amount, the fluid pressure supply route is closed. Configured to be
    The vehicular brake device in which the spool movement amount is set based on the master movement amount.
  4.  請求項2または3において、
     前記ブースタ装置は、前記ブースタ室に前記ブレーキ操作部材の操作に応じた液圧を発生させる液圧ブースタであり、
     前記弁装置は、前記スプールが前記スリーブ内を摺動し、前記スプールの前記スリーブに対する相対移動により、前記ブースタ室に流体圧を供給する流体圧供給経路と、前記流体圧経路としての前記ブースタ室から前記流体圧源に前記流体圧を排出する流体圧排出経路とを開閉し、
     前記スプール及び前記スリーブは、前記マスタピストンの移動により相対移動し、
     前記操作量が増加している増加状態から遷移した前記維持状態で、前記スプール及び前記スリーブが前記マスタピストンの移動により相対移動したとしても、当該維持状態への遷移に伴って前記流体圧供給経路が閉止された時点における相対位置を基点とする、前記基礎液圧が増加した場合に相対移動する方向への移動量が、所定のスプール移動量以下であれば、前記流体圧排出経路が閉止されるように構成され、
     前記スプール移動量は、前記マスタ移動量に基づいて設定されている車両用ブレーキ装置。
    In claim 2 or 3,
    The booster device is a hydraulic booster that generates hydraulic pressure according to the operation of the brake operation member in the booster chamber,
    The valve device includes: a fluid pressure supply path for supplying fluid pressure to the booster chamber by the relative movement of the spool relative to the sleeve; and the booster chamber as the fluid pressure path. Open and close a fluid pressure discharge path for discharging the fluid pressure from the fluid pressure source to
    The spool and the sleeve are relatively moved by the movement of the master piston,
    Even if the spool and the sleeve are relatively moved by the movement of the master piston in the maintenance state where the operation amount is increased, the fluid pressure supply path is changed along with the transition to the maintenance state. If the movement amount in the direction of relative movement when the basal fluid pressure is increased is less than or equal to a predetermined spool movement amount based on the relative position at the time when is closed, the fluid pressure discharge path is closed. Configured to
    The vehicular brake device in which the spool movement amount is set based on the master movement amount.
  5.  請求項2において、
     前記ブースタ装置は、ブースタシェル内を負圧源に接続された負圧室と前記ブースタ室としての変圧室とに区画し前記マスタピストンの移動に連動するピストン部と、前記ブレーキ操作部材の操作に連動するバルブ部とを有し、前記ピストン部と前記バルブ部との相対位置に応じた気圧を前記変圧室に発生させる負圧ブースタであり、
     前記弁装置は、前記変圧室と前記流体圧源としての外部空間との間の前記流体圧経路を開閉する大気圧弁と、前記変圧室と前記負圧室との連通を開閉する負圧弁とを有し、
     前記大気圧弁の弁座は前記バルブ部に設けられ、
     前記負圧弁の弁座は前記ピストン部に設けられ、
     前記操作量が減少している減少状態から遷移した前記維持状態で、前記ピストン部及び前記バルブ部が前記マスタピストンの移動により相対移動したとしても、当該維持状態への遷移に伴って前記負圧弁が閉弁した時点における相対位置を基点とする、前記基礎液圧が減少した場合に相対移動する方向への移動量が、所定のバルブ移動量以下であれば、前記大気圧弁が閉弁されているように構成され、
     前記バルブ移動量は前記マスタ移動量に基づいて設定されている車両用ブレーキ装置。
    In claim 2,
    The booster device divides the inside of the booster shell into a negative pressure chamber connected to a negative pressure source and a variable pressure chamber as the booster chamber, and operates the brake operation member with a piston portion interlocked with the movement of the master piston. A negative pressure booster that generates an atmospheric pressure in the variable pressure chamber in accordance with a relative position between the piston portion and the valve portion.
    The valve device includes an atmospheric pressure valve that opens and closes the fluid pressure path between the variable pressure chamber and an external space as the fluid pressure source, and a negative pressure valve that opens and closes communication between the variable pressure chamber and the negative pressure chamber. Have
    The valve seat of the atmospheric pressure valve is provided in the valve portion,
    The valve seat of the negative pressure valve is provided in the piston part,
    Even if the piston part and the valve part move relative to each other due to the movement of the master piston in the maintenance state that has transitioned from the reduction state in which the operation amount is decreasing, the negative pressure valve is accompanied by the transition to the maintenance state. If the amount of movement in the direction of relative movement when the basal fluid pressure is reduced is less than or equal to a predetermined valve movement amount, based on the relative position at the time when the valve is closed, the atmospheric pressure valve is closed. Configured to
    The vehicular brake device in which the valve movement amount is set based on the master movement amount.
  6.  請求項5において、
     前記バルブ部は、前記ブレーキ操作部材に接続されているバルブ本体と、前記バルブ本体に対して移動可能に設けられた可動部と、前記可動部を前記大気圧弁の弁体側に付勢する付勢部材と、
     を有し、
     前記可動部は、前記減少状態から前記維持状態への遷移に伴って前記負圧弁が閉弁された時点における相対位置から、前記基礎液圧が減少した場合に前記ピストン部及び前記バルブ部が相対移動する方向に前記バルブ移動量だけ、前記バルブ本体に対して移動可能であり、
     前記大気圧弁の弁座は、前記可動部の前記大気圧弁の弁体側に設けられ、
     前記減少状態から遷移した前記維持状態で、前記ピストン部及び前記バルブ部が前記マスタピストンの移動により相対移動したとしても、当該維持状態への遷移に伴って前記負圧弁が閉弁した時点における相対位置を基点とする、前記基礎液圧が減少した場合に相対移動する方向への移動量が、所定のバルブ移動量以下であれば、前記可動部が、前記付勢部材に付勢されて、前記大気圧弁の前記弁体が前記弁座に着座するように構成されている車両用ブレーキ装置。
    In claim 5,
    The valve portion includes a valve main body connected to the brake operation member, a movable portion provided movably with respect to the valve main body, and an urging force for urging the movable portion toward the valve body side of the atmospheric pressure valve. Members,
    Have
    When the basic hydraulic pressure is reduced from the relative position at the time when the negative pressure valve is closed in accordance with the transition from the reduced state to the maintained state, the movable part is relatively moved between the piston part and the valve part. It is movable with respect to the valve body by the valve movement amount in the moving direction,
    The valve seat of the atmospheric pressure valve is provided on the valve body side of the atmospheric pressure valve of the movable part,
    Even if the piston portion and the valve portion are moved relative to each other by the movement of the master piston in the maintenance state that has transitioned from the reduced state, the relative pressure at the time when the negative pressure valve is closed along with the transition to the maintenance state. If the amount of movement in the direction of relative movement when the basal fluid pressure is reduced based on the position is equal to or less than a predetermined valve movement amount, the movable part is urged by the urging member, A vehicular brake device configured such that the valve body of the atmospheric pressure valve is seated on the valve seat.
  7.  請求項1において、
     前記ブースタ装置は、前記ブースタ室に前記ブレーキ操作部材の操作に応じた液圧を発生させる液圧ブースタであり、
     前記弁装置は、スプールがスリーブ内を摺動し、前記スプールの前記スリーブに対する相対移動により、前記流体圧経路としての前記流体圧源から前記ブースタ室に流体圧を供給する流体圧供給経路と、前記ブースタ室から流体圧を排出する流体圧排出経路とを開閉し、前記操作量が維持されている維持状態で、前記制御弁及び前記ポンプの少なくともいずれか一方の制御により、前記スプールが前記スリーブに対して相対移動したとしても、当該維持状態に遷移した時点における前記スプールの前記スリーブに対する相対位置を基点とする、前記スプールの前記スリーブに対する相対移動量が、前記弁作動量としてのスプール移動量以下であれば、前記流体圧供給経路が閉止されるように構成されている車両用ブレーキ装置。
    In claim 1,
    The booster device is a hydraulic booster that generates hydraulic pressure according to the operation of the brake operation member in the booster chamber,
    The valve device includes a fluid pressure supply path for supplying a fluid pressure from the fluid pressure source as the fluid pressure path to the booster chamber by a relative movement of the spool with respect to the sleeve when the spool slides inside the sleeve. The spool is controlled by at least one of the control valve and the pump in a maintenance state where the operation amount is maintained while opening and closing a fluid pressure discharge path for discharging the fluid pressure from the booster chamber. The relative movement amount of the spool relative to the sleeve at the time of transition to the maintenance state is the spool movement amount as the valve operation amount. If it is below, the brake device for vehicles comprised so that the above-mentioned fluid pressure supply course may be closed.
  8.  請求項1において、
     前記ブースタ装置は、ブースタシェル内を負圧源に接続された負圧室と前記ブースタ室としての変圧室とに区画し前記マスタピストンの移動に連動するピストン部と、前記ブレーキ操作部材の操作に連動するバルブ部とを有し、前記ピストン部の前記バルブ部に対する相対位置に応じた気圧を前記変圧室に発生させる負圧ブースタであり、
     前記弁装置は、前記変圧室と前記流体圧源としての外部空間との間の前記流体圧経路を開閉する大気圧弁と、前記変圧室と前記負圧室との遮通を開閉する負圧弁とを有し、
     前記大気圧弁の弁座は、前記バルブ部に設けられ、
     前記負圧弁の弁座は前記ピストン部に設けられ、
     前記操作量が維持されている維持状態で、前記制御弁及び前記ポンプの少なくとも一方の制御により、前記ピストン部が前記バルブ部に対して相対移動したとしても、当該維持状態に維持した時点における前記ピストン部の前記バルブ部に対する相対位置を基点とする、前記ピストン部の前記バルブ部に対する相対移動量が、前記弁作動量としてのバルブ移動量以下であれば、前記大気圧弁が閉弁されているように構成されている車両用ブレーキ装置。
    In claim 1,
    The booster device divides the inside of the booster shell into a negative pressure chamber connected to a negative pressure source and a variable pressure chamber as the booster chamber, and operates the brake operation member with a piston portion interlocked with the movement of the master piston. A negative pressure booster that generates an atmospheric pressure in the variable pressure chamber according to a relative position of the piston portion with respect to the valve portion.
    The valve device includes an atmospheric pressure valve that opens and closes the fluid pressure path between the variable pressure chamber and an external space serving as the fluid pressure source, and a negative pressure valve that opens and closes the passage between the variable pressure chamber and the negative pressure chamber. Have
    The valve seat of the atmospheric pressure valve is provided in the valve portion,
    The valve seat of the negative pressure valve is provided in the piston part,
    Even if the piston part moves relative to the valve part by the control of at least one of the control valve and the pump in the maintenance state in which the operation amount is maintained, the point in time when the piston part is maintained in the maintenance state. If the relative movement amount of the piston portion relative to the valve portion with respect to the valve portion relative to the valve portion is equal to or less than the valve movement amount as the valve operation amount, the atmospheric pressure valve is closed. A brake device for a vehicle configured as described above.
  9.  請求項3、4、7のいずれか1項において、
     前記スリーブには、前記流体圧供給経路としての増圧ポートと、前記流体圧排出経路としての減圧ポートとが形成され、
     前記増圧ポートと前記減圧ポートとの前記スプールの摺動方向の距離は、前記スプール移動量に基づいて設定されている車両用ブレーキ装置。
    In any one of Claims 3, 4, and 7,
    The sleeve is formed with a pressure increasing port as the fluid pressure supply path and a pressure reducing port as the fluid pressure discharge path,
    The distance between the pressure increasing port and the pressure reducing port in the sliding direction of the spool is set based on the spool movement amount.
  10.  請求項5または8において、
     前記バルブ部は、前記ブレーキ操作部材に接続されているバルブ本体と、前記バルブ本体に対して移動可能に設けられた可動部と、前記可動部を前記大気圧弁側に付勢する付勢部材とを有し、
     前記バルブ本体は、前記可動部側に突出した本体突出部を有し、
     前記可動部は、前記バルブ本体側に突出した可動突出部を有し、当該可動突出部が前記本体突出部に押圧されて前記バルブ本体とともに移動し、
     前記本体突出部と前記可動突出部との前記可動部の前記バルブ本体に対する移動方向の距離は、前記バルブ移動量に基づいて設定されている車両用ブレーキ装置。
    In claim 5 or 8,
    The valve portion includes a valve body connected to the brake operation member, a movable portion provided to be movable with respect to the valve body, and a biasing member that biases the movable portion toward the atmospheric pressure valve. Have
    The valve main body has a main body protruding portion protruding toward the movable portion side,
    The movable part has a movable protrusion that protrudes toward the valve body, and the movable protrusion is pressed by the body protrusion and moves together with the valve body.
    The vehicular brake device in which the distance between the main body protrusion and the movable protrusion in the moving direction of the movable portion with respect to the valve main body is set based on the valve movement amount.
  11.  請求項1から10のいずれか1項において、
     前記所定の弁作動量は、前記回生制動力発生装置によって発生される回生制動力の最大値に基づいて設定されている車両用ブレーキ装置。
    In any one of Claims 1 to 10,
    The vehicle brake device, wherein the predetermined valve actuation amount is set based on a maximum value of the regenerative braking force generated by the regenerative braking force generator.
  12.  請求項1から11のいずれか1項において、
     前記基礎液圧の圧力-体積特性を決定する前記マスタ液圧室を含む基礎液圧発生容器の剛性が、前記ブースタ室の流体圧の圧力-体積特性を決定する前記ブースタ室を含む流体圧発生容器の剛性よりも低く設定されて構成される車両用ブレーキ装置。
    In any one of Claims 1-11,
    Fluid pressure generation including the booster chamber in which the rigidity of the basic fluid pressure generating container including the master hydraulic pressure chamber that determines the pressure-volume characteristic of the basic hydraulic pressure determines the pressure-volume characteristic of the fluid pressure of the booster chamber. A vehicle brake device configured to be set lower than the rigidity of the container.
  13.  請求項1から12のいずれか1項において、
     前記ブレーキ操作部材に接続され前記ブレーキ操作部材の前記操作量に応じて移動する押圧部と、当該押圧部に押圧されて前記マスタピストンを押圧する弾性体と、を備え、
     前記押圧部の前記弾性体を押圧する端面の面積と前記弾性体の前記マスタピストンを押圧する端面の面積との面積比がマスタシリンダ圧の変化に対する前記弁装置の作動量の変化が抑制されるように設定されている車両用ブレーキ装置。
    In any one of Claims 1-12,
    A pressing portion that is connected to the brake operation member and moves according to the operation amount of the brake operation member; and an elastic body that is pressed by the pressing portion and presses the master piston.
    The area ratio between the area of the end surface of the pressing portion that presses the elastic body and the area of the end surface of the elastic body that presses the master piston suppresses changes in the operation amount of the valve device with respect to changes in the master cylinder pressure. The vehicle brake device is set as follows.
  14.  請求項1から13のいずれか1項において、
     前記ブレーキ操作部材に接続され前記ブレーキ操作部材の操作量に応じて移動する押圧部と、当該押圧部に押圧されて前記マスタピストンを押圧する弾性体とを備え、
     弾性体の硬度が、マスタシリンダ圧の変化に対する前記弁装置の作動量の変化が抑制されるように設定されている車両用ブレーキ装置。
    In any one of Claims 1-13,
    A pressing portion that is connected to the brake operation member and moves according to an operation amount of the brake operation member; and an elastic body that is pressed by the pressing portion to press the master piston.
    A vehicular brake device in which the hardness of the elastic body is set such that a change in the operation amount of the valve device with respect to a change in the master cylinder pressure is suppressed.
PCT/JP2013/077394 2012-10-09 2013-10-08 Vehicle brake device WO2014057952A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012224369 2012-10-09
JP2012-224369 2012-10-09
JP2013-164337 2013-08-07
JP2013164337A JP5978504B2 (en) 2012-10-09 2013-08-07 Brake device for vehicle

Publications (1)

Publication Number Publication Date
WO2014057952A1 true WO2014057952A1 (en) 2014-04-17

Family

ID=50477420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077394 WO2014057952A1 (en) 2012-10-09 2013-10-08 Vehicle brake device

Country Status (2)

Country Link
JP (1) JP5978504B2 (en)
WO (1) WO2014057952A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107804176A (en) * 2017-10-31 2018-03-16 凯迈(洛阳)机电有限公司 A kind of control system and its control method based on new energy vehicle auxiliary braking

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001063540A (en) * 1999-09-01 2001-03-13 Denso Corp Vehicle braking device and method thereof
JP2010202188A (en) * 2010-03-30 2010-09-16 Advics Co Ltd Vehicular brake device
JP2012001195A (en) * 2010-06-21 2012-01-05 Advics Co Ltd Vehicular brake device
JP2012066692A (en) * 2010-09-24 2012-04-05 Toyota Motor Corp Master cylinder device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001063540A (en) * 1999-09-01 2001-03-13 Denso Corp Vehicle braking device and method thereof
JP2010202188A (en) * 2010-03-30 2010-09-16 Advics Co Ltd Vehicular brake device
JP2012001195A (en) * 2010-06-21 2012-01-05 Advics Co Ltd Vehicular brake device
JP2012066692A (en) * 2010-09-24 2012-04-05 Toyota Motor Corp Master cylinder device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107804176A (en) * 2017-10-31 2018-03-16 凯迈(洛阳)机电有限公司 A kind of control system and its control method based on new energy vehicle auxiliary braking
CN107804176B (en) * 2017-10-31 2019-11-26 凯迈(洛阳)机电有限公司 A kind of control system and its control method based on new energy vehicle auxiliary braking

Also Published As

Publication number Publication date
JP5978504B2 (en) 2016-08-24
JP2014094738A (en) 2014-05-22

Similar Documents

Publication Publication Date Title
JP6341580B2 (en) Brake control device, brake system, and brake fluid pressure generation method
JP4333000B2 (en) Brake system for vehicles
US9428168B2 (en) Brake device
US9056601B2 (en) Brake apparatus
US9896074B2 (en) Booster and brake apparatus using the same
JP5516819B2 (en) Master cylinder device and hydraulic brake system using the same
JP5560851B2 (en) Brake device for vehicle
JP5471726B2 (en) Brake device for vehicle
JP5884757B2 (en) Braking device for vehicle
US9358891B2 (en) Vehicle brake system
WO2011145673A1 (en) Brake device
JP5780364B2 (en) Brake device for vehicle
JP5625530B2 (en) Brake device for vehicle
JP5566873B2 (en) Brake device for vehicle
JP5978504B2 (en) Brake device for vehicle
JP2015136993A (en) Vehicle brake device
CN108883749B (en) Vehicle brake device
CN108137012B (en) Brake device for vehicle
JP6544639B2 (en) Brake device and brake system
JP5565333B2 (en) Master cylinder device
JP5521937B2 (en) Braking device for vehicle
JP2018138459A (en) Brake control device, brake system, and brake fluid pressure generation method
JP2016064832A (en) Brake device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13844657

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13844657

Country of ref document: EP

Kind code of ref document: A1