WO2014057749A1 - Electrode binder composite - Google Patents

Electrode binder composite Download PDF

Info

Publication number
WO2014057749A1
WO2014057749A1 PCT/JP2013/073858 JP2013073858W WO2014057749A1 WO 2014057749 A1 WO2014057749 A1 WO 2014057749A1 JP 2013073858 W JP2013073858 W JP 2013073858W WO 2014057749 A1 WO2014057749 A1 WO 2014057749A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
electrode
mass
binder composition
repeating unit
Prior art date
Application number
PCT/JP2013/073858
Other languages
French (fr)
Japanese (ja)
Inventor
修 小瀬
博紀 北口
智隆 篠田
一郎 梶原
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2014540782A priority Critical patent/JP6269966B2/en
Publication of WO2014057749A1 publication Critical patent/WO2014057749A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electrode binder composition.
  • the electrode active material layer is also referred to as “electrode active material layer” or simply “active material layer” in the present specification. It has been empirically found that the quality of the electrode active materials is substantially proportional to the ability to bond the electrode active materials to each other, the ability to bond the electrode active material layer to the current collector, and the powder-off resistance.
  • the term “adhesiveness” may be used in a comprehensive manner.
  • silicon can reversibly occlude and release lithium by forming an intermetallic compound with lithium.
  • the theoretical capacity of silicon is about 4,200 mAh / g at the maximum, which is extremely large compared with the theoretical capacity of about 370 mAh / g of a carbon material that has been conventionally used. Therefore, the capacity of the electricity storage device should be greatly improved by using the silicon material as the negative electrode active material.
  • the polyimide after applying a slurry for an electrode containing polyamic acid to the current collector surface to form a coating film, the polyimide is heated by heating the coating film at a high temperature to thermally imidize the polyamic acid. It is described as generating.
  • binder materials using these polyimides have insufficient adhesion, and the electrodes deteriorate due to repeated charge and discharge, so that there is a problem that sufficient durability cannot be exhibited.
  • the present invention has been made to overcome the above-described current situation.
  • the objective of this invention is providing the binder composition for electrodes which provides the electrical storage device with a large charge / discharge capacity
  • the above objects and advantages of the present invention are: At least (A) polymer particles, (B) at least one polymer selected from the group consisting of a polyamic acid and a partially imidized polymer thereof, and (C) a liquid medium, and a binder composition for an electrode of an electricity storage device, Achieved.
  • FIG. 1 is a DSC chart of the polymer particles synthesized in Synthesis Example A2-1.
  • Electrode binder composition The binder composition for an electrode of the present embodiment is a binder composition used for producing an electrode used for an electricity storage device, and includes at least (A) polymer particles, (B) polyamic acid and a partial imide thereof.
  • the content ratio of the polymer (B) in the binder composition for an electrode of the present invention is as follows: (A) the content of the polymer particles is Ma (parts by mass), In this case, the ratio of Ma / Mb is preferably 1 to 50, and preferably 5 to 30. Further, the content ratio of the polymer (B) with respect to the total amount of the binder composition for an electrode of the present invention is preferably 5,000 to 100,000 ppmw, more preferably 10,000 to 50,000 ppmw, In particular, it is preferably 15,000 to 30,000 ppmw. Said "ppmw" is a unit showing 1 / 1,000,000 of mass standards.
  • the electricity storage device using the binder Since the binder swollen with the electrolytic solution does not hinder the movement of the charge transfer material, the electricity storage device using the binder has a large electricity storage capacity. Furthermore, by setting the content ratio of (B) polymer within the above range, in the electrode of the electricity storage device, (A) flexibility due to the contribution of polymer particles and (B) mechanical strength due to the contribution of polymer Will be expressed in a well-balanced manner. Therefore, since such an electrode can follow the volume change of the active material accompanying charging / discharging while maintaining the adhesiveness as a binder, it exhibits excellent charging / discharging characteristics.
  • the ratio of the liquid medium used is the solid content concentration of the electrode binder composition (the ratio of the total mass of components other than the liquid medium (C) in the electrode binder composition to the total mass of the electrode binder composition).
  • the same shall apply hereinafter) is preferably in a proportion of 5 to 80% by mass, more preferably in a proportion of 20 to 70% by mass.
  • each component contained in the binder composition for electrodes of the present embodiment will be described in detail.
  • the (A) polymer particle in the binder composition for electrodes of the present invention is a component that becomes a binder in the active material layer.
  • the average particle diameter of the polymer particles is preferably in the range of 50 to 400 nm, more preferably in the range of 100 to 250 nm.
  • the polymer particles can follow and move with the movement of the electrode active material.
  • This average particle size is determined by measuring the particle size distribution using a particle size distribution measuring apparatus based on the dynamic light scattering method, and the cumulative frequency of the number of particles when the particles are accumulated in ascending order of particle size is 50%. It is a value of a particle diameter (D50).
  • a particle size distribution measuring apparatus examples include HORIBA LB-550, SZ-100 series (manufactured by Horiba, Ltd.), FPAR-1000 (manufactured by Otsuka Electronics Co., Ltd.), and the like. These particle size distribution measuring devices are not intended to evaluate only the primary particles of the polymer particles, but can also evaluate the secondary particles formed by aggregation of the primary particles.
  • the particle size distribution measured by these particle size distribution measuring devices can be used as an index of the dispersion state of the (A) polymer particles contained in the electrode binder composition.
  • the average particle diameter of the polymer particles is determined by centrifuging the electrode slurry prepared by using the electrode binder composition of the present invention to precipitate the electrode active material, and then using the supernatant liquid for the above particle size. It can also be measured by a method of measuring with a distribution measuring device.
  • this polymer particle A1 When this polymer particle A1 is measured by a differential scanning calorimeter (DSC), it preferably has only one endothermic peak in the temperature range of ⁇ 40 to + 25 ° C.
  • the temperature of this endothermic peak is more preferably in the range of ⁇ 30 to + 20 ° C., and further preferably in the range of ⁇ 25 to + 10 ° C.
  • the polymer particle A1 in DSC analysis has only one endothermic peak and the peak temperature is in the above range, the polymer exhibits good adhesion and has a moderate flexibility in the thick material layer. This is preferable because it can be given.
  • the above endothermic peak is considered to be the glass transition temperature Tg of the polymer particle A1.
  • the polymer particle A1 is a repeating unit derived from an unsaturated carboxylic acid ester, a repeating unit derived from an ⁇ , ⁇ -unsaturated nitrile compound, a repeating unit derived from an unsaturated carboxylic acid, and a repeat derived from another monomer. You may further have 1 or more types of repeating units selected from the group which consists of a unit. Since the polymer particle A1 in the present invention is a component that becomes a binder in the active material layer, in addition to the binding property and the affinity for the conductivity-imparting agent, the swelling property to the electrolytic solution is important. Moreover, it is preferable that the electrode slurry prepared by using the electrode binder composition of the present invention is stable over time.
  • the polymer particle A1 contains, in addition to the repeating unit derived from the conjugated diene compound and the repeating unit derived from the aromatic vinyl compound, the repeating unit derived from the ⁇ , ⁇ -unsaturated nitrile compound and the unsaturated unit. It is preferable to further have at least one repeating unit selected from the group consisting of repeating units derived from carboxylic acid, and more preferable to have both of these.
  • the conjugated diene compound is a monomer having a function of improving the binding property of the binder component.
  • the content ratio of the repeating unit derived from the conjugated diene compound in the polymer particle A1 is preferably 30 to 60 parts by mass, and preferably 35 to 55 parts by mass when all the repeating units are 100 parts by mass. More preferred.
  • the content ratio of the repeating unit derived from the conjugated diene compound is in the above range, the binding property of the polymer particle A1 can be further increased.
  • the conjugated diene compound include 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene and the like. , One or more selected from these can be used.
  • 1,3-butadiene is particularly preferable.
  • the aromatic vinyl compound has a function of improving the affinity of the binder component for the conductivity-imparting agent when the electrode slurry prepared using the electrode binder composition of the present invention contains a conductivity-imparting agent. It is a monomer.
  • the content ratio of the repeating unit derived from the aromatic vinyl compound in the polymer particle A1 is preferably 10 to 40 parts by mass, and 15 to 35 parts by mass when the total repeating units are 100 parts by mass. Is more preferable.
  • the polymer particle A1 has an appropriate binding property to the current collector and the electrode active material (particularly graphite). In addition, it is preferable in that the flexibility of the active material layer is not impaired.
  • the aromatic vinyl compound examples include styrene, ⁇ -methylstyrene, p-methylstyrene, chlorostyrene, and the like, and one or more selected from these can be used.
  • Styrene is preferably used as the aromatic vinyl compound.
  • the unsaturated carboxylic acid ester is a monomer having a function of adjusting the affinity of the binder component for the electrolytic solution.
  • the content ratio of the repeating unit derived from the unsaturated carboxylic acid ester in the polymer particle A1 is preferably 5 to 30 parts by mass, and preferably 6 to 20 parts by mass when all the repeating units are 100 parts by mass. It is more preferable.
  • the affinity of the binder component to the electrolyte solution becomes appropriate, and as a result, the binder component becomes an electrical resistance component in the electrode. It is possible to prevent an increase in the internal resistance of the electrode and to prevent a decrease in binding property due to excessive absorption of the electrolytic solution.
  • unsaturated carboxylic acid esters that can be used include alkyl esters of unsaturated carboxylic acids, hydroxyalkyl esters of unsaturated carboxylic acids, and the like.
  • alkyl esters of unsaturated carboxylic acids such as methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, ( N-butyl (meth) acrylate, i-butyl (meth) acrylate, n-amyl (meth) acrylate, i-amyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) acrylate, ( 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, etc .;
  • Examples of the hydroxyalkyl ester of the unsaturated carboxylic acid may include, for example, hydroxymethyl (meth) acrylate, hydroxyeth)
  • One or more can be used.
  • 1 selected from the group consisting of methyl (meth) acrylate, ethyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, hydroxymethyl (meth) acrylate and hydroxyethyl (meth) acrylate
  • the ⁇ , ⁇ -unsaturated nitrile compound is a monomer having a function of improving the swellability of the binder component to the electrolytic solution.
  • the content ratio of the repeating unit derived from the ⁇ , ⁇ -unsaturated nitrile compound in the polymer particle A1 is preferably 35 parts by mass or less when the total repeating unit is 100 parts by mass, and 5 to 25 parts by mass. It is more preferable that When the content ratio of the repeating unit derived from the ⁇ , ⁇ -unsaturated nitrile compound is in the above range, it has excellent affinity with the electrolyte used, and the swelling rate does not become too large, contributing to the improvement of battery characteristics. Will be.
  • Examples of the ⁇ , ⁇ -unsaturated nitrile compound include acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, ⁇ -ethylacrylonitrile, vinylidene cyanide, and one or more selected from these are used. can do.
  • As the ⁇ , ⁇ -unsaturated nitrile compound it is preferable to use one or more selected from the group consisting of acrylonitrile and methacrylonitrile, and it is more preferable to use acrylonitrile.
  • the unsaturated carboxylic acid is a monomer having a function of improving the stability of the electrode slurry prepared by using the electrode binder composition of the present invention.
  • the content ratio of the repeating unit derived from the unsaturated carboxylic acid in the polymer particle A1 is preferably 15 parts by mass or less, and 0.3 to 10 parts by mass when the total repeating unit is 100 parts by mass. It is more preferable.
  • the content ratio of the repeating unit derived from the unsaturated carboxylic acid is in the above range, the dispersion stability of the polymer particles A1 at the time of preparing the slurry for the electrode is excellent, and it is difficult for the aggregate to be generated. The increase in viscosity of the slurry over time can be suppressed.
  • the unsaturated carboxylic acid examples include (meth) acrylic acid, crotonic acid, maleic acid, fumaric acid, itaconic acid, and the like, and one or more selected from these can be used.
  • the unsaturated carboxylic acid it is particularly preferable to use one or more selected from the group consisting of acrylic acid, methacrylic acid and itaconic acid.
  • the other monomers are monomers that do not belong to the above categories.
  • the content ratio of the repeating units derived from the other monomers in the polymer particle A1 is preferably 1 part by mass or less and 0.1 parts by mass or less when the total repeating unit is 100 parts by mass. It is more preferable.
  • monomers include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, hexa Crosslinkable monomers such as (meth) acrylic acid dipentaerythritol, divinylbenzene; A fluorine-containing monomer having an ethylenically unsaturated bond, such as vinylidene fluoride, tetrafluoroethylene, and hexafluoropropylene; (Meth) acrylamide; N-methylol acrylamide; Carboxylic acid vinyl esters such as vinyl acetate and vinyl propionate; An acid anhydride of an ethylenically unsaturated dicarboxylic acid; Examples thereof include aminoalkylamides of ethylenically unsaturated carboxylic acids such as aminoethylacrylamide, dimethyl
  • the polymer particle A1 is preferably a particle composed only of a polymer having a repeating unit as described above. 1.1.2 Synthesis of polymer particle A1
  • the method for synthesizing the polymer particles A1 in the present invention is not particularly limited, but can be synthesized by, for example, a known emulsion polymerization method. Emulsion polymerization is preferably carried out in a suitable aqueous medium, particularly preferably in water.
  • a predetermined monomer mixture is preferably present at 40 to 80 ° C., preferably 4 to 12 in the presence of an emulsifier, a polymerization initiator, a molecular weight regulator, and the like. This can be done by emulsion polymerization over time. You may change reaction temperature in the middle of superposition
  • the total solid content concentration in the emulsion polymerization (the ratio of the total mass of components other than the aqueous medium in the polymerization system to the total mass of the polymerization system) is 50% by mass or less, whereby the dispersion stability of the polymer particles obtained is reduced.
  • the total solid content concentration is more preferably 45% by mass or less, and still more preferably 40% by mass or less.
  • the use ratio of the emulsifier in the emulsion polymerization for the synthesis of the polymer particles A1 is preferably 0.1 to 2.0 parts by mass with respect to 100 parts by mass in total of the monomers used. More preferably, it is set to ⁇ 1.0 part by mass.
  • the emulsifier examples include sulfate esters of higher alcohols, alkylbenzene sulfonates, alkyl diphenyl ether disulfonates, aliphatic sulfonates, aliphatic carboxylates, dehydroabietic acid salts, naphthalene sulfonic acid / formalin condensates, Anionic surfactants such as sulfate salts of ionic surfactants; Nonionic surfactants such as alkyl esters of polyethylene glycol, alkyl phenyl ethers of polyethylene glycol, alkyl ethers of polyethylene glycol; Fluorosurfactants such as perfluorobutyl sulfonate, perfluoroalkyl group-containing phosphate ester, perfluoroalkyl group-containing carboxylate, and perfluoroalkylethylene oxide adducts can be mentioned, and selected from these More than one kind can be used.
  • the use ratio of the polymerization initiator is preferably 0.5 to 2 parts by mass with respect to 100 parts by mass in total of the monomers used.
  • the polymerization initiator include water-soluble polymerization initiators such as lithium persulfate, potassium persulfate, sodium persulfate, and ammonium persulfate; Cumene hydroperoxide, benzoyl peroxide, t-butyl hydroperoxide, acetyl peroxide, diisopropylbenzene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, azobisisobutyronitrile, 1, Oil-soluble polymerization initiators such as 1′-azobis (cyclohexanecarbonitrile) can be appropriately selected and used.
  • potassium persulfate, sodium persulfate, cumene hydroperoxide or t-butyl hydroperoxide is particularly preferably used.
  • the proportion of the molecular weight regulator used is preferably 0.1 to 2.0 parts by mass with respect to 100 parts by mass in total of the monomers used.
  • the molecular weight modifier examples include alkyl mercaptans such as n-hexyl mercaptan, n-octyl mercaptan, t-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, and n-stearyl mercaptan; Xanthogen compounds such as dimethylxanthogen disulfide and diisopropylxanthogen disulfide; Thiuram compounds such as terpinolene, tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetramethylthiuram monosulfide; Phenolic compounds such as 2,6-di-tert-butyl-4-methylphenol and styrenated phenol; Allyl compounds such as allyl alcohol; Halogenated hydrocarbon compounds such as dichloromethane, dibromomethan
  • the pH is more preferably 6 to 9, and further preferably 7 to 8.5.
  • a neutralizing agent used here, For example, metal hydroxides, such as sodium hydroxide and potassium hydroxide; Ammonia etc. can be mentioned.
  • the polymer particle A2 in the binder composition for electrodes of the present invention is a particle containing a polymer having a repeating unit derived from a monomer having a fluorine atom.
  • the polymer particle A2 in the present invention may have only a repeating unit derived from a monomer having a fluorine atom, and other monomers in addition to the repeating unit derived from a monomer having a fluorine atom. It may have a repeating unit derived from.
  • the preferable content ratio of the repeating unit derived from the monomer having a fluorine atom in the polymer particle A2 in the present invention is preferably 3% by mass or more, more preferably 5%, based on the total mass of the polymer particle A2. It is ⁇ 50 mass%, more preferably 15 to 40 mass%, and particularly preferably 20 to 30 mass%.
  • the monomer having a fluorine atom include an olefin compound having a fluorine atom and a (meth) acrylic acid ester having a fluorine atom.
  • Examples of the olefin compound having a fluorine atom include vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, trifluorochloroethylene, and perfluoroalkyl vinyl ether.
  • Examples of the (meth) acrylic acid ester having a fluorine atom include a compound represented by the following general formula (1), (meth) acrylic acid 3 [4 [1-trifluoromethyl-2,2-bis [bis (tri Fluoromethyl) fluoromethyl] ethynyloxy] benzooxy] 2-hydroxypropyl and the like.
  • R 1 Is a hydrogen atom or a methyl group
  • R 2 Is a C1-C18 hydrocarbon group containing a fluorine atom.
  • R in the general formula (1) 2 examples thereof include a fluorinated alkyl group having 1 to 12 carbon atoms, a fluorinated aryl group having 6 to 16 carbon atoms, and a fluorinated aralkyl group having 7 to 18 carbon atoms.
  • An alkyl group is preferable.
  • R in the general formula (1) 2 Preferable specific examples of are, for example, 2,2,2-trifluoroethyl group, 2,2,3,3,3-pentafluoropropyl group, 1,1,1,3,3,3-hexafluoropropane- 2-yl group, ⁇ - (perfluorooctyl) ethyl group, 2,2,3,3-tetrafluoropropyl group, 2,2,3,4,4,4-hexafluorobutyl group, 1H, 1H, 5H -Octafluoropentyl group, 1H, 1H, 9H-perfluoro-1-nonyl group, 1H, 1H, 11H-perfluoroundecyl group, perfluorooctyl group and the like can be mentioned.
  • the monomer having a fluorine atom is preferably an olefin compound having a fluorine atom, particularly preferably at least one selected from the group consisting of vinylidene fluoride, tetrafluoroethylene and hexafluoropropylene. .
  • the monomer having a fluorine atom may be used alone or in combination of two or more.
  • Examples of the other monomers include unsaturated carboxylic acid esters, hydrophilic monomers (excluding those corresponding to unsaturated carboxylic acid esters; the same applies hereinafter), crosslinkable monomers, ⁇ -olefins, Aromatic vinyl compounds (excluding those corresponding to the above-mentioned hydrophilic monomers and crosslinkable monomers; the same shall apply hereinafter) and the like, and one or more selected from these may be used. can do. It is preferable that the polymer particle A2 has a structural unit derived from the unsaturated carboxylic acid ester among the above, because adhesion can be further improved.
  • the preferred content ratios of the repeating units derived from other monomers in the polymer particle A2 in the present invention are as follows based on the total mass of the polymer particle A2.
  • Examples of the unsaturated carboxylic acid ester include an unsaturated carboxylic acid alkyl ester, an unsaturated carboxylic acid cycloalkyl ester, an unsaturated carboxylic acid hydroxyalkyl ester, and an unsaturated carboxylic acid polyhydric alcohol ester. it can.
  • Examples of the alkyl ester of the unsaturated carboxylic acid include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, and (meth) acrylic acid n.
  • Examples of the hydrophilic monomer include unsaturated carboxylic acids, ⁇ , ⁇ -unsaturated nitrile compounds, and compounds having a hydroxyl group.
  • Examples of the unsaturated carboxylic acid include (meth) acrylic acid, crotonic acid, maleic acid, fumaric acid, itaconic acid and the like;
  • Examples of the ⁇ , ⁇ -unsaturated nitrile compound include acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, ⁇ -ethylacrylonitrile, vinylidene cyanide and the like;
  • Examples of the compound having a hydroxyl group include p-hydroxystyrene, and one or more selected from these compounds can be used.
  • crosslinkable monomer examples include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, hexa (meth) ) Dipentaerythritol acrylate, etc .;
  • ⁇ -olefin examples include ethylene and propylene;
  • aromatic vinyl compound examples include styrene, ⁇ -methylstyrene, p-methylstyrene, chlorostyrene, and the like, and any one or more selected from these can be used. .
  • the polymer particle A2 in the present invention is a monomer other than the above-described monomer having a fluorine atom, unsaturated carboxylic acid ester, hydrophilic monomer, crosslinkable monomer, ⁇ -olefin and aromatic vinyl compound. It is preferable not to contain a repeating unit derived from a monomer.
  • polymer particles having a repeating unit derived from a monomer having a fluorine atom as described above may be used as they are, or It may be a polymer alloy particle containing a polymer (A2a) having a repeating unit derived from a monomer having a fluorine atom and a polymer (a2b) having a repeating unit derived from an unsaturated carboxylic acid ester.
  • A2a polymer having a repeating unit derived from a monomer having a fluorine atom
  • a2b polymer having a repeating unit derived from an unsaturated carboxylic acid ester.
  • Polymer alloy is a “generic name for multi-component polymers obtained by mixing or chemical bonding of two or more components” according to the definition in “Iwanami Physical and Chemical Dictionary 5th edition. Iwanami Shoten”. “Polymer blends physically mixed with different polymers, block and graft copolymers in which different polymer components are covalently bonded, polymer complexes in which different polymers are associated by intermolecular forces, and different polymers entangled with each other IPN (Interpenetrating Polymer Network, etc.).
  • the polymer alloy particles contained in the binder composition of the present invention are preferably particles made of IPN among “polymer alloys in which different types of polymer components are not bonded by covalent bonds”.
  • the temperature of this endothermic peak is more preferably in the range of ⁇ 30 to + 30 ° C.
  • the polymer (A2a) constituting the polymer alloy particles When the polymer (A2a) constituting the polymer alloy particles is present alone, it generally has an endothermic peak (melting temperature) at -50 to 250 ° C.
  • the polymer (A2b) constituting the polymer alloy particles generally has an endothermic peak (glass transition temperature) different from that of the polymer (A2a). For this reason, when the polymer (A2a) and the polymer (A2b) in the particles are present in phase separation as in, for example, a core-shell structure, two endothermic peaks should be observed at ⁇ 50 to 250 ° C.
  • the polymer alloy particle as the polymer particle A2 in the present invention contains a polymer (A2a) having a repeating unit derived from a monomer having a fluorine atom.
  • the content ratio of the repeating unit derived from the monomer having a fluorine atom is preferably 80% by mass or more, more preferably 90% by mass with respect to the total mass of the polymer A. That's it.
  • the monomer having a fluorine atom preferably contains at least one selected from the group consisting of vinylidene fluoride, ethylene tetrafluoride and propylene hexafluoride. It is preferable that all are at least one selected from vinylidene fluoride, tetrafluoroethylene and hexafluoropropylene.
  • the polymer alloy particle as the polymer particle A2 in the present invention has a repeating unit derived from another copolymerizable unsaturated monomer other than the monomer having a fluorine atom.
  • the other unsaturated compound is preferably the unsaturated carboxylic acid ester described above, and in addition, a hydrophilic monomer, a crosslinkable monomer, an ⁇ -olefin, an aromatic vinyl compound, etc. are used in combination. can do.
  • components such as the polymer (A2b) have good adhesion, but are considered to have poor ionic conductivity and oxidation resistance and have not been used for positive electrodes.
  • the present invention by using such a polymer (A2b) as a polymer alloy particle together with the polymer (A2a), sufficient ionic conductivity and oxidation resistance are expressed while maintaining good adhesion. Has been successful.
  • the content ratio of the repeating unit derived from each monomer in the polymer (A2b) is as follows. The following are values when the mass of the polymer (A2b) is 100% by mass.
  • Repeating unit derived from unsaturated carboxylic acid ester preferably 50% by mass or more, more preferably 60 to 95% by mass; Repeating unit derived from a hydrophilic monomer: preferably 50% by mass or less, more preferably 5 to 40% by mass; Repeating unit derived from a crosslinkable monomer: preferably 10% by mass or less, more preferably 5% by mass or less, further preferably 3% by mass or less, particularly preferably not containing this; Repeating units derived from ⁇ -olefins: preferably 10% by weight or less, more preferably 5% by weight or less, further preferably 3% by weight or less, particularly preferably not containing this; and A repeating unit derived from an aromatic vinyl compound: preferably 10% by mass or less, more preferably 5% by mass or less, further preferably 3% by mass or less, and particularly preferably not contain it.
  • the polymer (A2b) does not contain a repeating unit derived from a monomer other than the unsaturated carboxylic acid ester, hydrophilic monomer, crosslinkable monomer, ⁇ -olefin and aromatic vinyl compound exemplified above. It is preferable.
  • 1.1.2.4 Synthesis of polymer alloy particles The polymer alloy particle as the polymer particle A2 in the present invention is not particularly limited as long as it has the above-described configuration. For example, a known emulsion polymerization step or a combination thereof is appropriately combined. It can be easily synthesized.
  • a polymer (A2a) having a repeating unit derived from a monomer having a fluorine atom is synthesized by a known method, and then A monomer for constituting the polymer (A2b) was added to the polymer (A2a), and the monomer was sufficiently absorbed in the stitch structure of the polymer particles made of the polymer (A2a).
  • a polymer alloy can be easily synthesized by a method of synthesizing the polymer (A2b) by polymerizing the absorbed monomer in the stitch structure of the polymer (A2a).
  • the absorption temperature is preferably 30 to 100 ° C., more preferably 40 to 80 ° C .;
  • the absorption time is preferably 1 to 12 hours, more preferably 2 to 8 hours.
  • the content of the polymer (A2a) in the polymer alloy particles is preferably 3 to 60% by mass, more preferably 5 to 55% by mass, and more preferably 10 to 50% by mass in 100% by mass of the polymer alloy particles. %, More preferably 20 to 40% by mass.
  • the polymer alloy contains the polymer (A2a) in the above range, the balance between the ionic conductivity and the oxidation resistance and the adhesion becomes better.
  • the polymer alloy contains the polymer (A2a) in the above range, It becomes possible to set the content ratio of each repeating unit in the entire polymer alloy within the above-mentioned preferable range, and this ensures that the charge / discharge characteristics of the electricity storage device are good.
  • Synthesis of polymer particle A2 Synthesis of polymer particles A2 in the present invention, that is, The polymerization when a polymer having a repeating unit derived from a monomer having a fluorine atom is synthesized by one-step polymerization; Polymerization of polymer (A2a), and Polymerization of polymer (A2b) in the presence of polymer (A2a) Can be carried out in the presence of a known emulsifier (surfactant), a polymerization initiator, a molecular weight modifier, and the like. This emulsion polymerization is preferably carried out in a suitable aqueous medium, particularly preferably in water.
  • a suitable aqueous medium particularly preferably in water.
  • the amount is preferably 0.01 to 10 parts by mass, more preferably 0.02 to 5 parts by mass with respect to parts.
  • the use ratio of the polymerization initiator is preferably 0.3 to 3 parts by mass with respect to 100 parts by mass in total of the monomers used.
  • the use ratio of the molecular weight regulator is preferably 5 parts by mass or less with respect to 100 parts by mass in total of the monomers used.
  • the polymer (B) in the electrode binder composition of the present invention is at least one polymer selected from the group consisting of polyamic acid and partially imidized polymers thereof.
  • the binder composition for electrodes contains the polymer (B)
  • the binding property between the active material layer produced using the binder composition for electrodes of the present invention and the current collector is (A). This is better than when only polymer particles are used. Therefore, even if the volume change of the active material due to charging / discharging occurs, the active material layer is held on the electrode without peeling from the current collector, and the capacity reduction due to repeated charging / discharging is effectively suppressed. be able to.
  • the imidation ratio is preferably 75% or less, more preferably 50% or less, and particularly preferably 30% or less. Is preferred. Since the partially imidized polymer having an imidization ratio in the above range has high solubility in water and an organic solvent, it is easy to synthesize the imidized polymer and prepare a binder composition for an electrode, and the binder composition. It is possible to improve the stability of the slurry for the electrode adjusted by using this, which is preferable.
  • Said imidation rate represents the ratio which the number of the imide ring structure occupies with respect to the sum total of the number of amic acid structures and the number of imide ring structures in an imidation polymer in percentage.
  • the imidization rate of polyamic acid is 1 It can be determined using 1 H-NMR.
  • (B) Synthesis of polymer A polyamic acid can be obtained by reacting a tetracarboxylic dianhydride and a diamine.
  • the partial imide polymer of polyamic acid can be obtained by dehydrating and ring-closing a part of the amic acid structure of the polyamic acid to imidize it.
  • Examples of the tetracarboxylic dianhydride used to synthesize the polymer (B) in the present invention include an aliphatic tetracarboxylic dianhydride, an alicyclic tetracarboxylic dianhydride, and an aromatic tetracarboxylic dianhydride.
  • An anhydride etc. can be mentioned.
  • the tetracarboxylic dianhydride preferably includes an aromatic tetracarboxylic dianhydride.
  • the tetracarboxylic dianhydride in the present invention consists only of an aromatic tetracarboxylic dianhydride, or From the viewpoint of stability of the binder composition for an electrode of the present invention, it is preferably composed of only a mixture of an aromatic tetracarboxylic dianhydride and an alicyclic tetracarboxylic dianhydride. In the latter case, the use ratio of the alicyclic tetracarboxylic dianhydride is preferably 30 mol% or less, more preferably 20 mol% or less, based on the total tetracarboxylic dianhydride.
  • alicyclic tetracarboxylic dianhydride include 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic acid dianhydride, 1,3,3a, 4, 5,9b-Hexahydro-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2-c] furan-1,3-dione, 1,3,3a, 4,5,9b- Hexahydro-8-methyl-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2-c] furan-1,3-dione, 3-ox
  • diamine used for synthesizing the polymer (B) in the present invention include aliphatic diamines such as 1,1-metaxylylenediamine, 1,3-propanediamine, tetramethylenediamine, and pentamethylene.
  • the ratio of the tetracarboxylic dianhydride and the diamine used in the polymer synthesis reaction is such that the acid anhydride group of the tetracarboxylic dianhydride is 0.
  • a ratio of 9 to 1.2 equivalents is preferable, and a ratio of 1.0 to 1.1 equivalents is more preferable.
  • the reaction of tetracarboxylic dianhydride and diamine for synthesizing polyamic acid is preferably in an organic solvent, preferably at ⁇ 20 to 150 ° C., more preferably at 0 to 100 ° C., preferably 0.1 to 24 hours, more preferably 0.5 to 12 hours.
  • an aprotic polar solvent for example, an aprotic polar solvent, a phenol and a derivative thereof, an alcohol, a ketone, an ester, an ether, a hydrocarbon, or the like, which can be generally used for a polyamic acid synthesis reaction, can be used.
  • the organic solvent is particularly preferably selected from the group consisting of N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, ⁇ -butyrolactone, tetramethylurea and hexamethylphosphortriamide. Is to use one or more.
  • the dehydration ring closure reaction of polyamic acid for synthesizing a partially imidized polymer is preferably performed by adding a dehydrating agent and a dehydration ring closure catalyst in a method of heating polyamic acid or in a solution in which polyamic acid is dissolved in an organic solvent. It is performed by the method of heating.
  • the reaction temperature in the method of heating the polyamic acid is preferably 180 to 250 ° C, more preferably 180 to 220 ° C. When the reaction temperature is less than 180 ° C., the dehydration ring-closing reaction does not proceed sufficiently, and when the reaction temperature exceeds 250 ° C., the molecular weight of the imidized polymer obtained may decrease.
  • the reaction time in the method of heating the polyamic acid is preferably 0.5 to 20 hours, more preferably 2 to 10 hours.
  • the dehydrating agent may be used in an amount of 0.01 to 1.0 mol per mol of the polyamic acid amic acid structure.
  • the use ratio of the dehydration ring-closing catalyst is preferably 0.01 to 10 mol with respect to 1 mol of the dehydrating agent used.
  • the reaction temperature of the dehydration ring closure reaction is preferably 0 to 180 ° C, more preferably 10 to 150 ° C.
  • the reaction time is preferably 1 to 10 hours, more preferably 2 to 5 hours.
  • Examples of the dehydration ring closure catalyst include tertiary amines such as pyridine, collidine, lutidine, and triethylamine;
  • Examples of the dehydrating agent include acid anhydrides such as acetic anhydride, propionic anhydride, and trifluoroacetic anhydride.
  • Examples of the organic solvent used in the dehydration ring-closing reaction include the organic solvents exemplified as those used for the synthesis of polyamic acid. As described above, a solution containing the polymer (B) is obtained.
  • the binder composition for electrodes of the present invention contains (C) a liquid medium.
  • the (C) liquid medium in the electrode binder composition of the present invention can be an aqueous medium or a non-aqueous medium.
  • the aqueous medium contains water.
  • the aqueous medium can contain a small amount of a water-soluble non-aqueous medium in addition to water.
  • the content ratio of the water-soluble non-aqueous medium in the aqueous medium is preferably 10% by mass or less, more preferably 5% by mass or less, based on the entire aqueous medium.
  • the non-aqueous medium contains only a non-aqueous medium without containing water.
  • non-aqueous medium examples include amide compounds, hydrocarbons, alcohols, ketones, esters, amine compounds, lactones, sulfoxides, sulfone compounds, and the like, and one or more selected from these can be used. Can do.
  • non-aqueous medium examples include aliphatic hydrocarbons such as n-octane, isooctane, nonane, decane, decalin, pinene, and chlorododecane; Cycloaliphatic hydrocarbons such as cyclopentane, cyclohexane, cycloheptane, methylcyclopentane; Aromatic hydrocarbons such as chlorobenzene, chlorotoluene, ethylbenzene, diisopropylbenzene, cumene; Alcohols such as methanol, ethanol, propanol, isopropanol, butanol, benzyl alcohol, glycerin; Ketones such as acetone, methyl ethyl ketone, cyclopentanone, isophorone; Ethers such as methyl ethyl ether, diethyl ether, tetrahydrofuran, dioxane
  • the electrode binder composition of the present invention is a solution in which at least (A) polymer particles and (B) polymer as described above are dissolved in (C) liquid medium, or these are (C) liquid medium It is preferably a slurry or latex dispersed in, and particularly preferably a latex.
  • the electrode binder composition is in a latex form, the stability of the electrode slurry prepared by mixing it with an electrode active material and the like is improved, and the application property of the electrode slurry to the current collector is also good. This is preferable.
  • the polymer particles can be obtained as a latex dispersed in water according to the above preferred synthesis method.
  • C When an aqueous medium is used as the liquid medium, (A) the latex of the polymer particles can be directly used for the preparation of the binder composition for electrodes.
  • the binder composition for an electrode of the present invention comprises (A) the polymer particles, (B) the polymer, and (C) the liquid catalyst, and (A) the polymerization catalyst used for the synthesis of the polymer particles or the residue thereof. Even if it contains residual monomers, emulsifiers, surfactants, pH adjusters, etc., the effects of the present invention are not diminished. However, from the viewpoint of maintaining the battery characteristics of the obtained electricity storage device at a sufficiently high level, it is preferable that the content ratio of the components derived from the production of the polymer particles (A) is as small as possible.
  • (C) a non-aqueous medium is used as the liquid medium
  • (A) the polymer particles are in a solid state isolated from latex, a solution state in which the polymer particles are dissolved in the non-aqueous medium, or dispersed in the non-aqueous medium. It can use for preparation of the binder composition for electrodes in the state of the prepared dispersion liquid. Isolation of the (A) polymer particles from the latex can be performed by a known method.
  • the polymer (B) is obtained as a solution dissolved in an organic solvent.
  • the polymer is isolated from the solution, and preferably dissolved or dispersed in an aqueous medium, preferably water, to prepare a binder composition for an electrode. It is preferable to provide. Isolation of the polymer (B) from the solution can be performed by a known method.
  • the liquidity of the aqueous medium to be used is preferably adjusted to the alkaline side.
  • the pH of the aqueous medium used here is preferably 7.0 to 9.5, and more preferably 7.5 to 9.0.
  • ammonia water is preferably used for adjusting the liquidity of the aqueous medium.
  • a known method such as the method described in JP2011-144374A can be used.
  • the polymer solution (B) obtained by the above preferred synthesis method can be directly used for the preparation of the electrode binder composition.
  • the most preferred method for preparing the binder composition for an electrode of the present invention is by mixing (A) a latex of polymer particles and (B) an aqueous solution of the polymer.
  • the concentration of the polymer particles (A) in the latex is preferably 15 to 70% by mass, more preferably 20 to 60% by mass;
  • the concentration of the polymer (B) in the aqueous solution is preferably 1 to 20% by mass, and more preferably 1 to 10% by mass.
  • the electrode binder composition of the present invention preferably has a neutral or slightly basic liquidity, more preferably has a pH of 7.0 to 9.5, and particularly preferably has a pH of 7.5 to 9.0. It is preferable.
  • a known acid or base can be used to adjust the liquidity of the composition.
  • the binder composition for electrodes of the present invention may contain the above acid or base within a range necessary for adjusting the liquidity.
  • Slurry for electrode The electrode slurry of the present invention as described above can be used to produce an electrode slurry.
  • the electrode slurry refers to a dispersion used for forming an electrode active material layer on the surface of a current collector.
  • the electrode slurry in the present invention contains at least the electrode binder composition of the present invention and an electrode active material (hereinafter also simply referred to as “active material”).
  • Electrode active material The shape of the active material in the electrode slurry produced using the electrode binder composition of the present invention is preferably granular.
  • the average particle diameter (average median particle diameter, D50 value) of the particles is preferably 0.1 to 100 ⁇ m, and more preferably 1 to 20 ⁇ m.
  • the proportion of the active material used is preferably such that the amount of the (A) polymer particles in the binder composition for an electrode is 0.1 to 25 parts by mass with respect to 100 parts by mass of the active material. It is more preferable that the ratio be ⁇ 15 parts by mass.
  • Examples of the active material in the electrode slurry produced using the electrode binder composition of the present invention include carbon materials, oxides containing lithium atoms, compounds containing silicon atoms, lead compounds, tin compounds, arsenic compounds, and antimony.
  • a compound, an aluminum compound, a polyacene organic semiconductor (PAS), etc. can be mentioned.
  • Examples of the carbon material include amorphous carbon, graphite, natural graphite, mesocarbon microbeads (MCMB), pitch-based carbon fibers, and the like.
  • Examples of the oxide containing lithium atoms include lithium cobaltate, lithium nickelate, lithium manganate, ternary nickel cobalt lithium manganate, LiFePO 4 , LiCoPO 4 , LiMnPO 4 , Li 0.90 Ti 0.05 Nb 0.05 Fe 0.30 Co 0.30 Mn 0.30 PO 4 And so on.
  • Examples of the compound containing a silicon atom include a silicon simple substance, a silicon oxide, a silicon alloy, and the like, and a silicon material described in JP-A No. 2004-185810 can be used.
  • As the silicon oxide the composition formula SiO x A silicon oxide represented by (0 ⁇ x ⁇ 2, preferably 0.1 ⁇ x ⁇ 1) is preferable.
  • the silicon alloy is preferably an alloy of silicon and at least one transition metal selected from the group consisting of titanium, zirconium, nickel, copper, iron and molybdenum. These transition metal silicides are preferably used because they have high electronic conductivity and high strength. In addition, since the active material contains these transition metals, the transition metal present on the surface of the active material is oxidized to an oxide having a hydroxyl group on the surface, so that the binding force with the binder component becomes better. However, it is preferable.
  • the silicon content in the silicon alloy is preferably 10 mol% or more, more preferably 20 to 70 mol%, based on all the metal elements in the alloy.
  • the silicon alloy it is more preferable to use a silicon-nickel alloy or a silicon-titanium alloy, and it is particularly preferable to use a silicon-titanium alloy.
  • the compound containing a silicon atom may be single crystal, polycrystalline, or amorphous.
  • Oxide in the above is a concept that means a compound or salt composed of oxygen and an element having an electronegativity smaller than that of oxygen. In addition to metal oxide, metal phosphate, nitrate, halogen It is a concept including oxo acid salts, sulfonic acid salts and the like.
  • the active material contained in the electrode slurry may be an oxide containing lithium atoms. preferable.
  • the binder composition for an electrode of the present invention is used to produce an electricity storage device, particularly a negative electrode of a lithium ion secondary battery
  • the active material contained in the electrode slurry contains a compound containing a silicon atom. Preferably there is. Since silicon atoms have a large occlusion capacity for lithium, the active material containing a compound containing silicon atoms can increase the storage capacity of the resulting storage device, and as a result, increase the output and energy density of the storage device. can do.
  • the proportion of the compound containing silicon atoms in the active material is preferably 1% by mass or more, more preferably 1 to 50% by mass, still more preferably 5 to 45% by mass, particularly 10%. It is preferable to be ⁇ 40% by mass.
  • the active material for the negative electrode is preferably composed of a mixture of a compound containing a silicon atom and a carbon material. Since the carbon material has a small volume change due to charge / discharge, the influence of the volume change of the compound containing silicon atoms can be mitigated by using a mixture of the compound containing silicon atoms and the carbon material as the negative electrode active material. And the adhesion between the active material layer and the current collector can be further improved.
  • the negative electrode active material is particularly preferably composed of a mixture of a compound containing a silicon atom and graphite.
  • the active material contained in the electrode slurry is, for example, a carbon material, an aluminum compound, a silicon oxide, or the like. Is preferred.
  • examples of the active material contained in the electrode slurry include carbon materials and polyacene organic semiconductors (PAS). It is preferable to use it.
  • PAS polyacene organic semiconductors
  • Examples of such other components include a conductivity-imparting agent, a thickener, and a liquid medium (however, excluding a part brought in from the electrode binder composition).
  • the ratio of the conductivity-imparting agent in the electrode slurry is preferably 20 parts by mass or less, more preferably 1 to 15 parts by mass, and particularly 2 to 10 parts by mass with respect to 100 parts by mass of the active material. preferable.
  • Specific examples of the conductivity-imparting agent include carbon in a lithium ion secondary battery. Examples of carbon include activated carbon, acetylene black, ketjen black, furnace black, graphite, carbon fiber, and fullerene. Among these, acetylene black or furnace black can be preferably used.
  • the thickener include, for example, cellulose derivatives such as carboxymethylcellulose, methylcellulose, ethylcellulose, hydroxymethylcellulose, hydroxypropylmethylcellulose, and hydroxyethylmethylcellulose; An ammonium salt or an alkali metal salt of the cellulose derivative; Polycarboxylic acids such as poly (meth) acrylic acid, modified poly (meth) acrylic acid; An alkali metal salt of the polycarboxylic acid; Polyvinyl alcohol (co) polymers such as polyvinyl alcohol, modified polyvinyl alcohol, and ethylene-vinyl alcohol copolymer; Examples thereof include water-soluble polymers such as saponified products of copolymers of unsaturated carboxylic acids such as (meth) acrylic acid, maleic acid and fumaric acid and vinyl esters.
  • cellulose derivatives such as carboxymethylcellulose, methylcellulose, ethylcellulose, hydroxymethylcellulose, hydroxypropylmethylcellulose, and hydroxyethylmethylcellulose
  • the slurry for electrodes contains the binder composition for electrodes, it will contain the (C) liquid medium which the binder composition for electrodes contained.
  • the electrode slurry may additionally contain a further liquid medium in addition to the liquid medium brought in from the electrode binder composition.
  • the use ratio of the liquid medium (including the amount brought in from the electrode binder composition) in the electrode slurry is the solid content concentration of the electrode slurry (the total mass of components other than the liquid medium in the electrode slurry is the electrode slurry). Is the ratio of 30 to 70% by mass, and more preferably 40 to 60% by mass.
  • the liquid medium additionally contained in the electrode slurry may be the same as or different from the liquid medium (C) contained in the electrode binder composition.
  • the liquid medium is preferably selected from the liquid media described above.
  • the electrode slurry may be prepared by any method as long as it contains the above-described components. However, from the viewpoint of preparing an electrode slurry having better dispersibility and stability more efficiently and inexpensively, an active material and optional additional components used as necessary are added to the electrode binder composition. In addition, it can be prepared by mixing them. In order to mix the binder composition for electrodes and other components, it can carry out by stirring by a well-known method. The preparation of the electrode slurry (mixing operation of each component) is preferably performed at least part of the process under reduced pressure. Thereby, it can prevent that a bubble arises in the active material layer obtained.
  • the absolute pressure is 5.0 ⁇ 10 4 ⁇ 5.0 ⁇ 10 5 It is preferable to be about Pa.
  • mixing and stirring for preparing the electrode slurry it is necessary to select a mixer that can stir to such an extent that no agglomerates of active material particles remain in the slurry and sufficient dispersion conditions as necessary.
  • the degree of dispersion can be measured by a particle gauge, but it is preferable to mix and disperse so that aggregates larger than at least 100 ⁇ m are eliminated.
  • Examples of the mixer that meets such conditions include a ball mill, a bead mill, a sand mill, a defoamer, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a planetary mixer, and a Hobart mixer. it can. 3.
  • Method for manufacturing electrode for power storage device The electrode for an electricity storage device is formed by coating the slurry for an electrode produced using the binder composition for an electrode of the present invention on the surface of an appropriate current collector such as a metal foil, and then forming the coating film It can manufacture by removing a liquid medium from.
  • the electrode produced in this manner is formed by binding an active material layer containing the above-described polymer and active material, and optional additional components used as necessary, on a current collector. .
  • the electrode having the layer formed from the above-described electrode slurry on the surface of the current collector has excellent binding properties between the current collector and the active material layer, and is one of the electrical characteristics of charge / discharge rate characteristics Is good.
  • the current collector is not particularly limited as long as it is made of a conductive material. In a lithium ion secondary battery, a current collector made of metal such as iron, copper, aluminum, nickel, and stainless steel is used. In particular, when aluminum is used for the positive electrode and copper is used for the negative electrode, it is used for the positive electrode of the present invention.
  • the current collector in the nickel metal hydride secondary battery a punching metal, an expanded metal, a wire mesh, a foam metal, a mesh metal fiber sintered body, a metal plated resin plate, or the like is used.
  • the shape and thickness of the current collector are not particularly limited, but are preferably in the form of a sheet having a thickness of about 0.001 to 0.5 mm. There is no restriction
  • the coating can be performed by an appropriate method such as a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a dipping method, or a brush coating method.
  • the coating amount of the electrode slurry is not particularly limited, but the thickness of the active material layer formed after removing the liquid medium is preferably 0.005 to 5 mm, and preferably 0.01 to 2 mm. It is more preferable to use the amount.
  • the method for removing the liquid medium from the coated film after coating is not particularly limited, and may be, for example, drying with hot air, hot air, low-humidity air; vacuum drying; (far) drying by irradiation with infrared rays, electron beams, or the like.
  • the drying speed is appropriately set so that the liquid medium can be removed as quickly as possible within a speed range in which the active material layer does not crack due to stress concentration or the active material layer does not peel from the current collector. be able to. Furthermore, it is preferable to increase the density of the active material layer by pressing the current collector after removal of the liquid medium.
  • the density of the active material layer after pressing is 1.5 to 3.8 g / cm when the electrode is used as a positive electrode. 3 Preferably, 1.7 to 3.6 g / cm 3 And more preferably; When the electrode is used as the negative electrode, 1.2 to 1.9 g / cm 3 Preferably, 1.3 to 1.8 g / cm 3 More preferably.
  • Examples of the pressing method include a mold press and a roll press.
  • the press conditions should be set appropriately depending on the type of press equipment used and the desired density of the active material layer. This condition can be easily set by a few preliminary experiments by those skilled in the art.
  • the linear pressure of the roll press machine is 0.1 to 10 t / cm, preferably 0.5 to 5 t.
  • the coating film feed speed (roll rotation speed) after removal of the dispersion medium is 1 to 80 m / min, preferably 5 to 50 m / min. it can. It is preferable that the pressed coating film is further heated under reduced pressure to completely remove the liquid medium.
  • a negative electrode and an electrode are overlapped via a separator, and this is wound or folded according to the shape of the battery, and stored in a battery container, and an electrolytic solution is injected into the battery container.
  • the shape of the battery can be an appropriate shape such as a coin shape, a cylindrical shape, a square shape, or a laminate shape.
  • the electrolyte solution may be liquid or gel, and the one that effectively expresses the function as a battery is selected from the known electrolyte solutions used for the electricity storage device depending on the type of the negative electrode active material and the electrode active material. That's fine.
  • the electrolytic solution can be a solution in which an electrolyte is dissolved in a suitable solvent.
  • any conventionally known lithium salt can be used, and specific examples thereof include, for example, LiClO. 4 , LiBF 4 , LiPF 6 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiB 10 Cl 10 LiAlCl 4 , LiCl, LiBr, LiB (C 2 H 5 ) 4 , LiCF 3 SO 3 , LiCH 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N, lower fatty acid lithium carboxylate and the like can be exemplified.
  • LiClO. 4 LiBF 4 , LiPF 6 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiB 10 Cl 10 LiAlCl 4 , LiCl, LiBr, LiB (C 2 H 5 ) 4 , LiCF 3 SO 3 , LiCH 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N, lower fatty acid
  • the solvent for dissolving the electrolyte is not particularly limited, and specific examples thereof include carbonate compounds such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate; Lactone compounds such as ⁇ -butyl lactone; Ether compounds such as trimethoxymethane, 1,2-dimethoxyethane, diethyl ether, 2-ethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran; Examples thereof include sulfoxide compounds such as dimethyl sulfoxide, and one or more selected from these can be used.
  • the concentration of the electrolyte in the electrolytic solution is preferably 0.5 to 3.0 mol / L, more preferably 0.7 to 2.0 mol / L.
  • a polymerization reaction was performed. Thereafter, the temperature was further raised to 80 ° C., and this temperature was maintained for 3 hours to continue the polymerization reaction, thereby obtaining a latex. After adding ammonium water with a concentration of 15% by mass to this latex and adjusting the pH to 7.5, 50 parts by mass of a sodium tripolyphosphate aqueous solution with a concentration of 10% by mass (corresponding to 5 parts by mass in terms of sodium tripolyphosphate) added. Subsequently, the residual monomer was removed by steam distillation and concentrated under reduced pressure to obtain an aqueous dispersion containing 50% by mass of polymer particles P1-1.
  • a mixed gas composed of 70% by mass of vinylidene fluoride (VF) and 30% by mass of propylene hexafluoride (HFP) as monomers was charged until the internal pressure reached 20 kg / cm 2 .
  • 25 g of Freon 113 (CClF 2 -CCl 2 F) solution containing 20% by mass of diisopropyl peroxydicarbonate as a polymerization initiator was injected using nitrogen gas to initiate polymerization.
  • a mixed gas composed of 65% by mass of VF and 35% by mass of HFP was sequentially injected so that the internal pressure was maintained at 20 kg / cm 2 .
  • MAA methacrylic acid
  • ether sulfate type emulsifier (trade name “Adekaria soap SR1025”, manufactured by ADEKA Co., Ltd.) as an emulsifier, 0.8 parts by mass in terms of solid content and 2 as a monomer , 2,2-trifluoroethyl methacrylate (TFEMA) 20 parts by mass, acrylonitrile (AN) 10 parts by mass, methyl methacrylate (MMA) 25 parts by mass, 2-ethylhexyl acrylate (EHA) 40 parts by mass and acrylic acid (AA) 5
  • TFEMA 2,2-trifluoroethyl methacrylate
  • AN acrylonitrile
  • MMA methyl methacrylate
  • EHA 2-ethylhexyl acrylate
  • acrylic acid (AA) 5 A monomer emulsion containing a mixture of the above monomers was prepared by adding parts by mass and stirring sufficiently.
  • the temperature inside the separable flask was started, and when the internal temperature reached 60 ° C., 0.5 parts by mass of ammonium persulfate was added as a polymerization initiator. Then, when the temperature inside the separable flask reaches 70 ° C., the addition of the monomer emulsion prepared above is started, and the temperature inside the separable flask is maintained at 70 ° C. The emulsion was added slowly over 3 hours. Thereafter, the temperature inside the separable flask was raised to 85 ° C., and this temperature was maintained for 3 hours to carry out the polymerization reaction.
  • VF Vinylidene fluoride
  • HFP Propylene hexafluoride
  • TFEMA 2,2,2-trifluoroethyl methacrylate
  • MMA Methyl methacrylate
  • EHA 2-ethylhexyl acrylate
  • MAA Methacrylic acid
  • AA Acrylic acid
  • Acrylonitrile Table 2 The amount of the monomer having a fluorine atom is an analytical value for Synthesis Examples A2-1 and A2-2, and a charged amount for A2-3.
  • Example 1 (1) Preparation of aqueous solution of (B) polymer (polyamic acid) 100 g of the solution containing polyamic acid B1 obtained in Synthesis Example B-1 was dropped into about 1 L of water to be solidified.
  • binder composition 190 g (95 g in terms of polymer particles) of the aqueous dispersion containing the polymer particles P1-1 obtained in Synthesis Example A1-1 and 50 g of the polyamic acid aqueous solution obtained above (
  • a binder composition was obtained by mixing 5 g) in terms of polyamic acid.
  • the solid content concentration of this binder composition was 41.7% by mass, and the pH measured using a pH meter (product name “D-51S” manufactured by Horiba, Ltd.) was 7.6.
  • Adhesion test of binder composition The binder composition prepared above was applied on a 10 cm square copper plate and a glass plate, respectively, so that the film thickness after solvent removal was about 90 ⁇ m, and at 60 ° C.
  • the number of remaining squares is 80 or more, it can be determined that the adhesion is good, If this number is 90 or more, it can be determined that the adhesion is excellent (very good).
  • the number of remaining cells is most preferably 100 out of 100 grids.
  • CMC carboxymethyl cellulose
  • MAC-500LC carboxymethyl cellulose
  • the density of the active material layer in this electrode for an electricity storage device was 1.62 g / cm 3 .
  • (6) Manufacture of electricity storage device In the glove box purged with argon so that the dew point is ⁇ 80 ° C. or less, the electrode manufactured in “(5) Production of electrode for electricity storage device” was punched and molded to a diameter of 15.5 mm. The product was placed on a bipolar coin cell (trade name “HS Flat Cell” manufactured by Hosen Co., Ltd.) with the active material layer facing upward.
  • Capacity maintenance rate (%) B / A ⁇ 100 (1)
  • Capacity maintenance rate (%) B / A ⁇ 100 (1)
  • Table 4 If the capacity retention rate after 100 cycles is 90% or more and less than 95%, it can be determined that the charge / discharge cycle characteristics are excellent, and if it is 95% or more, the charge / discharge cycle characteristics are extremely excellent. Can be determined.
  • the time when the current value reached 0.05 C was defined as the completion of charging (cut-off).
  • This electricity storage device was disassembled in a dry room (room temperature 25 ° C.) having a dew point of ⁇ 60 ° C. or less, and an electrode for electricity storage device (negative electrode) was taken out. Subsequently, this electrode was immersed in dimethyl carbonate for 1 minute and washed in a dry room. After taking out the electrode from dimethyl carbonate, the dimethyl carbonate was vaporized and removed by standing in a dry room for 30 minutes. The ratio of the active material layer thickness of the electrode after charging to the active material layer thickness of the electrode immediately after production (uncharged state) measured in advance was measured.
  • Film thickness ratio after charging was calculated by the following mathematical formula (2).
  • Film thickness ratio after charge (%) (film thickness after charge) / (film thickness immediately after manufacture) ⁇ 100 (2)
  • Table 4 The evaluation results are shown in Table 4. When this value exceeds 130%, the active material layer indicates that the volume expansion of the active material accompanying charging is not relaxed, and there is a concern that the active material may peel off when mechanical stress is applied to the active material. is there. On the other hand, if this value is 130% or less, it indicates that the active material is firmly held in the active material layer despite the volume expansion of the active material with charging, and the active material is peeled off. It can be evaluated that the electrode is a good electrode with suppressed.
  • Example 12 (1) (A) Preparation of NMP dispersion of polymer particles To 200 g of an aqueous dispersion containing polymer particles P1-3 obtained in Synthesis Example A1-3 (100 g in terms of polymer particles), 210 g of NMP was added. After the addition, an NMP dispersion containing 50% by mass of polymer particles P1-3 was obtained by concentrating using an evaporator until the total mass became 200 g.
  • the electrode binder composition of the present invention can produce an electrode having excellent adhesion and charge / discharge characteristics. Since the electrode manufactured using the binder composition for an electrode of the present invention is excellent in mechanical strength, it is excellent in electrode characteristics even when an electrode active material exhibiting a significant volume change during charge / discharge is used. Is.

Abstract

An objective of the present invention is to provide an electrode binder composite whereby an accumulator device is given wherein charge-discharge capacitance is large, and deterioration in capacitance owing to repeated charge-discharge cycles is small. The present invention is an accumulator device electrode binder composite, including at least (A) polymer particles, (B) at least one type of polymer selected from a group comprising polyamic acid and a partially imidized polymer thereof, and (C) a liquid medium.

Description

電極用バインダー組成物Electrode binder composition
 本発明は、電極用バインダー組成物に関する。 The present invention relates to an electrode binder composition.
 近年、電気自動車、電子機器などの駆動用電源として、高電圧であり、高エネルギー密度を有する蓄電デバイスが要求されている。この用途の蓄電デバイスとしては、リチウムイオン二次電池、リチウムイオンキャパシタなどが期待されている。
 このような蓄電デバイスに使用される電極は、通常、電極活物質と、バインダーとして機能する重合体粒子と、の混合物を集電体表面へ塗布・乾燥することにより製造される。この重合体粒子に要求される特性として、例えば以下の諸特性を挙げることができる。
・電極活物質同士の結合能力および電極活物質と集電体との結着能力、
・電極を巻き取る工程における耐擦性、
・電極用組成物層形成後の裁断などによっても該組成物層の微粉などが発生しない粉落ち耐性、など。
 重合体粒子がこれらの種々の要求特性を満足することにより、得られる電極の折り畳み方法、捲回半径の設定などの蓄電デバイスの構造設計の自由度が高くなり、デバイスの小型化を達成することができる。上記電極用活物質層は、本明細書において、以下、「電極活物質層」あるいは単に「活物質層」ともいう。
 上記の電極活物質同士の結合能力および電極活物質層と集電体との接着能力、ならびに粉落ち耐性については、性能の良否がほぼ比例関係にあることが経験上明らかになっている。従って本明細書では、以下、これらを包括して「密着性」という用語を用いて表す場合がある。
 近年、このような蓄電デバイスの高出力化および高エネルギー密度化の要求を達成するために、リチウム吸蔵力の大きい材料を適用する検討が進められている。例えばケイ素は、リチウムとともに金属間化合物を形成することにより、リチウムを可逆的に吸蔵・放出することができる。このケイ素の理論容量は最大で約4,200mAh/gであり、従来用いられていた炭素材料の理論容量約370mAh/gと比較して極めて大きい。従って、ケイ素材料を負極活物質として用いることにより、蓄電デバイスの容量が大幅に向上するはずである。しかしながら、ケイ素材料は充放電に伴う体積変化が大きいことから、従来使用されている電極バインダー材料をケイ素材料に適用すると、初期密着性を維持することができずに充放電に伴って顕著な容量低下が発生する。
 このようなケイ素材料を活物質層に保持するための電極バインダー材料として、ポリイミドを適用する方法が提案されている(特開2007−95670号、特開2011−192563号および特開2011−204592号)。これらの技術は、ポリイミドの剛直な分子構造でケイ素材料を束縛することによって、ケイ素材料の体積変化をおさえ込もうという技術思想に基づく。これらの文献では、ポリアミック酸を含有する電極用スラリーを集電体表面へ塗布して塗膜を形成した後、該塗膜を高温で加熱してポリアミック酸を熱イミド化することにより、ポリイミドが生成すると説明されている。しかしながら、これらのポリイミドを用いたバインダー材料は密着性が不十分であり、充放電を繰り返すことにより電極が劣化するため、十分な耐久性を発揮できない問題点を有する。
In recent years, an electric storage device having a high voltage and a high energy density has been demanded as a driving power source for electric vehicles, electronic devices, and the like. As power storage devices for this application, lithium ion secondary batteries, lithium ion capacitors, and the like are expected.
The electrode used for such an electricity storage device is usually produced by applying and drying a mixture of an electrode active material and polymer particles functioning as a binder onto the surface of the current collector. Examples of the properties required for the polymer particles include the following properties.
・ Binding ability between electrode active materials and binding ability between electrode active material and current collector,
・ Abrasion resistance in the process of winding the electrode,
-Powder fall resistance, etc. in which fine powder or the like of the composition layer is not generated even by cutting after forming the electrode composition layer.
When the polymer particles satisfy these various required characteristics, the degree of freedom in designing the structure of the electricity storage device, such as the method of folding the obtained electrode and setting the winding radius, is increased, and the miniaturization of the device is achieved. Can do. Hereinafter, the electrode active material layer is also referred to as “electrode active material layer” or simply “active material layer” in the present specification.
It has been empirically found that the quality of the electrode active materials is substantially proportional to the ability to bond the electrode active materials to each other, the ability to bond the electrode active material layer to the current collector, and the powder-off resistance. Therefore, in the present specification, hereinafter, the term “adhesiveness” may be used in a comprehensive manner.
In recent years, in order to achieve the demand for higher output and higher energy density of such an electricity storage device, studies are being made to apply a material having a large lithium storage capacity. For example, silicon can reversibly occlude and release lithium by forming an intermetallic compound with lithium. The theoretical capacity of silicon is about 4,200 mAh / g at the maximum, which is extremely large compared with the theoretical capacity of about 370 mAh / g of a carbon material that has been conventionally used. Therefore, the capacity of the electricity storage device should be greatly improved by using the silicon material as the negative electrode active material. However, since the volume change due to charging / discharging is large in silicon materials, when the conventionally used electrode binder material is applied to silicon materials, the initial adhesion cannot be maintained, and a remarkable capacity is associated with charging / discharging. A decrease occurs.
As an electrode binder material for holding such a silicon material in the active material layer, a method of applying polyimide has been proposed (Japanese Patent Application Laid-Open Nos. 2007-95670, 2011-192563, and 2011-204592). ). These techniques are based on the technical idea of restraining the volume change of the silicon material by constraining the silicon material with the rigid molecular structure of polyimide. In these documents, after applying a slurry for an electrode containing polyamic acid to the current collector surface to form a coating film, the polyimide is heated by heating the coating film at a high temperature to thermally imidize the polyamic acid. It is described as generating. However, binder materials using these polyimides have insufficient adhesion, and the electrodes deteriorate due to repeated charge and discharge, so that there is a problem that sufficient durability cannot be exhibited.
 本発明は、上記のような現状を打開しようとしてなされたものである。本発明の目的は、充放電容量が大きく、充放電サイクルの繰り返しによる容量劣化の程度が少ない蓄電デバイスを与える、電極用バインダー組成物を提供することにある。
 本発明によれば、本発明の上記目的および利点は、
少なくとも
(A)重合体粒子、
(B)ポリアミック酸およびその部分イミド化重合体よりなる群から選択される少なくとも1種の重合体、ならびに
(C)液状媒体
を含有することを特徴とする、蓄電デバイスの電極用バインダー組成物によって達成される。
The present invention has been made to overcome the above-described current situation. The objective of this invention is providing the binder composition for electrodes which provides the electrical storage device with a large charge / discharge capacity | capacitance and few extents of capacity | capacitance deterioration by repetition of a charging / discharging cycle.
According to the present invention, the above objects and advantages of the present invention are:
At least (A) polymer particles,
(B) at least one polymer selected from the group consisting of a polyamic acid and a partially imidized polymer thereof, and (C) a liquid medium, and a binder composition for an electrode of an electricity storage device, Achieved.
 図1は、合成例A2−1で合成した重合体粒子のDSCチャートである。 FIG. 1 is a DSC chart of the polymer particles synthesized in Synthesis Example A2-1.
 以下、本発明の好適な実施形態について詳細に説明する。本発明は、下記に記載された実施形態のみに限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変型例も含むものとして理解されるべきである。
 本明細書における「(メタ)アクリル酸~」とは、「アクリル酸~」および「メタクリル酸~」の双方を包括する概念である。また、「~(メタ)アクリレート」とは、「~アクリレート」および「~メタクリレート」の双方を包括する概念である。
1.電極用バインダー組成物
 本実施の電極用バインダー組成物は、蓄電デバイスに使用される電極を製造するために使用されるバインダー組成物であって、少なくとも、(A)重合体粒子、(B)ポリアミック酸およびその部分イミド化重合体よりなる群から選択される少なくとも1種の重合体、ならびに(C)液状媒体を含有するものである。
 本発明の電極用バインダー組成物における(B)重合体の含有割合は、(A)重合体粒子の含有量をMa(質量部)、(B)重合体の含有量をMb(質量部)としたときに、Ma/Mbの値が、1~50となる割合とすることが好ましく、5~30となる割合とすることが好ましい。また、本発明の電極用バインダー組成物の全量に対する(B)重合体の含有割合として、5,000~100,000ppmwとすることが好ましく、10,000~50,000ppmwとすることがより好ましく、特に15,000~30,000ppmwとすることが好ましい。上記の「ppmw」は、質量基準の100万分の1を表す単位である。
 電極用バインダー組成物中の(B)重合体の含有割合を前記の範囲内とすることにより、得られる蓄電デバイスの蓄電容量が増大するとともに、充放電特性も向上する。
 すなわち、蓄電デバイスでは、一般に、活物質表面に付着したバインダー(重合体)は、電解液と活物質との間の電荷移動物質(例えば溶媒和したリチウムイオン)の移動を妨げるから、重合体の付着分だけ蓄電容量が減じることとなる。しかしながら、(B)重合体の含有割合を前記の範囲内とすることにより、バインダー作用を損なうことなくバインダーの電解液に対する膨潤性を向上することができる。電解液で膨潤したバインダーは電荷移動物質の移動を妨げないから、これを用いた蓄電デバイスは、大きな蓄電容量を有することとなるのである。
 さらに、(B)重合体の含有割合を前記の範囲内とすることにより、蓄電デバイスの電極において、(A)重合体粒子の寄与による柔軟性と(B)重合体の寄与による機械的強度とがバランスよく発現することとなる。従って、このような電極は、バインダーとしての密着性を維持したまま充放電に伴う活物質の体積変化に追随できるから、優れた充放電特性を発現するのである。
 (C)液状媒体の使用割合は、電極用バインダー組成物の固形分濃度(電極用バインダー組成物中の(C)液状媒体以外の成分の合計質量が電極用バインダー組成物の全質量に占める割合をいう。以下同じ。)が、5~80質量%となる割合とすることが好ましく、20~70質量%となる割合とすることがより好ましい。
 以下、本実施の電極用バインダー組成物に含有される各成分について、詳細に説明する。
1.1 (A)重合体粒子
 本発明の電極用バインダー組成物における(A)重合体粒子は、活物質層においてバインダーとなる成分である。
 (A)重合体粒子の平均粒子径は、50~400nmの範囲にあることが好ましく、100~250nmの範囲にあることがより好ましい。(A)重合体粒子の平均粒子径が前記範囲にあることにより、本発明の電極用バインダー組成物を用いて製造される電極において、電極活物質の表面への(A)重合体粒子の吸着が効果的になされ、電極活物質の移動に伴って(A)重合体粒子も追随して移動することができることとなる。その結果、電極活物質粒子および重合体粒子のうちのどちらかのみが単独でマイグレートすることを抑制することができるので、充放電に伴う電気的特性の劣化を抑制することができる。
 この平均粒子径は、動的光散乱法を測定原理とする粒度分布測定装置を用いて粒度分布を測定し、粒子を粒径の小さい順に累積したときの粒子数の累積度数が50%となる粒子径(D50)の値である。このような粒度分布測定装置としては、例えばHORIBA LB−550、SZ−100シリーズ(以上、(株)堀場製作所製)、FPAR−1000(大塚電子(株)製)などを挙げることができる。これらの粒度分布測定装置は、重合体粒子の一次粒子だけを評価対象とするものではなく、一次粒子が凝集して形成された二次粒子をも評価対象とすることができる。従って、これらの粒度分布測定装置によって測定された粒度分布は、電極用バインダー組成物中に含有される(A)重合体粒子の分散状態の指標とすることができる。(A)重合体粒子の平均粒子径は、本発明の電極用バインダー組成物を用いて調製された電極用スラリーを遠心分離して電極活物質を沈降させた後、その上澄み液を上記の粒度分布測定装置によって測定する方法によっても測定することができる。
 この(A)重合体粒子としては、例えば
共役ジエン化合物に由来する繰り返し単位と
芳香族ビニル化合物に由来する繰り返し単位と
を有する重合体を含有する粒子(以下、「重合体粒子A1」という。)、
フッ素原子を有する単量体に由来する繰り返し単位を有する重合体を含有する粒子(以下、「重合体粒子A2」という。)などを挙げることができ、これらのうちのいずれかを使用することが好ましい。
1.1.1 重合体粒子A1
 重合体粒子A1は、共役ジエン化合物に由来する繰り返し単位と、芳香族ビニル化合物に由来する繰り返し単位と、を有する重合体を含有する粒子である。
 この重合体粒子A1を示差走査熱量計(DSC)によって測定した場合、−40~+25℃の温度範囲において吸熱ピークを1つしか有さないものであることが好ましい。この吸熱ピークの温度は、−30~+20℃の範囲にあることがより好ましく、−25~+10℃の範囲にあることがさらに好ましい。DSC分析における重合体粒子A1の吸熱ピークが1つのみであり、且つ該ピーク温度が上記の範囲にあるとき、該重合体は良好な密着性を示すとともに、厚物質層に適度の柔軟性を付与することができることとなり、好ましい。上記の吸熱ピークは、重合体粒子A1のガラス転移温度Tgであると考えられる。
 重合体粒子A1は、不飽和カルボン酸エステルに由来する繰り返し単位、α,β−不飽和ニトリル化合物に由来する繰り返し単位、不飽和カルボン酸に由来する繰り返し単位およびその他の単量体に由来する繰り返し単位よりなる群から選択される1種以上の繰り返し単位をさらに有していてもよい。
 本発明における重合体粒子A1は、活物質層においてバインダーとなる成分であるから、結着性および導電付与剤に対する親和性のほかに、電解液に対する膨潤性が重要である。また、本発明の電極用バインダー組成物を用いて調製される電極用スラリーは、経時的に安定であることが好ましい。このような観点から、重合体粒子A1は、共役ジエン化合物に由来する繰り返し単位および芳香族ビニル化合物に由来する繰り返し単位のほかに、α,β−不飽和ニトリル化合物に由来する繰り返し単位および不飽和カルボン酸に由来する繰り返し単位よりなる群から選択される少なくとも1種の繰り返し単位をさらに有することが好ましく、これらの双方を有することがより好ましい。
 上記共役ジエン化合物は、バインダー成分の結着性を向上する機能を有する単量体である。重合体粒子A1における共役ジエン化合物に由来する繰り返し単位の含有割合は、全繰り返し単位を100質量部とした場合に、30~60質量部であることが好ましく、35~55質量部であることがより好ましい。共役ジエン化合物に由来する繰り返し単位の含有割合が前記範囲にあることにより、重合体粒子A1の結着性をさらに高くすることが可能となる。共役ジエン化合物としては、例えば1,3−ブタジエン、2−メチル−1,3−ブタジエン、2,3−ジメチル−1,3−ブタジエン、2−クロル−1,3−ブタジエンなどを挙げることができ、これらのうちから選択される1種以上を使用することができる。共役ジエン化合物としては、1,3−ブタジエンが特に好ましい。
 上記芳香族ビニル化合物は、本発明の電極用バインダー組成物を用いて調製された電極用スラリーが導電付与剤を含有する場合に、バインダー成分の該導電付与剤に対する親和性を向上する機能を有する単量体である。重合体粒子A1における芳香族ビニル化合物に由来する繰り返し単位の含有割合は、全繰り返し単位を100質量部とした場合に、10~40質量部であることが好ましく、15~35質量部であることがより好ましい。芳香族ビニル化合物に由来する繰り返し単位の含有割合が前記範囲にあることにより、重合体粒子A1が、集電体および電極活物質(特にグラファイト)に対して適度な結着性を有することとなるとともに、活物質層の柔軟性を損なうことがない点で好ましい。芳香族ビニル化合物としては、例えばスチレン、α−メチルスチレン、p−メチルスチレン、クロルスチレンなどを挙げることができ、これらのうちから選択される1種以上を使用することができる。芳香族ビニル化合物としては、スチレンを用いることが好ましい。
 上記不飽和カルボン酸エステルは、電解液に対するバインダー成分の親和性を調整する機能を有する単量体である。重合体粒子A1における不飽和カルボン酸エステルに由来する繰り返し単位の含有割合は、全繰り返し単位を100質量部とした場合に、5~30質量部であることが好ましく、6~20質量部であることがより好ましい。不飽和カルボン酸エステルに由来する繰り返し単位の含有割合が前記範囲にあることにより、電解液に対するバインダー成分の親和性が適度なものとなり、その結果、電極中でバインダー成分が電気抵抗成分となることによる電極内部抵抗の上昇を抑制するとともに、電解液を過大に吸収することによる結着性の低下を防ぐことができる。不飽和カルボン酸エステルとしては、例えば不飽和カルボン酸のアルキルエステル、不飽和カルボン酸のヒドロキシアルキルエステルなどを使用することができる。これらの具体例としては、不飽和カルボン酸のアルキルエステルとして、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸i−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸i−ブチル、(メタ)アクリル酸n−アミル、(メタ)アクリル酸i−アミル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸n−オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシルなどを;
上記不飽和カルボン酸のヒドロキシアルキルエステルとして、例えば(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸エチレングリコールなどを、それぞれ挙げることができ、これらのうちから選択される1種以上を使用することができる。これらのうち、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ヒドロキシメチルおよび(メタ)アクリル酸ヒドロキシエチルよりなる群から選択される1種以上を使用することが好ましく、(メタ)アクリル酸メチル、(メタ)アクリル酸ヒドロキシメチルおよび(メタ)アクリル酸ヒドロキシエチルよりなる群から選択される1種以上を使用することが特に好ましい。
 上記α,β−不飽和ニトリル化合物は、バインダー成分の電解液に対する膨潤性を向上する機能を有する単量体である。このことにより、バインダー中へのイオンの拡散性が向上することとなり、その結果、電極抵抗が低下してより良好な充放電特性を実現できる電極を与えるものと考えられる。重合体粒子A1におけるα,β−不飽和ニトリル化合物に由来する繰り返し単位の含有割合は、全繰り返し単位を100質量部とした場合に、35質量部以下であることが好ましく、5~25質量部であることがより好ましい。α,β−不飽和ニトリル化合物に由来する繰り返し単位の含有割合が前記範囲にあることにより、使用する電解液との親和性に優れ、かつ膨潤率が大きくなりすぎず、電池特性の向上に寄与することとなる。α,β−不飽和ニトリル化合物としては、例えばアクリロニトリル、メタクリロニトリル、α−クロルアクリロニトリル、α−エチルアクリロニトリル、シアン化ビニリデンなどを挙げることができ、これらのうちから選択される1種以上を使用することができる。α,β−不飽和ニトリル化合物としては、アクリロニトリルおよびメタクリロニトリルよりなる群から選択される1種以上を使用することが好ましく、アクリロニトリルを使用することがより好ましい。
 上記不飽和カルボン酸は、本発明の電極用バインダー組成物を用いて調製される電極用スラリーの安定性を向上する機能を有する単量体である。重合体粒子A1における不飽和カルボン酸に由来する繰り返し単位の含有割合は、全繰り返し単位を100質量部とした場合に、15質量部以下であることが好ましく、0.3~10質量部であることがより好ましい。不飽和カルボン酸に由来する繰り返し単位の含有割合が前記範囲にあることにより、電極用スラリーの調製時における重合体粒子A1の分散安定性が優れることとなり、凝集物が生じ難くなるほか、電極用スラリーの経時的な粘度上昇を抑えることができる。不飽和カルボン酸としては、例えば(メタ)アクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸などを挙げることができ、これらのうちから選択される1種以上を使用することができる。不飽和カルボン酸としては、アクリル酸、メタクリル酸およびイタコン酸よりなる群から選択される1種以上を使用することが特に好ましい。
 上記その他の単量体は上記に示したカテゴリーに属さない単量体である。重合体粒子A1におけるその他の単量体に由来する繰り返し単位の含有割合は、全繰り返し単位を100質量部とした場合に、1質量部以下であることが好ましく、0.1質量部以下であることがより好ましい。その他の単量体として具体的には、例えばジ(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸プロピレングリコール、トリ(メタ)アクリル酸トリメチロールプロパン、テトラ(メタ)アクリル酸ペンタエリスリトール、ヘキサ(メタ)アクリル酸ジペンタエリスリトール、ジビニルベンゼンなどの架橋性単量体;
フッ化ビニリデン、四フッ化エチレンおよび六フッ化プロピレンなどのエチレン性不飽和結合を有する含フッ素単量体;
(メタ)アクリルアミド;
N−メチロールアクリルアミド;
酢酸ビニル、プロピオン酸ビニルなどのカルボン酸ビニルエステル;
エチレン性不飽和ジカルボン酸の酸無水物;
アミノエチルアクリルアミド、ジメチルアミノメチルメタクリルアミド、メチルアミノプロピルメタクリルアミドなどのエチレン性不飽和カルボン酸のアミノアルキルアミドなどを挙げることができ、これらのうちから選択される1種以上を使用することができる。重合体粒子A1において、特に好ましくはその他の単量体を使用しないことである。
 重合体粒子A1は、上記のような繰り返し単位を有する重合体のみからなる粒子であることが好ましい。
1.1.2 重合体粒子A1の合成
 本発明における重合体粒子A1の合成方法については特に限定されないが、例えば公知の乳化重合法によって合成することができる。乳化重合は適当な水系媒体中で行うことが好ましく、特に水中で行うことが好ましい。
 重合体粒子A1の合成のための乳化重合は、所定の単量体混合物を、例えば乳化剤、重合開始剤、分子量調整剤などの存在下で、好ましくは40~80℃において、好ましくは4~12時間の乳化重合によって行うことができる。重合途中で反応温度を変更してもよい。ここで乳化重合における全固形分濃度(重合系における水系媒体以外の成分の合計質量が重合系の全質量に占める割合)を50質量%以下とすることにより、得られる重合体粒子の分散安定性が良好な状態で重合反応を進行させることができる。この全固形分濃度は、より好ましくは45質量%以下であり、さらに好ましくは40質量%以下である。
 重合体粒子A1の合成のための乳化重合における乳化剤の使用割合は、使用する単量体の合計100質量部に対して、0.1~2.0質量部とすることが好ましく、0.1~1.0質量部とすることがさらに好ましい。上記乳化剤としては、例えば高級アルコールの硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルジフェニルエーテルジスルホン酸塩、脂肪族スルホン酸塩、脂肪族カルボン酸塩、デヒドロアビエチン酸塩、ナフタレンスルホン酸・ホルマリン縮合物、非イオン性界面活性剤の硫酸エステル塩などのアニオン性界面活性剤;
ポリエチレングリコールのアルキルエステル、ポリエチレングリコールのアルキルフェニルエーテル、ポリエチレングリコールのアルキルエーテルなどのノニオン性界面活性剤;
パーフルオロブチルスルホン酸塩、パーフルオロアルキル基含有リン酸エステル、パーフルオロアルキル基含有カルボン酸塩、パーフルオロアルキルエチレンオキシド付加物などのフッ素系界面活性剤などを挙げることができ、これらのうちから選択される一種以上を使用することができる。
 重合開始剤の使用割合は、使用する単量体の合計100質量部に対して、0.5~2質量部とすることが好ましい。上記重合開始剤としては、例えば過硫酸リチウム、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウムなどの水溶性重合開始剤;
クメンハイドロパーオキサイド、過酸化ベンゾイル、t−ブチルハイドロパーオキサイド、アセチルパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3−テトラメチルブチルハイドロパーオキサイド、アゾビスイソブチロニトリル、1,1’−アゾビス(シクロヘキサンカルボニトリル)などの油溶性重合開始剤などを適宜選択して用いることができる。これらのうち、特に過硫酸カリウム、過硫酸ナトリウム、クメンハイドロパーオキサイドまたはt−ブチルハイドロパーオキサイドを使用することが好ましい。
 分子量調節剤の使用割合は、使用する単量体の合計100質量部に対して、0.1~2.0質量部とすることが好ましい。上記分子量調整剤としては、例えばn−ヘキシルメルカプタン、n−オクチルメルカプタン、t−オクチルメルカプタン、n−ドデシルメルカプタン、t−ドデシルメルカプタン、n−ステアリルメルカプタンなどのアルキルメルカプタン;
ジメチルキサントゲンジサルファイド、ジイソプロピルキサントゲンジサルファイドなどのキサントゲン化合物;
ターピノレン、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラメチルチウラムモノスルフィドなどのチウラム化合物;
2,6−ジ−t−ブチル−4−メチルフェノール、スチレン化フェノールなどのフェノール化合物;
アリルアルコールなどのアリル化合物;
ジクロルメタン、ジブロモメタン、四臭化炭素などのハロゲン化炭化水素化合物;
α−ベンジルオキシスチレン、α−ベンジルオキシアクリロニトリル、α−ベンジルオキシアクリルアミドなどのビニルエーテル化合物などのほか、
トリフェニルエタン、ペンタフェニルエタン、アクロレイン、メタアクロレイン、チオグリコール酸、チオリンゴ酸、2−エチルヘキシルチオグリコレート、α−メチルスチレンダイマーなどを挙げることができ、これらのうちから選択される1種以上を使用することができる。
 重合体粒子A1の乳化重合終了後には重合混合物に中和剤を添加することにより、pHを5~10程度に調整することが好ましい。pHは、より好ましくは6~9であり、さらに7~8.5であること好ましい。ここで使用する中和剤としては、特に限定されるものではないが、例えば水酸化ナトリウム、水酸化カリウムなどの金属水酸化物;アンモニアなどを挙げることができる。上記のpH範囲に設定することにより、重合体粒子の配合安定性が良好となる。
 中和処理を行った後に、重合混合物を濃縮することにより、重合体粒子の良好な安定性を維持しながら固形分濃度を高くすることができる。
1.1.2 重合体粒子A2
 本発明の電極用バインダー組成物における重合体粒子A2は、フッ素原子を有する単量体に由来する繰り返し単位を有する重合体を含有する粒子である。
 本発明における重合体粒子A2は、フッ素原子を有する単量体に由来する繰り返し単位のみを有していてもよく、フッ素原子を有する単量体に由来する繰り返し単位のほかにその他の単量体に由来する繰り返し単位を有していてもよい。
 本発明における重合体粒子A2におけるフッ素原子を有する単量体に由来する繰り返し単位の好ましい含有割合は、重合体粒子A2の全質量を基準として、好ましくは3質量%以上であり、より好ましくは5~50質量%であり、さらに好ましくは15~40質量%であり、特に好ましくは20~30質量%である。
 上記フッ素原子を有する単量体としては、例えばフッ素原子を有するオレフィン化合物、フッ素原子を有する(メタ)アクリル酸エステルなどを挙げることができる。フッ素原子を有するオレフィン化合物としては、例えばフッ化ビニリデン、四フッ化エチレン、六フッ化プロピレン、三フッ化塩化エチレン、パーフルオロアルキルビニルエーテルなどを挙げることができる。フッ素原子を有する(メタ)アクリル酸エステルとしては、例えば下記一般式(1)で表される化合物、(メタ)アクリル酸3[4〔1−トリフルオロメチル−2,2−ビス〔ビス(トリフルオロメチル)フルオロメチル〕エチニルオキシ〕ベンゾオキシ]2−ヒドロキシプロピルなどを挙げることができる。
Figure JPOXMLDOC01-appb-I000001
(一般式(1)中、Rは水素原子またはメチル基であり、Rはフッ素原子を含有する炭素数1~18の炭化水素基である。)
 上記一般式(1)中のRとしては、例えば炭素数1~12のフッ化アルキル基、炭素数6~16のフッ化アリール基、炭素数7~18のフッ化アラルキル基などを挙げることができ、炭素数1~12のフッ化アルキル基であることが好ましい。上記一般式(1)中のRの好ましい具体例としては、例えば2,2,2−トリフルオロエチル基、2,2,3,3,3−ペンタフルオロプロピル基、1,1,1,3,3,3−ヘキサフルオロプロパン−2−イル基、β−(パーフルオロオクチル)エチル基、2,2,3,3−テトラフルオロプロピル基、2,2,3,4,4,4−ヘキサフルオロブチル基、1H,1H,5H−オクタフルオロペンチル基、1H,1H,9H−パーフルオロ−1−ノニル基、1H,1H,11H−パーフルオロウンデシル基、パーフルオロオクチル基などを挙げることができる。フッ素原子を有する単量体としては、これらのうち、フッ素原子を有するオレフィン化合物が好ましく、特に好ましくはフッ化ビニリデン、四フッ化エチレンおよび六フッ化プロピレンよりなる群から選ばれる少なくとも1種である。
 上記フッ素原子を有する単量体は、1種のみを使用してもよく、2種以上を混合して使用してもよい。
 上記その他の単量体としては、例えば不飽和カルボン酸エステル、親水性単量体(ただし不飽和カルボン酸エステルに該当するものを除く。以下同じ。)、架橋性単量体、α−オレフィン、芳香族ビニル化合物(ただし、前記の親水性単量体および架橋性単量体に該当するものを除く。以下同じ。)などを挙げることができ、これらのうちから選択される1種以上を使用することができる。
 重合体粒子A2が、上記のうちの不飽和カルボン酸エステルに由来する構成単位を有することにより、密着性をより向上させることができるため好ましい。重合体粒子A2が、上記親水性単量体のうちの不飽和カルボン酸に由来する構成単位を有することにより、本発明の電極用バインダー組成物を用いた電極用スラリーの安定性が向上する点で好ましい。また、重合体粒子A2が上記親水性単量体のうちのα,β−不飽和ニトリル化合物に由来する繰り返し単位を有することにより、重合体粒子の電解液に対する膨潤性をより向上させることができる。すなわち、ニトリル基の存在によって重合体鎖からなる網目構造に溶媒(媒体)が侵入し易くなって網目間隔が広がるため、電荷移動物質(溶媒和したイオン)がこの網目構造をすり抜けて移動し易くなる。これにより、イオンの拡散性が向上すると考えられ、その結果、電極抵抗が低下してより良好な充放電特性を実現することができる点で好ましい。
 本発明における重合体粒子A2におけるその他の単量体に由来する繰り返し単位の好ましい含有割合は、重合体粒子A2の全質量を基準として、それぞれ以下のとおりである。
 不飽和カルボン酸エステルに由来する繰り返し単位:好ましくは95質量%以下、より好ましくは50~90質量%、さらに好ましくは60~80質量%;
 親水性単量体に由来する繰り返し単位:好ましくは35質量%以下、より好ましくは2~30質量%、さらに好ましくは4~20質量%;そして
 架橋性単量体に由来する繰り返し単位:好ましくは2質量%以下、より好ましくは1質量%以下。
 上記不飽和カルボン酸エステルとしては、例えば不飽和カルボン酸のアルキルエステル、不飽和カルボン酸のシクロアルキルエステル、不飽和カルボン酸のヒドロキシアルキルエステル、不飽和カルボン酸の多価アルコールエステルなどを挙げることができる。
 上記不飽和カルボン酸のアルキルエステルとしては、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸i−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸i−ブチル、(メタ)アクリル酸n−アミル、(メタ)アクリル酸i−アミル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸n−オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシルなどを;
上記不飽和カルボン酸のシクロアルキルエステルとしては、例えば(メタ)アクリル酸シクロヘキシルなどを;
上記不飽和カルボン酸のヒドロキシアルキルエステルとして、例えば(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸ヒドロキシエチルなどを、それぞれ挙げることができ、これらのうちから選択される1種以上を使用することができる。
 上記親水性単量体としては、例えば不飽和カルボン酸、α,β−不飽和ニトリル化合物、水酸基を有する化合物などを挙げることができる。上記不飽和カルボン酸としては、例えば(メタ)アクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸などを;
α,β−不飽和ニトリル化合物としては、例えばアクリロニトリル、メタクリロニトリル、α−クロルアクリロニトリル、α−エチルアクリロニトリル、シアン化ビニリデンなどを;
上記水酸基を有する化合物としては、例えばp−ヒドロキシスチレンなどを、それぞれ挙げることができ、これらのうちから選択される1種以上を使用することができる。
 上記架橋性単量体としては、例えばジ(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸プロピレングリコール、トリ(メタ)アクリル酸トリメチロールプロパン、テトラ(メタ)アクリル酸ペンタエリスリトール、ヘキサ(メタ)アクリル酸ジペンタエリスリトールなど;
上記α−オレフィンとしては、例えばエチレン、プロピレンなどを;
上記芳香族ビニル化合物としては、例えばスチレン、α−メチルスチレン、p−メチルスチレン、クロルスチレンなどを、それぞれ挙げることができ、いずれもこれらのうちから選択される1種以上を使用することができる。
 本発明における重合体粒子A2は、上記に例示したフッ素原子を有する単量体、不飽和カルボン酸エステル、親水性単量体、架橋性単量体、α−オレフィンおよび芳香族ビニル化合物以外の単量体に由来する繰り返し単位を含有しないことが好ましい。
1.1.2.1 ポリマーアロイ粒子
 本発明における重合体粒子A2としては、上記のようなフッ素原子を有する単量体に由来する繰り返し単位を有する重合体粒子をそのまま用いてもよいし、あるいは
フッ素原子を有する単量体に由来する繰り返し単位を有する重合体(A2a)と、不飽和カルボン酸エステルに由来する繰り返し単位を有する重合体(a2b)とを含有するポリマーアロイ粒子であってもよい。重合体粒子A2がポリマーアロイ粒子であるとき、イオン導電性および耐酸化性と、密着性とを同時に発現することができる点で好ましい。
 「ポリマーアロイ」とは、「岩波 理化学辞典 第5版.岩波書店」における定義によれば、「2成分以上の高分子の混合あるいは化学結合により得られる多成分系高分子の総称」であって「異種高分子を物理的に混合したポリマーブレンド、異種高分子成分が共有結合で結合したブロックおよびグラフト共重合体、異種高分子が分子間力によって会合した高分子錯体、異種高分子が互いに絡み合ったIPN(Interpenetrating Polymer Network、相互侵入高分子網目)など」を意味する。しかしながら、本発明のバインダー組成物に含有されるポリマーアロイ粒子は、「異種高分子成分が共有結合によって結合していないポリマーアロイ」のうちのIPNからなる粒子であることが好ましい。
 ポリマーアロイ粒子を構成する重合体(A2a)は、イオン導電性に優れるとともに、結晶性樹脂のハードセグメントが凝集して、主鎖にC−H…F−Cのような疑似架橋点を与えているものと考えられる。このためバインダー材料として重合体(A2a)を単独で用いると、そのイオン導電性および耐酸化性は良好であるものの、密着性および柔軟性が不十分であるため密着性は低い。一方、ポリマーアロイ粒子を構成する重合体(A2b)は、密着性および柔軟性には優れるものの、耐酸化性が低いから、これをバインダー材料として単独で電極(特に正極)に使用した場合には、充放電を繰り返すことにより酸化分解して変質するため、良好な充放電特性を得ることができない。
 しかしながら、重合体(A2a)および重合体(A2b)を含有するポリマーアロイ粒子を使用することにより、イオン導電性および耐酸化性と、密着性とを同時に発現することができ、良好な充放電特性を有する電極を製造することが可能となった。ポリマーアロイ粒子が重合体(A2a)と重合体(A2b)のみからなる場合、より耐酸化性を向上させることができ、好ましい。
 ポリマーアロイ粒子は、JIS K7121に準拠する示差走査熱量測定(DSC)によって測定した場合、−50~250℃の温度範囲において吸熱ピークを1つしか有さないものであることが好ましい。この吸熱ピークの温度は、−30~+30℃の範囲にあることがより好ましい。
 ポリマーアロイ粒子を構成する重合体(A2a)は、これが単独で存在する場合には、一般的に−50~250℃に吸熱ピーク(融解温度)を有する。また、ポリマーアロイ粒子を構成する重合体(A2b)は、重合体(A2a)とは異なる吸熱ピーク(ガラス転移温度)を有することが一般的である。このため、粒子中における重合体(A2a)および重合体(A2b)が、例えばコア−シエル構造のように相分離して存在する場合、−50~250℃において2つの吸熱ピークが観察されるはずである。しかし、−50~250℃における吸熱ピークが1つのみである場合には、該粒子はポリマーアロイ粒子であると推定することができる。
 さらに、ポリマーアロイ粒子の有する1つのみの吸熱ピークの温度が−30~+30℃の範囲にある場合、該粒子は活物質層に対してより良好な柔軟性と粘着性とを付与することができ、従って密着性をより向上させることができることとなり、好ましい。
1.1.2.2 重合体(A2a)
 本発明における重合体粒子A2としてのポリマーアロイ粒子は、フッ素原子を有する単量体に由来する繰り返し単位を有する重合体(A2a)を含有する。この重合体(A2a)における、フッ素原子を有する単量体に由来する繰り返し単位の含有割合は、重合体Aの全質量に対して、好ましくは80質量%以上であり、より好ましくは90質量%以上である。
 フッ素原子を有する単量体としては、上記のとおり、フッ化ビニリデン、四フッ化エチレンおよび六フッ化プロピレンからなる群から選ばれる少なくとも1種を含有することが好ましく、フッ素を有する単量体のすべてがフッ化ビニリデン、四フッ化エチレンおよび六フッ化プロピレンから選ばれる少なくとも1種であることが好ましい。
 重合体(A2a)は、フッ素原子を有する単量体に由来する繰り返し単位のほかに、他の不飽和単量体に由来する繰り返し単位をさらに有していてもよい。上記他の不飽和単量体としては、上記で説明した不飽和カルボン酸のアルキルエステル、不飽和カルボン酸のシクロアルキルエステル、親水性単量体、架橋性単量体、α−オレフィンおよび芳香族ビニル化合物を使用することができる。
 重合体(A2a)における各単量体に由来する繰り返し単位の好ましい含有割合は、重合体(A2a)の全質量を基準として、それぞれ以下のとおりである。
 フッ化ビニリデンに由来する繰り返し単位:好ましくは50~99質量%、より好ましくは80~98質量%;
 四フッ化エチレンに由来する繰り返し単位:好ましくは50質量%以下、より好ましくは1~30質量%、さらに好ましくは2~20質量%;そして
 六フッ化プロピレンに由来する繰り返し単位:好ましくは50質量%以下、より好ましくは1~30質量%、さらに好ましくは2~25質量。
 重合体(A2a)は、フッ化ビニリデン、四フッ化エチレンおよび六フッ化プロピレンからなる群から選ばれる少なくとも1種に由来する繰り返し単位のみからなるものであることが、最も好ましい。
1.1.2.3 重合体(A2b)
 本発明における重合体粒子A2としてのポリマーアロイ粒子は、フッ素原子を有する単量体以外の共重合可能な他の不飽和単量体に由来する繰り返し単位を有する。この他の不飽和化合物としては、上記で説明した不飽和カルボン酸エステルであることが好ましく、これ以外に親水性単量体、架橋性単量体、α−オレフィン、芳香族ビニル化合物などを併用することができる。
 一般的に重合体(A2b)のような成分は、密着性は良好であるが、イオン導電性および耐酸化性が不良であると考えられており、従来から正極には使用されてこなかった。しかし本発明は、このような重合体(A2b)を、重合体(A2a)と共にポリマーアロイ粒子として使用することにより、良好な密着性を維持しつつ、十分なイオン導電性および耐酸化性を発現することに成功したものである。
 重合体(A2b)における各単量体に由来する繰り返し単位の含有割合は、それぞれ以下のとおりである。以下はいずれも重合体(A2b)の質量を100質量%としたときの値である。
 不飽和カルボン酸エステルに由来する繰り返し単位:好ましくは50質量%以上、より好ましくは60~95質量%;
 親水性単量体に由来する繰り返し単位:好ましくは50質量%以下、より好ましくは5~40質量%;
 架橋性単量体に由来する繰り返し単位:好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは3質量%以下、特に好ましくはこれを含有しないこと;
 α−オレフィンに由来する繰り返し単位:好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは3質量%以下、特に好ましくはこれを含有しないこと;そして
 芳香族ビニル化合物に由来する繰り返し単位:好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは3質量%以下、特に好ましくはこれを含有しないこと。
 重合体(A2b)は、上記に例示した不飽和カルボン酸エステル、親水性単量体、架橋性単量体、α−オレフィンおよび芳香族ビニル化合物以外の単量体に由来する繰り返し単位を含有しないことが好ましい。
1.1.2.4 ポリマーアロイ粒子の合成
 本発明における重合体粒子A2としてのポリマーアロイ粒子は、上記のような構成をとるものである限り、その合成方法は特に限定されないが、例えば公知の乳化重合工程またはこれを適宜に組み合わせることによって、容易に合成することができる。
 例えば先ず、フッ素原子を有する単量体に由来する繰り返し単位を有する重合体(A2a)を、公知の方法によって合成し、次いで
該重合体(A2a)に、重合体(A2b)を構成するための単量体を加え、重合体(A2a)からなる重合体粒子の編み目構造の中に、前記単量体を十分吸収させた後、重合体(A2a)の編み目構造の中で、吸収させた単量体を重合して重合体(A2b)を合成する方法により、ポリマーアロイを容易に合成することができる。このような方法によってポリマーアロイを製造する場合、重合体(A2a)に、重合体(A2b)の単量体を十分に吸収させることが必須である。吸収温度が低すぎる場合または吸収時間が短すぎる場合には単なるコアシェル型の重合体または表層の一部のみがIPN型の構造である重合体となり、本発明におけるポリマーアロイを得ることができない場合が多い。ただし、吸収温度が高すぎると重合系の圧力が高くなりすぎ、反応系のハンドリングおよび反応制御の面から不利となり、吸収時間を過度に長くしても、さらに有利な結果が得られるわけではない。
 上記のような観点から、吸収温度は、30~100℃とすることが好ましく、40~80℃とすることがより好ましく;
吸収時間は、1~12時間とすることが好ましく、2~8時間とすることがより好ましい。このとき、吸収温度が低い場合には吸収時間を長くすることが好ましく、吸収温度が高い場合には短い吸収時間で十分である。吸収温度(℃)と吸収時間(h)を乗じた値が、おおむね120~300(℃・h)、好ましくは150~250(℃・h)の範囲となるような条件が適当である。
 重合体(A2a)の網目構造の中に重合体(A2b)の単量体を吸収させる操作は、乳化重合に用いられる公知の媒体中、例えば水中で行うことが好ましい。
 ポリマーアロイ粒子中の重合体(A2a)の含有量は、ポリマーアロイ粒子100質量%中、3~60質量%であることが好ましく、5~55質量%であることがより好ましく、10~50質量%であることがさらに好ましく、特に20~40質量%であることが好ましい。ポリマーアロイが重合体(A2a)を前記範囲で含有することにより、イオン導電性および耐酸化性と、密着性とのバランスがより良好となる。また、各単量体に由来する繰り返し単位の含有割合が上記の好ましい範囲にある重合体(A2b)を用いた場合には、ポリマーアロイが重合体(A2a)を前記範囲で含有することにより、該ポリマーアロイ全体の各繰り返し単位の含有割合を上述の好ましい範囲に設定することが可能となり、このことにより蓄電デバイスの充放電特性が良好となることが担保される。
1.1.2.5 重合体粒子A2の合成
 本発明における重合体粒子A2の合成、すなわち、
フッ素原子を有する単量体に由来する繰り返し単位を有する重合体を1段階重合で合成する場合の該重合、
重合体(A2a)の重合、ならびに
重合体(A2a)の存在下における重合体(A2b)の重合
は、それぞれ、公知の乳化剤(界面活性剤)、重合開始剤、分子量調整剤などの存在下で行うことができる。
 この乳化重合は適当な水性媒体中で行うことが好ましく、特に水中で行うことが好ましい。乳化重合系中における単量体の合計の含有割合は、10~50質量%とすることができ、20~40質量%とすることが好ましい。乳化重合の条件としては、重合温度40~85℃において重合時間2~24時間とすることが好ましく、重合温度50~80℃において重合時間3~20時間とすることがさらに好ましい。
 乳化剤の使用割合は、使用する単量体の合計(重合体粒子A2を1段階重合で合成する場合においては使用する単量体の合計、重合体(A2a)の合成においては重合体(A2a)を導く単量体の合計、重合体(A2a)の存在下に重合体(A2b)を重合する場合においては重合体(A2b)を導く単量体の合計。この項において以下同じ。)100質量部に対して、0.01~10質量部とすることが好ましく、0.02~5質量部とすることがさらに好ましい。
 重合開始剤の使用割合は、使用する単量体の合計100質量部に対して、0.3~3質量部とすることが好ましい。
 分子量調節剤の使用割合は、使用する単量体の合計100質量部に対して、5質量部以下とすることが好ましい。
 上記の乳化剤、重合開始剤および分子量調整剤としては、それぞれ、重合体粒子A1の合成に使用することができるものとして上記に例示したものと同じものを使用することができる。
1.2 (B)重合体
 本発明の電極用バインダー組成物における(B)重合体は、ポリアミック酸およびその部分イミド化重合体よりなる群から選択される少なくとも1種の重合体である。電極用バインダー組成物が(B)重合体を含有することにより、本発明の電極用バインダー組成物を用いて製造された活物質層と集電体との間の結着性が、(A)重合体粒子だけを使用した場合よりも良好となる。そのため、充放電に伴う活物質の体積変化が発生しても、活物質層が集電体より剥離することなく電極に保持されることとなり、充放電の繰り返しによる容量低下を効果的に抑制することができる。
 (B)重合体がポリアミック酸の部分イミド化重合体である場合、そのイミド化率は、75%以下であることが好ましく、50%以下であることがより好ましく、特に30%以下であることが好ましい。前記範囲のイミド化率を有する部分イミド化重合体は水および有機溶媒に対する溶解性が高いから、該イミド化重合体の合成および電極用バインダー組成物の調製が容易であるとともに、該バインダー組成物を用いて調整される電極用スラリーの安定性を向上することができ、好ましい。
 上記のイミド化率は、イミド化重合体におけるアミック酸構造の数とイミド環構造の数との合計に対するイミド環構造の数の占める割合を百分率で表したものである。ポリアミック酸のイミド化率は、H−NMRを用いて求めることができる。
1.2.1 (B)重合体の合成
 ポリアミック酸は、テトラカルボン酸二無水物とジアミンとを反応させることにより得ることがでる。また、ポリアミック酸の部分イミド重合体は、上記ポリアミック酸のアミック酸構造の一部を脱水閉環してイミド化することにより得ることができる。
 本発明における(B)重合体を合成するために用いられるテトラカルボン酸二無水物としては、例えば脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、芳香族テトラカルボン酸二無水物などを挙げることができる。
 テトラカルボン酸二無水物としては、上記のうち、芳香族テトラカルボン酸二無水物を含むものであることが好ましい。本発明におけるテトラカルボン酸二無水物は、芳香族テトラカルボン酸二無水物のみからなるか、あるいは
芳香族テトラカルボン酸二無水物および脂環式テトラカルボン酸二無水物の混合物のみからなるものであることが、本発明の電極用バインダー組成物の安定性の観点から好ましい。後者の場合、脂環式テトラカルボン酸二無水物の使用割合は、全テトラカルボン酸二無水物に対して、30モル%以下であることが好ましく、20モル%以下であることがより好ましい。
 本発明における(B)重合体を合成するために用いられるテトラカルボン酸二無水物の具体例としては、脂肪族テトラカルボン酸二無水物として、例えばブタンテトラカルボン酸二無水物などを;
脂環式テトラカルボン酸二無水物として、例えば1,2,3,4−シクロブタンテトラカルボン酸二無水物、2,3,5−トリカルボキシシクロペンチル酢酸二無水物、1,3,3a,4,5,9b−ヘキサヒドロ−5−(テトラヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−c]フラン−1,3−ジオン、1,3,3a,4,5,9b−ヘキサヒドロ−8−メチル−5−(テトラヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−c]フラン−1,3−ジオン、3−オキサビシクロ[3.2.1]オクタン−2,4−ジオン−6−スピロ−3’−(テトラヒドロフラン−2’,5’−ジオン)、5−(2,5−ジオキソテトラヒドロ−3−フラニル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物、3,5,6−トリカルボキシ−2−カルボキシメチルノルボルナン−2:3,5:6−二無水物、2,4,6,8−テトラカルボキシビシクロ[3.3.0]オクタン−2:4,6:8−二無水物、4,9−ジオキサトリシクロ[5.3.1.02,6]ウンデカン−3,5,8,10−テトラオンなどを;
芳香族テトラカルボン酸二無水物として、例えばピロメリット酸二無水物などを、それぞれ挙げることができるほか、特開2010−97188号に記載のテトラカルボン酸二無水物を用いることができる。
 本発明における(B)重合体を合成するために用いられるジアミンとしては、例えば脂肪族ジアミン、脂環式ジアミン、芳香族ジアミン、ジアミノオルガノシロキサンなどを挙げることができる。
 本発明における(B)重合体を合成する際に用いられるジアミンは、芳香族ジアミンを、全ジアミンに対して、30モル%以上含むものであることが好ましく、50モル%以上含むものであることがより好ましく、特に80モル%以上含むものであることが好ましい。
 本発明における(B)重合体を合成するために用いられるジアミンの具体例としては、脂肪族ジアミンとして、例えば1,1−メタキシリレンジアミン、1,3−プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミンなどを;
脂環式ジアミンとして、例えば1,4−ジアミノシクロヘキサン、4,4’−メチレンビス(シクロヘキシルアミン)、1,3−ビス(アミノメチル)シクロヘキサンなどを;
芳香族ジアミンとして、例えばp−フェニレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルフィド、1,5−ジアミノナフタレン、2,2’−ジメチル−4,4’−ジアミノビフェニル、4,4’−ジアミノ−2,2’−ビス(トリフルオロメチル)ビフェニル、2,7−ジアミノフルオレン、4,4’−ジアミノジフェニルエーテル、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、9,9−ビス(4−アミノフェニル)フルオレン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、4,4’−(p−フェニレンジイソプロピリデン)ビスアニリン、4,4’−(m−フェニレンジイソプロピリデン)ビスアニリン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、2,6−ジアミノピリジン、3,4−ジアミノピリジン、2,4−ジアミノピリミジン、3,6−ジアミノアクリジン、3,6−ジアミノカルバゾール、N−メチル−3,6−ジアミノカルバゾール、N−エチル−3,6−ジアミノカルバゾール、N−フェニル−3,6−ジアミノカルバゾール、N,N’−ビス(4−アミノフェニル)−ベンジジン、N,N’−ビス(4−アミノフェニル)−N,N’−ジメチルベンジジン、1,4−ビス−(4−アミノフェニル)−ピペラジン、3,5−ジアミノ安息香酸などを;
ジアミノオルガノシロキサンとして、例えば1,3−ビス(3−アミノプロピル)−テトラメチルジシロキサンなどを、それぞれ挙げることができるほか、特開2010−97188号に記載のジアミンを用いることができる。
 (B)重合体の合成反応に供されるテトラカルボン酸二無水物とジアミンとの使用割合は、ジアミンのアミノ基1当量に対して、テトラカルボン酸二無水物の酸無水物基が0.9~1.2当量となる割合が好ましく、さらに好ましくは1.0~1.1当量となる割合である。
 ポリアミック酸を合成するためのテトラカルボン酸二無水物とジアミンとの反応は、好ましくは有機溶媒中において、好ましくは−20~150℃、より好ましくは0~100℃において、好ましくは0.1~24時間、より好ましくは0.5~12時間行われる。ここで、有機溶媒としては、例えば非プロトン性極性溶媒、フェノールおよびその誘導体、アルコール、ケトン、エステル、エーテル、炭化水素など一般的にポリアミック酸の合成反応に使用できる有機溶媒を使用することができる。有機溶媒として特に好ましくは、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ジメチルスルホキシド、γ−ブチロラクトン、テトラメチル尿素およびヘキサメチルホスホルトリアミドよりなる群から選択される1種以上を使用することである。
 部分イミド化重合体を合成するためのポリアミック酸の脱水閉環反応は、好ましくはポリアミック酸を加熱する方法またはポリアミック酸を有機溶媒に溶解した溶液中に脱水剤および脱水閉環触媒を添加し必要に応じて加熱する方法により行われる。
 上記ポリアミック酸を加熱する方法における反応温度は、好ましくは180~250℃であり、より好ましくは180~220℃である。反応温度が180℃未満では脱水閉環反応が十分に進行せず、反応温度が250℃を超えると得られるイミド化重合体の分子量が低下する場合がある。ポリアミック酸を加熱する方法における反応時間は、好ましくは0.5~20時間であり、より好ましくは2~10時間である。
 上記ポリアミック酸の溶液中に脱水剤および脱水閉環触媒を添加する方法において、脱水剤の使用割合は、ポリアミック酸のアミック酸構造の1モルに対して0.01~1,0モルとすることが好ましく;
脱水閉環触媒の使用割合は、使用する脱水剤1モルに対して0.01~1,0モルとすることが好ましい。脱水閉環反応の反応温度は好ましくは0~180℃であり、より好ましくは10~150℃である。反応時間は好ましくは1~10時間であり、より好ましくは2~5時間である。
 上記脱水閉環触媒としては、例えばピリジン、コリジン、ルチジン、トリエチルアミンなどの3級アミンなどを;
上記脱水剤としては、例えば無水酢酸、無水プロピオン酸、無水トリフルオロ酢酸などの酸無水物などを、それぞれ用いることができる。
 脱水閉環反応に用いられる有機溶媒としては、ポリアミック酸の合成に用いられるものとして例示した有機溶媒を挙げることができる。
 上記のようにして、(B)重合体を含有する溶液が得られる。
1.3 液状媒体
 本発明の電極用バインダー組成物は、(C)液状媒体を含有する。
 本発明の電極用バインダー組成物における(C)液状媒体は、水系媒体または非水系媒体であることができる。
 上記水系媒体は、水を含有する。水系媒体は、水以外に水可溶性の非水媒体を少量含有することができる。水系媒体における水可溶性非水媒体の含有割合は、水系媒体の全部に対して好ましくは10質量%以下であり、より好ましくは5質量%以下である。
 一方、上記非水系媒体は、水を含有せずに非水媒体のみからなる。
 上記非水媒体としては、例えばアミド化合物、炭化水素、アルコール、ケトン、エステル、アミン化合物、ラクトン、スルホキシド、スルホン化合物などを挙げることができ、これらのうちから選択される1種以上を使用することができる。非水媒体の具体例としては、例えばn−オクタン、イソオクタン、ノナン、デカン、デカリン、ピネン、クロロドデカンなどの脂肪族炭化水素;
シクロペンタン、シクロヘキサン、シクロヘプタン、メチルシクロペンタンなどの環状脂肪族炭化水素;
クロロベンゼン、クロロトルエン、エチルベンゼン、ジイソプロピルベンゼン、クメンなどの芳香族炭化水素;
メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、ベンジルアルコール、グリセリンなどのアルコール;
アセトン、メチルエチルケトン、シクロペンタノン、イソホロンなどのケトン;
メチルエチルエーテル、ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル;
γ−ブチロラクトン、δ−ブチロラクトンなどのラクトン;
β−ラクタムなどのラクタム;
ジメチルホルムアミド、N−メチル−2−ピロリドン、ジメチルアセトアミドなどの鎖状または環状のアミド化合物;
メチレンシアノヒドリン、エチレンシアノヒドリン、3,3’−チオジプロピオニトリル、アセトニトリルなどの、ニトリル基を有する化合物;
ピリジン、ピロールなどの含窒素複素環化合物;
エチレングリコール、プロピレングリコールなどのグリコール化合物;
ジエチレングリコール、ジエチレングリコールモノエチルエーテル、ジエチレングリコールエチルブチルエーテルなどのジエチレングリコールまたは誘導体;
ギ酸エチル、乳酸エチル、乳酸プロピル、安息香酸メチル、酢酸メチル、アクリル酸メチルなどのエステルなどを挙げることができる。
 本発明の電極用バインダー組成物における(C)液状媒体としては、水系媒体を使用することが好ましく、非水媒体を含有せずに水のみを使用することが最も好ましい。
1.4 電極用バインダー組成物およびその調製方法
 本発明の電極用バインダー組成物は、少なくとも上記のような(A)重合体粒子および(B)重合体が(C)液状媒体に溶解された溶液であるか、あるいはこれらが(C)液状媒体に分散されたスラリーまたはラテックスであることが好ましく、特に好ましくはラテックスである。電極用バインダー組成物がラテックス状であることにより、これを電極活物質などと混合して調製される電極用スラリーの安定性が良好となり、また電極用スラリーの集電体への塗布性が良好となるため好ましい。
 (A)重合体粒子は、上記の好ましい合成方法によると、水に分散されたラテックスとして得られる。
 (C)液状媒体として水系媒体を使用する場合、(A)重合体粒子のラテックスは、そのまま電極用バインダー組成物の調製に供することができる。従って、本発明の電極用バインダー組成物は、(A)重合体粒子、(B)重合体および(C)液状媒体のほかに、(A)重合体粒子の合成に使用した重合触媒またはその残滓、残存単量体、乳化剤、界面活性剤、pH調整剤などを含有していても、本発明の効果が減殺されるものではない。しかしながら、得られる蓄電デバイスの電池特性を十分に高いレベルに維持する観点からは、これら(A)重合体粒子の製造に由来する成分の含有割合は可及的に少ないことが好ましく、電極用バインダー組成物の固形分に対して、5質量%以下とすることが好ましく、1質量%以下とすることがより好ましく、0.5質量%以下とすることがさらに好ましく、特に好ましくはこれらを全く含有しないことである。
 一方、(C)液状媒体として非水系媒体を使用する場合、(A)重合体粒子は、ラテックスから単離した固体状態、これを非水系媒体に溶解した溶液状態またはこれを非水系媒体に分散した分散液の状態で電極用バインダー組成物の調製に供することができる。ラテックスからの(A)重合体粒子の単離は、公知の方法によって行うことができる。
 (B)重合体は、上記の好ましい合成方法によると、有機溶媒に溶解された溶液として得られる。
 (C)液状媒体として水系媒体を使用する場合、(B)重合体は、溶液から単離し、好ましくは水系媒体、好ましくは水、に溶解または分散した状態で、電極用バインダー組成物の調製に供することが好ましい。溶液からの(B)重合体の単離は、公知の方法によることができる。単離した(B)重合体を水系媒体に溶解する際、使用する水系媒体の液性をアルカリ性側に調整しておくことが好ましい。ここで使用する水性媒体のpHは、好ましくは7.0~9.5であり、より好ましくは7.5~9.0である。水系媒体の液性の調整には、例えばアンモニア水を使用することが好ましい。単離した(B)重合体を水系媒体に分散するには公知の方法、例えば特開2011−144374号に記載の方法など、によることができる。
 一方、(C)液状媒体として非水系媒体を使用する場合、上記の好ましい合成方法によって得られた(B)重合体の溶液は、これをそのまま電極用バインダー組成物の調製に供することができる。
 本発明の電極用バインダー組成物の最も好ましい調製方法は、(A)重合体粒子のラテックスと(B)重合体の水溶液とを混合する方法によることである。この場合、ラテックス中の(A)重合体粒子の濃度は、15~70質量%とすることが好ましく、20~60質量%とすることがより好ましく;
水溶液中の(B)重合体の濃度は、1~20質量%とすることが好ましく、1~10質量%とすることがより好ましい。
 本発明の電極用バインダー組成物は、その液性が中性または少し塩基性であることが好ましく、pH7.0~9.5であることがより好ましく、特にpH7.5~9.0であることが好ましい。組成物の液性の調整には、公知の酸または塩基を用いることができる。酸としては、例えば塩酸、硝酸、硫酸、リン酸などを;
塩基としては、例えば水酸化ナトリウム、水酸化カリウム、水酸化リチウム、アンモニア水などを、それぞれ挙げることができる。
 従って本発明の電極用バインダー組成物は、上記の酸または塩基を、液性の調整に必要な範囲で含有していてもよい。
2.電極用スラリー
 上記のような本発明の電極用バインダー組成物を用いて、電極用スラリーを製造することができる。電極用スラリーとは、集電体の表面上に電極活物質層を形成するために用いられる分散液のことをいう。本発明における電極用スラリーは、少なくとも本発明の電極用バインダー組成物および電極活物質(以下、単に「活物質」ともいう。)を含有する。
2.1 電極活物質
 本発明の電極用バインダー組成物を用いて製造される電極用スラリーにおける活物質の形状としては、粒状であることが好ましい。粒子の平均粒子径(平均メジアン粒径、D50値)としては、0.1~100μmであることが好ましく、1~20μmであることがより好ましい。
 活物質の使用割合は、電極用バインダー組成物中の(A)重合体粒子の量が活物質100質量に対して、0.1~25質量部となる割合とすることが好ましく、0.5~15質量部となる割合とすることがより好ましい。このような使用割合とすることにより、密着性により優れ、しかも電極抵抗が小さく充放電特性により優れた電極を作成することができる。
 本発明の電極用バインダー組成物を用いて製造される電極用スラリーにおける活物質としては、例えば炭素材料、リチウム原子を含む酸化物、ケイ素原子を含む化合物、鉛化合物、錫化合物、砒素化合物、アンチモン化合物、アルミニム化合物、ポリアセン系有機半導体(PAS)などを挙げることができる。
 上記炭素材料としては、例えばアモルファスカーボン、グラファイト、天然黒鉛、メソカーボンマイクロビーズ(MCMB)、ピッチ系炭素繊維などを挙げることが得きる。
 上記リチウム原子を含む酸化物としては、例えばコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、三元系ニッケルコバルトマンガン酸リチウム、LiFePO、LiCoPO、LiMnPO、Li0.90Ti0.05Nb0.05Fe0.30Co0.30Mn0.30POなどを挙げることができる。
 上記ケイ素原子を含む化合物としては、例えばケイ素単体、ケイ素酸化物、ケイ素合金などを挙げることができるほか、特開2004−185810号に記載されたケイ素材料を使用することができる。上記ケイ素酸化物としては、組成式SiO(0<x<2、好ましくは0.1≦x≦1)で表されるケイ素酸化物が好ましい。上記ケイ素合金としては、ケイ素と、チタン、ジルコニウム、ニッケル、銅、鉄およびモリブデンよりなる群から選ばれる少なくとも1種の遷移金属との合金が好ましい。これらの遷移金属のケイ化物は、高い電子伝導度を有し、且つ高い強度を有することから好ましく用いられる。また、活物質がこれらの遷移金属を含むことにより、活物質の表面に存在する遷移金属が酸化されて表面に水酸基を有する酸化物となるから、バインダー成分との結着力がより良好になる点でも好ましい。上記ケイ素合金におけるケイ素の含有割合は、該合金中の金属元素の全部に対して10モル%以上とすることが好ましく、20~70モル%とすることがより好ましい。ケイ素合金としては、ケイ素−ニッケル合金またはケイ素−チタン合金を使用することがより好ましく、ケイ素−チタン合金を使用することが特に好ましい。ケイ素原子を含む化合物は、単結晶、多結晶および非晶質のいずれであってもよい。
 上記における「酸化物」とは、酸素と、酸素よりも電気陰性度の小さい元素と、からなる化合物または塩を意味する概念であり、金属酸化物の他、金属のリン酸塩、硝酸塩、ハロゲンオキソ酸塩、スルホン酸塩などをも包含する概念である。
 本発明の電極用バインダー組成物を蓄電デバイス、特にリチウムイオン二次電池の正極を製造するために使用する場合、電極用スラリーが含有する活物質としては、リチウム原子を含む酸化物であることが好ましい。
 本発明の電極用バインダー組成物を蓄電デバイス、特にリチウムイオン二次電池の負極を製造するために使用する場合、電極用スラリーが含有する活物質としては、ケイ素原子を含む化合物を含有するものであることが好ましい。ケイ素原子はリチウムの吸蔵力が大きいから、活物質がケイ素原子を含む化合物を含有することにより、得られる蓄電デバイスの蓄電容量を高めることができ、その結果、蓄電デバイスの出力およびエネルギー密度を高くすることができる。活物質中に占めるケイ素原子を含む化合物の割合は、1質量%以上とすることが好ましく、1~50質量%とすることがより好ましく、5~45質量%とすることがさらに好ましく、特に10~40質量%とすることが好ましい。負極用の活物質としては、ケイ素原子を含む化合物と炭素材料との混合物からなることが好ましい。炭素材料は、充放電に伴う体積変化が小さいから、負極用活物質としてケイ素原子を含む化合物と炭素材料との混合物を使用することにより、ケイ素原子を含む化合物の体積変化の影響を緩和することができ、活物質層と集電体の密着性をより向上することができる。負極用活物質は、ケイ素原子を含む化合物とグラファイトとの混合物からなることが特に好ましい。
 本発明の電極用バインダー組成物を電気二重層キャパシタ用の電極を製造するために使用する場合、電極用スラリーが含有する活物質としては、例えば炭素材料、アルミニウム化合物、ケイ素酸化物などを用いることが好ましい。
 さらに、本発明の電極用バインダー組成物をリチウムイオンキャパシタ用の電極を製造するために使用する場合、電極用スラリーが含有する活物質としては、例えば炭素材料、ポリアセン系有機半導体(PAS)などを用いることが好ましい。
2.2 任意的添加成分
 本発明における電極用スラリーは、前述した成分以外に、必要に応じてその他の成分を含有していてもよい。このようなその他の成分としては、例えば導電付与剤、増粘剤、液状媒体(ただし、電極用バインダー組成物からの持ち込み分を除く。)などを挙げることができる。
2.2.1 導電付与剤
 電極用スラリーにおける導電付与剤の割合は、活物質100質量部に対して、好ましくは20質量部以下であり、より好ましくは1~15質量部であり、特に2~10質量部であることが好ましい。
 導電付与剤の具体例としては、リチウムイオン二次電池においてはカーボンなどを挙げることができる。カーボンとしては、活性炭、アセチレンブラック、ケッチェンブラック、ファーネスブラック、黒鉛、炭素繊維、フラーレンなどを挙げることができる。これらの中でも、アセチレンブラックまたはファーネスブラックを好ましく使用することができる。
2.2.2 増粘剤
 電極用スラリーは、その塗工性を改善する観点から、増粘剤を含有することができる。増粘剤の使用割合としては、電極用スラリー中の増粘剤の重量(Wv)と活物質の重量(Wa)との比(Wv/Wa)が0.001~0.1となる割合である。この比(Wv/Wa)は、0.005~0.05であることが好ましい。
 上記増粘剤の具体例としては、例えば例えばカルボキシメチルセルロース、メチルセルロース、エチルセルロース、ヒドロキシメチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロースなどのセルロース誘導体;
上記セルロース誘導体のアンモニウム塩またはアルカリ金属塩;
ポリ(メタ)アクリル酸、変性ポリ(メタ)アクリル酸などのポリカルボン酸;
上記ポリカルボン酸のアルカリ金属塩;
ポリビニルアルコール、変性ポリビニルアルコール、エチレン−ビニルアルコール共重合体などのポリビニルアルコール系(共)重合体;
(メタ)アクリル酸、マレイン酸およびフマル酸などの不飽和カルボン酸と、ビニルエステルとの共重合体の鹸化物などの水溶性ポリマーなどを挙げることができる。
2.3 液状媒体
 電極用スラリーは、電極用バインダー組成物を含有するから、電極用バインダー組成物が含有していた(C)液状媒体を含有することとなる。しかしながら電極用スラリーは、電極用バインダー組成物から持ち込まれた液状媒体に加えて、さらなる液状媒体を追加で含有してもよい。
 電極用スラリーにおける液状媒体(電極用バインダー組成物からの持ち込み分を含む。)の使用割合は、電極用スラリーの固形分濃度(電極用スラリー中の液状媒体以外の成分の合計質量が電極用スラリーの全質量に占める割合をいう。以下同じ。)が、30~70質量%となる割合とすることが好ましく、40~60質量%となる割合とすることがより好ましい。
 電極用スラリーに追加含有される液状媒体は、電極用バインダー組成物に含有されていた(C)液状媒体と同種であってもよく、異なっていてもよいが、電極用バインダー組成物における(C)液状媒体について上述した液状媒体から選択して使用されることが好ましい。
2.4 電極用スラリーの調製方法
 電極用スラリーは、上記の各成分を含有するものである限り、どのような方法によって調製されたものであってもよい。
 しかしながら、より良好な分散性および安定性を有する電極用スラリーを、より効率的且つ安価に調製するとの観点から、電極用バインダー組成物に、活物質および必要に応じて用いられる任意的添加成分を加え、これらを混合することにより調製することができる。
 電極用バインダー組成物とその他の成分とを混合するためには、公知の手法による攪拌によって行うことができる。
 電極用スラリーの調製(各成分の混合操作)は、少なくともその工程の一部を減圧下で行うことが好ましい。これにより、得られる活物質層内に気泡が生じることを防止することができる。減圧の程度としては、絶対圧として、5.0×10~5.0×10Pa程度とすることが好ましい。
 電極用スラリーを調製するための混合撹拌としては、スラリー中に活物質粒子の凝集体が残らない程度に撹拌し得る混合機と、必要にして十分な分散条件とを選択する必要がある。分散の程度は粒ゲージにより測定可能であるが、少なくとも100μmより大きい凝集物がなくなるように混合分散することが好ましい。このような条件に適合する混合機としては、例えばボールミル、ビーズミル、サンドミル、脱泡機、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、ホバートミキサーなどを例示することができる。
3. 蓄電デバイス用電極の製造方法
 蓄電デバイス用電極は、金属箔などの適宜の集電体の表面に、本発明の電極用バインダー組成物を用いて製造された電極用スラリーを塗布して塗膜を形成し、次いで該塗膜から液状媒体を除去することにより、製造することができる。この様にして製造された電極は、集電体上に、前述の重合体および活物質、さらに必要に応じて使用される任意添加成分を含有する活物質層が結着されてなるものである。集電体の表面に前述した電極用スラリーから形成された層を有する電極は、集電体と活物質層間と間の結着性に優れるとともに、電気的特性の一つである充放電レート特性が良好である。
 集電体は、導電性材料からなるものであれば特に制限されない。リチウムイオン二次電池においては、鉄、銅、アルミニウム、ニッケル、ステンレスなどの金属製の集電体が使用されるが、特に正極にアルミニウムを、負極に銅を用いた場合、本発明の正極用スラリーの効果が最もよく現れる。ニッケル水素二次電池における集電体としては、パンチングメタル、エキスパンドメタル、金網、発泡金属、網状金属繊維焼結体、金属メッキ樹脂板などが使用される。
 集電体の形状および厚さは特に制限されないが、厚さ0.001~0.5mm程度のシート状のものとすることが好ましい。
 電極用スラリーの集電体への塗布方法については、特に制限はない。塗布は、例えばドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、浸漬法、ハケ塗り法などの適宜の方法によることができる。電極用スラリーの塗布量も特に制限されないが、液状媒体を除去した後に形成される活物質層の厚さが、0.005~5mmとなる量とすることが好ましく、0.01~2mmとなる量とすることがより好ましい。
 塗布後の塗膜からの液状媒体の除去方法についても特に制限されず、例えば温風、熱風、低湿風による乾燥;真空乾燥;(遠)赤外線、電子線などの照射による乾燥などによることができる。乾燥速度としては、応力集中によって活物質層に亀裂が入ったり、活物質層が集電体から剥離したりしない程度の速度範囲の中で、できるだけ早く液状媒体が除去できるように適宜に設定することができる。
 さらに、液状媒体除去後の集電体をプレスすることにより、活物質層の密度を高めることが好ましい。プレス後の活物質層の密度は、電極を正極として使用する場合には、1.5~3.8g/cmとすることが好ましく、1.7~3.6g/cmとすることがより好ましく;
電極を負極として使用する場合には、1.2~1.9g/cmとすることが好ましく、1.3~1.8g/cmとすることがより好ましい。
 プレス方法としては、金型プレス、ロールプレスなどの方法が挙げられる。プレスの条件は、使用するプレス機器の種類および活物質層の密度の所望値によって適宜に設定されるべきである。この条件は、当業者による少しの予備実験により、容易に設定することができるが、例えばロールプレスの場合、ロールプレス機の線圧力は0.1~10t/cm、好ましくは0.5~5t/cmの圧力において、例えばロール温度が20~100℃において、分散媒除去後の塗膜の送り速度(ロールの回転速度)が1~80m/分、好ましくは5~50m/分で行うことができる。
 プレス後の塗膜は、さらに、減圧下で加熱して液状媒体を完全に除去することが好ましい。この場合の減圧の程度としては、絶対圧として50~200Paとすることが好ましく、75~150Paとすることがより好ましい。加熱温度としては、100~200℃とすることが好ましく、120~180℃とすることがより好ましい。加熱時間は、2~12時間とすることが好ましく、4~8時間とすることがより好ましい。
 このようにして製造された蓄電デバイス用電極は、集電体と活物質層との間の密着性に優れるとともに、電気的特性の一つであるサイクル特性が良好である。
4. 蓄電デバイス
 上記のような本発明の蓄電デバイス用電極を用いて、蓄電デバイスを製造することができる。
 蓄電デバイスは、前述した電極を備えるものであり、さらに電解液を含有し、セパレータなどの部品を用いて、常法に従って製造することができる。具体的な製造方法としては、例えば、負極と電極とをセパレータを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に収納し、該電池容器に電解液を注入して封口する方法などを挙げることができる。電池の形状は、コイン型、円筒型、角形、ラミネート型など、適宜の形状であることができる。
 電解液は、液状でもゲル状でもよく、負極活物質、電極活物質の種類に応じて、蓄電デバイスに用いられる公知の電解液の中から電池としての機能を効果的に発現するものを選択すればよい。
 電解液は、電解質を適当な溶媒に溶解した溶液であることができる。
 上記電解質としては、例えばリチウムイオン二次電池においては、従来から公知のリチウム塩のいずれをも使用することができ、その具体例としては、例えばLiClO、LiBF、LiPF、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl、LiCl、LiBr、LiB(C、LiCFSO、LiCHSO、LiCSO、Li(CFSON、低級脂肪酸カルボン酸リチウムなどを例示することができる。
 上記電解質を溶解するための溶媒は、特に制限されるものではないが、その具体例として、例えばプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどのカーボネート化合物;
γ−ブチルラクトンなどのラクトン化合物;
トリメトキシメタン、1,2−ジメトキシエタン、ジエチルエーテル、2−エトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフランなどのエーテル化合物;
ジメチルスルホキシドなどのスルホキシド化合物などを挙げることができ、これらのうちから選択される一種以上を使用することができる。
 電解液中の電解質の濃度としては、好ましくは0.5~3.0モル/Lであり、より好ましくは0.7~2.0モル/Lである。
Hereinafter, preferred embodiments of the present invention will be described in detail. It should be understood that the present invention is not limited to only the embodiments described below, and includes various modified examples that are implemented without departing from the scope of the present invention.
In this specification, “(meth) acrylic acid” is a concept encompassing both “acrylic acid” and “methacrylic acid”. Further, “˜ (meth) acrylate” is a concept encompassing both “˜acrylate” and “˜methacrylate”.
1. Electrode binder composition
The binder composition for an electrode of the present embodiment is a binder composition used for producing an electrode used for an electricity storage device, and includes at least (A) polymer particles, (B) polyamic acid and a partial imide thereof. It contains at least one polymer selected from the group consisting of polymerized polymers, and (C) a liquid medium.
The content ratio of the polymer (B) in the binder composition for an electrode of the present invention is as follows: (A) the content of the polymer particles is Ma (parts by mass), In this case, the ratio of Ma / Mb is preferably 1 to 50, and preferably 5 to 30. Further, the content ratio of the polymer (B) with respect to the total amount of the binder composition for an electrode of the present invention is preferably 5,000 to 100,000 ppmw, more preferably 10,000 to 50,000 ppmw, In particular, it is preferably 15,000 to 30,000 ppmw. Said "ppmw" is a unit showing 1 / 1,000,000 of mass standards.
By making the content rate of (B) polymer in the binder composition for electrodes into the said range, while the electrical storage capacity of the electrical storage device obtained increases, charging / discharging characteristics also improve.
That is, in an electric storage device, generally, a binder (polymer) attached to the surface of an active material prevents movement of a charge transfer material (for example, solvated lithium ions) between the electrolytic solution and the active material. The storage capacity is reduced by the amount attached. However, by setting the content ratio of the polymer (B) within the above range, the swelling property of the binder with respect to the electrolytic solution can be improved without impairing the binder action. Since the binder swollen with the electrolytic solution does not hinder the movement of the charge transfer material, the electricity storage device using the binder has a large electricity storage capacity.
Furthermore, by setting the content ratio of (B) polymer within the above range, in the electrode of the electricity storage device, (A) flexibility due to the contribution of polymer particles and (B) mechanical strength due to the contribution of polymer Will be expressed in a well-balanced manner. Therefore, since such an electrode can follow the volume change of the active material accompanying charging / discharging while maintaining the adhesiveness as a binder, it exhibits excellent charging / discharging characteristics.
(C) The ratio of the liquid medium used is the solid content concentration of the electrode binder composition (the ratio of the total mass of components other than the liquid medium (C) in the electrode binder composition to the total mass of the electrode binder composition). The same shall apply hereinafter) is preferably in a proportion of 5 to 80% by mass, more preferably in a proportion of 20 to 70% by mass.
Hereinafter, each component contained in the binder composition for electrodes of the present embodiment will be described in detail.
1.1 (A) Polymer particles
The (A) polymer particle in the binder composition for electrodes of the present invention is a component that becomes a binder in the active material layer.
(A) The average particle diameter of the polymer particles is preferably in the range of 50 to 400 nm, more preferably in the range of 100 to 250 nm. (A) Adsorption of (A) polymer particles to the surface of the electrode active material in an electrode produced using the binder composition for an electrode of the present invention by having the average particle diameter of the polymer particles in the above range. Thus, (A) the polymer particles can follow and move with the movement of the electrode active material. As a result, since any one of the electrode active material particles and the polymer particles can be prevented from being migrated alone, deterioration of electrical characteristics associated with charge / discharge can be suppressed.
This average particle size is determined by measuring the particle size distribution using a particle size distribution measuring apparatus based on the dynamic light scattering method, and the cumulative frequency of the number of particles when the particles are accumulated in ascending order of particle size is 50%. It is a value of a particle diameter (D50). Examples of such a particle size distribution measuring apparatus include HORIBA LB-550, SZ-100 series (manufactured by Horiba, Ltd.), FPAR-1000 (manufactured by Otsuka Electronics Co., Ltd.), and the like. These particle size distribution measuring devices are not intended to evaluate only the primary particles of the polymer particles, but can also evaluate the secondary particles formed by aggregation of the primary particles. Therefore, the particle size distribution measured by these particle size distribution measuring devices can be used as an index of the dispersion state of the (A) polymer particles contained in the electrode binder composition. (A) The average particle diameter of the polymer particles is determined by centrifuging the electrode slurry prepared by using the electrode binder composition of the present invention to precipitate the electrode active material, and then using the supernatant liquid for the above particle size. It can also be measured by a method of measuring with a distribution measuring device.
As this (A) polymer particle, for example,
A repeating unit derived from a conjugated diene compound;
Repeating units derived from aromatic vinyl compounds and
Particles containing a polymer having the following (hereinafter referred to as “polymer particles A1”),
Examples thereof include particles containing a polymer having a repeating unit derived from a monomer having a fluorine atom (hereinafter referred to as “polymer particle A2”), and any of these may be used. preferable.
1.1.1 Polymer particles A1
The polymer particle A1 is a particle containing a polymer having a repeating unit derived from a conjugated diene compound and a repeating unit derived from an aromatic vinyl compound.
When this polymer particle A1 is measured by a differential scanning calorimeter (DSC), it preferably has only one endothermic peak in the temperature range of −40 to + 25 ° C. The temperature of this endothermic peak is more preferably in the range of −30 to + 20 ° C., and further preferably in the range of −25 to + 10 ° C. When the polymer particle A1 in DSC analysis has only one endothermic peak and the peak temperature is in the above range, the polymer exhibits good adhesion and has a moderate flexibility in the thick material layer. This is preferable because it can be given. The above endothermic peak is considered to be the glass transition temperature Tg of the polymer particle A1.
The polymer particle A1 is a repeating unit derived from an unsaturated carboxylic acid ester, a repeating unit derived from an α, β-unsaturated nitrile compound, a repeating unit derived from an unsaturated carboxylic acid, and a repeat derived from another monomer. You may further have 1 or more types of repeating units selected from the group which consists of a unit.
Since the polymer particle A1 in the present invention is a component that becomes a binder in the active material layer, in addition to the binding property and the affinity for the conductivity-imparting agent, the swelling property to the electrolytic solution is important. Moreover, it is preferable that the electrode slurry prepared by using the electrode binder composition of the present invention is stable over time. From such a viewpoint, the polymer particle A1 contains, in addition to the repeating unit derived from the conjugated diene compound and the repeating unit derived from the aromatic vinyl compound, the repeating unit derived from the α, β-unsaturated nitrile compound and the unsaturated unit. It is preferable to further have at least one repeating unit selected from the group consisting of repeating units derived from carboxylic acid, and more preferable to have both of these.
The conjugated diene compound is a monomer having a function of improving the binding property of the binder component. The content ratio of the repeating unit derived from the conjugated diene compound in the polymer particle A1 is preferably 30 to 60 parts by mass, and preferably 35 to 55 parts by mass when all the repeating units are 100 parts by mass. More preferred. When the content ratio of the repeating unit derived from the conjugated diene compound is in the above range, the binding property of the polymer particle A1 can be further increased. Examples of the conjugated diene compound include 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene and the like. , One or more selected from these can be used. As the conjugated diene compound, 1,3-butadiene is particularly preferable.
The aromatic vinyl compound has a function of improving the affinity of the binder component for the conductivity-imparting agent when the electrode slurry prepared using the electrode binder composition of the present invention contains a conductivity-imparting agent. It is a monomer. The content ratio of the repeating unit derived from the aromatic vinyl compound in the polymer particle A1 is preferably 10 to 40 parts by mass, and 15 to 35 parts by mass when the total repeating units are 100 parts by mass. Is more preferable. When the content ratio of the repeating unit derived from the aromatic vinyl compound is in the above range, the polymer particle A1 has an appropriate binding property to the current collector and the electrode active material (particularly graphite). In addition, it is preferable in that the flexibility of the active material layer is not impaired. Examples of the aromatic vinyl compound include styrene, α-methylstyrene, p-methylstyrene, chlorostyrene, and the like, and one or more selected from these can be used. Styrene is preferably used as the aromatic vinyl compound.
The unsaturated carboxylic acid ester is a monomer having a function of adjusting the affinity of the binder component for the electrolytic solution. The content ratio of the repeating unit derived from the unsaturated carboxylic acid ester in the polymer particle A1 is preferably 5 to 30 parts by mass, and preferably 6 to 20 parts by mass when all the repeating units are 100 parts by mass. It is more preferable. When the content ratio of the repeating unit derived from the unsaturated carboxylic acid ester is in the above range, the affinity of the binder component to the electrolyte solution becomes appropriate, and as a result, the binder component becomes an electrical resistance component in the electrode. It is possible to prevent an increase in the internal resistance of the electrode and to prevent a decrease in binding property due to excessive absorption of the electrolytic solution. Examples of unsaturated carboxylic acid esters that can be used include alkyl esters of unsaturated carboxylic acids, hydroxyalkyl esters of unsaturated carboxylic acids, and the like. Specific examples thereof include alkyl esters of unsaturated carboxylic acids such as methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, ( N-butyl (meth) acrylate, i-butyl (meth) acrylate, n-amyl (meth) acrylate, i-amyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) acrylate, ( 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, etc .;
Examples of the hydroxyalkyl ester of the unsaturated carboxylic acid may include, for example, hydroxymethyl (meth) acrylate, hydroxyethyl (meth) acrylate, ethylene glycol (meth) acrylate, and the like. One or more can be used. Among these, 1 selected from the group consisting of methyl (meth) acrylate, ethyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, hydroxymethyl (meth) acrylate and hydroxyethyl (meth) acrylate It is preferable to use at least one species, and it is particularly preferable to use at least one selected from the group consisting of methyl (meth) acrylate, hydroxymethyl (meth) acrylate, and hydroxyethyl (meth) acrylate.
The α, β-unsaturated nitrile compound is a monomer having a function of improving the swellability of the binder component to the electrolytic solution. As a result, the diffusibility of ions into the binder is improved. As a result, it is considered that the electrode resistance is lowered and an electrode capable of realizing better charge / discharge characteristics is provided. The content ratio of the repeating unit derived from the α, β-unsaturated nitrile compound in the polymer particle A1 is preferably 35 parts by mass or less when the total repeating unit is 100 parts by mass, and 5 to 25 parts by mass. It is more preferable that When the content ratio of the repeating unit derived from the α, β-unsaturated nitrile compound is in the above range, it has excellent affinity with the electrolyte used, and the swelling rate does not become too large, contributing to the improvement of battery characteristics. Will be. Examples of the α, β-unsaturated nitrile compound include acrylonitrile, methacrylonitrile, α-chloroacrylonitrile, α-ethylacrylonitrile, vinylidene cyanide, and one or more selected from these are used. can do. As the α, β-unsaturated nitrile compound, it is preferable to use one or more selected from the group consisting of acrylonitrile and methacrylonitrile, and it is more preferable to use acrylonitrile.
The unsaturated carboxylic acid is a monomer having a function of improving the stability of the electrode slurry prepared by using the electrode binder composition of the present invention. The content ratio of the repeating unit derived from the unsaturated carboxylic acid in the polymer particle A1 is preferably 15 parts by mass or less, and 0.3 to 10 parts by mass when the total repeating unit is 100 parts by mass. It is more preferable. When the content ratio of the repeating unit derived from the unsaturated carboxylic acid is in the above range, the dispersion stability of the polymer particles A1 at the time of preparing the slurry for the electrode is excellent, and it is difficult for the aggregate to be generated. The increase in viscosity of the slurry over time can be suppressed. Examples of the unsaturated carboxylic acid include (meth) acrylic acid, crotonic acid, maleic acid, fumaric acid, itaconic acid, and the like, and one or more selected from these can be used. As the unsaturated carboxylic acid, it is particularly preferable to use one or more selected from the group consisting of acrylic acid, methacrylic acid and itaconic acid.
The other monomers are monomers that do not belong to the above categories. The content ratio of the repeating units derived from the other monomers in the polymer particle A1 is preferably 1 part by mass or less and 0.1 parts by mass or less when the total repeating unit is 100 parts by mass. It is more preferable. Specific examples of other monomers include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, hexa Crosslinkable monomers such as (meth) acrylic acid dipentaerythritol, divinylbenzene;
A fluorine-containing monomer having an ethylenically unsaturated bond, such as vinylidene fluoride, tetrafluoroethylene, and hexafluoropropylene;
(Meth) acrylamide;
N-methylol acrylamide;
Carboxylic acid vinyl esters such as vinyl acetate and vinyl propionate;
An acid anhydride of an ethylenically unsaturated dicarboxylic acid;
Examples thereof include aminoalkylamides of ethylenically unsaturated carboxylic acids such as aminoethylacrylamide, dimethylaminomethylmethacrylamide, and methylaminopropylmethacrylamide, and one or more selected from these can be used. . In the polymer particle A1, it is particularly preferable not to use other monomers.
The polymer particle A1 is preferably a particle composed only of a polymer having a repeating unit as described above.
1.1.2 Synthesis of polymer particle A1
The method for synthesizing the polymer particles A1 in the present invention is not particularly limited, but can be synthesized by, for example, a known emulsion polymerization method. Emulsion polymerization is preferably carried out in a suitable aqueous medium, particularly preferably in water.
In the emulsion polymerization for the synthesis of the polymer particles A1, a predetermined monomer mixture is preferably present at 40 to 80 ° C., preferably 4 to 12 in the presence of an emulsifier, a polymerization initiator, a molecular weight regulator, and the like. This can be done by emulsion polymerization over time. You may change reaction temperature in the middle of superposition | polymerization. Here, the total solid content concentration in the emulsion polymerization (the ratio of the total mass of components other than the aqueous medium in the polymerization system to the total mass of the polymerization system) is 50% by mass or less, whereby the dispersion stability of the polymer particles obtained is reduced. Can advance the polymerization reaction in a good state. The total solid content concentration is more preferably 45% by mass or less, and still more preferably 40% by mass or less.
The use ratio of the emulsifier in the emulsion polymerization for the synthesis of the polymer particles A1 is preferably 0.1 to 2.0 parts by mass with respect to 100 parts by mass in total of the monomers used. More preferably, it is set to ~ 1.0 part by mass. Examples of the emulsifier include sulfate esters of higher alcohols, alkylbenzene sulfonates, alkyl diphenyl ether disulfonates, aliphatic sulfonates, aliphatic carboxylates, dehydroabietic acid salts, naphthalene sulfonic acid / formalin condensates, Anionic surfactants such as sulfate salts of ionic surfactants;
Nonionic surfactants such as alkyl esters of polyethylene glycol, alkyl phenyl ethers of polyethylene glycol, alkyl ethers of polyethylene glycol;
Fluorosurfactants such as perfluorobutyl sulfonate, perfluoroalkyl group-containing phosphate ester, perfluoroalkyl group-containing carboxylate, and perfluoroalkylethylene oxide adducts can be mentioned, and selected from these More than one kind can be used.
The use ratio of the polymerization initiator is preferably 0.5 to 2 parts by mass with respect to 100 parts by mass in total of the monomers used. Examples of the polymerization initiator include water-soluble polymerization initiators such as lithium persulfate, potassium persulfate, sodium persulfate, and ammonium persulfate;
Cumene hydroperoxide, benzoyl peroxide, t-butyl hydroperoxide, acetyl peroxide, diisopropylbenzene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, azobisisobutyronitrile, 1, Oil-soluble polymerization initiators such as 1′-azobis (cyclohexanecarbonitrile) can be appropriately selected and used. Of these, potassium persulfate, sodium persulfate, cumene hydroperoxide or t-butyl hydroperoxide is particularly preferably used.
The proportion of the molecular weight regulator used is preferably 0.1 to 2.0 parts by mass with respect to 100 parts by mass in total of the monomers used. Examples of the molecular weight modifier include alkyl mercaptans such as n-hexyl mercaptan, n-octyl mercaptan, t-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, and n-stearyl mercaptan;
Xanthogen compounds such as dimethylxanthogen disulfide and diisopropylxanthogen disulfide;
Thiuram compounds such as terpinolene, tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetramethylthiuram monosulfide;
Phenolic compounds such as 2,6-di-tert-butyl-4-methylphenol and styrenated phenol;
Allyl compounds such as allyl alcohol;
Halogenated hydrocarbon compounds such as dichloromethane, dibromomethane, carbon tetrabromide;
In addition to vinyl ether compounds such as α-benzyloxystyrene, α-benzyloxyacrylonitrile, α-benzyloxyacrylamide,
And triphenylethane, pentaphenylethane, acrolein, metaacrolein, thioglycolic acid, thiomalic acid, 2-ethylhexyl thioglycolate, α-methylstyrene dimer, and the like. Can be used.
After completion of the emulsion polymerization of the polymer particles A1, it is preferable to adjust the pH to about 5 to 10 by adding a neutralizing agent to the polymerization mixture. The pH is more preferably 6 to 9, and further preferably 7 to 8.5. Although it does not specifically limit as a neutralizing agent used here, For example, metal hydroxides, such as sodium hydroxide and potassium hydroxide; Ammonia etc. can be mentioned. By setting to the above pH range, the blending stability of the polymer particles is improved.
By concentrating the polymerization mixture after the neutralization treatment, the solid content concentration can be increased while maintaining good stability of the polymer particles.
1.1.2 Polymer particle A2
The polymer particle A2 in the binder composition for electrodes of the present invention is a particle containing a polymer having a repeating unit derived from a monomer having a fluorine atom.
The polymer particle A2 in the present invention may have only a repeating unit derived from a monomer having a fluorine atom, and other monomers in addition to the repeating unit derived from a monomer having a fluorine atom. It may have a repeating unit derived from.
The preferable content ratio of the repeating unit derived from the monomer having a fluorine atom in the polymer particle A2 in the present invention is preferably 3% by mass or more, more preferably 5%, based on the total mass of the polymer particle A2. It is ˜50 mass%, more preferably 15 to 40 mass%, and particularly preferably 20 to 30 mass%.
Examples of the monomer having a fluorine atom include an olefin compound having a fluorine atom and a (meth) acrylic acid ester having a fluorine atom. Examples of the olefin compound having a fluorine atom include vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, trifluorochloroethylene, and perfluoroalkyl vinyl ether. Examples of the (meth) acrylic acid ester having a fluorine atom include a compound represented by the following general formula (1), (meth) acrylic acid 3 [4 [1-trifluoromethyl-2,2-bis [bis (tri Fluoromethyl) fluoromethyl] ethynyloxy] benzooxy] 2-hydroxypropyl and the like.
Figure JPOXMLDOC01-appb-I000001
(In the general formula (1), R 1 Is a hydrogen atom or a methyl group, R 2 Is a C1-C18 hydrocarbon group containing a fluorine atom. )
R in the general formula (1) 2 Examples thereof include a fluorinated alkyl group having 1 to 12 carbon atoms, a fluorinated aryl group having 6 to 16 carbon atoms, and a fluorinated aralkyl group having 7 to 18 carbon atoms. An alkyl group is preferable. R in the general formula (1) 2 Preferable specific examples of are, for example, 2,2,2-trifluoroethyl group, 2,2,3,3,3-pentafluoropropyl group, 1,1,1,3,3,3-hexafluoropropane- 2-yl group, β- (perfluorooctyl) ethyl group, 2,2,3,3-tetrafluoropropyl group, 2,2,3,4,4,4-hexafluorobutyl group, 1H, 1H, 5H -Octafluoropentyl group, 1H, 1H, 9H-perfluoro-1-nonyl group, 1H, 1H, 11H-perfluoroundecyl group, perfluorooctyl group and the like can be mentioned. Among these, the monomer having a fluorine atom is preferably an olefin compound having a fluorine atom, particularly preferably at least one selected from the group consisting of vinylidene fluoride, tetrafluoroethylene and hexafluoropropylene. .
The monomer having a fluorine atom may be used alone or in combination of two or more.
Examples of the other monomers include unsaturated carboxylic acid esters, hydrophilic monomers (excluding those corresponding to unsaturated carboxylic acid esters; the same applies hereinafter), crosslinkable monomers, α-olefins, Aromatic vinyl compounds (excluding those corresponding to the above-mentioned hydrophilic monomers and crosslinkable monomers; the same shall apply hereinafter) and the like, and one or more selected from these may be used. can do.
It is preferable that the polymer particle A2 has a structural unit derived from the unsaturated carboxylic acid ester among the above, because adhesion can be further improved. The point that the stability of the slurry for an electrode using the binder composition for an electrode of the present invention is improved when the polymer particle A2 has a structural unit derived from an unsaturated carboxylic acid among the hydrophilic monomers. Is preferable. Moreover, when the polymer particle A2 has a repeating unit derived from the α, β-unsaturated nitrile compound among the hydrophilic monomers, the swelling property of the polymer particle with respect to the electrolytic solution can be further improved. . That is, the presence of a nitrile group facilitates the penetration of the solvent (medium) into the network structure composed of polymer chains and the network spacing is widened, so that the charge transfer material (solvated ions) can easily move through this network structure. Become. Thereby, it is thought that the diffusibility of ion improves, As a result, electrode resistance falls and it is preferable at the point which can implement | achieve more favorable charge / discharge characteristics.
The preferred content ratios of the repeating units derived from other monomers in the polymer particle A2 in the present invention are as follows based on the total mass of the polymer particle A2.
Repeating unit derived from unsaturated carboxylic acid ester: preferably 95% by mass or less, more preferably 50 to 90% by mass, still more preferably 60 to 80% by mass;
Repeating units derived from hydrophilic monomers: preferably 35% by mass or less, more preferably 2-30% by mass, still more preferably 4-20% by mass; and
Repeating unit derived from a crosslinkable monomer: preferably 2% by mass or less, more preferably 1% by mass or less.
Examples of the unsaturated carboxylic acid ester include an unsaturated carboxylic acid alkyl ester, an unsaturated carboxylic acid cycloalkyl ester, an unsaturated carboxylic acid hydroxyalkyl ester, and an unsaturated carboxylic acid polyhydric alcohol ester. it can.
Examples of the alkyl ester of the unsaturated carboxylic acid include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, and (meth) acrylic acid n. -Butyl, i-butyl (meth) acrylate, n-amyl (meth) acrylate, i-amyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, (meth) acryl N-octyl acid, nonyl (meth) acrylate, decyl (meth) acrylate, etc .;
Examples of the cycloalkyl ester of the unsaturated carboxylic acid include cyclohexyl (meth) acrylate and the like;
Examples of the hydroxyalkyl ester of the unsaturated carboxylic acid include hydroxymethyl (meth) acrylate, hydroxyethyl (meth) acrylate, and the like, and one or more selected from these can be used. Can do.
Examples of the hydrophilic monomer include unsaturated carboxylic acids, α, β-unsaturated nitrile compounds, and compounds having a hydroxyl group. Examples of the unsaturated carboxylic acid include (meth) acrylic acid, crotonic acid, maleic acid, fumaric acid, itaconic acid and the like;
Examples of the α, β-unsaturated nitrile compound include acrylonitrile, methacrylonitrile, α-chloroacrylonitrile, α-ethylacrylonitrile, vinylidene cyanide and the like;
Examples of the compound having a hydroxyl group include p-hydroxystyrene, and one or more selected from these compounds can be used.
Examples of the crosslinkable monomer include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, hexa (meth) ) Dipentaerythritol acrylate, etc .;
Examples of the α-olefin include ethylene and propylene;
Examples of the aromatic vinyl compound include styrene, α-methylstyrene, p-methylstyrene, chlorostyrene, and the like, and any one or more selected from these can be used. .
The polymer particle A2 in the present invention is a monomer other than the above-described monomer having a fluorine atom, unsaturated carboxylic acid ester, hydrophilic monomer, crosslinkable monomer, α-olefin and aromatic vinyl compound. It is preferable not to contain a repeating unit derived from a monomer.
1.1.2.1 Polymer alloy particles
As the polymer particle A2 in the present invention, polymer particles having a repeating unit derived from a monomer having a fluorine atom as described above may be used as they are, or
It may be a polymer alloy particle containing a polymer (A2a) having a repeating unit derived from a monomer having a fluorine atom and a polymer (a2b) having a repeating unit derived from an unsaturated carboxylic acid ester. . When the polymer particle A2 is a polymer alloy particle, it is preferable in that ionic conductivity, oxidation resistance, and adhesion can be expressed simultaneously.
“Polymer alloy” is a “generic name for multi-component polymers obtained by mixing or chemical bonding of two or more components” according to the definition in “Iwanami Physical and Chemical Dictionary 5th edition. Iwanami Shoten”. “Polymer blends physically mixed with different polymers, block and graft copolymers in which different polymer components are covalently bonded, polymer complexes in which different polymers are associated by intermolecular forces, and different polymers entangled with each other IPN (Interpenetrating Polymer Network, etc.). However, the polymer alloy particles contained in the binder composition of the present invention are preferably particles made of IPN among “polymer alloys in which different types of polymer components are not bonded by covalent bonds”.
The polymer (A2a) constituting the polymer alloy particles is excellent in ionic conductivity, and the hard segment of the crystalline resin is aggregated to give a pseudo-crosslinking point such as C—H—F—C to the main chain. It is thought that there is. For this reason, when the polymer (A2a) is used alone as a binder material, its ionic conductivity and oxidation resistance are good, but its adhesion and flexibility are insufficient, so that the adhesion is low. On the other hand, although the polymer (A2b) constituting the polymer alloy particles is excellent in adhesion and flexibility, it has low oxidation resistance. Therefore, when this is used alone as a binder material for an electrode (particularly a positive electrode), Since charging and discharging are repeated to cause oxidative decomposition and alteration, good charge / discharge characteristics cannot be obtained.
However, by using the polymer alloy particles containing the polymer (A2a) and the polymer (A2b), ionic conductivity and oxidation resistance, and adhesion can be expressed simultaneously, and good charge / discharge characteristics It has become possible to produce an electrode having When the polymer alloy particles are composed of the polymer (A2a) and the polymer (A2b) only, the oxidation resistance can be further improved, which is preferable.
The polymer alloy particles preferably have only one endothermic peak in the temperature range of −50 to 250 ° C. when measured by differential scanning calorimetry (DSC) according to JIS K7121. The temperature of this endothermic peak is more preferably in the range of −30 to + 30 ° C.
When the polymer (A2a) constituting the polymer alloy particles is present alone, it generally has an endothermic peak (melting temperature) at -50 to 250 ° C. The polymer (A2b) constituting the polymer alloy particles generally has an endothermic peak (glass transition temperature) different from that of the polymer (A2a). For this reason, when the polymer (A2a) and the polymer (A2b) in the particles are present in phase separation as in, for example, a core-shell structure, two endothermic peaks should be observed at −50 to 250 ° C. It is. However, when there is only one endothermic peak at −50 to 250 ° C., it can be estimated that the particles are polymer alloy particles.
Furthermore, when the temperature of only one endothermic peak of the polymer alloy particles is in the range of −30 to + 30 ° C., the particles can impart better flexibility and tackiness to the active material layer. Therefore, the adhesiveness can be further improved, which is preferable.
1.1.2.2 Polymer (A2a)
The polymer alloy particle as the polymer particle A2 in the present invention contains a polymer (A2a) having a repeating unit derived from a monomer having a fluorine atom. In this polymer (A2a), the content ratio of the repeating unit derived from the monomer having a fluorine atom is preferably 80% by mass or more, more preferably 90% by mass with respect to the total mass of the polymer A. That's it.
As described above, the monomer having a fluorine atom preferably contains at least one selected from the group consisting of vinylidene fluoride, ethylene tetrafluoride and propylene hexafluoride. It is preferable that all are at least one selected from vinylidene fluoride, tetrafluoroethylene and hexafluoropropylene.
The polymer (A2a) may further have a repeating unit derived from another unsaturated monomer in addition to the repeating unit derived from the monomer having a fluorine atom. Examples of the other unsaturated monomers include unsaturated carboxylic acid alkyl esters, unsaturated carboxylic acid cycloalkyl esters, hydrophilic monomers, crosslinkable monomers, α-olefins and aromatics described above. Vinyl compounds can be used.
The preferable content ratio of the repeating unit derived from each monomer in the polymer (A2a) is as follows based on the total mass of the polymer (A2a).
Repeating units derived from vinylidene fluoride: preferably 50 to 99% by mass, more preferably 80 to 98% by mass;
Repeating units derived from tetrafluoroethylene: preferably 50% by mass or less, more preferably 1-30% by mass, still more preferably 2-20% by mass; and
Repeating units derived from hexafluoropropylene: preferably 50% by mass or less, more preferably 1 to 30% by mass, still more preferably 2 to 25% by mass.
Most preferably, the polymer (A2a) is composed of only a repeating unit derived from at least one selected from the group consisting of vinylidene fluoride, tetrafluoroethylene and hexafluoropropylene.
1.1.2.3 Polymer (A2b)
The polymer alloy particle as the polymer particle A2 in the present invention has a repeating unit derived from another copolymerizable unsaturated monomer other than the monomer having a fluorine atom. The other unsaturated compound is preferably the unsaturated carboxylic acid ester described above, and in addition, a hydrophilic monomer, a crosslinkable monomer, an α-olefin, an aromatic vinyl compound, etc. are used in combination. can do.
In general, components such as the polymer (A2b) have good adhesion, but are considered to have poor ionic conductivity and oxidation resistance and have not been used for positive electrodes. However, in the present invention, by using such a polymer (A2b) as a polymer alloy particle together with the polymer (A2a), sufficient ionic conductivity and oxidation resistance are expressed while maintaining good adhesion. Has been successful.
The content ratio of the repeating unit derived from each monomer in the polymer (A2b) is as follows. The following are values when the mass of the polymer (A2b) is 100% by mass.
Repeating unit derived from unsaturated carboxylic acid ester: preferably 50% by mass or more, more preferably 60 to 95% by mass;
Repeating unit derived from a hydrophilic monomer: preferably 50% by mass or less, more preferably 5 to 40% by mass;
Repeating unit derived from a crosslinkable monomer: preferably 10% by mass or less, more preferably 5% by mass or less, further preferably 3% by mass or less, particularly preferably not containing this;
Repeating units derived from α-olefins: preferably 10% by weight or less, more preferably 5% by weight or less, further preferably 3% by weight or less, particularly preferably not containing this; and
A repeating unit derived from an aromatic vinyl compound: preferably 10% by mass or less, more preferably 5% by mass or less, further preferably 3% by mass or less, and particularly preferably not contain it.
The polymer (A2b) does not contain a repeating unit derived from a monomer other than the unsaturated carboxylic acid ester, hydrophilic monomer, crosslinkable monomer, α-olefin and aromatic vinyl compound exemplified above. It is preferable.
1.1.2.4 Synthesis of polymer alloy particles
The polymer alloy particle as the polymer particle A2 in the present invention is not particularly limited as long as it has the above-described configuration. For example, a known emulsion polymerization step or a combination thereof is appropriately combined. It can be easily synthesized.
For example, first, a polymer (A2a) having a repeating unit derived from a monomer having a fluorine atom is synthesized by a known method, and then
A monomer for constituting the polymer (A2b) was added to the polymer (A2a), and the monomer was sufficiently absorbed in the stitch structure of the polymer particles made of the polymer (A2a). Thereafter, a polymer alloy can be easily synthesized by a method of synthesizing the polymer (A2b) by polymerizing the absorbed monomer in the stitch structure of the polymer (A2a). When producing a polymer alloy by such a method, it is essential for the polymer (A2a) to sufficiently absorb the monomer of the polymer (A2b). When the absorption temperature is too low or the absorption time is too short, only a core-shell type polymer or a part of the surface layer becomes a polymer having an IPN type structure, and the polymer alloy in the present invention may not be obtained. Many. However, if the absorption temperature is too high, the pressure of the polymerization system becomes too high, which is disadvantageous in terms of reaction system handling and reaction control, and even if the absorption time is excessively long, further advantageous results are not obtained. .
From the above viewpoint, the absorption temperature is preferably 30 to 100 ° C., more preferably 40 to 80 ° C .;
The absorption time is preferably 1 to 12 hours, more preferably 2 to 8 hours. At this time, it is preferable to lengthen the absorption time when the absorption temperature is low, and a short absorption time is sufficient when the absorption temperature is high. Appropriate conditions are such that the value obtained by multiplying the absorption temperature (° C.) and the absorption time (h) is generally in the range of 120 to 300 (° C. · h), preferably 150 to 250 (° C. · h).
The operation of absorbing the monomer of the polymer (A2b) in the network structure of the polymer (A2a) is preferably performed in a known medium used for emulsion polymerization, for example, in water.
The content of the polymer (A2a) in the polymer alloy particles is preferably 3 to 60% by mass, more preferably 5 to 55% by mass, and more preferably 10 to 50% by mass in 100% by mass of the polymer alloy particles. %, More preferably 20 to 40% by mass. When the polymer alloy contains the polymer (A2a) in the above range, the balance between the ionic conductivity and the oxidation resistance and the adhesion becomes better. Moreover, when the polymer (A2b) in which the content ratio of the repeating unit derived from each monomer is in the above preferred range is used, the polymer alloy contains the polymer (A2a) in the above range, It becomes possible to set the content ratio of each repeating unit in the entire polymer alloy within the above-mentioned preferable range, and this ensures that the charge / discharge characteristics of the electricity storage device are good.
1.1.2.5 Synthesis of polymer particle A2
Synthesis of polymer particles A2 in the present invention, that is,
The polymerization when a polymer having a repeating unit derived from a monomer having a fluorine atom is synthesized by one-step polymerization;
Polymerization of polymer (A2a), and
Polymerization of polymer (A2b) in the presence of polymer (A2a)
Can be carried out in the presence of a known emulsifier (surfactant), a polymerization initiator, a molecular weight modifier, and the like.
This emulsion polymerization is preferably carried out in a suitable aqueous medium, particularly preferably in water. The total content of the monomers in the emulsion polymerization system can be 10 to 50% by mass, and preferably 20 to 40% by mass. The conditions for emulsion polymerization are preferably a polymerization time of 2 to 24 hours at a polymerization temperature of 40 to 85 ° C, and more preferably a polymerization time of 3 to 20 hours at a polymerization temperature of 50 to 80 ° C.
The proportion of the emulsifier used is the total of the monomers used (the total of the monomers used when the polymer particles A2 are synthesized by one-step polymerization, and the polymer (A2a) in the synthesis of the polymer (A2a)). The total of monomers leading to polymer (A2b) in the presence of polymer (A2a), the sum of monomers leading to polymer (A2b). The amount is preferably 0.01 to 10 parts by mass, more preferably 0.02 to 5 parts by mass with respect to parts.
The use ratio of the polymerization initiator is preferably 0.3 to 3 parts by mass with respect to 100 parts by mass in total of the monomers used.
The use ratio of the molecular weight regulator is preferably 5 parts by mass or less with respect to 100 parts by mass in total of the monomers used.
As said emulsifier, a polymerization initiator, and a molecular weight modifier, the thing same as what was illustrated above as what can be used for the synthesis | combination of polymer particle A1, respectively can be used.
1.2 (B) Polymer
The polymer (B) in the electrode binder composition of the present invention is at least one polymer selected from the group consisting of polyamic acid and partially imidized polymers thereof. When the binder composition for electrodes contains the polymer (B), the binding property between the active material layer produced using the binder composition for electrodes of the present invention and the current collector is (A). This is better than when only polymer particles are used. Therefore, even if the volume change of the active material due to charging / discharging occurs, the active material layer is held on the electrode without peeling from the current collector, and the capacity reduction due to repeated charging / discharging is effectively suppressed. be able to.
(B) When the polymer is a partially imidized polymer of polyamic acid, the imidation ratio is preferably 75% or less, more preferably 50% or less, and particularly preferably 30% or less. Is preferred. Since the partially imidized polymer having an imidization ratio in the above range has high solubility in water and an organic solvent, it is easy to synthesize the imidized polymer and prepare a binder composition for an electrode, and the binder composition. It is possible to improve the stability of the slurry for the electrode adjusted by using this, which is preferable.
Said imidation rate represents the ratio which the number of the imide ring structure occupies with respect to the sum total of the number of amic acid structures and the number of imide ring structures in an imidation polymer in percentage. The imidization rate of polyamic acid is 1 It can be determined using 1 H-NMR.
1.2.1 (B) Synthesis of polymer
A polyamic acid can be obtained by reacting a tetracarboxylic dianhydride and a diamine. The partial imide polymer of polyamic acid can be obtained by dehydrating and ring-closing a part of the amic acid structure of the polyamic acid to imidize it.
Examples of the tetracarboxylic dianhydride used to synthesize the polymer (B) in the present invention include an aliphatic tetracarboxylic dianhydride, an alicyclic tetracarboxylic dianhydride, and an aromatic tetracarboxylic dianhydride. An anhydride etc. can be mentioned.
Among the above, the tetracarboxylic dianhydride preferably includes an aromatic tetracarboxylic dianhydride. The tetracarboxylic dianhydride in the present invention consists only of an aromatic tetracarboxylic dianhydride, or
From the viewpoint of stability of the binder composition for an electrode of the present invention, it is preferably composed of only a mixture of an aromatic tetracarboxylic dianhydride and an alicyclic tetracarboxylic dianhydride. In the latter case, the use ratio of the alicyclic tetracarboxylic dianhydride is preferably 30 mol% or less, more preferably 20 mol% or less, based on the total tetracarboxylic dianhydride.
Specific examples of the tetracarboxylic dianhydride used for synthesizing the polymer (B) in the present invention include aliphatic tetracarboxylic dianhydrides such as butanetetracarboxylic dianhydride;
Examples of the alicyclic tetracarboxylic dianhydride include 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic acid dianhydride, 1,3,3a, 4, 5,9b-Hexahydro-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2-c] furan-1,3-dione, 1,3,3a, 4,5,9b- Hexahydro-8-methyl-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2-c] furan-1,3-dione, 3-oxabicyclo [3.2.1] octane -2,4-dione-6-spiro-3 '-(tetrahydrofuran-2', 5'-dione), 5- (2,5-dioxotetrahydro-3-furanyl) -3-methyl-3-cyclohexene- No 1,2-dicarboxylic acid 3,5,6-tricarboxy-2-carboxymethylnorbornane-2: 3,5: 6-dianhydride, 2,4,6,8-tetracarboxybicyclo [3.3.0] octane-2 : 4,6: 8-dianhydride, 4,9-dioxatricyclo [5.3.1.02,6] undecane-3,5,8,10-tetraone and the like;
Examples of the aromatic tetracarboxylic dianhydride include pyromellitic dianhydride and the like, and also tetracarboxylic dianhydrides described in JP 2010-97188 A.
Examples of the diamine used for synthesizing the polymer (B) in the present invention include aliphatic diamines, alicyclic diamines, aromatic diamines, diaminoorganosiloxanes, and the like.
The diamine used when synthesizing the polymer (B) in the present invention preferably contains 30% by mole or more, more preferably 50% by mole or more of the aromatic diamine, based on the total diamine. In particular, it is preferable to contain 80 mol% or more.
Specific examples of the diamine used for synthesizing the polymer (B) in the present invention include aliphatic diamines such as 1,1-metaxylylenediamine, 1,3-propanediamine, tetramethylenediamine, and pentamethylene. Diamine, hexamethylenediamine, etc .;
Examples of alicyclic diamines include 1,4-diaminocyclohexane, 4,4′-methylenebis (cyclohexylamine), 1,3-bis (aminomethyl) cyclohexane and the like;
Examples of aromatic diamines include p-phenylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl sulfide, 1,5-diaminonaphthalene, 2,2′-dimethyl-4,4′-diaminobiphenyl, 4,4′-diamino-2,2′-bis (trifluoromethyl) biphenyl, 2,7-diaminofluorene, 4,4′-diaminodiphenyl ether, 2,2-bis [4- (4-aminophenoxy) phenyl ] Propane, 9,9-bis (4-aminophenyl) fluorene, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2-bis (4-aminophenyl) hexafluoropropane 4,4 ′-(p-phenylenediisopropylidene) bisaniline, 4,4 ′-(m-phenylenediisopropylene Riden) bisaniline, 1,4-bis (4-aminophenoxy) benzene, 4,4′-bis (4-aminophenoxy) biphenyl, 2,6-diaminopyridine, 3,4-diaminopyridine, 2,4-diamino Pyrimidine, 3,6-diaminoacridine, 3,6-diaminocarbazole, N-methyl-3,6-diaminocarbazole, N-ethyl-3,6-diaminocarbazole, N-phenyl-3,6-diaminocarbazole, N , N′-bis (4-aminophenyl) -benzidine, N, N′-bis (4-aminophenyl) -N, N′-dimethylbenzidine, 1,4-bis- (4-aminophenyl) -piperazine, 3,5-diaminobenzoic acid and the like;
Examples of the diaminoorganosiloxane include 1,3-bis (3-aminopropyl) -tetramethyldisiloxane, and the like, and diamines described in JP 2010-97188 A can be used.
(B) The ratio of the tetracarboxylic dianhydride and the diamine used in the polymer synthesis reaction is such that the acid anhydride group of the tetracarboxylic dianhydride is 0. A ratio of 9 to 1.2 equivalents is preferable, and a ratio of 1.0 to 1.1 equivalents is more preferable.
The reaction of tetracarboxylic dianhydride and diamine for synthesizing polyamic acid is preferably in an organic solvent, preferably at −20 to 150 ° C., more preferably at 0 to 100 ° C., preferably 0.1 to 24 hours, more preferably 0.5 to 12 hours. Here, as the organic solvent, for example, an aprotic polar solvent, a phenol and a derivative thereof, an alcohol, a ketone, an ester, an ether, a hydrocarbon, or the like, which can be generally used for a polyamic acid synthesis reaction, can be used. . The organic solvent is particularly preferably selected from the group consisting of N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, γ-butyrolactone, tetramethylurea and hexamethylphosphortriamide. Is to use one or more.
The dehydration ring closure reaction of polyamic acid for synthesizing a partially imidized polymer is preferably performed by adding a dehydrating agent and a dehydration ring closure catalyst in a method of heating polyamic acid or in a solution in which polyamic acid is dissolved in an organic solvent. It is performed by the method of heating.
The reaction temperature in the method of heating the polyamic acid is preferably 180 to 250 ° C, more preferably 180 to 220 ° C. When the reaction temperature is less than 180 ° C., the dehydration ring-closing reaction does not proceed sufficiently, and when the reaction temperature exceeds 250 ° C., the molecular weight of the imidized polymer obtained may decrease. The reaction time in the method of heating the polyamic acid is preferably 0.5 to 20 hours, more preferably 2 to 10 hours.
In the method of adding a dehydrating agent and a dehydrating ring-closing catalyst to the polyamic acid solution, the dehydrating agent may be used in an amount of 0.01 to 1.0 mol per mol of the polyamic acid amic acid structure. Preferably;
The use ratio of the dehydration ring-closing catalyst is preferably 0.01 to 10 mol with respect to 1 mol of the dehydrating agent used. The reaction temperature of the dehydration ring closure reaction is preferably 0 to 180 ° C, more preferably 10 to 150 ° C. The reaction time is preferably 1 to 10 hours, more preferably 2 to 5 hours.
Examples of the dehydration ring closure catalyst include tertiary amines such as pyridine, collidine, lutidine, and triethylamine;
Examples of the dehydrating agent include acid anhydrides such as acetic anhydride, propionic anhydride, and trifluoroacetic anhydride.
Examples of the organic solvent used in the dehydration ring-closing reaction include the organic solvents exemplified as those used for the synthesis of polyamic acid.
As described above, a solution containing the polymer (B) is obtained.
1.3 Liquid medium
The binder composition for electrodes of the present invention contains (C) a liquid medium.
The (C) liquid medium in the electrode binder composition of the present invention can be an aqueous medium or a non-aqueous medium.
The aqueous medium contains water. The aqueous medium can contain a small amount of a water-soluble non-aqueous medium in addition to water. The content ratio of the water-soluble non-aqueous medium in the aqueous medium is preferably 10% by mass or less, more preferably 5% by mass or less, based on the entire aqueous medium.
On the other hand, the non-aqueous medium contains only a non-aqueous medium without containing water.
Examples of the non-aqueous medium include amide compounds, hydrocarbons, alcohols, ketones, esters, amine compounds, lactones, sulfoxides, sulfone compounds, and the like, and one or more selected from these can be used. Can do. Specific examples of the non-aqueous medium include aliphatic hydrocarbons such as n-octane, isooctane, nonane, decane, decalin, pinene, and chlorododecane;
Cycloaliphatic hydrocarbons such as cyclopentane, cyclohexane, cycloheptane, methylcyclopentane;
Aromatic hydrocarbons such as chlorobenzene, chlorotoluene, ethylbenzene, diisopropylbenzene, cumene;
Alcohols such as methanol, ethanol, propanol, isopropanol, butanol, benzyl alcohol, glycerin;
Ketones such as acetone, methyl ethyl ketone, cyclopentanone, isophorone;
Ethers such as methyl ethyl ether, diethyl ether, tetrahydrofuran, dioxane;
lactones such as γ-butyrolactone and δ-butyrolactone;
lactams such as β-lactams;
Linear or cyclic amide compounds such as dimethylformamide, N-methyl-2-pyrrolidone, dimethylacetamide;
Compounds having a nitrile group, such as methylene cyanohydrin, ethylene cyanohydrin, 3,3′-thiodipropionitrile, acetonitrile;
Nitrogen-containing heterocyclic compounds such as pyridine and pyrrole;
Glycol compounds such as ethylene glycol and propylene glycol;
Diethylene glycol or derivatives such as diethylene glycol, diethylene glycol monoethyl ether, diethylene glycol ethyl butyl ether;
Examples thereof include esters such as ethyl formate, ethyl lactate, propyl lactate, methyl benzoate, methyl acetate, and methyl acrylate.
As the liquid medium (C) in the electrode binder composition of the present invention, it is preferable to use an aqueous medium, and it is most preferable to use only water without containing a non-aqueous medium.
1.4 Electrode binder composition and method for preparing the same
The electrode binder composition of the present invention is a solution in which at least (A) polymer particles and (B) polymer as described above are dissolved in (C) liquid medium, or these are (C) liquid medium It is preferably a slurry or latex dispersed in, and particularly preferably a latex. Since the electrode binder composition is in a latex form, the stability of the electrode slurry prepared by mixing it with an electrode active material and the like is improved, and the application property of the electrode slurry to the current collector is also good. This is preferable.
(A) The polymer particles can be obtained as a latex dispersed in water according to the above preferred synthesis method.
(C) When an aqueous medium is used as the liquid medium, (A) the latex of the polymer particles can be directly used for the preparation of the binder composition for electrodes. Therefore, the binder composition for an electrode of the present invention comprises (A) the polymer particles, (B) the polymer, and (C) the liquid catalyst, and (A) the polymerization catalyst used for the synthesis of the polymer particles or the residue thereof. Even if it contains residual monomers, emulsifiers, surfactants, pH adjusters, etc., the effects of the present invention are not diminished. However, from the viewpoint of maintaining the battery characteristics of the obtained electricity storage device at a sufficiently high level, it is preferable that the content ratio of the components derived from the production of the polymer particles (A) is as small as possible. It is preferably 5% by mass or less, more preferably 1% by mass or less, still more preferably 0.5% by mass or less, particularly preferably at all, based on the solid content of the composition. Is not to.
On the other hand, when (C) a non-aqueous medium is used as the liquid medium, (A) the polymer particles are in a solid state isolated from latex, a solution state in which the polymer particles are dissolved in the non-aqueous medium, or dispersed in the non-aqueous medium. It can use for preparation of the binder composition for electrodes in the state of the prepared dispersion liquid. Isolation of the (A) polymer particles from the latex can be performed by a known method.
(B) According to the above preferred synthesis method, the polymer (B) is obtained as a solution dissolved in an organic solvent.
(C) When an aqueous medium is used as the liquid medium, (B) the polymer is isolated from the solution, and preferably dissolved or dispersed in an aqueous medium, preferably water, to prepare a binder composition for an electrode. It is preferable to provide. Isolation of the polymer (B) from the solution can be performed by a known method. When the isolated (B) polymer is dissolved in the aqueous medium, the liquidity of the aqueous medium to be used is preferably adjusted to the alkaline side. The pH of the aqueous medium used here is preferably 7.0 to 9.5, and more preferably 7.5 to 9.0. For adjusting the liquidity of the aqueous medium, for example, ammonia water is preferably used. In order to disperse the isolated (B) polymer in an aqueous medium, a known method such as the method described in JP2011-144374A can be used.
On the other hand, when a non-aqueous medium is used as the liquid medium (C), the polymer solution (B) obtained by the above preferred synthesis method can be directly used for the preparation of the electrode binder composition.
The most preferred method for preparing the binder composition for an electrode of the present invention is by mixing (A) a latex of polymer particles and (B) an aqueous solution of the polymer. In this case, the concentration of the polymer particles (A) in the latex is preferably 15 to 70% by mass, more preferably 20 to 60% by mass;
The concentration of the polymer (B) in the aqueous solution is preferably 1 to 20% by mass, and more preferably 1 to 10% by mass.
The electrode binder composition of the present invention preferably has a neutral or slightly basic liquidity, more preferably has a pH of 7.0 to 9.5, and particularly preferably has a pH of 7.5 to 9.0. It is preferable. A known acid or base can be used to adjust the liquidity of the composition. Examples of the acid include hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid and the like;
Examples of the base include sodium hydroxide, potassium hydroxide, lithium hydroxide, and aqueous ammonia.
Therefore, the binder composition for electrodes of the present invention may contain the above acid or base within a range necessary for adjusting the liquidity.
2. Slurry for electrode
The electrode slurry of the present invention as described above can be used to produce an electrode slurry. The electrode slurry refers to a dispersion used for forming an electrode active material layer on the surface of a current collector. The electrode slurry in the present invention contains at least the electrode binder composition of the present invention and an electrode active material (hereinafter also simply referred to as “active material”).
2.1 Electrode active material
The shape of the active material in the electrode slurry produced using the electrode binder composition of the present invention is preferably granular. The average particle diameter (average median particle diameter, D50 value) of the particles is preferably 0.1 to 100 μm, and more preferably 1 to 20 μm.
The proportion of the active material used is preferably such that the amount of the (A) polymer particles in the binder composition for an electrode is 0.1 to 25 parts by mass with respect to 100 parts by mass of the active material. It is more preferable that the ratio be ~ 15 parts by mass. By setting it as such a usage rate, it is possible to produce an electrode that is excellent in adhesion, and has low electrode resistance and excellent charge / discharge characteristics.
Examples of the active material in the electrode slurry produced using the electrode binder composition of the present invention include carbon materials, oxides containing lithium atoms, compounds containing silicon atoms, lead compounds, tin compounds, arsenic compounds, and antimony. A compound, an aluminum compound, a polyacene organic semiconductor (PAS), etc. can be mentioned.
Examples of the carbon material include amorphous carbon, graphite, natural graphite, mesocarbon microbeads (MCMB), pitch-based carbon fibers, and the like.
Examples of the oxide containing lithium atoms include lithium cobaltate, lithium nickelate, lithium manganate, ternary nickel cobalt lithium manganate, LiFePO 4 , LiCoPO 4 , LiMnPO 4 , Li 0.90 Ti 0.05 Nb 0.05 Fe 0.30 Co 0.30 Mn 0.30 PO 4 And so on.
Examples of the compound containing a silicon atom include a silicon simple substance, a silicon oxide, a silicon alloy, and the like, and a silicon material described in JP-A No. 2004-185810 can be used. As the silicon oxide, the composition formula SiO x A silicon oxide represented by (0 <x <2, preferably 0.1 ≦ x ≦ 1) is preferable. The silicon alloy is preferably an alloy of silicon and at least one transition metal selected from the group consisting of titanium, zirconium, nickel, copper, iron and molybdenum. These transition metal silicides are preferably used because they have high electronic conductivity and high strength. In addition, since the active material contains these transition metals, the transition metal present on the surface of the active material is oxidized to an oxide having a hydroxyl group on the surface, so that the binding force with the binder component becomes better. However, it is preferable. The silicon content in the silicon alloy is preferably 10 mol% or more, more preferably 20 to 70 mol%, based on all the metal elements in the alloy. As the silicon alloy, it is more preferable to use a silicon-nickel alloy or a silicon-titanium alloy, and it is particularly preferable to use a silicon-titanium alloy. The compound containing a silicon atom may be single crystal, polycrystalline, or amorphous.
“Oxide” in the above is a concept that means a compound or salt composed of oxygen and an element having an electronegativity smaller than that of oxygen. In addition to metal oxide, metal phosphate, nitrate, halogen It is a concept including oxo acid salts, sulfonic acid salts and the like.
When the electrode binder composition of the present invention is used to produce an electricity storage device, particularly a positive electrode of a lithium ion secondary battery, the active material contained in the electrode slurry may be an oxide containing lithium atoms. preferable.
When the binder composition for an electrode of the present invention is used to produce an electricity storage device, particularly a negative electrode of a lithium ion secondary battery, the active material contained in the electrode slurry contains a compound containing a silicon atom. Preferably there is. Since silicon atoms have a large occlusion capacity for lithium, the active material containing a compound containing silicon atoms can increase the storage capacity of the resulting storage device, and as a result, increase the output and energy density of the storage device. can do. The proportion of the compound containing silicon atoms in the active material is preferably 1% by mass or more, more preferably 1 to 50% by mass, still more preferably 5 to 45% by mass, particularly 10%. It is preferable to be ~ 40% by mass. The active material for the negative electrode is preferably composed of a mixture of a compound containing a silicon atom and a carbon material. Since the carbon material has a small volume change due to charge / discharge, the influence of the volume change of the compound containing silicon atoms can be mitigated by using a mixture of the compound containing silicon atoms and the carbon material as the negative electrode active material. And the adhesion between the active material layer and the current collector can be further improved. The negative electrode active material is particularly preferably composed of a mixture of a compound containing a silicon atom and graphite.
When the electrode binder composition of the present invention is used to produce an electrode for an electric double layer capacitor, the active material contained in the electrode slurry is, for example, a carbon material, an aluminum compound, a silicon oxide, or the like. Is preferred.
Furthermore, when the electrode binder composition of the present invention is used to produce an electrode for a lithium ion capacitor, examples of the active material contained in the electrode slurry include carbon materials and polyacene organic semiconductors (PAS). It is preferable to use it.
2.2 Optional additives
The slurry for electrodes in the present invention may contain other components as necessary in addition to the components described above. Examples of such other components include a conductivity-imparting agent, a thickener, and a liquid medium (however, excluding a part brought in from the electrode binder composition).
2.2.1 Conductivity imparting agent
The ratio of the conductivity-imparting agent in the electrode slurry is preferably 20 parts by mass or less, more preferably 1 to 15 parts by mass, and particularly 2 to 10 parts by mass with respect to 100 parts by mass of the active material. preferable.
Specific examples of the conductivity-imparting agent include carbon in a lithium ion secondary battery. Examples of carbon include activated carbon, acetylene black, ketjen black, furnace black, graphite, carbon fiber, and fullerene. Among these, acetylene black or furnace black can be preferably used.
2.2.2 Thickener
The electrode slurry can contain a thickener from the viewpoint of improving the coatability. The use ratio of the thickener is such that the ratio (Wv / Wa) of the weight (Wv) of the thickener to the weight (Wa) of the active material in the electrode slurry is 0.001 to 0.1. is there. This ratio (Wv / Wa) is preferably 0.005 to 0.05.
Specific examples of the thickener include, for example, cellulose derivatives such as carboxymethylcellulose, methylcellulose, ethylcellulose, hydroxymethylcellulose, hydroxypropylmethylcellulose, and hydroxyethylmethylcellulose;
An ammonium salt or an alkali metal salt of the cellulose derivative;
Polycarboxylic acids such as poly (meth) acrylic acid, modified poly (meth) acrylic acid;
An alkali metal salt of the polycarboxylic acid;
Polyvinyl alcohol (co) polymers such as polyvinyl alcohol, modified polyvinyl alcohol, and ethylene-vinyl alcohol copolymer;
Examples thereof include water-soluble polymers such as saponified products of copolymers of unsaturated carboxylic acids such as (meth) acrylic acid, maleic acid and fumaric acid and vinyl esters.
2.3 Liquid medium
Since the slurry for electrodes contains the binder composition for electrodes, it will contain the (C) liquid medium which the binder composition for electrodes contained. However, the electrode slurry may additionally contain a further liquid medium in addition to the liquid medium brought in from the electrode binder composition.
The use ratio of the liquid medium (including the amount brought in from the electrode binder composition) in the electrode slurry is the solid content concentration of the electrode slurry (the total mass of components other than the liquid medium in the electrode slurry is the electrode slurry). Is the ratio of 30 to 70% by mass, and more preferably 40 to 60% by mass.
The liquid medium additionally contained in the electrode slurry may be the same as or different from the liquid medium (C) contained in the electrode binder composition. ) The liquid medium is preferably selected from the liquid media described above.
2.4 Method for preparing electrode slurry
The electrode slurry may be prepared by any method as long as it contains the above-described components.
However, from the viewpoint of preparing an electrode slurry having better dispersibility and stability more efficiently and inexpensively, an active material and optional additional components used as necessary are added to the electrode binder composition. In addition, it can be prepared by mixing them.
In order to mix the binder composition for electrodes and other components, it can carry out by stirring by a well-known method.
The preparation of the electrode slurry (mixing operation of each component) is preferably performed at least part of the process under reduced pressure. Thereby, it can prevent that a bubble arises in the active material layer obtained. As the degree of decompression, the absolute pressure is 5.0 × 10 4 ~ 5.0 × 10 5 It is preferable to be about Pa.
As mixing and stirring for preparing the electrode slurry, it is necessary to select a mixer that can stir to such an extent that no agglomerates of active material particles remain in the slurry and sufficient dispersion conditions as necessary. The degree of dispersion can be measured by a particle gauge, but it is preferable to mix and disperse so that aggregates larger than at least 100 μm are eliminated. Examples of the mixer that meets such conditions include a ball mill, a bead mill, a sand mill, a defoamer, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a planetary mixer, and a Hobart mixer. it can.
3. Method for manufacturing electrode for power storage device
The electrode for an electricity storage device is formed by coating the slurry for an electrode produced using the binder composition for an electrode of the present invention on the surface of an appropriate current collector such as a metal foil, and then forming the coating film It can manufacture by removing a liquid medium from. The electrode produced in this manner is formed by binding an active material layer containing the above-described polymer and active material, and optional additional components used as necessary, on a current collector. . The electrode having the layer formed from the above-described electrode slurry on the surface of the current collector has excellent binding properties between the current collector and the active material layer, and is one of the electrical characteristics of charge / discharge rate characteristics Is good.
The current collector is not particularly limited as long as it is made of a conductive material. In a lithium ion secondary battery, a current collector made of metal such as iron, copper, aluminum, nickel, and stainless steel is used. In particular, when aluminum is used for the positive electrode and copper is used for the negative electrode, it is used for the positive electrode of the present invention. The effect of the slurry is most apparent. As the current collector in the nickel metal hydride secondary battery, a punching metal, an expanded metal, a wire mesh, a foam metal, a mesh metal fiber sintered body, a metal plated resin plate, or the like is used.
The shape and thickness of the current collector are not particularly limited, but are preferably in the form of a sheet having a thickness of about 0.001 to 0.5 mm.
There is no restriction | limiting in particular about the coating method to the electrical power collector of the slurry for electrodes. The coating can be performed by an appropriate method such as a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a dipping method, or a brush coating method. The coating amount of the electrode slurry is not particularly limited, but the thickness of the active material layer formed after removing the liquid medium is preferably 0.005 to 5 mm, and preferably 0.01 to 2 mm. It is more preferable to use the amount.
The method for removing the liquid medium from the coated film after coating is not particularly limited, and may be, for example, drying with hot air, hot air, low-humidity air; vacuum drying; (far) drying by irradiation with infrared rays, electron beams, or the like. . The drying speed is appropriately set so that the liquid medium can be removed as quickly as possible within a speed range in which the active material layer does not crack due to stress concentration or the active material layer does not peel from the current collector. be able to.
Furthermore, it is preferable to increase the density of the active material layer by pressing the current collector after removal of the liquid medium. The density of the active material layer after pressing is 1.5 to 3.8 g / cm when the electrode is used as a positive electrode. 3 Preferably, 1.7 to 3.6 g / cm 3 And more preferably;
When the electrode is used as the negative electrode, 1.2 to 1.9 g / cm 3 Preferably, 1.3 to 1.8 g / cm 3 More preferably.
Examples of the pressing method include a mold press and a roll press. The press conditions should be set appropriately depending on the type of press equipment used and the desired density of the active material layer. This condition can be easily set by a few preliminary experiments by those skilled in the art. For example, in the case of a roll press, the linear pressure of the roll press machine is 0.1 to 10 t / cm, preferably 0.5 to 5 t. For example, at a roll temperature of 20 to 100 ° C. at a pressure of 50 cm / cm, the coating film feed speed (roll rotation speed) after removal of the dispersion medium is 1 to 80 m / min, preferably 5 to 50 m / min. it can.
It is preferable that the pressed coating film is further heated under reduced pressure to completely remove the liquid medium. The degree of pressure reduction in this case is preferably 50 to 200 Pa as an absolute pressure, and more preferably 75 to 150 Pa. The heating temperature is preferably 100 to 200 ° C, more preferably 120 to 180 ° C. The heating time is preferably 2 to 12 hours, and more preferably 4 to 8 hours.
The electrode for an electricity storage device manufactured in this way is excellent in adhesion between the current collector and the active material layer, and has good cycle characteristics, which is one of electrical characteristics.
4). Power storage device
An electricity storage device can be manufactured using the electrode for an electricity storage device of the present invention as described above.
The electricity storage device includes the above-described electrode, further contains an electrolytic solution, and can be manufactured according to a conventional method using components such as a separator. As a specific manufacturing method, for example, a negative electrode and an electrode are overlapped via a separator, and this is wound or folded according to the shape of the battery, and stored in a battery container, and an electrolytic solution is injected into the battery container. Can be mentioned. The shape of the battery can be an appropriate shape such as a coin shape, a cylindrical shape, a square shape, or a laminate shape.
The electrolyte solution may be liquid or gel, and the one that effectively expresses the function as a battery is selected from the known electrolyte solutions used for the electricity storage device depending on the type of the negative electrode active material and the electrode active material. That's fine.
The electrolytic solution can be a solution in which an electrolyte is dissolved in a suitable solvent.
As the electrolyte, for example, in the lithium ion secondary battery, any conventionally known lithium salt can be used, and specific examples thereof include, for example, LiClO. 4 , LiBF 4 , LiPF 6 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiB 10 Cl 10 LiAlCl 4 , LiCl, LiBr, LiB (C 2 H 5 ) 4 , LiCF 3 SO 3 , LiCH 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N, lower fatty acid lithium carboxylate and the like can be exemplified.
The solvent for dissolving the electrolyte is not particularly limited, and specific examples thereof include carbonate compounds such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate;
Lactone compounds such as γ-butyl lactone;
Ether compounds such as trimethoxymethane, 1,2-dimethoxyethane, diethyl ether, 2-ethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran;
Examples thereof include sulfoxide compounds such as dimethyl sulfoxide, and one or more selected from these can be used.
The concentration of the electrolyte in the electrolytic solution is preferably 0.5 to 3.0 mol / L, more preferably 0.7 to 2.0 mol / L.
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
<(A)重合体粒子の合成>
合成例A1−1
(1)合成
 攪拌機を備えた温度調節可能なオートクレーブ中に、水200質量部、ドデシルベンゼンスルホン酸ナトリウム0.6質量部、過硫酸カリウム1.0質量部、重亜硫酸ナトリウム0.5質量部、α−メチルスチレンダイマー0.5質量部、ドデシルメルカプタン0.3質量部および表1に示した単量体を一括して仕込んだ後、70℃に昇温し、この温度を8時間維持して重合反応を行った。その後さらに温度を80℃に昇温し、この温度を3時間維持して重合反応を継続し、ラテックスを得た。このラテックスへ濃度15質量%のアンモニウム水を加えてpHを7.5に調節した後、濃度10質量%のトリポリリン酸ナトリウム水溶液50質量部(トリポリリン酸ナトリウムに換算して5質量部に相当)を加えた。次いで、残留単量体を水蒸気蒸留によって除去し、減圧下で濃縮することにより、重合体粒子P1−1を50質量%含有する水分散体を得た。
(2)平均粒子径の測定
 動的光散乱法を測定原理とする粒度分布測定装置(大塚電子(株)製、形式「FPAR−1000」)を用いて得られた重合体粒子P1の粒度分布を測定し、その粒度分布から求めた平均粒子径(D50)は170nmであった。
(3)DSC測定
 得られた水分散体に含有される重合体粒子P1−1を示差走査熱量計(DSC)によって測定したところ、ガラス転移温度Tgが−31℃に1つだけ観測された。融解温度は観測されなかった。
合成例A1−2およびA1−3
 上記合成例A1−1において、仕込んだ単量体の種類および量を、それぞれ、第1表に記載のとおりとしたほかは合成例A1−1と同様にして、重合体粒子P1−2およびP1−3を、それぞれ50質量%含有する水分散体を得た。
 上記合成例A1−1と同様にして測定した重合体粒子P1−2およびP1−3の平均粒子径およびTgを、それぞれ、第1表に合わせて示した。
Figure JPOXMLDOC01-appb-T000002
 第1表における単量体欄の略称は、それぞれ以下の意味である。
 BD:1,3−ブタジエン
 ST:スチレン
 AN:アクリロニトリル
 AA:アクリル酸
 TA:イタコン酸
 MMA:メタクリル酸メチル
 HEMA:メタクリル酸2−ヒドロキシエチル
合成例A2−1
(1)重合体(A2a)の合成
 電磁式撹拌機を備えた内容積約6Lのオートクレーブの内部を十分に窒素置換した後、脱酸素した純水2.5Lおよび乳化剤としてパーフルオロデカン酸アンモニウム25gを仕込み、350rpmで撹拌しながら60℃まで昇温した。次いで、単量体であるフッ化ビニリデン(VF)70質量%および六フッ化プロピレン(HFP)30質量%からなる混合ガスを、内圧が20kg/cmに達するまで仕込んだ。さらに、重合開始剤としてジイソプロピルパーオキシジカーボネートを20質量%含有するフロン113(CClF−CClF)溶液25gを、窒素ガスを使用して圧入し、重合を開始した。重合中は内圧が20kg/cmに維持されるように、VF65質量%およびHFP35質量%からなる混合ガスを逐次圧入した。重合が進行するに従って重合速度が低下するため、重合開始から3時間経過後に、先と同じ重合開始剤溶液の同量を窒素ガスにより圧入し、さらに3時間反応を継続した。その後、反応液を冷却すると同時に撹拌を停止し、未反応の単量体を放出して反応を停止することにより、重合体(A2a1)の微粒子を40質量%含有する水分散体を得た。得られた重合体について19F−NMRにより分析した結果、単量体の質量組成比はVF:HFP=24:1であった。
(2)ポリマーアロイ粒子の合成
 容量7Lのセパラブルフラスコの内部を十分に窒素置換した後、上記の工程で得られた重合体(A2a1)の微粒子を含有する水分散体62.5質量部(重合体(A2a1)換算で25質量部に相当)、乳化剤「アデカリアソープSR1025」(商品名、株式会社ADEKA製)0.5質量部、メタクリル酸メチル(MMA)30質量部、アクリル酸2−エチルヘキシル(EHA)40質量部およびメタクリル酸(MAA)5質量部ならびに水130質量部をこの順で仕込み、70℃において3時間攪拌し、重合体(A2a1)に単量体を吸収させた。次いで油溶性重合開始剤であるアゾビスイソブチロニトリル0.5質量部を含有するテトラヒドロフラン溶液20mLを添加し、75℃に昇温して3時間反応を行い、さらに85℃で2時間反応を行った。その後、冷却した後に反応を停止し、2.5N水酸化ナトリウム水溶液でpH7.0に調節することにより、重合体粒子P2−1を40質量%含有する水分散体を得た。
(3)平均粒子径の測定
 動的光散乱法を測定原理とする粒度分布測定装置(大塚電子(株)製、形式「FPAR−1000」)を用いて得られた重合体粒子P2−1の粒度分布を測定し、その粒度分布から求めた平均粒子径は330nmであった。
(4)DSC分析
 得られた水分散体に含有される重合体粒子P2−1を示差走査熱量計(DSC)によって測定したところ、ガラス転移温度Tgが−5℃に1つだけ観測された。この重合体粒子P2−1は、2種類の重合体から構成されているにもかかわらず1つのTgしか示さないため、ポリマーアロイ粒子であると推測することができる。
 DSC測定の際、重合体粒子P2−1の融解温度は観測されなかった。
 ここで測定したDSCチャートを図1に示した。
合成例A2−2
 上記合成例A2−1の(1)重合体(A2a)の合成において、
反応開始前に仕込むVF/HFP混合ガスおよび重合中の内圧維持のために逐次圧入するVF/HFP混合ガス(VF/HFP)の組成をそれぞれ変更したほかは、合成例A2−1の(1)重合体(A2a)の合成と同様にして重合体(A2a2)の微粒子を40質量%含有する水分散体を得た。得られた重合体について19F−NMRによって分析した単量体の質量組成比はVF:HFP=20:5であった。
 上記合成例A2−1の(2)ポリマーアロイ粒子の合成において、重合体(A2a1)の微粒子を含有する水分散体の代わりに上記で得た重合体(A2a2)の微粒子を含有する水分散体62.5質量部(重合体(A2a2)換算で25質量部に相当)を用い、メタクリル酸(MAA)の代わりにアクリル酸(MA)5質量部を用いたほかは合成例A2−1の(2)ポリマーアロイ粒子の合成と同様にして、重合体粒子P5を40質量%含有する水分散体を得た。
 上記合成例A2−1と同様にして測定した重合体粒子P2−2の平均粒径およびTgを第2表に合わせて示した。
合成例A2−3
 容量7リットルのセパラブルフラスコに、水150質量部およびドデシルベンゼンスルホン酸ナトリウム0.2質量部を仕込み、セパラブルフラスコの内部を十分に窒素置換した。
 一方、別の容器に、水60質量部、乳化剤としてエーテルサルフェート型乳化剤(商品名「アデカリアソープSR1025」、(株)ADEKA製)を固形分換算で0.8質量部ならびに単量体として2,2,2−トリフルオロエチルメタクリレート(TFEMA)20質量部、アクリロニトリル(AN)10質量部、メチルメタクリレート(MMA)25質量部、2−エチルヘキシルアクリレート(EHA)40質量部およびアクリル酸(AA)5質量部を加え、十分に攪拌して上記単量体の混合物を含有する単量体乳化液を調製した。
 その後、上記セパラブルフラスコ内部の昇温を開始し、内部の温度が60℃に到達した時点で、重合開始剤として過硫酸アンモニウム0.5質量部を加えた。そして、セパラブルフラスコの内部の温度が70℃に到達した時点で、上記で調製した単量体乳化液の添加を開始し、セパラブルフラスコの内部の温度を70℃に維持したまま単量体乳化液を3時間かけてゆっくりと添加した。その後、セパラブルフラスコの内部の温度を85℃に昇温し、この温度を3時間維持して重合反応を行った。3時間後、セパラブルフラスコを冷却して反応を停止した後、濃度15質量%のアンモニウム水を加えてpHを7.6に調整することにより、重合体(P2−3)を30質量%含有する水分散体を得た。
 上記合成例A2−1と同様にして測定した重合体粒子P2−2の平均粒子径およびTgを第2表に合わせて示した。なお、DSC測定の際、重合体粒子P2−2の融解温度は観測されなかった。
Figure JPOXMLDOC01-appb-T000003
 第2表における単量体欄の略称は、それぞれ以下の意味である。
 VF:フッ化ビニリデン
 HFP:六フッ化プロピレン
 TFEMA:メタクリル酸2,2,2−トリフルオロエチル
 MMA:メタクリル酸メチル
 EHA:アクリル酸2−エチルヘキシル
 MAA:メタクリル酸
 AA:アクリル酸
 AN:アクリロニトリル
 第2表中のフッ素原子を有する単量体の量は、合成例A2−1およびA2−2については分析値であり、A2−3については仕込み量である。
<(B)重合体の合成>
合成例B−1
 攪拌装置、温度計およびコンデンサーを備えた容量3Lのフラスコ内部を減圧した状態でヒートガンにて加熱して容器内部の残存水分を除去した後、乾燥窒素ガスを満たした。このフラスコに、溶媒として予め水素化カルシウムを用いた脱水蒸留法により脱水処理を施したN−メチル−2−ピロリドン(NMP)1,170g、テトラカルボン酸二無水物として3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物80.56g(0.250モル)およびジアミンとして4,4’−ジアミノジフェニルエーテル50.06g(0.250モル)を仕込み、25℃において3時間攪拌下に反応を行うことにより、ポリアミック酸B1を10質量%含有する重合体溶液を得た。
 この重合体溶液の溶液粘度は16,200mPa・sであった。
合成例B−2~B−4
 上記合成例B−1において、使用したテトラカルボン酸二無水物およびジアミンの種類および量を、それぞれ、第3表に記載のとおりとしたほかは合成例B−1と同様にして、ポリアミック酸B2~B4をそれぞれ、10質量%含有する溶液を得た。
 これらのポリアミック酸溶液の溶液粘度を、第3表に合わせて示した。
Figure JPOXMLDOC01-appb-T000004
 第3表におけるテトラカルボン酸二無水物欄およびジアミン欄の略称は、それぞれ以下の意味である。
 BTDA:3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物
 PMDA:ピロメリット酸二無水物
 TDA:4−(2,5−ジオキソテトラヒドロフラン−3−イル)−1,2,3,4−テトラヒドロナフタレン−1,2−カルボン酸無水物
 DDE:4,4’−ジアミノジフェニルエーテル
 DDP:4,4’−ジアミノビフェニル
<ケイ素を含有する活物質の合成>
合成例A−1
 粉砕した二酸化ケイ素粉末(平均粒径10μm)と炭素粉末(平均粒径35μm)との混合物を、温度を1,100~1,600℃の範囲に調整した電気炉中で、窒素気流下(0.5NL/分)、10時間の加熱処理を行い、組成式SiOx(x=0.5~1.1)で表される酸化ケイ素の粉末(平均粒径8μm)を得た。
 この酸化ケイ素の粉末300gをバッチ式加熱炉内に仕込み、真空ポンプによって絶対圧100Paの減圧を維持しながら、300℃/hの昇温速度にて室温(25℃)から1,100℃まで昇温した。次いで、加熱炉内の圧力を2,000Paに維持しつつ、メタンガスを0.5NL/分の流速にて導入しながら、1,100℃、5時間の加熱処理(黒鉛被覆処理)を行った。黒鉛被覆処理終了後、50℃/hの降温速度で室温まで冷却することにより、黒鉛被覆酸化ケイ素の粉末約330gを得た。
 この黒鉛被覆酸化ケイ素は、酸化ケイ素の表面が黒鉛で被覆された導電性の粉末(活物質)であり、その平均粒径は10.5μmであり、得られた黒鉛被覆酸化ケイ素の全体を100質量%とした場合の黒鉛被覆の割合は2質量%であった。
実施例1
(1)(B)重合体(ポリアミック酸)の水溶液の調製
 上記合成例B−1で得られたポリアミック酸B1を含有する溶液100gを、約1Lの水中へ少量ずつ滴下して凝固させた。凝固物を流水中でよく洗ってNMPを十分に除去した後、室温で一晩減圧乾燥し、固体状のポリアミック酸とした。次いで、上記の固体状のポリアミック酸の10gを2質量%のアンモニア水溶液(pH11)90g中に入れて、室温において3時間撹拌することにより、ポリアミック酸を10質量%含有する水溶液を得た。
(2)バインダー組成物の調製
 上記合成例A1−1で得た重合体粒子P1−1を含有する水分散体を190g(重合体粒子換算で95g)と、上記で得たポリアミック酸水溶液50g(ポリアミック酸換算で5g)と、を混合することにより、バインダー組成物を得た。このバインダー組成物の固形分濃度は41.7質量%であり、pHメーター((株)堀場製作所製、品名「D−51S」)を用いて測定したpHは7.6であった。
(3)バインダー組成物の密着性試験
 上記で調製したバインダー組成物を、溶媒除去後の膜厚が約90μmになるように、10cm四方の銅板上およびガラス板上にそれぞれ塗布し、60℃において30分加熱することにより、銅板上およびガラス板上にそれぞれバインダー組成物の薄膜を形成した。
 上記で形成したバインダー組成物の薄膜について、JIS K5400に準拠した碁盤目剥離試験をそれぞれ行った。
 具体的には、カッターを用いて、薄膜の表面から銅板またはガラス板に達する深さまでの切り込みを1mm間隔で縦横それぞれ11本入れ、薄膜を碁盤目状の100マスの領域に分割した。これら100マスの領域の全域の表面に粘着テープ((株)テラオカ製、品番「650S」)を貼り付けて直ちに引き剥がした後、残存したマス目数をカウントした。
 評価結果は、100マス中の残存したマス目の数として第4表に示した。
 本発明者らの検討により、活物質層と集電体との密着性は、本試験における銅板と重合体フィルムとの間の密着性と比例の関係があることが経験的に明らかとなっている。また、活物質同士を結着するバインダーとしての結着性は、本試験におけるガラス板と重合体フィルムとの間の密着性と比例の関係があることが経験的に明らかとなっている。このため、ガラス板と重合体フィルムとの間の密着性が良好である場合、活物質同士を結着する重合体のバインダーとしての密着性が良好であると推定することができ、
Cu板と重合体フィルムとの間の密着性が良好である場合、集電体と活物質層の密着性が良好であると推定することができる。
 この場合、残存するマス目の数が80個以上であれば密着性が良好であると判断することができ、
この数が90個以上であれば密着性が優良(極めて良好)であると判断することができる。残存するマス目の数は、最も好ましくは碁盤目100個中100個である。
(4)電極用スラリーの調製
 二軸型プラネタリーミキサー(プライミクス(株)製、商品名「TKハイビスミックス 2P−03」)中に、負極活物質として平均粒子径(D50値)22μmのグラファイト(日立化成(株)製、製品名「SMG−HE1」)80質量部および上記合成例A−1で調製した黒鉛被覆酸化ケイ素(C/SiO)20質量部ならびに導電付与剤としてアセチレンブラック(電気化学工業(株)製、商品名「デンカブラック50%プレス品」)1質量部を投入して20rpmで3分間混合した。次いで予め固形分濃度2質量%に調整しておいたカルボキシメチルセルロース(CMC:日本製紙(株)(ケミカル事業本部)製、商品名「MAC−500LC」)50gおよびイオン交換水15.5gを加え、60rpmで30分混合した。その後これに、上記バインダー組成物2.4gおよびイオン交換水27gを加え、30rpmでさらに15分混合した。次いでスラリー中の気泡を取り除くため、攪拌脱泡機((株)シンキー製、商品名「ARV930−TWIN」)を使用して、絶対圧25kPaの減圧下において600rpmで5分間攪拌混合することにより、バインダー樹脂((A)重合体粒子)の固形分濃度1質量%、全固形分濃度52質量%の電極用スラリーを調製した。
(5)蓄電デバイス用電極の製造
 厚み10μmの銅箔からなる集電体の表面に、上記「(4)電極用スラリーの調製」で調製した電極用スラリーを、溶媒除去後の活物質層が15mg/cmになるように膜厚を調整してドクターブレード法によって均一に塗布し、120℃において5分間乾燥処理して塗膜を形成した。次いで上記塗膜を、ギャップ間調整式ロールプレス機(テスター産業(株)製、商品名「SA−601」)を用いて、ロール温度30℃、線圧力1t/cmおよび送り速度0.5m/分の条件でプレスし、電極層の密度を1.60g/cmに調整した。さらに、絶対圧100Paの減圧下、160℃において6時間加熱して活物質層中の微量水分を除去することにより、蓄電デバイス用電極を得た。
 この蓄電デバイス用電極における活物質層の密度は1.62g/cmであった。
(6)蓄電デバイスの製造
 露点が−80℃以下となるようアルゴン置換されたグローブボックス内で、上記「(5)蓄電デバイス用電極の製造」において製造した電極を直径15.5mmに打ち抜き成型したものを、活物質層を上側にして、2極式コインセル(宝泉(株)製、商品名「HSフラットセル」)上に載置した。次いで、直径24mmに打ち抜いたポリプロピレン製多孔膜からなるセパレータ(セルガード製、商品名「セルガード#2400」)を上記の電極上に載置し、さらに、空気が入らないように電解液を500μL注入した後、対電極として厚さ200μmのリチウム箔を直径16.6mmに打ち抜き成型したものを載置し、前記2極式コインセルの外装ボディーをネジで閉めて封止することにより、リチウムイオン電池セル(蓄電デバイス)を組み立てた。
 ここで使用した電解液は、エチレンカーボネート/エチルメチルカーボネート=1/1(質量比)の溶媒に、LiPFを1mol/Lの濃度で溶解した溶液である。
 この操作を繰り返し、合計2個の蓄電デバイスを製造した。このうちの1個を「(7)蓄電デバイスの評価(充放電サイクル特性の評価)」に供し、もう1個を「(8)活物質層の膜厚変化率の評価」に供した。
(7)蓄電デバイスの評価(充放電サイクル特性の評価)
 上記「(6)蓄電デバイスの製造」で製造した蓄電デバイスにつき、定電流(0.2C)にて充電を開始し、電圧が0.01Vになった時点で引き続き定電圧(0.01V)にて充電を継続し、電流値が0.05Cとなった時点を充電完了(カットオフ)とした。次いで、定電流(0.2C)にて放電を開始し、電圧が2.0Vになった時点を放電完了(カットオフ)として、初回充放電を終了した。
 次に、初回充放電を行った上記の蓄電デバイスにつき、0.5Cの充放電を、以下のようにして行った。
 先ず定電流(0.5C)にて充電を開始し、電圧が0.01Vになった時点で引き続き定電圧(0.01V)にて充電を継続し、電流値が0.05Cとなった時点を充電完了(カットオフ)とした。次いで、定電流(0.2C)にて放電を開始し、電圧が2.0Vになった時点を放電完了(カットオフ)とし、0.5Cにおける放電容量(1サイクル目の0.5C放電容量=A)を測定した。
 この0.5Cの充放電を繰り返し行い、100サイクル目の0.5C放電容量をBとしたとき、100サイクル後の容量維持率を下記数式(1)によって算出した。
 容量維持率(%)=B/A×100   (1)
 評価結果は第4表に示した。
 この100サイクル後の容量維持率の値が90%以上95%未満であれば充放電サイクル特性は優良であると判断することができ、そして
95%以上であれば、充放電サイクル特性は極めて優良であると判断することができる。
(8)活物質層の膜厚変化率の評価
 上記「(6)蓄電デバイスの製造」で得た蓄電デバイスにつき、定電流(0.2C)にて充電を開始し、電圧が0.01Vになった時点で引き続き定電圧(0.01V)にて充電を継続し、電流値が0.05Cとなった時点を充電完了(カットオフ)とした。次いで、定電流(0.2C)にて放電を開始し、電圧が2.0Vになった時点を放電完了(カットオフ)として、初回充放電を終了した。
 次に、初回充放電を行った上記蓄電デバイスにつき、定電流(0.2C)にて充電を開始し、電圧が0.01Vになった時点で引き続き定電圧(0.01V)にて充電を継続し、電流値が0.05Cとなった時点を充電完了(カットオフ)とした。
 この蓄電デバイスを露点が−60℃以下のドライルーム内(室温25℃)で解体し、蓄電デバイス用電極(負極)を取り出した。引き続きドライルーム内でこの電極をジメチルカーボネート中に1分間浸漬して洗浄した。電極をジメチルカーボネートから取り出した後、ドライルーム内に30分間静置することにより、ジメチルカルボネートを気化させて除去した。
 この、充電後の電極の活物質層膜厚を測定し、予め測定しておいた製造直後の電極(未充電状態)の活物質層膜厚に対する充電後の電極の活物質層膜厚の比率(充電後の膜厚比率)を、下記数式(2)によって算出した。
 充電後の膜厚比率(%)=(充電後の膜厚)/(製造直後の膜厚)×100(2)
 評価結果は第4表に示した。
 この値が130%を超える場合には、活物質層において、充電に伴う活物質の体積膨張が緩和されていないことを示し、活物質に機械的応力が加えられると活物質が剥落する懸念がある。一方、この値が130%以下であると、充電に伴って活物質が体積膨張するにもかかわらず活物質が活物質層内に強固に保持されていることを示しており、活物質の剥落が抑制された良好な電極であると評価することができる。
(9)バインダー組成物の貯蔵安定性の評価
 上記「(2)バインダー組成物の調製」において調製したバインダー組成物50gを容量100mLのバイアル瓶に入れて密閉し、5℃において3ヶ月間静置して貯蔵した。貯蔵後のバインダー組成物を用いて、上記(4)~(8)と同様にして、蓄電デバイスを製造し、評価した。評価結果は第4表に示した。
実施例2~11ならびに比較例1および2
 上記実施例1において、第4表に記載の種類および量の(A)重合体粒子を含有する水分散体ならびに第4表に記載の種類および量の(B)重合体(ポリアミック酸)を含有するNMP溶液を使用したほかは実施例1と同様にしてバインダー組成物を調製した。このバインダー組成物を用い、グラファイトおよび黒鉛被覆酸化ケイ素(C/SiO)の使用量をそれぞれ第4表に記載のとおりとしたほかは実施例1と同様に電極用スラリーを調製し、蓄電デバイスを製造して評価した。
 評価結果は第4表に示した。
実施例12
(1)(A)重合体粒子のNMP分散体の調製
 上記合成例A1−3で得た重合体粒子P1−3を含有する水分散体200g(重合体粒子換算100g)へ、210gのNMPを加えた後、エバポレーターを用いて合計質量が200gとなるまで濃縮することにより、重合体粒子P1−3を50質量%含有するNMP分散体を得た。
(2)バインダー組成物の調製
 上記で得た重合体粒子P1−3を含有するNMP分散体200g(重合体粒子換算で100g)と、上記合成例B−3で得たポリアミック酸B3を含有するNMP溶液100g(ポリアミック酸換算で10g)と、を混合することにより、バインダー組成物を得た。このバインダー組成物の固形分濃度は37.7質量%であり、pHメーターを用いて測定したpHは8.1であった。
(3)評価
 上記で調製したバインダー組成物を用いたほかは実施例1と同様にしてバインダー組成物を調製した。このバインダー組成物を用いたほかは実施例1と同様に電極用スラリーを調製し、蓄電デバイスを製造して評価した。
評価結果は第4表に示した。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-I000006
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples.
<(A) Synthesis of polymer particles>
Synthesis Example A1-1
(1) Synthesis In a temperature-controllable autoclave equipped with a stirrer, 200 parts by mass of water, 0.6 part by mass of sodium dodecylbenzenesulfonate, 1.0 part by mass of potassium persulfate, 0.5 part by mass of sodium bisulfite, α-Methylstyrene dimer 0.5 part by mass, dodecyl mercaptan 0.3 part by mass and the monomers shown in Table 1 were charged all at once, then the temperature was raised to 70 ° C., and this temperature was maintained for 8 hours. A polymerization reaction was performed. Thereafter, the temperature was further raised to 80 ° C., and this temperature was maintained for 3 hours to continue the polymerization reaction, thereby obtaining a latex. After adding ammonium water with a concentration of 15% by mass to this latex and adjusting the pH to 7.5, 50 parts by mass of a sodium tripolyphosphate aqueous solution with a concentration of 10% by mass (corresponding to 5 parts by mass in terms of sodium tripolyphosphate) added. Subsequently, the residual monomer was removed by steam distillation and concentrated under reduced pressure to obtain an aqueous dispersion containing 50% by mass of polymer particles P1-1.
(2) Measurement of average particle size Particle size distribution of polymer particles P1 obtained using a particle size distribution measuring apparatus (model “FPAR-1000” manufactured by Otsuka Electronics Co., Ltd.) having a dynamic light scattering method as a measurement principle. The average particle size (D50) determined from the particle size distribution was 170 nm.
(3) DSC measurement When the polymer particle P1-1 contained in the obtained water dispersion was measured with the differential scanning calorimeter (DSC), only one glass transition temperature Tg was observed at -31 degreeC. No melting temperature was observed.
Synthesis Examples A1-2 and A1-3
In Synthesis Example A1-1, polymer particles P1-2 and P1 were synthesized in the same manner as in Synthesis Example A1-1 except that the types and amounts of the charged monomers were as described in Table 1. -3 was obtained, respectively, to obtain an aqueous dispersion containing 50% by mass.
The average particle diameter and Tg of the polymer particles P1-2 and P1-3 measured in the same manner as in Synthesis Example A1-1 are shown in Table 1, respectively.
Figure JPOXMLDOC01-appb-T000002
Abbreviations in the monomer column in Table 1 have the following meanings, respectively.
BD: 1,3-butadiene ST: Styrene AN: Acrylonitrile AA: Acrylic acid TA: Itaconic acid MMA: Methyl methacrylate HEMA: 2-hydroxyethyl methacrylate synthesis Example A2-1
(1) Synthesis of polymer (A2a) After the inside of an autoclave having an internal volume of about 6 L equipped with an electromagnetic stirrer was sufficiently purged with nitrogen, 2.5 L of deoxygenated water and 25 g of ammonium perfluorodecanoate as an emulsifier Was heated to 60 ° C. while stirring at 350 rpm. Next, a mixed gas composed of 70% by mass of vinylidene fluoride (VF) and 30% by mass of propylene hexafluoride (HFP) as monomers was charged until the internal pressure reached 20 kg / cm 2 . Furthermore, 25 g of Freon 113 (CClF 2 -CCl 2 F) solution containing 20% by mass of diisopropyl peroxydicarbonate as a polymerization initiator was injected using nitrogen gas to initiate polymerization. During the polymerization, a mixed gas composed of 65% by mass of VF and 35% by mass of HFP was sequentially injected so that the internal pressure was maintained at 20 kg / cm 2 . Since the polymerization rate decreased as the polymerization progressed, the same amount of the same polymerization initiator solution as above was injected with nitrogen gas after 3 hours from the start of polymerization, and the reaction was continued for another 3 hours. Then, simultaneously with cooling the reaction liquid, stirring was stopped, and the reaction was stopped by releasing unreacted monomers, whereby an aqueous dispersion containing 40% by mass of polymer (A2a1) fine particles was obtained. As a result of analyzing the obtained polymer by 19 F-NMR, the mass composition ratio of the monomer was VF: HFP = 24: 1.
(2) Synthesis of polymer alloy particles 62.5 parts by mass of an aqueous dispersion containing fine particles of the polymer (A2a1) obtained in the above step after sufficiently replacing the inside of a 7 L separable flask with nitrogen Polymer (corresponding to 25 parts by mass in terms of A2a1)), emulsifier “ADEKA rear soap SR1025” (trade name, manufactured by ADEKA Corporation) 0.5 part by mass, methyl methacrylate (MMA) 30 parts by mass, acrylic acid 2- 40 parts by mass of ethylhexyl (EHA), 5 parts by mass of methacrylic acid (MAA) and 130 parts by mass of water were charged in this order, and stirred at 70 ° C. for 3 hours to allow the polymer (A2a1) to absorb the monomer. Next, 20 mL of a tetrahydrofuran solution containing 0.5 part by mass of azobisisobutyronitrile, which is an oil-soluble polymerization initiator, is added, heated to 75 ° C. and reacted for 3 hours, and further reacted at 85 ° C. for 2 hours. went. Then, after cooling, the reaction was stopped, and the aqueous dispersion containing 40% by mass of polymer particles P2-1 was obtained by adjusting the pH to 7.0 with a 2.5N aqueous sodium hydroxide solution.
(3) Measurement of average particle diameter Polymer particle P2-1 obtained by using a particle size distribution measuring apparatus (model “FPAR-1000” manufactured by Otsuka Electronics Co., Ltd.) having a dynamic light scattering method as a measurement principle. The particle size distribution was measured, and the average particle size determined from the particle size distribution was 330 nm.
(4) DSC analysis When the polymer particle P2-1 contained in the obtained aqueous dispersion was measured by a differential scanning calorimeter (DSC), only one glass transition temperature Tg was observed at -5 ° C. Since this polymer particle P2-1 shows only one Tg despite being composed of two types of polymers, it can be presumed to be a polymer alloy particle.
During the DSC measurement, the melting temperature of the polymer particles P2-1 was not observed.
The DSC chart measured here is shown in FIG.
Synthesis Example A2-2
In the synthesis of the polymer (A2a) in the synthesis example A2-1 (1),
(1) of Synthesis Example A2-1 except that the composition of the VF / HFP mixed gas charged before the start of the reaction and the composition of the VF / HFP mixed gas (VF / HFP) sequentially injected to maintain the internal pressure during the polymerization were changed. In the same manner as in the synthesis of the polymer (A2a), an aqueous dispersion containing 40% by mass of the fine particles of the polymer (A2a2) was obtained. The mass composition ratio of the monomer analyzed by 19 F-NMR for the obtained polymer was VF: HFP = 20: 5.
An aqueous dispersion containing fine particles of the polymer (A2a2) obtained above in place of the aqueous dispersion containing fine particles of the polymer (A2a1) in the synthesis of (2) polymer alloy particles of the synthesis example A2-1 62.5 parts by mass (corresponding to 25 parts by mass in terms of polymer (A2a2)), and 5 parts by mass of acrylic acid (MA) instead of methacrylic acid (MAA) were used. 2) In the same manner as the synthesis of the polymer alloy particles, an aqueous dispersion containing 40% by mass of the polymer particles P5 was obtained.
The average particle diameter and Tg of polymer particles P2-2 measured in the same manner as in Synthesis Example A2-1 are shown in Table 2.
Synthesis Example A2-3
A separable flask having a volume of 7 liters was charged with 150 parts by mass of water and 0.2 parts by mass of sodium dodecylbenzenesulfonate, and the inside of the separable flask was sufficiently purged with nitrogen.
On the other hand, in another container, 60 parts by mass of water, ether sulfate type emulsifier (trade name “Adekaria soap SR1025”, manufactured by ADEKA Co., Ltd.) as an emulsifier, 0.8 parts by mass in terms of solid content and 2 as a monomer , 2,2-trifluoroethyl methacrylate (TFEMA) 20 parts by mass, acrylonitrile (AN) 10 parts by mass, methyl methacrylate (MMA) 25 parts by mass, 2-ethylhexyl acrylate (EHA) 40 parts by mass and acrylic acid (AA) 5 A monomer emulsion containing a mixture of the above monomers was prepared by adding parts by mass and stirring sufficiently.
Thereafter, the temperature inside the separable flask was started, and when the internal temperature reached 60 ° C., 0.5 parts by mass of ammonium persulfate was added as a polymerization initiator. Then, when the temperature inside the separable flask reaches 70 ° C., the addition of the monomer emulsion prepared above is started, and the temperature inside the separable flask is maintained at 70 ° C. The emulsion was added slowly over 3 hours. Thereafter, the temperature inside the separable flask was raised to 85 ° C., and this temperature was maintained for 3 hours to carry out the polymerization reaction. After 3 hours, the separable flask was cooled to stop the reaction, and then the pH was adjusted to 7.6 by adding ammonium water having a concentration of 15% by mass, thereby containing 30% by mass of the polymer (P2-3). An aqueous dispersion was obtained.
The average particle diameter and Tg of polymer particles P2-2 measured in the same manner as in Synthesis Example A2-1 are shown in Table 2. In the DSC measurement, the melting temperature of the polymer particles P2-2 was not observed.
Figure JPOXMLDOC01-appb-T000003
Abbreviations in the monomer column in Table 2 have the following meanings, respectively.
VF: Vinylidene fluoride HFP: Propylene hexafluoride TFEMA: 2,2,2-trifluoroethyl methacrylate MMA: Methyl methacrylate EHA: 2-ethylhexyl acrylate MAA: Methacrylic acid AA: Acrylic acid AN: Acrylonitrile Table 2 The amount of the monomer having a fluorine atom is an analytical value for Synthesis Examples A2-1 and A2-2, and a charged amount for A2-3.
<(B) Synthesis of polymer>
Synthesis Example B-1
A 3 L flask equipped with a stirrer, a thermometer and a condenser was heated with a heat gun in a reduced pressure state to remove residual moisture inside the container, and then filled with dry nitrogen gas. In this flask, 1,170 g of N-methyl-2-pyrrolidone (NMP) that had been subjected to dehydration by a dehydration distillation method using calcium hydride as a solvent in advance, and 3,3 ′, 4, as tetracarboxylic dianhydride. 80.56 g (0.250 mol) of 4′-benzophenonetetracarboxylic dianhydride and 50.06 g (0.250 mol) of 4,4′-diaminodiphenyl ether as diamine were charged and reacted at 25 ° C. with stirring for 3 hours. Was performed to obtain a polymer solution containing 10% by mass of the polyamic acid B1.
The solution viscosity of this polymer solution was 16,200 mPa · s.
Synthesis examples B-2 to B-4
In the above Synthesis Example B-1, the polyamic acid B2 was prepared in the same manner as in Synthesis Example B-1, except that the types and amounts of the tetracarboxylic dianhydride and diamine used were as shown in Table 3. A solution containing 10% by mass of ~ B4 was obtained.
The solution viscosities of these polyamic acid solutions are shown in Table 3.
Figure JPOXMLDOC01-appb-T000004
Abbreviations in the tetracarboxylic dianhydride column and the diamine column in Table 3 have the following meanings, respectively.
BTDA: 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride PMDA: pyromellitic dianhydride TDA: 4- (2,5-dioxotetrahydrofuran-3-yl) -1,2,3 , 4-Tetrahydronaphthalene-1,2-carboxylic anhydride DDE: 4,4′-diaminodiphenyl ether DDP: 4,4′-diaminobiphenyl <Synthesis of active material containing silicon>
Synthesis Example A-1
A mixture of pulverized silicon dioxide powder (average particle size 10 μm) and carbon powder (average particle size 35 μm) was placed in an electric furnace adjusted to a temperature in the range of 1,100 to 1,600 ° C. under a nitrogen stream (0 0.5 NL / min), heat treatment was performed for 10 hours to obtain a silicon oxide powder (average particle size 8 μm) represented by the composition formula SiOx (x = 0.5 to 1.1).
300 g of this silicon oxide powder was placed in a batch-type heating furnace, and the temperature was increased from room temperature (25 ° C.) to 1,100 ° C. at a temperature increase rate of 300 ° C./h while maintaining a reduced pressure of 100 Pa absolute by a vacuum pump. Warm up. Next, while maintaining the pressure in the heating furnace at 2,000 Pa, heat treatment (graphite coating treatment) was performed at 1,100 ° C. for 5 hours while introducing methane gas at a flow rate of 0.5 NL / min. After the completion of the graphite coating treatment, the powder was cooled to room temperature at a temperature decrease rate of 50 ° C./h to obtain about 330 g of graphite-coated silicon oxide powder.
This graphite-coated silicon oxide is a conductive powder (active material) in which the surface of silicon oxide is coated with graphite, and the average particle diameter thereof is 10.5 μm. The ratio of the graphite coating in the case of mass% was 2 mass%.
Example 1
(1) Preparation of aqueous solution of (B) polymer (polyamic acid) 100 g of the solution containing polyamic acid B1 obtained in Synthesis Example B-1 was dropped into about 1 L of water to be solidified. The coagulated product was thoroughly washed in running water to sufficiently remove NMP, and then dried under reduced pressure overnight at room temperature to obtain a solid polyamic acid. Next, 10 g of the above solid polyamic acid was put into 90 g of a 2% by mass ammonia aqueous solution (pH 11) and stirred at room temperature for 3 hours to obtain an aqueous solution containing 10% by mass of polyamic acid.
(2) Preparation of binder composition 190 g (95 g in terms of polymer particles) of the aqueous dispersion containing the polymer particles P1-1 obtained in Synthesis Example A1-1 and 50 g of the polyamic acid aqueous solution obtained above ( A binder composition was obtained by mixing 5 g) in terms of polyamic acid. The solid content concentration of this binder composition was 41.7% by mass, and the pH measured using a pH meter (product name “D-51S” manufactured by Horiba, Ltd.) was 7.6.
(3) Adhesion test of binder composition The binder composition prepared above was applied on a 10 cm square copper plate and a glass plate, respectively, so that the film thickness after solvent removal was about 90 μm, and at 60 ° C. By heating for 30 minutes, thin films of the binder composition were formed on the copper plate and the glass plate, respectively.
For the thin film of the binder composition formed above, a cross-cut peel test in accordance with JIS K5400 was performed.
Specifically, using a cutter, 11 cuts were made from the surface of the thin film to the depth reaching the copper plate or the glass plate at 1 mm intervals, both vertically and horizontally, and the thin film was divided into a grid-like area of 100 squares. An adhesive tape (manufactured by Terraoka Co., Ltd., product number “650S”) was applied to the entire surface of these 100 square areas and immediately peeled off, and the number of remaining squares was counted.
The evaluation results are shown in Table 4 as the number of remaining cells in 100 cells.
From the examination by the present inventors, it has been empirically clarified that the adhesion between the active material layer and the current collector is proportional to the adhesion between the copper plate and the polymer film in this test. Yes. Further, it has been empirically revealed that the binding property as a binder for binding active materials is proportional to the adhesion between the glass plate and the polymer film in this test. For this reason, when the adhesion between the glass plate and the polymer film is good, it can be estimated that the adhesion as a binder of the polymer binding the active materials is good,
When the adhesion between the Cu plate and the polymer film is good, it can be estimated that the adhesion between the current collector and the active material layer is good.
In this case, if the number of remaining squares is 80 or more, it can be determined that the adhesion is good,
If this number is 90 or more, it can be determined that the adhesion is excellent (very good). The number of remaining cells is most preferably 100 out of 100 grids.
(4) Preparation of electrode slurry Graphite with an average particle size (D50 value) of 22 μm as a negative electrode active material in a biaxial planetary mixer (product name “TK Hibismix 2P-03” manufactured by PRIMIX Corporation) 80 parts by mass (product name “SMG-HE1” manufactured by Hitachi Chemical Co., Ltd.) and 20 parts by mass of graphite-coated silicon oxide (C / SiO) prepared in Synthesis Example A-1 and acetylene black (electrochemical) 1 part by mass of Kogyo Co., Ltd. (trade name “Denka Black 50% press product”) was added and mixed at 20 rpm for 3 minutes. Next, 50 g of carboxymethyl cellulose (CMC: Nippon Paper Industries Co., Ltd. (Chemical Business Division), trade name “MAC-500LC”), which was previously adjusted to a solid content concentration of 2 mass%, and 15.5 g of ion-exchanged water were added, Mixed at 60 rpm for 30 minutes. Thereafter, 2.4 g of the binder composition and 27 g of ion-exchanged water were added thereto, and the mixture was further mixed at 30 rpm for 15 minutes. Next, in order to remove bubbles in the slurry, by using a stirring defoaming machine (trade name “ARV930-TWIN” manufactured by Shinkey Co., Ltd.), stirring and mixing at 600 rpm for 5 minutes under a reduced pressure of 25 kPa absolute pressure, A slurry for an electrode having a solid content concentration of 1% by mass and a total solid content concentration of 52% by mass of the binder resin ((A) polymer particles) was prepared.
(5) Manufacture of electrode for electricity storage device On the surface of a current collector made of copper foil having a thickness of 10 μm, the electrode slurry prepared in “(4) Preparation of slurry for electrode” was applied to the active material layer after removing the solvent. The film thickness was adjusted to 15 mg / cm 2 and applied uniformly by the doctor blade method, followed by drying at 120 ° C. for 5 minutes to form a coating film. Subsequently, the above-mentioned coating film was subjected to a roll temperature adjustment at a roll temperature of 30 ° C., a linear pressure of 1 t / cm, and a feed rate of 0.5 m / min. And the density of the electrode layer was adjusted to 1.60 g / cm 3 . Furthermore, the electrode for electrical storage devices was obtained by heating for 6 hours at 160 ° C. under reduced pressure of 100 Pa absolute pressure to remove a trace amount of water in the active material layer.
The density of the active material layer in this electrode for an electricity storage device was 1.62 g / cm 3 .
(6) Manufacture of electricity storage device In the glove box purged with argon so that the dew point is −80 ° C. or less, the electrode manufactured in “(5) Production of electrode for electricity storage device” was punched and molded to a diameter of 15.5 mm. The product was placed on a bipolar coin cell (trade name “HS Flat Cell” manufactured by Hosen Co., Ltd.) with the active material layer facing upward. Next, a separator (made by Celgard, trade name “Celgard # 2400”) made of a polypropylene porous film punched to a diameter of 24 mm was placed on the above electrode, and 500 μL of electrolyte was injected so that air did not enter. Thereafter, a 200 μm-thick lithium foil having a diameter of 16.6 mm was placed as a counter electrode, and the outer body of the two-pole coin cell was closed with a screw to be sealed. A power storage device was assembled.
The electrolytic solution used here is a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / L in a solvent of ethylene carbonate / ethyl methyl carbonate = 1/1 (mass ratio).
This operation was repeated to produce a total of two electricity storage devices. One of them was subjected to “(7) Evaluation of electricity storage device (evaluation of charge / discharge cycle characteristics)”, and the other was subjected to “(8) Evaluation of film thickness change rate of active material layer”.
(7) Evaluation of electricity storage device (Evaluation of charge / discharge cycle characteristics)
About the electricity storage device manufactured in the above “(6) Production of electricity storage device”, charging is started at a constant current (0.2 C), and when the voltage becomes 0.01 V, the charge continues to the constant voltage (0.01 V). Then, the charging was continued and the time when the current value reached 0.05 C was regarded as the completion of charging (cut-off). Next, discharging was started at a constant current (0.2 C), and when the voltage reached 2.0 V, the discharge was completed (cutoff), and the initial charge / discharge was completed.
Next, 0.5 C charge / discharge was performed as follows for the above-described electricity storage device that was charged and discharged for the first time.
First, charging starts at a constant current (0.5C), and when the voltage reaches 0.01V, charging continues at a constant voltage (0.01V), and when the current value reaches 0.05C. Was charged (cut off). Next, discharge was started at a constant current (0.2 C), and when the voltage reached 2.0 V, the discharge was completed (cutoff), and the discharge capacity at 0.5 C (0.5 C discharge capacity in the first cycle) = A) was measured.
This charge / discharge of 0.5C was repeated, and when the 0.5C discharge capacity at the 100th cycle was B, the capacity retention rate after 100 cycles was calculated by the following mathematical formula (1).
Capacity maintenance rate (%) = B / A × 100 (1)
The evaluation results are shown in Table 4.
If the capacity retention rate after 100 cycles is 90% or more and less than 95%, it can be determined that the charge / discharge cycle characteristics are excellent, and if it is 95% or more, the charge / discharge cycle characteristics are extremely excellent. Can be determined.
(8) Evaluation of rate of change of film thickness of active material layer For the electricity storage device obtained in “(6) Production of electricity storage device”, charging was started at a constant current (0.2 C), and the voltage was reduced to 0.01V At that time, charging was continued at a constant voltage (0.01 V), and charging was completed (cut off) when the current value reached 0.05C. Next, discharging was started at a constant current (0.2 C), and when the voltage reached 2.0 V, the discharge was completed (cutoff), and the initial charge / discharge was completed.
Next, about the said electrical storage device which performed initial charge / discharge, charge starts with a constant current (0.2C), and when a voltage becomes 0.01V, it charges with a constant voltage (0.01V) continuously. Continuing, the time when the current value reached 0.05 C was defined as the completion of charging (cut-off).
This electricity storage device was disassembled in a dry room (room temperature 25 ° C.) having a dew point of −60 ° C. or less, and an electrode for electricity storage device (negative electrode) was taken out. Subsequently, this electrode was immersed in dimethyl carbonate for 1 minute and washed in a dry room. After taking out the electrode from dimethyl carbonate, the dimethyl carbonate was vaporized and removed by standing in a dry room for 30 minutes.
The ratio of the active material layer thickness of the electrode after charging to the active material layer thickness of the electrode immediately after production (uncharged state) measured in advance was measured. (Film thickness ratio after charging) was calculated by the following mathematical formula (2).
Film thickness ratio after charge (%) = (film thickness after charge) / (film thickness immediately after manufacture) × 100 (2)
The evaluation results are shown in Table 4.
When this value exceeds 130%, the active material layer indicates that the volume expansion of the active material accompanying charging is not relaxed, and there is a concern that the active material may peel off when mechanical stress is applied to the active material. is there. On the other hand, if this value is 130% or less, it indicates that the active material is firmly held in the active material layer despite the volume expansion of the active material with charging, and the active material is peeled off. It can be evaluated that the electrode is a good electrode with suppressed.
(9) Evaluation of Storage Stability of Binder Composition 50 g of the binder composition prepared in “(2) Preparation of binder composition” above is placed in a 100 mL vial and sealed, and left at 5 ° C. for 3 months. And stored. Using the binder composition after storage, an electricity storage device was produced and evaluated in the same manner as in the above (4) to (8). The evaluation results are shown in Table 4.
Examples 2 to 11 and Comparative Examples 1 and 2
In Example 1 above, the aqueous dispersion containing (A) polymer particles of the type and amount described in Table 4 and the (B) polymer (polyamic acid) of the type and amount described in Table 4 are contained. A binder composition was prepared in the same manner as in Example 1 except that the NMP solution was used. Using this binder composition, an electrode slurry was prepared in the same manner as in Example 1 except that the amounts of graphite and graphite-coated silicon oxide (C / SiO) were changed as shown in Table 4, respectively. Manufactured and evaluated.
The evaluation results are shown in Table 4.
Example 12
(1) (A) Preparation of NMP dispersion of polymer particles To 200 g of an aqueous dispersion containing polymer particles P1-3 obtained in Synthesis Example A1-3 (100 g in terms of polymer particles), 210 g of NMP was added. After the addition, an NMP dispersion containing 50% by mass of polymer particles P1-3 was obtained by concentrating using an evaporator until the total mass became 200 g.
(2) Preparation of binder composition 200 g of NMP dispersion (100 g in terms of polymer particles) containing the polymer particles P1-3 obtained above and the polyamic acid B3 obtained in Synthesis Example B-3 are contained. A binder composition was obtained by mixing 100 g of NMP solution (10 g in terms of polyamic acid). The solid content concentration of the binder composition was 37.7% by mass, and the pH measured using a pH meter was 8.1.
(3) Evaluation A binder composition was prepared in the same manner as in Example 1 except that the binder composition prepared above was used. An electrode slurry was prepared in the same manner as in Example 1 except that this binder composition was used, and an electricity storage device was produced and evaluated.
The evaluation results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-I000006
発明の効果The invention's effect
 本発明の電極用バインダー組成物は、密着性および充放電特性に優れる電極を製造することができる。本発明の電極用バインダー組成物を用いて製造された電極は、機械的強度に優れているため、充放電の際に顕著な体積変化を示す電極活物質を用いた場合でも、電極特性に優れるものである。 The electrode binder composition of the present invention can produce an electrode having excellent adhesion and charge / discharge characteristics. Since the electrode manufactured using the binder composition for an electrode of the present invention is excellent in mechanical strength, it is excellent in electrode characteristics even when an electrode active material exhibiting a significant volume change during charge / discharge is used. Is.

Claims (8)

  1.  少なくとも
    (A)重合体粒子、
    (B)ポリアミック酸およびその部分イミド化重合体よりなる群から選択される少なくとも1種の重合体、ならびに
    (C)液状媒体
    を含有することを特徴とする、蓄電デバイスの電極用バインダー組成物。
    At least (A) polymer particles,
    A binder composition for an electrode of an electricity storage device, comprising (B) at least one polymer selected from the group consisting of a polyamic acid and a partially imidized polymer thereof, and (C) a liquid medium.
  2.  上記(A)重合体粒子が、
    共役ジエン化合物に由来する繰り返し単位と
    芳香族ビニル化合物に由来する繰り返し単位と
    を有する重合体を含有する粒子である、請求項1に記載の電極用バインダー組成物。
    The (A) polymer particles are
    The binder composition for electrodes according to claim 1, which is a particle containing a polymer having a repeating unit derived from a conjugated diene compound and a repeating unit derived from an aromatic vinyl compound.
  3.  上記(A)重合体粒子が、さらに、α,β−不飽和ニトリル化合物に由来する繰り返し単位および不飽和カルボン酸に由来する繰り返し単位よりなる群から選択される少なくとも1種の繰り返し単位を有する重合体を含有する粒子である、請求項2に記載の電極用バインダー組成物。 The polymer particle (A) further has a repeating unit having at least one repeating unit selected from the group consisting of a repeating unit derived from an α, β-unsaturated nitrile compound and a repeating unit derived from an unsaturated carboxylic acid. The binder composition for electrodes according to claim 2, which is a particle containing coalesced particles.
  4.  上記(A)重合体粒子が、フッ素原子を有する単量体に由来する繰り返し単位を有する重合体を含有する粒子である、請求項1に記載の電極用バインダー組成物。 The binder composition for an electrode according to claim 1, wherein the (A) polymer particle is a particle containing a polymer having a repeating unit derived from a monomer having a fluorine atom.
  5.  上記(A)重合体粒子が、
    フッ素原子を有する単量体に由来する繰り返し単位を有する重合体と
    不飽和カルボン酸エステルに由来する繰り返し単位を有する重合体と
    を含有するポリマーアロイ粒子である、請求項4に記載の電極用バインダー組成物。
    The (A) polymer particles are
    The binder for electrodes according to claim 4, which is a polymer alloy particle comprising a polymer having a repeating unit derived from a monomer having a fluorine atom and a polymer having a repeating unit derived from an unsaturated carboxylic acid ester. Composition.
  6.  上記(C)液状媒体が水である、請求項1~5のいずれか一項に記載の電極用バインダー組成物。 The electrode binder composition according to any one of claims 1 to 5, wherein the liquid medium (C) is water.
  7.  (A)重合体粒子のラテックスと(B)重合体の水溶液とを混合する工程を経ることを特徴とする、請求項6に記載の電極用バインダー組成物の製造方法。 The method for producing a binder composition for an electrode according to claim 6, wherein the method comprises a step of mixing (A) a latex of polymer particles and (B) an aqueous solution of the polymer.
  8.  請求項1~5のいずれか一項に記載の電極用バインダー組成物と
    電極活物質と
    を含有することを特徴とする、蓄電デバイスの電極用スラリー。
    An electrode slurry for an electricity storage device, comprising the electrode binder composition according to any one of claims 1 to 5 and an electrode active material.
PCT/JP2013/073858 2012-10-12 2013-08-29 Electrode binder composite WO2014057749A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014540782A JP6269966B2 (en) 2012-10-12 2013-08-29 Electrode binder composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-227228 2012-10-12
JP2012227228 2012-10-12

Publications (1)

Publication Number Publication Date
WO2014057749A1 true WO2014057749A1 (en) 2014-04-17

Family

ID=50477220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073858 WO2014057749A1 (en) 2012-10-12 2013-08-29 Electrode binder composite

Country Status (2)

Country Link
JP (1) JP6269966B2 (en)
WO (1) WO2014057749A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016143553A (en) * 2015-02-02 2016-08-08 Jsr株式会社 Slurry for power storage device electrode, power storage device electrode, and power storage device
US10147952B2 (en) 2013-06-04 2018-12-04 Nec Corporation Electrode binder composition and electrode
CN110431696A (en) * 2017-03-15 2019-11-08 日本电气株式会社 Secondary cell adhesive composition
CN110447133A (en) * 2017-03-24 2019-11-12 日本瑞翁株式会社 The store method of adhesive composition
CN111416146A (en) * 2020-03-06 2020-07-14 湖南科技大学 Modified nano silicon dioxide and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008664A (en) * 2000-06-16 2002-01-11 Mitsubishi Heavy Ind Ltd Negative electrode for secondary battery and secondary battery using it
JP2002270185A (en) * 2000-12-15 2002-09-20 Wilson Greatbatch Ltd Electrochemical battery having electrode made of vanadium oxide silver coated on current collector
JP2004079286A (en) * 2002-08-13 2004-03-11 Kyushu Electric Power Co Inc Secondary battery and negative electrode therefor
JP2012129068A (en) * 2010-12-15 2012-07-05 Ube Ind Ltd Method for manufacturing electrode
JP2012204203A (en) * 2011-03-25 2012-10-22 Mitsui Chemicals Inc Binder resin composition for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2013004371A (en) * 2011-06-17 2013-01-07 Ube Ind Ltd Binder resin composition for electrode, electrode mixture paste, and electrode

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5404280B2 (en) * 2009-09-25 2014-01-29 新日鐵住金ステンレス株式会社 High-strength, alloy-saving duplex stainless steel with excellent corrosion resistance in the heat affected zone
JP5582038B2 (en) * 2011-01-05 2014-09-03 キヤノンマーケティングジャパン株式会社 Telephone number processing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008664A (en) * 2000-06-16 2002-01-11 Mitsubishi Heavy Ind Ltd Negative electrode for secondary battery and secondary battery using it
JP2002270185A (en) * 2000-12-15 2002-09-20 Wilson Greatbatch Ltd Electrochemical battery having electrode made of vanadium oxide silver coated on current collector
JP2004079286A (en) * 2002-08-13 2004-03-11 Kyushu Electric Power Co Inc Secondary battery and negative electrode therefor
JP2012129068A (en) * 2010-12-15 2012-07-05 Ube Ind Ltd Method for manufacturing electrode
JP2012204203A (en) * 2011-03-25 2012-10-22 Mitsui Chemicals Inc Binder resin composition for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2013004371A (en) * 2011-06-17 2013-01-07 Ube Ind Ltd Binder resin composition for electrode, electrode mixture paste, and electrode

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10147952B2 (en) 2013-06-04 2018-12-04 Nec Corporation Electrode binder composition and electrode
JP2016143553A (en) * 2015-02-02 2016-08-08 Jsr株式会社 Slurry for power storage device electrode, power storage device electrode, and power storage device
CN110431696A (en) * 2017-03-15 2019-11-08 日本电气株式会社 Secondary cell adhesive composition
CN110431696B (en) * 2017-03-15 2022-12-06 日本电气株式会社 Binder composition for secondary battery
CN110447133A (en) * 2017-03-24 2019-11-12 日本瑞翁株式会社 The store method of adhesive composition
CN111416146A (en) * 2020-03-06 2020-07-14 湖南科技大学 Modified nano silicon dioxide and preparation method and application thereof
CN111416146B (en) * 2020-03-06 2023-05-09 湖南科技大学 Modified nano silicon dioxide and preparation method and application thereof

Also Published As

Publication number Publication date
JP6269966B2 (en) 2018-01-31
JPWO2014057749A1 (en) 2016-09-05

Similar Documents

Publication Publication Date Title
CN108028358B (en) Conductive material paste composition for secondary battery electrode, slurry composition for secondary battery electrode, undercoat-coated current collector for secondary battery electrode, electrode for secondary battery, and secondary battery
JP5673987B1 (en) Binder composition for electricity storage device
JP5099394B1 (en) Binder composition for electrode of power storage device
JPWO2014157715A1 (en) Binder composition for electricity storage device
WO2017094252A1 (en) Composition for non-aqueous secondary cell adhesive layer, adhesive layer for non-aqueous secondary cell, laminate body, and non-aqueous secondary cell
JPWO2013191080A1 (en) Binder composition for power storage device electrode, slurry for power storage device electrode, power storage device electrode, and power storage device
KR20170039227A (en) Binder composition for storage device electrode, slurry for storage device electrode, storage device electrode, and storage device
JP6269966B2 (en) Electrode binder composition
WO2015098116A1 (en) Conductive material paste for secondary battery electrode, method for producing slurry for secondary battery cathode, method for producing secondary battery cathode, and secondary battery
JP6398191B2 (en) Method for producing slurry for secondary battery positive electrode, method for producing positive electrode for secondary battery, and method for producing secondary battery
JP6417722B2 (en) Conductive adhesive composition for electrochemical element electrode, current collector with adhesive layer, and electrode for electrochemical element
WO2018168615A1 (en) Conductive material dispersion liquid for electrochemical element electrodes, slurry composition for electrochemical element electrodes, method for producing same, electrode for electrochemical elements, and electrochemical element
WO2013114788A1 (en) Method for producing electrode for electricity storage devices
JP5057125B2 (en) Electrode binder composition, electrode slurry, electrode, and electrochemical device
JP2013229160A (en) Binder composition for electrode of power storage device
JP5835581B2 (en) Binder composition for electrode of power storage device
JP2017076468A (en) Binder composition for electricity storage device electrode, slurry for electricity storage device electrode, electricity storage device electrode, and method for manufacturing electricity storage device
JP6052529B1 (en) Lithium ion secondary battery negative electrode binder composition, lithium ion secondary battery negative electrode slurry, lithium ion secondary battery negative electrode and lithium ion secondary battery
JP6052520B2 (en) Method for storing electrode binder composition
JP6520497B2 (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6052528B1 (en) Slurry for lithium ion secondary battery negative electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery
JP2016143552A (en) Composition for power storage device, slurry for power storage device electrode, and storage device electrode and power storage device
JP2016143553A (en) Slurry for power storage device electrode, power storage device electrode, and power storage device
JP2015149225A (en) Binder resin for secondary battery electrode, slurry for secondary battery electrode using the same, secondary battery electrode and secondary battery
JP2015191732A (en) Conductive material paste for secondary battery electrode, slurry for secondary battery positive electrode, manufacturing method of secondary battery positive electrode, and secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13845937

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014540782

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13845937

Country of ref document: EP

Kind code of ref document: A1