WO2014057626A1 - Film-forming device - Google Patents

Film-forming device Download PDF

Info

Publication number
WO2014057626A1
WO2014057626A1 PCT/JP2013/005843 JP2013005843W WO2014057626A1 WO 2014057626 A1 WO2014057626 A1 WO 2014057626A1 JP 2013005843 W JP2013005843 W JP 2013005843W WO 2014057626 A1 WO2014057626 A1 WO 2014057626A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum chamber
workpiece
evaporation source
work
film forming
Prior art date
Application number
PCT/JP2013/005843
Other languages
French (fr)
Japanese (ja)
Inventor
藤井 博文
隆裕 結城
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to BR112015007816A priority Critical patent/BR112015007816A2/en
Publication of WO2014057626A1 publication Critical patent/WO2014057626A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases

Definitions

  • the present invention relates to a film forming apparatus that performs PVD processing.
  • a hard film (TiN, TiAlN, CrN, etc.) is formed by a PVD method.
  • film forming apparatuses such as an arc ion plating (AIP) apparatus and a sputtering apparatus.
  • an AIP apparatus tends to be hotter than a sputtering apparatus because of its principle. Therefore, it is necessary to prevent the temperature of various parts of the AIP apparatus from becoming too high. For this reason, in a film forming apparatus that tends to be high in temperature, various devices have been devised in order to suppress a temperature rise during film formation on the surface of a substrate.
  • the arc ion plating apparatus disclosed in Patent Document 1 has a rod-shaped evaporation source provided in a vacuum chamber and a cooling device for cooling the rod-shaped evaporation source.
  • the vacuum chamber includes a lower lid on which the workpiece is mounted and a main body to which an upper end of the rod-shaped evaporation source is fixed.
  • the lower lid is movable in the vertical direction relative to the main body.
  • the work is mounted on a work table mounted on the lower lid, and a shield plate is mounted on the work table together with the work.
  • This shield plate covers the entire outer periphery of a plurality of workpieces mounted on the work table. This shield plate prevents the inner wall of the vacuum chamber from being contaminated by metal ions by capturing metal ions from the evaporation source toward the vacuum chamber in front of the vacuum chamber.
  • the film forming apparatus disclosed in Patent Document 2 has an evaporation source for forming a film on the work and a cooling device for cooling the work in the vacuum chamber.
  • the workpiece has a cylindrical shape and has an internal space extending in the vertical direction communicating with the outside through the opening.
  • the cooling device has a cylindrical refrigerant container for flowing a cooling medium therein. The cooling container is inserted into the internal space from the opening of the work in a state where a gap is left between the work and the refrigerant container. The workpiece is cooled from the inside by the cooling container.
  • Such a film forming apparatus described in Patent Document 2 effectively cools a workpiece having a large volume.
  • Each of the film forming apparatuses described in Patent Documents 1 and 2 described above has a final purpose of efficiently forming a high-quality hard film on the surface of the workpiece.
  • the object to be cooled is different.
  • Patent Document 1 discloses an AIP device provided with a cooling mechanism inside an evaporation source. By this cooling mechanism, the temperature rise of the evaporation source can be suppressed.
  • the AIP device described in Patent Document 1 does not have cooling means other than this cooling mechanism, and the shield plate is configured to surround the entire outer periphery of a plurality of workpieces mounted on the work table. . Therefore, it seems that the surface temperature of the workpiece rises to about 450 ° C to 500 ° C.
  • work becomes high it will become difficult to employ
  • Patent Document 2 discloses a film forming apparatus provided with a cooling device for cooling a workpiece.
  • a cooling device for cooling a workpiece.
  • this cooling device By this cooling device, the temperature rise of the workpiece surface can be suppressed. According to this, it is possible to realize suppression of the surface temperature of the workpiece, which was difficult with the AIP device described in Patent Document 1.
  • this AIP apparatus has a complicated structure in which a cylindrical refrigerant container is arranged in the internal space of the work, and a cooling medium is supplied into the refrigerant container to cool the work from the inside. Such a complicated structure increases the manufacturing cost of the AIP device and makes maintenance difficult.
  • Patent Document 2 various techniques for suppressing an increase in the surface temperature of a workpiece have been developed as in Patent Document 2 and the like.
  • the work (base material) has a simple structure.
  • An object of the present invention is to provide a film forming apparatus that has a simple structure that suppresses an increase in manufacturing cost and that effectively suppresses an increase in temperature of a substrate.
  • the film forming apparatus of the present invention is a film forming apparatus that performs a PVD process on the surface of a workpiece by evaporating an evaporation source, the vacuum chamber, the evaporation source provided in the vacuum chamber, A work table for placing a work and turning the plurality of works around the evaporation source and the work table intermittently disposed between the plurality of works, and turning around the evaporation source together with the work by the work table. And a shielding member for collecting evaporated particles moving toward the vacuum chamber among the evaporated particles evaporated from the evaporation source.
  • FIG. 1 It is a diagram showing a schematic configuration of the vacuum chamber and its interior according to an embodiment of the film forming apparatus of the present invention
  • (a) is a diagram showing the configuration when the interior of the vacuum chamber and the vacuum chamber is viewed from above
  • (B) is a figure which shows a structure when the inside of a vacuum chamber and a vacuum chamber is seen from the side.
  • (a) shows another schematic structure of the vacuum chamber by the modification of the film-forming apparatus of this invention, and its inside
  • (a) shows the structure when the modification of a vacuum chamber and its inside are seen from upper direction.
  • (b) is a figure which shows the structure when the modified example of this vacuum chamber and its inside are seen from the side.
  • PVD processing apparatus film forming apparatus
  • the PVD processing apparatus is an apparatus that forms a hard film (performs a film forming process) on the surface of a workpiece using a PVD (Physical Vapor Deposition) method.
  • a substance (target) formed as a hard film on the surface of a base material (work) is evaporated by arc discharge to generate evaporated particles of the target, or ions are collided with the target.
  • the target is made into particles using a physical method such as flipping particles, and the hardened film is formed by depositing the particles on the surface of the workpiece.
  • the PVD processing apparatus adopting this PVD method includes an AIP (Arc Ion Plating) device that forms a film using an arc ion plating method, a sputtering device that forms a film using a sputtering method, and the like.
  • AIP Arc Ion Plating
  • a sputtering device that forms a film using a sputtering method, and the like.
  • the PVD processing apparatus according to the present embodiment will be described by taking an AIP apparatus as an example.
  • FIG. 1 is a diagram showing a vacuum chamber 1 and an internal configuration of the vacuum chamber 1 of the AIP apparatus according to the present embodiment.
  • FIG. 1A is a diagram showing a configuration when the vacuum chamber 1 and the inside of the vacuum chamber 1 are viewed from above
  • FIG. 1B is a diagram of the vacuum chamber 1 and the vacuum chamber 1. It is a figure which shows a structure when the inside is seen from the side.
  • the vertical direction toward the paper surface in FIG. 1 is defined as the vertical direction of the AIP device and the vacuum chamber 1 in FIG. 1B, and the horizontal direction toward the paper surface in FIG. ) And the left-right direction of the vacuum chamber 1.
  • the AIP apparatus includes a vacuum chamber 1. Further, in the vacuum chamber 1, a work table 2 having a plurality of work placing portions 2 a on which a work (base material) W is placed, and an evaporation source serving as a raw material for a film formed on the surface of the work W 3. Further, the AIP device swirls around the evaporation source 3 together with the workpiece W placed on the workpiece placing portion 2a by the work table 2, and moves toward the vacuum chamber 1 among the evaporated particles evaporated from the evaporation source 3. A shield plate 4 for collecting the evaporated particles is provided. Due to this shield plate 4, evaporated particles that have reached a very high temperature do not adhere to the inner wall of the vacuum chamber 1, and radiant heat from the evaporation source 3 does not reach, so the temperature of the inner wall of the vacuum chamber 1 is kept low. Can do.
  • the vacuum chamber 1 provided in the AIP apparatus is a sealed container having a hexahedral shape such as a cube or a rectangular parallelepiped.
  • the vacuum chamber 1 has a ceiling portion 5A that constitutes the upper wall surface, a bottom portion 5B that constitutes the lower wall surface, and a side wall portion 5C that constitutes four side surfaces. It can be hermetically sealed. These six surfaces constituting the vacuum chamber 1 do not necessarily have to be fixed so as to be integrated.
  • the vacuum chamber 1 may have a configuration in which the ceiling portion 5A moves up and down away from the side wall portion 5C, and may have a configuration in which the side wall portion 5C opens and closes.
  • Such a vacuum chamber 1 has a cylindrical shape in which the bottom 5B and the ceiling 5A are formed in a circular shape, and the side wall 5C has a vertical axis that passes through the bottom 5B and the ceiling 5A in the vertical direction (vertical direction).
  • a cylindrical airtight container formed as described above may be used.
  • An exhaust pipe (not shown) communicating with the inside of the vacuum chamber 1 is connected to the vacuum chamber 1, and a vacuum pump (not shown) is connected to the exhaust pipe.
  • a vacuum pump By operating this vacuum pump, the inside of the vacuum chamber 1, which is a sealed container, is depressurized to be in a low pressure or vacuum state.
  • a gas supply pipe (not shown) communicating with the inside of the vacuum chamber 1 is connected to the vacuum chamber 1, and an inert gas or a reaction gas (process gas) is transferred from the gas supply pipe to the inside of the vacuum chamber 1. Supplied.
  • the evaporation source 3 provided in the vacuum chamber 1 is a film forming material (metal such as Ti, Zr, Cr) that is a raw material of a film (hard film such as TiN, ZrN, CrN) formed on the surface of the work W. Is formed in a rod shape (bar shape).
  • the evaporation source 3 is disposed at a substantially central portion of the vacuum chamber 1 such that the longitudinal direction thereof is along the height direction of the vacuum chamber 1.
  • the evaporation source 3 is provided, for example, so as to be suspended from the ceiling portion 5A of the vacuum chamber 1, and moves up and down in accordance with the elevation of the ceiling portion 5A.
  • the ceiling portion 5A is in the position of FIG. 1B, the lower end of the evaporation source 3 is disposed in a space surrounded by a plurality of workpieces W and not in contact with the work table 2.
  • a work table 2 for holding a work W is disposed in the vacuum chamber 1.
  • the work table 2 is a disk-shaped member, and has a plurality of work placement portions 2a on the upper surface thereof.
  • the workpieces W are respectively placed on the upper surfaces of the plurality of workpiece placement units 2a.
  • the work placement units 2a are arranged so as to be arranged at substantially equal intervals along the turning direction (circumferential direction) of the work table 2.
  • the outer shape of the workpiece mounting portion 2 a matches the outer shape of the workpiece W.
  • the disc-shaped work table 2 is supported at the center portion of the circular lower surface by a rotary support 6 formed of a motor or the like.
  • the work table 2 When film formation is performed on the surface of the work W, the work table 2 is arranged and held at a position substantially parallel to the ceiling 5A and the bottom 5B of the vacuum chamber 1 below the vacuum chamber 1. At this time, the rotation support body 6 supports the work table 2 so that its own rotation axis is substantially coincident with the axis passing through the center of the work table 2. Therefore, when the rotary support 6 rotates around the axis, the work table 2 also rotates around the same axis as the rotary support 6.
  • the workpiece mounting portion 2a on the upper surface of the work table 2 has a cylindrical or columnar workpiece at substantially equal intervals along the turning direction (circumferential direction) of the work table 2.
  • W a base material to be formed
  • the eight workpieces W shown in FIG. 1A are arranged closer to the outer periphery than the center of the work table 2.
  • these works W are erected upward from the work table 2 so that the longitudinal direction of the work W is in the vertical direction.
  • the workpiece placement unit 2a of the workpiece table 2 is arranged at the position of eight workpieces W arranged as shown in FIG. 1A and FIG. (Not shown). That is, a plurality of work holding devices are arranged on the upper surface of the work table 2 so as to be equidistant in the circumferential direction on a concentric circle with the axis of the work table 2.
  • This work holding device is in the shape of a disk in the present embodiment, and is fixed to the center of the lower surface of the disk so that the rotation axis is a longitudinal (vertical) axial center.
  • the upper surface is rotatably supported.
  • the workpiece holding device holds each workpiece W such that its own rotation axis substantially coincides with the axis of the workpiece W.
  • the workpiece holding device itself rotates about the rotation axis, thereby rotating the held cylindrical or columnar workpiece W about the axis of the workpiece W.
  • each of the eight works W is held at a predetermined position on the work table 2 and can be rotated without changing the held position.
  • Rotation shaft of work holding device is rotated by driving means (not shown).
  • This drive means may be constituted by a motor, or may transmit the power of the rotation support 6 of the work table 2 to the rotation shaft of each work holding device via a gear transmission mechanism or the like.
  • each work W held on the work table 2 turns around the rotation center of the work table 2 and rotates at a held position on the work table 2 while turning.
  • rotation rotation
  • the work table 2 has a plurality of works W placed on each work placing part 2a on the upper surface thereof and held by the work holding device, that is, works adjacent to each other.
  • the shield plate 4 is held as a shield member.
  • eight shield plates 4 are arranged between the eight workpieces W held at substantially equal intervals along the turning direction of the work table 2 so as not to contact the workpieces W.
  • the plurality of shield plates 4 are intermittently arranged so as to be aligned along the turning direction.
  • the shield plate 4 is a flat member and is made of the same material as the work table 2 and the vacuum chamber 1 and is made of a metal such as steel or stainless steel, for example.
  • the shield plate 4 is a member that is the same as or slightly longer than the workpiece W placed on the workpiece placement portion 2a along the longitudinal direction of the flat plate shape. In other words, when the shield plate 4 is placed on the upper surface of the work table 2, the workpiece W This is a member having a height equal to or higher than the height.
  • the end of the shield plate 4 on the side opposite to the work table 2 (that is, the upper end 4a in FIG. 1B) is the end of the workpiece W on the side opposite to the work table. (That is, it is arranged at a position farther from the work table 2 than the upper end Wa).
  • the shield plate 4 when the shield plate 4 is viewed from the evaporation source 3 with respect to the workpiece W and the shield plate 4, of the two ends in the longitudinal direction of the shield plate 4, the end on the side not facing the work table 2 ( The upper end 4a) is arranged so as to have a height equal to or higher than the end (upper end Wa) on the side not facing the work table among the two ends in the longitudinal direction of the work W.
  • the shield plate 4 is a member having a length equal to or longer than the length along the longitudinal direction of the workpiece W.
  • An end portion (upper end portion 4 a) in the length direction of the shield plate 4 exists outside the length range along the longitudinal direction of the workpiece W and protrudes from the length range of the workpiece W.
  • the width L1 of the shield plate 4 is the smallest gap among the gaps formed between the adjacent workpieces W, that is, the interval between the adjacent workpieces W. It is larger than L2 (separation distance) and smaller than the distance L3 (axial center distance) between the axial centers of adjacent workpieces W. Specifically, the shield plate 4 has a width L1 that is equal to or greater than the distance L2 between the two workpieces W at the position where the adjacent workpieces W are closest.
  • the shield plate 4 having such a configuration is arranged between the adjacent workpieces W from the axis of the work table 2 (swivel center axis) rather than the axis of the adjacent workpieces W. It is arranged at a distant position. That is, the shield plate 4 is disposed at a position farther from the evaporation source 3 than the position at which the adjacent workpieces W are closest to each other (that is, the position of the interval L2 that is the minimum gap).
  • the eight shield plates 4 are arranged such that the respective width directions are along the turning direction (circumferential direction) of the work table 2.
  • the shield plate 4 has a width L1 equal to or greater than the distance L2 between the two workpieces W at the position where the adjacent workpieces W are closest to each other.
  • FIG. 1B is a view of a state in which the work table 2 holding the work W includes the above-described shield plate 4 as viewed from the side, that is, from the side of the side wall portion 5C of the vacuum chamber 1.
  • the shield plate 4 since the gap between adjacent workpieces W is blocked by the shield plate 4, the central portion of the work table 2 surrounded by the eight workpieces W from the side wall portion 5C side. Can't see.
  • the periphery is surrounded by the work W or the shield plate 4, and the outside of the work table 2 (specifically, the side wall portion 5C). ) Cannot be seen.
  • the width L1 of the shield plate 4 is determined so that the center portion of the work table 2 surrounded by the eight works W cannot be seen from the side of the side wall 5C.
  • the film forming process is performed as an AIP apparatus, if the work table 2 holding the workpiece W and the shield plate 4 is held in the vacuum chamber 1, the center of the work table 2 is formed.
  • the above-described evaporation source 3 is arranged. Since the inner wall (specifically, the side wall portion 5C) of the vacuum chamber 1 outside the work table 2 cannot be seen from the evaporation source 3 arranged at the center portion of the work table 2, the work from the evaporation source 3 to the work The evaporated particles moving in the outer peripheral direction of the table 2 adhere to the workpiece W or the shield plate 4 and cannot reach the inner wall of the vacuum chamber 1.
  • the shape of the shield plate 4 is not limited to a flat plate shape.
  • the flat shield plate 4 may be bent or bent in the width direction.
  • the AIP device having the above-described configuration further includes an arc power source and a bias power source (both not shown).
  • an arc power source By connecting the cathode of the arc power source to the evaporation source 3, the evaporation source 3 functions as a target (cathode).
  • the anode of the arc power supply is connected to the vacuum chamber 1.
  • the work W is connected to the cathode of the bias power source.
  • the arc power supply has an auxiliary anode (not shown) for spark discharge. An arc is generated between the auxiliary anode and the target.
  • the film forming material of the evaporation source 3 evaporated by the arc discharge is deposited on the surface of the work W, and a hard film is formed.
  • the side wall 5C of the vacuum chamber 1 is opened, the work table 2 is drawn out from the vacuum chamber 1, and the work W is placed on each of the work holding devices of the drawn out work table 2.
  • a shield plate 4 is placed between adjacent workpieces W.
  • the work table 2 on which the work W and the shield plate 4 are placed is returned to the vacuum chamber 1.
  • the work table 2 is arranged and held so that the axis of the rotary support 6 of the work table 2 is located at a substantially central portion when the vacuum chamber 1 is viewed from the ceiling 5A.
  • the side wall portion 5C of the vacuum chamber 1 is closed, and the ceiling portion 5A from which the evaporation source 3 is suspended is lowered to seal the vacuum chamber 1.
  • the internal space of the vacuum chamber 1 is decompressed. Thereafter, the film forming process is started.
  • the evaporation source 3 disposed in the central portion of the vacuum chamber 1 is held at a substantially central position on the upper surface of the work table 2, so that the plurality of workpieces W and the evaporation source 3 are surrounded.
  • a plurality of shield plates 4 are arranged.
  • Each work W is rotated by the work holding device while revolving around the evaporation source 3 by the rotation of the work table 2. That is, the workpiece W faces the entire circumference of the evaporation source 3 by revolution, and the entire circumference of the side surface of the workpiece W faces the evaporation source 3 by rotation.
  • revolution and rotation the evaporated particles that move radially from the entire circumference of the evaporation source 3 along the radial direction of the work table 2 are uniformly attached and deposited on the entire surface of the work W.
  • the evaporated particles that move radially from the entire circumference of the evaporation source 3 are separated by the shield plate 4 disposed between the adjacent workpieces W. It is collected.
  • the use of the shield plate 4 can prevent the evaporated particles from the evaporation source 3 from adhering to the inner wall of the vacuum chamber 1.
  • the use of such a shield plate 4 produces the following effects.
  • the temperature of the inner wall of the vacuum chamber 1 can be kept low because the evaporated particles that have reached a very high temperature do not adhere to the inner wall of the vacuum chamber 1 and the radiant heat from the evaporation source 3 does not reach. it can.
  • the surface of the entire circumference of the workpiece W facing the inner wall of the vacuum chamber 1 is removed, so that the temperature of the workpiece W can be kept low. That is, the high-temperature portion caused by the evaporated particles can be limited to only the portion surrounded by the workpiece W and the shield plate 4, and the temperature of the other portion, that is, the portion outside the work table 2 can be kept low. Can do.
  • the temperature of the workpiece W can be kept low without providing a cooling device or the like in the AIP device according to the present embodiment, there is no obstacle such as a cooling pipe required when the cooling device is provided. Thereby, the work W can be easily placed on the work table 2.
  • the shield plate 4 may be held on the upper surface of the work table 2, but the shield plate 4 may be suspended from above the work table 2.
  • a column is erected on the work table 2, and a frame for hanging the shield plate 4 is attached to the column.
  • a stand for suspending the shield plate 4 from above the work table 2 can be configured by such a column and a frame.
  • the temperature rise of the workpiece W can be effectively suppressed with a simple structure that suppresses an increase in manufacturing cost, and the maintenance of the inner wall of the vacuum chamber 1 is easy. It becomes. Further, since the size of the shield plate 4 is smaller than that of the conventional shield that covers the inside of the vacuum chamber 1 widely, maintenance is also facilitated in this respect.
  • the temperature rise of the workpiece W is further effectively suppressed by improving the configuration of the vacuum chamber 1. Therefore, a modification of the vacuum chamber 1 that can more effectively suppress the temperature rise of the workpiece W will be described below.
  • FIG. 2 is a view showing a modified example of the vacuum chamber 1 of the AIP device according to the present embodiment and a configuration inside the vacuum chamber 1.
  • FIG. 2A is a diagram illustrating a modification of the vacuum chamber 1 and a configuration when the inside is viewed from above
  • FIG. 2B is a modification of the vacuum chamber 1 and It is a figure which shows a structure when the inside is seen from the side.
  • a vacuum chamber 1 which is a modification of the vacuum chamber 1 has a cooling channel (cooling) for cooling the vacuum chamber 1 outside the side wall portion 5C.
  • the cooling pipe 7 constituting the cooling channel is made of the same material as the vacuum chamber 1 and is made of a metal such as steel or stainless steel, for example.
  • the cooling pipe 7 has a prismatic shape with a hollow inside.
  • a plurality of cooling pipes 7 are provided outside the side wall 5C of the vacuum chamber 1 along the height direction of the vacuum chamber 1, that is, at substantially equal intervals.
  • the plurality of cooling pipes 7 are provided on the outer surface side of the side wall part 5C so as to be spanned between the ceiling part 5A and the bottom part 5B of the vacuum chamber 1, and each cooling pipe 7 is in contact with the side wall part 5C.
  • the plurality of cooling pipes 7 are connected to one of the adjacent cooling pipes 7 and one of the upper end on the ceiling 5A side and the lower end on the bottom 5B side, and the other cooling pipe 7 is connected to the upper end And the remaining end of the lower end.
  • the plurality of cooling pipes 7 form a cooling channel that zigzags continuously while meandering on the side wall portion 5C.
  • the number of the cooling pipes 7 used for constituting one cooling channel is arbitrary and may be selected in accordance with a desired cooling performance.
  • FIG. 2B shows a state in which the refrigerant is supplied from below to the cooling channel provided in the left side wall portion 5C and discharged from the lower side of the cooling channel provided in the right side wall portion 5C.
  • the refrigerant water is generally used, but it is not limited to a liquid such as water, and a gas (gas) having a low boiling point may be used.
  • the inner wall of the vacuum chamber 1 can be kept at a lower temperature.
  • the surface of the entire circumference of the workpiece W toward the inner wall of the vacuum chamber 1 is more effectively removed, so that the temperature of the workpiece W can be kept lower.
  • the side wall portion 5C may be constituted by two opposing wall plates, and a cooling channel may be interposed between the two wall plates. If the cooling channel is sandwiched between two wall plates, a configuration having a cooling channel inside the side wall portion 5C (a configuration having a so-called cooling jacket) is obtained. Therefore, the transfer of heat from the inner side wall plate of the vacuum chamber 1 to the outer side wall plate can be largely blocked. As a result, even if the operator (operator) touches the outside of the side wall 5C of the vacuum chamber 1, there is no possibility of burns or the like.
  • the present invention is not limited to the above-described embodiment, and the shape, structure, material, combination, and the like of each member can be appropriately changed without departing from the essence of the invention. Further, in the embodiment disclosed this time, matters that are not explicitly disclosed, for example, operating conditions and operating conditions, various parameters, dimensions, weights, volumes, and the like of a component deviate from a range that a person skilled in the art normally performs. However, matters that can be easily assumed by those skilled in the art are employed.
  • the shield plate 4 only needs to be arranged at a position where the inner wall of the vacuum chamber 1 outside the work table 2 cannot be seen from the evaporation source 3. It is possible to arrange other than the described positions.
  • the shield plate 4 is disposed at a position farther from the evaporation source 3 than the position at which the adjacent workpieces W are closest.
  • the shield plate 4 can also be arranged at a position closer to the evaporation source 3 than the position at which the adjacent workpieces W are closest to each other along the turning direction.
  • the film forming apparatus can have a configuration advantageous for cooling the workpiece W.
  • the shield plate 4 and the workpiece W are compared with each other as a reference, and the shield plate 4 has a height equal to or higher than the height of the workpiece W when placed on the work table 2. It is described that.
  • the shield plate 4 and the workpiece W can be compared based on the length, instead of using the height as described in the above embodiment. In that case, it can be said that the shield plate 4 is a member having a length equal to or longer than the length of the workpiece W when placed on the workpiece table 2.
  • the shield plate 4 has been described as an example of the shield member.
  • the present invention is not limited to such a plate-shaped shield.
  • work table 2 and can collect the evaporation particles which evaporated from the evaporation source between the workpiece
  • a thing can be adopted as a shield member. For example, it is possible to employ a prismatic or cylindrical shield member.
  • the film forming apparatus of the present embodiment is a film forming apparatus that performs PVD processing on the surface of a work by evaporating an evaporation source, and includes a vacuum chamber, the evaporation source provided in the vacuum chamber, and a plurality of evaporation sources A work table having a plurality of work placement parts on which each of the works is placed, and turning the plurality of works around the evaporation source in a state of being placed on the work placement part; Evaporated particles arranged between the plurality of workpieces placed on the placement unit, thereby intermittently arranged with each other, swirling around the evaporation source together with the workpieces by the work table, and evaporated from the evaporation source And a plurality of shield members for collecting evaporated particles moving toward the vacuum chamber.
  • the film forming apparatus of the present embodiment with the above configuration, it is possible to effectively suppress the temperature rise of the substrate with a simple structure that suppresses an increase in manufacturing cost.
  • the plurality of work placement parts are arranged so as to be aligned along the turning direction of the work table, and the shield members are formed of adjacent works among works placed on the work placement part.
  • the plurality of shield members are arranged so as to be arranged along the turning direction.
  • the shield member is a work placed on the work placing portion, and is closer to the evaporation source than the position of the smallest gap among the gaps formed between the works adjacent to each other. It is preferable that they are arranged at separate positions.
  • the shield member has a width larger than the minimum gap among the gaps between the adjacent workpieces.
  • the shield member is a member having a length equal to or longer than the length of the workpiece placed on the workpiece placement portion, and an end portion of the shield member in the length direction. However, it is preferable to be provided outside the length range along the longitudinal direction of the workpiece.
  • the vacuum chamber has a water cooling channel for cooling a chamber wall of the vacuum chamber.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

[Problem] To provide a film-forming device that can reduce substrate-temperature increases effectively with a simple structure that minimizes increases in manufacturing cost. [Solution] This film-forming device, which performs PVD on the surfaces of workpieces (W) by evaporating an evaporation source (3), is provided with the following: a vacuum chamber (1); an evaporation source (3) provided inside said vacuum chamber (1); and a workpiece table (2) that has a plurality of workpiece-placement parts (2a) on which a plurality of workpieces (W) are placed, respectively, and that rotates said workpieces (W) around the evaporation source (3). This film-forming device is further provided with a plurality of shield plates (4) that are laid out between the workpieces so as to be separated from each other by said workpieces. The workpiece table (2) rotates said shield plates (4), together with the workpieces (W), around the evaporation source (3). The shield plates (4) capture the evaporated particles that, having evaporated from the evaporation source (3), move towards the vacuum chamber (1).

Description

成膜装置Deposition equipment
 本発明は、PVD処理を行う成膜装置に関する。 The present invention relates to a film forming apparatus that performs PVD processing.
 切削工具の耐磨耗性の向上や、機械部品の摺動面の摺動特性の向上を目的として、切削工具及び機械部品となる基材(成膜対象物)に対して、物理的蒸着(PVD)法による硬質皮膜(TiN、TiAlN、CrN等)の成膜が行われる。このような硬質皮膜の成膜に用いられる装置としては、アークイオンプレーティング(AIP)装置やスパッタリング装置などの成膜装置がある。 For the purpose of improving the wear resistance of cutting tools and improving the sliding characteristics of the sliding surfaces of machine parts, physical vapor deposition (deposition target) on the base material (film formation target) that will be the cutting tool and machine parts ( A hard film (TiN, TiAlN, CrN, etc.) is formed by a PVD method. As an apparatus used for forming such a hard film, there are film forming apparatuses such as an arc ion plating (AIP) apparatus and a sputtering apparatus.
 一般にAIP装置は、その原理上、スパッタリング装置と比べて高温となりやすいので、AIP装置における様々な部位について温度を高くなりすぎないようにする必要がある。そのため高温となりやすい成膜装置では、基材の表面に成膜を施す際の温度上昇を抑制するために様々な工夫がなされている。 Generally, an AIP apparatus tends to be hotter than a sputtering apparatus because of its principle. Therefore, it is necessary to prevent the temperature of various parts of the AIP apparatus from becoming too high. For this reason, in a film forming apparatus that tends to be high in temperature, various devices have been devised in order to suppress a temperature rise during film formation on the surface of a substrate.
 例えば、特許文献1に開示のアークイオンプレーティング装置は、真空チャンバ内に設けられたロッド状蒸発源と、該ロッド状蒸発源を冷却するための冷却装置とを有するものである。前記真空チャンバは、前記ワークを搭載した下蓋と、前記ロッド状蒸発源の上端が固定された本体とを備える。前記下蓋は、前記本体に対して相対的に上下方向に移動可能である。さらに、このアークイオンプレーティング装置では、前記ワークは前記下蓋に搭載されるワークテーブルに搭載され、該ワークテーブルには前記ワークとともにシールド板が搭載されている。 For example, the arc ion plating apparatus disclosed in Patent Document 1 has a rod-shaped evaporation source provided in a vacuum chamber and a cooling device for cooling the rod-shaped evaporation source. The vacuum chamber includes a lower lid on which the workpiece is mounted and a main body to which an upper end of the rod-shaped evaporation source is fixed. The lower lid is movable in the vertical direction relative to the main body. Further, in the arc ion plating apparatus, the work is mounted on a work table mounted on the lower lid, and a shield plate is mounted on the work table together with the work.
 このシールド板は、ワークテーブルに搭載された複数のワークの外周全体を囲むように覆うものである。このシールド板は、蒸発源から真空チャンバに向かう金属イオンを真空チャンバの手前で捕捉することによって、真空チャンバの内壁が金属イオンによって汚れることを防止する。 This shield plate covers the entire outer periphery of a plurality of workpieces mounted on the work table. This shield plate prevents the inner wall of the vacuum chamber from being contaminated by metal ions by capturing metal ions from the evaporation source toward the vacuum chamber in front of the vacuum chamber.
 また、特許文献2に開示の成膜装置は、真空チャンバ内に、ワークに被膜を形成するための蒸発源と、該ワークを冷却するための冷却装置とを有する。前記ワークは、筒状であり、開口部を介して外部に連通する上下方向に延びる内部空間を有する。前記冷却装置は、内部に冷却媒体を流す筒状の冷媒容器を有する。前記ワークと前記冷媒容器との間に隙間を空けた状態で、冷却容器は、前記ワークの開口部から内部空間へ挿入される。この冷却容器によって、ワークは、内部から冷却される。このような特許文献2記載の成膜装置は、大きな体積を有するワークを効果的に冷却する。 Further, the film forming apparatus disclosed in Patent Document 2 has an evaporation source for forming a film on the work and a cooling device for cooling the work in the vacuum chamber. The workpiece has a cylindrical shape and has an internal space extending in the vertical direction communicating with the outside through the opening. The cooling device has a cylindrical refrigerant container for flowing a cooling medium therein. The cooling container is inserted into the internal space from the opening of the work in a state where a gap is left between the work and the refrigerant container. The workpiece is cooled from the inside by the cooling container. Such a film forming apparatus described in Patent Document 2 effectively cools a workpiece having a large volume.
 上述の特許文献1,2に記載された成膜装置は、いずれも、ワークの表面に対して質の高い硬質皮膜を効率的に成膜することを最終的な目的としている。しかし、各特許文献に記載された成膜装置では、冷却される対象が異なっている。 Each of the film forming apparatuses described in Patent Documents 1 and 2 described above has a final purpose of efficiently forming a high-quality hard film on the surface of the workpiece. However, in the film forming apparatus described in each patent document, the object to be cooled is different.
 特許文献1は、蒸発源の内部に冷却機構を備えたAIP装置を開示している。この冷却機構によって、蒸発源の温度上昇を抑制することができる。しかし、特許文献1記載のAIP装置では、この冷却機構以外の冷却手段を有しておらず、且つ、シールド板がワークテーブルに搭載された複数のワークの外周全体を囲むように構成されている。そのため、ワークの表面温度が450℃~500℃程度にまで温度が上がると思われる。このようにワークの表面温度が高くなると、比較的低温で鈍って硬度が低下する性質を有する低級鋼をワークとして採用することが困難となる。そのため、成膜後の製品の製造コストを低下させることは難しい。 Patent Document 1 discloses an AIP device provided with a cooling mechanism inside an evaporation source. By this cooling mechanism, the temperature rise of the evaporation source can be suppressed. However, the AIP device described in Patent Document 1 does not have cooling means other than this cooling mechanism, and the shield plate is configured to surround the entire outer periphery of a plurality of workpieces mounted on the work table. . Therefore, it seems that the surface temperature of the workpiece rises to about 450 ° C to 500 ° C. Thus, when the surface temperature of a workpiece | work becomes high, it will become difficult to employ | adopt as a workpiece | work the low-grade steel which has the property which becomes dull and comparatively low at low temperature. Therefore, it is difficult to reduce the manufacturing cost of the product after film formation.
 一方、特許文献2は、ワークを冷却するための冷却装置を備えた成膜装置を開示している。この冷却装置によって、ワーク表面の温度上昇を抑制することができる。これによれば、特許文献1記載のAIP装置では困難であったワークの表面温度の抑制を実現することができる。しかし、このAIP装置は、ワークの内部空間に筒状の冷媒容器を配置し、この冷媒容器の内部に冷却媒体を供給してワークを内部から冷却するといった複雑な構造を有している。このような複雑な構造は、AIP装置の製造コストの増大を招くとともにメンテナンスを困難にする。 On the other hand, Patent Document 2 discloses a film forming apparatus provided with a cooling device for cooling a workpiece. By this cooling device, the temperature rise of the workpiece surface can be suppressed. According to this, it is possible to realize suppression of the surface temperature of the workpiece, which was difficult with the AIP device described in Patent Document 1. However, this AIP apparatus has a complicated structure in which a cylindrical refrigerant container is arranged in the internal space of the work, and a cooling medium is supplied into the refrigerant container to cool the work from the inside. Such a complicated structure increases the manufacturing cost of the AIP device and makes maintenance difficult.
 以上のように、特許文献2などのように、ワークの表面温度の上昇を抑制するための技術が様々に開発されている。しかし、可動部位が多い成膜装置に冷却媒体を通過させるような複雑な冷却構造を導入した場合の成膜装置の製造コストやメンテナンスの困難さを考慮すると、簡素な構造でワーク(基材)の表面温度の上昇を抑制できる技術が望まれている。 As described above, various techniques for suppressing an increase in the surface temperature of a workpiece have been developed as in Patent Document 2 and the like. However, in consideration of the manufacturing cost and difficulty of maintenance of the film forming apparatus when introducing a complicated cooling structure that allows the cooling medium to pass through the film forming apparatus with many movable parts, the work (base material) has a simple structure. There is a demand for a technique that can suppress the increase in the surface temperature of the glass.
特許第3195492号公報Japanese Patent No. 3195492 特許第4413567号公報Japanese Patent No. 4413567
 本発明の目的は、製造コストの増大を抑制した簡素な構造であり、基材の温度上昇を効果的に抑制する成膜装置を提供することである。 An object of the present invention is to provide a film forming apparatus that has a simple structure that suppresses an increase in manufacturing cost and that effectively suppresses an increase in temperature of a substrate.
 本発明の成膜装置は、蒸発源を蒸発させることによってワークの表面にPVD処理を施す成膜装置であって、真空チャンバと、前記真空チャンバ内に設けられた前記蒸発源と、複数の前記ワークを載置し、該複数のワークを前記蒸発源の周囲を旋回させるワークテーブルと、前記複数のワーク間に断続的に配置され、前記ワークテーブルによって前記ワークとともに前記蒸発源の周囲を旋回し、前記蒸発源から蒸発した蒸発粒子のうち前記真空チャンバへ向かって移動する蒸発粒子を捕集するシールド部材とを備えることを特徴とする。 The film forming apparatus of the present invention is a film forming apparatus that performs a PVD process on the surface of a workpiece by evaporating an evaporation source, the vacuum chamber, the evaporation source provided in the vacuum chamber, A work table for placing a work and turning the plurality of works around the evaporation source and the work table intermittently disposed between the plurality of works, and turning around the evaporation source together with the work by the work table. And a shielding member for collecting evaporated particles moving toward the vacuum chamber among the evaporated particles evaporated from the evaporation source.
本発明の成膜装置の実施形態による真空チャンバ及びその内部の概略構成を示す図であり、(a)は、真空チャンバ及び真空チャンバの内部を上方から見たときの構成を示す図であり、(b)は、真空チャンバ及び真空チャンバの内部を側方から見たときの構成を示す図である。It is a diagram showing a schematic configuration of the vacuum chamber and its interior according to an embodiment of the film forming apparatus of the present invention, (a) is a diagram showing the configuration when the interior of the vacuum chamber and the vacuum chamber is viewed from above, (B) is a figure which shows a structure when the inside of a vacuum chamber and a vacuum chamber is seen from the side. 本発明の成膜装置の変形例による真空チャンバ及びその内部のもう一つの概略構成を示す図であり、(a)は、真空チャンバの変形例及びその内部を上方から見たときの構成を示す図であり、(b)は、該真空チャンバの変形例及びその内部を側方から見たときの構成を示す図である。It is a figure which shows another schematic structure of the vacuum chamber by the modification of the film-forming apparatus of this invention, and its inside, (a) shows the structure when the modification of a vacuum chamber and its inside are seen from upper direction. It is a figure, (b) is a figure which shows the structure when the modified example of this vacuum chamber and its inside are seen from the side.
 つぎに、図面を参照しながら、本発明の実施形態によるPVD処理装置(成膜装置)について説明する。 Next, a PVD processing apparatus (film forming apparatus) according to an embodiment of the present invention will be described with reference to the drawings.
 本実施形態によるPVD処理装置は、PVD(Physical Vapor Deposition)法を利用して、ワークの表面に硬質皮膜を形成する(成膜処理を施す)装置である。PVD法は、基材(ワーク)の表面に硬質皮膜として成膜される物質(ターゲット)をアーク放電によって蒸発させてターゲットの蒸発粒子を発生させたり、またはターゲットにイオンを衝突させることによってターゲットの粒子を弾き飛ばしたりするなどの物理的手法を用いてターゲットを粒子化し、粒子化したターゲットをワークの表面上に堆積させて硬質皮膜を成膜する方法である。 The PVD processing apparatus according to the present embodiment is an apparatus that forms a hard film (performs a film forming process) on the surface of a workpiece using a PVD (Physical Vapor Deposition) method. In the PVD method, a substance (target) formed as a hard film on the surface of a base material (work) is evaporated by arc discharge to generate evaporated particles of the target, or ions are collided with the target. In this method, the target is made into particles using a physical method such as flipping particles, and the hardened film is formed by depositing the particles on the surface of the workpiece.
 このPVD法を採用するPVD処理装置には、アークイオンプレーティング法を用いて成膜を行うAIP(Arc Ion Plating)装置や、スパッタ法を用いて成膜を行うスパッタ装置などがある。以下の説明では、AIP装置を例に挙げて、本実施形態によるPVD処理装置を説明する。 The PVD processing apparatus adopting this PVD method includes an AIP (Arc Ion Plating) device that forms a film using an arc ion plating method, a sputtering device that forms a film using a sputtering method, and the like. In the following description, the PVD processing apparatus according to the present embodiment will be described by taking an AIP apparatus as an example.
 図1は、本実施形態によるAIP装置の真空チャンバ1及び真空チャンバ1の内部の構成を示す図である。具体的には、図1(a)は、真空チャンバ1及び真空チャンバ1の内部を上方から見たときの構成を示す図であり、図1(b)は、真空チャンバ1及び真空チャンバ1の内部を側方から見たときの構成を示す図である。 FIG. 1 is a diagram showing a vacuum chamber 1 and an internal configuration of the vacuum chamber 1 of the AIP apparatus according to the present embodiment. Specifically, FIG. 1A is a diagram showing a configuration when the vacuum chamber 1 and the inside of the vacuum chamber 1 are viewed from above, and FIG. 1B is a diagram of the vacuum chamber 1 and the vacuum chamber 1. It is a figure which shows a structure when the inside is seen from the side.
 以下の説明において、図1の紙面に向かっての上下方向を、図1(b)のAIP装置及び真空チャンバ1の上下方向とし、図1の紙面に向かっての左右方向を、図1(b)のAIP装置及び真空チャンバ1の左右方向とする。 In the following description, the vertical direction toward the paper surface in FIG. 1 is defined as the vertical direction of the AIP device and the vacuum chamber 1 in FIG. 1B, and the horizontal direction toward the paper surface in FIG. ) And the left-right direction of the vacuum chamber 1.
 図1に示されるように、本実施形態によるAIP装置は、真空チャンバ1を備える。さらに、真空チャンバ1内には、ワーク(基材)Wが載置される複数のワーク載置部2aを有するワークテーブル2、及びワークWの表面に成膜される被膜の原料となる蒸発源3と、を有する。さらに、AIP装置は、ワークテーブル2によってワーク載置部2aに載置されたワークWと共に蒸発源3の周囲を旋回すると共に、蒸発源3から蒸発した蒸発粒子のうち真空チャンバ1へ向かって移動する蒸発粒子を捕集するシールド板4を備える。このシールド板4により、真空チャンバ1の内壁には、非常に高温となった蒸発粒子が付着せず、且つ蒸発源3からの輻射熱が到達しないので、真空チャンバ1の内壁の温度を低く保つことができる。 As shown in FIG. 1, the AIP apparatus according to the present embodiment includes a vacuum chamber 1. Further, in the vacuum chamber 1, a work table 2 having a plurality of work placing portions 2 a on which a work (base material) W is placed, and an evaporation source serving as a raw material for a film formed on the surface of the work W 3. Further, the AIP device swirls around the evaporation source 3 together with the workpiece W placed on the workpiece placing portion 2a by the work table 2, and moves toward the vacuum chamber 1 among the evaporated particles evaporated from the evaporation source 3. A shield plate 4 for collecting the evaporated particles is provided. Due to this shield plate 4, evaporated particles that have reached a very high temperature do not adhere to the inner wall of the vacuum chamber 1, and radiant heat from the evaporation source 3 does not reach, so the temperature of the inner wall of the vacuum chamber 1 is kept low. Can do.
 以下、本実施形態によるAIP装置の構成を詳細に説明する。 Hereinafter, the configuration of the AIP device according to the present embodiment will be described in detail.
 AIP装置に備えられた真空チャンバ1は、例えば立方体や直方体などの六面体形状を有する密閉容器である。具体的には、この真空チャンバ1は、上部の壁面を構成する天井部5A、下部の壁面を構成する底部5B、及び4つの側面を構成する側壁部5Cを有し、真空チャンバ1の内部を気密に密閉することが可能である。これら真空チャンバ1を構成する6つの面は、必ずしも一体となるように固定されている必要はない。例えば、真空チャンバ1は、天井部5Aが側壁部5Cから離れて昇降する構成を有してもよく、また、側壁部5Cが開閉する構成を有してもよい。 The vacuum chamber 1 provided in the AIP apparatus is a sealed container having a hexahedral shape such as a cube or a rectangular parallelepiped. Specifically, the vacuum chamber 1 has a ceiling portion 5A that constitutes the upper wall surface, a bottom portion 5B that constitutes the lower wall surface, and a side wall portion 5C that constitutes four side surfaces. It can be hermetically sealed. These six surfaces constituting the vacuum chamber 1 do not necessarily have to be fixed so as to be integrated. For example, the vacuum chamber 1 may have a configuration in which the ceiling portion 5A moves up and down away from the side wall portion 5C, and may have a configuration in which the side wall portion 5C opens and closes.
 このような真空チャンバ1は、底部5Bおよび天井部5Aが円形に形成され、且つ側壁部5Cが底部5Bおよび天井部5Aを上下方向(縦方向)に貫通する縦軸心を有する円筒状となるように形成された円柱状の密閉容器であってもよい。 Such a vacuum chamber 1 has a cylindrical shape in which the bottom 5B and the ceiling 5A are formed in a circular shape, and the side wall 5C has a vertical axis that passes through the bottom 5B and the ceiling 5A in the vertical direction (vertical direction). A cylindrical airtight container formed as described above may be used.
 真空チャンバ1には、真空チャンバ1の内部に連通する排気管(図示せず)が接続され、この排気管には真空ポンプ(図示せず)が接続されている。この真空ポンプを動作させることで、密閉容器である真空チャンバ1の内部は減圧され、低圧又は真空の状態となる。また、真空チャンバ1には、真空チャンバ1の内部に連通するガス供給管(図示せず)が接続され、不活性ガスや反応ガス(プロセスガス)がこのガス供給管から真空チャンバ1の内部へ供給される。 An exhaust pipe (not shown) communicating with the inside of the vacuum chamber 1 is connected to the vacuum chamber 1, and a vacuum pump (not shown) is connected to the exhaust pipe. By operating this vacuum pump, the inside of the vacuum chamber 1, which is a sealed container, is depressurized to be in a low pressure or vacuum state. Further, a gas supply pipe (not shown) communicating with the inside of the vacuum chamber 1 is connected to the vacuum chamber 1, and an inert gas or a reaction gas (process gas) is transferred from the gas supply pipe to the inside of the vacuum chamber 1. Supplied.
 真空チャンバ1内に設けられる蒸発源3は、ワークWの表面に成膜される被膜(TiN、ZrN、CrNなどの硬質皮膜)の原料である成膜材料(Ti、Zr、Crなどの金属)がロッド状(棒状)に形成されたものである。ワークWの表面に成膜を施す際には、蒸発源3は、その長手方向が真空チャンバ1の高さ方向に沿うように、真空チャンバ1のほぼ中央部分に配置される。 The evaporation source 3 provided in the vacuum chamber 1 is a film forming material (metal such as Ti, Zr, Cr) that is a raw material of a film (hard film such as TiN, ZrN, CrN) formed on the surface of the work W. Is formed in a rod shape (bar shape). When film formation is performed on the surface of the workpiece W, the evaporation source 3 is disposed at a substantially central portion of the vacuum chamber 1 such that the longitudinal direction thereof is along the height direction of the vacuum chamber 1.
 蒸発源3は、例えば真空チャンバ1の天井部5Aから吊り下げられるように設けられており、天井部5Aの昇降に合わせて昇降する。天井部5Aが図1(b)の位置にあるときには、蒸発源3の下端は、複数のワークWに囲まれた空間内であって、ワークテーブル2に接触しない位置に配置される。 The evaporation source 3 is provided, for example, so as to be suspended from the ceiling portion 5A of the vacuum chamber 1, and moves up and down in accordance with the elevation of the ceiling portion 5A. When the ceiling portion 5A is in the position of FIG. 1B, the lower end of the evaporation source 3 is disposed in a space surrounded by a plurality of workpieces W and not in contact with the work table 2.
 図1に示されるように、真空チャンバ1内には、ワークWを保持するためのワークテーブル2が配置される。ワークテーブル2は、円板状の部材であって、その上面に、複数のワーク載置部2aを有する。複数のワーク載置部2aには、その上面に、ワークWがそれぞれ載置される。ワーク載置部2aは、ワークテーブル2の旋回方向(周方向)に沿ってほぼ等間隔に並ぶように配置されている。図1(a)、(b)に示されるようにワーク載置部2aの外形形状は、ワークWの外形形状に一致している。円板状のワークテーブル2は、円形である下面の中心部分が、モータなどで構成された回転支持体6によって支持されている。ワークWの表面に成膜を施す際には、ワークテーブル2は、真空チャンバ1内の下方で、真空チャンバ1の天井部5A及び底部5Bにほぼ平行となる位置に配置及び保持される。このとき回転支持体6は、それ自体の回転軸がワークテーブル2の中心を通る軸心とほぼ一致して同心状となるように、ワークテーブル2を支持している。そのため、回転支持体6が軸心を中心に回転することによって、ワークテーブル2も回転支持体6と同じ軸心を中心に回転する。 As shown in FIG. 1, a work table 2 for holding a work W is disposed in the vacuum chamber 1. The work table 2 is a disk-shaped member, and has a plurality of work placement portions 2a on the upper surface thereof. The workpieces W are respectively placed on the upper surfaces of the plurality of workpiece placement units 2a. The work placement units 2a are arranged so as to be arranged at substantially equal intervals along the turning direction (circumferential direction) of the work table 2. As shown in FIGS. 1A and 1B, the outer shape of the workpiece mounting portion 2 a matches the outer shape of the workpiece W. The disc-shaped work table 2 is supported at the center portion of the circular lower surface by a rotary support 6 formed of a motor or the like. When film formation is performed on the surface of the work W, the work table 2 is arranged and held at a position substantially parallel to the ceiling 5A and the bottom 5B of the vacuum chamber 1 below the vacuum chamber 1. At this time, the rotation support body 6 supports the work table 2 so that its own rotation axis is substantially coincident with the axis passing through the center of the work table 2. Therefore, when the rotary support 6 rotates around the axis, the work table 2 also rotates around the same axis as the rotary support 6.
 図1(a)に示されるように、ワークテーブル2の上面のワーク載置部2aには、ワークテーブル2の旋回方向(周方向)に沿ってほぼ等間隔に、円筒体又は円柱体のワークW(成膜対象である基材)が配置されることができる。図1(a)に示される8本のワークWは、ワークテーブル2の中心よりも外周寄りに配置されている。また、これらのワークWは、図1(b)に示されるように、ワークWの長手方向が上下方向に沿うようにワークテーブル2から上方へ向かって直立している。 As shown in FIG. 1 (a), the workpiece mounting portion 2a on the upper surface of the work table 2 has a cylindrical or columnar workpiece at substantially equal intervals along the turning direction (circumferential direction) of the work table 2. W (a base material to be formed) can be disposed. The eight workpieces W shown in FIG. 1A are arranged closer to the outer periphery than the center of the work table 2. In addition, as shown in FIG. 1B, these works W are erected upward from the work table 2 so that the longitudinal direction of the work W is in the vertical direction.
 ワークテーブル2のワーク載置部2aは、図1(a)及び図1(b)に示されるように配置される8本のワークWの位置に配置され、ワークWを保持するワーク保持装置(図示せず)をそれぞれ有している。すなわち、ワーク保持装置は、ワークテーブル2の上面において、ワークテーブル2の軸心と同心円上で周方向に等間隔となるように複数配置されている。このワーク保持装置は、本実施形態において円板状であり、該円板の下面の中心に回転軸が縦(上下)方向の軸心となるように固定され、該回転軸がワークテーブル2の上面に回転自在に支持されている。ワーク保持装置は、それ自体の回転軸がワークWの軸心とほぼ一致するように、各ワークWを保持する。 The workpiece placement unit 2a of the workpiece table 2 is arranged at the position of eight workpieces W arranged as shown in FIG. 1A and FIG. (Not shown). That is, a plurality of work holding devices are arranged on the upper surface of the work table 2 so as to be equidistant in the circumferential direction on a concentric circle with the axis of the work table 2. This work holding device is in the shape of a disk in the present embodiment, and is fixed to the center of the lower surface of the disk so that the rotation axis is a longitudinal (vertical) axial center. The upper surface is rotatably supported. The workpiece holding device holds each workpiece W such that its own rotation axis substantially coincides with the axis of the workpiece W.
 ワーク保持装置は、それ自体が回転軸を中心に回転することで、保持した円筒体又は円柱体のワークWをワークWの軸心を中心に回転させる。このワーク保持部によって、8本の各ワークWは、ワークテーブル2上の所定の位置で保持されて、保持された位置を変えることなく回転することができる。 The workpiece holding device itself rotates about the rotation axis, thereby rotating the held cylindrical or columnar workpiece W about the axis of the workpiece W. By the work holding unit, each of the eight works W is held at a predetermined position on the work table 2 and can be rotated without changing the held position.
 ワーク保持装置の回転軸は、駆動手段(図示せず)によって回転される。この駆動手段は、モータにより構成されてもよいし、ワークテーブル2の回転支持体6の動力を歯車伝動機構などを介して各ワーク保持装置の回転軸に伝動するものであってもよい。 Rotation shaft of work holding device is rotated by driving means (not shown). This drive means may be constituted by a motor, or may transmit the power of the rotation support 6 of the work table 2 to the rotation shaft of each work holding device via a gear transmission mechanism or the like.
 このようなワークテーブル2の構成によって、ワークテーブル2上に保持された各ワークWは、ワークテーブル2の回転中心の回りを旋回すると共に、旋回しつつワークテーブル2上の保持された位置で回転する。図1(a)を参照すると、各ワークWに関して、ワークテーブル2の回転中心周りの旋回を該回転中心に対する公転と言うことができ、ワークテーブル2上の保持された位置での回転を自転と言うことができる。 With such a structure of the work table 2, each work W held on the work table 2 turns around the rotation center of the work table 2 and rotates at a held position on the work table 2 while turning. To do. Referring to FIG. 1A, for each workpiece W, turning around the rotation center of the work table 2 can be referred to as revolution with respect to the rotation center, and rotation at a held position on the work table 2 is defined as rotation. I can say that.
 図1(a)に示されるように、ワークテーブル2は、その上面の各ワーク載置部2aに載置されてワーク保持装置で保持される複数のワークWの間、つまり、互いに隣り合うワークWの間にシールド部材としてシールド板4を保持している。具体的には、ワークテーブル2の旋回方向に沿ってほぼ等間隔に保持された8本のワークWの間には、ワークWと接触しないように8枚のシールド板4が配置されている。それによって、複数のシールド板4は、旋回方向に沿って並ぶように互いに断続的に配置される。 As shown in FIG. 1 (a), the work table 2 has a plurality of works W placed on each work placing part 2a on the upper surface thereof and held by the work holding device, that is, works adjacent to each other. Between W, the shield plate 4 is held as a shield member. Specifically, eight shield plates 4 are arranged between the eight workpieces W held at substantially equal intervals along the turning direction of the work table 2 so as not to contact the workpieces W. Thereby, the plurality of shield plates 4 are intermittently arranged so as to be aligned along the turning direction.
 シールド板4は、平板状の部材であり、ワークテーブル2や真空チャンバ1と同じ素材で構成されており、例えば、鋼やステンレスなどの金属で構成される。シールド板4は、平板形状の長手方向に沿ってワーク載置部2aに載置されたワークWと同じか若干長い部材であり、言い換えれば、ワークテーブル2の上面に載置したときにワークWの高さ以上の高さを有する部材である。 The shield plate 4 is a flat member and is made of the same material as the work table 2 and the vacuum chamber 1 and is made of a metal such as steel or stainless steel, for example. The shield plate 4 is a member that is the same as or slightly longer than the workpiece W placed on the workpiece placement portion 2a along the longitudinal direction of the flat plate shape. In other words, when the shield plate 4 is placed on the upper surface of the work table 2, the workpiece W This is a member having a height equal to or higher than the height.
 これによって、シールド板4におけるワークテーブル2とは反対側である反ワークテーブル側の端部(すなわち、図1(b)における上側の端部4a)は、ワークWの反ワークテーブル側の端部(すなわち、上側の端部Wa)よりもワークテーブル2から離れた位置に配置される。 Thereby, the end of the shield plate 4 on the side opposite to the work table 2 (that is, the upper end 4a in FIG. 1B) is the end of the workpiece W on the side opposite to the work table. (That is, it is arranged at a position farther from the work table 2 than the upper end Wa).
 言い換えれば、シールド板4は、蒸発源3からワークW及びシールド板4を見たときに、シールド板4の長手方向における2つの端部のうちワークテーブル2と対向していない側の端部(上側の端部4a)が、ワークWの長手方向における2つの端部のうちワークテーブルと対向していない側の端部(上側の端部Wa)以上の高さとなるように配置されている。このように、シールド板4は、ワークWの長手方向に沿った長さ以上の長さを有する部材である。シールド板4の長さ方向における端部(上側の端部4a)は、ワークWの長手方向に沿った長さ範囲の外に存在して、ワークWの長さ範囲から突出する。 In other words, when the shield plate 4 is viewed from the evaporation source 3 with respect to the workpiece W and the shield plate 4, of the two ends in the longitudinal direction of the shield plate 4, the end on the side not facing the work table 2 ( The upper end 4a) is arranged so as to have a height equal to or higher than the end (upper end Wa) on the side not facing the work table among the two ends in the longitudinal direction of the work W. Thus, the shield plate 4 is a member having a length equal to or longer than the length along the longitudinal direction of the workpiece W. An end portion (upper end portion 4 a) in the length direction of the shield plate 4 exists outside the length range along the longitudinal direction of the workpiece W and protrudes from the length range of the workpiece W.
 また、図1(a)に示されるように、シールド板4の幅L1は、隣り合うワークW同士の間に形成される隙間のうち最も小さい部分である最小隙間、すなわち隣り合うワークWの間隔L2(離間距離)よりも大きく、隣り合うワークWの軸心の間隔L3(軸心距離)よりも小さい。具体的には、シールド板4は、隣り合うワークWが最も接近する位置での該両ワークWの間隔L2以上の幅L1を有する。 Further, as shown in FIG. 1A, the width L1 of the shield plate 4 is the smallest gap among the gaps formed between the adjacent workpieces W, that is, the interval between the adjacent workpieces W. It is larger than L2 (separation distance) and smaller than the distance L3 (axial center distance) between the axial centers of adjacent workpieces W. Specifically, the shield plate 4 has a width L1 that is equal to or greater than the distance L2 between the two workpieces W at the position where the adjacent workpieces W are closest.
 図1(a)に示されるように、このような構成のシールド板4は、隣り合うワークWの間で、隣り合うワークWの軸心よりもワークテーブル2の軸心(旋回中心軸)から遠い位置に配置される。つまり、シールド板4は、隣り合うワークWが最も接近する位置(すなわち、最小隙間である間隔L2の位置)よりも、蒸発源3から離れた位置に配置される。このとき、8枚のシールド板4は、それぞれの幅方向がワークテーブル2の旋回方向(周方向)に沿うように配置される。これによってシールド板4は、隣り合うワークWが最も接近する位置での該両ワークWの間隔L2以上の幅L1を、旋回方向に沿って有する。 As shown in FIG. 1A, the shield plate 4 having such a configuration is arranged between the adjacent workpieces W from the axis of the work table 2 (swivel center axis) rather than the axis of the adjacent workpieces W. It is arranged at a distant position. That is, the shield plate 4 is disposed at a position farther from the evaporation source 3 than the position at which the adjacent workpieces W are closest to each other (that is, the position of the interval L2 that is the minimum gap). At this time, the eight shield plates 4 are arranged such that the respective width directions are along the turning direction (circumferential direction) of the work table 2. As a result, the shield plate 4 has a width L1 equal to or greater than the distance L2 between the two workpieces W at the position where the adjacent workpieces W are closest to each other.
 図1(b)は、ワークWを保持するワークテーブル2が上述のシールド板4を備えた状態を側方から、すなわち、真空チャンバ1の側壁部5Cの側から見た図である。この図1(b)に示されるように、隣り合うワークWの隙間がシールド板4で遮られるので、側壁部5Cの側からは、8本のワークWで囲まれたワークテーブル2の中心部分を見ることができない。逆に言えば、ワークテーブル2の中心部分からワークテーブル2の外周方向を見ると、周りはワークWかシールド板4で囲まれていて、ワークテーブル2の外側(具体的には、側壁部5C)を見ることはできない。 FIG. 1B is a view of a state in which the work table 2 holding the work W includes the above-described shield plate 4 as viewed from the side, that is, from the side of the side wall portion 5C of the vacuum chamber 1. As shown in FIG. 1B, since the gap between adjacent workpieces W is blocked by the shield plate 4, the central portion of the work table 2 surrounded by the eight workpieces W from the side wall portion 5C side. Can't see. In other words, when the outer peripheral direction of the work table 2 is viewed from the center of the work table 2, the periphery is surrounded by the work W or the shield plate 4, and the outside of the work table 2 (specifically, the side wall portion 5C). ) Cannot be seen.
 また、言い換えれば、側壁部5Cの側から8本のワークWで囲まれたワークテーブル2の中心部分を見ることができないように、シールド板4の幅L1が決められている。 In other words, the width L1 of the shield plate 4 is determined so that the center portion of the work table 2 surrounded by the eight works W cannot be seen from the side of the side wall 5C.
 後に詳しく説明するが、AIP装置として成膜処理を行う際には、上述のワークW及びシールド板4を保持するワークテーブル2が真空チャンバ1内に保持されると、ワークテーブル2の中心部分には、上述の蒸発源3が配置される。ワークテーブル2の中心部分に配置された蒸発源3からは、ワークテーブル2の外側にある真空チャンバ1の内壁(具体的には、側壁部5C)を見ることはできないので、蒸発源3からワークテーブル2の外周方向へ移動する蒸発粒子は、ワークWかシールド板4に付着し、真空チャンバ1の内壁に到達することはできない。 As will be described in detail later, when the film forming process is performed as an AIP apparatus, if the work table 2 holding the workpiece W and the shield plate 4 is held in the vacuum chamber 1, the center of the work table 2 is formed. The above-described evaporation source 3 is arranged. Since the inner wall (specifically, the side wall portion 5C) of the vacuum chamber 1 outside the work table 2 cannot be seen from the evaporation source 3 arranged at the center portion of the work table 2, the work from the evaporation source 3 to the work The evaporated particles moving in the outer peripheral direction of the table 2 adhere to the workpiece W or the shield plate 4 and cannot reach the inner wall of the vacuum chamber 1.
 なお、シールド板4の形状は、平板状に限定されるものではない。平板状のシールド板4を幅方向において湾曲させても屈曲させてもよい。 Note that the shape of the shield plate 4 is not limited to a flat plate shape. The flat shield plate 4 may be bent or bent in the width direction.
 上述の構成を有するAIP装置は、さらにアーク電源及びバイアス電源(いずれも図示せず)を有している。アーク電源の陰極が蒸発源3に接続されることによって、蒸発源3はターゲット(陰極)として機能する。また、アーク電源の陽極は、真空チャンバ1に接続される。また、ワークWは、バイアス電源の陰極に接続される。その上で、アーク電源は、火花放電用の補助陽極(図示せず)を有する。該補助陽極とターゲット間では、アークが発生する。このアーク放電によって蒸発した蒸発源3の成膜物質がワークWの表面に堆積して、硬質被膜が成膜される。 The AIP device having the above-described configuration further includes an arc power source and a bias power source (both not shown). By connecting the cathode of the arc power source to the evaporation source 3, the evaporation source 3 functions as a target (cathode). The anode of the arc power supply is connected to the vacuum chamber 1. The work W is connected to the cathode of the bias power source. In addition, the arc power supply has an auxiliary anode (not shown) for spark discharge. An arc is generated between the auxiliary anode and the target. The film forming material of the evaporation source 3 evaporated by the arc discharge is deposited on the surface of the work W, and a hard film is formed.
 上述のAIP装置を用いて成膜処理を施す手順について説明する。 A procedure for performing a film forming process using the above-described AIP apparatus will be described.
 まず、真空チャンバ1の側壁部5Cが開けられて真空チャンバ1からワークテーブル2が引き出され、引き出されたワークテーブル2のワーク保持装置のそれぞれにワークWが載置される。その上で、隣り合うワークWの間には、シールド板4が載置される。 First, the side wall 5C of the vacuum chamber 1 is opened, the work table 2 is drawn out from the vacuum chamber 1, and the work W is placed on each of the work holding devices of the drawn out work table 2. In addition, a shield plate 4 is placed between adjacent workpieces W.
 ワークWとシールド板4が載置されたワークテーブル2は、真空チャンバ1内に戻される。ワークテーブル2の回転支持体6の軸心が真空チャンバ1を天井部5Aから見たときのほぼ中央部分に位置するように、ワークテーブル2は配置されて保持される。 The work table 2 on which the work W and the shield plate 4 are placed is returned to the vacuum chamber 1. The work table 2 is arranged and held so that the axis of the rotary support 6 of the work table 2 is located at a substantially central portion when the vacuum chamber 1 is viewed from the ceiling 5A.
 真空チャンバ1内にワークテーブル2が保持された後に真空チャンバ1の側壁部5Cが閉じられ、蒸発源3が吊り下げられた天井部5Aが降下されて真空チャンバ1が密閉される。真空チャンバ1が密閉された後に、真空チャンバ1の内部空間は減圧される。その後、成膜処理が開始される。 After the work table 2 is held in the vacuum chamber 1, the side wall portion 5C of the vacuum chamber 1 is closed, and the ceiling portion 5A from which the evaporation source 3 is suspended is lowered to seal the vacuum chamber 1. After the vacuum chamber 1 is sealed, the internal space of the vacuum chamber 1 is decompressed. Thereafter, the film forming process is started.
 このとき、真空チャンバ1内では、真空チャンバ1の中央部分に配置された蒸発源3が該ワークテーブル2の上面のほぼ中心位置に保持されて、蒸発源3を取り囲むように複数のワークWと複数のシールド板4が配置されている。 At this time, in the vacuum chamber 1, the evaporation source 3 disposed in the central portion of the vacuum chamber 1 is held at a substantially central position on the upper surface of the work table 2, so that the plurality of workpieces W and the evaporation source 3 are surrounded. A plurality of shield plates 4 are arranged.
 各ワークWは、ワークテーブル2の回転によって蒸発源3の周りを公転しながら、ワーク保持装置によって自転する。つまり、ワークWは、公転によって蒸発源3の全周と対面しつつ、自転によってワークWの側面全周を蒸発源3に対面させる。この公転と自転の組み合わせによって、蒸発源3の全周からワークテーブル2の径方向に沿って放射状に移動する蒸発粒子は、ワークWの表面全体に均等に付着して堆積する。 Each work W is rotated by the work holding device while revolving around the evaporation source 3 by the rotation of the work table 2. That is, the workpiece W faces the entire circumference of the evaporation source 3 by revolution, and the entire circumference of the side surface of the workpiece W faces the evaporation source 3 by rotation. By this combination of revolution and rotation, the evaporated particles that move radially from the entire circumference of the evaporation source 3 along the radial direction of the work table 2 are uniformly attached and deposited on the entire surface of the work W.
 蒸発源3の全周から放射状に移動する蒸発粒子のうち、ワークWの表面に付着せず真空チャンバ1へ向かって移動する蒸発粒子は、隣り合うワークWの間に配置されたシールド板4によって捕集される。 Among the evaporated particles that move radially from the entire circumference of the evaporation source 3, the evaporated particles that move toward the vacuum chamber 1 without adhering to the surface of the workpiece W are separated by the shield plate 4 disposed between the adjacent workpieces W. It is collected.
 このようにして、蒸発源3の全周からワークテーブル2の径方向に沿って放射状に移動する蒸発粒子は、そのほぼ全てがワークW又はシールド板4によって捕集されるので、蒸発粒子が真空チャンバ1の内壁へ付着することはほとんどない。 In this way, almost all of the evaporated particles that move radially along the radial direction of the work table 2 from the entire circumference of the evaporation source 3 are collected by the work W or the shield plate 4, so that the evaporated particles are vacuumed. It hardly adheres to the inner wall of the chamber 1.
 上述の実施形態によれば、シールド板4を採用することによって、蒸発源3からの蒸発粒子が真空チャンバ1の内壁に付着することを防ぐことができる。このようなシールド板4の採用は、以下のような効果を生む。 According to the above-described embodiment, the use of the shield plate 4 can prevent the evaporated particles from the evaporation source 3 from adhering to the inner wall of the vacuum chamber 1. The use of such a shield plate 4 produces the following effects.
 まず、蒸発粒子が付着することによる真空チャンバ1の内壁(具体的には、側壁部5c。以下同様)の汚染を防止することができる。次に、真空チャンバ1の内壁には、非常に高温となった蒸発粒子が付着しないことと、蒸発源3からの輻射熱が到達しないこととから、真空チャンバ1の内壁の温度を低く保つことができる。これによって、ワークWの全周のうち真空チャンバ1の内壁に向かう面は抜熱されるので、ワークWの温度を低く保つことができる。つまり、蒸発粒子に起因する高温部分を、ワークW及びシールド板4で囲まれた部分だけに限定することができ、それ以外の部分、つまり、ワークテーブル2から外側の部分の温度を低く保つことができる。 First, it is possible to prevent contamination of the inner wall of the vacuum chamber 1 (specifically, the side wall portion 5c; the same applies hereinafter) due to adhering evaporated particles. Next, the temperature of the inner wall of the vacuum chamber 1 can be kept low because the evaporated particles that have reached a very high temperature do not adhere to the inner wall of the vacuum chamber 1 and the radiant heat from the evaporation source 3 does not reach. it can. As a result, the surface of the entire circumference of the workpiece W facing the inner wall of the vacuum chamber 1 is removed, so that the temperature of the workpiece W can be kept low. That is, the high-temperature portion caused by the evaporated particles can be limited to only the portion surrounded by the workpiece W and the shield plate 4, and the temperature of the other portion, that is, the portion outside the work table 2 can be kept low. Can do.
 また、本実施形態で説明したシールド板4を採用することで、従来用いられていた真空チャンバ1の内面を広く覆うシールドが不要となる。そのため、AIP装置の製造コストを低減し、メンテナンスの手間を低減することができる。 In addition, by using the shield plate 4 described in the present embodiment, a shield that covers the inner surface of the vacuum chamber 1 that has been conventionally used becomes unnecessary. Therefore, it is possible to reduce the manufacturing cost of the AIP device and to reduce maintenance work.
 さらに、本実施形態によるAIP装置では、冷却装置などを設けることなくワークWの温度を低く保つことができるので、冷却装置を設けた際に必要となる冷却パイプのような障害物が存在しない。これによって、ワークテーブル2へのワークWの載置が容易になる。 Furthermore, since the temperature of the workpiece W can be kept low without providing a cooling device or the like in the AIP device according to the present embodiment, there is no obstacle such as a cooling pipe required when the cooling device is provided. Thereby, the work W can be easily placed on the work table 2.
 なお、上述の実施形態において、シールド板4は、ワークテーブル2の上面に保持されてもよいが、シールド板4がワークテーブル2の上方から吊り下げられてもよい。シールド板4が吊り下げられる場合は、ワークテーブル2上に支柱が立てられ、この支柱にシールド板4を吊り下げるフレームが取り付けられる。このような支柱及びフレームによって、ワークテーブル2の上方からシールド板4を吊り下げるスタンドを構成することができる。 In the above-described embodiment, the shield plate 4 may be held on the upper surface of the work table 2, but the shield plate 4 may be suspended from above the work table 2. When the shield plate 4 is suspended, a column is erected on the work table 2, and a frame for hanging the shield plate 4 is attached to the column. A stand for suspending the shield plate 4 from above the work table 2 can be configured by such a column and a frame.
 シールド板4をワークテーブル2上に保持する場合と比較して、ワークテーブル2の上方からシールド板4を吊り下げる場合は、次に挙げる利点がある。 Compared with the case where the shield plate 4 is held on the work table 2, the following advantages are obtained when the shield plate 4 is suspended from above the work table 2.
 蒸発源3からの蒸発粒子の堆積によって、シールド板4にも被膜が形成されると共に、蒸発源3やワークWからの輻射熱によってシールド板4は膨張する。つまり、シールド板4の大きさは変動するので、ワークWとの間に確保された間隔(クリアランス)も変動してしまう。このような場合、ワークテーブル2の上方からシールド板4が吊り下げられている場合には、シールド板4の位置の変更が容易となり、ワークWとの間の適切なクリアランスを維持することができる。 As a result of deposition of evaporated particles from the evaporation source 3, a film is also formed on the shield plate 4, and the shield plate 4 expands due to radiant heat from the evaporation source 3 and the workpiece W. That is, since the size of the shield plate 4 varies, the space (clearance) secured between the workpiece W and the workpiece W also varies. In such a case, when the shield plate 4 is suspended from above the work table 2, the position of the shield plate 4 can be easily changed, and an appropriate clearance from the workpiece W can be maintained. .
 このように、本実施形態によるAIP装置によれば、製造コストの増大を抑制した簡素な構造でワークWの温度上昇を効果的に抑制することができると共に、真空チャンバ1の内壁のメンテナンスが容易となる。また、真空チャンバ1の内部を広く覆う従来のシールドに比べて、シールド板4のサイズは小さいので、この点でもメンテナンスは容易になる。 As described above, according to the AIP apparatus according to the present embodiment, the temperature rise of the workpiece W can be effectively suppressed with a simple structure that suppresses an increase in manufacturing cost, and the maintenance of the inner wall of the vacuum chamber 1 is easy. It becomes. Further, since the size of the shield plate 4 is smaller than that of the conventional shield that covers the inside of the vacuum chamber 1 widely, maintenance is also facilitated in this respect.
 上述のAIP装置について、真空チャンバ1の構成を改良することによって、ワークWの温度上昇をさらに効果的に抑制する。そこで、ワークWの温度上昇をさらに効果的に抑制することができる真空チャンバ1の変形例を、以下に説明する。 For the above-described AIP apparatus, the temperature rise of the workpiece W is further effectively suppressed by improving the configuration of the vacuum chamber 1. Therefore, a modification of the vacuum chamber 1 that can more effectively suppress the temperature rise of the workpiece W will be described below.
 図2は、本実施形態によるAIP装置の真空チャンバ1の変形例及び該真空チャンバ1内部の構成を示す図である。具体的には、図2(a)は、真空チャンバ1の変形例及びその内部を上方から見たときの構成を示す図であり、図2(b)は、該真空チャンバ1の変形例及びその内部を側方から見たときの構成を示す図である。 FIG. 2 is a view showing a modified example of the vacuum chamber 1 of the AIP device according to the present embodiment and a configuration inside the vacuum chamber 1. Specifically, FIG. 2A is a diagram illustrating a modification of the vacuum chamber 1 and a configuration when the inside is viewed from above, and FIG. 2B is a modification of the vacuum chamber 1 and It is a figure which shows a structure when the inside is seen from the side.
 図2(a)及び図2(b)に示されるように、真空チャンバ1の変形例である真空チャンバ1は、その側壁部5Cの外側に、真空チャンバ1を冷却するための冷却チャネル(冷却剤が流通する流路)を有している。冷却チャネルを構成する冷却管7は、真空チャンバ1と同じ素材で構成されており、例えば、鋼やステンレスなどの金属で構成される。冷却管7は、内部が空洞の角柱形状を有している。冷却管7は、真空チャンバ1の側壁部5Cの外側に、真空チャンバ1の高さ方向に沿って、つまり、ほぼ等間隔に複数設けられている。 2A and 2B, a vacuum chamber 1 which is a modification of the vacuum chamber 1 has a cooling channel (cooling) for cooling the vacuum chamber 1 outside the side wall portion 5C. A flow path through which the agent circulates. The cooling pipe 7 constituting the cooling channel is made of the same material as the vacuum chamber 1 and is made of a metal such as steel or stainless steel, for example. The cooling pipe 7 has a prismatic shape with a hollow inside. A plurality of cooling pipes 7 are provided outside the side wall 5C of the vacuum chamber 1 along the height direction of the vacuum chamber 1, that is, at substantially equal intervals.
 複数の冷却管7は、真空チャンバ1の天井部5Aと底部5Bに掛け渡されるように側壁部5Cの外面側に設けられ、各冷却管7は側壁部5Cと接触している。複数の冷却管7は、隣り合う冷却管7の一方と、天井部5A側の上端部及び底部5B側の下端部の一方で接続されており、隣り合う冷却管7の他方とは、上端部及び下端部の残りの端部で接続されている。 The plurality of cooling pipes 7 are provided on the outer surface side of the side wall part 5C so as to be spanned between the ceiling part 5A and the bottom part 5B of the vacuum chamber 1, and each cooling pipe 7 is in contact with the side wall part 5C. The plurality of cooling pipes 7 are connected to one of the adjacent cooling pipes 7 and one of the upper end on the ceiling 5A side and the lower end on the bottom 5B side, and the other cooling pipe 7 is connected to the upper end And the remaining end of the lower end.
 つまり、複数の冷却管7は、側壁部5C上で蛇行しながらジグザグに連続する冷却チャネルを形成することになる。1本の冷却チャネルを構成するために用いる冷却管7の数は任意であり、所望の冷却性能に合わせて選択すればよい。 That is, the plurality of cooling pipes 7 form a cooling channel that zigzags continuously while meandering on the side wall portion 5C. The number of the cooling pipes 7 used for constituting one cooling channel is arbitrary and may be selected in accordance with a desired cooling performance.
 図2(b)は、左側の側壁部5Cに設けられた冷却チャネルに下方から冷媒が供給され、右側の側壁部5Cに設けられた冷却チャネルの下方から冷媒が排出される状態が示されている。冷媒としては、概ね水が用いられるが、水のような液体に限らず沸点の低い気体(ガス)が用いられてもよい。 FIG. 2B shows a state in which the refrigerant is supplied from below to the cooling channel provided in the left side wall portion 5C and discharged from the lower side of the cooling channel provided in the right side wall portion 5C. Yes. As the refrigerant, water is generally used, but it is not limited to a liquid such as water, and a gas (gas) having a low boiling point may be used.
 このように、真空チャンバ1の外壁に冷却チャネルが設けられることによって、真空チャンバ1の内壁をより低温に保つことができる。これによって、ワークWの全周のうち真空チャンバ1の内壁に向かう面はより効果的に抜熱されるので、ワークWの温度を更に低く保つことができる。 Thus, by providing the cooling channel on the outer wall of the vacuum chamber 1, the inner wall of the vacuum chamber 1 can be kept at a lower temperature. As a result, the surface of the entire circumference of the workpiece W toward the inner wall of the vacuum chamber 1 is more effectively removed, so that the temperature of the workpiece W can be kept lower.
 ここで、側壁部5Cは対向する2枚の壁板によって構成され、2枚の壁板の間に冷却チャネルが挟み込まれて配置されてもよい。冷却チャネルが2枚の壁板で挟み込まれれば、側壁部5Cの内部に冷却チャネルを有する構成(いわゆる、冷却ジャケットを有する構成)となる。そのため、真空チャンバ1の内部側の壁板から外部側の壁板への熱の伝達を大幅に遮断することができる。これによって、作業者(オペレータ)が真空チャンバ1の側壁部5Cの外側に触れても、やけど等をする可能性が無くなる。 Here, the side wall portion 5C may be constituted by two opposing wall plates, and a cooling channel may be interposed between the two wall plates. If the cooling channel is sandwiched between two wall plates, a configuration having a cooling channel inside the side wall portion 5C (a configuration having a so-called cooling jacket) is obtained. Therefore, the transfer of heat from the inner side wall plate of the vacuum chamber 1 to the outer side wall plate can be largely blocked. As a result, even if the operator (operator) touches the outside of the side wall 5C of the vacuum chamber 1, there is no possibility of burns or the like.
 本発明は、上記実施形態に限定されるものではなく、発明の本質を変更しない範囲で各部材の形状、構造、材質、組み合わせなどを適宜変更可能である。また、今回開示された実施形態において、明示的に開示されていない事項、例えば、運転条件や操業条件、各種パラメータ、構成物の寸法、重量、体積などは、当業者が通常実施する範囲を逸脱するものではなく、通常の当業者であれば、容易に想定することが可能な事項を採用している。 The present invention is not limited to the above-described embodiment, and the shape, structure, material, combination, and the like of each member can be appropriately changed without departing from the essence of the invention. Further, in the embodiment disclosed this time, matters that are not explicitly disclosed, for example, operating conditions and operating conditions, various parameters, dimensions, weights, volumes, and the like of a component deviate from a range that a person skilled in the art normally performs. However, matters that can be easily assumed by those skilled in the art are employed.
 例えば、シールド板4は、蒸発源3からワークテーブル2の外側にある真空チャンバ1の内壁を見ることができなくなるような位置に配置されればよいので、シールド板4は、上述の実施形態で説明した位置以外に配置することができる。 For example, the shield plate 4 only needs to be arranged at a position where the inner wall of the vacuum chamber 1 outside the work table 2 cannot be seen from the evaporation source 3. It is possible to arrange other than the described positions.
 上述の実施形態では、図1(a)に示されるように、シールド板4は、隣り合うワークWが最も接近する位置よりも蒸発源3から離れた位置に配置されている。しかし、シールド板4は、旋回方向に沿って、隣り合うワークWが最も接近する位置よりも蒸発源3に近い位置に配置されることも可能である。 In the above-described embodiment, as shown in FIG. 1A, the shield plate 4 is disposed at a position farther from the evaporation source 3 than the position at which the adjacent workpieces W are closest. However, the shield plate 4 can also be arranged at a position closer to the evaporation source 3 than the position at which the adjacent workpieces W are closest to each other along the turning direction.
 このようにシールド板4が蒸発源3に近い位置に配置されれば、円筒体又は円柱体であるワークWの側面全周において真空チャンバ1の内壁側を向いている側面の割合が大きくなる。そのため、成膜装置はワークWの冷却に有利な構成を有することが可能である。 If the shield plate 4 is arranged at a position close to the evaporation source 3 in this way, the ratio of the side surface facing the inner wall side of the vacuum chamber 1 in the entire circumference of the side surface of the work W that is a cylindrical body or a columnar body increases. Therefore, the film forming apparatus can have a configuration advantageous for cooling the workpiece W.
 また、上述の実施形態では、図1及び図2に示されるように、真空チャンバ1が縦置きされた場合、蒸発源3、ワークW、及びシールド板4が、紙面に向かって上下方向に沿って配置されている。そのため、上述の実施形態では、高さを基準としてシールド板4及びワークWを比較して、シールド板4が、ワークテーブル2に載置したときにワークWの高さ以上の高さを有する部材であることが記載されている。 In the above-described embodiment, as shown in FIGS. 1 and 2, when the vacuum chamber 1 is placed vertically, the evaporation source 3, the work W, and the shield plate 4 are vertically aligned toward the paper surface. Are arranged. Therefore, in the above-described embodiment, the shield plate 4 and the workpiece W are compared with each other as a reference, and the shield plate 4 has a height equal to or higher than the height of the workpiece W when placed on the work table 2. It is described that.
 しかし、図1及び図2に示される真空チャンバ1が横置きにされた場合、蒸発源3、ワークW、及びシールド板4は、それぞれの長手方向が図面に向かって左右方向に沿うように配置される。この場合、上述の実施形態で記載したような高さを基準するのではなく、長さを基準としてシールド板4及びワークWを比較することができる。その場合には、シールド板4が、ワークテーブル2に載置したときにワークWの長さ以上の長さを有する部材であることを言うことができる。 However, when the vacuum chamber 1 shown in FIGS. 1 and 2 is placed horizontally, the evaporation source 3, the workpiece W, and the shield plate 4 are arranged so that their longitudinal directions are along the left-right direction toward the drawings. Is done. In this case, the shield plate 4 and the workpiece W can be compared based on the length, instead of using the height as described in the above embodiment. In that case, it can be said that the shield plate 4 is a member having a length equal to or longer than the length of the workpiece W when placed on the workpiece table 2.
 なお、上記の実施形態では、シールド部材の一例として、シールド板4を例に挙げて説明したが、本発明はこのような板状のシールドに限定されるものではない。本発明では、ワークテーブル2に載置された複数のワークW間に配置され、ワークWの間で蒸発源から蒸発した蒸発粒子を捕集することが可能であれば、種々の形状または構造のものをシールド部材として採用することが可能である。例えば、角柱状または円柱状のシールド部材を採用することも可能である。 In the above embodiment, the shield plate 4 has been described as an example of the shield member. However, the present invention is not limited to such a plate-shaped shield. In this invention, if it is arrange | positioned between the some workpiece | work W mounted in the workpiece | work table 2, and can collect the evaporation particles which evaporated from the evaporation source between the workpiece | work W, it will be various shapes or structures. A thing can be adopted as a shield member. For example, it is possible to employ a prismatic or cylindrical shield member.
 なお、上述した具体的実施形態には以下の構成を有する発明が主に含まれている。 The specific embodiments described above mainly include inventions having the following configurations.
 本実施形態の成膜装置は、蒸発源を蒸発させることによってワークの表面にPVD処理を施す成膜装置であって、真空チャンバと、前記真空チャンバ内に設けられた前記蒸発源と、複数の前記ワークの各々が載置される複数のワーク載置部を有し、該複数のワークを当該ワーク載置部に載置された状態で前記蒸発源の周囲を旋回させるワークテーブルと、前記ワーク載置部に載置された前記複数のワーク間に配置され、それによって互いに断続的に配置され、前記ワークテーブルによって前記ワークとともに前記蒸発源の周囲を旋回し、前記蒸発源から蒸発した蒸発粒子のうち前記真空チャンバへ向かって移動する蒸発粒子を捕集する複数のシールド部材とを備えることを特徴とする。 The film forming apparatus of the present embodiment is a film forming apparatus that performs PVD processing on the surface of a work by evaporating an evaporation source, and includes a vacuum chamber, the evaporation source provided in the vacuum chamber, and a plurality of evaporation sources A work table having a plurality of work placement parts on which each of the works is placed, and turning the plurality of works around the evaporation source in a state of being placed on the work placement part; Evaporated particles arranged between the plurality of workpieces placed on the placement unit, thereby intermittently arranged with each other, swirling around the evaporation source together with the workpieces by the work table, and evaporated from the evaporation source And a plurality of shield members for collecting evaporated particles moving toward the vacuum chamber.
 本実施形態の成膜装置によれば、上記の構成によって、製造コストの増大を抑制した簡素な構造で効果的に基材の温度上昇を抑制することができる。 According to the film forming apparatus of the present embodiment, with the above configuration, it is possible to effectively suppress the temperature rise of the substrate with a simple structure that suppresses an increase in manufacturing cost.
 ここで、前記複数のワーク載置部は、前記ワークテーブルの旋回方向に沿って並ぶように配置され、前記各シールド部材は、前記ワーク載置部に載置されるワークのうち隣り合うワークの間に配置され、それによって、前記複数のシールド部材は、前記旋回方向に沿って並ぶように配置されるのが好ましい。 Here, the plurality of work placement parts are arranged so as to be aligned along the turning direction of the work table, and the shield members are formed of adjacent works among works placed on the work placement part. Preferably, the plurality of shield members are arranged so as to be arranged along the turning direction.
 また、前記シールド部材は、前記ワーク載置部に載置されたワークであって互いに隣り合うワーク同士の間に形成される隙間のうち最も小さい部分である最小隙間の位置よりも前記蒸発源から離れた位置に配置されているのが好ましい。 Further, the shield member is a work placed on the work placing portion, and is closer to the evaporation source than the position of the smallest gap among the gaps formed between the works adjacent to each other. It is preferable that they are arranged at separate positions.
 さらに、前記シールド部材は、前記隣り合うワークの隙間のうち前記最小隙間よりも大きな幅を有するのが好ましい。 Furthermore, it is preferable that the shield member has a width larger than the minimum gap among the gaps between the adjacent workpieces.
 また、前記シールド部材は、前記ワーク載置部に載置された前記ワークの長手方向に沿った長さ以上の長さを有する部材であり、かつ、該シールド部材の前記長さ方向における端部が、前記ワークの長手方向に沿った長さ範囲の外に存在するように備えられているのが好ましい。 The shield member is a member having a length equal to or longer than the length of the workpiece placed on the workpiece placement portion, and an end portion of the shield member in the length direction. However, it is preferable to be provided outside the length range along the longitudinal direction of the workpiece.
 さらに、前記真空チャンバは、前記真空チャンバのチャンバ壁を冷却するための水冷チャネルを有するのが好ましい。 Furthermore, it is preferable that the vacuum chamber has a water cooling channel for cooling a chamber wall of the vacuum chamber.

Claims (6)

  1.  蒸発源を蒸発させることによってワークの表面にPVD処理を施す成膜装置であって、
     真空チャンバと、
     前記真空チャンバ内に設けられた前記蒸発源と、
     複数の前記ワークの各々が載置される複数のワーク載置部を有し、該複数のワークを当該ワーク載置部に載置された状態で前記蒸発源の周囲を旋回させるワークテーブルと、
     前記ワーク載置部に載置された前記複数のワーク間に配置され、それによって互いに断続的に配置され、前記ワークテーブルによって前記ワークとともに前記蒸発源の周囲を旋回し、前記蒸発源から蒸発した蒸発粒子のうち前記真空チャンバへ向かって移動する蒸発粒子を捕集する複数のシールド部材と
    を備えている成膜装置。
    A film forming apparatus that performs PVD treatment on the surface of a workpiece by evaporating an evaporation source,
    A vacuum chamber;
    The evaporation source provided in the vacuum chamber;
    A work table that has a plurality of work placement parts on which each of the plurality of works is placed, and rotates the plurality of works around the evaporation source in a state of being placed on the work placement part;
    Arranged between the plurality of workpieces placed on the workpiece placement unit, thereby intermittently arranged, swirled around the evaporation source together with the workpiece by the work table, and evaporated from the evaporation source A film forming apparatus comprising: a plurality of shield members that collect evaporated particles moving toward the vacuum chamber among the evaporated particles.
  2.  前記複数のワーク載置部は、前記ワークテーブルの旋回方向に沿って並ぶように配置され、
     前記各シールド部材は、前記ワーク載置部に載置されるワークのうち隣り合うワークの間に配置され、それによって、前記複数のシールド部材は、前記旋回方向に沿って並ぶように配置される
    請求項1に記載の成膜装置。
    The plurality of work placement units are arranged so as to be arranged along a turning direction of the work table,
    Each of the shield members is disposed between adjacent workpieces among the workpieces placed on the workpiece placement unit, whereby the plurality of shield members are arranged in line along the turning direction. The film forming apparatus according to claim 1.
  3.  前記シールド部材は、前記ワーク載置部に載置されたワークであって互いに隣り合うワーク同士の間に形成される隙間のうち最も小さい部分である最小隙間の位置よりも前記蒸発源から離れた位置に配置されている請求項2に記載の成膜装置。 The shield member is a workpiece placed on the workpiece placement portion, and is farther from the evaporation source than the position of the smallest gap that is the smallest portion of the gaps formed between adjacent workpieces. The film forming apparatus according to claim 2, wherein the film forming apparatus is disposed at a position.
  4.  前記シールド部材は、前記隣り合うワークの隙間のうち前記最小隙間よりも大きな幅を有する請求項3に記載の成膜装置。 4. The film forming apparatus according to claim 3, wherein the shield member has a width larger than the minimum gap among the gaps between the adjacent workpieces.
  5.  前記シールド部材は、前記ワーク載置部に載置された前記ワークの長手方向に沿った長さ以上の長さを有する部材であり、かつ、該シールド部材の前記長さ方向における端部が、前記ワークの長手方向に沿った長さ範囲の外に存在するように備えられている請求項1に記載の成膜装置。 The shield member is a member having a length equal to or longer than the length of the workpiece placed on the workpiece placement portion, and an end portion of the shield member in the length direction is The film forming apparatus according to claim 1, wherein the film forming apparatus is provided so as to exist outside a length range along a longitudinal direction of the workpiece.
  6.  前記真空チャンバは、前記真空チャンバのチャンバ壁を冷却するための水冷チャネルを有する請求項1に記載の成膜装置。 The film forming apparatus according to claim 1, wherein the vacuum chamber has a water cooling channel for cooling a chamber wall of the vacuum chamber.
PCT/JP2013/005843 2012-10-11 2013-10-01 Film-forming device WO2014057626A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BR112015007816A BR112015007816A2 (en) 2012-10-11 2013-10-01 film forming device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-226268 2012-10-11
JP2012226268A JP5847054B2 (en) 2012-10-11 2012-10-11 Deposition equipment

Publications (1)

Publication Number Publication Date
WO2014057626A1 true WO2014057626A1 (en) 2014-04-17

Family

ID=50477110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005843 WO2014057626A1 (en) 2012-10-11 2013-10-01 Film-forming device

Country Status (3)

Country Link
JP (1) JP5847054B2 (en)
BR (1) BR112015007816A2 (en)
WO (1) WO2014057626A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170016392A (en) 2014-05-30 2017-02-13 다우 코닝 도레이 캄파니 리미티드 Organic silicon compound, curable silicone composition, and semiconductor device
CN104651783B (en) * 2015-02-12 2017-09-01 烟台首钢磁性材料股份有限公司 A kind of method that permanent magnet ndfeb magnet steel surface is aluminized
CN104674169A (en) * 2015-02-12 2015-06-03 烟台首钢磁性材料股份有限公司 Method for electroplating surface of permanent magnet neodymium iron boron magnetic steel with composite coating

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625846A (en) * 1992-07-09 1994-02-01 Nachi Fujikoshi Corp Composite sputtering device
JPH10265946A (en) * 1997-03-27 1998-10-06 Toyo Metallizing Co Ltd Vapor deposition device and manufacture of thin film using the same
JPH1143767A (en) * 1997-07-23 1999-02-16 Nippon Shinku Kogaku Kk High frequency ion bombarding device
JP2005029848A (en) * 2003-07-07 2005-02-03 Kobe Steel Ltd Vacuum deposition apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625846A (en) * 1992-07-09 1994-02-01 Nachi Fujikoshi Corp Composite sputtering device
JPH10265946A (en) * 1997-03-27 1998-10-06 Toyo Metallizing Co Ltd Vapor deposition device and manufacture of thin film using the same
JPH1143767A (en) * 1997-07-23 1999-02-16 Nippon Shinku Kogaku Kk High frequency ion bombarding device
JP2005029848A (en) * 2003-07-07 2005-02-03 Kobe Steel Ltd Vacuum deposition apparatus

Also Published As

Publication number Publication date
JP5847054B2 (en) 2016-01-20
BR112015007816A2 (en) 2017-07-04
JP2014077177A (en) 2014-05-01

Similar Documents

Publication Publication Date Title
JP5632072B2 (en) Deposition equipment
WO2014057626A1 (en) Film-forming device
IL267523A (en) Sputtering target with backside cooling grooves
WO2016052239A1 (en) Film deposition system
JP6275755B2 (en) Chamber for physical vapor deposition
JP2017133111A (en) Cooling ring for physical gas phase deposition chamber target
WO2014076947A1 (en) Film deposition device
JP2014525516A5 (en)
TWI500795B (en) Film forming device
TWI410512B (en) Sputtering device
KR20040034432A (en) Film deposition system and film deposition method using the same
US20130239894A1 (en) Chemical vapor deposition apparatus
JP2017503080A (en) End block of rotatable target with electrical connection between rotor and collector at pressure below atmospheric pressure
RU2693229C1 (en) Apparatus for applying ion-plasma coatings on blisk blades
RU2595187C1 (en) Apparatus for applying coatings on surfaces of parts
JP2009108384A (en) Film-forming apparatus
JP2017515000A5 (en) Shielding device for rotating cathode, rotating cathode, and method for shielding dark part in deposition equipment
JP4413567B2 (en) Film forming apparatus and film forming method
US10907246B2 (en) Film-forming apparatus, method for producing film-formed product using same, and cooling panel
JP2021134405A (en) Vapor deposition apparatus
JP4561814B2 (en) Milling device
EP3088561B1 (en) Hybrid vacuum furnace
JP2016113675A (en) Vacuum processing method and vacuum processing device
JPS621228Y2 (en)
US20110266147A1 (en) Sputtering device with rotatable targets

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13845656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015007816

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 13845656

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112015007816

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150408