WO2014057584A1 - Optical glass, glass material for press-molding, optical element and method for manufacturing same, and bonding optical element - Google Patents
Optical glass, glass material for press-molding, optical element and method for manufacturing same, and bonding optical element Download PDFInfo
- Publication number
- WO2014057584A1 WO2014057584A1 PCT/JP2012/076509 JP2012076509W WO2014057584A1 WO 2014057584 A1 WO2014057584 A1 WO 2014057584A1 JP 2012076509 W JP2012076509 W JP 2012076509W WO 2014057584 A1 WO2014057584 A1 WO 2014057584A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass
- optical
- optical element
- content
- sio
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
- C03C3/064—Glass compositions containing silica with less than 40% silica by weight containing boron
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
- C03C3/064—Glass compositions containing silica with less than 40% silica by weight containing boron
- C03C3/068—Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/02—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
Definitions
- the present invention relates to optical glass, a glass material for press molding made of optical glass, an optical element, a manufacturing method thereof, and a bonded optical element.
- the method of manufacturing an optical element by heating a glass material and press-molding can be roughly divided into the following two methods.
- the first method is to introduce a glass material heated to a temperature where the viscosity is about 10 3.5 to 10 4.5 dPa ⁇ s into a press mold, press mold, and grind and polish the resulting molded product.
- This is a method for manufacturing an optical element, which is called a reheat press method.
- the second method is a method in which an optical element is manufactured by heating a glass material to a temperature at which the viscosity becomes about 10 5 to 10 9 dPa ⁇ s, press molding, and a precision mold press molding method or a precision press molding method. is called.
- an optical functional surface can be formed without grinding and polishing steps by applying high pressure to high-viscosity glass and precisely transferring the shape of the molding surface of the press mold to the glass. Therefore, in order to prevent the molding surface from being deteriorated by repeatedly performing press molding, the press molding temperature is lowered by using glass having a low glass transition temperature.
- Patent Document 1 discloses a high refractive index and high dispersion glass for use in manufacturing such an optical element.
- a lens made of high refractive index and high dispersion glass can realize excellent chromatic aberration correction by combining with a lens made of fluorophosphate glass having both low dispersion and anomalous partial dispersion.
- a cemented lens in which a high-refractive index, high-dispersion glass lens and a fluorophosphate glass lens are cemented is effective in increasing the functionality and compactness of the optical system.
- the reheat press method is more suitable than the precision mold press molding method for manufacturing such a spherical polished lens.
- the precision mold press molding method is suitable for the production of optical elements that are not suitable for grinding and polishing processes such as aspherical lenses, but for the production of optical elements suitable for grinding and polishing processes, such as spherical lenses. On the contrary, the cost is high.
- Patent Document 1 which is a high refractive index and high dispersion glass
- the glass described in Patent Document 1 is not suitable as a glass material for producing a cemented lens by reheat press molding.
- An object of one embodiment of the present invention is to provide a high-refractive index, high-dispersion optical glass that has excellent thermal stability that is not devitrified even by a reheat press method and is suitable for manufacturing a cemented lens.
- the further aspect of this invention provides the glass material for press molding consisting of the said optical glass, the optical element, its manufacturing method, and the junction lens which joined the said lens made from a glass, and the lens made from a fluorophosphate glass.
- One embodiment of the present invention is represented by mass%, SiO 2 2 ⁇ 37%, B 2 O 3 0-25%, GeO 2 0-10%, Li 2 O, Na 2 O, K 2 O, CaO, SrO and BaO in total 18 to 55%, TiO 2 , Nb 2 O 5 and WO 3 in total 27-55%, Including The mass ratio of SiO 2 content to the total content of SiO 2 and B 2 O 3 (SiO 2 / (SiO 2 + B 2 O 3 )) is in the range of 0.1 to 1, Mass ratio of Li 2 O content to total content of Li 2 O, Na 2 O, K 2 O, CaO, SrO and BaO (Li 2 O / (Li 2 O + Na 2 O + K 2 O + CaO + SrO + BaO) is in the range of 0 to 0.4, The mass ratio of TiO 2 content to the total content of TiO 2 , Nb 2 O 5 and WO 3 (TiO 2 / (TiO 2 + Nb
- the difference (Tx ⁇ Tg) between the crystallization peak temperature Tx and the glass transition temperature Tg of the optical glass is 120 ° C. or higher.
- the liquidus temperature LT of the above-mentioned optical glass is 1300 ° C. or lower.
- the average linear expansion coefficient ⁇ at 100 to 300 ° C. of the optical glass is 85 ⁇ 10 ⁇ 7 / ° C. or more.
- a further aspect of the invention provides:
- the present invention relates to a glass material for press molding made of the above optical glass.
- a further aspect of the invention provides:
- the present invention relates to an optical element made of the above-described optical glass.
- a further aspect of the invention provides: Producing an optical element blank by press-molding the above-described press-molding glass material in a heated and softened state; and Grinding and polishing the produced optical element blank to obtain an optical element; It is related with the manufacturing method of the optical element containing this.
- a further aspect of the invention provides:
- the present invention relates to a bonded optical element obtained by bonding an optical element made of the above-described optical glass and an optical element made of fluorophosphate glass.
- the present invention it is possible to provide a high refractive index, high dispersion optical glass having excellent thermal stability that does not devitrify even by the reheat press method. Furthermore, according to one aspect of the present invention, it is possible to provide a glass material for press molding made of the optical glass, an optical element and a manufacturing method thereof, and a cemented lens in which the glass lens and a fluorophosphate glass lens are bonded. it can.
- the optical glass of the present invention is In mass% display SiO 2 2 ⁇ 37%, B 2 O 3 0-25%, GeO 2 0-10%, Li 2 O, Na 2 O, K 2 O, CaO, SrO and BaO in total 18 to 55%, TiO 2 , Nb 2 O 5 and WO 3 in total 27-55%, Including The mass ratio of SiO 2 content to the total content of SiO 2 and B 2 O 3 (SiO 2 / (SiO 2 + B 2 O 3 )) is in the range of 0.1 to 1, Mass ratio of Li 2 O content to total content of Li 2 O, Na 2 O, K 2 O, CaO, SrO and BaO (Li 2 O / (Li 2 O + Na 2 O + K 2 O + CaO + SrO + BaO) is in the range of 0 to 0.4, The mass ratio of TiO 2 content to the total content of TiO 2 , Nb 2 O 5 and WO 3 (TiO 2 / (TiO 2 / (
- the optical glass of the present invention will be described in detail.
- the content of each component and the total content are represented by mass%, and the ratio of the glass component content and the total content is represented by a mass ratio.
- SiO 2 is an essential component that functions to form a glass network, increase the thermal stability of the glass, and lower the liquidus temperature.
- the content of SiO 2 is less than 2%, the thermal stability of the glass is lowered and the liquidus temperature is increased. If the SiO 2 content is more than 37%, the refractive index is lowered and it becomes difficult to obtain the required optical characteristics. Therefore, the content of SiO 2 is 2 to 37%.
- the preferable lower limit of the content of SiO 2 is 4%, the more preferable lower limit is 6%, the still more preferable lower limit is 8%, and the still more preferable lower limit is 10%.
- the optical glass of the present invention When the optical glass of the present invention is used for a lens bonded to a fluorophosphate glass lens, it is desirable to increase the expansion coefficient of the glass.
- Fluorophosphate glass has high expansion characteristics among optical glasses. For this reason, if the expansion coefficient of the glass to be bonded is small, a difference in expansion between the two types of bonded glass tends to cause a problem on the bonding surface during bonding or storage at high temperature and high humidity.
- the lens is usually bonded by applying an ultraviolet curable adhesive to the bonding surface and irradiating the lens with ultraviolet rays. At this time, heat is generated, and if the difference in expansion between the two types of glass is large, problems occur as described above.
- the preferable upper limit of the content of SiO 2 is 32%, the more preferable upper limit is 27%, and the further preferable upper limit is 25%.
- the composition-based optical glass based on SiO 2 has higher strength than the phosphoric acid-based optical glass. Since the manufacturing process of the cemented lens is complicated, the lens used for the cemented lens is easily damaged when handled. However, since the optical glass of the present invention is a composition system based on SiO 2 , Therefore, it is also possible to provide a lens that is less damaged than the same high refractive index and high dispersion phosphoric acid optical glass.
- B 2 O 3 is a glass network-forming component, and is an optional component that functions to maintain the thermal stability of the glass and lower the liquidus temperature. If the content of B 2 O 3 is more than 25%, the refractive index decreases and it becomes difficult to obtain the required optical characteristics. Therefore, the content of B 2 O 3 is set to 0 to 25%.
- a preferred upper limit for the content of B 2 O 3 is 20%, a more preferred upper limit is 15%, a still more preferred upper limit is 13%, and a more preferred upper limit is 11%. From the viewpoint of further lowering the liquidus temperature, the preferable lower limit of the content of B 2 O 3 is 0.1%, and the more preferable lower limit is 0.3%.
- the optical glass of the present invention maintaining the thermal stability of the glass, from the top to suppress an increase in the liquidus temperature
- SiO 2 and B The mass ratio of SiO 2 content to the total content of 2 O 3 (SiO 2 / (SiO 2 + B 2 O 3 )) is 0.1 or more. Further, when SiO 2 / (SiO 2 + B 2 O 3 ) is increased, the viscosity at the time of molding the molten glass can be increased, and high-quality glass can be easily molded.
- the preferred lower limit of SiO 2 / (SiO 2 + B 2 O 3 ) is 0.2, the more preferred lower limit is 0.3, the still more preferred lower limit is 0.5, the more preferred lower limit is 0.6, and the still more preferred lower limit is 0.7.
- the mass ratio has an upper limit of 1 when B 2 O 3 is not included.
- the expansion coefficient and the refractive index can be adjusted by changing SiO 2 / (SiO 2 + B 2 O 3 ) within the above range. Decreasing SiO 2 / (SiO 2 + B 2 O 3 ) increases the expansion coefficient and increases the refractive index nd.
- GeO 2 has a glass network forming function and is an optional component effective for maintaining a high refractive index as compared with SiO 2 and B 2 O 3 , but it is an essential component that constitutes the optical glass of the present invention. Because it is a particularly expensive component, its content is 0-10%. From the viewpoint of reducing glass production cost and widespread use of high refractive index glass, the preferred range of GeO 2 content is 0-5%, more preferred range is 0-3%, and further preferred range is 0-1%. More preferably, it does not contain GeO 2 .
- Li 2 O, Na 2 O, K 2 O, CaO, SrO, and BaO are components for modifying the glass network, and are components that have the function of improving the meltability of the glass and increasing the expansion coefficient. If the total content of Li 2 O, Na 2 O, K 2 O, CaO, SrO, and BaO is less than 18%, it is difficult to obtain the above effect, and if the total content exceeds 55%, the thermal properties of the glass Stability decreases and liquidus temperature increases. Therefore, the total content of Li 2 O, Na 2 O, K 2 O, CaO, SrO and BaO is set to 18 to 55%.
- a preferable lower limit of the total content is 20%, a more preferable lower limit is 22%, a preferable upper limit is 50%, a more preferable upper limit is 47%, and a still more preferable upper limit is 45%.
- the mass ratio of Li 2 O content to the total content of Li 2 O, Na 2 O, K 2 O, CaO, SrO and BaO exceeds 0.4, the thermal stability of the glass, especially the resistance to devitrification when the glass is reheated, deteriorates, making the glass unsuitable for reheat press molding.
- Li 2 O / (Li 2 O + Na 2 O + K 2 O + CaO + SrO + BaO) is 0 to 0.4.
- the preferable upper limit of Li 2 O / (Li 2 O + Na 2 O + K 2 O + CaO + SrO + BaO) is 0.3, and the more preferable upper limit is 0.2.
- the mass ratio is zero when the Li 2 O is not included, but may be 0.01 or more.
- the total content of Li 2 O, Na 2 O, K 2 O, CaO, SrO, BaO and the mass ratio of the Li 2 O content to the total content are as described above. Next, the content of these components will be described.
- Li 2 O is a relatively excellent component that maintains a high refractive index among the modifying components described above.
- excessive introduction of Li 2 O results in the thermal stability of the glass, particularly the loss resistance during reheating.
- the content of Na 2 O is preferably in the range of 0 to 20%, A range of 0 to 14% is more preferable, and a range of 0 to 12% is more preferable.
- the content of K 2 O is preferably in the range of 0 to 11%, more preferably in the range of 0 to 9%, and further preferably in the range of 0 to 7%.
- CaO and BaO have a relatively high refractive index among the modifying components.
- the excessive introduction of CaO and BaO tends to lower the thermal stability and increase the liquidus temperature.
- a preferable upper limit of the CaO content is 27%, and a more preferable upper limit is 25%.
- the preferable lower limit of the CaO content is 1%, and the more preferable lower limit is 2%.
- the BaO content is preferably 2 to 47%.
- a preferable upper limit of the content of BaO is 45%, a more preferable upper limit is 44%, a preferable lower limit is 3%, and a more preferable lower limit is 5%.
- the total content of CaO and BaO is preferably 9% or more, more preferably 11% or more, and even more preferably 13% or more.
- the total content of CaO and BaO is preferably 48% or less, more preferably 46% or less, and 44% or less. Is more preferable.
- the mass ratio of the total content of CaO and BaO to the total content of Li 2 O, Na 2 O, K 2 O, CaO, SrO and BaO (CaO + BaO) / ( Li 2 O + Na 2 O + K 2 O + CaO + SrO + BaO)) is preferably in the range of 0.30 to 1, more preferably in the range of 0.40 to 1, and in the range of 0.45 to 1. More preferably.
- the said mass ratio can also be set to 1.
- the SrO content is determined by the value of the mass ratio (CaO + BaO) / (Li 2 O + Na 2 O + K 2 O + CaO + SrO + BaO)), and may be 0%. It may be over%.
- the total amount of the alkaline earth metal oxide is preferably larger than the total amount of the alkali metal oxide.
- TiO 2 , Nb 2 O 5 , and WO 3 are all excellent components that increase the refractive index of glass. If the total content of TiO 2 , Nb 2 O 5 and WO 3 is less than 27%, it will be difficult to obtain the required refractive index nd and Abbe number ⁇ d, and if it exceeds 55%, the thermal stability of the glass will be reduced. The liquid phase temperature increases. Therefore, the total content of TiO 2 , Nb 2 O 5 and WO 3 is 27 to 55%.
- a preferred lower limit of the total content of TiO 2 , Nb 2 O 5 and WO 3 is 29%, a more preferred lower limit is 30%, a preferred upper limit is 52%, and a more preferred upper limit is 49%.
- the mass ratio of TiO 2 content to the total content of TiO 2 , Nb 2 O 5 and WO 3 is less than 0.35
- the heat of the glass TiO 2 / (TiO 2 + Nb 2 O 5 + WO 3 ) is set in the range of 0.35 to 1 because the mechanical stability is lowered and the liquidus temperature is raised.
- the preferable lower limit of TiO 2 / (TiO 2 + Nb 2 O 5 + WO 3 ) is 0.4, the more preferable lower limit is 0.45, and the preferable upper limit is 0.9. A more preferred upper limit is 0.85.
- the mass ratio has an upper limit of 1 when Nb 2 O 5 and WO 3 are not included.
- the total content and mass ratio of TiO 2 , Nb 2 O 5 , and WO 3 (TiO 2 / (TiO 2 + Nb 2 O 5 + WO 3 )) are as described above.
- the preferred lower limit of the content of TiO 2 is 9%, the more preferred lower limit is 11%, and the more preferred lower limit is 13%, from the viewpoint of maintaining the thermal stability and suppressing the rise of the liquidus temperature, while maintaining, preferably
- the upper limit is 35%, the more preferable upper limit is 33%, and the more preferable upper limit is 31%.
- the preferable lower limit of the content of Nb 2 O 5 is 2%, the more preferable lower limit is 4%, the further preferable lower limit is 6%, the preferable upper limit is 36%, the more preferable upper limit is 32%, and the more preferable upper limit is 28%. is there.
- a preferable upper limit of the content of WO 3 is 5%, a more preferable upper limit is 4%, and a further preferable upper limit is 3%.
- WO 3 may not be contained, and the content of WO 3 may be more than 0%.
- La 2 O 3 is an optional component that has an excellent function of increasing the refractive index of glass.
- the content of La 2 O 3 is preferably in the range of 0 to 15%, preferably in the range of 0 to 13%. It is more preferable that the content be in the range of 0 to 11%.
- ZrO 2 is an optional component that has an excellent function of increasing the refractive index of glass.
- the ZrO 2 content is preferably in the range of 0 to 12%.
- a preferable upper limit of the content of ZrO 2 is 11%, and a more preferable upper limit is 10%. From the top to obtain the effect of ZrO 2 containing, it is preferable that the content of ZrO 2 1% or more.
- the expansion coefficient may be adjusted in consideration of such a tendency.
- a clarifier such as Sb 2 O 3 or SnO 2 may be added as an additive.
- Preferred among the fining agents is Sb 2 O 3 .
- the externally added amount of Sb 2 O 3 by mass ratio is in the range of 0 to 1%.
- the extra split addition amount by mass ratio is an addition amount shown by the ratio on the basis of the mass of a glass component.
- Sb 2 O 3 functions to stabilize the oxidation state as well as bringing the aforementioned high refractive index component into an oxidized state during glass melting.
- the amount of the extra addition exceeds 1%, the glass tends to be colored due to light absorption of Sb itself.
- the preferable upper limit of the external addition amount of Sb 2 O 3 is 0.8%, the more preferable upper limit is 0.6%, and the preferable lower limit is 0.4%.
- a small amount of NO 3 , CO 3 , SO 4 , F, Cl, Br, I, etc. may be added.
- the optical glass of the present invention it is desirable that Pb, As, Cd, Te, Tl, and Se are not contained or added in consideration of environmental load.
- V, Cr, Mn, Fe, Co, Ni, Cu, Pr, Nd, Eu, Tb, Ho, Er cations are all contained in the glass because it colors glass or emits fluorescence when irradiated with ultraviolet light. It is desirable not to add.
- the inclusion and addition of the above does not exclude even mixing as impurities derived from the glass raw material or the glass melting step.
- the optical glass of the present invention has a refractive index nd of 1.860 to 1.990 and an Abbe number ⁇ d of 21 to 29.
- nd refractive index
- ⁇ d Abbe number
- the refractive index nd is 1.990 or less and the Abbe number ⁇ d is 21 or more.
- the preferable lower limit of the refractive index nd in the present invention is 1.870, the more preferable lower limit is 1.885, the preferable upper limit is 1.985, and the more preferable upper limit is 1.980.
- the preferred lower limit of the Abbe number ⁇ d is 22, a more preferred lower limit is 23, a preferred upper limit is 28, and a more preferred upper limit is 27.
- the thermal stability of glass includes devitrification resistance when forming a glass melt and devitrification resistance when glass that has been solidified once is reheated.
- the devitrification resistance when molding the glass melt is based on the liquidus temperature, and the lower the liquidus temperature, the better the devitrification resistance.
- the temperature of the glass melt that is, the molten glass must be maintained at a high temperature, which facilitates the erosion of the crucible, which causes volatilization of easily volatile components.
- the liquidus temperature LT of the optical glass of the present invention is preferably 1300 ° C. or lower, more preferably 1250 ° C. or lower, further preferably 1200 ° C. or lower, and more preferably 1180 ° C. or lower. preferable.
- Tx-Tg glass transition temperature
- the glass transition temperature Tg and the crystallization peak temperature Tx are obtained as follows. In differential scanning calorimetry, when the glass sample is heated, an endothermic behavior accompanying the change in specific heat, that is, an endothermic peak appears, and when the temperature is further raised, an exothermic peak appears.
- a differential scanning calorimetry curve (DSC curve) is obtained with the horizontal axis representing temperature and the vertical axis representing the amount corresponding to the exothermic endotherm of the sample.
- DSC curve differential scanning calorimetry curve
- the glass transition temperature Tg and the crystallization peak temperature Tx can be measured using a sample obtained by sufficiently grinding glass in a mortar, for example, using a high-temperature differential scanning calorimeter “DSC3300SA” manufactured by Bruker Co., Ltd. it can.
- DSC3300SA differential scanning calorimeter
- the glass material needs to be heated to a temperature higher than the glass transition temperature.
- the glass temperature at the time of forming reaches the crystallization temperature range, the glass becomes devitrified. Therefore, a glass having a small (Tx-Tg) is disadvantageous in forming while preventing devitrification.
- a glass having a large (Tx-Tg) is advantageous in forming by reheating and softening without devitrification.
- the preferred lower limit of the difference (Tx ⁇ Tg) between the crystallization peak temperature Tx and the glass transition temperature Tg is 120 ° C.
- the more preferred lower limit is 130 ° C.
- the still more preferred lower limit is 140 ° C.
- (Tx-Tg) does not naturally increase.
- (Tx-Tg) cannot be increased, and as a result, reheat press molding is performed.
- the glass is not suitable for the law.
- press molding is performed at a relatively low temperature that is several tens of degrees Celsius higher than the glass transition temperature, molding is possible even when (Tx-Tg) is small.
- the preferred lower limit of the glass transition temperature Tg is 590 ° C.
- the more preferred lower limit is 595 ° C.
- the still more preferred lower limit is 600 ° C.
- the average linear expansion coefficient ⁇ at 100 to 300 ° C. of the fluorophosphate glass used for the production of the cemented lens is generally in the range of more than 130 ⁇ 10 ⁇ 7 / ° C.
- the optical glass of the present invention has an average linear expansion coefficient ⁇ at 100 to 300 ° C. of 85 ⁇ 10 ⁇ 7 / ° C. or higher is preferable, and 90 ⁇ 10 ⁇ 7 / ° C. or higher is more preferable.
- the average linear expansion coefficient can be measured by preparing a cylindrical glass sample having a diameter of 5 mm and a length of 20 mm and using, for example, a thermomechanical analyzer “TMA4000s” manufactured by BRUKER axs. .
- the partial dispersion ratios Pg and F are expressed as (ng ⁇ nF) / (nF ⁇ nc) using the refractive indexes ng, nF and nc for the g-line, F-line and c-line.
- the partial dispersion ratios Pg and F are preferably 0.600 or less from the viewpoint of providing a glass suitable for high-order chromatic aberration correction.
- Pg, F is more preferably 0.598 or less, further preferably 0.596 or less, still more preferably 0.594 or less, still more preferably 0.592 or less, It is still more preferable that it is 0.590 or less.
- the partial dispersion ratio Pg, F is preferably 0.570 or more.
- the more preferable lower limit of the partial dispersion ratio Pg, F is 0.575, the further preferable lower limit is 0.580, the still more preferable lower limit is 0.582, the still more preferable lower limit is 0.584, and the still more preferable lower limit is 0.586. .
- the optical glass of the present invention can reduce or suppress coloring by having the above glass composition, and can thereby exhibit high light transmittance over a wide range of visible light region.
- the light transmittance means that a glass sample having parallel surfaces polished to a thickness of 10.0 ⁇ 0.1 mm is used, and light is incident on the polished surface from a vertical direction.
- the obtained spectral transmittance that is, Iout / Iin where Iin is the intensity of light incident on the sample and Iout is the intensity of light transmitted through the sample.
- the spectral transmittance includes light reflection loss on the sample surface.
- polishing means that the surface roughness is smooth
- the optical glass of the present invention can exhibit ⁇ 70 of 530 nm or less.
- ⁇ 70 of the optical glass of the present invention is preferably 500 nm or less, more preferably 490 nm or less, and further preferably 480 nm or less.
- the optical glass of the present invention can exhibit ⁇ 80 of 660 nm or less.
- ⁇ 80 of the optical glass of the present invention is preferably 600 nm or less, more preferably 590 nm or less, and further preferably 580 nm or less.
- a preferable range of ⁇ 5 is 430 nm or less, a more preferable range is 420 nm, a further preferable range is 410 nm or less, a more preferable range is 400 nm or less, and a still more preferable range is 390 nm or less.
- the optical glass of the present invention is a high refractive index glass, it exhibits excellent light transmittance and is suitable as a material for an optical element constituting an imaging optical system and a projection optical system.
- the optical glass of the present invention is a high refractive index glass, but generally, the specific gravity tends to increase as the refractive index of the glass increases. However, an increase in specific gravity is not preferable because it increases the weight of the optical element.
- the optical glass of the present invention can have a specific gravity of 4.5 or less even though it is a high refractive index glass by having the above glass composition.
- the preferable upper limit of the specific gravity is 4.4, the more preferable upper limit is 4.3, the still more preferable upper limit is 4.2, and the still more preferable upper limit is 4.1.
- the specific gravity is preferably 3.5 or more, more preferably 3.6 or more. More preferably, it is 3.7 or more, more preferably 3.8 or more, and even more preferably 3.9 or more.
- the optical glass of the present invention can be produced by a glass melting method in which a glass raw material is heated, melted, clarified and homogenized, and the resulting molten glass is formed.
- a known method can be applied as the glass melting method.
- using oxides, carbonates, nitrates, sulfates, hydroxides, etc. weigh the glass raw materials so that a glass with the desired composition can be obtained, and mix thoroughly to obtain powder raw materials. Heating and melting may be performed, or a raw material obtained by roughly melting a powder raw material to form a cullet and preparing a plurality of cullets may be heated and melted.
- the glass molded body obtained by molding the molten glass can be used for producing a glass material for press molding by annealing to remove strain.
- the glass material for press molding of the present invention is a glass material for press molding made of the optical glass of the present invention. Since it consists of optical glass having excellent devitrification resistance against reheating and softening, a high-quality press-molded product can be obtained without devitrification of the glass during reheat press molding. Moreover, a high-quality press-molded product can also be obtained by using a glass having excellent devitrification resistance during molten glass molding.
- the shape of the glass material for press molding may be appropriately determined according to the shape of the press molded product to be manufactured, and the mass of the glass material may be matched to the mass of the press molded product.
- An example of the manufacturing method of the glass material for press molding is as follows.
- the glass molded body described above is annealed to remove strain, divided into a plurality of glass pieces (cut pieces) by machining, and then barrel-polished to produce a glass material for press molding.
- a glass piece may be ground and polished to produce a glass material for press molding.
- the optical element of the present invention is an optical element made of the optical glass of the present invention.
- an optical element effective for enhancing the functions and compactness of various optical systems including the imaging optical system and the projection optical system by utilizing the high refractive index and high dispersion characteristics of the optical glass of the present invention. Can be provided.
- any glass having a high expansion characteristic is suitable for bonding to an optical element made of glass having a high expansion coefficient such as fluorophosphate glass.
- Examples of the optical element of the present invention include a lens and a prism.
- the power of the high-refractive index, high-dispersion lens may be negative, and the power of the low-dispersion lens may be positive.
- a lens having negative power for example, a biconcave lens, a concave meniscus lens, or a planoconcave lens is preferable because it is advantageous in optical design.
- at least one of the optical functional surfaces of the lens is preferably a spherical surface, and both surfaces are more preferably spherical.
- the optical element manufacturing method of the present invention is an optical element blank produced by press molding in the state of heating and softening the glass material for press molding of the present invention, and the optical element blank thus prepared is ground and polished. Get the element. It is preferable to anneal the optical element blank from the viewpoint of preventing breakage of the glass before the grinding and polishing steps. In this annealing, the refractive index can be finely adjusted by removing the distortion of the glass and adjusting the temperature lowering speed during annealing.
- the optical element of the present invention can also be produced by annealing, grinding and polishing a glass molded body obtained by molding molten glass.
- the bonded optical element of the present invention is obtained by bonding an optical element made of the optical glass of the present invention and an optical element made of fluorophosphate glass.
- an optical element made of the optical glass of the present invention By bonding the high refractive index high dispersion glass optical element of the present invention and the fluorophosphate glass optical element having anomalous partial dispersion and low dispersion, a bonded optical element having excellent chromatic aberration correction can be obtained.
- an optical system such as an imaging optical system and a projection optical system, the optical system can be enhanced and made compact.
- fluorophosphate glass to be bonded to the optical element of the present invention for example, known fluorophosphate optical glasses such as FCD1, FCD100, FCD505 manufactured by HOYA Corporation can be used.
- cemented optical element examples include those in which lenses are cemented (a cemented lens), and in which lenses and a prism are cemented.
- the lens power on the high refractive index and high dispersion side is negative, and the power of the fluorophosphate glass lens is positive, so that it has an excellent chromatic aberration correction function, and the optical system is highly functional and compact.
- An effective cemented lens can be provided. Bonded optical elements are precisely processed (for example, spherical polishing process) so that the bonded surfaces of the two optical elements to be bonded have a reversed shape, and an ultraviolet curable adhesive used for bonding bonded lenses is applied. And it can produce by irradiating an ultraviolet-ray after bonding and hardening an adhesive agent.
- Example 1 First, so that glass Nos. 1 to 30 having the composition shown in Table 1 can be obtained, carbonates, nitrates, hydroxides, oxides, etc. are used as raw materials. This raw material was placed in a platinum crucible, heated and melted at 1,300 ° C., clarified and stirred to obtain a homogeneous molten glass. The molten glass was poured into a preheated mold and rapidly cooled, held at a temperature in the vicinity of the glass transition temperature for 2 hours, and then gradually cooled to obtain each optical glass of glass No. 1-30. No crystal precipitation was observed in any glass. In addition, the characteristic of each glass shown in Table 1 was measured by the method shown below. The measurement results are shown in Table 1.
- Refractive indexes nd, nc, nF, ng and Abbe number ⁇ d The optical glass cooled at a temperature drop rate of 30 ° C. per hour was measured by the refractive index measurement method of the Japan Optical Glass Industry Association standard.
- Glass transition temperature Tg, crystallization peak temperature Tx A sample obtained by sufficiently grinding glass in a mortar was used as a sample, and the temperature was measured up to 1250 ° C. at a heating rate of 10 ° C./min using a high-temperature differential scanning calorimeter “DSC3300SA” manufactured by Bruker Co., Ltd.
- Liquidus temperature LT The glass was placed in a furnace heated to a predetermined temperature and held for 2 hours.
- Each optical glass was prepared by heating and melting a raw material powder (powder raw material). However, the powder raw material was roughly melted to form a cullet, and the prepared raw material was heated and melted. Can also be produced. In this way, it has excellent thermal stability, is suitable for the reheat press method, has little coloration, and has high expansion characteristics desirable as a material for optical elements suitable for bonding with optical elements made of fluorophosphate glass. A high refractive index and high dispersion optical glass could be obtained.
- Example 2 Each optical glass No. 1 to No. 30 produced in Example 1 was ground and polished to produce a glass material for press molding. Next, boron nitride powder was uniformly applied to the surface of the press-molded glass material, placed on a heat-resistant softening dish, placed in a heating softening furnace, and heated. Next, the glass material heated and softened so as to have a viscosity of 10 3.5 to 10 4.5 dPa ⁇ s was introduced into the press mold from the heated softening dish and pressed to form a concave meniscus lens shape. The molded lens blank was removed from the press mold and annealed. The lens blank thus obtained was ground and polished to prepare a concave meniscus lens.
- various spherical lenses such as a biconcave lens were produced.
- the optical functional surface of the obtained lens may be coated with an antireflection film as necessary.
- Fluorophosphate glass having a refractive index nd of 1.970000, an Abbe number ⁇ d of 81.61, a partial dispersion ratio Pg, F of 0.5388, an average linear expansion coefficient at 100 to 300 ° C. of 155 ⁇ 10 ⁇ 7 / ° C., a refractive index nd of 1.45860, A fluorophosphate glass having an Abbe number ⁇ d of 90.20, a partial dispersion ratio Pg, F of 0.5352, an average linear expansion coefficient at 100 to 300 ° C.
- a biconvex spherical surface is formed by grinding and polishing three types of optical glass, fluorophosphate glass, having a partial dispersion ratio Pg, F of 0.5441 and an average linear expansion coefficient of 140 ⁇ 10 -7 / ° C at 100-300 ° C.
- a lens was produced. The lens surface was processed so that a convex surface having a shape obtained by reversing the shape of the concave surface of the concave meniscus lens manufactured in Example 2 was obtained.
- an ultraviolet curable adhesive was applied to the concave surface of each concave meniscus lens produced in Example 2 and one convex surface of various fluorophosphate glass biconvex lenses, and precisely bonded so as not to contain bubbles. was bonded to the lens.
- the biconvex shape is obtained by grinding and polishing so that a convex lens surface having a shape obtained by inverting the shape of one concave surface of the biconcave lens produced in Example 2 is obtained.
- a spherical lens was prepared.
- an ultraviolet curable adhesive was applied to one concave surface of each biconcave lens produced in Example 2 and one convex surface of each biconvex lens made of various fluorophosphate glasses, and precisely bonded so as not to contain bubbles, The lens was bonded by irradiating with ultraviolet rays. In this way, a cemented lens for correcting chromatic aberration was produced. On the cemented surface of the obtained cemented lens, no defects due to ultraviolet irradiation were observed, and no defects were observed on the cemented surface even after the temperature cycle test.
- the optical glass of the present invention is a high refractive index and high dispersion glass, suitable for producing a cemented lens for correcting chromatic aberration in combination with a lens made of fluorophosphate glass having both low dispersion and anomalous partial dispersion. Can be used.
Landscapes
- Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Glass Compositions (AREA)
Abstract
An embodiment of the present invention pertains to an optical glass containing, by mass, 2 to 37% of SiO2, 0 to 25% of B2O3, 0 to 10% of GeO2, a total of 18 to 55% of Li2O, Na2O, K2O, CaO, SrO, and BaO, and a total of 27 to 55% of TiO2, Nb2O5, and WO3, the mass ratio of the SiO2 content in relation to the total amount of SiO2 and B2O3 contained being in a range of 0.1 to 1, the mass ratio of the Li2O content in relation to the total amount of Li2O, Na2O, K2O, CaO, SrO, and BaO contained being in a range of 0 to 0.4, and the mass ratio of the TiO2 content in relation to the total amount of TiO2, Nb2O5, and WO3 contained being in a range of 0.35 to 1; and having a refractive index (nd) in a range of 1.860 to 1.990 and an Abbe number (νd) in a range of 21 to 29.
Description
本発明は光学ガラス、光学ガラスからなるプレス成形用ガラス素材、光学素子およびその製造方法、ならびに接合光学素子に関する。
The present invention relates to optical glass, a glass material for press molding made of optical glass, an optical element, a manufacturing method thereof, and a bonded optical element.
ガラス素材を加熱し、プレス成形して光学素子を製造する方法は、以下2つの方法に大別できる。
第1の方法は、粘度が103.5~104.5dPa・s程度になる温度に加熱したガラス素材をプレス成形型に導入してプレス成形し、得られた成形品を研削、研磨して光学素子を製造する方法であり、リヒートプレス法と呼ばれている。
第2の方法は、粘度が105~109dPa・s程度になる温度にガラス素材を加熱し、プレス成形して光学素子を製造する方法であり、精密モールドプレス成形法または精密プレス成形法と呼ばれている。第2の方法は、高粘度のガラスに高い圧力を加え、プレス成形型の成形面の形状をガラスに精密に転写することで研削、研磨工程なしで光学機能面を形成することができる。そのため、プレス成形を繰り返し行うことによって、型成形面が劣化しないようにするため、ガラス転移温度の低いガラスを用いてプレス成形温度を低くすることが行われている。 The method of manufacturing an optical element by heating a glass material and press-molding can be roughly divided into the following two methods.
The first method is to introduce a glass material heated to a temperature where the viscosity is about 10 3.5 to 10 4.5 dPa · s into a press mold, press mold, and grind and polish the resulting molded product. This is a method for manufacturing an optical element, which is called a reheat press method.
The second method is a method in which an optical element is manufactured by heating a glass material to a temperature at which the viscosity becomes about 10 5 to 10 9 dPa · s, press molding, and a precision mold press molding method or a precision press molding method. is called. In the second method, an optical functional surface can be formed without grinding and polishing steps by applying high pressure to high-viscosity glass and precisely transferring the shape of the molding surface of the press mold to the glass. Therefore, in order to prevent the molding surface from being deteriorated by repeatedly performing press molding, the press molding temperature is lowered by using glass having a low glass transition temperature.
第1の方法は、粘度が103.5~104.5dPa・s程度になる温度に加熱したガラス素材をプレス成形型に導入してプレス成形し、得られた成形品を研削、研磨して光学素子を製造する方法であり、リヒートプレス法と呼ばれている。
第2の方法は、粘度が105~109dPa・s程度になる温度にガラス素材を加熱し、プレス成形して光学素子を製造する方法であり、精密モールドプレス成形法または精密プレス成形法と呼ばれている。第2の方法は、高粘度のガラスに高い圧力を加え、プレス成形型の成形面の形状をガラスに精密に転写することで研削、研磨工程なしで光学機能面を形成することができる。そのため、プレス成形を繰り返し行うことによって、型成形面が劣化しないようにするため、ガラス転移温度の低いガラスを用いてプレス成形温度を低くすることが行われている。 The method of manufacturing an optical element by heating a glass material and press-molding can be roughly divided into the following two methods.
The first method is to introduce a glass material heated to a temperature where the viscosity is about 10 3.5 to 10 4.5 dPa · s into a press mold, press mold, and grind and polish the resulting molded product. This is a method for manufacturing an optical element, which is called a reheat press method.
The second method is a method in which an optical element is manufactured by heating a glass material to a temperature at which the viscosity becomes about 10 5 to 10 9 dPa · s, press molding, and a precision mold press molding method or a precision press molding method. is called. In the second method, an optical functional surface can be formed without grinding and polishing steps by applying high pressure to high-viscosity glass and precisely transferring the shape of the molding surface of the press mold to the glass. Therefore, in order to prevent the molding surface from being deteriorated by repeatedly performing press molding, the press molding temperature is lowered by using glass having a low glass transition temperature.
ところで、近年、撮像光学系、投射光学系の高機能化、コンパクト化に伴い、高屈折率高分散ガラス製の光学素子の需要が高まっている。特許文献1には、かかる光学素子の製造に使用するための高屈折率高分散ガラスが開示されている。
Incidentally, in recent years, with the enhancement of functions and compactness of the imaging optical system and the projection optical system, the demand for optical elements made of high refractive index and high dispersion glass is increasing. Patent Document 1 discloses a high refractive index and high dispersion glass for use in manufacturing such an optical element.
高屈折率高分散ガラス製レンズは、低分散性と異常部分分散性を兼ね備えたフツリン酸ガラス製のレンズと組合せることにより、優れた色収差補正を実現することができる。特に、高屈折率高分散ガラス製レンズとフツリン酸ガラス製レンズを接合した接合レンズは、光学系の高機能化、コンパクト化に有効である。
A lens made of high refractive index and high dispersion glass can realize excellent chromatic aberration correction by combining with a lens made of fluorophosphate glass having both low dispersion and anomalous partial dispersion. In particular, a cemented lens in which a high-refractive index, high-dispersion glass lens and a fluorophosphate glass lens are cemented is effective in increasing the functionality and compactness of the optical system.
上記接合レンズでは、接合面を精密にはり合わせる必要がある。そのためには、一方のレンズの接合面を凸球面、他方のレンズの接合面を凹球面に精密に研磨することが望ましい。こうした球面研磨レンズの製造には、精密モールドプレス成形法よりもリヒートプレス法が適している。また、精密モールドプレス成形法は、非球面レンズなどの研削、研磨加工には向かない光学素子の製造には適しているが、研削、研磨加工に適した光学素子、例えば、球面レンズの製造にはかえってコスト高となる。
In the above cemented lens, it is necessary to bond the cemented surfaces precisely. For this purpose, it is desirable to precisely polish the cemented surface of one lens to a convex spherical surface and the cemented surface of the other lens to a concave spherical surface. The reheat press method is more suitable than the precision mold press molding method for manufacturing such a spherical polished lens. The precision mold press molding method is suitable for the production of optical elements that are not suitable for grinding and polishing processes such as aspherical lenses, but for the production of optical elements suitable for grinding and polishing processes, such as spherical lenses. On the contrary, the cost is high.
そこで本発明者らが、高屈折率高分散ガラスである特許文献1に開示されているガラスをリヒートプレス成形することを試みたところ、熱的安定性が低いため失透することが判明した。したがって、特許文献1に記載のガラスは、リヒートプレス成形により接合レンズを作製するガラス材料としては適していない。
Therefore, when the present inventors tried to reheat press-mold the glass disclosed in Patent Document 1 which is a high refractive index and high dispersion glass, it was found that the glass was devitrified due to low thermal stability. Therefore, the glass described in Patent Document 1 is not suitable as a glass material for producing a cemented lens by reheat press molding.
本発明の一態様は、リヒートプレス法でも失透しない優れた熱的安定性を有し、接合レンズの作製に好適な高屈折率高分散光学ガラスを提供することを目的とする。
本発明の更なる態様は、上記光学ガラスからなるプレス成形用ガラス素材、光学素子とその製造方法、および上記ガラス製のレンズとフツリン酸ガラス製レンズを接合した接合レンズを提供する。 An object of one embodiment of the present invention is to provide a high-refractive index, high-dispersion optical glass that has excellent thermal stability that is not devitrified even by a reheat press method and is suitable for manufacturing a cemented lens.
The further aspect of this invention provides the glass material for press molding consisting of the said optical glass, the optical element, its manufacturing method, and the junction lens which joined the said lens made from a glass, and the lens made from a fluorophosphate glass.
本発明の更なる態様は、上記光学ガラスからなるプレス成形用ガラス素材、光学素子とその製造方法、および上記ガラス製のレンズとフツリン酸ガラス製レンズを接合した接合レンズを提供する。 An object of one embodiment of the present invention is to provide a high-refractive index, high-dispersion optical glass that has excellent thermal stability that is not devitrified even by a reheat press method and is suitable for manufacturing a cemented lens.
The further aspect of this invention provides the glass material for press molding consisting of the said optical glass, the optical element, its manufacturing method, and the junction lens which joined the said lens made from a glass, and the lens made from a fluorophosphate glass.
本発明の一態様は、質量%表示にて、
SiO2 2~37%、
B2O3 0~25%、
GeO2 0~10%、
Li2O、Na2O、K2O、CaO、SrOおよびBaOを合計で18~55%、
TiO2、Nb2O5およびWO3を合計で27~55%、
含み、
SiO2とB2O3の合計含有量に対するSiO2含有量の質量比(SiO2/(SiO2+B2O3))が0.1~1の範囲であり、
Li2O、Na2O、K2O、CaO、SrOおよびBaOの合計含有量に対するLi2O含有量の質量比(Li2O/(Li2O+Na2O+K2O+CaO+SrO+BaO)が0~0.4の範囲であり、
TiO2、Nb2O5およびWO3を合計含有量に対するTiO2含有量の質量比(TiO2/(TiO2+Nb2O5+WO3))が0.35~1の範囲であり、
屈折率ndが1.860~1.990の範囲であり、かつアッベ数νdが21~29の範囲である光学ガラス
に関する。 One embodiment of the present invention is represented by mass%,
SiO 2 2 ~ 37%,
B 2 O 3 0-25%,
GeO 2 0-10%,
Li 2 O, Na 2 O, K 2 O, CaO, SrO and BaO in total 18 to 55%,
TiO 2 , Nb 2 O 5 and WO 3 in total 27-55%,
Including
The mass ratio of SiO 2 content to the total content of SiO 2 and B 2 O 3 (SiO 2 / (SiO 2 + B 2 O 3 )) is in the range of 0.1 to 1,
Mass ratio of Li 2 O content to total content of Li 2 O, Na 2 O, K 2 O, CaO, SrO and BaO (Li 2 O / (Li 2 O + Na 2 O + K 2 O + CaO + SrO + BaO) is in the range of 0 to 0.4,
The mass ratio of TiO 2 content to the total content of TiO 2 , Nb 2 O 5 and WO 3 (TiO 2 / (TiO 2 + Nb 2 O 5 + WO 3 )) is in the range of 0.35 to 1,
The present invention relates to an optical glass having a refractive index nd of 1.860 to 1.990 and an Abbe number νd of 21 to 29.
SiO2 2~37%、
B2O3 0~25%、
GeO2 0~10%、
Li2O、Na2O、K2O、CaO、SrOおよびBaOを合計で18~55%、
TiO2、Nb2O5およびWO3を合計で27~55%、
含み、
SiO2とB2O3の合計含有量に対するSiO2含有量の質量比(SiO2/(SiO2+B2O3))が0.1~1の範囲であり、
Li2O、Na2O、K2O、CaO、SrOおよびBaOの合計含有量に対するLi2O含有量の質量比(Li2O/(Li2O+Na2O+K2O+CaO+SrO+BaO)が0~0.4の範囲であり、
TiO2、Nb2O5およびWO3を合計含有量に対するTiO2含有量の質量比(TiO2/(TiO2+Nb2O5+WO3))が0.35~1の範囲であり、
屈折率ndが1.860~1.990の範囲であり、かつアッベ数νdが21~29の範囲である光学ガラス
に関する。 One embodiment of the present invention is represented by mass%,
SiO 2 2 ~ 37%,
B 2 O 3 0-25%,
GeO 2 0-10%,
Li 2 O, Na 2 O, K 2 O, CaO, SrO and BaO in total 18 to 55%,
TiO 2 , Nb 2 O 5 and WO 3 in total 27-55%,
Including
The mass ratio of SiO 2 content to the total content of SiO 2 and B 2 O 3 (SiO 2 / (SiO 2 + B 2 O 3 )) is in the range of 0.1 to 1,
Mass ratio of Li 2 O content to total content of Li 2 O, Na 2 O, K 2 O, CaO, SrO and BaO (Li 2 O / (Li 2 O + Na 2 O + K 2 O + CaO + SrO + BaO) is in the range of 0 to 0.4,
The mass ratio of TiO 2 content to the total content of TiO 2 , Nb 2 O 5 and WO 3 (TiO 2 / (TiO 2 + Nb 2 O 5 + WO 3 )) is in the range of 0.35 to 1,
The present invention relates to an optical glass having a refractive index nd of 1.860 to 1.990 and an Abbe number νd of 21 to 29.
一態様によれば、上述の光学ガラスの結晶化ピーク温度Txとガラス転移温度Tgの差(Tx-Tg)は120℃以上である。
According to one embodiment, the difference (Tx−Tg) between the crystallization peak temperature Tx and the glass transition temperature Tg of the optical glass is 120 ° C. or higher.
一態様によれば、上述の光学ガラスの液相温度LTは1300℃以下である。
According to one aspect, the liquidus temperature LT of the above-mentioned optical glass is 1300 ° C. or lower.
一態様によれば、上述の光学ガラスの100~300℃における平均線膨張係数αは85×10-7/℃以上である。
According to one embodiment, the average linear expansion coefficient α at 100 to 300 ° C. of the optical glass is 85 × 10 −7 / ° C. or more.
本発明の更なる態様は、
上述の光学ガラスからなるプレス成形用ガラス素材
に関する。 A further aspect of the invention provides:
The present invention relates to a glass material for press molding made of the above optical glass.
上述の光学ガラスからなるプレス成形用ガラス素材
に関する。 A further aspect of the invention provides:
The present invention relates to a glass material for press molding made of the above optical glass.
本発明の更なる態様は、
上述の光学ガラスからなる光学素子
に関する。 A further aspect of the invention provides:
The present invention relates to an optical element made of the above-described optical glass.
上述の光学ガラスからなる光学素子
に関する。 A further aspect of the invention provides:
The present invention relates to an optical element made of the above-described optical glass.
本発明の更なる態様は、
上述のプレス成形用ガラス素材を加熱して軟化した状態でプレス成形して光学素子ブランクを作製すること、および、
作製した光学素子ブランクを研削および研磨して光学素子を得ること、
を含む光学素子の製造方法
に関する。 A further aspect of the invention provides:
Producing an optical element blank by press-molding the above-described press-molding glass material in a heated and softened state; and
Grinding and polishing the produced optical element blank to obtain an optical element;
It is related with the manufacturing method of the optical element containing this.
上述のプレス成形用ガラス素材を加熱して軟化した状態でプレス成形して光学素子ブランクを作製すること、および、
作製した光学素子ブランクを研削および研磨して光学素子を得ること、
を含む光学素子の製造方法
に関する。 A further aspect of the invention provides:
Producing an optical element blank by press-molding the above-described press-molding glass material in a heated and softened state; and
Grinding and polishing the produced optical element blank to obtain an optical element;
It is related with the manufacturing method of the optical element containing this.
本発明の更なる態様は、
上述の光学ガラスからなる光学素子と、フツリン酸ガラスからなる光学素子を接合した接合光学素子
に関する。 A further aspect of the invention provides:
The present invention relates to a bonded optical element obtained by bonding an optical element made of the above-described optical glass and an optical element made of fluorophosphate glass.
上述の光学ガラスからなる光学素子と、フツリン酸ガラスからなる光学素子を接合した接合光学素子
に関する。 A further aspect of the invention provides:
The present invention relates to a bonded optical element obtained by bonding an optical element made of the above-described optical glass and an optical element made of fluorophosphate glass.
本発明の一態様によれば、リヒートプレス法でも失透しない優れた熱的安定性を有する高屈折率高分散光学ガラスを提供することができる。さらに本発明の一態様によれば、上記光学ガラスからなるプレス成形用ガラス素材、光学素子とその製造方法、および上記ガラス製のレンズとフツリン酸ガラス製レンズを接合した接合レンズを提供することができる。
According to one embodiment of the present invention, it is possible to provide a high refractive index, high dispersion optical glass having excellent thermal stability that does not devitrify even by the reheat press method. Furthermore, according to one aspect of the present invention, it is possible to provide a glass material for press molding made of the optical glass, an optical element and a manufacturing method thereof, and a cemented lens in which the glass lens and a fluorophosphate glass lens are bonded. it can.
光学ガラス
本発明の光学ガラスは、
質量%表示にて、
SiO2 2~37%、
B2O3 0~25%、
GeO2 0~10%、
Li2O、Na2O、K2O、CaO、SrOおよびBaOを合計で18~55%、
TiO2、Nb2O5およびWO3を合計で27~55%、
含み、
SiO2とB2O3の合計含有量に対するSiO2含有量の質量比(SiO2/(SiO2+B2O3))が0.1~1の範囲であり、
Li2O、Na2O、K2O、CaO、SrOおよびBaOの合計含有量に対するLi2O含有量の質量比(Li2O/(Li2O+Na2O+K2O+CaO+SrO+BaO)が0~0.4の範囲であり、
TiO2、Nb2O5およびWO3を合計含有量に対するTiO2含有量の質量比(TiO2/(TiO2+Nb2O5+WO3))が0.35~1の範囲であり、
屈折率ndが1.860~1.990の範囲であり、かつアッベ数νdが21~29の範囲である光学ガラス、
である。 Optical glass The optical glass of the present invention is
In mass% display
SiO 2 2 ~ 37%,
B 2 O 3 0-25%,
GeO 2 0-10%,
Li 2 O, Na 2 O, K 2 O, CaO, SrO and BaO in total 18 to 55%,
TiO 2 , Nb 2 O 5 and WO 3 in total 27-55%,
Including
The mass ratio of SiO 2 content to the total content of SiO 2 and B 2 O 3 (SiO 2 / (SiO 2 + B 2 O 3 )) is in the range of 0.1 to 1,
Mass ratio of Li 2 O content to total content of Li 2 O, Na 2 O, K 2 O, CaO, SrO and BaO (Li 2 O / (Li 2 O + Na 2 O + K 2 O + CaO + SrO + BaO) is in the range of 0 to 0.4,
The mass ratio of TiO 2 content to the total content of TiO 2 , Nb 2 O 5 and WO 3 (TiO 2 / (TiO 2 + Nb 2 O 5 + WO 3 )) is in the range of 0.35 to 1,
An optical glass having a refractive index nd in the range of 1.860 to 1.990 and an Abbe number νd in the range of 21 to 29;
It is.
本発明の光学ガラスは、
質量%表示にて、
SiO2 2~37%、
B2O3 0~25%、
GeO2 0~10%、
Li2O、Na2O、K2O、CaO、SrOおよびBaOを合計で18~55%、
TiO2、Nb2O5およびWO3を合計で27~55%、
含み、
SiO2とB2O3の合計含有量に対するSiO2含有量の質量比(SiO2/(SiO2+B2O3))が0.1~1の範囲であり、
Li2O、Na2O、K2O、CaO、SrOおよびBaOの合計含有量に対するLi2O含有量の質量比(Li2O/(Li2O+Na2O+K2O+CaO+SrO+BaO)が0~0.4の範囲であり、
TiO2、Nb2O5およびWO3を合計含有量に対するTiO2含有量の質量比(TiO2/(TiO2+Nb2O5+WO3))が0.35~1の範囲であり、
屈折率ndが1.860~1.990の範囲であり、かつアッベ数νdが21~29の範囲である光学ガラス、
である。 Optical glass The optical glass of the present invention is
In mass% display
SiO 2 2 ~ 37%,
B 2 O 3 0-25%,
GeO 2 0-10%,
Li 2 O, Na 2 O, K 2 O, CaO, SrO and BaO in total 18 to 55%,
TiO 2 , Nb 2 O 5 and WO 3 in total 27-55%,
Including
The mass ratio of SiO 2 content to the total content of SiO 2 and B 2 O 3 (SiO 2 / (SiO 2 + B 2 O 3 )) is in the range of 0.1 to 1,
Mass ratio of Li 2 O content to total content of Li 2 O, Na 2 O, K 2 O, CaO, SrO and BaO (Li 2 O / (Li 2 O + Na 2 O + K 2 O + CaO + SrO + BaO) is in the range of 0 to 0.4,
The mass ratio of TiO 2 content to the total content of TiO 2 , Nb 2 O 5 and WO 3 (TiO 2 / (TiO 2 + Nb 2 O 5 + WO 3 )) is in the range of 0.35 to 1,
An optical glass having a refractive index nd in the range of 1.860 to 1.990 and an Abbe number νd in the range of 21 to 29;
It is.
以下、本発明の光学ガラスについて詳説するが、特記しない限り、各成分の含有量、合計含有量は質量%表示とし、ガラス成分の含有量と合計含有量の比は質量比とする。
Hereinafter, the optical glass of the present invention will be described in detail. Unless otherwise specified, the content of each component and the total content are represented by mass%, and the ratio of the glass component content and the total content is represented by a mass ratio.
SiO2は、ガラスのネットワークを形成し、ガラスの熱的安定性を高め、液相温度を低下させる働きのある必須成分である。SiO2の含有量が2%より少ないとガラスの熱的安定性が低下し、液相温度が上昇する。SiO2の含有量が37%より多いと屈折率が低下して所要の光学特性を得ることが困難となる。したがって、SiO2の含有量は2~37%とする。SiO2の含有量の好ましい下限は4%、より好ましい下限は6%、さらに好ましい下限は8%、一層好ましい下限は10%である。
SiO 2 is an essential component that functions to form a glass network, increase the thermal stability of the glass, and lower the liquidus temperature. When the content of SiO 2 is less than 2%, the thermal stability of the glass is lowered and the liquidus temperature is increased. If the SiO 2 content is more than 37%, the refractive index is lowered and it becomes difficult to obtain the required optical characteristics. Therefore, the content of SiO 2 is 2 to 37%. The preferable lower limit of the content of SiO 2 is 4%, the more preferable lower limit is 6%, the still more preferable lower limit is 8%, and the still more preferable lower limit is 10%.
本発明の光学ガラスをフツリン酸ガラス製のレンズと接合するレンズに使用する場合、ガラスの膨張係数を高めることが望ましい。フツリン酸ガラスは光学ガラスの中でも高膨張特性を有する。そのため、接合するガラスの膨張係数が小さいと、接合した二種のガラスの膨張差により、接着時や高温高湿保存時に接合面に不具合が生じやすいためである。例えば、レンズの接着は通常、紫外線硬化型接着剤を接合面に塗布し、レンズ越しに紫外線を照射して行われる。このとき熱が発生し、二種のガラスで膨張差が大きいと上記のように不具合が発生する。
以上の理由より膨張係数を高くすることが望ましいが、SiO2は膨張係数を低下させる働きがある。したがって、高屈折率を維持し、膨張係数を高める上から、SiO2の含有量の好ましい上限は32%、より好ましい上限は27%、さらに好ましい上限は25%である。 When the optical glass of the present invention is used for a lens bonded to a fluorophosphate glass lens, it is desirable to increase the expansion coefficient of the glass. Fluorophosphate glass has high expansion characteristics among optical glasses. For this reason, if the expansion coefficient of the glass to be bonded is small, a difference in expansion between the two types of bonded glass tends to cause a problem on the bonding surface during bonding or storage at high temperature and high humidity. For example, the lens is usually bonded by applying an ultraviolet curable adhesive to the bonding surface and irradiating the lens with ultraviolet rays. At this time, heat is generated, and if the difference in expansion between the two types of glass is large, problems occur as described above.
Although it is desirable to increase the expansion coefficient for the above reasons, SiO 2 has a function of decreasing the expansion coefficient. Therefore, from the viewpoint of maintaining a high refractive index and increasing the expansion coefficient, the preferable upper limit of the content of SiO 2 is 32%, the more preferable upper limit is 27%, and the further preferable upper limit is 25%.
以上の理由より膨張係数を高くすることが望ましいが、SiO2は膨張係数を低下させる働きがある。したがって、高屈折率を維持し、膨張係数を高める上から、SiO2の含有量の好ましい上限は32%、より好ましい上限は27%、さらに好ましい上限は25%である。 When the optical glass of the present invention is used for a lens bonded to a fluorophosphate glass lens, it is desirable to increase the expansion coefficient of the glass. Fluorophosphate glass has high expansion characteristics among optical glasses. For this reason, if the expansion coefficient of the glass to be bonded is small, a difference in expansion between the two types of bonded glass tends to cause a problem on the bonding surface during bonding or storage at high temperature and high humidity. For example, the lens is usually bonded by applying an ultraviolet curable adhesive to the bonding surface and irradiating the lens with ultraviolet rays. At this time, heat is generated, and if the difference in expansion between the two types of glass is large, problems occur as described above.
Although it is desirable to increase the expansion coefficient for the above reasons, SiO 2 has a function of decreasing the expansion coefficient. Therefore, from the viewpoint of maintaining a high refractive index and increasing the expansion coefficient, the preferable upper limit of the content of SiO 2 is 32%, the more preferable upper limit is 27%, and the further preferable upper limit is 25%.
なおSiO2をベースとした組成系の光学ガラスはリン酸系の光学ガラスよりも高強度である。接合レンズの製造工程は複雑であるため接合レンズに使用されるレンズは取り扱いのときに傷つきやすいが、本発明の光学ガラスはSiO2をベースとした組成系であるため、本発明の光学ガラスによれば同じ高屈折率高分散のリン酸系の光学ガラスよりも傷つきにくいレンズを提供することもできる。
The composition-based optical glass based on SiO 2 has higher strength than the phosphoric acid-based optical glass. Since the manufacturing process of the cemented lens is complicated, the lens used for the cemented lens is easily damaged when handled. However, since the optical glass of the present invention is a composition system based on SiO 2 , Therefore, it is also possible to provide a lens that is less damaged than the same high refractive index and high dispersion phosphoric acid optical glass.
B2O3は、ガラスのネットワーク形成成分であり、ガラスの熱的安定性を維持し、液相温度を低下させる働きのある任意成分である。B2O3の含有量が25%より多いと屈折率が低下して所要の光学特性を得ることが困難となる。したがって、B2O3の含有量は0~25%とする。B2O3の含有量の好ましい上限は20%、より好ましい上限は15%、さらに好ましい上限は13%、一層好ましい上限は11%である。液相温度を一層低下させる上からB2O3の含有量の好ましい下限は0.1%、より好ましい下限は0.3%である。
B 2 O 3 is a glass network-forming component, and is an optional component that functions to maintain the thermal stability of the glass and lower the liquidus temperature. If the content of B 2 O 3 is more than 25%, the refractive index decreases and it becomes difficult to obtain the required optical characteristics. Therefore, the content of B 2 O 3 is set to 0 to 25%. A preferred upper limit for the content of B 2 O 3 is 20%, a more preferred upper limit is 15%, a still more preferred upper limit is 13%, and a more preferred upper limit is 11%. From the viewpoint of further lowering the liquidus temperature, the preferable lower limit of the content of B 2 O 3 is 0.1%, and the more preferable lower limit is 0.3%.
SiO2、B2O3の含有量については上記の通りであるが、本発明の光学ガラスでは、ガラスの熱的安定性を維持し、液相温度の上昇を抑える上から、SiO2とB2O3の合計含有量に対するSiO2含有量の質量比(SiO2/(SiO2+B2O3))を0.1以上とする。また、SiO2/(SiO2+B2O3)を増加させると熔融ガラスを成形する際の粘度を高め、高品質のガラスを成形しやすくすることができる。そのため、SiO2/(SiO2+B2O3)の好ましい下限は0.2、より好ましい下限は0.3、さらに好ましい下限は0.5、一層好ましい下限は0.6、より一層好ましい下限は0.7である。なお上記質量比は、B2O3が含まれない場合に上限値1となる。また、上記範囲内でSiO2/(SiO2+B2O3)を変化させることにより、膨張係数、屈折率を調整することもできる。SiO2/(SiO2+B2O3)を減少させると膨張係数が増加、屈折率ndを高めることができる。
Although the content of SiO 2, B 2 O 3 are as described above, the optical glass of the present invention, maintaining the thermal stability of the glass, from the top to suppress an increase in the liquidus temperature, SiO 2 and B The mass ratio of SiO 2 content to the total content of 2 O 3 (SiO 2 / (SiO 2 + B 2 O 3 )) is 0.1 or more. Further, when SiO 2 / (SiO 2 + B 2 O 3 ) is increased, the viscosity at the time of molding the molten glass can be increased, and high-quality glass can be easily molded. Therefore, the preferred lower limit of SiO 2 / (SiO 2 + B 2 O 3 ) is 0.2, the more preferred lower limit is 0.3, the still more preferred lower limit is 0.5, the more preferred lower limit is 0.6, and the still more preferred lower limit is 0.7. The mass ratio has an upper limit of 1 when B 2 O 3 is not included. Further, the expansion coefficient and the refractive index can be adjusted by changing SiO 2 / (SiO 2 + B 2 O 3 ) within the above range. Decreasing SiO 2 / (SiO 2 + B 2 O 3 ) increases the expansion coefficient and increases the refractive index nd.
GeO2は、ガラスのネットワーク形成機能を有し、SiO2、B2O3と比べ高屈折率の維持に有効な任意成分であるが、本発明の光学ガラスを構成する必須成分、任意成分の中で格別高価な成分なので、その含有量は0~10%とする。ガラスの製造コストを低減し、高屈折率ガラスを広く普及させる上からGeO2の含有量の好ましい範囲は0~5%、より好ましい範囲は0~3%、さらに好ましい範囲は0~1%であり、GeO2を含有しないことが一層好ましい。
GeO 2 has a glass network forming function and is an optional component effective for maintaining a high refractive index as compared with SiO 2 and B 2 O 3 , but it is an essential component that constitutes the optical glass of the present invention. Because it is a particularly expensive component, its content is 0-10%. From the viewpoint of reducing glass production cost and widespread use of high refractive index glass, the preferred range of GeO 2 content is 0-5%, more preferred range is 0-3%, and further preferred range is 0-1%. More preferably, it does not contain GeO 2 .
Li2O、Na2O、K2O、CaO、SrO、BaOはガラスネットワークの修飾成分であり、ガラスの熔融性を改善し、膨張係数を高める働きのある成分である。Li2O、Na2O、K2O、CaO、SrO、BaOの合計含有量が18%未満であると前記効果を得ることが困難となり、前記合計量が55%を超えるとガラスの熱的安定性が低下し、液相温度が上昇する。したがって、Li2O、Na2O、K2O、CaO、SrOおよびBaOの合計含有量を18~55%とする。前記合計含有量の好ましい下限は20%、より好ましい下限は22%であり、好ましい上限は50%、より好ましい上限は47%、更に好ましい上限は45%である。
ただし、Li2O、Na2O、K2O、CaO、SrOおよびBaOの合計含有量に対するLi2O含有量の質量比(Li2O/(Li2O+Na2O+K2O+CaO+SrO+BaO))が0.4を超えると、ガラスの熱的安定性、特にガラスを再加熱したときの耐失透性が悪化し、リヒートプレス成形法には不向きなガラスとなるため、Li2O/(Li2O+Na2O+K2O+CaO+SrO+BaO)は0~0.4とする。Li2O/(Li2O+Na2O+K2O+CaO+SrO+BaO) の好ましい上限は0.3、より好ましい上限は0.2である。また、上記質量比は、Li2Oが含まれない場合に下限値ゼロとなるが、0.01以上であってもよい。 Li 2 O, Na 2 O, K 2 O, CaO, SrO, and BaO are components for modifying the glass network, and are components that have the function of improving the meltability of the glass and increasing the expansion coefficient. If the total content of Li 2 O, Na 2 O, K 2 O, CaO, SrO, and BaO is less than 18%, it is difficult to obtain the above effect, and if the total content exceeds 55%, the thermal properties of the glass Stability decreases and liquidus temperature increases. Therefore, the total content of Li 2 O, Na 2 O, K 2 O, CaO, SrO and BaO is set to 18 to 55%. A preferable lower limit of the total content is 20%, a more preferable lower limit is 22%, a preferable upper limit is 50%, a more preferable upper limit is 47%, and a still more preferable upper limit is 45%.
However, the mass ratio of Li 2 O content to the total content of Li 2 O, Na 2 O, K 2 O, CaO, SrO and BaO (Li 2 O / (Li 2 O + Na 2 O + K 2 O + If CaO + SrO + BaO)) exceeds 0.4, the thermal stability of the glass, especially the resistance to devitrification when the glass is reheated, deteriorates, making the glass unsuitable for reheat press molding. 2 O / (Li 2 O + Na 2 O + K 2 O + CaO + SrO + BaO) is 0 to 0.4. The preferable upper limit of Li 2 O / (Li 2 O + Na 2 O + K 2 O + CaO + SrO + BaO) is 0.3, and the more preferable upper limit is 0.2. The mass ratio is zero when the Li 2 O is not included, but may be 0.01 or more.
ただし、Li2O、Na2O、K2O、CaO、SrOおよびBaOの合計含有量に対するLi2O含有量の質量比(Li2O/(Li2O+Na2O+K2O+CaO+SrO+BaO))が0.4を超えると、ガラスの熱的安定性、特にガラスを再加熱したときの耐失透性が悪化し、リヒートプレス成形法には不向きなガラスとなるため、Li2O/(Li2O+Na2O+K2O+CaO+SrO+BaO)は0~0.4とする。Li2O/(Li2O+Na2O+K2O+CaO+SrO+BaO) の好ましい上限は0.3、より好ましい上限は0.2である。また、上記質量比は、Li2Oが含まれない場合に下限値ゼロとなるが、0.01以上であってもよい。 Li 2 O, Na 2 O, K 2 O, CaO, SrO, and BaO are components for modifying the glass network, and are components that have the function of improving the meltability of the glass and increasing the expansion coefficient. If the total content of Li 2 O, Na 2 O, K 2 O, CaO, SrO, and BaO is less than 18%, it is difficult to obtain the above effect, and if the total content exceeds 55%, the thermal properties of the glass Stability decreases and liquidus temperature increases. Therefore, the total content of Li 2 O, Na 2 O, K 2 O, CaO, SrO and BaO is set to 18 to 55%. A preferable lower limit of the total content is 20%, a more preferable lower limit is 22%, a preferable upper limit is 50%, a more preferable upper limit is 47%, and a still more preferable upper limit is 45%.
However, the mass ratio of Li 2 O content to the total content of Li 2 O, Na 2 O, K 2 O, CaO, SrO and BaO (Li 2 O / (Li 2 O + Na 2 O + K 2 O + If CaO + SrO + BaO)) exceeds 0.4, the thermal stability of the glass, especially the resistance to devitrification when the glass is reheated, deteriorates, making the glass unsuitable for reheat press molding. 2 O / (Li 2 O + Na 2 O + K 2 O + CaO + SrO + BaO) is 0 to 0.4. The preferable upper limit of Li 2 O / (Li 2 O + Na 2 O + K 2 O + CaO + SrO + BaO) is 0.3, and the more preferable upper limit is 0.2. The mass ratio is zero when the Li 2 O is not included, but may be 0.01 or more.
Li2O、Na2O、K2O、CaO、SrO、BaOの合計含有量および該合計含有量に対するLi2O含有量の質量比については上記の通りである。次に、これら成分の含有量について説明する。
The total content of Li 2 O, Na 2 O, K 2 O, CaO, SrO, BaO and the mass ratio of the Li 2 O content to the total content are as described above. Next, the content of these components will be described.
Li2Oは、上記修飾成分の中では比較的、高屈折率を維持する働きの優れた成分であるが、上記した通り過剰の導入によりガラスの熱的安定性、特に再加熱時の耐失透性が低下する。したがってLi2Oの含有量は、修飾成分の合計量に対する比を上記範囲とした上で、0~8%の範囲とすることが好ましく、0~6%の範囲とすることがより好ましく、0~4%の範囲とすることがさらに好ましい。
Li 2 O is a relatively excellent component that maintains a high refractive index among the modifying components described above. However, as described above, excessive introduction of Li 2 O results in the thermal stability of the glass, particularly the loss resistance during reheating. The permeability decreases. Therefore, the content of Li 2 O is preferably in the range of 0 to 8%, more preferably in the range of 0 to 6%, with the ratio to the total amount of modifying components within the above range. More preferably, it is in the range of ˜4%.
Na2O、K2Oも含有量を高めるとガラスの熱的安定性が悪化し、液相温度も上昇するから、Na2Oの含有量は0~20%の範囲とすることが好ましく、0~14%の範囲とすることがより好ましく、0~12%の範囲とすることがさらに好ましい。また、K2Oの含有量は0~11%の範囲とすることが好ましく、0~9%の範囲とすることがより好ましく、0~7%の範囲とすることがさらに好ましい。
If the content of Na 2 O and K 2 O is increased, the thermal stability of the glass deteriorates and the liquidus temperature also rises. Therefore, the content of Na 2 O is preferably in the range of 0 to 20%, A range of 0 to 14% is more preferable, and a range of 0 to 12% is more preferable. Further, the content of K 2 O is preferably in the range of 0 to 11%, more preferably in the range of 0 to 9%, and further preferably in the range of 0 to 7%.
CaO、BaOは修飾成分の中では比較的、高屈折率を維持する働きがあるが、過剰の導入により熱的安定性が低下し、液相温度が上昇傾向を示すことから、CaOの含有量は0~30%の範囲とすることが好ましい。CaOの含有量の好ましい上限は27%、より好ましい上限は25%である。一方、CaOの含有量の好ましい下限は1%、より好ましい下限は2%である。またBaOの含有量は2~47%とすることが好ましい。BaOの含有量の好ましい上限は45%、より好ましい上限は44%であり、好ましい下限は3%、より好ましい下限は5%である。
CaO and BaO have a relatively high refractive index among the modifying components. However, the excessive introduction of CaO and BaO tends to lower the thermal stability and increase the liquidus temperature. Is preferably in the range of 0-30%. A preferable upper limit of the CaO content is 27%, and a more preferable upper limit is 25%. On the other hand, the preferable lower limit of the CaO content is 1%, and the more preferable lower limit is 2%. The BaO content is preferably 2 to 47%. A preferable upper limit of the content of BaO is 45%, a more preferable upper limit is 44%, a preferable lower limit is 3%, and a more preferable lower limit is 5%.
上記のように、高屈折率を維持する上で、CaOおよびBaOの合計含有量は9%以上とすることが好ましく、11%以上とすることがより好ましく、13%以上とすることがさらに好ましい。また熱的安定性、液相温度を良好に維持する上で、CaOおよびBaOの合計含有量は48%以下とすることが好ましく、46%以下とすることがより好ましく、44%以下とすることがさらに好ましい。
また、高屈折率を維持する上から、Li2O、Na2O、K2O、CaO、SrOおよびBaOの合計含有量に対するCaOおよびBaOの合計含有量の質量比(CaO+BaO)/(Li2O+Na2O+K2O+CaO+SrO+BaO))は、0.30~1の範囲とすることが好ましく、0.40~1の範囲とすることがより好ましく、0.45~1の範囲とすることがさらに好ましい。なお、上記質量比を1とすることもできる。 As described above, in order to maintain a high refractive index, the total content of CaO and BaO is preferably 9% or more, more preferably 11% or more, and even more preferably 13% or more. . In order to maintain good thermal stability and liquidus temperature, the total content of CaO and BaO is preferably 48% or less, more preferably 46% or less, and 44% or less. Is more preferable.
From the standpoint of maintaining a high refractive index, the mass ratio of the total content of CaO and BaO to the total content of Li 2 O, Na 2 O, K 2 O, CaO, SrO and BaO (CaO + BaO) / ( Li 2 O + Na 2 O + K 2 O + CaO + SrO + BaO)) is preferably in the range of 0.30 to 1, more preferably in the range of 0.40 to 1, and in the range of 0.45 to 1. More preferably. In addition, the said mass ratio can also be set to 1.
また、高屈折率を維持する上から、Li2O、Na2O、K2O、CaO、SrOおよびBaOの合計含有量に対するCaOおよびBaOの合計含有量の質量比(CaO+BaO)/(Li2O+Na2O+K2O+CaO+SrO+BaO))は、0.30~1の範囲とすることが好ましく、0.40~1の範囲とすることがより好ましく、0.45~1の範囲とすることがさらに好ましい。なお、上記質量比を1とすることもできる。 As described above, in order to maintain a high refractive index, the total content of CaO and BaO is preferably 9% or more, more preferably 11% or more, and even more preferably 13% or more. . In order to maintain good thermal stability and liquidus temperature, the total content of CaO and BaO is preferably 48% or less, more preferably 46% or less, and 44% or less. Is more preferable.
From the standpoint of maintaining a high refractive index, the mass ratio of the total content of CaO and BaO to the total content of Li 2 O, Na 2 O, K 2 O, CaO, SrO and BaO (CaO + BaO) / ( Li 2 O + Na 2 O + K 2 O + CaO + SrO + BaO)) is preferably in the range of 0.30 to 1, more preferably in the range of 0.40 to 1, and in the range of 0.45 to 1. More preferably. In addition, the said mass ratio can also be set to 1.
また、SrOの含有量は、上記質量比(CaO+BaO)/(Li2O+Na2O+K2O+CaO+SrO+BaO))の値によって定まるものであり、0%でもよく0%超でもよい。
The SrO content is determined by the value of the mass ratio (CaO + BaO) / (Li 2 O + Na 2 O + K 2 O + CaO + SrO + BaO)), and may be 0%. It may be over%.
なお、高屈折率高分散性を維持しつつ、より良好な熱的安定性を得る上から、上記アルカリ土類金属酸化物の合計量をアルカリ金属酸化物の合計量よりも多くすることが好ましい。
In order to obtain better thermal stability while maintaining high refractive index and high dispersibility, the total amount of the alkaline earth metal oxide is preferably larger than the total amount of the alkali metal oxide. .
TiO2、Nb2O5、WO3はいずれもガラスの屈折率を高める働きの優れた成分である。TiO2、Nb2O5およびWO3を合計含有量が27%未満であると、所要の屈折率nd、アッベ数νdを得ることが困難となり、55%を超えるとガラスの熱的安定性が低下し、液相温度が上昇する。したがって、TiO2、Nb2O5およびWO3を合計含有量を27~55%とする。TiO2、Nb2O5およびWO3を合計含有量の好ましい下限は29%、より好ましい下限は30%であり、好ましい上限は52%、より好ましい上限は49%である。
TiO 2 , Nb 2 O 5 , and WO 3 are all excellent components that increase the refractive index of glass. If the total content of TiO 2 , Nb 2 O 5 and WO 3 is less than 27%, it will be difficult to obtain the required refractive index nd and Abbe number νd, and if it exceeds 55%, the thermal stability of the glass will be reduced. The liquid phase temperature increases. Therefore, the total content of TiO 2 , Nb 2 O 5 and WO 3 is 27 to 55%. A preferred lower limit of the total content of TiO 2 , Nb 2 O 5 and WO 3 is 29%, a more preferred lower limit is 30%, a preferred upper limit is 52%, and a more preferred upper limit is 49%.
ただし、TiO2、Nb2O5およびWO3を合計含有量に対するTiO2含有量の質量比(TiO2/(TiO2+Nb2O5+WO3))が0.35未満になると、ガラスの熱的安定性が低下し、液相温度が上昇することから、TiO2/(TiO2+Nb2O5+WO3)を0.35~1の範囲とする。熱的安定性の維持、液相温度の上昇抑制の観点から、TiO2/(TiO2+Nb2O5+WO3)の好ましい下限は0.4、より好ましい下限は0.45であり、好ましい上限は0.9、より好ましい上限は0.85である。なお上記質量比は、Nb2O5およびWO3が含まれない場合に上限値1となる。
However, if the mass ratio of TiO 2 content to the total content of TiO 2 , Nb 2 O 5 and WO 3 (TiO 2 / (TiO 2 + Nb 2 O 5 + WO 3 )) is less than 0.35, the heat of the glass TiO 2 / (TiO 2 + Nb 2 O 5 + WO 3 ) is set in the range of 0.35 to 1 because the mechanical stability is lowered and the liquidus temperature is raised. From the viewpoint of maintaining the thermal stability and suppressing the increase in the liquidus temperature, the preferable lower limit of TiO 2 / (TiO 2 + Nb 2 O 5 + WO 3 ) is 0.4, the more preferable lower limit is 0.45, and the preferable upper limit is 0.9. A more preferred upper limit is 0.85. The mass ratio has an upper limit of 1 when Nb 2 O 5 and WO 3 are not included.
TiO2、Nb2O5、WO3の合計含有量および質量比(TiO2/(TiO2+Nb2O5+WO3))については上記の通りであるが、高屈折率高分散特性を維持しつつ、熱的安定性の維持、液相温度の上昇を抑制する上からTiO2の含有量の好ましい下限は9%、より好ましい下限は11%、さらに好ましい下限は13%であり、好ましい上限は35%、より好ましい上限は33%、さらに好ましい上限は31%である。
Nb2O5の含有量の好ましい下限は2%、より好ましい下限は4%、さらに好ましい下限は6%であり、好ましい上限は36%、より好ましい上限は32%、さらに好ましい上限は28%である。
WO3の含有量の好ましい上限は5%、より好ましい上限は4%、さらに好ましい上限は3%である。WO3を含有しなくてもよいし、WO3の含有量を0%超としてもよい。 The total content and mass ratio of TiO 2 , Nb 2 O 5 , and WO 3 (TiO 2 / (TiO 2 + Nb 2 O 5 + WO 3 )) are as described above. The preferred lower limit of the content of TiO 2 is 9%, the more preferred lower limit is 11%, and the more preferred lower limit is 13%, from the viewpoint of maintaining the thermal stability and suppressing the rise of the liquidus temperature, while maintaining, preferably The upper limit is 35%, the more preferable upper limit is 33%, and the more preferable upper limit is 31%.
The preferable lower limit of the content of Nb 2 O 5 is 2%, the more preferable lower limit is 4%, the further preferable lower limit is 6%, the preferable upper limit is 36%, the more preferable upper limit is 32%, and the more preferable upper limit is 28%. is there.
A preferable upper limit of the content of WO 3 is 5%, a more preferable upper limit is 4%, and a further preferable upper limit is 3%. WO 3 may not be contained, and the content of WO 3 may be more than 0%.
Nb2O5の含有量の好ましい下限は2%、より好ましい下限は4%、さらに好ましい下限は6%であり、好ましい上限は36%、より好ましい上限は32%、さらに好ましい上限は28%である。
WO3の含有量の好ましい上限は5%、より好ましい上限は4%、さらに好ましい上限は3%である。WO3を含有しなくてもよいし、WO3の含有量を0%超としてもよい。 The total content and mass ratio of TiO 2 , Nb 2 O 5 , and WO 3 (TiO 2 / (TiO 2 + Nb 2 O 5 + WO 3 )) are as described above. The preferred lower limit of the content of TiO 2 is 9%, the more preferred lower limit is 11%, and the more preferred lower limit is 13%, from the viewpoint of maintaining the thermal stability and suppressing the rise of the liquidus temperature, while maintaining, preferably The upper limit is 35%, the more preferable upper limit is 33%, and the more preferable upper limit is 31%.
The preferable lower limit of the content of Nb 2 O 5 is 2%, the more preferable lower limit is 4%, the further preferable lower limit is 6%, the preferable upper limit is 36%, the more preferable upper limit is 32%, and the more preferable upper limit is 28%. is there.
A preferable upper limit of the content of WO 3 is 5%, a more preferable upper limit is 4%, and a further preferable upper limit is 3%. WO 3 may not be contained, and the content of WO 3 may be more than 0%.
La2O3はガラスの屈折率を高める働きの優れた任意成分である。ただし、過剰の導入によって熱的安定性が低下し、液相温度が上昇するため、La2O3の含有量は0~15%の範囲とすることが好ましく、0~13%の範囲とすることがより好ましく、0~11%の範囲とすることがさらに好ましい。
La 2 O 3 is an optional component that has an excellent function of increasing the refractive index of glass. However, since the thermal stability decreases and the liquidus temperature rises due to excessive introduction, the content of La 2 O 3 is preferably in the range of 0 to 15%, preferably in the range of 0 to 13%. It is more preferable that the content be in the range of 0 to 11%.
ZrO2はガラスの屈折率を高める働きの優れた任意成分である。ただし、過剰の導入によって熱的安定性が低下し、液相温度が上昇するため、ZrO2の含有量は0~12%の範囲とすることが好ましい。ZrO2の含有量の好ましい上限は11%、より好ましい上限は10%である。ZrO2含有の効果を得る上から、ZrO2の含有量を1%以上とすることが好ましい。
ZrO 2 is an optional component that has an excellent function of increasing the refractive index of glass. However, since the thermal stability decreases and the liquidus temperature rises due to excessive introduction, the ZrO 2 content is preferably in the range of 0 to 12%. A preferable upper limit of the content of ZrO 2 is 11%, and a more preferable upper limit is 10%. From the top to obtain the effect of ZrO 2 containing, it is preferable that the content of ZrO 2 1% or more.
なお、膨張係数を高める働きが強い順に上記成分を並べると、K2O、Na2O、BaO、SrO、CaO、Li2O、TiO2、B2O3、Nb2O5、SiO2となるので、このような傾向を勘案して膨張係数を調整してもよい。
In addition, when the above components are arranged in the order in which the work of increasing the expansion coefficient is strong, K 2 O, Na 2 O, BaO, SrO, CaO, Li 2 O, TiO 2 , B 2 O 3 , Nb 2 O 5 , SiO 2 and Therefore, the expansion coefficient may be adjusted in consideration of such a tendency.
さらに、添加剤としてSb2O3やSnO2などのような清澄剤を添加してもよい。前記清澄剤の中で好ましいものはSb2O3である。Sb2O3を用いる場合は、質量比によるSb2O3の外割り添加量を0~1%の範囲とすることが好ましい。尚、質量比による外割り添加量とは、ガラス成分の質量を基準とした割合で示す添加量である。Sb2O3は清澄効果があることに加え、ガラス熔融中、前述の高屈折率化成分を酸化状態にするとともに、この酸化状態を安定化する働きをする。しかし、外割り添加量が1%を超えるとSb自体の光吸収により、ガラスが着色する傾向を示す。ガラスの透過率特性を改善するという観点から、Sb2O3の外割り添加量の好ましい上限は0.8%、より好ましい上限は0.6%であり、好ましい下限は0.4%である。
Further, a clarifier such as Sb 2 O 3 or SnO 2 may be added as an additive. Preferred among the fining agents is Sb 2 O 3 . When Sb 2 O 3 is used, it is preferable that the externally added amount of Sb 2 O 3 by mass ratio is in the range of 0 to 1%. In addition, the extra split addition amount by mass ratio is an addition amount shown by the ratio on the basis of the mass of a glass component. In addition to having a clarification effect, Sb 2 O 3 functions to stabilize the oxidation state as well as bringing the aforementioned high refractive index component into an oxidized state during glass melting. However, if the amount of the extra addition exceeds 1%, the glass tends to be colored due to light absorption of Sb itself. From the viewpoint of improving the transmittance characteristics of the glass, the preferable upper limit of the external addition amount of Sb 2 O 3 is 0.8%, the more preferable upper limit is 0.6%, and the preferable lower limit is 0.4%.
また、少量のNO3、CO3、SO4、F、Cl、Br、Iなどを添加してもよい。
A small amount of NO 3 , CO 3 , SO 4 , F, Cl, Br, I, etc. may be added.
なお、本発明の光学ガラスにおいて、Pb、As、Cd、Te、Tl、Seはいずれも環境への負荷を配慮し、含有、添加しないことが望ましい。また、V、Cr、Mn、Fe、Co、Ni、Cu、Pr、Nd、Eu,Tb、Ho、Erのカチオンはいずれもガラスを着色させたり、紫外光の照射により蛍光を発生するため、含有、添加しないことが望ましい。ただし、上記の含有、添加しないとは、ガラス原料やガラス熔融工程に由来する不純物としての混入までも排除するものではない。
In the optical glass of the present invention, it is desirable that Pb, As, Cd, Te, Tl, and Se are not contained or added in consideration of environmental load. In addition, V, Cr, Mn, Fe, Co, Ni, Cu, Pr, Nd, Eu, Tb, Ho, Er cations are all contained in the glass because it colors glass or emits fluorescence when irradiated with ultraviolet light. It is desirable not to add. However, the inclusion and addition of the above does not exclude even mixing as impurities derived from the glass raw material or the glass melting step.
[屈折率、アッベ数]
本発明の光学ガラスの屈折率ndは1.860~1.990、アッベ数νdは21~29である。屈折率ndを1.860以上、アッベ数νdを29以下とすることにより、光学系の高機能化、コンパクト化に有効な光学素子材料を提供することができる。さらに低分散ガラス製光学素子と組合せることにより、特に接合レンズとすることにより、優れた色収差補正機能を実現することができる光学材料を提供することができる。
ガラスの熱的安定性を維持するため、屈折率ndは1.990以下、アッベ数νdは21以上とする。
また、上記観点から、本発明における屈折率ndの好ましい下限は1.870、より好ましい下限は1.885であり、好ましい上限は1.985、より好ましい上限は1.980である。
また本発明におけるアッベ数νdの好ましい下限は22、より好ましい下限は23であり、好ましい上限は28、より好ましい上限は27である。 [Refractive index, Abbe number]
The optical glass of the present invention has a refractive index nd of 1.860 to 1.990 and an Abbe number νd of 21 to 29. By setting the refractive index nd to 1.860 or more and the Abbe number νd to 29 or less, it is possible to provide an optical element material that is effective for enhancing the functionality and compactness of the optical system. Furthermore, by combining with an optical element made of low dispersion glass, an optical material capable of realizing an excellent chromatic aberration correction function can be provided by using a cemented lens.
In order to maintain the thermal stability of the glass, the refractive index nd is 1.990 or less and the Abbe number νd is 21 or more.
From the above viewpoint, the preferable lower limit of the refractive index nd in the present invention is 1.870, the more preferable lower limit is 1.885, the preferable upper limit is 1.985, and the more preferable upper limit is 1.980.
In the present invention, the preferred lower limit of the Abbe number νd is 22, a more preferred lower limit is 23, a preferred upper limit is 28, and a more preferred upper limit is 27.
本発明の光学ガラスの屈折率ndは1.860~1.990、アッベ数νdは21~29である。屈折率ndを1.860以上、アッベ数νdを29以下とすることにより、光学系の高機能化、コンパクト化に有効な光学素子材料を提供することができる。さらに低分散ガラス製光学素子と組合せることにより、特に接合レンズとすることにより、優れた色収差補正機能を実現することができる光学材料を提供することができる。
ガラスの熱的安定性を維持するため、屈折率ndは1.990以下、アッベ数νdは21以上とする。
また、上記観点から、本発明における屈折率ndの好ましい下限は1.870、より好ましい下限は1.885であり、好ましい上限は1.985、より好ましい上限は1.980である。
また本発明におけるアッベ数νdの好ましい下限は22、より好ましい下限は23であり、好ましい上限は28、より好ましい上限は27である。 [Refractive index, Abbe number]
The optical glass of the present invention has a refractive index nd of 1.860 to 1.990 and an Abbe number νd of 21 to 29. By setting the refractive index nd to 1.860 or more and the Abbe number νd to 29 or less, it is possible to provide an optical element material that is effective for enhancing the functionality and compactness of the optical system. Furthermore, by combining with an optical element made of low dispersion glass, an optical material capable of realizing an excellent chromatic aberration correction function can be provided by using a cemented lens.
In order to maintain the thermal stability of the glass, the refractive index nd is 1.990 or less and the Abbe number νd is 21 or more.
From the above viewpoint, the preferable lower limit of the refractive index nd in the present invention is 1.870, the more preferable lower limit is 1.885, the preferable upper limit is 1.985, and the more preferable upper limit is 1.980.
In the present invention, the preferred lower limit of the Abbe number νd is 22, a more preferred lower limit is 23, a preferred upper limit is 28, and a more preferred upper limit is 27.
[熱的安定性]
ガラスの熱的安定性には、ガラス融液を成形する際の耐失透性と、一度固化したガラスを再加熱したときの耐失透性とがある。
ガラス融液を成形する際の耐失透性は液相温度を目安にし、液相温度が低いほど優れた耐失透性を有している。液相温度が高いガラスでは、失透を防止するために、ガラス融液、すなわち、熔融ガラスの温度を高温に保持しなければならず、易揮発成分の揮発が生じる、坩堝の侵蝕が助長される、特に貴金属製坩堝の場合は貴金属イオンがガラス融液に溶け込んでガラスが着色する、成形時の粘性が低くなって均質性の高いガラスを成形することが難しくなるなどの現象が発生する。そのため、本発明の光学ガラスの液相温度LTは1300℃以下であることが好ましく、1250℃以下であることがより好ましく、1200℃以下であることがさらに好ましく、1180℃以下であることが一層好ましい。 [Thermal stability]
The thermal stability of glass includes devitrification resistance when forming a glass melt and devitrification resistance when glass that has been solidified once is reheated.
The devitrification resistance when molding the glass melt is based on the liquidus temperature, and the lower the liquidus temperature, the better the devitrification resistance. In glass with a high liquidus temperature, in order to prevent devitrification, the temperature of the glass melt, that is, the molten glass must be maintained at a high temperature, which facilitates the erosion of the crucible, which causes volatilization of easily volatile components. In particular, in the case of a noble metal crucible, a phenomenon occurs in which noble metal ions are dissolved in the glass melt and the glass is colored, and it becomes difficult to form a glass with high homogeneity due to low viscosity during molding. Therefore, the liquidus temperature LT of the optical glass of the present invention is preferably 1300 ° C. or lower, more preferably 1250 ° C. or lower, further preferably 1200 ° C. or lower, and more preferably 1180 ° C. or lower. preferable.
ガラスの熱的安定性には、ガラス融液を成形する際の耐失透性と、一度固化したガラスを再加熱したときの耐失透性とがある。
ガラス融液を成形する際の耐失透性は液相温度を目安にし、液相温度が低いほど優れた耐失透性を有している。液相温度が高いガラスでは、失透を防止するために、ガラス融液、すなわち、熔融ガラスの温度を高温に保持しなければならず、易揮発成分の揮発が生じる、坩堝の侵蝕が助長される、特に貴金属製坩堝の場合は貴金属イオンがガラス融液に溶け込んでガラスが着色する、成形時の粘性が低くなって均質性の高いガラスを成形することが難しくなるなどの現象が発生する。そのため、本発明の光学ガラスの液相温度LTは1300℃以下であることが好ましく、1250℃以下であることがより好ましく、1200℃以下であることがさらに好ましく、1180℃以下であることが一層好ましい。 [Thermal stability]
The thermal stability of glass includes devitrification resistance when forming a glass melt and devitrification resistance when glass that has been solidified once is reheated.
The devitrification resistance when molding the glass melt is based on the liquidus temperature, and the lower the liquidus temperature, the better the devitrification resistance. In glass with a high liquidus temperature, in order to prevent devitrification, the temperature of the glass melt, that is, the molten glass must be maintained at a high temperature, which facilitates the erosion of the crucible, which causes volatilization of easily volatile components. In particular, in the case of a noble metal crucible, a phenomenon occurs in which noble metal ions are dissolved in the glass melt and the glass is colored, and it becomes difficult to form a glass with high homogeneity due to low viscosity during molding. Therefore, the liquidus temperature LT of the optical glass of the present invention is preferably 1300 ° C. or lower, more preferably 1250 ° C. or lower, further preferably 1200 ° C. or lower, and more preferably 1180 ° C. or lower. preferable.
一方、一度固化したガラスを再加熱したときの耐失透性については、結晶化ピーク温度Txとガラス転移温度Tgの差(Tx-Tg)が大きいものほど耐失透性が優れていると考えることができる(山根 正之 著 「はじめてガラスを作る人のために(セラミックス基礎講座)」内田老鶴圃 発行 150ページ参照)。
ガラス転移温度Tg、結晶化ピーク温度Txは次のようにして求める。示差走査熱量分析において、ガラス試料を昇温すると比熱の変化に伴う吸熱挙動、すなわち、吸熱ピークが現れ、さらに昇温すると発熱ピークが現れる。示差走査熱量分析では横軸を温度、縦軸を試料の発熱吸熱に対応する量とする示差走査熱量曲線(DSC曲線)が得られる。この曲線でベースラインから吸熱ピークが現れる際に傾きが最大になる点における接線と前記ベースラインの交点をガラス転移温度Tgとし、発熱ピークが現れる際に傾きが最大になる点における接線と前記ベースラインの交点を結晶化ピーク温度Txとする。
ガラス転移温度Tg、結晶化ピーク温度Txの測定は、ガラスを乳鉢で十分粉砕したものを試料とし、例えば、株式会社ブルカー製の高温型示差走査熱量計「DSC3300SA」を使用して測定することができる。
ガラス素材を加熱、軟化して所要の形状に成形するリヒートプレス成形法では、ガラス素材をガラス転移温度より高温に加熱する必要がある。成形時のガラスの温度が、結晶化温度域に達すると失透するので、(Tx-Tg)が小さいガラスは、失透を防止しつつ成形を行う上で不利である。反対に(Tx-Tg)が大きいガラスは、失透せずに再加熱、軟化して成形を行う上で有利である。
上記理由により、結晶化ピーク温度Txとガラス転移温度Tgの差(Tx-Tg)の好ましい下限は120℃、より好ましい下限は130℃、さらに好ましい下限は140℃である。 On the other hand, regarding the devitrification resistance when the glass once solidified is reheated, the larger the difference between the crystallization peak temperature Tx and the glass transition temperature Tg (Tx-Tg), the better the devitrification resistance. (See page 150, published by Masayuki Yamane, “For First-Time Glassmakers (Ceramics Basic Course)” published by Uchida Otsukuru).
The glass transition temperature Tg and the crystallization peak temperature Tx are obtained as follows. In differential scanning calorimetry, when the glass sample is heated, an endothermic behavior accompanying the change in specific heat, that is, an endothermic peak appears, and when the temperature is further raised, an exothermic peak appears. In differential scanning calorimetry, a differential scanning calorimetry curve (DSC curve) is obtained with the horizontal axis representing temperature and the vertical axis representing the amount corresponding to the exothermic endotherm of the sample. In this curve, when the endothermic peak appears from the baseline, the tangent at the point where the slope becomes maximum and the intersection of the base line is the glass transition temperature Tg, and the tangent at the point where the slope becomes maximum when the exothermic peak appears and the base Let the intersection of the lines be the crystallization peak temperature Tx.
The glass transition temperature Tg and the crystallization peak temperature Tx can be measured using a sample obtained by sufficiently grinding glass in a mortar, for example, using a high-temperature differential scanning calorimeter “DSC3300SA” manufactured by Bruker Co., Ltd. it can.
In a reheat press molding method in which a glass material is heated and softened to be molded into a required shape, the glass material needs to be heated to a temperature higher than the glass transition temperature. When the glass temperature at the time of forming reaches the crystallization temperature range, the glass becomes devitrified. Therefore, a glass having a small (Tx-Tg) is disadvantageous in forming while preventing devitrification. On the other hand, a glass having a large (Tx-Tg) is advantageous in forming by reheating and softening without devitrification.
For the above reasons, the preferred lower limit of the difference (Tx−Tg) between the crystallization peak temperature Tx and the glass transition temperature Tg is 120 ° C., the more preferred lower limit is 130 ° C., and the still more preferred lower limit is 140 ° C.
ガラス転移温度Tg、結晶化ピーク温度Txは次のようにして求める。示差走査熱量分析において、ガラス試料を昇温すると比熱の変化に伴う吸熱挙動、すなわち、吸熱ピークが現れ、さらに昇温すると発熱ピークが現れる。示差走査熱量分析では横軸を温度、縦軸を試料の発熱吸熱に対応する量とする示差走査熱量曲線(DSC曲線)が得られる。この曲線でベースラインから吸熱ピークが現れる際に傾きが最大になる点における接線と前記ベースラインの交点をガラス転移温度Tgとし、発熱ピークが現れる際に傾きが最大になる点における接線と前記ベースラインの交点を結晶化ピーク温度Txとする。
ガラス転移温度Tg、結晶化ピーク温度Txの測定は、ガラスを乳鉢で十分粉砕したものを試料とし、例えば、株式会社ブルカー製の高温型示差走査熱量計「DSC3300SA」を使用して測定することができる。
ガラス素材を加熱、軟化して所要の形状に成形するリヒートプレス成形法では、ガラス素材をガラス転移温度より高温に加熱する必要がある。成形時のガラスの温度が、結晶化温度域に達すると失透するので、(Tx-Tg)が小さいガラスは、失透を防止しつつ成形を行う上で不利である。反対に(Tx-Tg)が大きいガラスは、失透せずに再加熱、軟化して成形を行う上で有利である。
上記理由により、結晶化ピーク温度Txとガラス転移温度Tgの差(Tx-Tg)の好ましい下限は120℃、より好ましい下限は130℃、さらに好ましい下限は140℃である。 On the other hand, regarding the devitrification resistance when the glass once solidified is reheated, the larger the difference between the crystallization peak temperature Tx and the glass transition temperature Tg (Tx-Tg), the better the devitrification resistance. (See page 150, published by Masayuki Yamane, “For First-Time Glassmakers (Ceramics Basic Course)” published by Uchida Otsukuru).
The glass transition temperature Tg and the crystallization peak temperature Tx are obtained as follows. In differential scanning calorimetry, when the glass sample is heated, an endothermic behavior accompanying the change in specific heat, that is, an endothermic peak appears, and when the temperature is further raised, an exothermic peak appears. In differential scanning calorimetry, a differential scanning calorimetry curve (DSC curve) is obtained with the horizontal axis representing temperature and the vertical axis representing the amount corresponding to the exothermic endotherm of the sample. In this curve, when the endothermic peak appears from the baseline, the tangent at the point where the slope becomes maximum and the intersection of the base line is the glass transition temperature Tg, and the tangent at the point where the slope becomes maximum when the exothermic peak appears and the base Let the intersection of the lines be the crystallization peak temperature Tx.
The glass transition temperature Tg and the crystallization peak temperature Tx can be measured using a sample obtained by sufficiently grinding glass in a mortar, for example, using a high-temperature differential scanning calorimeter “DSC3300SA” manufactured by Bruker Co., Ltd. it can.
In a reheat press molding method in which a glass material is heated and softened to be molded into a required shape, the glass material needs to be heated to a temperature higher than the glass transition temperature. When the glass temperature at the time of forming reaches the crystallization temperature range, the glass becomes devitrified. Therefore, a glass having a small (Tx-Tg) is disadvantageous in forming while preventing devitrification. On the other hand, a glass having a large (Tx-Tg) is advantageous in forming by reheating and softening without devitrification.
For the above reasons, the preferred lower limit of the difference (Tx−Tg) between the crystallization peak temperature Tx and the glass transition temperature Tg is 120 ° C., the more preferred lower limit is 130 ° C., and the still more preferred lower limit is 140 ° C.
ガラス転移温度Tgを低くすると、自ずと(Tx-Tg)が大きくなることはない。特許文献1に開示されている光学ガラスではガラス転移温度を低下させるための組成調整によって結晶化ピーク温度も低くなるため、(Tx-Tg)を大きくすることができず、その結果、リヒートプレス成形法には不向きなガラスになっている。なお、精密モールドプレス成形法では、ガラス転移温度より数十℃高い比較的低温でプレス成形を行うため、(Tx-Tg)が小さくても成形が可能である。
リヒートプレス成形法に好適な光学ガラスを得る上から、ガラス転移温度を過度に低下させることは好ましいとは言えない。このような理由からガラス転移温度Tgの好ましい下限は590℃、より好ましい下限は595℃、さらに好ましい下限は600℃である。 When the glass transition temperature Tg is lowered, (Tx-Tg) does not naturally increase. In the optical glass disclosed in Patent Document 1, since the crystallization peak temperature is lowered by adjusting the composition for lowering the glass transition temperature, (Tx-Tg) cannot be increased, and as a result, reheat press molding is performed. The glass is not suitable for the law. In the precision mold press molding method, since press molding is performed at a relatively low temperature that is several tens of degrees Celsius higher than the glass transition temperature, molding is possible even when (Tx-Tg) is small.
In order to obtain an optical glass suitable for the reheat press molding method, it is not preferable to excessively lower the glass transition temperature. For these reasons, the preferred lower limit of the glass transition temperature Tg is 590 ° C., the more preferred lower limit is 595 ° C., and the still more preferred lower limit is 600 ° C.
リヒートプレス成形法に好適な光学ガラスを得る上から、ガラス転移温度を過度に低下させることは好ましいとは言えない。このような理由からガラス転移温度Tgの好ましい下限は590℃、より好ましい下限は595℃、さらに好ましい下限は600℃である。 When the glass transition temperature Tg is lowered, (Tx-Tg) does not naturally increase. In the optical glass disclosed in Patent Document 1, since the crystallization peak temperature is lowered by adjusting the composition for lowering the glass transition temperature, (Tx-Tg) cannot be increased, and as a result, reheat press molding is performed. The glass is not suitable for the law. In the precision mold press molding method, since press molding is performed at a relatively low temperature that is several tens of degrees Celsius higher than the glass transition temperature, molding is possible even when (Tx-Tg) is small.
In order to obtain an optical glass suitable for the reheat press molding method, it is not preferable to excessively lower the glass transition temperature. For these reasons, the preferred lower limit of the glass transition temperature Tg is 590 ° C., the more preferred lower limit is 595 ° C., and the still more preferred lower limit is 600 ° C.
[膨張係数]
接合レンズの作製に使用されるフツリン酸ガラスの100~300℃における平均線膨張係数αは概ね130×10-7/℃超の範囲にある。先に説明したように、フツリン酸ガラス製の光学素子との接合に好適な光学素子用材料を提供する上から、本発明の光学ガラスにおいて、100~300℃における平均線膨張係数αを85×10-7/℃以上とすることが好ましく、90×10-7/℃以上とすることがより好ましい。
平均線膨張係数は、直径5mm、長さ20mmの円柱状ガラス試料を用意し、例えば、ブルカー・エイエックスエス(BRUKER axs)製の熱機械分析装置「TMA4000s」を使用して測定することができる。 [Expansion coefficient]
The average linear expansion coefficient α at 100 to 300 ° C. of the fluorophosphate glass used for the production of the cemented lens is generally in the range of more than 130 × 10 −7 / ° C. As described above, in order to provide an optical element material suitable for bonding with an optical element made of fluorophosphate glass, the optical glass of the present invention has an average linear expansion coefficient α at 100 to 300 ° C. of 85 × 10 −7 / ° C. or higher is preferable, and 90 × 10 −7 / ° C. or higher is more preferable.
The average linear expansion coefficient can be measured by preparing a cylindrical glass sample having a diameter of 5 mm and a length of 20 mm and using, for example, a thermomechanical analyzer “TMA4000s” manufactured by BRUKER axs. .
接合レンズの作製に使用されるフツリン酸ガラスの100~300℃における平均線膨張係数αは概ね130×10-7/℃超の範囲にある。先に説明したように、フツリン酸ガラス製の光学素子との接合に好適な光学素子用材料を提供する上から、本発明の光学ガラスにおいて、100~300℃における平均線膨張係数αを85×10-7/℃以上とすることが好ましく、90×10-7/℃以上とすることがより好ましい。
平均線膨張係数は、直径5mm、長さ20mmの円柱状ガラス試料を用意し、例えば、ブルカー・エイエックスエス(BRUKER axs)製の熱機械分析装置「TMA4000s」を使用して測定することができる。 [Expansion coefficient]
The average linear expansion coefficient α at 100 to 300 ° C. of the fluorophosphate glass used for the production of the cemented lens is generally in the range of more than 130 × 10 −7 / ° C. As described above, in order to provide an optical element material suitable for bonding with an optical element made of fluorophosphate glass, the optical glass of the present invention has an average linear expansion coefficient α at 100 to 300 ° C. of 85 × 10 −7 / ° C. or higher is preferable, and 90 × 10 −7 / ° C. or higher is more preferable.
The average linear expansion coefficient can be measured by preparing a cylindrical glass sample having a diameter of 5 mm and a length of 20 mm and using, for example, a thermomechanical analyzer “TMA4000s” manufactured by BRUKER axs. .
[部分分散性]
撮像光学系、投射光学系などで、高次の色収差補正を行うには、本発明の光学ガラスからなるレンズと分散の低いガラスからなるレンズの組合せが効果的である。しかし、低分散側のガラスは部分分散比が大きいものが多いため、より高次の色収差を補正する場合、低分散ガラス製レンズと組合せる本発明の光学ガラスには、部分分散比が小さいことが求められる。
部分分散比Pg,Fは、g線、F線、c線における各屈折率ng、nF、ncを用いて、(ng-nF)/(nF-nc)と表される。
本発明の光学ガラスにおいて、高次の色収差補正に適したガラスを提供する上から部分分散比Pg,Fは0.600以下であることが好ましい。Pg,Fは、0.598以下であることがより好ましく、0.596以下であることがさらに好ましく、0.594以下であることが一層好ましく、0.592以下であることがより一層好ましく、0.590以下であることがさらに一層好ましい。
ただし、部分分散比Pg,Fを過剰に減少させると、他の特性が好ましい範囲から逸脱する傾向を示す。そのため、部分分散比Pg,Fは0.570以上とすることが好ましい。部分分散比Pg,Fのより好ましい下限は0.575、さらに好ましい下限は0.580、一層好ましい下限は0.582、より一層好ましい下限は0.584、さらに一層好ましい下限は0.586である。 [Partial dispersibility]
In order to perform high-order chromatic aberration correction in an imaging optical system, a projection optical system, and the like, a combination of a lens made of the optical glass of the present invention and a lens made of glass with low dispersion is effective. However, since the glass on the low dispersion side often has a large partial dispersion ratio, when correcting higher-order chromatic aberration, the optical glass of the present invention combined with a low dispersion glass lens has a small partial dispersion ratio. Is required.
The partial dispersion ratios Pg and F are expressed as (ng−nF) / (nF−nc) using the refractive indexes ng, nF and nc for the g-line, F-line and c-line.
In the optical glass of the present invention, the partial dispersion ratios Pg and F are preferably 0.600 or less from the viewpoint of providing a glass suitable for high-order chromatic aberration correction. Pg, F is more preferably 0.598 or less, further preferably 0.596 or less, still more preferably 0.594 or less, still more preferably 0.592 or less, It is still more preferable that it is 0.590 or less.
However, if the partial dispersion ratios Pg and F are excessively reduced, other characteristics tend to deviate from the preferred range. Therefore, the partial dispersion ratio Pg, F is preferably 0.570 or more. The more preferable lower limit of the partial dispersion ratio Pg, F is 0.575, the further preferable lower limit is 0.580, the still more preferable lower limit is 0.582, the still more preferable lower limit is 0.584, and the still more preferable lower limit is 0.586. .
撮像光学系、投射光学系などで、高次の色収差補正を行うには、本発明の光学ガラスからなるレンズと分散の低いガラスからなるレンズの組合せが効果的である。しかし、低分散側のガラスは部分分散比が大きいものが多いため、より高次の色収差を補正する場合、低分散ガラス製レンズと組合せる本発明の光学ガラスには、部分分散比が小さいことが求められる。
部分分散比Pg,Fは、g線、F線、c線における各屈折率ng、nF、ncを用いて、(ng-nF)/(nF-nc)と表される。
本発明の光学ガラスにおいて、高次の色収差補正に適したガラスを提供する上から部分分散比Pg,Fは0.600以下であることが好ましい。Pg,Fは、0.598以下であることがより好ましく、0.596以下であることがさらに好ましく、0.594以下であることが一層好ましく、0.592以下であることがより一層好ましく、0.590以下であることがさらに一層好ましい。
ただし、部分分散比Pg,Fを過剰に減少させると、他の特性が好ましい範囲から逸脱する傾向を示す。そのため、部分分散比Pg,Fは0.570以上とすることが好ましい。部分分散比Pg,Fのより好ましい下限は0.575、さらに好ましい下限は0.580、一層好ましい下限は0.582、より一層好ましい下限は0.584、さらに一層好ましい下限は0.586である。 [Partial dispersibility]
In order to perform high-order chromatic aberration correction in an imaging optical system, a projection optical system, and the like, a combination of a lens made of the optical glass of the present invention and a lens made of glass with low dispersion is effective. However, since the glass on the low dispersion side often has a large partial dispersion ratio, when correcting higher-order chromatic aberration, the optical glass of the present invention combined with a low dispersion glass lens has a small partial dispersion ratio. Is required.
The partial dispersion ratios Pg and F are expressed as (ng−nF) / (nF−nc) using the refractive indexes ng, nF and nc for the g-line, F-line and c-line.
In the optical glass of the present invention, the partial dispersion ratios Pg and F are preferably 0.600 or less from the viewpoint of providing a glass suitable for high-order chromatic aberration correction. Pg, F is more preferably 0.598 or less, further preferably 0.596 or less, still more preferably 0.594 or less, still more preferably 0.592 or less, It is still more preferable that it is 0.590 or less.
However, if the partial dispersion ratios Pg and F are excessively reduced, other characteristics tend to deviate from the preferred range. Therefore, the partial dispersion ratio Pg, F is preferably 0.570 or more. The more preferable lower limit of the partial dispersion ratio Pg, F is 0.575, the further preferable lower limit is 0.580, the still more preferable lower limit is 0.582, the still more preferable lower limit is 0.584, and the still more preferable lower limit is 0.586. .
[着色(λ80、λ70、λ5)]
本発明の光学ガラスは、上記ガラス組成を有することで着色を低減ないし抑制することができ、これにより可視光域の広い範囲にわたり高い光透過性を示すことができる。光学ガラスの着色の指標としては、波長280~700nmの範囲において光線透過率が80%になる波長λ80、同光線透過率が70%となる波長λ70、および同光線透過率が5%となる波長λ5を用いることができる。ここで、光線透過率とは、10.0±0.1mmの厚さに研磨された互いに平行な面を有するガラス試料を用い、前記研磨された面に対して垂直方向から光を入射して得られる分光透過率、すなわち、前記試料に入射する光の強度をIin、前記試料を透過した光の強度をIoutとしたときのIout/Iinのことである。分光透過率には、試料表面における光の反射損失も含まれる。また、上記研磨は測定波長域の波長に対し、表面粗さが十分小さい状態に平滑化されていることを意味する。
λ70については、本発明の光学ガラスは、530nm以下のλ70を示すことができる。本発明の光学ガラスのλ70は500nm以下であることが好ましく、490nm以下であることがより好ましく、480nm以下であることがさらに好ましい。
λ80については、本発明の光学ガラスは、660nm以下のλ80を示すことができる。本発明の光学ガラスのλ80は600nm以下であることが好ましく、590nm以下であることがより好ましく、580nm以下であることがさらに好ましい。
λ5の好ましい範囲は430nm以下、より好ましい範囲は420nm、さらに好ましい範囲は410nm以下、一層好ましい範囲は400nm以下、より一層好ましい範囲は390nm以下である。
このように本発明の光学ガラスは、高屈折率ガラスでありながら、優れた光線透過性を示し、撮像光学系、投射光学系を構成する光学素子の材料として好適なものである。 [Coloring (λ80, λ70, λ5)]
The optical glass of the present invention can reduce or suppress coloring by having the above glass composition, and can thereby exhibit high light transmittance over a wide range of visible light region. As an index for coloring the optical glass, a wavelength λ80 at which the light transmittance is 80% in a wavelength range of 280 to 700 nm, a wavelength λ70 at which the light transmittance is 70%, and a wavelength at which the light transmittance is 5%. λ5 can be used. Here, the light transmittance means that a glass sample having parallel surfaces polished to a thickness of 10.0 ± 0.1 mm is used, and light is incident on the polished surface from a vertical direction. The obtained spectral transmittance, that is, Iout / Iin where Iin is the intensity of light incident on the sample and Iout is the intensity of light transmitted through the sample. The spectral transmittance includes light reflection loss on the sample surface. Moreover, the said grinding | polishing means that the surface roughness is smooth | blunted in the state small enough with respect to the wavelength of a measurement wavelength range.
Regarding λ70, the optical glass of the present invention can exhibit λ70 of 530 nm or less. Λ70 of the optical glass of the present invention is preferably 500 nm or less, more preferably 490 nm or less, and further preferably 480 nm or less.
Regarding λ80, the optical glass of the present invention can exhibit λ80 of 660 nm or less. Λ80 of the optical glass of the present invention is preferably 600 nm or less, more preferably 590 nm or less, and further preferably 580 nm or less.
A preferable range of λ5 is 430 nm or less, a more preferable range is 420 nm, a further preferable range is 410 nm or less, a more preferable range is 400 nm or less, and a still more preferable range is 390 nm or less.
Thus, although the optical glass of the present invention is a high refractive index glass, it exhibits excellent light transmittance and is suitable as a material for an optical element constituting an imaging optical system and a projection optical system.
本発明の光学ガラスは、上記ガラス組成を有することで着色を低減ないし抑制することができ、これにより可視光域の広い範囲にわたり高い光透過性を示すことができる。光学ガラスの着色の指標としては、波長280~700nmの範囲において光線透過率が80%になる波長λ80、同光線透過率が70%となる波長λ70、および同光線透過率が5%となる波長λ5を用いることができる。ここで、光線透過率とは、10.0±0.1mmの厚さに研磨された互いに平行な面を有するガラス試料を用い、前記研磨された面に対して垂直方向から光を入射して得られる分光透過率、すなわち、前記試料に入射する光の強度をIin、前記試料を透過した光の強度をIoutとしたときのIout/Iinのことである。分光透過率には、試料表面における光の反射損失も含まれる。また、上記研磨は測定波長域の波長に対し、表面粗さが十分小さい状態に平滑化されていることを意味する。
λ70については、本発明の光学ガラスは、530nm以下のλ70を示すことができる。本発明の光学ガラスのλ70は500nm以下であることが好ましく、490nm以下であることがより好ましく、480nm以下であることがさらに好ましい。
λ80については、本発明の光学ガラスは、660nm以下のλ80を示すことができる。本発明の光学ガラスのλ80は600nm以下であることが好ましく、590nm以下であることがより好ましく、580nm以下であることがさらに好ましい。
λ5の好ましい範囲は430nm以下、より好ましい範囲は420nm、さらに好ましい範囲は410nm以下、一層好ましい範囲は400nm以下、より一層好ましい範囲は390nm以下である。
このように本発明の光学ガラスは、高屈折率ガラスでありながら、優れた光線透過性を示し、撮像光学系、投射光学系を構成する光学素子の材料として好適なものである。 [Coloring (λ80, λ70, λ5)]
The optical glass of the present invention can reduce or suppress coloring by having the above glass composition, and can thereby exhibit high light transmittance over a wide range of visible light region. As an index for coloring the optical glass, a wavelength λ80 at which the light transmittance is 80% in a wavelength range of 280 to 700 nm, a wavelength λ70 at which the light transmittance is 70%, and a wavelength at which the light transmittance is 5%. λ5 can be used. Here, the light transmittance means that a glass sample having parallel surfaces polished to a thickness of 10.0 ± 0.1 mm is used, and light is incident on the polished surface from a vertical direction. The obtained spectral transmittance, that is, Iout / Iin where Iin is the intensity of light incident on the sample and Iout is the intensity of light transmitted through the sample. The spectral transmittance includes light reflection loss on the sample surface. Moreover, the said grinding | polishing means that the surface roughness is smooth | blunted in the state small enough with respect to the wavelength of a measurement wavelength range.
Regarding λ70, the optical glass of the present invention can exhibit λ70 of 530 nm or less. Λ70 of the optical glass of the present invention is preferably 500 nm or less, more preferably 490 nm or less, and further preferably 480 nm or less.
Regarding λ80, the optical glass of the present invention can exhibit λ80 of 660 nm or less. Λ80 of the optical glass of the present invention is preferably 600 nm or less, more preferably 590 nm or less, and further preferably 580 nm or less.
A preferable range of λ5 is 430 nm or less, a more preferable range is 420 nm, a further preferable range is 410 nm or less, a more preferable range is 400 nm or less, and a still more preferable range is 390 nm or less.
Thus, although the optical glass of the present invention is a high refractive index glass, it exhibits excellent light transmittance and is suitable as a material for an optical element constituting an imaging optical system and a projection optical system.
比重
本発明の光学ガラスは高屈折率ガラスであるが、一般にガラスは高屈折率化すると比重が増加傾向を示す。しかし比重の増加は光学素子の重量増加を招くため好ましくない。これに対し本発明の光学ガラスは、上記ガラス組成を有することにより、高屈折率ガラスでありながら比重を4.5以下にすることができる。本発明の光学ガラスにおいて、比重の好ましい上限は4.4、より好ましい上限は4.3、さらに好ましい上限は4.2、一層好ましい上限は4.1である。一方、比重を過剰に減少させるとガラスの安定性が低下し、液相温度が上昇する傾向を示すため、比重は3.5以上であることが好ましく、3.6以上であることがより好ましく、3.7以上であることがさらに好ましく、3.8以上であることが一層好ましく、3.9以上であることがより一層好ましい。 Specific gravity The optical glass of the present invention is a high refractive index glass, but generally, the specific gravity tends to increase as the refractive index of the glass increases. However, an increase in specific gravity is not preferable because it increases the weight of the optical element. On the other hand, the optical glass of the present invention can have a specific gravity of 4.5 or less even though it is a high refractive index glass by having the above glass composition. In the optical glass of the present invention, the preferable upper limit of the specific gravity is 4.4, the more preferable upper limit is 4.3, the still more preferable upper limit is 4.2, and the still more preferable upper limit is 4.1. On the other hand, if the specific gravity is excessively decreased, the stability of the glass is lowered and the liquidus temperature tends to increase. Therefore, the specific gravity is preferably 3.5 or more, more preferably 3.6 or more. More preferably, it is 3.7 or more, more preferably 3.8 or more, and even more preferably 3.9 or more.
本発明の光学ガラスは高屈折率ガラスであるが、一般にガラスは高屈折率化すると比重が増加傾向を示す。しかし比重の増加は光学素子の重量増加を招くため好ましくない。これに対し本発明の光学ガラスは、上記ガラス組成を有することにより、高屈折率ガラスでありながら比重を4.5以下にすることができる。本発明の光学ガラスにおいて、比重の好ましい上限は4.4、より好ましい上限は4.3、さらに好ましい上限は4.2、一層好ましい上限は4.1である。一方、比重を過剰に減少させるとガラスの安定性が低下し、液相温度が上昇する傾向を示すため、比重は3.5以上であることが好ましく、3.6以上であることがより好ましく、3.7以上であることがさらに好ましく、3.8以上であることが一層好ましく、3.9以上であることがより一層好ましい。 Specific gravity The optical glass of the present invention is a high refractive index glass, but generally, the specific gravity tends to increase as the refractive index of the glass increases. However, an increase in specific gravity is not preferable because it increases the weight of the optical element. On the other hand, the optical glass of the present invention can have a specific gravity of 4.5 or less even though it is a high refractive index glass by having the above glass composition. In the optical glass of the present invention, the preferable upper limit of the specific gravity is 4.4, the more preferable upper limit is 4.3, the still more preferable upper limit is 4.2, and the still more preferable upper limit is 4.1. On the other hand, if the specific gravity is excessively decreased, the stability of the glass is lowered and the liquidus temperature tends to increase. Therefore, the specific gravity is preferably 3.5 or more, more preferably 3.6 or more. More preferably, it is 3.7 or more, more preferably 3.8 or more, and even more preferably 3.9 or more.
[光学ガラスの製造方法]
本発明の光学ガラスは、ガラス原料を加熱、熔融、清澄、均質化し、得られた熔融ガラスを成形するガラス熔融法で製造することができる。ガラス熔融法としては公知の方法を適用することができる。また、酸化物、炭酸塩、硝酸塩、硫酸塩、水酸化物など使用し、所望の組成のガラスが得られるようにガラス原料を秤量し、十分混合して粉体原料とし、この粉体原料を加熱、熔融してもよいし、粉体原料を粗熔解してカレット化し、複数のカレットを調合して得た原料を加熱、熔融してもよい。
上記熔融ガラスを成形して得られたガラス成形体は、後述するように、アニールして歪を除去してプレス成形用ガラス素材の作製に使用することができる。 [Optical glass manufacturing method]
The optical glass of the present invention can be produced by a glass melting method in which a glass raw material is heated, melted, clarified and homogenized, and the resulting molten glass is formed. A known method can be applied as the glass melting method. Also, using oxides, carbonates, nitrates, sulfates, hydroxides, etc., weigh the glass raw materials so that a glass with the desired composition can be obtained, and mix thoroughly to obtain powder raw materials. Heating and melting may be performed, or a raw material obtained by roughly melting a powder raw material to form a cullet and preparing a plurality of cullets may be heated and melted.
As will be described later, the glass molded body obtained by molding the molten glass can be used for producing a glass material for press molding by annealing to remove strain.
本発明の光学ガラスは、ガラス原料を加熱、熔融、清澄、均質化し、得られた熔融ガラスを成形するガラス熔融法で製造することができる。ガラス熔融法としては公知の方法を適用することができる。また、酸化物、炭酸塩、硝酸塩、硫酸塩、水酸化物など使用し、所望の組成のガラスが得られるようにガラス原料を秤量し、十分混合して粉体原料とし、この粉体原料を加熱、熔融してもよいし、粉体原料を粗熔解してカレット化し、複数のカレットを調合して得た原料を加熱、熔融してもよい。
上記熔融ガラスを成形して得られたガラス成形体は、後述するように、アニールして歪を除去してプレス成形用ガラス素材の作製に使用することができる。 [Optical glass manufacturing method]
The optical glass of the present invention can be produced by a glass melting method in which a glass raw material is heated, melted, clarified and homogenized, and the resulting molten glass is formed. A known method can be applied as the glass melting method. Also, using oxides, carbonates, nitrates, sulfates, hydroxides, etc., weigh the glass raw materials so that a glass with the desired composition can be obtained, and mix thoroughly to obtain powder raw materials. Heating and melting may be performed, or a raw material obtained by roughly melting a powder raw material to form a cullet and preparing a plurality of cullets may be heated and melted.
As will be described later, the glass molded body obtained by molding the molten glass can be used for producing a glass material for press molding by annealing to remove strain.
プレス成形用ガラス素材
本発明のプレス成形用ガラス素材は、上記本発明の光学ガラスからなるプレス成形用ガラス素材である。再加熱、軟化に対して優れた耐失透性を有する光学ガラスからなるため、リヒートプレス成形時にガラスが失透することなく、高品質なプレス成形品を得ることができる。また、熔融ガラス成形時の耐失透性も優れたガラスを用いることにより、高品質のプレス成形品を得ることもできる。プレス成形用ガラス素材の形状は、製造しようとするプレス成形品の形状に応じて適宜決めればよく、ガラス素材の質量もプレス成形品の質量に合わせればよい。 Glass material for press molding The glass material for press molding of the present invention is a glass material for press molding made of the optical glass of the present invention. Since it consists of optical glass having excellent devitrification resistance against reheating and softening, a high-quality press-molded product can be obtained without devitrification of the glass during reheat press molding. Moreover, a high-quality press-molded product can also be obtained by using a glass having excellent devitrification resistance during molten glass molding. The shape of the glass material for press molding may be appropriately determined according to the shape of the press molded product to be manufactured, and the mass of the glass material may be matched to the mass of the press molded product.
本発明のプレス成形用ガラス素材は、上記本発明の光学ガラスからなるプレス成形用ガラス素材である。再加熱、軟化に対して優れた耐失透性を有する光学ガラスからなるため、リヒートプレス成形時にガラスが失透することなく、高品質なプレス成形品を得ることができる。また、熔融ガラス成形時の耐失透性も優れたガラスを用いることにより、高品質のプレス成形品を得ることもできる。プレス成形用ガラス素材の形状は、製造しようとするプレス成形品の形状に応じて適宜決めればよく、ガラス素材の質量もプレス成形品の質量に合わせればよい。 Glass material for press molding The glass material for press molding of the present invention is a glass material for press molding made of the optical glass of the present invention. Since it consists of optical glass having excellent devitrification resistance against reheating and softening, a high-quality press-molded product can be obtained without devitrification of the glass during reheat press molding. Moreover, a high-quality press-molded product can also be obtained by using a glass having excellent devitrification resistance during molten glass molding. The shape of the glass material for press molding may be appropriately determined according to the shape of the press molded product to be manufactured, and the mass of the glass material may be matched to the mass of the press molded product.
プレス成形用ガラス素材の製造方法の一例は、以下のとおりである。
先に説明したガラス成形体をアニールして歪を除去し、複数のガラス片(カットピース)に機械加工によって分割した後、バレル研磨してプレス成形用ガラス素材を作製する。バレル研磨の代わりに、ガラス片を研削、研磨してプレス成形用ガラス素材を作製してもよい。 An example of the manufacturing method of the glass material for press molding is as follows.
The glass molded body described above is annealed to remove strain, divided into a plurality of glass pieces (cut pieces) by machining, and then barrel-polished to produce a glass material for press molding. Instead of barrel polishing, a glass piece may be ground and polished to produce a glass material for press molding.
先に説明したガラス成形体をアニールして歪を除去し、複数のガラス片(カットピース)に機械加工によって分割した後、バレル研磨してプレス成形用ガラス素材を作製する。バレル研磨の代わりに、ガラス片を研削、研磨してプレス成形用ガラス素材を作製してもよい。 An example of the manufacturing method of the glass material for press molding is as follows.
The glass molded body described above is annealed to remove strain, divided into a plurality of glass pieces (cut pieces) by machining, and then barrel-polished to produce a glass material for press molding. Instead of barrel polishing, a glass piece may be ground and polished to produce a glass material for press molding.
光学素子とその製造方法
本発明の光学素子は、上記本発明の光学ガラスからなる光学素子である。
本発明の光学素子によれば、本発明の光学ガラスの高屈折率高分散特性を活かして撮像光学系、投射光学系を含む様々な光学系の高機能化、コンパクト化に有効な光学素子を提供することができる。
さらに、SiO2系の高屈折率高分散ガラスとしては高膨張特性を有するガラスであれば、フツリン酸ガラスなど膨張係数が高いガラスからなる光学素子との接合に好適である。 Optical element and manufacturing method thereof The optical element of the present invention is an optical element made of the optical glass of the present invention.
According to the optical element of the present invention, there is provided an optical element effective for enhancing the functions and compactness of various optical systems including the imaging optical system and the projection optical system by utilizing the high refractive index and high dispersion characteristics of the optical glass of the present invention. Can be provided.
Furthermore, as the SiO 2 -based high refractive index and high dispersion glass, any glass having a high expansion characteristic is suitable for bonding to an optical element made of glass having a high expansion coefficient such as fluorophosphate glass.
本発明の光学素子は、上記本発明の光学ガラスからなる光学素子である。
本発明の光学素子によれば、本発明の光学ガラスの高屈折率高分散特性を活かして撮像光学系、投射光学系を含む様々な光学系の高機能化、コンパクト化に有効な光学素子を提供することができる。
さらに、SiO2系の高屈折率高分散ガラスとしては高膨張特性を有するガラスであれば、フツリン酸ガラスなど膨張係数が高いガラスからなる光学素子との接合に好適である。 Optical element and manufacturing method thereof The optical element of the present invention is an optical element made of the optical glass of the present invention.
According to the optical element of the present invention, there is provided an optical element effective for enhancing the functions and compactness of various optical systems including the imaging optical system and the projection optical system by utilizing the high refractive index and high dispersion characteristics of the optical glass of the present invention. Can be provided.
Furthermore, as the SiO 2 -based high refractive index and high dispersion glass, any glass having a high expansion characteristic is suitable for bonding to an optical element made of glass having a high expansion coefficient such as fluorophosphate glass.
本発明の光学素子を例示すると、レンズ、プリズムなどがある。
高屈折率高分散ガラス製レンズと低分散ガラス製レンズを組合わせて色収差を補正する際、高屈折率高分散側のレンズのパワーを負、低分散側のレンズのパワーを正とすることが光学設計上有利であることから、本発明の光学素子としては、負のパワーを有するレンズ、例えば両凹レンズ、凹メニスカスレンズ、平凹レンズが好ましい。また接合レンズに使用する上から、レンズの光学機能面の少なくとも一方を球面とすることが好ましく、両面とも球面とすることがより好ましい。 Examples of the optical element of the present invention include a lens and a prism.
When correcting chromatic aberration using a combination of a high-refractive index, high-dispersion glass lens and a low-dispersion glass lens, the power of the high-refractive index, high-dispersion lens may be negative, and the power of the low-dispersion lens may be positive. As an optical element of the present invention, a lens having negative power, for example, a biconcave lens, a concave meniscus lens, or a planoconcave lens is preferable because it is advantageous in optical design. From the viewpoint of use in a cemented lens, at least one of the optical functional surfaces of the lens is preferably a spherical surface, and both surfaces are more preferably spherical.
高屈折率高分散ガラス製レンズと低分散ガラス製レンズを組合わせて色収差を補正する際、高屈折率高分散側のレンズのパワーを負、低分散側のレンズのパワーを正とすることが光学設計上有利であることから、本発明の光学素子としては、負のパワーを有するレンズ、例えば両凹レンズ、凹メニスカスレンズ、平凹レンズが好ましい。また接合レンズに使用する上から、レンズの光学機能面の少なくとも一方を球面とすることが好ましく、両面とも球面とすることがより好ましい。 Examples of the optical element of the present invention include a lens and a prism.
When correcting chromatic aberration using a combination of a high-refractive index, high-dispersion glass lens and a low-dispersion glass lens, the power of the high-refractive index, high-dispersion lens may be negative, and the power of the low-dispersion lens may be positive. As an optical element of the present invention, a lens having negative power, for example, a biconcave lens, a concave meniscus lens, or a planoconcave lens is preferable because it is advantageous in optical design. From the viewpoint of use in a cemented lens, at least one of the optical functional surfaces of the lens is preferably a spherical surface, and both surfaces are more preferably spherical.
本発明の光学素子の製造方法は、上記本発明のプレス成形用ガラス素材を加熱して軟化した状態でプレス成形して光学素子ブランクを作製し、作製した光学素子ブランクを研削および研磨して光学素子を得る。
研削、研磨工程の前にガラスの破損防止の上から光学素子ブランクをアニールすることが好ましい。このアニールにおいてガラスの歪を除去するとともに、アニール時の降温スピードを調整することにより、屈折率を微調整することもできる。
なお、本発明の光学素子は、熔融ガラスを成形して得たガラス成形体をアニールし、研削、研磨して製造することもできる。 The optical element manufacturing method of the present invention is an optical element blank produced by press molding in the state of heating and softening the glass material for press molding of the present invention, and the optical element blank thus prepared is ground and polished. Get the element.
It is preferable to anneal the optical element blank from the viewpoint of preventing breakage of the glass before the grinding and polishing steps. In this annealing, the refractive index can be finely adjusted by removing the distortion of the glass and adjusting the temperature lowering speed during annealing.
The optical element of the present invention can also be produced by annealing, grinding and polishing a glass molded body obtained by molding molten glass.
研削、研磨工程の前にガラスの破損防止の上から光学素子ブランクをアニールすることが好ましい。このアニールにおいてガラスの歪を除去するとともに、アニール時の降温スピードを調整することにより、屈折率を微調整することもできる。
なお、本発明の光学素子は、熔融ガラスを成形して得たガラス成形体をアニールし、研削、研磨して製造することもできる。 The optical element manufacturing method of the present invention is an optical element blank produced by press molding in the state of heating and softening the glass material for press molding of the present invention, and the optical element blank thus prepared is ground and polished. Get the element.
It is preferable to anneal the optical element blank from the viewpoint of preventing breakage of the glass before the grinding and polishing steps. In this annealing, the refractive index can be finely adjusted by removing the distortion of the glass and adjusting the temperature lowering speed during annealing.
The optical element of the present invention can also be produced by annealing, grinding and polishing a glass molded body obtained by molding molten glass.
接合光学素子
本発明の接合光学素子は、上記本発明の光学ガラスからなる光学素子と、フツリン酸ガラスからなる光学素子を接合したものである。
本発明の高屈折率高分散ガラス製光学素子と、異常部分分散性と低分散性を有するフツリン酸ガラス製光学素子とを接合することにより優れた色収差補正を有する接合光学素子を得ることができる。前記接合光学素子を撮像光学系、投射光学系などの光学系に適用することにより、光学系を高機能化、コンパクト化することができる。 Bonded optical element The bonded optical element of the present invention is obtained by bonding an optical element made of the optical glass of the present invention and an optical element made of fluorophosphate glass.
By bonding the high refractive index high dispersion glass optical element of the present invention and the fluorophosphate glass optical element having anomalous partial dispersion and low dispersion, a bonded optical element having excellent chromatic aberration correction can be obtained. . By applying the bonding optical element to an optical system such as an imaging optical system and a projection optical system, the optical system can be enhanced and made compact.
本発明の接合光学素子は、上記本発明の光学ガラスからなる光学素子と、フツリン酸ガラスからなる光学素子を接合したものである。
本発明の高屈折率高分散ガラス製光学素子と、異常部分分散性と低分散性を有するフツリン酸ガラス製光学素子とを接合することにより優れた色収差補正を有する接合光学素子を得ることができる。前記接合光学素子を撮像光学系、投射光学系などの光学系に適用することにより、光学系を高機能化、コンパクト化することができる。 Bonded optical element The bonded optical element of the present invention is obtained by bonding an optical element made of the optical glass of the present invention and an optical element made of fluorophosphate glass.
By bonding the high refractive index high dispersion glass optical element of the present invention and the fluorophosphate glass optical element having anomalous partial dispersion and low dispersion, a bonded optical element having excellent chromatic aberration correction can be obtained. . By applying the bonding optical element to an optical system such as an imaging optical system and a projection optical system, the optical system can be enhanced and made compact.
本発明の光学素子と接合するフツリン酸ガラスとしては、例えば、HOYA株式会社製のFCD1、FCD100、FCD505などの公知のフツリン酸系光学ガラスを使用することができる。
As the fluorophosphate glass to be bonded to the optical element of the present invention, for example, known fluorophosphate optical glasses such as FCD1, FCD100, FCD505 manufactured by HOYA Corporation can be used.
接合光学素子としては、レンズ同士を接合したもの(接合レンズ)、レンズとプリズムを接合したものなどを例示することができる。
前述のように高屈折率高分散側のレンズのパワーを負、フツリン酸ガラス製レンズのパワーを正とすることで、優れた色収差補正機能を有するとともに、光学系の高機能化、コンパクト化に有効な接合レンズを提供することができる。
接合光学素子は、接合する2つの光学素子の接合面を形状が反転形状となるように精密に加工(例えば、球面研磨加工)し、接合レンズの接着に使用される紫外線硬化型接着剤を塗布し、はり合わせてから紫外線を照射し接着剤を硬化させることで作製することができる。 Examples of the cemented optical element include those in which lenses are cemented (a cemented lens), and in which lenses and a prism are cemented.
As mentioned above, the lens power on the high refractive index and high dispersion side is negative, and the power of the fluorophosphate glass lens is positive, so that it has an excellent chromatic aberration correction function, and the optical system is highly functional and compact. An effective cemented lens can be provided.
Bonded optical elements are precisely processed (for example, spherical polishing process) so that the bonded surfaces of the two optical elements to be bonded have a reversed shape, and an ultraviolet curable adhesive used for bonding bonded lenses is applied. And it can produce by irradiating an ultraviolet-ray after bonding and hardening an adhesive agent.
前述のように高屈折率高分散側のレンズのパワーを負、フツリン酸ガラス製レンズのパワーを正とすることで、優れた色収差補正機能を有するとともに、光学系の高機能化、コンパクト化に有効な接合レンズを提供することができる。
接合光学素子は、接合する2つの光学素子の接合面を形状が反転形状となるように精密に加工(例えば、球面研磨加工)し、接合レンズの接着に使用される紫外線硬化型接着剤を塗布し、はり合わせてから紫外線を照射し接着剤を硬化させることで作製することができる。 Examples of the cemented optical element include those in which lenses are cemented (a cemented lens), and in which lenses and a prism are cemented.
As mentioned above, the lens power on the high refractive index and high dispersion side is negative, and the power of the fluorophosphate glass lens is positive, so that it has an excellent chromatic aberration correction function, and the optical system is highly functional and compact. An effective cemented lens can be provided.
Bonded optical elements are precisely processed (for example, spherical polishing process) so that the bonded surfaces of the two optical elements to be bonded have a reversed shape, and an ultraviolet curable adhesive used for bonding bonded lenses is applied. And it can produce by irradiating an ultraviolet-ray after bonding and hardening an adhesive agent.
次に、本発明を実施例によりさらに詳細に説明するが、本発明は、実施例に示す態様に限定されるものではない。
Next, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the embodiments shown in the examples.
(実施例1)
まず、表1に示す組成を有するガラスNo.1~30が得られるように、原料として炭酸塩、硝酸塩、水酸化物、酸化物などを用い、各原料粉末を秤量して十分混合し、調合原料とし、この調合原料を白金製坩堝に入れて1,300℃で加熱、熔融し、清澄、撹拌して均質な熔融ガラスした。この熔融ガラスを予熱した鋳型に流し込んで急冷し、ガラス転移温度近傍の温度で2時間保持した後、徐冷してガラスNo.1~30の各光学ガラスを得た。いずれのガラス中にも結晶の析出は認められなかった。
なお、表1に示す各ガラスの特性は、以下に示す方法で測定した。測定結果を表1に示す。 (Example 1)
First, so that glass Nos. 1 to 30 having the composition shown in Table 1 can be obtained, carbonates, nitrates, hydroxides, oxides, etc. are used as raw materials. This raw material was placed in a platinum crucible, heated and melted at 1,300 ° C., clarified and stirred to obtain a homogeneous molten glass. The molten glass was poured into a preheated mold and rapidly cooled, held at a temperature in the vicinity of the glass transition temperature for 2 hours, and then gradually cooled to obtain each optical glass of glass No. 1-30. No crystal precipitation was observed in any glass.
In addition, the characteristic of each glass shown in Table 1 was measured by the method shown below. The measurement results are shown in Table 1.
まず、表1に示す組成を有するガラスNo.1~30が得られるように、原料として炭酸塩、硝酸塩、水酸化物、酸化物などを用い、各原料粉末を秤量して十分混合し、調合原料とし、この調合原料を白金製坩堝に入れて1,300℃で加熱、熔融し、清澄、撹拌して均質な熔融ガラスした。この熔融ガラスを予熱した鋳型に流し込んで急冷し、ガラス転移温度近傍の温度で2時間保持した後、徐冷してガラスNo.1~30の各光学ガラスを得た。いずれのガラス中にも結晶の析出は認められなかった。
なお、表1に示す各ガラスの特性は、以下に示す方法で測定した。測定結果を表1に示す。 (Example 1)
First, so that glass Nos. 1 to 30 having the composition shown in Table 1 can be obtained, carbonates, nitrates, hydroxides, oxides, etc. are used as raw materials. This raw material was placed in a platinum crucible, heated and melted at 1,300 ° C., clarified and stirred to obtain a homogeneous molten glass. The molten glass was poured into a preheated mold and rapidly cooled, held at a temperature in the vicinity of the glass transition temperature for 2 hours, and then gradually cooled to obtain each optical glass of glass No. 1-30. No crystal precipitation was observed in any glass.
In addition, the characteristic of each glass shown in Table 1 was measured by the method shown below. The measurement results are shown in Table 1.
(1)屈折率nd、nc、nF、ngおよびアッベ数νd
1時間あたり30℃の降温速度で冷却した光学ガラスについて、日本光学硝子工業会規格の屈折率測定法により測定した。
(2)ガラス転移温度Tg、結晶化ピーク温度Tx
ガラスを乳鉢で十分粉砕したものを試料とし、株式会社ブルカー製の高温型示差走査熱量計「DSC3300SA」を用いて、昇温速度10℃/分で1250℃まで測定した。
(3)液相温度LT
ガラスを所定温度に加熱された炉内に入れて2時間保持し、冷却後、ガラス内部を100倍の光学顕微鏡で結晶の有無を観察し、結晶が消失する最低温度を液相温度とした。
(4)100~300℃における平均線膨張係数α
日本光学硝子工業会規格JOGIS 08-1975「光学ガラスの熱膨張の測定方法」で定められている方法により測定した。
(5)比重
アルキメデス法により測定した。
(6)部分分散比Pg,F
屈折率ng、nF、ncの値より次式に用いて算出した。
Pg,F=(ng-nF)/(nF-nC)
(7)着色度λ80、λ70、λ5
分光光度計を用いて、分光透過率を測定して求めた。 (1) Refractive indexes nd, nc, nF, ng and Abbe number νd
The optical glass cooled at a temperature drop rate of 30 ° C. per hour was measured by the refractive index measurement method of the Japan Optical Glass Industry Association standard.
(2) Glass transition temperature Tg, crystallization peak temperature Tx
A sample obtained by sufficiently grinding glass in a mortar was used as a sample, and the temperature was measured up to 1250 ° C. at a heating rate of 10 ° C./min using a high-temperature differential scanning calorimeter “DSC3300SA” manufactured by Bruker Co., Ltd.
(3) Liquidus temperature LT
The glass was placed in a furnace heated to a predetermined temperature and held for 2 hours. After cooling, the inside of the glass was observed with a 100-fold optical microscope for the presence of crystals, and the lowest temperature at which the crystals disappeared was defined as the liquidus temperature.
(4) Average linear expansion coefficient α at 100 to 300 ° C
It was measured by the method defined in Japan Optical Glass Industry Association Standard JOGIS 08-1975 “Measurement Method of Thermal Expansion of Optical Glass”.
(5) Specific gravity It measured by Archimedes method.
(6) Partial dispersion ratio Pg, F
It calculated using the following formula from the value of refractive index ng, nF, nc.
Pg, F = (ng−nF) / (nF−nC)
(7) Degree of coloring λ80, λ70, λ5
The spectral transmittance was measured and determined using a spectrophotometer.
1時間あたり30℃の降温速度で冷却した光学ガラスについて、日本光学硝子工業会規格の屈折率測定法により測定した。
(2)ガラス転移温度Tg、結晶化ピーク温度Tx
ガラスを乳鉢で十分粉砕したものを試料とし、株式会社ブルカー製の高温型示差走査熱量計「DSC3300SA」を用いて、昇温速度10℃/分で1250℃まで測定した。
(3)液相温度LT
ガラスを所定温度に加熱された炉内に入れて2時間保持し、冷却後、ガラス内部を100倍の光学顕微鏡で結晶の有無を観察し、結晶が消失する最低温度を液相温度とした。
(4)100~300℃における平均線膨張係数α
日本光学硝子工業会規格JOGIS 08-1975「光学ガラスの熱膨張の測定方法」で定められている方法により測定した。
(5)比重
アルキメデス法により測定した。
(6)部分分散比Pg,F
屈折率ng、nF、ncの値より次式に用いて算出した。
Pg,F=(ng-nF)/(nF-nC)
(7)着色度λ80、λ70、λ5
分光光度計を用いて、分光透過率を測定して求めた。 (1) Refractive indexes nd, nc, nF, ng and Abbe number νd
The optical glass cooled at a temperature drop rate of 30 ° C. per hour was measured by the refractive index measurement method of the Japan Optical Glass Industry Association standard.
(2) Glass transition temperature Tg, crystallization peak temperature Tx
A sample obtained by sufficiently grinding glass in a mortar was used as a sample, and the temperature was measured up to 1250 ° C. at a heating rate of 10 ° C./min using a high-temperature differential scanning calorimeter “DSC3300SA” manufactured by Bruker Co., Ltd.
(3) Liquidus temperature LT
The glass was placed in a furnace heated to a predetermined temperature and held for 2 hours. After cooling, the inside of the glass was observed with a 100-fold optical microscope for the presence of crystals, and the lowest temperature at which the crystals disappeared was defined as the liquidus temperature.
(4) Average linear expansion coefficient α at 100 to 300 ° C
It was measured by the method defined in Japan Optical Glass Industry Association Standard JOGIS 08-1975 “Measurement Method of Thermal Expansion of Optical Glass”.
(5) Specific gravity It measured by Archimedes method.
(6) Partial dispersion ratio Pg, F
It calculated using the following formula from the value of refractive index ng, nF, nc.
Pg, F = (ng−nF) / (nF−nC)
(7) Degree of coloring λ80, λ70, λ5
The spectral transmittance was measured and determined using a spectrophotometer.
なお、上記各光学ガラスは、原料粉末(粉体原料)を加熱、熔融して作製したが、粉体原料を粗熔解してカレット化し、得られたカレットを用いて調合した原料を加熱、熔融して作製することもできる。
このようにして、優れた熱的安定性を有しリヒートプレス法に好適であり、着色が少なく、フツリン酸ガラス製の光学素子との接合に好適な光学素子用材料として望ましい高膨張特性を備えた高屈折率高分散光学ガラスを得ることができた。 Each optical glass was prepared by heating and melting a raw material powder (powder raw material). However, the powder raw material was roughly melted to form a cullet, and the prepared raw material was heated and melted. Can also be produced.
In this way, it has excellent thermal stability, is suitable for the reheat press method, has little coloration, and has high expansion characteristics desirable as a material for optical elements suitable for bonding with optical elements made of fluorophosphate glass. A high refractive index and high dispersion optical glass could be obtained.
このようにして、優れた熱的安定性を有しリヒートプレス法に好適であり、着色が少なく、フツリン酸ガラス製の光学素子との接合に好適な光学素子用材料として望ましい高膨張特性を備えた高屈折率高分散光学ガラスを得ることができた。 Each optical glass was prepared by heating and melting a raw material powder (powder raw material). However, the powder raw material was roughly melted to form a cullet, and the prepared raw material was heated and melted. Can also be produced.
In this way, it has excellent thermal stability, is suitable for the reheat press method, has little coloration, and has high expansion characteristics desirable as a material for optical elements suitable for bonding with optical elements made of fluorophosphate glass. A high refractive index and high dispersion optical glass could be obtained.
(実施例2)
実施例1で作製したガラスNo.1~30の各光学ガラスを研削、研磨してプレス成形用ガラス素材を作製した。次にプレス成形ガラス素材表面に窒化ホウ素粉末を均一に塗布し、耐熱性軟化皿上に載せ、加熱軟化炉内へ入れ、加熱した。
次いで、粘度が103.5~104.5dPa・sになるように加熱、軟化したガラス素材を加熱軟化皿上からプレス成形用型内に導入しプレスして凹メニスカスレンズ形状に成形した。成形したレンズブランクをプレス成形用型から取り出しアニールした。
このようにして得たレンズブランクを研削、研磨して凹メニスカスレンズを作製した。
同様にして、両凹レンズなど各種球面レンズを作製した。
このようにして得た各種レンズの内部を観察したところ、結晶の析出は認められず、均質性の高いレンズが得られていることを確認した。
得られたレンズの光学機能面には必要に応じて反射防止膜をコートしてもよい。 (Example 2)
Each optical glass No. 1 to No. 30 produced in Example 1 was ground and polished to produce a glass material for press molding. Next, boron nitride powder was uniformly applied to the surface of the press-molded glass material, placed on a heat-resistant softening dish, placed in a heating softening furnace, and heated.
Next, the glass material heated and softened so as to have a viscosity of 10 3.5 to 10 4.5 dPa · s was introduced into the press mold from the heated softening dish and pressed to form a concave meniscus lens shape. The molded lens blank was removed from the press mold and annealed.
The lens blank thus obtained was ground and polished to prepare a concave meniscus lens.
Similarly, various spherical lenses such as a biconcave lens were produced.
When the inside of the various lenses thus obtained was observed, no precipitation of crystals was observed, and it was confirmed that a highly homogeneous lens was obtained.
The optical functional surface of the obtained lens may be coated with an antireflection film as necessary.
実施例1で作製したガラスNo.1~30の各光学ガラスを研削、研磨してプレス成形用ガラス素材を作製した。次にプレス成形ガラス素材表面に窒化ホウ素粉末を均一に塗布し、耐熱性軟化皿上に載せ、加熱軟化炉内へ入れ、加熱した。
次いで、粘度が103.5~104.5dPa・sになるように加熱、軟化したガラス素材を加熱軟化皿上からプレス成形用型内に導入しプレスして凹メニスカスレンズ形状に成形した。成形したレンズブランクをプレス成形用型から取り出しアニールした。
このようにして得たレンズブランクを研削、研磨して凹メニスカスレンズを作製した。
同様にして、両凹レンズなど各種球面レンズを作製した。
このようにして得た各種レンズの内部を観察したところ、結晶の析出は認められず、均質性の高いレンズが得られていることを確認した。
得られたレンズの光学機能面には必要に応じて反射防止膜をコートしてもよい。 (Example 2)
Each optical glass No. 1 to No. 30 produced in Example 1 was ground and polished to produce a glass material for press molding. Next, boron nitride powder was uniformly applied to the surface of the press-molded glass material, placed on a heat-resistant softening dish, placed in a heating softening furnace, and heated.
Next, the glass material heated and softened so as to have a viscosity of 10 3.5 to 10 4.5 dPa · s was introduced into the press mold from the heated softening dish and pressed to form a concave meniscus lens shape. The molded lens blank was removed from the press mold and annealed.
The lens blank thus obtained was ground and polished to prepare a concave meniscus lens.
Similarly, various spherical lenses such as a biconcave lens were produced.
When the inside of the various lenses thus obtained was observed, no precipitation of crystals was observed, and it was confirmed that a highly homogeneous lens was obtained.
The optical functional surface of the obtained lens may be coated with an antireflection film as necessary.
(実施例3)
屈折率ndが1.49700、アッベ数νdが81.61、部分分散比Pg,Fが0.5388、100~300℃における平均線膨張係数が155×10-7/℃であるフツリン酸ガラス、屈折率ndが1.45860、アッベ数νdが90.20、部分分散比Pg,Fが0.5352、100~300℃における平均線膨張係数が165×10-7/℃であるフツリン酸ガラス、屈折率ndが159282、アッベ数νdが68.63、部分分散比Pg,Fが0.5441、100~300℃における平均線膨張係数が140×10-7/℃であるフツリン酸ガラスの3種の光学ガラスを用い、研削、研磨して両凸形状の球面レンズを作製した。実施例2で作製した凹メニスカスレンズの凹面の形状を反転した形状の凸面が得られるようにレンズ面を加工した。
そして、実施例2で作製した各凹メニスカスレンズの凹面と、各種フツリン酸ガラス製の両凸レンズの一方の凸面に紫外線硬化型接着剤を塗布し、気泡を含まないように精密にはり合わせ、紫外線を照射してレンズを接合した。
同様にして、上記3種のフツリン酸ガラスを用い、実施例2で作製した両凹レンズの一方の凹面の形状を反転した形状の凸状のレンズ面が得られるよう研削、研磨して両凸形状の球面レンズを作製した。そして、実施例2で作製した各両凹レンズの一方の凹面と、各種フツリン酸ガラス製の両凸レンズの一方の凸面に紫外線硬化型接着剤を塗布し、気泡を含まないように精密にはり合わせ、紫外線を照射してレンズを接合した。
このようにして色収差補正用の接合レンズを作製した。得られた接合レンズの接合面は、紫外線照射による不具合は認められず、また温度サイクル試験後も接合面に不具合は認められなかった。 (Example 3)
Fluorophosphate glass having a refractive index nd of 1.970000, an Abbe number νd of 81.61, a partial dispersion ratio Pg, F of 0.5388, an average linear expansion coefficient at 100 to 300 ° C. of 155 × 10 −7 / ° C., a refractive index nd of 1.45860, A fluorophosphate glass having an Abbe number νd of 90.20, a partial dispersion ratio Pg, F of 0.5352, an average linear expansion coefficient at 100 to 300 ° C. of 165 × 10 −7 / ° C., a refractive index nd of 159282, an Abbe number νd of 68.63, A biconvex spherical surface is formed by grinding and polishing three types of optical glass, fluorophosphate glass, having a partial dispersion ratio Pg, F of 0.5441 and an average linear expansion coefficient of 140 × 10 -7 / ° C at 100-300 ° C. A lens was produced. The lens surface was processed so that a convex surface having a shape obtained by reversing the shape of the concave surface of the concave meniscus lens manufactured in Example 2 was obtained.
Then, an ultraviolet curable adhesive was applied to the concave surface of each concave meniscus lens produced in Example 2 and one convex surface of various fluorophosphate glass biconvex lenses, and precisely bonded so as not to contain bubbles. Was bonded to the lens.
Similarly, by using the above three types of fluorophosphate glass, the biconvex shape is obtained by grinding and polishing so that a convex lens surface having a shape obtained by inverting the shape of one concave surface of the biconcave lens produced in Example 2 is obtained. A spherical lens was prepared. Then, an ultraviolet curable adhesive was applied to one concave surface of each biconcave lens produced in Example 2 and one convex surface of each biconvex lens made of various fluorophosphate glasses, and precisely bonded so as not to contain bubbles, The lens was bonded by irradiating with ultraviolet rays.
In this way, a cemented lens for correcting chromatic aberration was produced. On the cemented surface of the obtained cemented lens, no defects due to ultraviolet irradiation were observed, and no defects were observed on the cemented surface even after the temperature cycle test.
屈折率ndが1.49700、アッベ数νdが81.61、部分分散比Pg,Fが0.5388、100~300℃における平均線膨張係数が155×10-7/℃であるフツリン酸ガラス、屈折率ndが1.45860、アッベ数νdが90.20、部分分散比Pg,Fが0.5352、100~300℃における平均線膨張係数が165×10-7/℃であるフツリン酸ガラス、屈折率ndが159282、アッベ数νdが68.63、部分分散比Pg,Fが0.5441、100~300℃における平均線膨張係数が140×10-7/℃であるフツリン酸ガラスの3種の光学ガラスを用い、研削、研磨して両凸形状の球面レンズを作製した。実施例2で作製した凹メニスカスレンズの凹面の形状を反転した形状の凸面が得られるようにレンズ面を加工した。
そして、実施例2で作製した各凹メニスカスレンズの凹面と、各種フツリン酸ガラス製の両凸レンズの一方の凸面に紫外線硬化型接着剤を塗布し、気泡を含まないように精密にはり合わせ、紫外線を照射してレンズを接合した。
同様にして、上記3種のフツリン酸ガラスを用い、実施例2で作製した両凹レンズの一方の凹面の形状を反転した形状の凸状のレンズ面が得られるよう研削、研磨して両凸形状の球面レンズを作製した。そして、実施例2で作製した各両凹レンズの一方の凹面と、各種フツリン酸ガラス製の両凸レンズの一方の凸面に紫外線硬化型接着剤を塗布し、気泡を含まないように精密にはり合わせ、紫外線を照射してレンズを接合した。
このようにして色収差補正用の接合レンズを作製した。得られた接合レンズの接合面は、紫外線照射による不具合は認められず、また温度サイクル試験後も接合面に不具合は認められなかった。 (Example 3)
Fluorophosphate glass having a refractive index nd of 1.970000, an Abbe number νd of 81.61, a partial dispersion ratio Pg, F of 0.5388, an average linear expansion coefficient at 100 to 300 ° C. of 155 × 10 −7 / ° C., a refractive index nd of 1.45860, A fluorophosphate glass having an Abbe number νd of 90.20, a partial dispersion ratio Pg, F of 0.5352, an average linear expansion coefficient at 100 to 300 ° C. of 165 × 10 −7 / ° C., a refractive index nd of 159282, an Abbe number νd of 68.63, A biconvex spherical surface is formed by grinding and polishing three types of optical glass, fluorophosphate glass, having a partial dispersion ratio Pg, F of 0.5441 and an average linear expansion coefficient of 140 × 10 -7 / ° C at 100-300 ° C. A lens was produced. The lens surface was processed so that a convex surface having a shape obtained by reversing the shape of the concave surface of the concave meniscus lens manufactured in Example 2 was obtained.
Then, an ultraviolet curable adhesive was applied to the concave surface of each concave meniscus lens produced in Example 2 and one convex surface of various fluorophosphate glass biconvex lenses, and precisely bonded so as not to contain bubbles. Was bonded to the lens.
Similarly, by using the above three types of fluorophosphate glass, the biconvex shape is obtained by grinding and polishing so that a convex lens surface having a shape obtained by inverting the shape of one concave surface of the biconcave lens produced in Example 2 is obtained. A spherical lens was prepared. Then, an ultraviolet curable adhesive was applied to one concave surface of each biconcave lens produced in Example 2 and one convex surface of each biconvex lens made of various fluorophosphate glasses, and precisely bonded so as not to contain bubbles, The lens was bonded by irradiating with ultraviolet rays.
In this way, a cemented lens for correcting chromatic aberration was produced. On the cemented surface of the obtained cemented lens, no defects due to ultraviolet irradiation were observed, and no defects were observed on the cemented surface even after the temperature cycle test.
本発明の光学ガラスは、高屈折率高分散ガラスであって、低分散性と異常部分分散性を兼ね備えたフツリン酸ガラス製のレンズと組み合わせて色収差補正用の接合レンズを作製するために好適に使用することができる。
The optical glass of the present invention is a high refractive index and high dispersion glass, suitable for producing a cemented lens for correcting chromatic aberration in combination with a lens made of fluorophosphate glass having both low dispersion and anomalous partial dispersion. Can be used.
Claims (8)
- 質量%表示にて、
SiO2 2~37%、
B2O3 0~25%、
GeO2 0~10%、
Li2O、Na2O、K2O、CaO、SrOおよびBaOを合計で18~55%、
TiO2、Nb2O5およびWO3を合計で27~55%、
含み、
SiO2とB2O3の合計含有量に対するSiO2含有量の質量比(SiO2/(SiO2+B2O3))が0.1~1の範囲であり、
Li2O、Na2O、K2O、CaO、SrOおよびBaOの合計含有量に対するLi2O含有量の質量比(Li2O/(Li2O+Na2O+K2O+CaO+SrO+BaO)が0~0.4の範囲であり、
TiO2、Nb2O5およびWO3を合計含有量に対するTiO2含有量の質量比(TiO2/(TiO2+Nb2O5+WO3))が0.35~1の範囲であり、
屈折率ndが1.860~1.990の範囲であり、かつアッベ数νdが21~29の範囲である光学ガラス。 In mass% display
SiO 2 2 ~ 37%,
B 2 O 3 0-25%,
GeO 2 0-10%,
Li 2 O, Na 2 O, K 2 O, CaO, SrO and BaO in total 18 to 55%,
TiO 2 , Nb 2 O 5 and WO 3 in total 27-55%,
Including
The mass ratio of SiO 2 content to the total content of SiO 2 and B 2 O 3 (SiO 2 / (SiO 2 + B 2 O 3 )) is in the range of 0.1 to 1,
Mass ratio of Li 2 O content to total content of Li 2 O, Na 2 O, K 2 O, CaO, SrO and BaO (Li 2 O / (Li 2 O + Na 2 O + K 2 O + CaO + SrO + BaO) is in the range of 0 to 0.4,
The mass ratio of TiO 2 content to the total content of TiO 2 , Nb 2 O 5 and WO 3 (TiO 2 / (TiO 2 + Nb 2 O 5 + WO 3 )) is in the range of 0.35 to 1,
An optical glass having a refractive index nd of 1.860 to 1.990 and an Abbe number νd of 21 to 29. - 結晶化ピーク温度Txとガラス転移温度Tgの差(Tx-Tg)が120℃以上である請求項1に記載の光学ガラス。 2. The optical glass according to claim 1, wherein the difference between the crystallization peak temperature Tx and the glass transition temperature Tg (Tx−Tg) is 120 ° C. or higher.
- 液相温度LTが1300℃以下である請求項1または2に記載の光学ガラス。 The optical glass according to claim 1 or 2, wherein the liquidus temperature LT is 1300 ° C or lower.
- 100~300℃における平均線膨張係数αが85×10-7/℃以上である請求項1~3のいずれか1項に記載の光学ガラス。 4. The optical glass according to claim 1, wherein the average linear expansion coefficient α at 100 to 300 ° C. is 85 × 10 −7 / ° C. or more.
- 請求項1~4のいずれか1項に記載の光学ガラスからなるプレス成形用ガラス素材。 A glass material for press molding comprising the optical glass according to any one of claims 1 to 4.
- 請求項1~4のいずれか1項に記載の光学ガラスからなる光学素子。 An optical element comprising the optical glass according to any one of claims 1 to 4.
- 請求項5に記載のプレス成形用ガラス素材を加熱して軟化した状態でプレス成形して光学素子ブランクを作製すること、および、
作製した光学素子ブランクを研削および研磨して光学素子を得ること、
を含む光学素子の製造方法。 A glass blank for press molding according to claim 5 is heated and softened to produce an optical element blank by press molding, and
Grinding and polishing the produced optical element blank to obtain an optical element;
The manufacturing method of the optical element containing this. - 請求項1~4のいずれか1項に記載の光学ガラスからなる光学素子と、フツリン酸ガラスからなる光学素子を接合した接合光学素子。 A bonded optical element obtained by bonding the optical element made of the optical glass according to any one of claims 1 to 4 and the optical element made of fluorophosphate glass.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280076363.2A CN104703935B (en) | 2012-10-12 | 2012-10-12 | Optical glass, compressing use glass material, optical element and its manufacture method and engagement optical element |
PCT/JP2012/076509 WO2014057584A1 (en) | 2012-10-12 | 2012-10-12 | Optical glass, glass material for press-molding, optical element and method for manufacturing same, and bonding optical element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/076509 WO2014057584A1 (en) | 2012-10-12 | 2012-10-12 | Optical glass, glass material for press-molding, optical element and method for manufacturing same, and bonding optical element |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014057584A1 true WO2014057584A1 (en) | 2014-04-17 |
Family
ID=50477069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/076509 WO2014057584A1 (en) | 2012-10-12 | 2012-10-12 | Optical glass, glass material for press-molding, optical element and method for manufacturing same, and bonding optical element |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104703935B (en) |
WO (1) | WO2014057584A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3521251A4 (en) * | 2016-10-03 | 2020-06-10 | Ohara Inc. | Optical glass, preform, and optical element |
JPWO2020045417A1 (en) * | 2018-08-31 | 2021-09-09 | Agc株式会社 | Optical glass and optics |
WO2023183140A1 (en) | 2022-03-25 | 2023-09-28 | Corning Incorporated | High-index silicoborate and borosilicate glasses |
NL2031590B1 (en) | 2022-03-25 | 2023-10-06 | Corning Inc | High-Index Silicoborate and Borosilicate Glasses |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105461222A (en) * | 2016-01-12 | 2016-04-06 | 成都光明光电有限责任公司 | High-refraction high-dispersion optical glass |
CN108689596B (en) * | 2017-03-31 | 2022-01-11 | Hoya株式会社 | Optical glass and optical element |
CN109020179B (en) * | 2018-09-06 | 2021-10-26 | 成都恒达光学有限公司 | Secondary profiling process for fluorophosphate optical forming glass |
CN109650717B (en) * | 2019-02-28 | 2021-10-26 | 成都光明光电股份有限公司 | Optical glass |
CN112867699A (en) * | 2019-09-26 | 2021-05-28 | Hoya株式会社 | Optical glass and optical element |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5950048A (en) * | 1982-09-16 | 1984-03-22 | Ohara Inc | Optical glass |
JPS605037A (en) * | 1983-06-20 | 1985-01-11 | Ohara Inc | Optical glass |
JPS61183145A (en) * | 1985-02-11 | 1986-08-15 | カール ツアイス ステイフツンク トレーデイング アズ シヨツト グラスヴエルケ | High refractive optical glass having refractive index of more than 1.83, abbe's number of less than 25 and high chemical stability |
JP2000159537A (en) * | 1998-11-20 | 2000-06-13 | Minolta Co Ltd | Optical glass |
JP2002362939A (en) * | 2001-06-07 | 2002-12-18 | Minolta Co Ltd | Optical glass |
JP2010006676A (en) * | 2008-06-30 | 2010-01-14 | Ohara Inc | Optical glass, preform and optical element |
JP2012229135A (en) * | 2011-04-25 | 2012-11-22 | Hoya Corp | Optical glass, glass material for press molding, optical element and method for producing the same, and joined optical element |
-
2012
- 2012-10-12 WO PCT/JP2012/076509 patent/WO2014057584A1/en active Application Filing
- 2012-10-12 CN CN201280076363.2A patent/CN104703935B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5950048A (en) * | 1982-09-16 | 1984-03-22 | Ohara Inc | Optical glass |
JPS605037A (en) * | 1983-06-20 | 1985-01-11 | Ohara Inc | Optical glass |
JPS61183145A (en) * | 1985-02-11 | 1986-08-15 | カール ツアイス ステイフツンク トレーデイング アズ シヨツト グラスヴエルケ | High refractive optical glass having refractive index of more than 1.83, abbe's number of less than 25 and high chemical stability |
JP2000159537A (en) * | 1998-11-20 | 2000-06-13 | Minolta Co Ltd | Optical glass |
JP2002362939A (en) * | 2001-06-07 | 2002-12-18 | Minolta Co Ltd | Optical glass |
JP2010006676A (en) * | 2008-06-30 | 2010-01-14 | Ohara Inc | Optical glass, preform and optical element |
JP2012229135A (en) * | 2011-04-25 | 2012-11-22 | Hoya Corp | Optical glass, glass material for press molding, optical element and method for producing the same, and joined optical element |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3521251A4 (en) * | 2016-10-03 | 2020-06-10 | Ohara Inc. | Optical glass, preform, and optical element |
JPWO2020045417A1 (en) * | 2018-08-31 | 2021-09-09 | Agc株式会社 | Optical glass and optics |
JP7512893B2 (en) | 2018-08-31 | 2024-07-09 | Agc株式会社 | Optical Glass and Optical Components |
WO2023183140A1 (en) | 2022-03-25 | 2023-09-28 | Corning Incorporated | High-index silicoborate and borosilicate glasses |
NL2031590B1 (en) | 2022-03-25 | 2023-10-06 | Corning Inc | High-Index Silicoborate and Borosilicate Glasses |
EP4257562A1 (en) | 2022-03-25 | 2023-10-11 | Corning Incorporated | High-index silicoborate and borosilicate glasses |
Also Published As
Publication number | Publication date |
---|---|
CN104703935B (en) | 2018-01-19 |
CN104703935A (en) | 2015-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5766002B2 (en) | Optical glass, glass material for press molding, optical element and manufacturing method thereof, and bonded optical element | |
TWI666188B (en) | Glass, glass materials for press molding, blanks for optical elements, and optical elements | |
WO2014057584A1 (en) | Optical glass, glass material for press-molding, optical element and method for manufacturing same, and bonding optical element | |
US8852745B2 (en) | Optical glass, press-molding glass material, optical element and method of manufacturing the same, and bonded optical element | |
JP5729550B2 (en) | Optical glass | |
JP6280015B2 (en) | Glass, glass material for press molding, optical element blank, and optical element | |
JP7514351B2 (en) | Glass, glass materials for press molding, optical element blanks, and optical elements | |
JP5856509B2 (en) | Optical glass, glass material for press molding, optical element and method for producing the same | |
JP6396622B1 (en) | Glass, glass material for press molding, optical element blank, and optical element | |
TWI836510B (en) | Optical glass and optical components | |
JP6280284B1 (en) | Glass, glass material for press molding, optical element blank, and optical element | |
JP2015027944A (en) | Optical glass | |
JP5979455B2 (en) | Optical glass | |
JP7401236B2 (en) | Optical glass and optical elements | |
JP6693726B2 (en) | Glass, glass material for press molding, optical element blank, and optical element | |
JP2014015384A (en) | Optical glass, preform and optical element | |
JP7339781B2 (en) | Optical glasses and optical elements | |
JP2014015383A (en) | Optical glass, preform and optical element | |
TW202114956A (en) | Optical glass and optical element | |
TWI850469B (en) | Optical glass and optical components | |
JP6626907B2 (en) | Glass, glass material for press molding, optical element blank, and optical element | |
JP6600702B2 (en) | Glass, glass material for press molding, optical element blank, and optical element | |
CN116891339A (en) | Optical glass and optical element | |
JP2023152670A (en) | Optical glass and optical element | |
JP2024159541A (en) | Optical Glass and Optical Elements |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12886497 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12886497 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |