WO2014057541A1 - Method and device for separating rare earth elements - Google Patents

Method and device for separating rare earth elements Download PDF

Info

Publication number
WO2014057541A1
WO2014057541A1 PCT/JP2012/076210 JP2012076210W WO2014057541A1 WO 2014057541 A1 WO2014057541 A1 WO 2014057541A1 JP 2012076210 W JP2012076210 W JP 2012076210W WO 2014057541 A1 WO2014057541 A1 WO 2014057541A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
chloride
earth element
heat treatment
group
Prior art date
Application number
PCT/JP2012/076210
Other languages
French (fr)
Japanese (ja)
Inventor
宮田 素之
山本 浩貴
元 村上
哲也 宇田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2014540658A priority Critical patent/JP5905592B2/en
Priority to PCT/JP2012/076210 priority patent/WO2014057541A1/en
Publication of WO2014057541A1 publication Critical patent/WO2014057541A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a technique for separating rare earth elements, and more particularly, to a method for separating rare earth elements from a composition containing a plurality of types of rare earth elements and a separation apparatus for performing the method.
  • Rare earth elements exhibit unique physical properties due to their characteristic electron arrangement, and various materials and products (for example, hydrogen storage alloys, secondary batteries, optical glasses, magnets, phosphors, Used in abrasives). Without knowing that the demand for higher performance of materials and products will not stop, demand for rare earth elements is expected to increase further in the future.
  • Rare earth elements have abundant reserves themselves, but their chemical properties are very similar to each other, making them difficult to separate and purify as a simple substance, and are therefore said to be rare elements.
  • Patent Document 1 discloses a divalent trivalent mixture in which the average valence of two or more rare earth ions is 2 or more and 3 or less by halogenating a rare earth element in a mixture containing a plurality of rare earth elements or compounds thereof. Producing a mixture containing a rare earth halide which is not dissolved in an aqueous solution or an organic solvent, and then utilizing the difference in properties between the divalent rare earth halide and the trivalent rare earth halide, There has been proposed a rare earth element separation method characterized by separating elements into at least two groups. According to Patent Document 1, it is said that the separation factor between rare earth elements can be dramatically increased, and mutual separation can be performed more efficiently than in the conventional method.
  • steps such as acid dissolution, filtration, precipitation removal of impurities, concentration, neutralization, and drying, which are essential for conventional wet methods, can be omitted. It is said that the cost can be greatly reduced.
  • Patent Document 2 discloses a method for recovering a rare earth element from a material containing a rare earth element and an iron group element, and a rare earth element such as a rare earth magnet scrap or sludge is added to a gaseous or molten iron chloride. Select a rare earth element as a chloride from the substance by contacting a substance containing an iron group element and proceeding the chlorination reaction of the rare earth element in the substance while maintaining the metallic state of the iron group element in the substance. There has been proposed a method for recovering a rare earth element characterized by having a step of recovering automatically.
  • Patent Document 2 it is possible to extract and separate only high-purity rare earth components from materials containing rare earth elements and iron group elements, such as rare earth magnet scraps or sludges, especially wastes, and thus lower cost rare earth elements. It is said that the magnet recycling law can be established.
  • JP 2001-303149 A Japanese Patent Laid-Open No. 2003-73754
  • rare earth elements As mentioned above, demand for rare earth elements is expected to continue to expand. On the other hand, in recent years, technology for separating, recovering, and recycling rare earth elements has become more important than ever due to the growing awareness of global environmental protection and the use of sustainable resources. In addition, since rare earth elements have similar chemical properties, a technique for separating specific rare earth elements from a mixture of a plurality of types of rare earth elements is particularly important.
  • an object of the present invention is to provide a method capable of easily separating a rare earth element from a composition containing a plurality of types of rare earth elements at a high separation rate, and a separation apparatus for executing the method. It is in.
  • One aspect of the present invention is a method for separating a plurality of rare earth elements, Producing a chloride / acid chloride mixture comprising a rare earth chloride of a first group of rare earth elements and a rare earth acid chloride of a second group of rare earth elements from a starting mixture comprising a plurality of rare earth oxides and a chlorinating agent.
  • An extraction process Separation for separating the first group of rare earth elements and the second group of rare earth elements by solid-liquid separation of the liquid phase from which the rare earth chloride is extracted and the solid phase of the remaining rare earth acid chloride. And providing a method for separating rare earth elements.
  • the present invention can add the following improvements or changes to the above-described rare earth element separation method (I).
  • the chlorinating agent is ammonium chloride
  • the predetermined temperature in the selective chlorination / acidification heat treatment step is a temperature within a temperature range in which the oxide of the rare earth element of the first group becomes a chloride.
  • In the starting mixture 1 mol of the rare earth oxide is mixed with more than 6 mol and less than 15 mol of the ammonium chloride.
  • the selective chlorination / acidification heat treatment step includes a step of generating a rare earth ammonium chloride salt of the first group of rare earth elements from the plurality of rare earth oxides and the ammonium chloride by a heat treatment under normal pressure. , Subsequently, an elementary step of generating a rare earth chloride of the first group rare earth element from the rare earth ammonium chloride salt by a heat treatment under reduced pressure is included.
  • the first group rare earth elements are light rare earth elements, and the second group rare earth elements are heavy rare earth elements.
  • the first group rare earth element is neodymium or europium, and the second group rare earth element is at least one selected from yttrium, terbium and dysprosium.
  • the separation apparatus comprises a composition supply part to be separated, a heat treatment part, an atmosphere control part, a gas treatment part, and a separation part
  • the composition to be separated supply unit is connected to the heat treatment unit, prepares a starting mixture by mixing the composition to be separated and a chlorinating agent, and supplies the starting mixture to the heat treatment unit
  • the heat treatment section is connected to the atmosphere control section, the gas processing section, and the separation section in addition to the composition-to-be-separated composition supply section, and the rare earth chloride of the first group of rare earth elements from the starting mixture.
  • the heat treatment is a heat treatment performed at a predetermined temperature in a non-oxidizing atmosphere controlled by the atmosphere control unit, and ammonia gas generated by the heat treatment is processed in the gas processing unit,
  • the gas processing unit includes a chemical reaction monitoring mechanism for monitoring a chemical reaction by the heat treatment,
  • the separation unit puts the chloride / acid chloride mixture into a solvent to selectively dissolve the rare earth chloride and extract it into a liquid phase, and remains with the liquid phase from which the rare earth chloride has been extracted.
  • the present invention can add the following improvements and changes to the rare earth element separation device (II).
  • the chemical reaction monitoring mechanism includes an ammonia gas sensor.
  • the chlorinating agent powder is ammonium chloride powder, and the predetermined temperature in the selective chlorination / acid oxidization heat treatment is a temperature within a temperature region in which the oxide of the rare earth element of the first group becomes a chloride. And the temperature in the temperature region where the oxide of the second group rare earth element becomes an acid chloride.
  • 1 mol of the rare earth oxide is mixed with more than 6 mol and less than 15 mol of the ammonium chloride.
  • the selective chlorination / acidification heat treatment includes an elementary reaction for generating a rare earth ammonium chloride salt of the first group rare earth element from the plurality of types of rare earth oxides and the ammonium chloride by a heat treatment under normal pressure; Subsequently, an elementary reaction of generating a rare earth chloride of the rare earth element of the first group from the rare earth ammonium chloride salt by a heat treatment under reduced pressure, Pressure control during the heat treatment is performed by the atmosphere control device.
  • the first group rare earth elements are light rare earth elements, and the second group rare earth elements are heavy rare earth elements.
  • the first group rare earth element is neodymium or europium, and the second group rare earth element is at least one selected from yttrium, terbium and dysprosium.
  • separate rare earth elements easily with a high separation rate (namely, low cost) from the composition in which multiple types of rare earth elements are mixed, and the separation apparatus for performing this method Can provide.
  • the rare earth element is yttrium, europium or terbium
  • the chlorination reaction (chemical reaction formula (1)) of the rare earth oxide the acidification reaction of the rare earth oxide (chemical reaction formula (2)), and the rare earth acid chloride
  • the present inventors aim to separate specific rare earth elements from a composition in which a plurality of types of rare earth elements are mixed at a high separation rate and easily, in particular, chemical reactions of rare earth elements (especially chloride reactions, The acidification reaction) was investigated in detail. As a result, the present inventors have found that the behavior of the chemical reaction differs depending on the type of rare earth element. And it discovered that a specific rare earth element could be isolate
  • FIG. 1 is a flowchart showing an example of steps of a method for separating rare earth elements according to the present invention. The outline of the separation method will be described with reference to FIG. First, a plurality of rare earth oxides and a chlorinating agent are mixed to prepare a starting mixture. Next, a selective chlorination / acidification heat treatment is performed to produce a chloride / acid chloride mixture containing a first group of rare earth element chlorides and a second group of rare earth element acid chlorides from the prepared starting mixture. Do. The present invention has the greatest feature in this selective chlorination / acidification heat treatment step.
  • the resulting chloride / acid chloride mixture is then charged into a solvent to selectively dissolve the rare earth chloride and extract into the liquid phase. Finally, the liquid phase from which the rare earth chloride is extracted and the solid phase of the remaining rare earth oxychloride are subjected to solid-liquid separation to recover the first group of rare earth elements and the second group of rare earth elements, respectively.
  • This step is a step of preparing a starting mixture by mixing a powder in which a plurality of kinds of rare earth oxides are mixed with a powder of a chlorinating agent.
  • a chlorinating agent it is preferable not to leave an excess element (cation) in the rare earth compound generated in the selective chlorination / acidification heat treatment step of the next step, and for example, ammonium chloride (NH 4 Cl) is preferable.
  • the mixing method is not particularly limited as long as the rare earth oxide and the chlorinating agent are mixed uniformly.
  • This step is a step of performing a heat treatment for generating a chloride / acid chloride mixture containing a first group rare earth element chloride and a second group rare earth element acid chloride from the prepared starting mixture.
  • the heat treatment atmosphere is preferably a non-oxidizing atmosphere (an atmosphere in which oxygen components are not substantially mixed, for example, in an inert gas (argon, nitrogen, etc.) stream or in a vacuum).
  • the heat treatment temperature is a temperature within a temperature region where the oxide of the first group rare earth element becomes a chloride, and a temperature within a temperature region where the oxide of the rare earth element of the second group becomes an acid chloride. Is preferred.
  • Rare earth oxide (RE 2 O 3) of rare earth chloride chloride reaction to produce (RECL 3) is, (RE what is believed to be a chemical reaction such as chemical reaction formula (1) below represents a rare earth element. Less The same).
  • the acidification reaction for producing rare earth acid chloride (REOCl) from rare earth oxide (RE 2 O 3 ) is considered to be a chemical reaction represented by the following chemical reaction formula (2).
  • the chlorination reaction that generates rare earth chloride (RECl 3 ) from rare earth acid chloride (REOCl) is considered to be a chemical reaction represented by the following chemical reaction formula (3).
  • FIG. 2 shows the case where the rare earth element is neodymium or dysprosium, the rare earth oxide chlorination reaction (chemical reaction formula (1)), the rare earth oxide acidification reaction (chemical reaction formula (2)), and the rare earth acidification. It is a graph which shows the relationship between the standard Gibbs energy change and temperature in the chlorination reaction (chemical reaction formula (3)) of a thing.
  • the standard Gibbs energy change decreases as the temperature increases. However, when the standard Gibbs energy change reaches a negative value, the chemical reaction can proceed continuously. Note that the standard Gibbs energy change can discuss thermodynamic stability / instability by negative / positive, but we can discuss the activation energy for starting a chemical reaction, and the chemical reaction rate. Not what you want.
  • Fig. 2 shows that in the rare earth oxide chlorination reaction (chemical reaction formula (1)), neodymium oxide (Nd 2 O 3 ) shows a negative value of standard Gibbs energy change at about 200 ° C or higher.
  • Dysprosium oxide (Dy 2 O 3 ) shows a negative standard Gibbs energy change at about 350 ° C. or higher.
  • neodymium oxide (Nd 2 O 3 ) is about 200 ° C or higher and dysprosium oxide (Dy 2 O 3 ) is about 350 ° C or higher.
  • the chlorination reaction of formula (1) can proceed.
  • neodymium oxide (Nd 2 O 3 ) shows a negative standard Gibbs energy change in the calculated total temperature range (0 to 600 ° C)
  • Dysprosium oxide (Dy 2 O 3 ) shows a negative standard Gibbs energy change at about 180 ° C or higher.
  • neodymium oxide (Nd 2 O 3 ) is 0 ° C or higher
  • dysprosium oxide (Dy 2 O 3 ) is about 180 ° C or higher
  • the acidification reaction can proceed.
  • neodymium oxychloride (NdOCl) shows a negative standard Gibbs energy change at about 330 ° C
  • dysprosium oxychloride (DyOCl) about 420 ° C.
  • the standard Gibbs energy change shows a negative value.
  • neodymium oxychloride (NdOCl) is about 330 ° C
  • dysprosium oxychloride (DyOCl) is about 420 ° C or higher, and the chlorination reaction of chemical reaction formula (3) proceeds. It becomes possible.
  • thermodynamically stable temperature varies greatly depending on the type of rare earth element and the type of chemical reaction. From this fact, it is possible to coexist the chlorination reaction and the acidification reaction by utilizing the difference in temperature that is thermodynamically stable.
  • FIG. 3 shows a case where a rare earth element is yttrium, europium, or terbium, and a rare earth oxide chlorination reaction (chemical reaction formula (1)), a rare earth oxide acidification reaction (chemical reaction formula (2)), It is a graph which shows the relationship between the standard Gibbs energy change and temperature in the chlorination reaction (chemical reaction formula (3)) of an acid chloride.
  • the standard Gibbs energy change decreases with increasing temperature, and the chemical reaction can proceed continuously when the standard Gibbs energy change reaches a negative value. become.
  • yttrium oxide (Y 2 O 3 ) is about 350 ° C. or higher
  • europium oxide (Eu 2 O 3 ) is Above about 250 ° C.
  • terbium oxide (Tb 2 O 3 ) shows a negative value of standard Gibbs energy change at about 330 ° C. or more. In other words, if the activation energy of the chemical reaction is exceeded, the chlorination reaction of the chemical reaction formula (1) can proceed at those temperatures or higher.
  • yttrium oxide (Y 2 O 3 ) is about 220 ° C or higher
  • europium oxide (Eu 2 O 3 ) is about 70 ° C or higher
  • terbium oxide (Tb 2 O 3 ) shows a negative value of the standard Gibbs energy change at about 200 ° C. or higher. In other words, if the activation energy of the chemical reaction is exceeded, the acidification reaction of the chemical reaction formula (2) can proceed at those temperatures or higher.
  • yttrium oxychloride (YOCl) is about 380 ° C or higher
  • europium oxychloride (EuOCl) is about 350 ° C or higher
  • terbium oxychloride (TbOCl) Shows a negative value of standard Gibbs energy change at about 370 ° C or higher. In other words, if the activation energy of the chemical reaction is exceeded, the chlorination reaction of the chemical reaction formula (3) can proceed at those temperatures or higher.
  • the temperature at which the chlorination reaction of chemical reaction formula (1) occurs in light rare earth elements (elements with atomic numbers smaller than gadolinium (Gd) in lanthanides) such as neodymium and europium is It is found that the temperature is about 100 ° C. lower than the temperature at which the chlorination reaction of the chemical reaction formula (1) in yttrium and heavy rare earth elements such as dysprosium and terbium (elements having an atomic number of gadolinium (Gd) or higher among lanthanoids) occurs. .
  • heavy rare earth elements and yttrium acid chlorides are stable in the temperature range from the temperature at which light rare earth oxides generate chloride to the time at which heavy rare earth elements and yttrium oxides generate chloride.
  • the temperature is within a temperature range in which the standard Gibbs energy change of the chlorination reaction of oxides of light rare earth elements (defined as first group rare earth elements) is negative, and heavy rare earth elements and yttrium (second group)
  • the rare earth oxide chlorination reaction and the acidification reaction can coexist by heat treatment at a temperature within the temperature range in which the standard Gibbs energy change of the chlorination reaction of the oxide of the .
  • the chlorination reaction of the chemical reaction formula (1) can be divided into the following two elementary reactions.
  • a rare earth ammonium chloride salt is produced by heat treatment in an inert gas stream at normal pressure.
  • An example of this reaction is chemical reaction formula (4) (see, for example, Meyer, et. Al., Mat. Res. Bull. 17 (1982) 1447-1455).
  • the second stage elementary reaction it is considered that ammonium chloride present in the rare earth ammonium chloride salt and unreacted ammonium chloride in the starting mixture are removed to produce rare earth chloride (RECl 3 ).
  • An example of this reaction is chemical reaction formula (5) (see, for example, Meyer, et. Al., Mat. Res. Bull. 17 (1982) 1447-1455).
  • the second stage elementary reaction is preferably performed in a reduced-pressure atmosphere (for example, a reduced-pressure atmosphere using a rotary pump or the like). This is because vaporization / decomposition of ammonium chloride tends to proceed in a reduced pressure atmosphere.
  • the solvent for example, pure water, lower alcohol, or a mixture thereof can be preferably used.
  • the lower alcohol it is particularly preferable to use methanol or ethanol. Since these solvents have a small adverse effect on the environment and the human body, they contribute to improvement in workability and simplification of work facilities (that is, cost reduction).
  • the heating temperature is preferably equal to or lower than the boiling point of the solvent.
  • This step is a step of separating the first group of rare earth elements and the second group of rare earth elements by performing a solid-liquid separation process on the solution obtained above.
  • a solid-liquid separation process For example, filtration can be utilized.
  • This step is a step of recovering the first group of rare earth elements and the second group of rare earth elements from the liquid phase and solid phase separated by solid-liquid separation.
  • the liquid phase containing the rare earth chloride can be recovered as a rare earth chloride powder, for example, by spraying in a heated atmosphere using a spray dryer.
  • a precipitant for example, ammonium carbonate ((NH 4 ) 2 CO 3 ), ammonium hydrogen carbonate (NH 4 HCO 3 ), sodium carbonate (Na 2 CO 3) ), Sodium bicarbonate (NaHCO 3 ), oxalic acid ((COOH) 2 ), sodium oxalate ((COONa) 2 ), sodium hydroxide (NaOH), etc.
  • the precipitate is filtered and dried, and then roasted at about 900 ° C. in the atmosphere, whereby the first group rare earth elements can be recovered as oxides.
  • a solid phase composed of a rare earth acid chloride can be recovered as a rare earth acid chloride powder by drying it. Moreover, after dissolving with an acid (dilute hydrochloric acid, dilute nitric acid, etc.) to produce a hydrate, and adjusting the pH of the hydrate, a precipitating agent (for example, (NH 4 ) 2 CO 3 , NH 4 HCO 3 , Na 2 CO 3 , NaHCO 3 , (COOH) 2 , (COONa) 2 , NaOH, etc.) can be added to form a hardly soluble rare earth precipitate. After filtering and drying the precipitate, the second group of rare earth elements can be recovered as oxides by roasting at about 900 ° C. in the atmosphere.
  • a precipitating agent for example, (NH 4 ) 2 CO 3 , NH 4 HCO 3 , Na 2 CO 3 , NaHCO 3 , (COOH) 2 , (COONa) 2 , NaOH, etc.
  • the separation rate between the first group of rare earth elements and the second group of rare earth elements can be further improved.
  • the separation and recovery method according to the present invention to materials containing multiple types of rare earth elements and waste products, the first group of rare earth elements and the first group can be easily combined with a high separation rate. Two groups of rare earth elements can be separated and recovered.
  • FIG. 4 is a schematic diagram showing a configuration example of a rare earth element separation device according to the present invention.
  • the rare earth element separation apparatus 100 includes a composition supply unit 10 to be separated, a heat treatment unit 20, an atmosphere control unit 30, a gas treatment unit 40, and a separation unit 50. .
  • the composition-to-be-separated supply unit 10 is connected to the heat treatment unit 20 and is a part that supplies the starting mixture obtained by performing the above-described mixing process to the heat treatment unit 20.
  • a composition container 11 to be separated that contains powder mixed with a plurality of types of rare earth oxides
  • an ammonium chloride container 12 that contains ammonium chloride powder
  • a raw material powder mixing device 13 and a starting mixture supply device 14 And have.
  • the heat treatment unit 20 is connected to the atmosphere control unit 30, the gas processing unit 40, and the separation unit 50 in addition to the composition supply unit 10 to be separated, and performs the above-described selective chlorination / acidification heat treatment step. It is. Specifically, it has a heater 21 and a core tube 22. Furthermore, a mechanism (for example, a core tube rotation mechanism (not shown)) for stirring the material to be heat-treated is provided so that the chemical reaction in the selective chlorination / acidification heat treatment step proceeds smoothly. preferable.
  • the atmosphere control unit 30 is a part that controls the atmosphere during the heat treatment in the selective chlorination / acidification heat treatment step.
  • the vacuum evacuation device 31 and the gas supply device 32 are provided, and a non-oxidizing atmosphere under normal pressure and a non-oxidizing atmosphere under reduced pressure are controlled in the selective chlorination / acidification heat treatment step.
  • the vacuum exhaust device 31 There is no particular limitation on the vacuum exhaust device 31, and for example, a rotary pump can be suitably used.
  • the gas treatment unit 40 is a part for detoxifying the ammonia gas and the hydrogen chloride gas generated by the selective chlorination / acidification heat treatment.
  • the gas processing unit 40 includes a chemical reaction monitoring mechanism (for example, an ammonia gas sensor 41) in addition to the ammonia processing device 42 and the hydrogen chloride processing device 43.
  • a chemical reaction monitoring mechanism for example, an ammonia gas sensor 41
  • the concentration of the gas generated by the chemical reaction by the ammonia gas sensor 41 and monitoring the average gas concentration per unit time (gas concentration change rate)
  • the concentration of the generated gas can be detected from a sharp drop.
  • the chemical reaction monitoring mechanism is not limited to the gas sensor, and may be a mechanism that detects a change in the weight of the object to be heat treated, for example.
  • the separation unit 50 is a part that performs the above-described selective extraction step and separation step. Specifically, it has a solvent container 51 that contains the solvent used in the selective extraction step, a dissolution tank 52 that performs selective extraction / solid-liquid separation processing, and an extraction liquid container 53 that contains the extracted liquid phase components. .
  • the extraction liquid stored in the extraction liquid container 53 and the solid phase component remaining in the dissolution tank 52 proceed to the recovery step described above, respectively.
  • rare earth elements were separated from a mixture of rare earth oxides.
  • starting materials for rare earth oxides neodymium oxide powder (Nd 2 O 3 , manufactured by High Purity Chemical Laboratory Co., Ltd., product number: NDO01PB) and dysprosium oxide powder (Dy 2 O 3 , High Purity Chemical Laboratory Co., Ltd.) Manufactured, product number: DYO01PB).
  • the chlorinating agent ammonium chloride powder (NH 4 Cl, manufactured by Wako Pure Chemical Industries, Ltd., product number: 017-02995) was used.
  • Table 1 shows the identification results of the crystalline phase of the powder obtained in the selective chlorination / acidification heat treatment step.
  • neodymium acid chloride NaCl
  • Table 1 shows the identification results of the crystalline phase of the powder obtained in the selective chlorination / acidification heat treatment step.
  • neodymium acid chloride NaCl
  • Table 1 shows the identification results of the crystalline phase of the powder obtained in the selective chlorination / acidification heat treatment step.
  • dysprosium compound unreacted dysprosium oxide (Dy 2 O 3 ) and dysprosium chloride (DyCl 3 ) were detected when the first-stage heat treatment temperatures were 200 ° C. and 250 ° C. In the case of 300 to 500 ° C., dysprosium chloride (DyOCl) and dysprosium chloride (DyCl 3 ) were detected. As chloride, some hydrates were also detected. From the above results, it was confirmed that NdCl 3 and DyOCl were formed at the same time when the first-stage heat treatment temperature was 300 to 500 ° C.
  • Table 2 shows the XRD peak intensity ratio (REOCl / RECl 3 ) between the detected rare earth acid chloride (REOCl) and the rare earth chloride (RECl 3 ).
  • the peak intensity ratio was calculated using the peak intensity values of the (102) plane of DyOCl, the (001) plane of DyCl 3 , the (102) plane of NdOCl, and the (201) plane of NdCl 3 .
  • Table 3 is a table showing the NH 4 Cl mixing amount with respect to the rare earth oxide, the heat treatment temperature of the selective chlorination / acidification heat treatment step, and the identification result of the crystal phase of the obtained powder.
  • Table 3 at a heat treatment temperature of 300 ° C., when the mixed amount of NH 4 Cl was 6 mol or less with respect to 1 mol of Nd 2 O 3 , NdOCl was detected and an NdCl 3 single phase was not obtained. However, when the NH 4 Cl mixing amount was 9 mol, it became an NdCl 3 single phase. In addition, when the amount of NH 4 Cl mixed was 15 mol with respect to 1 mol of Dy 2 O 3 , DyOCl was not detected but a single DyCl 3 phase was detected.
  • the amount of NH 4 Cl mixed with 1 mol of rare earth oxide is preferably more than 6 mol and less than 15 mol, more preferably 9 mol or more and 13.5 mol or less. It was confirmed.
  • Experiment 3 Separation experiment of neodymium and dysprosium First, a starting mixture was prepared in the same manner as in Experiment 1. Next, a selective chlorination / acidification heat treatment step was performed. The heat treatment conditions were as follows: heat treatment was held at 300 ° C. for 4 hours in an Ar gas flow and then held at 400 ° C. for 2 hours while being evacuated by a rotary pump. The obtained chloride / acid chloride mixed powder was subjected to a selective extraction step, and the solution was filtered and solid-liquid separated as a separation step.
  • the composition of the separated solid phase was analyzed by fluorescent X-ray analysis.
  • a measurement sample was press-molded using a molding binder (boric acid powder) and subjected to measurement.
  • An X-ray fluorescence analyzer (manufactured by Rigaku Corporation, model: ZSX Primus II) was used as the measuring device.
  • the measurement conditions were as follows: Rh-K ⁇ ray was used as X-ray, X-ray output was 3 kW, and analysis diameter was 20 mm.
  • the quantitative value obtained in this analysis was calculated by the fundamental parameter method (FP method). The results are shown in Table 4.
  • Dy separation rate (Dy separation) 100 x ⁇ [Dy] / ([Dy] + [Nd]) ⁇ ... Formula (1)
  • rare earth elements for example, yttrium, terbium, neodymium, europium, dysprosium, etc.
  • Elements can be regenerated as raw materials. As a result, it can contribute to effective utilization of resources and stable securing of rare earth materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

Provided is a method, whereby rare earth elements can be easily separated at a high separation ratio from a mixture containing multiple kinds of rare earth elements, and a separation device for conducting the method. The method for separating rare earth elements according to the present invention, whereby multiple kinds of rare earth elements are separated, comprises: a heat treatment step for selective chlorination/oxychlorination, said step being a step for producing a chloride/oxychloride mixture containing a rare earth chloride of a rare earth element of group 1 and a rare earth oxychloride of a rare earth element of group 2 from a starting mixture containing multiple kinds of rare earth oxides and ammonium chloride, for conducting a heat treatment at a preset temperature in a non-oxidative atmosphere; a selective extraction step for putting the chloride/oxychloride mixture into a solvent, selectively dissolving the rare earth chloride in the solvent and then extracting the same in a liquid phase; and a separation step for solid-liquid separating the liquid phase having been extracted from a remaining solid phase of the rare earth oxychloride and thus separating the rare earth element of group 1 from the rare earth element of group 2.

Description

希土類元素の分離方法および分離装置Rare earth element separation method and separation apparatus
 本発明は、希土類元素を分離する技術に関し、特に、複数種の希土類元素を含む組成物から希土類元素を分離する方法および該方法を実行するための分離装置に関するものである。 The present invention relates to a technique for separating rare earth elements, and more particularly, to a method for separating rare earth elements from a composition containing a plurality of types of rare earth elements and a separation apparatus for performing the method.
 希土類元素は、その特徴的な電子配置により特異な物理的性質を示し、機能向上の重要な元素として様々な材料や製品(例えば、水素吸蔵合金、二次電池、光学ガラス、磁石、蛍光体、研磨材など)で利用されている。材料・製品への高性能化の要求は止まることを知らず、希土類元素の需要は、今後ますます拡大するものと予想される。 Rare earth elements exhibit unique physical properties due to their characteristic electron arrangement, and various materials and products (for example, hydrogen storage alloys, secondary batteries, optical glasses, magnets, phosphors, Used in abrasives). Without knowing that the demand for higher performance of materials and products will not stop, demand for rare earth elements is expected to increase further in the future.
 希土類元素は、埋蔵量自体は豊富とされているが、化学的性質が互いによく似ているため単体として分離・精製することが難しく、それ故、希な元素と言われている。また、産出地の地理的な偏在に伴って、供給量や価格の変動が大きいという問題(資源リスク)がある。 Rare earth elements have abundant reserves themselves, but their chemical properties are very similar to each other, making them difficult to separate and purify as a simple substance, and are therefore said to be rare elements. In addition, there is a problem (resource risk) that the supply amount and price fluctuate greatly due to the geographical uneven distribution of production areas.
 資源リスクヘッジとして、材料・製品の性能を維持しつつ、希土類元素の使用量を削減する技術や代替材料の開発が鋭意検討されている。しかしながら、それら技術の実用化にはまだまだ時間が掛かる様子である。そのため、廃材(使用済材料、使用済製品、不良品など)から希土類元素を分離・回収してリサイクルすることは重要な技術である。 As a resource risk hedge, the development of technologies and alternative materials that reduce the use of rare earth elements while maintaining the performance of materials and products has been intensively studied. However, it seems that it will take time to put these technologies into practical use. Therefore, it is an important technique to separate and collect rare earth elements from waste materials (used materials, used products, defective products, etc.), and to recycle them.
 例えば、特許文献1には、複数の希土類元素又はその化合物を含む混合物中の希土類元素をハロゲン化することにより、2種以上の希土類イオンの平均価数が2以上3以下の2価3価混合希土類ハロゲン化物であって、水溶液又は有機溶媒に溶解した状態でないものを含む混合物を製造し、その後、2価希土類ハロゲン化物と3価希土類ハロゲン化物の性質の違いを利用して、前記複数の希土類元素を、少なくとも2つの群に分離することを特徴とする希土類元素の分離方法が提案されている。特許文献1によると、希土類元素間の分離係数を飛躍的に増大でき、従来の方法と比較して相互分離を効率よく行うことができるとされている。さらに、リン酸塩などの希土類精鉱から分離する場合、従来の湿式法では必要不可欠である精鉱の酸溶解、ろ過、不純物の沈殿除去、濃縮、中和、乾燥といった工程を省略でき、分離コストを大幅に低減できるとされている。 For example, Patent Document 1 discloses a divalent trivalent mixture in which the average valence of two or more rare earth ions is 2 or more and 3 or less by halogenating a rare earth element in a mixture containing a plurality of rare earth elements or compounds thereof. Producing a mixture containing a rare earth halide which is not dissolved in an aqueous solution or an organic solvent, and then utilizing the difference in properties between the divalent rare earth halide and the trivalent rare earth halide, There has been proposed a rare earth element separation method characterized by separating elements into at least two groups. According to Patent Document 1, it is said that the separation factor between rare earth elements can be dramatically increased, and mutual separation can be performed more efficiently than in the conventional method. Furthermore, when separating from rare earth concentrates such as phosphates, steps such as acid dissolution, filtration, precipitation removal of impurities, concentration, neutralization, and drying, which are essential for conventional wet methods, can be omitted. It is said that the cost can be greatly reduced.
 また、特許文献2には、希土類元素と鉄族元素を含んだ物質から希土類元素を回収する方法であって、気体もしくは溶融状態の鉄塩化物に、希土類磁石のスクラップもしくはスラッジ等、希土類元素と鉄族元素を含んだ物質を接触させ、前記物質中の鉄族元素の金属状態を保ったまま前記物質中の希土類元素の塩化反応を進行させて、前記物質中から希土類元素を塩化物として選択的に回収する工程を有することを特徴とする希土類元素の回収方法が提案されている。特許文献2によると、希土類磁石のスクラップもしくはスラッジ等、希土類元素と鉄族元素を含む物質、特に廃棄物から、高純度の希土類成分のみを抽出・分離することが可能となり、より低コストの希土類磁石リサイクル法を確立できるとされている。 Patent Document 2 discloses a method for recovering a rare earth element from a material containing a rare earth element and an iron group element, and a rare earth element such as a rare earth magnet scrap or sludge is added to a gaseous or molten iron chloride. Select a rare earth element as a chloride from the substance by contacting a substance containing an iron group element and proceeding the chlorination reaction of the rare earth element in the substance while maintaining the metallic state of the iron group element in the substance. There has been proposed a method for recovering a rare earth element characterized by having a step of recovering automatically. According to Patent Document 2, it is possible to extract and separate only high-purity rare earth components from materials containing rare earth elements and iron group elements, such as rare earth magnet scraps or sludges, especially wastes, and thus lower cost rare earth elements. It is said that the magnet recycling law can be established.
特開2001‐303149号公報JP 2001-303149 A 特開2003‐73754号公報Japanese Patent Laid-Open No. 2003-73754
 前述したように、希土類元素は今後も需要の拡大が予想されている。一方で、近年、地球環境保護や持続可能資源利用の意識の高まりにより、希土類元素を分離・回収・リサイクルする技術が以前にも増して重要になってきている。また、希土類元素は化学的性質が類似しているため、複数種の希土類元素が混在している中から、特定の希土類元素を分離する技術が特に重要である。 As mentioned above, demand for rare earth elements is expected to continue to expand. On the other hand, in recent years, technology for separating, recovering, and recycling rare earth elements has become more important than ever due to the growing awareness of global environmental protection and the use of sustainable resources. In addition, since rare earth elements have similar chemical properties, a technique for separating specific rare earth elements from a mixture of a plurality of types of rare earth elements is particularly important.
 従来の分離回収技術では、複数種の希土類元素が混在している組成物から特定の希土類元素を分離する比率(分離率)が必ずしも大きくなかったことから、精製度合を高めるために分離プロセスを多数回繰り返す必要があり、コストが増大するという問題があった。そのため、より高い分離率が得られかつ簡便に(すなわち低コストで)希土類元素の分離が可能な方法が、強く求められていた。 In the conventional separation and recovery technology, since the ratio (separation rate) for separating a specific rare earth element from a composition containing a plurality of types of rare earth elements is not necessarily large, a large number of separation processes are required to increase the degree of purification. There was a problem that the cost increased because it was necessary to repeat the operation. For this reason, there has been a strong demand for a method capable of obtaining a higher separation rate and capable of separating rare earth elements simply (ie, at low cost).
 したがって、本発明の目的は、複数種の希土類元素が混在している組成物から高い分離率でかつ簡便に希土類元素の分離が可能な方法および該方法を実行するための分離装置を提供することにある。 Accordingly, an object of the present invention is to provide a method capable of easily separating a rare earth element from a composition containing a plurality of types of rare earth elements at a high separation rate, and a separation apparatus for executing the method. It is in.
 (I)本発明の一態様は、複数種の希土類元素を分離する方法であって、
複数種の希土類酸化物と塩化剤とを含む出発混合物から、第1群の希土類元素の希土類塩化物と第2群の希土類元素の希土類酸塩化物とを含む塩化物/酸塩化物混合物を生成させる熱処理工程であり、非酸化性雰囲気中で所定の温度の熱処理を施す選択的塩化/酸塩化熱処理工程と、
前記塩化物/酸塩化物混合物を溶媒に投入することにより、前記希土類塩化物を選択的に前記溶媒に溶解させて液相中に抽出しかつ前記希土類酸塩化物を固相として残存させる選択的抽出工程と、
前記希土類塩化物が抽出された液相と残存した前記希土類酸塩化物の固相とを固液分離することにより、前記第1群の希土類元素と前記第2群の希土類元素とを分離する分離工程とを有することを特徴とする希土類元素の分離方法を提供する。
(I) One aspect of the present invention is a method for separating a plurality of rare earth elements,
Producing a chloride / acid chloride mixture comprising a rare earth chloride of a first group of rare earth elements and a rare earth acid chloride of a second group of rare earth elements from a starting mixture comprising a plurality of rare earth oxides and a chlorinating agent. A selective chlorination / acidification heat treatment step of performing a heat treatment at a predetermined temperature in a non-oxidizing atmosphere;
By selectively introducing the chloride / acid chloride mixture into a solvent, the rare earth chloride is selectively dissolved in the solvent and extracted into a liquid phase, and the rare earth acid chloride is left as a solid phase. An extraction process;
Separation for separating the first group of rare earth elements and the second group of rare earth elements by solid-liquid separation of the liquid phase from which the rare earth chloride is extracted and the solid phase of the remaining rare earth acid chloride. And providing a method for separating rare earth elements.
 本発明は、上記の希土類元素の分離方法(I)において、以下のような改良や変更を加えることができる。
(i)前記塩化剤は塩化アンモニウムであり、前記選択的塩化/酸塩化熱処理工程での前記所定の温度は、前記第1群の希土類元素の酸化物が塩化物となる温度領域内の温度であり、かつ前記第2群の希土類元素の酸化物が酸塩化物となる温度領域内の温度である。
(ii)前記出発混合物は、1 molの前記希土類酸化物に対して、6 mol超15 mol未満の前記塩化アンモニウムが混合されている。
(iii)前記選択的塩化/酸塩化熱処理工程は、常圧下の熱処理により前記複数種の希土類酸化物と前記塩化アンモニウムとから前記第1群の希土類元素の希土類塩化アンモニウム塩を生成させる素工程と、
それに引き続いて、減圧下の熱処理により前記希土類塩化アンモニウム塩から前記第1群の希土類元素の希土類塩化物を生成させる素工程を含む。
(iv)前記第1群の希土類元素が軽希土類元素であり、前記第2群の希土類元素が重希土類元素である。
(v)前記第1群の希土類元素がネオジムまたはユーロピウムであり、前記第2群の希土類元素がイットリウム、テルビウムおよびジスプロシウムから選択される少なくとも1種である。
The present invention can add the following improvements or changes to the above-described rare earth element separation method (I).
(I) The chlorinating agent is ammonium chloride, and the predetermined temperature in the selective chlorination / acidification heat treatment step is a temperature within a temperature range in which the oxide of the rare earth element of the first group becomes a chloride. And a temperature within a temperature range in which the oxide of the second group rare earth element becomes an acid chloride.
(Ii) In the starting mixture, 1 mol of the rare earth oxide is mixed with more than 6 mol and less than 15 mol of the ammonium chloride.
(Iii) The selective chlorination / acidification heat treatment step includes a step of generating a rare earth ammonium chloride salt of the first group of rare earth elements from the plurality of rare earth oxides and the ammonium chloride by a heat treatment under normal pressure. ,
Subsequently, an elementary step of generating a rare earth chloride of the first group rare earth element from the rare earth ammonium chloride salt by a heat treatment under reduced pressure is included.
(Iv) The first group rare earth elements are light rare earth elements, and the second group rare earth elements are heavy rare earth elements.
(V) The first group rare earth element is neodymium or europium, and the second group rare earth element is at least one selected from yttrium, terbium and dysprosium.
 (II)本発明の他の一態様は、複数種の希土類元素を分離する分離装置であって、
前記分離装置は、被分離組成物供給部と熱処理部と雰囲気制御部とガス処理部と分離部とを具備し、
前記被分離組成物供給部は、前記熱処理部と接続されており、被分離組成物と塩化剤とを混合して出発混合物を用意し、当該出発混合物を前記熱処理部に供給する部分であり、
前記熱処理部は、前記被分離組成物供給部の他に前記雰囲気制御部と前記ガス処理部と前記分離部とにそれぞれ接続されており、前記出発混合物から第1群の希土類元素の希土類塩化物と第2群の希土類元素の希土類酸塩化物とを含む塩化物/酸塩化物混合物を生成させる選択的塩化/酸塩化熱処理を行う部分であり、
前記熱処理は、前記雰囲気制御部によって制御された非酸化性雰囲気中で所定の温度で行われる熱処理であり、当該熱処理により発生するアンモニアガスは、前記ガス処理部において処理され、
前記ガス処理部は、前記熱処理による化学反応をモニタするための化学反応モニタ機構を具備し、
前記分離部は、前記塩化物/酸塩化物混合物を溶媒に投入して前記希土類塩化物を選択的に溶解させて液相中に抽出し、前記希土類塩化物が抽出された液相と残存した前記希土類酸塩化物の固相とを固液分離することにより、前記第1群の希土類元素と前記第2群の希土類元素とを分離する部分であることを特徴とする希土類元素の分離装置を提供する。
(II) Another aspect of the present invention is a separation apparatus for separating a plurality of types of rare earth elements,
The separation apparatus comprises a composition supply part to be separated, a heat treatment part, an atmosphere control part, a gas treatment part, and a separation part,
The composition to be separated supply unit is connected to the heat treatment unit, prepares a starting mixture by mixing the composition to be separated and a chlorinating agent, and supplies the starting mixture to the heat treatment unit,
The heat treatment section is connected to the atmosphere control section, the gas processing section, and the separation section in addition to the composition-to-be-separated composition supply section, and the rare earth chloride of the first group of rare earth elements from the starting mixture. And a selective chlorination / acidification heat treatment to produce a chloride / acid chloride mixture comprising a rare earth oxychloride of a second group of rare earth elements,
The heat treatment is a heat treatment performed at a predetermined temperature in a non-oxidizing atmosphere controlled by the atmosphere control unit, and ammonia gas generated by the heat treatment is processed in the gas processing unit,
The gas processing unit includes a chemical reaction monitoring mechanism for monitoring a chemical reaction by the heat treatment,
The separation unit puts the chloride / acid chloride mixture into a solvent to selectively dissolve the rare earth chloride and extract it into a liquid phase, and remains with the liquid phase from which the rare earth chloride has been extracted. An apparatus for separating a rare earth element, wherein the rare earth element is a portion that separates the rare earth element of the first group and the rare earth element of the second group by solid-liquid separation of the solid phase of the rare earth acid chloride. provide.
 本発明は、上記の希土類元素の分離装置(II)において、以下のような改良や変更を加えることができる。
(vi)前記化学反応モニタ機構は、アンモニアガスセンサを含む。
(vii)前記塩化剤粉末は塩化アンモニウム粉末であり、前記選択的塩化/酸塩化熱処理での前記所定の温度は、前記第1群の希土類元素の酸化物が塩化物となる温度領域内の温度であり、かつ前記第2群の希土類元素の酸化物が酸塩化物となる温度領域内の温度である。
(viii)前記出発混合物は、1 molの前記希土類酸化物に対して、6 mol超15 mol未満の前記塩化アンモニウムが混合されている。
(ix)前記選択的塩化/酸塩化熱処理は、常圧下の熱処理により前記複数種の希土類酸化物と前記塩化アンモニウムとから前記第1群の希土類元素の希土類塩化アンモニウム塩を生成させる素反応と、
それに引き続いて、減圧下の熱処理により前記希土類塩化アンモニウム塩から前記第1群の希土類元素の希土類塩化物を生成させる素反応を含み、
当該熱処理中の圧力制御が前記雰囲気制御装置によって行われる。
(x)前記第1群の希土類元素が軽希土類元素であり、前記第2群の希土類元素が重希土類元素である。
(xi)前記第1群の希土類元素がネオジムまたはユーロピウムであり、前記第2群の希土類元素がイットリウム、テルビウムおよびジスプロシウムから選択される少なくとも1種である。
The present invention can add the following improvements and changes to the rare earth element separation device (II).
(Vi) The chemical reaction monitoring mechanism includes an ammonia gas sensor.
(Vii) The chlorinating agent powder is ammonium chloride powder, and the predetermined temperature in the selective chlorination / acid oxidization heat treatment is a temperature within a temperature region in which the oxide of the rare earth element of the first group becomes a chloride. And the temperature in the temperature region where the oxide of the second group rare earth element becomes an acid chloride.
(Viii) In the starting mixture, 1 mol of the rare earth oxide is mixed with more than 6 mol and less than 15 mol of the ammonium chloride.
(Ix) the selective chlorination / acidification heat treatment includes an elementary reaction for generating a rare earth ammonium chloride salt of the first group rare earth element from the plurality of types of rare earth oxides and the ammonium chloride by a heat treatment under normal pressure;
Subsequently, an elementary reaction of generating a rare earth chloride of the rare earth element of the first group from the rare earth ammonium chloride salt by a heat treatment under reduced pressure,
Pressure control during the heat treatment is performed by the atmosphere control device.
(X) The first group rare earth elements are light rare earth elements, and the second group rare earth elements are heavy rare earth elements.
(Xi) The first group rare earth element is neodymium or europium, and the second group rare earth element is at least one selected from yttrium, terbium and dysprosium.
 本発明によれば、複数種の希土類元素が混在している組成物から高い分離率でかつ簡便に(すなわち低コストで)希土類元素の分離が可能な方法および該方法を実行するための分離装置を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the method which can isolate | separate rare earth elements easily with a high separation rate (namely, low cost) from the composition in which multiple types of rare earth elements are mixed, and the separation apparatus for performing this method Can provide.
本発明に係る希土類元素の分離方法の工程例を示すフロー図である。It is a flowchart which shows the process example of the separation method of the rare earth elements based on this invention. 希土類元素がネオジムまたはジスプロシウムの場合において、希土類酸化物の塩化反応(化学反応式(1))と、希土類酸化物の酸塩化反応(化学反応式(2))と、希土類酸塩化物の塩化反応(化学反応式(3))とにおける標準ギブスエネルギー変化と温度との関係を示すグラフである。When the rare earth element is neodymium or dysprosium, the rare earth oxide chlorination reaction (chemical reaction formula (1)), the rare earth oxide acidification reaction (chemical reaction formula (2)), and the rare earth acid chloride chlorination reaction It is a graph which shows the relationship between the standard Gibbs energy change in (chemical reaction formula (3)), and temperature. 希土類元素がイットリウム、ユーロピウムまたはテルビウムの場合において、希土類酸化物の塩化反応(化学反応式(1))と、希土類酸化物の酸塩化反応(化学反応式(2))と、希土類酸塩化物の塩化反応(化学反応式(3))とにおける標準ギブスエネルギー変化と温度との関係を示すグラフである。When the rare earth element is yttrium, europium or terbium, the chlorination reaction (chemical reaction formula (1)) of the rare earth oxide, the acidification reaction of the rare earth oxide (chemical reaction formula (2)), and the rare earth acid chloride It is a graph which shows the relationship between the standard Gibbs energy change and temperature in a chlorination reaction (chemical reaction formula (3)). 本発明に係る希土類元素の分離装置の構成例を示す模式図である。It is a schematic diagram which shows the structural example of the separation apparatus of the rare earth elements based on this invention.
 本発明者等は、複数種の希土類元素が混在している組成物から、特定の希土類元素を高い分離率でかつ簡便に分離することを目指して、希土類元素の化学反応(特に、塩化反応、酸塩化反応)を詳細に調査した。その結果、本発明者等は、希土類元素の種類によってそれらの化学反応の挙動が異なることを見出した。そして、その化学反応の挙動の差異によって、特定の希土類元素を高い分離率で分離できることを見出した。本発明は、これらの知見に基づいて完成されたものである。 The present inventors aim to separate specific rare earth elements from a composition in which a plurality of types of rare earth elements are mixed at a high separation rate and easily, in particular, chemical reactions of rare earth elements (especially chloride reactions, The acidification reaction) was investigated in detail. As a result, the present inventors have found that the behavior of the chemical reaction differs depending on the type of rare earth element. And it discovered that a specific rare earth element could be isolate | separated with a high separation rate by the difference in the behavior of the chemical reaction. The present invention has been completed based on these findings.
 以下、本発明の実施形態について、図面を参照しながら詳細に説明する。なお、本発明はここで取り上げた実施形態に限定されることはなく、発明の技術的思想を逸脱しない範囲で適宜組み合わせや改良が可能である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. It should be noted that the present invention is not limited to the embodiments taken up here, and can be appropriately combined and improved without departing from the technical idea of the invention.
 [希土類元素の分離回収方法]
 図1は、本発明に係る希土類元素の分離方法の工程例を示すフロー図である。図1を参照しながら分離方法の概略を説明する。まず、複数種の希土類酸化物と塩化剤とを混合して出発混合物を用意する。次に、用意した出発混合物から、第1群の希土類元素の塩化物と第2群の希土類元素の酸塩化物とを含む塩化物/酸塩化物混合物を生成させる選択的塩化/酸塩化熱処理を行う。本発明は、この選択的塩化/酸塩化熱処理工程に最大の特徴がある。次に、得られた塩化物/酸塩化物混合物を溶媒に投入して希土類塩化物を選択的に溶解させて液相中に抽出する。最後に、希土類塩化物が抽出された液相と残存した希土類酸塩化物の固相とを固液分離し、第1群の希土類元素と第2群の希土類元素とをそれぞれ回収する。
[Separation and recovery of rare earth elements]
FIG. 1 is a flowchart showing an example of steps of a method for separating rare earth elements according to the present invention. The outline of the separation method will be described with reference to FIG. First, a plurality of rare earth oxides and a chlorinating agent are mixed to prepare a starting mixture. Next, a selective chlorination / acidification heat treatment is performed to produce a chloride / acid chloride mixture containing a first group of rare earth element chlorides and a second group of rare earth element acid chlorides from the prepared starting mixture. Do. The present invention has the greatest feature in this selective chlorination / acidification heat treatment step. The resulting chloride / acid chloride mixture is then charged into a solvent to selectively dissolve the rare earth chloride and extract into the liquid phase. Finally, the liquid phase from which the rare earth chloride is extracted and the solid phase of the remaining rare earth oxychloride are subjected to solid-liquid separation to recover the first group of rare earth elements and the second group of rare earth elements, respectively.
 以下、各工程を詳細に説明する。 Hereinafter, each process will be described in detail.
 (混合工程)
 本工程は、複数種の希土類酸化物が混在した粉末と塩化剤の粉末とを混合して出発混合物を用意する工程である。用いる塩化剤としては、次工程の選択的塩化/酸塩化熱処理工程において生成する希土類化合物中に余分な元素(カチオン)を残存させないことが好ましく、例えば、塩化アンモニウム(NH4Cl)が好ましい。また、希土類酸化物と塩化剤とが均等に混合されるならば、混合方法に特段の限定はない。
(Mixing process)
This step is a step of preparing a starting mixture by mixing a powder in which a plurality of kinds of rare earth oxides are mixed with a powder of a chlorinating agent. As the chlorinating agent to be used, it is preferable not to leave an excess element (cation) in the rare earth compound generated in the selective chlorination / acidification heat treatment step of the next step, and for example, ammonium chloride (NH 4 Cl) is preferable. In addition, the mixing method is not particularly limited as long as the rare earth oxide and the chlorinating agent are mixed uniformly.
 なお、次工程の選択的塩化/酸塩化熱処理工程において、希土類酸化物の塩化反応/酸塩化反応を促進させかつ確実に完了させるため、1 molの希土類酸化物に対して、6 mol超15 mol未満の塩化アンモニウムを混合させることが好ましい。1 molの希土類酸化物に対して、9 mol以上13.5 mol以下の塩化アンモニウムを混合させることが、より好ましい。 In order to promote and reliably complete the chlorination / acidification reaction of rare earth oxides in the selective chlorination / acidification heat treatment process of the next step, over 6 mol to 15 mol per mol of rare earth oxide. It is preferable to mix less than ammonium chloride. It is more preferable to mix 9 to 13.5 mol of ammonium chloride with 1 to mol of rare earth oxide.
 (選択的塩化/酸塩化熱処理工程)
 本工程は、用意した出発混合物から、第1群の希土類元素の塩化物と第2群の希土類元素の酸塩化物とを含む塩化物/酸塩化物混合物を生成させる熱処理を行う工程である。熱処理雰囲気としては、非酸化性雰囲気(酸素成分が実質的に混在しない雰囲気、例えば、不活性ガス(アルゴン、窒素など)気流中や真空中)が好ましい。熱処理温度としては、第1群の希土類元素の酸化物が塩化物となる温度領域内の温度であり、かつ、前記第2群の希土類元素の酸化物が酸塩化物となる温度領域内の温度が好ましい。
(Selective chlorination / acid heat treatment process)
This step is a step of performing a heat treatment for generating a chloride / acid chloride mixture containing a first group rare earth element chloride and a second group rare earth element acid chloride from the prepared starting mixture. The heat treatment atmosphere is preferably a non-oxidizing atmosphere (an atmosphere in which oxygen components are not substantially mixed, for example, in an inert gas (argon, nitrogen, etc.) stream or in a vacuum). The heat treatment temperature is a temperature within a temperature region where the oxide of the first group rare earth element becomes a chloride, and a temperature within a temperature region where the oxide of the rare earth element of the second group becomes an acid chloride. Is preferred.
 ここで、選択的塩化/酸塩化熱処理工程の熱処理温度について考察する。希土類酸化物(RE2O3)から希土類塩化物(RECl3)を生成する塩化反応は、下記の化学反応式(1)のような化学反応になると考えられる(REは希土類元素を表す。以下、同様)。
RE2O3 + 6NH4Cl → 2RECl3 + 6NH3 + 3H2O …化学反応式(1)。
Here, the heat treatment temperature in the selective chlorination / acidification heat treatment step will be considered. Rare earth oxide (RE 2 O 3) of rare earth chloride chloride reaction to produce (RECL 3) is, (RE what is believed to be a chemical reaction such as chemical reaction formula (1) below represents a rare earth element. Less The same).
RE 2 O 3 + 6NH 4 Cl → 2RECl 3 + 6NH 3 + 3H 2 O ... chemical formula (1).
 希土類酸化物(RE2O3)から希土類酸塩化物(REOCl)を生成する酸塩化反応は、下記の化学反応式(2)のような化学反応になると考えられる。
RE2O3 + 2NH4Cl → 2REOCl + 2NH3 + H2O …化学反応式(2)。
The acidification reaction for producing rare earth acid chloride (REOCl) from rare earth oxide (RE 2 O 3 ) is considered to be a chemical reaction represented by the following chemical reaction formula (2).
RE 2 O 3 + 2NH 4 Cl → 2REOCl + 2NH 3 + H 2 O ... chemical formula (2).
 また、希土類酸塩化物(REOCl)から希土類塩化物(RECl3)を生成する塩化反応は、下記の化学反応式(3)のような化学反応になると考えられる。
REOCl + 2NH4Cl → RECl3 + 2NH3 + H2O …化学反応式(3)。
In addition, the chlorination reaction that generates rare earth chloride (RECl 3 ) from rare earth acid chloride (REOCl) is considered to be a chemical reaction represented by the following chemical reaction formula (3).
REOCl + 2NH 4 Cl → RECl 3 + 2NH 3 + H 2 O ... chemical formula (3).
 希土類化合物を生成する熱処理温度に関しては、化学反応における標準ギブスエネルギー変化と温度との関係が参考になる。図2は、希土類元素がネオジムまたはジスプロシウムの場合において、希土類酸化物の塩化反応(化学反応式(1))と、希土類酸化物の酸塩化反応(化学反応式(2))と、希土類酸塩化物の塩化反応(化学反応式(3))とにおける標準ギブスエネルギー変化と温度との関係を示すグラフである。図2に示したように、温度の上昇と共に標準ギブスエネルギー変化が減少するが、標準ギブスエネルギー変化が負の値を示す温度になると当該化学反応が継続的に進行可能になる。なお、標準ギブスエネルギー変化は、負/正によって熱力学的な安定/不安定を議論することができるが、化学反応が開始するための活性化エネルギーを議論したり、化学反応速度を議論したりするものではない。 Regarding the heat treatment temperature for producing rare earth compounds, the relationship between the standard Gibbs energy change in the chemical reaction and the temperature is helpful. FIG. 2 shows the case where the rare earth element is neodymium or dysprosium, the rare earth oxide chlorination reaction (chemical reaction formula (1)), the rare earth oxide acidification reaction (chemical reaction formula (2)), and the rare earth acidification. It is a graph which shows the relationship between the standard Gibbs energy change and temperature in the chlorination reaction (chemical reaction formula (3)) of a thing. As shown in FIG. 2, the standard Gibbs energy change decreases as the temperature increases. However, when the standard Gibbs energy change reaches a negative value, the chemical reaction can proceed continuously. Note that the standard Gibbs energy change can discuss thermodynamic stability / instability by negative / positive, but we can discuss the activation energy for starting a chemical reaction, and the chemical reaction rate. Not what you want.
 また、各化学反応において、反応生成物として希土類化合物の他にアンモニアガス(NH3)と水蒸気(H2O)とが生成するが、アルゴンや窒素の気流中または真空中(減圧雰囲気中)で熱処理を行うことにより、生成ガス成分を速やかに系外に排出することができる。その結果、反応生成ガスによって塩化/酸塩化反応が阻害されることなく、該反応を進行させることができる。 In addition, in each chemical reaction, ammonia gas (NH 3 ) and water vapor (H 2 O) are generated as reaction products in addition to rare earth compounds, but in an argon or nitrogen stream or in a vacuum (in a reduced pressure atmosphere) By performing the heat treatment, the product gas component can be quickly discharged out of the system. As a result, the reaction can proceed without inhibiting the chlorination / acidification reaction by the reaction product gas.
 図2をより具体的に見ると、希土類酸化物の塩化反応(化学反応式(1))において、酸化ネオジム(Nd2O3)は約200℃以上で標準ギブスエネルギー変化が負の値を示し、酸化ジスプロシウム(Dy2O3)は約350℃以上で標準ギブスエネルギー変化が負の値を示す。言い換えると、化学反応が開始するための活性化エネルギーを超えられれば、酸化ネオジム(Nd2O3)は約200℃以上で、酸化ジスプロシウム(Dy2O3)は約350℃以上で、化学反応式(1)の塩化反応が進行可能になる。 More specifically, Fig. 2 shows that in the rare earth oxide chlorination reaction (chemical reaction formula (1)), neodymium oxide (Nd 2 O 3 ) shows a negative value of standard Gibbs energy change at about 200 ° C or higher. Dysprosium oxide (Dy 2 O 3 ) shows a negative standard Gibbs energy change at about 350 ° C. or higher. In other words, if the activation energy for starting the chemical reaction can be exceeded, neodymium oxide (Nd 2 O 3 ) is about 200 ° C or higher and dysprosium oxide (Dy 2 O 3 ) is about 350 ° C or higher. The chlorination reaction of formula (1) can proceed.
 希土類酸化物の酸塩化反応(化学反応式(2))においては、酸化ネオジム(Nd2O3)は計算した全温度領域(0~600℃)で標準ギブスエネルギー変化が負の値を示し、酸化ジスプロシウム(Dy2O3)は約180℃以上で標準ギブスエネルギー変化が負の値を示す。言い換えると、化学反応の活性化エネルギーを超えられれば、酸化ネオジム(Nd2O3)は0℃以上で、酸化ジスプロシウム(Dy2O3)は約180℃以上で、化学反応式(2)の酸塩化反応が進行可能になる。 In the acidification reaction of rare earth oxides (chemical reaction formula (2)), neodymium oxide (Nd 2 O 3 ) shows a negative standard Gibbs energy change in the calculated total temperature range (0 to 600 ° C), Dysprosium oxide (Dy 2 O 3 ) shows a negative standard Gibbs energy change at about 180 ° C or higher. In other words, if the activation energy of the chemical reaction is exceeded, neodymium oxide (Nd 2 O 3 ) is 0 ° C or higher, dysprosium oxide (Dy 2 O 3 ) is about 180 ° C or higher, and the chemical reaction formula (2) The acidification reaction can proceed.
 希土類酸塩化物の塩化反応(化学反応式(3))においては、酸塩化ネオジム(NdOCl)は約330℃で標準ギブスエネルギー変化が負の値を示し、酸塩化ジスプロシウム(DyOCl)は約420℃以上で標準ギブスエネルギー変化が負の値を示す。言い換えると、化学反応の活性化エネルギーを超えられれば、酸塩化ネオジム(NdOCl)は約330℃で、酸塩化ジスプロシウム(DyOCl)は約420℃以上で、化学反応式(3)の塩化反応が進行可能になる。 In the rare earth oxychloride chloride reaction (chemical reaction formula (3)), neodymium oxychloride (NdOCl) shows a negative standard Gibbs energy change at about 330 ° C, and dysprosium oxychloride (DyOCl) about 420 ° C. The standard Gibbs energy change shows a negative value. In other words, if the activation energy of the chemical reaction can be exceeded, neodymium oxychloride (NdOCl) is about 330 ° C, dysprosium oxychloride (DyOCl) is about 420 ° C or higher, and the chlorination reaction of chemical reaction formula (3) proceeds. It becomes possible.
 図2の結果から、希土類元素の種類や化学反応の種類によって、熱力学的に安定となる温度が大きく異なっていることが解る。このことから、熱力学的に安定となる温度の差異を利用することによって、塩化反応と酸塩化反応とを共存させることが可能となる。 From the results in FIG. 2, it can be seen that the thermodynamically stable temperature varies greatly depending on the type of rare earth element and the type of chemical reaction. From this fact, it is possible to coexist the chlorination reaction and the acidification reaction by utilizing the difference in temperature that is thermodynamically stable.
 例えば、酸化ネオジム(Nd2O3)と酸化ジスプロシウム(Dy2O3)との混合物から塩化物/酸塩化物混合物を生成させようとした場合、塩化ネオジム(NdCl3)を生成させるためには、少なくとも200℃以上の熱処理温度が必要と考えられる。一方、塩化ジスプロシウム(DyCl3)の生成を抑制し酸塩化ジスプロシウム(DyOCl)を安定に保つためには、420℃未満の熱処理温度が好ましいと考えられる。 For example, when trying to produce a chloride / acid chloride mixture from a mixture of neodymium oxide (Nd 2 O 3 ) and dysprosium oxide (Dy 2 O 3 ), to produce neodymium chloride (NdCl 3 ) It is considered that a heat treatment temperature of at least 200 ° C. is necessary. On the other hand, in order to suppress the formation of dysprosium chloride (DyCl 3 ) and keep dysprosium oxychloride (DyOCl) stable, it is considered that a heat treatment temperature of less than 420 ° C. is preferable.
 次に、他の希土類元素について説明する。 Next, other rare earth elements will be described.
 図3は、希土類元素がイットリウム、ユーロピウムまたはテルビウムの場合において、希土類酸化物の塩化反応(化学反応式(1))と、希土類酸化物の酸塩化反応(化学反応式(2))と、希土類酸塩化物の塩化反応(化学反応式(3))とにおける標準ギブスエネルギー変化と温度との関係を示すグラフである。図3に示したように、図2と同様に、温度の上昇と共に標準ギブスエネルギー変化が減少しており、標準ギブスエネルギー変化が負の値を示す温度になると当該化学反応が継続的に進行可能になる。 FIG. 3 shows a case where a rare earth element is yttrium, europium, or terbium, and a rare earth oxide chlorination reaction (chemical reaction formula (1)), a rare earth oxide acidification reaction (chemical reaction formula (2)), It is a graph which shows the relationship between the standard Gibbs energy change and temperature in the chlorination reaction (chemical reaction formula (3)) of an acid chloride. As shown in FIG. 3, as in FIG. 2, the standard Gibbs energy change decreases with increasing temperature, and the chemical reaction can proceed continuously when the standard Gibbs energy change reaches a negative value. become.
 図3をより具体的に見ると、希土類酸化物の塩化反応(化学反応式(1))において、酸化イットリウム(Y2O3)は約350℃以上で、酸化ユーロピウム(Eu2O3)は約250℃以上で、酸化テルビウム(Tb2O3)は約330℃以上で標準ギブスエネルギー変化が負の値を示す。言い換えると、化学反応の活性化エネルギーを超えられれば、それらの温度以上で化学反応式(1)の塩化反応が進行可能になる。 Looking more specifically at FIG. 3, in the chlorination reaction of the rare earth oxide (chemical reaction formula (1)), yttrium oxide (Y 2 O 3 ) is about 350 ° C. or higher, and europium oxide (Eu 2 O 3 ) is Above about 250 ° C., terbium oxide (Tb 2 O 3 ) shows a negative value of standard Gibbs energy change at about 330 ° C. or more. In other words, if the activation energy of the chemical reaction is exceeded, the chlorination reaction of the chemical reaction formula (1) can proceed at those temperatures or higher.
 希土類酸化物の酸塩化反応(化学反応式(2))においては、酸化イットリウム(Y2O3)は約220℃以上で、酸化ユーロピウム(Eu2O3)は約70℃以上で、酸化テルビウム(Tb2O3)は約200℃以上で標準ギブスエネルギー変化が負の値を示す。言い換えると、化学反応の活性化エネルギーを超えられれば、それらの温度以上で化学反応式(2)の酸塩化反応が進行可能になる。 In the rare earth oxide acidification reaction (chemical reaction formula (2)), yttrium oxide (Y 2 O 3 ) is about 220 ° C or higher, europium oxide (Eu 2 O 3 ) is about 70 ° C or higher, and terbium oxide. (Tb 2 O 3 ) shows a negative value of the standard Gibbs energy change at about 200 ° C. or higher. In other words, if the activation energy of the chemical reaction is exceeded, the acidification reaction of the chemical reaction formula (2) can proceed at those temperatures or higher.
 希土類酸塩化物の塩化反応(化学反応式(3))においては、酸塩化イットリウム(YOCl)は約380℃以上で、酸塩化ユーロピウム(EuOCl)は約350℃以上で、酸塩化テルビウム(TbOCl)は約370℃以上で標準ギブスエネルギー変化が負の値を示す。言い換えると、化学反応の活性化エネルギーを超えられれば、それらの温度以上で化学反応式(3)の塩化反応が進行可能になる。 In the rare earth acid chloride chloride reaction (chemical reaction formula (3)), yttrium oxychloride (YOCl) is about 380 ° C or higher, europium oxychloride (EuOCl) is about 350 ° C or higher, terbium oxychloride (TbOCl) Shows a negative value of standard Gibbs energy change at about 370 ° C or higher. In other words, if the activation energy of the chemical reaction is exceeded, the chlorination reaction of the chemical reaction formula (3) can proceed at those temperatures or higher.
 例えば、酸化イットリウム(Y2O3)と酸化ユーロピウム(Eu2O3)との混合物から塩化物/酸塩化物混合物を生成させようとした場合、塩化ユーロピウム(EuCl3)を生成させるためには、少なくとも250℃以上の熱処理温度が必要と考えられ、る。一方、塩化イットリウム(YCl3)の生成を抑制し酸塩化イットリウム(YOCl)を安定に保つためには、350℃未満の熱処理温度が好ましいと考えられる。 For example, when trying to produce a chloride / acid chloride mixture from a mixture of yttrium oxide (Y 2 O 3 ) and europium oxide (Eu 2 O 3 ), to produce europium chloride (EuCl 3 ) It is considered that a heat treatment temperature of at least 250 ° C. is necessary. On the other hand, in order to suppress the production of yttrium chloride (YCl 3 ) and keep yttrium oxychloride (YOCl) stable, a heat treatment temperature of less than 350 ° C. is considered preferable.
 また、酸化ユーロピウム(Eu2O3)と酸化テルビウム(Tb2O3)との混合物から塩化物/酸塩化物混合物を生成させようとした場合、塩化ユーロピウム(EuCl3)を生成させるために250℃以上の熱処理温度が必要となり、塩化テルビウム(TbCl3)の生成を抑制し酸塩化テルビウム(TbOCl)を安定に保つためには、330℃未満の熱処理温度が好ましいと考えられる。 In addition, when an attempt is made to produce a chloride / acid chloride mixture from a mixture of europium oxide (Eu 2 O 3 ) and terbium oxide (Tb 2 O 3 ), it is possible to produce 250 europium chloride (EuCl 3 ). A heat treatment temperature of not lower than 330 ° C. is considered preferable in order to suppress the formation of terbium chloride (TbCl 3 ) and keep terbium oxychloride (TbOCl) stable.
 図2~3の結果を整理すると、ネオジムやユーロピウムのような軽希土類元素(ランタノイドの中で原子番号がガドリニウム(Gd)よりも小さい元素)における化学反応式(1)の塩化反応が起こる温度は、ジスプロシウムやテルビウムのような重希土類元素(ランタノイドの中で原子番号がガドリニウム(Gd)以上の元素)およびイットリウムにおける化学反応式(1)の塩化反応が起こる温度よりも100℃程度低いことが判る。また、軽希土類元素の酸化物が塩化物を生成する温度から、重希土類元素およびイットリウムの酸化物が塩化物を生成するまでの温度範囲では、重希土類元素およびイットリウムの酸塩化物が安定であることが判る。すなわち、軽希土類元素(第1群の希土類元素と定義する)の酸化物の塩化反応の標準ギブスエネルギー変化が負を示す温度領域内の温度であり、かつ、重希土類元素およびイットリウム(第2群の希土類元素と定義する)の酸化物の塩化反応の標準ギブスエネルギー変化が正を示す温度領域内の温度で熱処理することにより、希土類酸化物の塩化反応と酸塩化反応とを共存させることができる。 2 to 3, the temperature at which the chlorination reaction of chemical reaction formula (1) occurs in light rare earth elements (elements with atomic numbers smaller than gadolinium (Gd) in lanthanides) such as neodymium and europium is It is found that the temperature is about 100 ° C. lower than the temperature at which the chlorination reaction of the chemical reaction formula (1) in yttrium and heavy rare earth elements such as dysprosium and terbium (elements having an atomic number of gadolinium (Gd) or higher among lanthanoids) occurs. . Also, heavy rare earth elements and yttrium acid chlorides are stable in the temperature range from the temperature at which light rare earth oxides generate chloride to the time at which heavy rare earth elements and yttrium oxides generate chloride. I understand that. That is, the temperature is within a temperature range in which the standard Gibbs energy change of the chlorination reaction of oxides of light rare earth elements (defined as first group rare earth elements) is negative, and heavy rare earth elements and yttrium (second group) The rare earth oxide chlorination reaction and the acidification reaction can coexist by heat treatment at a temperature within the temperature range in which the standard Gibbs energy change of the chlorination reaction of the oxide of the .
 第1群の希土類元素の酸化物の塩化反応について、より詳細に説明する。 The chlorination reaction of the oxides of the first group rare earth elements will be described in more detail.
 化学反応式(1)の塩化反応は、次の2つの素反応に分けて考えることができる。1段目の素反応では、常圧の不活性ガス気流中での熱処理により、希土類塩化アンモニウム塩が生成する。この反応の一例として化学反応式(4)がある(例えば、Meyer, et. al., Mat. Res. Bull. 17 (1982) 1447-1455参照)。
RE2O3 + 12NH4Cl → 2(NH4)2RECl5 + 6NH3 + 3H2O …化学反応式(4)。
The chlorination reaction of the chemical reaction formula (1) can be divided into the following two elementary reactions. In the first stage elementary reaction, a rare earth ammonium chloride salt is produced by heat treatment in an inert gas stream at normal pressure. An example of this reaction is chemical reaction formula (4) (see, for example, Meyer, et. Al., Mat. Res. Bull. 17 (1982) 1447-1455).
RE 2 O 3 + 12NH 4 Cl → 2 (NH 4 ) 2 RECl 5 + 6NH 3 + 3H 2 O Chemical reaction formula (4).
 2段目の素反応では、上記の希土類塩化アンモニウム塩中に存在する塩化アンモニウムおよび出発混合物中の未反応の塩化アンモニウムが除去されて希土類塩化物(RECl3)が生成すると考えられる。この反応の一例として化学反応式(5)がある(例えば、Meyer, et. al., Mat. Res. Bull. 17 (1982) 1447-1455参照)。2段目の素反応は、減圧雰囲気中(例えば、ロータリーポンプ等による減圧雰囲気)で行われることが好ましい。これは、減圧雰囲気中の方が塩化アンモニウムの気化・分解が進行しやすいためである。また、350℃以上に加熱することにより、塩化アンモニウムの気化・分解を促進することができる。
(NH4)2RECl5 → RECl3 + 2NH3 + 2HCl …化学反応式(5)。
In the second stage elementary reaction, it is considered that ammonium chloride present in the rare earth ammonium chloride salt and unreacted ammonium chloride in the starting mixture are removed to produce rare earth chloride (RECl 3 ). An example of this reaction is chemical reaction formula (5) (see, for example, Meyer, et. Al., Mat. Res. Bull. 17 (1982) 1447-1455). The second stage elementary reaction is preferably performed in a reduced-pressure atmosphere (for example, a reduced-pressure atmosphere using a rotary pump or the like). This is because vaporization / decomposition of ammonium chloride tends to proceed in a reduced pressure atmosphere. Moreover, vaporization and decomposition | disassembly of ammonium chloride can be accelerated | stimulated by heating to 350 degreeC or more.
(NH 4 ) 2 RECl 5 → RECl 3 + 2NH 3 + 2HCl ... Chemical reaction formula (5).
 (選択的抽出工程)
 本工程は、得られた塩化物/酸塩化物混合物を溶媒に投入して、希土類塩化物を選択的に液相中に抽出し、かつ希土類酸塩化物を固相として残存させる工程である。この工程は、希土類塩化物の高い溶解性と希土類酸塩化物の低い溶解性(難溶性)との差異を利用したものである。
(Selective extraction process)
In this step, the obtained chloride / acid chloride mixture is put into a solvent, the rare earth chloride is selectively extracted into the liquid phase, and the rare earth acid chloride remains as a solid phase. This process utilizes the difference between the high solubility of rare earth chlorides and the low solubility (slight solubility) of rare earth acid chlorides.
 溶媒としては、例えば、純水、低級アルコール、またはそれらの混合液を好ましく用いることができる。低級アルコールとしては、特にメタノールやエタノールを用いることが好ましい。これらの溶媒は、環境および人体に与える悪影響が小さいことから、作業性の向上および作業設備の簡素化(すなわち、低コスト化)に貢献する。 As the solvent, for example, pure water, lower alcohol, or a mixture thereof can be preferably used. As the lower alcohol, it is particularly preferable to use methanol or ethanol. Since these solvents have a small adverse effect on the environment and the human body, they contribute to improvement in workability and simplification of work facilities (that is, cost reduction).
 塩化物/酸塩化物混合物の投入量や溶媒量に応じて、撹拌子や撹拌羽根、超音波振動などを用いて撹拌することは好ましい。また、撹拌に際して、加熱することで溶媒への抽出を促進することができる。ただし、加熱温度が溶媒の沸点より高くなると溶媒量が減少するため、加熱温度は溶媒の沸点以下であることが好ましい。なお、溶媒を加熱する場合は、溶媒の揮発を抑制するため、溶解槽を密閉することが好ましい。 It is preferable to stir using a stirrer, a stirring blade, ultrasonic vibration, or the like according to the amount of the chloride / acid chloride mixture added or the amount of solvent. Moreover, extraction to a solvent can be accelerated | stimulated by heating at the time of stirring. However, since the amount of solvent decreases when the heating temperature becomes higher than the boiling point of the solvent, the heating temperature is preferably equal to or lower than the boiling point of the solvent. In addition, when heating a solvent, in order to suppress volatilization of a solvent, it is preferable to seal a dissolution tank.
 (分離工程)
 本工程は、上記で得られた溶液に対して固液分離処理を行うことで、第1群の希土類元素と第2群の希土類元素とを分離する工程である。固液分離処理の方法に特段の限定はないが、例えば、濾過を利用することができる。
(Separation process)
This step is a step of separating the first group of rare earth elements and the second group of rare earth elements by performing a solid-liquid separation process on the solution obtained above. Although there is no special limitation in the method of a solid-liquid separation process, For example, filtration can be utilized.
 (回収工程)
 本工程は、固液分離した液相と固相とから、第1群の希土類元素と第2群の希土類元素とを回収する工程である。希土類塩化物を含む液相に対しては、例えば、スプレードライヤを用いて加熱雰囲気中に噴霧することで、希土類塩化物粉末として回収することができる。また、希土類塩化物溶液に対してpH調整を行った後、沈殿剤(例えば、炭酸アンモニウム((NH4)2CO3)、炭酸水素アンモニウム(NH4HCO3)、炭酸ナトリウム(Na2CO3)、炭酸水素ナトリウム(NaHCO3)、シュウ酸((COOH)2)、シュウ酸ナトリウム((COONa)2)、水酸化ナトリウム(NaOH)等)を添加することにより、難溶性の希土類沈殿物を生成させることができる。該沈殿物を濾過、乾燥した後、大気中900℃程度で焙焼することにより、第1群の希土類元素を酸化物として回収することができる。
(Recovery process)
This step is a step of recovering the first group of rare earth elements and the second group of rare earth elements from the liquid phase and solid phase separated by solid-liquid separation. The liquid phase containing the rare earth chloride can be recovered as a rare earth chloride powder, for example, by spraying in a heated atmosphere using a spray dryer. In addition, after adjusting the pH of the rare earth chloride solution, a precipitant (for example, ammonium carbonate ((NH 4 ) 2 CO 3 ), ammonium hydrogen carbonate (NH 4 HCO 3 ), sodium carbonate (Na 2 CO 3) ), Sodium bicarbonate (NaHCO 3 ), oxalic acid ((COOH) 2 ), sodium oxalate ((COONa) 2 ), sodium hydroxide (NaOH), etc.) Can be generated. The precipitate is filtered and dried, and then roasted at about 900 ° C. in the atmosphere, whereby the first group rare earth elements can be recovered as oxides.
 希土類酸塩化物からなる固相に対しては、これを乾燥することで、希土類酸塩化物粉末として回収することができる。また、酸(希塩酸、希硝酸等)で溶解して水和物を生成させ、該水和物に対してpH調整を行った後、沈殿剤(例えば、(NH4)2CO3、NH4HCO3、Na2CO3、NaHCO3、(COOH)2、(COONa)2、NaOH等)を添加することにより、難溶性の希土類沈殿物を生成させることができる。該沈殿物を濾過、乾燥した後、大気中900℃程度で焙焼することにより、第2群の希土類元素を酸化物として回収することができる。 A solid phase composed of a rare earth acid chloride can be recovered as a rare earth acid chloride powder by drying it. Moreover, after dissolving with an acid (dilute hydrochloric acid, dilute nitric acid, etc.) to produce a hydrate, and adjusting the pH of the hydrate, a precipitating agent (for example, (NH 4 ) 2 CO 3 , NH 4 HCO 3 , Na 2 CO 3 , NaHCO 3 , (COOH) 2 , (COONa) 2 , NaOH, etc.) can be added to form a hardly soluble rare earth precipitate. After filtering and drying the precipitate, the second group of rare earth elements can be recovered as oxides by roasting at about 900 ° C. in the atmosphere.
 本発明に係る分離回収方法を繰り返し実施することで、第1群の希土類元素と第2群の希土類元素との分離率を更に向上させることができる。また、上述の選択的抽出工程で生成した液相に対して、その他の既知の湿式分離法を適用してもよい。 By repeatedly performing the separation and recovery method according to the present invention, the separation rate between the first group of rare earth elements and the second group of rare earth elements can be further improved. Moreover, you may apply another known wet-separation method with respect to the liquid phase produced | generated by the above-mentioned selective extraction process.
 以上説明したように、複数種の希土類元素を含む材料や製品の廃材に対して、本発明に係る分離回収方法を適用することにより、高い分離率でかつ簡便に第1群の希土類元素と第2群の希土類元素とを分離回収することができる。 As described above, by applying the separation and recovery method according to the present invention to materials containing multiple types of rare earth elements and waste products, the first group of rare earth elements and the first group can be easily combined with a high separation rate. Two groups of rare earth elements can be separated and recovered.
 [希土類元素の分離回収装置]
 図4は、本発明に係る希土類元素の分離装置の構成例を示す模式図である。図4に示したように、本発明に係る希土類元素の分離装置100は、被分離組成物供給部10、熱処理部20、雰囲気制御部30、ガス処理部40および分離部50を具備している。
[Rare earth element separation and recovery equipment]
FIG. 4 is a schematic diagram showing a configuration example of a rare earth element separation device according to the present invention. As shown in FIG. 4, the rare earth element separation apparatus 100 according to the present invention includes a composition supply unit 10 to be separated, a heat treatment unit 20, an atmosphere control unit 30, a gas treatment unit 40, and a separation unit 50. .
 被分離組成物供給部10は、熱処理部20と接続されており、前述した混合工程を行い得られた出発混合物を熱処理部20に供給する部分である。具体的には、複数種の希土類酸化物が混在した粉末を収容する被分離組成物容器11と、塩化アンモニウム粉末を収容する塩化アンモニウム容器12と、原料粉末混合装置13と、出発混合物供給装置14とを有する。 The composition-to-be-separated supply unit 10 is connected to the heat treatment unit 20 and is a part that supplies the starting mixture obtained by performing the above-described mixing process to the heat treatment unit 20. Specifically, a composition container 11 to be separated that contains powder mixed with a plurality of types of rare earth oxides, an ammonium chloride container 12 that contains ammonium chloride powder, a raw material powder mixing device 13, and a starting mixture supply device 14 And have.
 熱処理部20は、被分離組成物供給部10の他に、雰囲気制御部30とガス処理部40と分離部50とにそれぞれ接続されており、前述した選択的塩化/酸塩化熱処理工程を行う部分である。具体的には、ヒータ21と炉心管22とを有する。さらに、選択的塩化/酸塩化熱処理工程における化学反応がスムーズに進行するように、被熱処理物を攪拌するための機構(例えば、炉心管回転機構(図示せず))を具備していることが好ましい。 The heat treatment unit 20 is connected to the atmosphere control unit 30, the gas processing unit 40, and the separation unit 50 in addition to the composition supply unit 10 to be separated, and performs the above-described selective chlorination / acidification heat treatment step. It is. Specifically, it has a heater 21 and a core tube 22. Furthermore, a mechanism (for example, a core tube rotation mechanism (not shown)) for stirring the material to be heat-treated is provided so that the chemical reaction in the selective chlorination / acidification heat treatment step proceeds smoothly. preferable.
 雰囲気制御部30は、選択的塩化/酸塩化熱処理工程における熱処理中の雰囲気制御を行う部分である。具体的には、真空排気装置31とガス供給装置32とを有し、選択的塩化/酸塩化熱処理工程における常圧下の非酸化性雰囲気や減圧下の非酸化性雰囲気を制御する。真空排気装置31に特段の限定はなく、例えば、ロータリーポンプを好適に用いることができる。 The atmosphere control unit 30 is a part that controls the atmosphere during the heat treatment in the selective chlorination / acidification heat treatment step. Specifically, the vacuum evacuation device 31 and the gas supply device 32 are provided, and a non-oxidizing atmosphere under normal pressure and a non-oxidizing atmosphere under reduced pressure are controlled in the selective chlorination / acidification heat treatment step. There is no particular limitation on the vacuum exhaust device 31, and for example, a rotary pump can be suitably used.
 ガス処理部40は、選択的塩化/酸塩化熱処理により発生するアンモニアガスと塩化水素ガスを無害化処理する部分である。無害化処理の方法に特段の限定はなく、従前の方法を利用できる。 The gas treatment unit 40 is a part for detoxifying the ammonia gas and the hydrogen chloride gas generated by the selective chlorination / acidification heat treatment. There is no particular limitation on the method of detoxification treatment, and a conventional method can be used.
 ガス処理部40は、アンモニア処理装置42と塩化水素処理装置43とに加えて、化学反応モニタ機構(例えば、アンモニアガスセンサ41)を有する。アンモニアガスセンサ41により化学反応で発生するガスの濃度を検知し、単位時間当たりの平均ガス濃度(ガス濃度の変化率)をモニタすることによって、熱処理における化学反応の進行度合を観察することができる。例えば、対象とする化学反応がほぼ完了すると、発生するガスの濃度が急激に低下することから検知できる。これにより、運転バッチ毎の化学反応の進行度合を安定化させられると共に、熱処理時間の最適化が可能となり、効率的な分離・回収が可能となる。なお、化学反応モニタ機構は、ガスセンサに限定されるものではなく、例えば、被熱処理物の重量変化を検知する機構でもよい。 The gas processing unit 40 includes a chemical reaction monitoring mechanism (for example, an ammonia gas sensor 41) in addition to the ammonia processing device 42 and the hydrogen chloride processing device 43. By detecting the concentration of the gas generated by the chemical reaction by the ammonia gas sensor 41 and monitoring the average gas concentration per unit time (gas concentration change rate), the progress of the chemical reaction in the heat treatment can be observed. For example, when the target chemical reaction is almost completed, the concentration of the generated gas can be detected from a sharp drop. As a result, the progress of the chemical reaction for each operation batch can be stabilized, the heat treatment time can be optimized, and efficient separation and recovery can be achieved. The chemical reaction monitoring mechanism is not limited to the gas sensor, and may be a mechanism that detects a change in the weight of the object to be heat treated, for example.
 分離部50は、前述した選択的抽出工程および分離工程を行う部分である。具体的には、選択的抽出工程で用いる溶媒を収容する溶媒容器51と、選択的抽出・固液分離処理を行う溶解槽52と、抽出した液相成分を収容する抽出液容器53とを有する。抽出液容器53に収容された抽出液および溶解槽52に残存した固相成分は、それぞれ前述した回収工程に進む。 The separation unit 50 is a part that performs the above-described selective extraction step and separation step. Specifically, it has a solvent container 51 that contains the solvent used in the selective extraction step, a dissolution tank 52 that performs selective extraction / solid-liquid separation processing, and an extraction liquid container 53 that contains the extracted liquid phase components. . The extraction liquid stored in the extraction liquid container 53 and the solid phase component remaining in the dissolution tank 52 proceed to the recovery step described above, respectively.
 以下、実施例により本発明をより具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited to these examples.
 複数種の希土類酸化物の混合物から希土類元素を分離する実験を行った。希土類酸化物の出発原料としては、ネオジム酸化物粉末(Nd2O3、株式会社高純度化学研究所製、品番:NDO01PB)とジスプロシウム酸化物粉末(Dy2O3、株式会社高純度化学研究所製、品番:DYO01PB)とを用いた。塩化剤としては、塩化アンモニウム粉末(NH4Cl、和光純薬工業株式会社製、品番:017-02995)を用いた。 An experiment was conducted to separate rare earth elements from a mixture of rare earth oxides. As starting materials for rare earth oxides, neodymium oxide powder (Nd 2 O 3 , manufactured by High Purity Chemical Laboratory Co., Ltd., product number: NDO01PB) and dysprosium oxide powder (Dy 2 O 3 , High Purity Chemical Laboratory Co., Ltd.) Manufactured, product number: DYO01PB). As the chlorinating agent, ammonium chloride powder (NH 4 Cl, manufactured by Wako Pure Chemical Industries, Ltd., product number: 017-02995) was used.
 実験1:選択的塩化/酸塩化熱処理工程における熱処理温度の検討
 まず、Nd2O3粉末とDy2O3粉末とが質量比で「7 / 1」になるように混合した混合粉末を用意した。次に、混合粉末に対して、前記化学反応式(1)に示される化学当量の2倍量のNH4Cl(希土類酸化物1 molに対して塩化アンモニウム12 mol)を混合して出発混合物を用意した(混合工程)。
Experiment 1: Examination of heat treatment temperature in selective chlorination / acidification heat treatment step First, a mixed powder was prepared in which Nd 2 O 3 powder and Dy 2 O 3 powder were mixed so that the mass ratio was “7/1”. . Next, the mixed powder is mixed with NH 4 Cl twice the chemical equivalent shown in the chemical reaction formula (1) (12 mol of ammonium chloride with respect to 1 mol of rare earth oxide) to obtain a starting mixture. Prepared (mixing step).
 これらの出発混合物に対して、アルゴンガス気流中、種々の温度(200℃、250℃、300℃、350℃、400℃、500℃)で4時間保持の加熱を行った後、引き続いて、系内をロータリーポンプで真空排気しながら400℃で2時間保持の加熱を行う二段熱処理を施した(選択的塩化/酸塩化熱処理工程)。これにより、6種類の試料(試料No. 1~6)を得た。 These starting mixtures were heated for 4 hours at various temperatures (200 ° C., 250 ° C., 300 ° C., 350 ° C., 400 ° C., 500 ° C.) in an argon gas stream. A two-stage heat treatment was performed in which the interior was evacuated by a rotary pump and heated at 400 ° C. for 2 hours (selective chlorination / acidification heat treatment step). As a result, six types of samples (Sample Nos. 1 to 6) were obtained.
 選択的塩化/酸塩化熱処理工程後の粉末を一部採取し、粉末X線回折(XRD)測定による結晶相の同定を行った。アルゴン雰囲気のグローボックス内にて試料粉末を気密試料ホルダーに詰め込み、この気密試料ホルダーに対して測定を行った。測定装置には、広角X線回折装置(株式会社リガク製、型式:RU200B)を用いた。測定条件は、X線としてCu-Kα線を用い、X線出力を50 kV×150 mAとし、走査範囲を2θ=5~70 degとし、走査速度を1.0 deg/minとした。検出された回折ピークの同定には、X線回折標準データ集であるICDD(International Centre for Diffraction Data)を利用した。結果を表1、表2に示す。 A part of the powder after the selective chlorination / acidification heat treatment step was collected, and the crystal phase was identified by powder X-ray diffraction (XRD) measurement. The sample powder was packed in an airtight sample holder in a glow box in an argon atmosphere, and the airtight sample holder was measured. A wide-angle X-ray diffractometer (manufactured by Rigaku Corporation, model: RU200B) was used as the measuring device. The measurement conditions were Cu-Kα ray as the X-ray, X-ray output was 50 kV × 150 μmA, scanning range was 2θ = 5 to 70 ° deg, and scanning speed was 1.0 ° deg / min. For identification of the detected diffraction peak, ICDD (International Center for Diffraction Data), which is a collection of X-ray diffraction standard data, was used. The results are shown in Tables 1 and 2.

 表1は、選択的塩化/酸塩化熱処理工程で得られた粉末の結晶相の同定結果を示す。表1に示したように、ネオジム化合物に関しては、一段目の熱処理温度が200℃の場合、ネオジム酸塩化物(NdOCl)が検出された。250℃の場合、ネオジム酸塩化物(NdOCl)とネオジム塩化物(NdCl3)とが検出された。300℃以上の場合、ネオジム塩化物(NdCl3)のみが検出された。すなわち、一段目の熱処理温度を300℃以上にすると、ネオジム酸化物(Nd2O3)が完全に塩化することを示している。

Table 1 shows the identification results of the crystalline phase of the powder obtained in the selective chlorination / acidification heat treatment step. As shown in Table 1, for neodymium compounds, neodymium acid chloride (NdOCl) was detected when the heat treatment temperature at the first stage was 200 ° C. In the case of 250 ° C., neodymium acid chloride (NdOCl) and neodymium chloride (NdCl 3 ) were detected. At temperatures above 300 ° C., only neodymium chloride (NdCl 3 ) was detected. That is, when the heat treatment temperature in the first stage is set to 300 ° C. or higher, neodymium oxide (Nd 2 O 3 ) is completely salified.
 一方、ジスプロシウム化合物に関しては、一段目の熱処理温度が200℃、250℃の場合、未反応のジスプロシウム酸化物(Dy2O3)とジスプロシウム塩化物(DyCl3)とが検出された。300~500℃の場合、ジスプロシウム酸塩化物(DyOCl)とジスプロシウム塩化物(DyCl3)とが検出された。なお、塩化物としては、水和物も一部検出された。以上の結果から、一段目の熱処理温度を300~500℃にすると、NdCl3とDyOClとが同時に生成することが確認された。 On the other hand, regarding the dysprosium compound, unreacted dysprosium oxide (Dy 2 O 3 ) and dysprosium chloride (DyCl 3 ) were detected when the first-stage heat treatment temperatures were 200 ° C. and 250 ° C. In the case of 300 to 500 ° C., dysprosium chloride (DyOCl) and dysprosium chloride (DyCl 3 ) were detected. As chloride, some hydrates were also detected. From the above results, it was confirmed that NdCl 3 and DyOCl were formed at the same time when the first-stage heat treatment temperature was 300 to 500 ° C.
 表2は、検出された希土類酸塩化物(REOCl)と希土類塩化物(RECl3)とのXRDピーク強度の比(REOCl/RECl3)を示す。ここで、ピーク強度比は、DyOClの(102)面、DyCl3の(001)面、NdOClの(102)面、NdCl3の(201)面のピーク強度値を用いて算出した。 Table 2 shows the XRD peak intensity ratio (REOCl / RECl 3 ) between the detected rare earth acid chloride (REOCl) and the rare earth chloride (RECl 3 ). Here, the peak intensity ratio was calculated using the peak intensity values of the (102) plane of DyOCl, the (001) plane of DyCl 3 , the (102) plane of NdOCl, and the (201) plane of NdCl 3 .
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

 表2に示したように、ネオジムに関しては、一段目の熱処理温度の上昇に伴って「NdOCl/NdCl3」の値が小さくなっており、300℃以上で、NdOCl相は検出されなかった。ジスプロシウムに関しては、一段目の熱処理温度350℃にて「DyOCl/DyCl3」の値が最も大きくなり、更に高温になると「DyOCl/DyCl3」の値は減少した。これは、化学反応式(3)による塩化反応が進行したものと考えられる。この結果から、ネオジム塩化物(NdCl3)とジスプロシウム酸塩化物(DyOCl)とが同時に安定である温度領域が存在することが確認された。

As shown in Table 2, with respect to neodymium, the value of “NdOCl / NdCl 3 ” decreased as the first-stage heat treatment temperature increased, and the NdOCl phase was not detected at 300 ° C. or higher. As for dysprosium, the value of “DyOCl / DyCl 3 ” became the largest at the first heat treatment temperature of 350 ° C., and the value of “DyOCl / DyCl 3 ” decreased at higher temperatures. This is considered that the chlorination reaction by the chemical reaction formula (3) has progressed. From this result, it was confirmed that there exists a temperature range in which neodymium chloride (NdCl 3 ) and dysprosium chloride (DyOCl) are simultaneously stable.
 実験2:出発混合物における塩化アンモニウムの混合比の検討
 Nd2O3粉末またはDy2O3粉末に対して種々の比率でNH4Clを混合し(希土類酸化物1 molに対して塩化アンモニウム4.5 mol、6 mol、9 mol、13.5 mol、15 molを混合し)、選択的塩化/酸塩化熱処理を施した。これにより、6種類の試料(試料No. 7~12)を得た。得られた粉末に対してXRD測定による結晶相の同定を行った。熱処理条件(一段目の熱処理温度)は、NdCl3とDyOClとが共存可能な300℃と350℃とを選定した。XRD測定条件は、実験1と同様である。結果を表3に示す。
Experiment 2: Examination of mixing ratio of ammonium chloride in the starting mixture NH 4 Cl was mixed in various ratios with Nd 2 O 3 powder or Dy 2 O 3 powder (4.5 mol of ammonium chloride with respect to 1 mol of rare earth oxide) , 6 mol, 9 mol, 13.5 mol, and 15 mol) were subjected to selective chlorination / acidification heat treatment. As a result, six types of samples (Sample Nos. 7 to 12) were obtained. The crystal phase was identified by XRD measurement for the obtained powder. As the heat treatment conditions (heat treatment temperature in the first stage), 300 ° C. and 350 ° C. in which NdCl 3 and DyOCl can coexist are selected. The XRD measurement conditions are the same as in Experiment 1. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

 表3は、希土類酸化物に対するNH4Cl混合量、選択的塩化/酸塩化熱処理工程の熱処理温度、および得られた粉末の結晶相の同定結果を示す表である。表3に示したように、熱処理温度300℃において、1 molのNd2O3に対してNH4Cl混合量が6 mol以下の場合は、NdOClが検出されNdCl3単相が得られなかったが、NH4Cl混合量が9 molの場合は、NdCl3単相となった。また、1 molのDy2O3に対してNH4Cl混合量が15 molの場合は、DyOCl が検出されずDyCl3単相が検出された。

Table 3 is a table showing the NH 4 Cl mixing amount with respect to the rare earth oxide, the heat treatment temperature of the selective chlorination / acidification heat treatment step, and the identification result of the crystal phase of the obtained powder. As shown in Table 3, at a heat treatment temperature of 300 ° C., when the mixed amount of NH 4 Cl was 6 mol or less with respect to 1 mol of Nd 2 O 3 , NdOCl was detected and an NdCl 3 single phase was not obtained. However, when the NH 4 Cl mixing amount was 9 mol, it became an NdCl 3 single phase. In addition, when the amount of NH 4 Cl mixed was 15 mol with respect to 1 mol of Dy 2 O 3 , DyOCl was not detected but a single DyCl 3 phase was detected.
 熱処理温度350℃において、1 molのDy2O3に対してNH4Clの混合量が15 molの場合は、熱処理温度300℃と同様に、DyCl3単相が検出された。一方、NH4Clの混合量が13.5 molの場合は、DyOClが主相として検出された。これらの結果から、NdCl3とDyOClとを共生成させるためには、希土類酸化物1 molに対するNH4Clの混合量は、6 mol超15 mol未満が好ましく、9 mol以上13.5 mol以下がより好ましいことが確認された。 When the mixed amount of NH 4 Cl was 15 mol with respect to 1 mol of Dy 2 O 3 at a heat treatment temperature of 350 ° C., a DyCl 3 single phase was detected as in the case of the heat treatment temperature of 300 ° C. On the other hand, when the mixed amount of NH 4 Cl was 13.5 mol, DyOCl was detected as the main phase. From these results, in order to co-generate NdCl 3 and DyOCl, the amount of NH 4 Cl mixed with 1 mol of rare earth oxide is preferably more than 6 mol and less than 15 mol, more preferably 9 mol or more and 13.5 mol or less. It was confirmed.
 実験3:ネオジムとジスプロシウムとの分離実験
 まず、実験1と同様にして出発混合物を用意した。次に、選択的塩化/酸塩化熱処理工程を行った。熱処理条件は、Arガス流中300℃で4時間保持した後、ロータリポンプで真空排気しながら400℃で2時間保持する熱処理とした。得られた塩化物/酸塩化物混合粉末に選択的抽出工程を行い、分離工程として当該溶液を濾過して固液分離した。
Experiment 3: Separation experiment of neodymium and dysprosium First, a starting mixture was prepared in the same manner as in Experiment 1. Next, a selective chlorination / acidification heat treatment step was performed. The heat treatment conditions were as follows: heat treatment was held at 300 ° C. for 4 hours in an Ar gas flow and then held at 400 ° C. for 2 hours while being evacuated by a rotary pump. The obtained chloride / acid chloride mixed powder was subjected to a selective extraction step, and the solution was filtered and solid-liquid separated as a separation step.
 分離した固相分に対して蛍光X線分析法で組成分析を行った。成形用バインダー(ホウ酸粉末)を用いて測定用試料をプレス成形して測定に供した。測定装置には、蛍光X線分析装置(株式会社リガク製、型式:ZSX Primus II)を用いた。測定条件は、X線としてRh-Kα線を用い、X線出力を3 kWとし、分析径を20 mmとした。本分析で得られる定量値は、ファンダメンタルパラメータ法(FP法)により算出した。結果を表4に示す。 The composition of the separated solid phase was analyzed by fluorescent X-ray analysis. A measurement sample was press-molded using a molding binder (boric acid powder) and subjected to measurement. An X-ray fluorescence analyzer (manufactured by Rigaku Corporation, model: ZSX Primus II) was used as the measuring device. The measurement conditions were as follows: Rh-Kα ray was used as X-ray, X-ray output was 3 kW, and analysis diameter was 20 mm. The quantitative value obtained in this analysis was calculated by the fundamental parameter method (FP method). The results are shown in Table 4.
 また、蛍光X線分析で得られたDy質量濃度([Dy]と表記する)、Nd質量濃度([Nd]と表記する)を下記式(1)に代入してDyの分離割合(Dy分離率)を算出した。結果を表4に併記する。
Dy分離率(%)= 100×{ [Dy] / ( [Dy]+[Nd] ) }   …式(1)
Also, the Dy separation rate (Dy separation) obtained by substituting the Dy mass concentration (denoted [Dy]) and Nd mass concentration (denoted [Nd]) obtained by X-ray fluorescence analysis into the following formula (1) Rate) was calculated. The results are also shown in Table 4.
Dy separation rate (%) = 100 x {[Dy] / ([Dy] + [Nd])} ... Formula (1)
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

 表4に示したように、本発明に係る希土類元素の分離方法によりNd / Dyの分離実験を行ったところ、初期Dy混合率よりも3倍高いDy分離率が達成された。すなわち、本発明に係る希土類元素の分離方法は、1サイクルの工程で、高い分離率での分離が可能であることが実証された。さらに、本発明の分離方法は、付帯的な作業や設備が少なくて済み、非常に簡便な(すなわち低コストの)プロセスであると言える。

As shown in Table 4, when an Nd / Dy separation experiment was performed by the rare earth element separation method according to the present invention, a Dy separation rate three times higher than the initial Dy mixing rate was achieved. That is, it was demonstrated that the rare earth element separation method according to the present invention can be separated at a high separation rate in one cycle. Furthermore, it can be said that the separation method of the present invention is a very simple process (that is, low cost) because it requires less incidental work and facilities.
 以上説明したように、本発明により、希土類元素を使用した材料・製品の廃材から希土類元素(例えば、イットリウム、テルビウム、ネオジム、ユウロピウム、ジスプロシウム等)を高精度に分離することができ、分離した希土類元素を原料として再生することができる。その結果、資源の有効活用および希土類原料の安定的確保に貢献できる。 As described above, according to the present invention, rare earth elements (for example, yttrium, terbium, neodymium, europium, dysprosium, etc.) can be separated with high accuracy from waste materials and products using rare earth elements. Elements can be regenerated as raw materials. As a result, it can contribute to effective utilization of resources and stable securing of rare earth materials.
 なお、上述した実施形態および実施例は、本発明の理解を助けるために具体的に説明したものであり、本発明は、説明した全ての構成を備えることに限定されるものではない。例えば、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。さらに、各実施例の構成の一部について、削除・他の構成に置換・他の構成の追加をすることが可能である。 The above-described embodiments and examples have been specifically described in order to help understanding of the present invention, and the present invention is not limited to having all the configurations described. For example, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, a part of the configuration of each embodiment can be deleted, replaced with another configuration, or added with another configuration.
 100…分離回収装置、10…被分離組成物供給部、11…被分離組成物容器、12…塩化アンモニウム容器、13…原料粉末混合装置、14…出発混合物供給装置、20…熱処理部、21…ヒータ、22…炉心管、30…雰囲気制御部、31…真空排気装置、32…ガス供給装置、40…ガス処理部、41…アンモニアガスセンサ、42…アンモニア処理装置、43…塩化水素処理装置、50…分離部、51…溶媒容器、52…溶解槽、53…抽出液容器。 DESCRIPTION OF SYMBOLS 100 ... Separation / recovery apparatus, 10 ... Separation composition supply part, 11 ... Composition container to be separated, 12 ... Ammonium chloride container, 13 ... Raw material powder mixing apparatus, 14 ... Starting mixture supply apparatus, 20 ... Heat treatment part, 21 ... Heater, 22 ... Core tube, 30 ... Atmosphere control unit, 31 ... Vacuum exhaust device, 32 ... Gas supply device, 40 ... Gas treatment unit, 41 ... Ammonia gas sensor, 42 ... Ammonia treatment device, 43 ... Hydrogen chloride treatment device, 50 ... Separation part, 51 ... Solvent container, 52 ... Dissolution tank, 53 ... Extraction liquid container.

Claims (13)

  1.  複数種の希土類元素を分離する方法であって、
    複数種の希土類酸化物と塩化剤とを含む出発混合物から、第1群の希土類元素の希土類塩化物と第2群の希土類元素の希土類酸塩化物とを含む塩化物/酸塩化物混合物を生成させる工程であり、非酸化性雰囲気中で所定の温度の熱処理を施す選択的塩化/酸塩化熱処理工程と、
    前記塩化物/酸塩化物混合物を溶媒に投入することにより、前記希土類塩化物を選択的に前記溶媒に溶解させて液相中に抽出しかつ前記希土類酸塩化物を固相として残存させる選択的抽出工程と、
    前記希土類塩化物が抽出された液相と残存した前記希土類酸塩化物の固相とを固液分離することにより、前記第1群の希土類元素と前記第2群の希土類元素とを分離する分離工程とを有することを特徴とする希土類元素の分離方法。
    A method for separating a plurality of rare earth elements,
    Producing a chloride / acid chloride mixture comprising a rare earth chloride of a first group of rare earth elements and a rare earth acid chloride of a second group of rare earth elements from a starting mixture comprising a plurality of rare earth oxides and a chlorinating agent. A selective chlorination / acidification heat treatment step of performing a heat treatment at a predetermined temperature in a non-oxidizing atmosphere;
    By selectively introducing the chloride / acid chloride mixture into a solvent, the rare earth chloride is selectively dissolved in the solvent and extracted into a liquid phase, and the rare earth acid chloride is left as a solid phase. An extraction process;
    Separation for separating the first group of rare earth elements and the second group of rare earth elements by solid-liquid separation of the liquid phase from which the rare earth chloride is extracted and the solid phase of the remaining rare earth acid chloride. And a rare earth element separation method.
  2.  請求項1に記載の希土類元素の分離方法において、
    前記塩化剤は塩化アンモニウムであり、
    前記選択的塩化/酸塩化熱処理工程での前記所定の温度は、前記第1群の希土類元素の酸化物が塩化物となる温度領域内の温度であり、かつ前記第2群の希土類元素の酸化物が酸塩化物となる温度領域内の温度であることを特徴とする希土類元素の分離方法。
    The rare earth element separation method according to claim 1,
    The chlorinating agent is ammonium chloride;
    The predetermined temperature in the selective chlorination / acidification heat treatment step is a temperature within a temperature region in which the oxide of the first group rare earth element becomes a chloride, and oxidation of the second group rare earth element. A method for separating a rare earth element, wherein the temperature is within a temperature range in which the product becomes an acid chloride.
  3.  請求項2に記載の希土類元素の分離方法において、
    前記出発混合物は、1 molの前記希土類酸化物に対して、6 mol超15 mol未満の前記塩化アンモニウムが混合されていることを特徴とする希土類元素の分離方法。
    The method for separating rare earth elements according to claim 2,
    The method for separating rare earth elements, wherein the starting mixture is mixed with 1 mol of the rare earth oxide and more than 6 mol and less than 15 mol of the ammonium chloride.
  4.  請求項2または請求項3に記載の希土類元素の分離方法において、
    前記選択的塩化/酸塩化熱処理工程は、常圧下の熱処理により前記複数種の希土類酸化物と前記塩化アンモニウムとから前記第1群の希土類元素の希土類塩化アンモニウム塩を生成させる素工程と、
    それに引き続いて、減圧下の熱処理により前記希土類塩化アンモニウム塩から前記第1群の希土類元素の希土類塩化物を生成させる素工程を含むことを特徴とする希土類元素の分離方法。
    In the rare earth element separation method according to claim 2 or claim 3,
    The selective chlorination / acidification heat treatment step includes generating a rare earth ammonium chloride salt of the first group rare earth element from the plurality of rare earth oxides and the ammonium chloride by a heat treatment under normal pressure;
    Subsequently, a rare earth element separation method comprising an elementary step of generating rare earth chlorides of the first group rare earth elements from the rare earth ammonium chloride salts by heat treatment under reduced pressure.
  5.  請求項1乃至請求項4のいずれかに記載の希土類元素の分離方法において、
    前記第1群の希土類元素が軽希土類元素であり、前記第2群の希土類元素が重希土類元素であることを特徴とする希土類元素の分離方法。
    In the rare earth element separation method according to any one of claims 1 to 4,
    The method for separating rare earth elements, wherein the first group rare earth elements are light rare earth elements, and the second group rare earth elements are heavy rare earth elements.
  6.  請求項1乃至請求項4のいずれかに記載の希土類元素の分離方法において、
    前記第1群の希土類元素がネオジムまたはユーロピウムであり、
    前記第2群の希土類元素がイットリウム、テルビウムおよびジスプロシウムから選択される少なくとも1種であることを特徴とする希土類元素の分離方法。
    In the rare earth element separation method according to any one of claims 1 to 4,
    The rare earth element of the first group is neodymium or europium;
    The rare earth element separation method, wherein the second group rare earth element is at least one selected from yttrium, terbium and dysprosium.
  7.  複数種の希土類元素を分離する分離装置であって、
    前記分離装置は、被分離組成物供給部と熱処理部と雰囲気制御部とガス処理部と分離部とを具備し、
    前記被分離組成物供給部は、前記熱処理部と接続されており、被分離組成物と塩化剤とを混合して出発混合物を用意し、当該出発混合物を前記熱処理部に供給する部分であり、
    前記熱処理部は、前記被分離組成物供給部の他に前記雰囲気制御部と前記ガス処理部と前記分離部とにそれぞれ接続されており、前記出発混合物から第1群の希土類元素の希土類塩化物と第2群の希土類元素の希土類酸塩化物とを含む塩化物/酸塩化物混合物を生成させる選択的塩化/酸塩化熱処理を行う部分であり、
    前記選択的塩化/酸塩化熱処理は、前記雰囲気制御部によって制御された非酸化性雰囲気中で所定の温度で行われる熱処理であり、当該熱処理により発生するアンモニアガスは、前記ガス処理部において処理され、
    前記ガス処理部は、前記選択的塩化/酸塩化熱処理による化学反応をモニタするための化学反応モニタ機構を具備し、
    前記分離部は、前記塩化物/酸塩化物混合物を溶媒に投入して前記希土類塩化物を選択的に溶解させて液相中に抽出し、前記希土類塩化物が抽出された液相と残存した前記希土類酸塩化物の固相とを固液分離することにより、前記第1群の希土類元素と前記第2群の希土類元素とを分離する部分であることを特徴とする希土類元素の分離装置。
    A separation device for separating a plurality of rare earth elements,
    The separation apparatus comprises a composition supply part to be separated, a heat treatment part, an atmosphere control part, a gas treatment part, and a separation part,
    The composition to be separated supply unit is connected to the heat treatment unit, prepares a starting mixture by mixing the composition to be separated and a chlorinating agent, and supplies the starting mixture to the heat treatment unit,
    The heat treatment section is connected to the atmosphere control section, the gas processing section, and the separation section in addition to the composition-to-be-separated composition supply section. And a selective chlorination / acidification heat treatment to produce a chloride / acid chloride mixture comprising a rare earth oxychloride of a second group of rare earth elements,
    The selective chlorination / acidification heat treatment is a heat treatment performed at a predetermined temperature in a non-oxidizing atmosphere controlled by the atmosphere control unit, and ammonia gas generated by the heat treatment is processed in the gas processing unit. ,
    The gas processing unit includes a chemical reaction monitoring mechanism for monitoring a chemical reaction by the selective chlorination / acidification heat treatment,
    The separation unit puts the chloride / acid chloride mixture into a solvent to selectively dissolve the rare earth chloride and extract it into a liquid phase, and remains with the liquid phase from which the rare earth chloride has been extracted. An apparatus for separating a rare earth element, wherein the rare earth element is a portion for separating the first group of rare earth elements and the second group of rare earth elements by solid-liquid separation from the solid phase of the rare earth acid chloride.
  8.  請求項7に記載の希土類元素の分離装置において、
    前記化学反応モニタ機構は、アンモニアガスセンサを含むことを特徴とする希土類元素の分離装置。
    In the rare earth element separation apparatus according to claim 7,
    The chemical reaction monitoring mechanism includes an ammonia gas sensor.
  9.  請求項7または請求項8に記載の希土類元素の分離装置において、
    前記塩化剤粉末は塩化アンモニウム粉末であり、
    前記選択的塩化/酸塩化熱処理での前記所定の温度は、前記第1群の希土類元素の酸化物が塩化物となる温度領域内の温度であり、かつ前記第2群の希土類元素の酸化物が酸塩化物となる温度領域内の温度であることを特徴とする希土類元素の分離装置。
    In the rare earth element separation device according to claim 7 or 8,
    The chlorinating agent powder is ammonium chloride powder,
    The predetermined temperature in the selective chlorination / acid heat treatment is a temperature within a temperature range in which the oxide of the first group rare earth element becomes a chloride, and the oxide of the second group rare earth element. A rare earth element separation device, characterized in that the temperature is within a temperature range in which acid chloride is formed.
  10.  請求項9に記載の希土類元素の分離装置において、
    前記出発混合物は、1 molの前記希土類酸化物に対して、6 mol超15 mol未満の前記塩化アンモニウムが混合されていることを特徴とする希土類元素の分離装置。
    The rare earth element separation device according to claim 9,
    The starting mixture is a rare earth element separation device, wherein 1 mol of the rare earth oxide is mixed with more than 6 mol and less than 15 mol of the ammonium chloride.
  11.  請求項9または請求項10に記載の希土類元素の分離装置において、
    前記選択的塩化/酸塩化熱処理は、常圧下の熱処理により前記複数種の希土類酸化物と前記塩化アンモニウムとから前記第1群の希土類元素の希土類塩化アンモニウム塩を生成させる素反応と、
    それに引き続いて、減圧下の熱処理により前記希土類塩化アンモニウム塩から前記第1群の希土類元素の希土類塩化物を生成させる素反応を含み、
    当該熱処理中の圧力制御が前記雰囲気制御装置によって行われることを特徴とする希土類元素の分離装置。
    In the rare earth element separation apparatus according to claim 9 or 10,
    The selective chlorination / acidification heat treatment includes an elementary reaction for generating a rare earth ammonium chloride salt of the first group rare earth elements from the plurality of types of rare earth oxides and the ammonium chloride by a heat treatment under normal pressure;
    Subsequently, an elementary reaction of generating a rare earth chloride of the rare earth element of the first group from the rare earth ammonium chloride salt by a heat treatment under reduced pressure,
    A rare earth element separation device, wherein pressure control during the heat treatment is performed by the atmosphere control device.
  12.  請求項7乃至請求項11のいずれかに記載の希土類元素の分離装置において、
    前記第1群の希土類元素が軽希土類元素であり、前記第2群の希土類元素が重希土類元素であることを特徴とする希土類元素の分離装置。
    The rare earth element separation device according to any one of claims 7 to 11,
    The rare earth element separation apparatus, wherein the rare earth element of the first group is a light rare earth element, and the rare earth element of the second group is a heavy rare earth element.
  13.  請求項7乃至請求項11のいずれかに記載の希土類元素の分離装置において、
    前記第1群の希土類元素がネオジムまたはユーロピウムであり、
    前記第2群の希土類元素がイットリウム、テルビウムおよびジスプロシウムから選択される少なくとも1種であることを特徴とする希土類元素の分離装置。
    The rare earth element separation device according to any one of claims 7 to 11,
    The rare earth element of the first group is neodymium or europium;
    The rare earth element separation apparatus, wherein the second group rare earth element is at least one selected from yttrium, terbium and dysprosium.
PCT/JP2012/076210 2012-10-10 2012-10-10 Method and device for separating rare earth elements WO2014057541A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014540658A JP5905592B2 (en) 2012-10-10 2012-10-10 Rare earth element separation method and separation apparatus
PCT/JP2012/076210 WO2014057541A1 (en) 2012-10-10 2012-10-10 Method and device for separating rare earth elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/076210 WO2014057541A1 (en) 2012-10-10 2012-10-10 Method and device for separating rare earth elements

Publications (1)

Publication Number Publication Date
WO2014057541A1 true WO2014057541A1 (en) 2014-04-17

Family

ID=50477030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076210 WO2014057541A1 (en) 2012-10-10 2012-10-10 Method and device for separating rare earth elements

Country Status (2)

Country Link
JP (1) JP5905592B2 (en)
WO (1) WO2014057541A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105969974A (en) * 2016-05-20 2016-09-28 辽宁科技大学 Method for selectively extracting rare-earth metals from rare-earth ores
JP2017098456A (en) * 2015-11-26 2017-06-01 国立大学法人大阪大学 Method for manufacturing grain boundary diffusion treatment agent, and method for manufacturing rare earth-iron-boron based magnet
CN109112317A (en) * 2018-10-16 2019-01-01 内蒙古科技大学 The method of redox rare-earth separating mixture La2O3-Re2O3
CN114377597A (en) * 2021-12-08 2022-04-22 谢桂明 Rare earth solution preparation equipment for extracting rare earth elements

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551208A (en) * 1991-08-22 1993-03-02 Kinya Adachi Individual separation of rare-earth elements utilizing formation of gaseous complex
JP2001303149A (en) * 2000-04-24 2001-10-31 Tetsuya Uda Method for separating rare earth element and composition for separating rare earth element
WO2009119720A1 (en) * 2008-03-26 2009-10-01 財団法人生産技術研究奨励会 Method and apparatus for collection of rare earth element
WO2012137727A1 (en) * 2011-04-08 2012-10-11 株式会社日立製作所 Method for separating and recovering rare earth elements

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551208A (en) * 1991-08-22 1993-03-02 Kinya Adachi Individual separation of rare-earth elements utilizing formation of gaseous complex
JP2001303149A (en) * 2000-04-24 2001-10-31 Tetsuya Uda Method for separating rare earth element and composition for separating rare earth element
WO2009119720A1 (en) * 2008-03-26 2009-10-01 財団法人生産技術研究奨励会 Method and apparatus for collection of rare earth element
WO2012137727A1 (en) * 2011-04-08 2012-10-11 株式会社日立製作所 Method for separating and recovering rare earth elements

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017098456A (en) * 2015-11-26 2017-06-01 国立大学法人大阪大学 Method for manufacturing grain boundary diffusion treatment agent, and method for manufacturing rare earth-iron-boron based magnet
CN105969974A (en) * 2016-05-20 2016-09-28 辽宁科技大学 Method for selectively extracting rare-earth metals from rare-earth ores
CN109112317A (en) * 2018-10-16 2019-01-01 内蒙古科技大学 The method of redox rare-earth separating mixture La2O3-Re2O3
CN114377597A (en) * 2021-12-08 2022-04-22 谢桂明 Rare earth solution preparation equipment for extracting rare earth elements

Also Published As

Publication number Publication date
JPWO2014057541A1 (en) 2016-08-25
JP5905592B2 (en) 2016-04-20

Similar Documents

Publication Publication Date Title
JP6622307B2 (en) Method for extraction and separation of rare earth elements
JP5967210B2 (en) Rare earth element separation method and separation apparatus
JP5401497B2 (en) Rare earth element separation and recovery method
CN104928504B (en) A kind of recovery method of aluminium scrap silicon middle rare earth
US20170175229A1 (en) Methods and composition for sequential isolation of rare earth elements
JP5905592B2 (en) Rare earth element separation method and separation apparatus
JP3950968B2 (en) Method for separating and recovering Y and Eu
JP6017914B2 (en) Rare earth element separation method and separation apparatus
CN104053801B (en) The separation and recovery method of rare earth element
JP2012229483A (en) Method for recovering heavy rare-earth element
Hu et al. Selective extraction of rare earths and lithium from rare earth fluoride molten-salt electrolytic slag by nitration
CA2846930A1 (en) Process for producing rare metal
EP3342886B1 (en) Useful method for separating light rare earth elements and heavy rare earth elements
KR20190109082A (en) Recovery method rare earth elements from waste RE:YAG crystal
JP5983526B2 (en) Recovery method for heavy rare earth elements
Shin et al. Study on the separation and extraction of rare-earth elements from the phosphor recovered from end of life fluorescent lamps
CN115768909A (en) Recovery of rare earth metals from ferromagnetic alloys
Pramanik et al. Recovery of rare earth oxide from phosphor powder of spent fluorescent lamp
RU2622474C1 (en) Method of selective extraction of europium and yttrium from the waste products of phosphors
Li et al. Recovery of rare earths and lithium from rare earth molten salt electrolytic slag by lime transformation, co-leaching and stepwise precipitation.
CN115725867A (en) Method for extracting rare earth from fly ash
JP2019206452A (en) Method for producing R fluoride
JP2001240853A (en) Method of regenerating acid sulfide rare earth fluorescent substance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12886323

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014540658

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12886323

Country of ref document: EP

Kind code of ref document: A1