JP2001240853A - Method of regenerating acid sulfide rare earth fluorescent substance - Google Patents

Method of regenerating acid sulfide rare earth fluorescent substance

Info

Publication number
JP2001240853A
JP2001240853A JP2000054482A JP2000054482A JP2001240853A JP 2001240853 A JP2001240853 A JP 2001240853A JP 2000054482 A JP2000054482 A JP 2000054482A JP 2000054482 A JP2000054482 A JP 2000054482A JP 2001240853 A JP2001240853 A JP 2001240853A
Authority
JP
Japan
Prior art keywords
rare earth
phosphor
oxysulfide
regenerating
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000054482A
Other languages
Japanese (ja)
Inventor
Yoshifumi Nakajo
善文 中條
Mitsuhiro Oikawa
充広 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000054482A priority Critical patent/JP2001240853A/en
Publication of JP2001240853A publication Critical patent/JP2001240853A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Luminescent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of regenerating an acid sulfide rare earth fluorescent substance as rare earth oxide raw material by efficiently dissolving the acid sulfide rare earth fluorescent substance in a simple reacting container in a short time. SOLUTION: This method for regenerating an acid sulfide rare earth fluorescent substance comprises (a) a step for dissolving a fluorescent substance by dispersing the acid sulfide rare earth fluorescent substance into hydrochloric acid and then gradually adding nitric acid to the dispersion, (b) a step for producing rare earth salt of oxalic acid by adding oxalic acid or dimethyl oxalate to the above fluorescent solution and (c) a step for obtaining a rare earth oxide by heat-treating the produced rare earth salt of oxalic acid in this order.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ユーロピウム付活
酸硫化イットリウム蛍光体(Y2 2 S:Eu)などの
酸硫化物希土類蛍光体を分解し、希土類酸化物として再
生する方法に関する。
The present invention relates to a method for decomposing a rare-earth oxysulfide phosphor such as europium-activated yttrium oxysulfide phosphor (Y 2 O 2 S: Eu) and regenerating it as a rare-earth oxide.

【0002】[0002]

【従来の技術】カラーブラウン管の赤色発光蛍光体とし
て、酸硫化物希土類蛍光体であるY22 S:Eu蛍光
体が多用されているが、これらは希土類元素を原料とす
るため高価であり、これを回収して再利用することは、
資源の有効利用のみならず、製造コストを低減する観点
からも重要である。
As a red-emitting phosphor of a color cathode ray tube, a oxysulfide rare phosphor Y 2 O 2 S: although Eu phosphor has been widely used, they are expensive for the rare earth element as a raw material , To collect and reuse this,
This is important from the viewpoint of not only effective use of resources but also reduction of manufacturing costs.

【0003】このため、従来より、酸硫化物希土類蛍光
体について、様々な回収再生技術が開発されている。
[0003] For this reason, various recovery and regeneration techniques have been developed for oxysulfide rare earth phosphors.

【0004】しかしながら、その多くは、カラーブラウ
ン管の蛍光膜の現像過程で生じた蛍光体を高濃度で含有
する余剰の蛍光体スラリーから蛍光体を物理的に回収し
再生するもので、品位の落ちていない蛍光体の回収再生
方法として有用であるものの、品位の落ちた蛍光体や、
飛散した蛍光体スラリーなどの蛍光体含有濃度の低いス
ラッジや、蛍光体の製造過程で発生した蛍光体粒子の浮
遊物などからの回収再生には不適当である。
[0004] However, most of these methods physically recover and regenerate the phosphor from excess phosphor slurry containing a high concentration of the phosphor generated in the process of developing the phosphor film of the color cathode-ray tube. Although it is useful as a method for collecting and regenerating phosphors that are not
It is unsuitable for recovery from sludge having a low phosphor-containing concentration such as scattered phosphor slurry or suspended particles of phosphor particles generated in the process of producing the phosphor.

【0005】このような品位の落ちた蛍光体について
は、捕集した蛍光体を化学的に分解し希土類酸化物原料
として再生する必要があり、例えば、酸硫化物希土類蛍
光体を塩酸、硝酸、硫酸などの鉱酸により溶解し、希土
類イオン溶液として重金属を選択的に沈殿除去した後、
シュウ酸を用いてシュウ酸希土類塩沈殿とし、乾燥後高
温分解して希土類酸化物とする方法などが報告されてい
る。
[0005] With respect to such degraded phosphors, it is necessary to chemically decompose the collected phosphors and regenerate them as a rare earth oxide raw material. For example, oxysulfide rare earth phosphors are converted to hydrochloric acid, nitric acid, After dissolving with a mineral acid such as sulfuric acid and selectively precipitating and removing heavy metals as a rare earth ion solution,
It has been reported that oxalic acid is used to precipitate a rare earth salt using oxalic acid, dried, and then decomposed at a high temperature to obtain a rare earth oxide.

【0006】しかしながら、酸硫化物希土類蛍光体の溶
解に塩酸を用いた場合には、溶解に時間がかかり、ま
た、硝酸では、酸化力が強く溶解反応が急激に進むこと
から、大掛かりな反応容器を必要とするうえ、溶解時に
発生する硫黄を酸化させ、その結果生じる硫酸によって
硫酸希土類塩が析出するようになるため、収率が悪くな
るという難点がある。さらに、硫酸を用いた場合にも、
硝酸の場合と同様硫酸希土類塩が析出し、収率が悪くな
る。
However, when hydrochloric acid is used to dissolve the oxysulfide rare earth phosphor, dissolution takes time, and nitric acid has a strong oxidizing power and the dissolution reaction proceeds rapidly. In addition, sulfur generated at the time of dissolution is oxidized, and the resulting sulfuric acid causes a rare earth sulfate to precipitate, resulting in a poor yield. Furthermore, when sulfuric acid is used,
As in the case of nitric acid, rare earth sulfate precipitates and the yield becomes poor.

【0007】[0007]

【発明が解決しようとする課題】上述したように、品位
の落ちた酸硫化物希土類蛍光体を再利用するには、捕集
した蛍光体を化学的に分解し希土類酸化物原料として再
生する必要があるが、従来の方法では、蛍光体の溶解に
時間がかかる、収率が悪い、大掛かりな反応容器が必要
であるなどの難点があり、未だ、簡便で効率のよい再生
方法は見出されていないのが実状である。
As described above, in order to reuse a degraded oxysulfide rare earth phosphor, it is necessary to chemically decompose the collected phosphor and regenerate it as a rare earth oxide raw material. However, conventional methods have drawbacks such as time-consuming dissolution of the phosphor, poor yield, and the need for a large-scale reaction vessel, and a simple and efficient regeneration method has been found. The fact is that they have not.

【0008】本発明はこのような課題に対処するために
なされたもので、酸硫化物希土類蛍光体を簡単な反応容
器で短時間に効率よく溶解して希土類酸化物原料として
再生することができる酸硫化物希土類蛍光体の再生方法
を提供することを目的としている。
The present invention has been made in order to solve such a problem, and it is possible to efficiently dissolve a rare-earth oxysulfide phosphor in a simple reaction vessel in a short time and regenerate it as a rare-earth oxide raw material. An object of the present invention is to provide a method for regenerating an oxysulfide rare earth phosphor.

【0009】[0009]

【課題を解決するための手段】本発明の酸硫化物希土類
蛍光体の再生方法は、請求項1に記載したように、
(a)酸硫化物希土類蛍光体を塩酸に分散させた後、こ
の分散液中に硝酸を徐々に添加して前記蛍光体を溶解す
る工程、(b)前記蛍光体溶液にシュウ酸および/また
はシュウ酸ジメチルを添加して、シュウ酸希土類塩を生
成する工程、および(c)生成されたシュウ酸希土類塩
を熱処理して希土類酸化物を得る工程とを順に含むこと
を特徴としている。
According to a first aspect of the present invention, there is provided a method for regenerating an oxysulfide rare earth phosphor.
(A) dispersing the oxysulfide rare earth phosphor in hydrochloric acid, and then gradually adding nitric acid to the dispersion to dissolve the phosphor, (b) oxalic acid and / or It is characterized in that it includes a step of adding dimethyl oxalate to form a rare earth oxalate and a step (c) of heat-treating the resulting rare earth oxalate to obtain a rare earth oxide.

【0010】本発明においては、請求項2に記載したよ
うに、前記(c)の工程の後に、(d)希土類酸化物に
融剤を添加して焼成する工程を行ってもよい。
In the present invention, as described in claim 2, after the step (c), a step (d) of adding a flux to the rare earth oxide and firing may be performed.

【0011】上記した本発明の酸硫化物希土類蛍光体の
再生方法においては、請求項3に記載したように、
(a)の工程において、硝酸の分散液中への添加速度を
0.5ml/分/蛍光体1kg〜2.0ml/分/蛍光体1kgとするこ
とが好ましい。
In the above-mentioned method for regenerating an oxysulfide rare earth phosphor according to the present invention,
In the step (a), the rate of addition of nitric acid to the dispersion is
It is preferable to set 0.5 ml / min / kg of phosphor to 2.0 ml / min / kg of phosphor.

【0012】また、請求項4に記載したように、(c)
の工程において、熱処理温度を700℃〜1100℃とするこ
とが好ましく、また、請求項5に記載したように、
(c)の工程において、生成されたシュウ酸希土類塩を
水洗し、ろ過、乾燥させた後、熱処理を行うことが望ま
しい。
Also, as described in claim 4, (c)
In the step, the heat treatment temperature is preferably set to 700 ° C to 1100 ° C, and as described in claim 5,
In the step (c), it is desirable that the generated rare earth oxalate is washed with water, filtered and dried, and then heat-treated.

【0013】本発明においては、酸硫化物希土類蛍光体
を塩酸に分散させた後、この分散液中に硝酸を徐々に添
加することにより、蛍光体を短時間に溶解することがで
きる。すなわち、塩酸の単独処理に比べ、溶解時間が大
幅に短縮される。しかも、溶解の際に発生する硫黄に対
する硝酸の酸化作用が抑制されるため、希土類元素が硫
酸塩として析出することが減り、収率よく希土類酸化物
として回収再生することができる。また、溶解時間は短
縮されるものの、従来の硝酸を単独で用いて処理する場
合のように溶解反応が激しく進むことはないため、大掛
かりな反応容器を用いる必要がなく、再生に要する費用
を低減することができる。
In the present invention, the phosphor can be dissolved in a short time by dispersing the oxysulfide rare earth phosphor in hydrochloric acid and then gradually adding nitric acid to the dispersion. That is, the dissolution time is significantly reduced as compared with the case of treating hydrochloric acid alone. In addition, since the oxidizing effect of nitric acid on sulfur generated at the time of dissolution is suppressed, the rare earth element is less likely to precipitate as a sulfate, and can be recovered and regenerated as a rare earth oxide with a high yield. In addition, although the dissolution time is shortened, the dissolution reaction does not proceed violently as in the case of treatment using conventional nitric acid alone, so that there is no need to use a large-scale reaction vessel and the cost for regeneration is reduced. can do.

【0014】[0014]

【発明の実施の形態】以下、本発明を実施するための形
態について説明する。
Embodiments of the present invention will be described below.

【0015】本発明においては、まず、酸硫化物希土類
蛍光体を塩酸に分散させた後、この分散液中に硝酸を徐
々に添加して蛍光体を溶解する(工程(a))。
In the present invention, first, an oxysulfide rare earth phosphor is dispersed in hydrochloric acid, and then nitric acid is gradually added to the dispersion to dissolve the phosphor (step (a)).

【0016】酸硫化物希土類蛍光体としては、一般式:
Re22S(式中、ReはY、La、Ce、Pr、N
d、Pm、Sm、Eu、Gd、Tb、Dy、Ho、E
r、Tm、YbおよびLuから選ばれる少なくとも2種
の希土類元素である)で実質的に表される蛍光体が例示
される。この酸硫化物希土類蛍光体は、蛍光体の製造過
程でロス分として回収されたものであってもよく、カラ
ーブラウン管の蛍光膜の形成過程で余剰もしくはロス分
として回収された蛍光体であってもよい。また、それら
の蛍光体から不純物を除去するなどの処理を施した後の
蛍光体であってもよく、それらの処理工程中にロス分と
して回収された蛍光体であってもよい。
The oxysulfide rare earth phosphor has a general formula:
Re 2 O 2 S (where Re is Y, La, Ce, Pr, N
d, Pm, Sm, Eu, Gd, Tb, Dy, Ho, E
and at least two rare earth elements selected from r, Tm, Yb and Lu). This oxysulfide rare earth phosphor may be recovered as a loss in the manufacturing process of the phosphor, or may be recovered as surplus or loss in the process of forming the fluorescent film of the color cathode ray tube. Is also good. Further, the phosphor may be a phosphor that has been subjected to a treatment such as removal of impurities from the phosphor, or may be a phosphor that has been recovered as a loss during the treatment process.

【0017】このような蛍光体は、必要に応じて脱イオ
ン水などの純水に分散させ、ろ過して異物などを除去し
た後、塩酸に分散させる。塩酸には、21重量%〜38重量
%濃度のものを用いることが好ましい。また、その量
は、蛍光体(固形分換算)100重量部に対して通常50重
量部〜150重量部、好ましくは80重量部〜100重量部であ
る。50重量部未満では硫酸塩が増え希土類酸化物の収率
が低下し、150重量部を超えると過激な反応を起こしや
すく大掛かりな反応容器が必要となる。塩酸への分散
は、撹拌することによって行うことができ、その間、液
温を50℃〜90℃に加熱保持することが好ましい。
Such a phosphor is dispersed in pure water such as deionized water, if necessary, filtered to remove foreign substances, and then dispersed in hydrochloric acid. It is preferable to use hydrochloric acid having a concentration of 21% by weight to 38% by weight. The amount is usually 50 parts by weight to 150 parts by weight, preferably 80 parts by weight to 100 parts by weight, based on 100 parts by weight of the phosphor (in terms of solid content). If the amount is less than 50 parts by weight, the amount of sulfate increases and the yield of rare earth oxides decreases. If the amount exceeds 150 parts by weight, a radical reaction is likely to occur and a large-scale reaction vessel is required. Dispersion in hydrochloric acid can be performed by stirring, and during that time, it is preferable to heat and maintain the liquid temperature at 50 ° C to 90 ° C.

【0018】蛍光体を塩酸に分散させた後、この分散液
中に、好ましくは分散液を攪拌しながら、硝酸を徐々に
添加する。硝酸は、通常、62重量%〜72重量%濃度のも
のを、0.5ml/分/蛍光体1kg〜2.0ml/分/蛍光体1kg、
好ましくは0.8ml/分/蛍光体1kg〜1.2ml/分/蛍光体1
kgの添加速度で、総量が、蛍光体(固形分換算)100重
量部に対して50重量部〜150重量部、好ましくは80重量
部〜100重量部となる量添加する。添加速度が0.5ml/分
/蛍光体1kg未満では溶解に長時間を要し、2.0ml/分/
蛍光体1kgを超えると溶解反応が過激となり大掛かりな
反応容器が必要となる。また、硝酸の総量が蛍光体(固
形分換算)100重量部に対して50重量部未満では溶解が
長時間となり、150重量部を超えると硫酸塩が増大し希
土類酸化物の収率が低下する。添加後、0.5時間〜3時間
程度撹拌を続けることにより、蛍光体は溶解し、希土類
元素イオン溶液が得られる。
After the phosphor is dispersed in hydrochloric acid, nitric acid is gradually added to the dispersion, preferably while stirring the dispersion. Nitric acid is usually used at a concentration of 62% by weight to 72% by weight, and 0.5 ml / min / 1 kg of phosphor to 2.0 ml / min / 1 kg of phosphor,
Preferably 0.8 ml / min / phosphor 1 kg-1.2 ml / min / phosphor 1
At an addition rate of kg, the total amount is 50 to 150 parts by weight, preferably 80 to 100 parts by weight, per 100 parts by weight of the phosphor (in terms of solid content). If the addition rate is less than 0.5 ml / min / 1 kg of phosphor, it takes a long time to dissolve, and 2.0 ml / min /
If the phosphor exceeds 1 kg, the dissolution reaction becomes excessive and a large-scale reaction vessel is required. If the total amount of nitric acid is less than 50 parts by weight per 100 parts by weight of the phosphor (in terms of solid content), the dissolution will take a long time, and if it exceeds 150 parts by weight, the amount of sulfate increases and the yield of rare earth oxides decreases. . By continuing the stirring for about 0.5 to 3 hours after the addition, the phosphor is dissolved, and a rare earth element ion solution is obtained.

【0019】次に、上記工程で得られた希土類元素イオ
ン溶液にシュウ酸および/またはシュウ酸ジメチルを添
加し撹拌して、シュウ酸希土類塩を生成する(工程
(b))。
Next, oxalic acid and / or dimethyl oxalate are added to the rare earth element ion solution obtained in the above step and stirred to produce a rare earth oxalate salt (step (b)).

【0020】工程(a)で得られた希土類元素イオン溶
液は、必要に応じて、静置槽に移し、静置させて不純物
を沈降除去するようにしてもよい。静置は、通常、24時
間以上行う。このようにして不純物を除去した希土類元
素イオン溶液は、必要に応じて、さらに、ろ過処理を施
すようにしてもよく、この処理により不純物をより確実
に除去することができる。
The rare earth element ion solution obtained in the step (a) may be transferred to a stationary tank and left standing to remove impurities by settling if necessary. The standing is usually performed for 24 hours or more. The rare-earth element ion solution from which the impurities have been removed in this manner may be subjected to a filtration treatment, if necessary, whereby the impurities can be more reliably removed.

【0021】この工程(b)で添加するシュウ酸および
/またはシュウ酸ジメチルの量は、通常、蛍光体(固形
分換算)100重量部に対して110重量部〜390重量部、好
ましくは120重量部〜220重量部である。添加量が蛍光体
(固形分換算)100重量部に対して110重量部未満ではシ
ュウ酸希土類塩生成反応が進まず希土類酸化物の収率が
低下する。また、390重量部を超えるとシュウ酸希土類
塩生成反応に寄与しない過剰添加となる。なお、このシ
ュウ酸などの添加は、溶液を55℃〜90℃に加熱保持する
とともに、溶液を攪拌しながら行うことが望ましい。添
加後、0.5時間〜2時間程度撹拌を続けることにより、希
土類元素イオンはシュウ酸などと反応し、シュウ酸希土
類塩が生成される。
The amount of oxalic acid and / or dimethyl oxalate added in this step (b) is usually 110 to 390 parts by weight, preferably 120 parts by weight, per 100 parts by weight of the phosphor (in terms of solid content). Parts to 220 parts by weight. If the amount of addition is less than 110 parts by weight with respect to 100 parts by weight of the phosphor (in terms of solid content), the rare earth oxalate salt formation reaction does not proceed, and the yield of rare earth oxide decreases. On the other hand, if it exceeds 390 parts by weight, it becomes excessive addition not contributing to the rare earth oxalate salt formation reaction. It is desirable that the addition of oxalic acid and the like be performed while the solution is heated and maintained at 55 to 90 ° C. and the solution is stirred. By continuing stirring for about 0.5 to 2 hours after the addition, the rare earth element ion reacts with oxalic acid or the like to generate a rare earth oxalate.

【0022】この後、静置してシュウ酸希土類塩を沈降
させ、上澄み液を除去し、必要に応じて水洗、ろ過、乾
燥した後、熱処理する(工程(c))。
Thereafter, the mixture is allowed to stand to sediment the rare earth oxalate, and the supernatant is removed. If necessary, it is washed with water, filtered and dried, and then heat-treated (step (c)).

【0023】水洗は、脱イオン水や蒸留水のような純水
を用いて、上澄み液のpHが5.0以上になるまで繰り返
し洗浄することが望ましく、洗浄後、ろ過して固形分を
取り出し、例えば約150℃で約12時間乾燥させ、水分を
完全に除去する。
In the water washing, it is preferable that the supernatant is repeatedly washed with pure water such as deionized water or distilled water until the pH of the supernatant becomes 5.0 or more. Dry at about 150 ° C. for about 12 hours to completely remove water.

【0024】熱処理は、連続式焙焼炉などを用いて、分
離したシュウ酸希土類塩を700℃〜1100℃で1時間〜4時
間、好ましくは800℃〜1000℃で、2時間〜3時間行う。
この結果、十分に精製された希土類酸化物が得られる。
The heat treatment is performed using a continuous roasting furnace or the like to separate the rare earth oxalate at 700 ° C. to 1100 ° C. for 1 hour to 4 hours, preferably at 800 ° C. to 1000 ° C. for 2 hours to 3 hours. .
As a result, a sufficiently purified rare earth oxide is obtained.

【0025】このようにして得られた希土類酸化物は、
融剤を加えて焼成する(工程(d))ことにより、再利
用可能な再生蛍光体を得ることができる。
The rare earth oxide thus obtained is
By adding the flux and firing (step (d)), a reusable regenerated phosphor can be obtained.

【0026】例えば、融剤として塩化バリウムや塩化マ
グネシウムなどを用い、空気中で1150℃〜1500℃で1時
間〜6時間加熱焼成することにより、酸化物希土類蛍光
体を得ることができる。
For example, by using barium chloride, magnesium chloride, or the like as a flux and heating and firing in air at 1150 ° C. to 1500 ° C. for 1 hour to 6 hours, a rare earth oxide phosphor can be obtained.

【0027】また、融剤として炭酸ナトリウムや炭酸カ
リウムなどのアルカリ金属炭酸塩と硫黄と燐酸カリウム
などを用い、空気中で800℃〜1250℃で1時間〜6時間加
熱焼成することにより、酸硫化物希土類蛍光体を得るこ
とができる。
Further, calcination is carried out by heating at 800 ° C. to 1250 ° C. for 1 hour to 6 hours in air using an alkali metal carbonate such as sodium carbonate or potassium carbonate, sulfur and potassium phosphate as a flux. A rare earth phosphor can be obtained.

【0028】得られた再生蛍光体は、必要に応じて、蛍
光体を新規に製造する際に行われているような、ろ過、
乾燥、篩別などの最終的な精製を適宜行い、実用に供さ
れる。
If necessary, the obtained regenerated phosphor may be subjected to filtration, filtration, etc., as performed when a new phosphor is produced.
Final purification such as drying and sieving is performed as appropriate, and the product is put to practical use.

【0029】上述したように、本発明の酸硫化物希土類
蛍光体の再生方法によれば、酸硫化物希土類蛍光体を塩
酸に分散させた後、この分散液中に硝酸を徐々に添加し
て蛍光体を溶解する。この溶解反応は速やかに進行する
ものの、従来の硝酸に蛍光体を投入して溶解させる場合
のような急激な反応を生ずることはなく、また、硫酸希
土類塩の析出も抑えらるため、一般的な反応容器を使用
して、酸硫化物希土類蛍光体を短時間に効率よく分解し
て、高収率で希土類酸化物として再生することができ、
また、このように再生された希土類酸化物を原料とし
て、再利用可能な再生蛍光体を得ることができる。本発
明の酸硫化物希土類蛍光体の再生方法は、特に、いわゆ
る物理的再生方法では再生が困難な品位の落ちた酸硫化
物希土類蛍光体の再生方法として有用である。
As described above, according to the method for regenerating an oxysulfide rare earth phosphor of the present invention, after the oxysulfide rare earth phosphor is dispersed in hydrochloric acid, nitric acid is gradually added to the dispersion. Dissolve the phosphor. Although this dissolution reaction proceeds promptly, it does not cause a rapid reaction as in the case where a phosphor is thrown into and dissolved in conventional nitric acid, and also suppresses the precipitation of rare earth sulfate, which is a general reaction. By using a simple reaction vessel, the oxysulfide rare earth phosphor can be efficiently decomposed in a short time and regenerated as a rare earth oxide in high yield.
In addition, a reusable regenerated phosphor can be obtained using the regenerated rare earth oxide as a raw material. The method for regenerating an oxysulfide rare earth phosphor of the present invention is particularly useful as a method for regenerating a degraded oxysulfide rare earth phosphor which is difficult to regenerate by a so-called physical regeneration method.

【0030】[0030]

【実施例】次に、本発明の具体的な実施例を記載する
が、本発明はこの実施例により限定されるものではな
い。
EXAMPLES Next, specific examples of the present invention will be described, but the present invention is not limited to these examples.

【0031】実施例 ユーロピウム付活酸硫化イットリウム蛍光体100kg(固
形分換算)を、反応槽(1tGLリアクター)内に収容
した430l(リットル)の21%塩酸中に投入し、液温を7
0℃に加熱保持しながら撹拌した。蛍光体が十分分散し
たところで、分散液中に67.5%硝酸を100ml/分の速度で
100l(リットル)添加し、さらに2時間撹拌を続けた。
EXAMPLE 100 kg (solid content) of europium-activated yttrium oxysulfide phosphor was put into 430 l (liter) of 21% hydrochloric acid housed in a reaction tank (1 tGL reactor), and the liquid temperature was reduced to 7%.
The mixture was stirred while maintaining the temperature at 0 ° C. When the phosphor is sufficiently dispersed, 67.5% nitric acid is dispersed in the dispersion at a rate of 100 ml / min.
100 l were added and stirring was continued for another 2 hours.

【0032】次いで、上記撹拌液を静置槽に移し、24時
間以上静置させて、不純物を沈降させ、上澄み液をメン
ブランフィルタに通過させてろ過した。
Next, the above-mentioned stirred liquid was transferred to a stationary tank and allowed to stand for 24 hours or more to precipitate impurities, and the supernatant was passed through a membrane filter and filtered.

【0033】ろ液を反応槽に移し、加熱して液温を60℃
にまで昇温させた後、攪拌しながら固形シュウ酸130kg
を添加し、さらに1時間攪拌を続けた。その後、静置し
て反応生成物を沈降させ、上澄み液を系外に除去した。
次いで、純水を用いて上澄み液のpHが5.0以上になる
まで水洗を繰り返し行った。
The filtrate was transferred to a reaction vessel and heated to a temperature of 60 ° C.
After heating to 130 kg of solid oxalic acid with stirring
Was added and stirring was continued for another hour. Thereafter, the reaction product was allowed to settle by standing, and the supernatant was removed from the system.
Next, washing with water was repeatedly performed using pure water until the pH of the supernatant became 5.0 or more.

【0034】洗浄した反応生成物をろ過し、150℃で12.
0時間乾燥した後、アルミナ質トレーに投入し、連続式
焙焼炉にて900℃で3時間焙焼して、90kg(理論収量値93
kgの96.8%に相当)の希土類酸化物(Y23・Eu
23)を得た。
[0034] The washed reaction product is filtered and dried at 150 ° C for 12.
After drying for 0 hours, the mixture is put into an alumina tray and roasted in a continuous roasting furnace at 900 ° C. for 3 hours, and 90 kg (theoretical yield value 93
kg (equivalent to 96.8%) of rare earth oxides (Y 2 O 3 .Eu)
2 O 3 ) was obtained.

【0035】得られた希土類酸化物100gに、融剤として
炭酸ナトリウム35g、硫黄35gおよび燐酸カリウム8gを添
加し十分に混合した。この混合物を石英るつぼに充墳
し、空気中にて1150℃で240分間焼成した。
To 100 g of the obtained rare earth oxide, 35 g of sodium carbonate, 35 g of sulfur and 8 g of potassium phosphate were added as fluxes and mixed well. This mixture was filled in a quartz crucible and fired in air at 1150 ° C. for 240 minutes.

【0036】この焼成物を純水にて数回洗浄し、次に、
0.5%鉱酸水溶液で洗浄した後、再度純水にて上澄み液
のpHが5.2以上になるまで洗浄を繰り返した後、ろ
過、乾燥し、篩別して、ユーロピウム付活酸硫化イット
リウム蛍光体(Y2S:Eu)を得た。
The fired product is washed with pure water several times, and then
After washing with a 0.5% mineral acid aqueous solution, the washing was repeated with pure water until the pH of the supernatant became 5.2 or more, followed by filtration, drying and sieving to obtain a europium-activated yttrium oxysulfide phosphor (Y 2 O 2 S: Eu) was obtained.

【0037】得られた蛍光体の発光特性を調べたとこ
ろ、新製造品の蛍光体と何ら遜色はなく、再生蛍光体と
して十分に使用できることがわかった。
Examination of the luminescent properties of the obtained phosphor revealed that it was comparable to the newly manufactured phosphor, and could be sufficiently used as a regenerated phosphor.

【0038】比較例 実施例で用いたのと同じユーロピウム付活酸硫化イット
リウム蛍光体100kg(固形分換算)を、反応槽内に収容
した430l(リットル)の21%塩酸中に投入し、液温を7
0℃に加熱保持しながら48時間撹拌したが、蛍光体はほ
とんど溶解せず、再生に供することはできなかった。
COMPARATIVE EXAMPLE The same europium-activated yttrium oxysulfide phosphor 100 kg (in terms of solid content) as used in the examples was charged into 430 liters (liters) of 21% hydrochloric acid contained in a reaction vessel. 7
The mixture was stirred for 48 hours while maintaining the temperature at 0 ° C. However, the phosphor was hardly dissolved and could not be used for regeneration.

【0039】[0039]

【発明の効果】以上説明したように、本発明の酸硫化物
希土類蛍光体の再生方法によれば、酸硫化物希土類蛍光
体を塩酸に分散させた後、この分散液中に硝酸を徐々に
添加して溶解するようにしたので、酸硫化物希土類蛍光
体を簡単な反応容器で短時間に効率よく溶解することが
可能となるうえ、得られる希土類酸化物の収率を高める
ことができる。
As described above, according to the method for regenerating an oxysulfide rare earth phosphor of the present invention, nitric acid is gradually added to the dispersion after the oxysulfide rare earth phosphor is dispersed in hydrochloric acid. Since it is added and dissolved, the oxysulfide rare earth phosphor can be efficiently dissolved in a simple reaction vessel in a short time, and the yield of the obtained rare earth oxide can be increased.

フロントページの続き Fターム(参考) 4G076 AA02 AA13 AB08 AB28 BB08 BC07 BE09 BF09 DA11 4H001 CA06 CF01 CF02 XA00 XA08 XA16 XA39 Continued on the front page F term (reference) 4G076 AA02 AA13 AB08 AB28 BB08 BC07 BE09 BF09 DA11 4H001 CA06 CF01 CF02 XA00 XA08 XA16 XA39

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 (a)酸硫化物希土類蛍光体を塩酸に分
散させた後、この分散液中に硝酸を徐々に添加して前記
蛍光体を溶解する工程、 (b)前記蛍光体溶液にシュウ酸および/またはシュウ
酸ジメチルを添加して、シュウ酸希土類塩を生成する工
程、および (c)生成されたシュウ酸希土類塩を熱処理して希土類
酸化物を得る工程とを順に含むことを特徴とする酸硫化
物希土類蛍光体の再生方法。
(A) dispersing an oxysulfide rare earth phosphor in hydrochloric acid, and then gradually adding nitric acid to the dispersion to dissolve the phosphor; (b) adding a phosphoric acid solution to the phosphor solution; A step of adding oxalic acid and / or dimethyl oxalate to generate a rare earth oxalate; and (c) a step of heat-treating the generated rare earth oxalate to obtain a rare earth oxide. A method for regenerating an oxysulfide rare earth phosphor.
【請求項2】 前記(c)の工程の後に、(d)希土類
酸化物に融剤を添加して焼成する工程を含むことを特徴
とする請求項1記載の酸硫化物希土類蛍光体の再生方
法。
2. The regeneration of an oxysulfide rare earth phosphor according to claim 1, further comprising, after the step (c), a step of (d) adding a flux to the rare earth oxide and firing the rare earth oxide. Method.
【請求項3】 前記(a)の工程における硝酸の分散液
中への添加速度が0.5ml/分/蛍光体1kg〜2.0ml/分/
蛍光体1kgであることを特徴とする請求項1または2記
載の酸硫化物希土類蛍光体の再生方法。
3. The rate of addition of nitric acid to the dispersion in the step (a) is 0.5 ml / min / phosphor 1 kg to 2.0 ml / min /
3. The method for regenerating an oxysulfide rare earth phosphor according to claim 1, wherein the phosphor is 1 kg.
【請求項4】 前記(c)の工程における熱処理温度が
700℃〜1100℃であることを特徴とする請求項1乃至3
のいずれか1項記載の酸硫化物希土類蛍光体の再生方
法。
4. The heat treatment temperature in the step (c) is
The temperature is from 700 ° C. to 1100 ° C.
The method for regenerating an oxysulfide rare earth phosphor according to any one of the above.
【請求項5】 前記(c)の工程において、生成された
シュウ酸希土類塩を水洗し、ろ過、乾燥させた後、熱処
理を行うことを特徴とする請求項1乃至4のいずれか1
項記載の酸硫化物希土類蛍光体の再生方法。
5. The method according to claim 1, wherein in the step (c), the generated rare earth oxalate is washed with water, filtered, dried, and then subjected to a heat treatment.
The method for regenerating an oxysulfide rare earth phosphor according to the above item.
【請求項6】 酸硫化物希土類蛍光体が、一般式:Re
22S(式中、ReはY、La、Ce、Pr、Nd、P
m、Sm、Eu、Gd、Tb、Dy、Ho、Er、T
m、YbおよびLuから選ばれる少なくとも2種の希土
類元素である)で実質的に表される蛍光体である請求項
1乃至5のいずれか1項記載の酸硫化物希土類蛍光体の
再生方法。
6. The oxysulfide rare earth phosphor has a general formula: Re
2 O 2 S (where Re is Y, La, Ce, Pr, Nd, P
m, Sm, Eu, Gd, Tb, Dy, Ho, Er, T
The method for regenerating an oxysulfide rare earth phosphor according to any one of claims 1 to 5, wherein the phosphor is substantially represented by at least two kinds of rare earth elements selected from m, Yb and Lu).
【請求項7】 酸硫化物希土類蛍光体が、ユーロピウム
付活酸硫化イットリウム蛍光体である請求項6記載の酸
硫化物希土類蛍光体の再生方法。
7. The method for regenerating an oxysulfide rare earth phosphor according to claim 6, wherein the oxysulfide rare earth phosphor is a europium-activated yttrium oxysulfide phosphor.
JP2000054482A 2000-02-29 2000-02-29 Method of regenerating acid sulfide rare earth fluorescent substance Withdrawn JP2001240853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000054482A JP2001240853A (en) 2000-02-29 2000-02-29 Method of regenerating acid sulfide rare earth fluorescent substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000054482A JP2001240853A (en) 2000-02-29 2000-02-29 Method of regenerating acid sulfide rare earth fluorescent substance

Publications (1)

Publication Number Publication Date
JP2001240853A true JP2001240853A (en) 2001-09-04

Family

ID=18575730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000054482A Withdrawn JP2001240853A (en) 2000-02-29 2000-02-29 Method of regenerating acid sulfide rare earth fluorescent substance

Country Status (1)

Country Link
JP (1) JP2001240853A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100412397B1 (en) * 2001-11-05 2003-12-24 한국화학연구원 La and Eu separation method of useless three wave fluorescent lamp

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100412397B1 (en) * 2001-11-05 2003-12-24 한국화학연구원 La and Eu separation method of useless three wave fluorescent lamp

Similar Documents

Publication Publication Date Title
JP5424873B2 (en) Recovery method of rare earth from fluorescent lamp
KR102441721B1 (en) Method for extraction and separation of rare earth elements
RU2562989C1 (en) Method of preparing vanadium oxide
JP5326040B2 (en) Method for recovering rare earth elements from solid mixtures containing halophosphate and one or more rare earth element compounds
WO2011106167A1 (en) Rare earth recovery from fluorescent material and associated method
CN104928475A (en) Recycling method of rare earth-containing aluminum silicon waste material
CN1064109A (en) The treatment process of ores containing rare earths
JP4997600B2 (en) Method for recovering rare earth elements from phosphors
JP5905592B2 (en) Rare earth element separation method and separation apparatus
KR20190109082A (en) Recovery method rare earth elements from waste RE:YAG crystal
US2900231A (en) Process for extracting rare earths from ores and residues
JP2001240853A (en) Method of regenerating acid sulfide rare earth fluorescent substance
JPH06329414A (en) Production of rare earth fluoride
JP2001288460A (en) Production method for rare earth phosphor
US3653813A (en) Process for preparing rare earth normal tungstates
JPS6158533B2 (en)
DE102014224015B4 (en) Process for the recovery of rare earths from rare earth-containing phosphors
KR900004232B1 (en) Method of recovery of red-luminescnet
US3646080A (en) Complex europium salt
JPH0331644B2 (en)
KR20180014331A (en) Apparatus for recovering rare earth metal ion and recovering method for rare earth metal ion using the same
JPH0747396A (en) Retreatment of residue of treated fluorine in waste liquid
JP2590494B2 (en) Rare earth element precipitation recovery method
JP2023181678A (en) Improved production method for double sulfate of rare earth element
JP2003160783A (en) Method for producing rare earth oxide

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070501