WO2014056767A1 - Appareil frigorifique comprenant deux évaporateurs - Google Patents

Appareil frigorifique comprenant deux évaporateurs Download PDF

Info

Publication number
WO2014056767A1
WO2014056767A1 PCT/EP2013/070501 EP2013070501W WO2014056767A1 WO 2014056767 A1 WO2014056767 A1 WO 2014056767A1 EP 2013070501 W EP2013070501 W EP 2013070501W WO 2014056767 A1 WO2014056767 A1 WO 2014056767A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
diverter valve
refrigerant
input
outlet
Prior art date
Application number
PCT/EP2013/070501
Other languages
German (de)
English (en)
Inventor
Andreas BABUCKE
Original Assignee
BSH Bosch und Siemens Hausgeräte GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Bosch und Siemens Hausgeräte GmbH filed Critical BSH Bosch und Siemens Hausgeräte GmbH
Priority to CN201380052861.8A priority Critical patent/CN104903663B/zh
Priority to EP13771483.8A priority patent/EP2906882B1/fr
Publication of WO2014056767A1 publication Critical patent/WO2014056767A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/22Disposition of valves, e.g. of on-off valves or flow control valves between evaporator and compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/022Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures with two or more evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/052Compression system with heat exchange between particular parts of the system between the capillary tube and another part of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/054Compression system with heat exchange between particular parts of the system between the suction tube of the compressor and another part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/05Refrigerant levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Definitions

  • the invention relates to a refrigeration device with a refrigerant circuit having a compressor and at least a first evaporator and a second evaporator, wherein the refrigerant circuit has a main branch and at least a first parallel branch and a second parallel branch, wherein the compressor in the main branch, the first evaporator in the first Parallel branch and the second evaporator in the second parallel branch are arranged, and wherein between a discharge of the compressor and an inlet of the first evaporator and an inlet of the second evaporator, a diverter valve having an input and at least a first output and a second output is arranged, wherein the input with the refrigerant circuit, the first output with the first parallel branch and the second output with the second parallel branch is connected refrigerant leading.
  • Refrigeration appliances in particular designed as household appliances refrigerators are known and are used to housekeeping in households or in the catering sector to store perishable food and / or drinks at certain temperatures.
  • a refrigeration device with a refrigerant circuit which in addition to a compressor has two evaporators, which are both arranged in the refrigerant circuit parallel to each other.
  • the refrigerant circuit further comprises a 3/2-way valve which is connected to an outlet of the compressor and each having an inlet of the two evaporators.
  • Each of the two evaporators is assigned a refrigeration compartment.
  • the evaporators must each be operated with an optimum filling level in order to achieve a high evaporation temperature.
  • the refrigerant circuit is closed to the evaporator of the second refrigeration compartment and only the evaporator of the first Refrigeration compartment charged with refrigerant.
  • An alternative solution to this is a check valve which is arranged between the compressor and one of the two evaporators.
  • the present invention is based on the finding that, by completely separating one of the two evaporators, the respectively non-separated evaporator can be operated with an optimum filling level.
  • the object according to the invention is achieved by a refrigeration device in which a second diverter valve with at least one first input, one second input and one output is arranged between a compressor inlet of the compressor and an evaporator outlet of the first evaporator and an evaporator outlet of the second evaporator, wherein the first input to the first parallel branch, the second input to the second parallel branch and the output to the refrigerant circuit is refrigerant leading.
  • first diverter valve refrigerant can be selectively directed into the first or second parallel branch, and with the second diverter valve, either the first or second parallel branch can be connected to the refrigerant circuit.
  • Both the first diverter valve and the second diverter valve may be 3/2-way valves. 3/2-way valves have two valve seats, whereby alternately always one of the two valve seats remains open or closed.
  • a first throttle is arranged between the first diverter valve and the evaporator inlet of the first evaporator, and a second throttle is arranged between the second diverter valve and the evaporator inlet of the second evaporator.
  • a Saugrohr- throttle tube heat exchanger is disposed in the refrigerant circuit between the compressor and the first evaporator and the second evaporator, which is heat-transmitting connected to the first throttle and / or with the second throttle.
  • the first diverter valve has a first switching position, in which the first outlet of the first diverter valve for refrigerant is permeably connected to the evaporator inlet of the first evaporator, and the second outlet of the first diverter valve is impermeable to the refrigerant.
  • the first diverter valve has a second switching position in which the second outlet of the first diverter valve is connected permeably to the evaporator inlet of the second evaporator, and the first outlet of the first diverter valve is impermeable to refrigerant.
  • the second diverter valve has a first switching position, in which the first input of the second diverter valve for refrigerant is permeably connected to the evaporator outlet of the first evaporator, and the second input of the second diverter valve is blocked impermeable to refrigerant.
  • the second diverter valve has a second switching position, in which the second input of the second diverter valve is connected permeably to the evaporator outlet of the second evaporator, and the first input of the second diverter valve is impermeable to the refrigerant.
  • the refrigeration device is operable in a normal operation, in which at least temporarily the first diverter valve in the first switching position and the second diverter valve are simultaneously in the first switching position.
  • the refrigeration device is operable in a normal mode, in which at least temporarily the first diverter valve in the second switching position and the second diverter valve are simultaneously in the second switching position.
  • the refrigeration device is operable in a transfer mode in which at least temporarily the first diverter valve in the first switching position and the second diverter valve in the second switching position are simultaneously.
  • the technical advantage is achieved that refrigerant can be displaced from a first evaporator in the second evaporator.
  • the degree of filling can be adjusted by operation in transmission mode.
  • the refrigeration device is operable in a transfer mode, in which at least temporarily the first diverter valve in the second switching position and the second diverter valve in the first switching position are simultaneously.
  • the refrigerant circuit has a condenser, wherein a stop valve is provided between the condenser and the first diverter valve.
  • a stop valve is provided between the condenser and the first diverter valve.
  • the refrigeration device has a control that is connected at least to the first diverter valve and the second diverter valve for driving the first diverter valve and the second diverter valve.
  • control is at least connected to a temperature sensor for transmitting measuring signals.
  • FIG. 1 is a front view of a refrigerator
  • Fig. 2 is a schematic representation of a refrigerant circuit of the refrigerator of FIG. 1.
  • Fig. 1 shows a refrigerator as an exemplary embodiment of a refrigeration device 100.
  • the refrigeration device 100 is formed in the present embodiment as a refrigerator-freezer combination and further comprises in the present embodiment, a twin-Nofrost system.
  • the refrigeration appliance 100 has a first, upper refrigeration compartment 102, which is designed as a freezer compartment in the present exemplary embodiment.
  • a second, lower cooling compartment 104 which is formed in the present embodiment as a cooling compartment.
  • the refrigerant circuit 200 has a compressor 202, a condenser 204, a stop valve 206, a first diverter valve 208, a first throttle 210, a second throttle 212, a first evaporator 214, a second evaporator 216, a second diverter valve 218, and an intake manifold throttle tube heat exchanger 220.
  • the compressor 202 is in the present embodiment, a mechanically driven component, the refrigerant vapor from one of the two evaporators 214, 216 sucks and promotes against a higher pressure to the condenser 204.
  • the condenser 204 is designed as a heat exchanger, in which after compression, the vaporized refrigerant is liquefied by heat emission to an outer cooling medium, ie the ambient air.
  • the first evaporator 214 and the second evaporator 216 are formed in the present embodiment as a heat exchanger in which, after expansion, the liquid refrigerant by heat absorption from the medium to be cooled, i. Air inside the refrigerator, is evaporated. Further, in the present embodiment, the first evaporator 214 and / or the second evaporator 216 are formed as a static evaporator. Thus, no fans are required for forced energization of the first evaporator 214 and / or the second evaporator 216.
  • the first evaporator 214 is assigned to the first refrigeration compartment 102 and the second evaporator 216 to the second refrigeration compartment 104.
  • both the first evaporator 214 and the second evaporator 216 are formed as a fin evaporator.
  • the first evaporator 214 is the first throttle 210 and the second evaporator 216 is the second throttle 212 associated.
  • the throttles 210, 212 are devices for reducing the pressure by necking.
  • the first throttle 210 and the first evaporator 214 are connected in series, and the second throttle 212 and the second evaporator 216 are connected in series, wherein these two series circuits are connected in parallel in the present embodiment. That the refrigeration cycle 200 is divided into two parallel branches 274, 276, wherein in the present embodiment, the compressor 202, the condenser 204, the stop valve 206 and the intake manifold throttle tube heat exchanger 220 are arranged in a main branch 278 of the refrigeration cycle 200.
  • the refrigerant is a fluid used for heat transfer in the cryogenic system which absorbs heat at low temperatures and low pressure of the fluid and releases heat at higher temperature and higher pressure of the fluid, usually including changes in state of the fluid.
  • the refrigerant circuit 200 in the present embodiment includes the stop valve 206, which is a controllable solenoid valve in the present embodiment, with a refrigerant flow in the refrigerant circuit 200 can be interrupted.
  • the refrigerant circuit 200 comprises the intake manifold throttle tube heat exchanger 220, so that the residual refrigeration of the refrigerant flowing out of the evaporator is also utilized.
  • the first diverter valve 208 has an input 222 and a first output 224 and a second output 226.
  • the second diverter valve 218 has a first input 228 and a second input 230 and an output 232.
  • refrigerant can be selectively directed into the first parallel branch 274 or into the second parallel branch 276, and with the second diverter valve 218, either the first parallel branch 274 or the second parallel branch 276 can be connected to the compressor 202.
  • both the first diverter valve 208 and the second diverter valve 218 are designed as a 3/2-way valve.
  • 3/2-way valves have two valve seats, whereby alternately always one of the two valve seats remains open or closed.
  • the first input 228 in a first switching position of the second diverter valve 218, the first input 228 is opened and the second input 230 is closed, or in a second switching position of the second diverter valve 218, the first input 228 is closed and the second input 230 is opened.
  • the compressor 202 has a compressor outlet 234, which is connected to a condenser inlet 236 of the condenser 204 refrigerant leading.
  • a condenser exit 238 of the condenser 204 is connected to an input port 240 of the stop valve 206 refrigerant leading.
  • An output port 242 of the stop valve 206 is connected to the inlet 222 of the first diverter valve 208 refrigerant leading.
  • the first output 224 of the first diverter valve 208 is connected to a throttle input 244 of the first throttle 210.
  • a throttle output 246 of the first throttle 210 is connected to an evaporator inlet 248 of the first evaporator 214 refrigerant leading.
  • An evaporator outlet 250 of the first evaporator 214 is connected to the first input 230 of the second diverter valve 218 refrigerant leading.
  • the second output 226 of the first diverter valve 208 is connected to a throttle inlet 252 of the second throttle 212 refrigerant leading.
  • a throttle output 254 of the second throttle 212 is connected to an evaporator input 256 of the second evaporator 216 refrigerant leading.
  • An evaporator outlet 258 of the second evaporator 214 is connected to the second input 228 of the second diverter valve 218 refrigerant leading.
  • the output 232 of the second diverter valve 218 is connected to a heat exchanger inlet 260 of the intake manifold throttle tube heat exchanger 220 refrigerant leading.
  • a heat exchanger outlet 262 of the intake manifold-to-choke heat exchanger 220 is connected via a suction pipe 266 to a compressor inlet 264 of the compressor 202 refrigerant leading.
  • the first diverter valve 208 and the second diverter valve 218 are connected to a controller 268 via control lines 270 to transmit control signals. Furthermore, the stop valve 206 is connected via a control lines 280 and the compressor 202 via a control lines 282 control signal transmitting with a controller 268 connected.
  • the controller 268 controls the first diverter valve 208 and the second diverter valve 218 to the first switching position. At the same time, the controller 268 controls the second one Diverter valve 218 in the first switching position.
  • refrigerant flows through the first throttle 210 and the first evaporator 214 and thus cools the refrigeration compartment 102 associated with the first evaporator 214.
  • the second throttle 212 and the second evaporator 216 are from the refrigerant circuit 200 separated.
  • the controller 268 controls the first diverter valve 208 to the second switching position. At the same time, the controller 268 controls the second diverter valve 218 in the second switching position.
  • refrigerant flows through the second orifice 212 and the second evaporator 216 and thus cools the refrigeration compartment 104 associated with the second evaporator 216.
  • the first orifice 210 and the first evaporator 214 are from the refrigerant cycle 200 separated.
  • the normal operation cycle may begin with the second phase described above followed by the first phase.
  • both the first evaporator 214 and the second evaporator 216 may each be operated with an optimum charge amount of refrigerant, i. with an optimal filling level. Therefore, no refrigerant has to be sucked out of the respective other evaporator 214, 216, so that no energy has to be expended for this purpose. Thus, the power consumption of the refrigeration device 100 is reduced.
  • the controller 268 may operate the first diverter valve 208 and the second diverter valve 218 in a transmission mode.
  • refrigerant is drawn off from the second evaporator 216 in order to have sufficient refrigerant available for the operation of the first evaporator 214.
  • the controller 268 controls the first diverter valve 208 in its first switching position. Further, the controller 268 controls the second diverter valve 218 to its second switching position. Now refrigerant is sucked from the second evaporator 216 and then changed to normal operation.
  • the controller 268 controls the first diverter valve 208 in its second switching position. Further, the controller 268 controls the second diverter valve 218 in its first switching position. Now refrigerant is sucked from the first evaporator 214 and then changed to normal operation.
  • the stop valve 206 can be brought into its blocking state, so that an unwanted refrigerant flow in the refrigerant circuit 200 is prevented. Due to the suction effect of the compressor 202, it is then possible to extract refrigerant from the first evaporator 214 and / or the second evaporator 216.
  • the controller 268 is connected to a temperature sensor 272. If the temperature value detected by the temperature sensor 272, for example the ambient temperature of the refrigeration device, exceeds a predetermined threshold value, the controller 268 switches to the transmission mode in order to adapt the refrigerant quantity to the prevailing boundary conditions. For example, in the case of tropical boundary conditions (high cooling pipe because of high ambient temperatures at high atmospheric humidity), condensation of moisture on the suction pipe 266 can be prevented.
  • the refrigerant circuit 200 may serve to cool a third refrigeration compartment in addition to the first refrigeration compartment 102 designed as a freezer compartment and the second refrigeration compartment 104 designed as a refrigeration compartment, for example a freshness compartment or even further refrigeration compartments, such as a fourth or fifth refrigeration compartment, etc ..
  • Each of the cold storage is then associated with an evaporator, which is arranged in a parallel branch of the refrigerant circuit 200. Consequently Accordingly, the first diverter valve 208 has a number of outputs corresponding to the number of parallel branches and the second diverter valve 218 has a corresponding number of inputs. Furthermore, the first deflection valve 208 and the second deflection valve 218 then have a number of switching positions corresponding to the number of parallel branches.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

L'invention concerne un appareil frigorifique comprenant un circuit de fluide frigorigène (200) qui présente un premier compresseur (202) et au moins un premier évaporateur (214) et un deuxième évaporateur (216). Le circuit de fluide frigorigène (200) présente une branche principale (278) et au moins une première branche parallèle (274) et une deuxième branche parallèle (276). Le compresseur (202) est disposé dans la branche principale (278), le premier évaporateur (214) dans la première branche parallèle (274) et le deuxième évaporateur (216) dans la deuxième branche parallèle (276). Une soupape de déviation (208) pourvue d'au moins une première entrée (222), une première sortie (224) et une deuxième sortie (226) est disposé entre une sortie (234) du compresseur (202) et une entrée (248) du premier évaporateur (214) et une entrée (256) du deuxième évaporateur (216). L'entrée (222) est reliée à la branche principale (278), la première sortie (224) à la première branche parallèle (274) et la deuxième sortie (226) à la deuxième branche parallèle (276) de manière à conduire le fluide frigorigène. Selon l'invention, une deuxième soupape de déviation (218) pourvue d'au moins une première entrée (228) et une deuxième entrée (230) et une sortie (232) est disposée entre une entrée (264) du compresseur (202) et une sortie (250) du premier évaporateur (214) et une sortie (258) du deuxième évaporateur (216), la première entrée (230) étant reliée à la première branche parallèle (274), la deuxième entrée (230) à la deuxième branche parallèle (276) et la sortie (232) au circuit de fluide frigorigène (200) de manière à conduire le fluide frigorigène.
PCT/EP2013/070501 2012-10-09 2013-10-02 Appareil frigorifique comprenant deux évaporateurs WO2014056767A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380052861.8A CN104903663B (zh) 2012-10-09 2013-10-02 具有两个蒸发器的制冷器具
EP13771483.8A EP2906882B1 (fr) 2012-10-09 2013-10-02 Refrigerateur avec deux evaporateurs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012218345.0A DE102012218345A1 (de) 2012-10-09 2012-10-09 Kältegerät mit zwei Verdampfern
DE102012218345.0 2012-10-09

Publications (1)

Publication Number Publication Date
WO2014056767A1 true WO2014056767A1 (fr) 2014-04-17

Family

ID=49301489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/070501 WO2014056767A1 (fr) 2012-10-09 2013-10-02 Appareil frigorifique comprenant deux évaporateurs

Country Status (4)

Country Link
EP (1) EP2906882B1 (fr)
CN (1) CN104903663B (fr)
DE (1) DE102012218345A1 (fr)
WO (1) WO2014056767A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016034443A1 (fr) * 2014-09-04 2016-03-10 BSH Hausgeräte GmbH Appareil frigorifique et machine frigorifique destinée audit appareil
WO2016034446A1 (fr) * 2014-09-04 2016-03-10 BSH Hausgeräte GmbH Appareil frigorifique et machine frigorifique destinée audit appareil
CN112833604A (zh) * 2019-11-25 2021-05-25 博西华电器(江苏)有限公司 制冷设备以及用于制冷设备的方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR102015023711A2 (pt) * 2015-09-15 2017-03-21 Whirlpool Sa sistema de refrigeração de múltipla evaporação
DE102016203895A1 (de) * 2016-03-09 2017-09-14 BSH Hausgeräte GmbH Kältegerät mit einem Gefrierfach und einem Kältemittelkreis und Verfahren zum Betrieb eines Kältegeräts
CN109539618B (zh) * 2018-12-25 2023-04-28 长虹美菱股份有限公司 风冷冰箱的多循环制冷系统及其控制方法
DE102019201291A1 (de) * 2019-02-01 2020-08-06 BSH Hausgeräte GmbH Kältegerät mit parallelen Verdampfern und Betriebsverfahren dafür
CN112923635B (zh) * 2019-12-05 2024-03-05 博西华电器(江苏)有限公司 制冷器具以及用于制冷器具的方法
DE102020207648A1 (de) * 2020-06-22 2021-12-23 BSH Hausgeräte GmbH Kältegerät mit einem Saugrohr-Wärmetauscher und Verfahren zum Betrieb eines Kältegeräts mit einem Saugrohr-Wärmetauscher

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3431452A1 (de) * 1984-08-27 1986-02-27 Bosch-Siemens Hausgeräte GmbH, 7000 Stuttgart Als waermepumpe genutztes kuehl- oder gefriergeraet
EP1707900A1 (fr) * 2003-11-28 2006-10-04 Kabushiki Kaisha Toshiba Refrigerateur
DE102006015989A1 (de) 2006-04-05 2007-10-11 BSH Bosch und Siemens Hausgeräte GmbH Verfahren zum Betreiben eines Kältegeräts mit parallel geschalteten Verdampfern und Kältegerät dafür

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3431452A1 (de) * 1984-08-27 1986-02-27 Bosch-Siemens Hausgeräte GmbH, 7000 Stuttgart Als waermepumpe genutztes kuehl- oder gefriergeraet
EP1707900A1 (fr) * 2003-11-28 2006-10-04 Kabushiki Kaisha Toshiba Refrigerateur
DE102006015989A1 (de) 2006-04-05 2007-10-11 BSH Bosch und Siemens Hausgeräte GmbH Verfahren zum Betreiben eines Kältegeräts mit parallel geschalteten Verdampfern und Kältegerät dafür

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016034443A1 (fr) * 2014-09-04 2016-03-10 BSH Hausgeräte GmbH Appareil frigorifique et machine frigorifique destinée audit appareil
WO2016034446A1 (fr) * 2014-09-04 2016-03-10 BSH Hausgeräte GmbH Appareil frigorifique et machine frigorifique destinée audit appareil
CN112833604A (zh) * 2019-11-25 2021-05-25 博西华电器(江苏)有限公司 制冷设备以及用于制冷设备的方法
CN112833604B (zh) * 2019-11-25 2024-01-12 博西华电器(江苏)有限公司 制冷设备以及用于制冷设备的方法

Also Published As

Publication number Publication date
CN104903663A (zh) 2015-09-09
DE102012218345A1 (de) 2014-04-10
EP2906882A1 (fr) 2015-08-19
EP2906882B1 (fr) 2016-09-07
CN104903663B (zh) 2019-04-23

Similar Documents

Publication Publication Date Title
EP2906882B1 (fr) Refrigerateur avec deux evaporateurs
EP3344931B1 (fr) Appareil de froid pourvu d'une pluralité de compartiments de stockage
WO2015091571A1 (fr) Dispositif de réfrigération à plusieurs compartiments de réfrigération
WO2007115879A1 (fr) Procédé pour faire fonctionner un appareil frigorifique à évaporateurs montés en parallèle et appareil frigorifique associé
EP2697579A1 (fr) Dispositif d'évaporation pour un appareil de froid
WO2009141282A2 (fr) Appareil frigorifique à stockage du fluide frigorigène dans le condenseur et procédé correspondant
DE102012211270A1 (de) Kältegerät mit einer verstellbaren Drosselung
DE102015207838A1 (de) Kombinationskältegerät und Betriebsverfahren dafür
WO2013007608A2 (fr) Appareil frigorifique présentant plusieurs compartiments
WO2017153141A1 (fr) Appareil frigorifique avec compartiment de congélation et circuit de réfrigérant, et procédé de fonctionnement d'un appareil frigorifique
EP1350068B1 (fr) Procede pour reguler un appareil de refroidissement
WO2016034461A1 (fr) Appareil de froid comprenant plusieurs compartiments de stockage
DE19832682C2 (de) Abtaueinrichtung für einen Verdampfer einer Wärmepumpe oder eines Klimageräts
DE102015221441A1 (de) Kältegerät mit einem Drosselelement
WO2016034446A1 (fr) Appareil frigorifique et machine frigorifique destinée audit appareil
EP4217668A1 (fr) Appareil de réfrigération
EP2796812A1 (fr) Appareil de réfrigération et/ou de congélation
DE102014217673A1 (de) Kältegerät und Kältemaschine dafür
WO2012110294A2 (fr) Appareil frigorifique ménager équipé de détendeurs non régulés
EP1808655A2 (fr) Installation de refroidissement
WO2014060315A1 (fr) Appareil de réfrigération
DE102011084826A1 (de) Kältegerät mit zwei Verdampfern
DE102012201399A1 (de) Kältegerät mit zwei Lagerkammern
WO2023242010A1 (fr) Appareil frigorifique
DE102011084897A1 (de) Enteisung eines Verdampfers in einem Kältegerät mit zwei Verdampfern

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13771483

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013771483

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013771483

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE