WO2014056317A1 - 空口信息处理系统、方法及设备 - Google Patents

空口信息处理系统、方法及设备 Download PDF

Info

Publication number
WO2014056317A1
WO2014056317A1 PCT/CN2013/074079 CN2013074079W WO2014056317A1 WO 2014056317 A1 WO2014056317 A1 WO 2014056317A1 CN 2013074079 W CN2013074079 W CN 2013074079W WO 2014056317 A1 WO2014056317 A1 WO 2014056317A1
Authority
WO
WIPO (PCT)
Prior art keywords
air interface
base station
access network
network controller
enhanced base
Prior art date
Application number
PCT/CN2013/074079
Other languages
English (en)
French (fr)
Inventor
吴建军
彭程晖
张伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13844617.4A priority Critical patent/EP2897433B1/en
Priority to BR112015007725-0A priority patent/BR112015007725B1/pt
Priority to RU2015116261A priority patent/RU2615500C2/ru
Publication of WO2014056317A1 publication Critical patent/WO2014056317A1/zh
Priority to US14/680,866 priority patent/US10278165B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/12Interfaces between hierarchically different network devices between access points and access point controllers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/29Control channels or signalling for resource management between an access point and the access point controlling device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/543Allocation or scheduling criteria for wireless resources based on quality criteria based on requested quality, e.g. QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0019Control or signalling for completing the hand-off for data sessions of end-to-end connection adapted for mobile IP [MIP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface

Definitions

  • the present invention relates to communications technologies, and in particular, to an air interface information processing system, method, and device. Background technique
  • the radio access network is mainly composed of a base station (eNodeB), which is mainly responsible for radio resource management, IP data header compression, air interface encryption and decryption, and the like.
  • eNodeB base station
  • the interface between the user equipment (User Equipment, simply called UE) and the eNodeB belongs to the air interface.
  • the protocol stack of the air interface can be divided into three layers: a physical layer (L1), a data link layer (L2), and a network layer (L3).
  • L1 layer is mainly used to provide wireless physical channels for high-level services.
  • the L2 layer mainly includes media access control (MAC) sub-layer and radio link control (Radio Link Control, RLC for short).
  • Sub-layer Packet Data Convergence Protocol (PDCP) sub-layer three sub-layers; and L3 layer sub-layer, the lowest layer and L2 layer interface, recorded as Radio Resource Control (Radio Resource Control, referred to as For RRC), higher layer signaling such as Mobile Management (MM) and Call Control (CC) belong to the non-access segment and belong to the core network category.
  • Radio Resource Control Radio Resource Control
  • MM Mobile Management
  • CC Call Control
  • control plane C-plane
  • user plane U-plane
  • the various levels of the above air interface are mixed on the control plane and the user plane, and no separation is achieved.
  • the scheme of separating the control plane and the user plane is mainly for the IP layer and the IP layer and above, which leads to the improvement of the core network layer in the wireless network, and the wireless access network is not included in the management scope.
  • the bearer and control separation of the radio access network is not realized, which affects the performance of the overall network. Summary of the invention
  • the present invention provides an air interface information processing system, method and device for implementing separation of a radio access network on a control plane and a user plane.
  • One aspect is to provide an enhanced base station, including:
  • Receiver configured to receive wireless control with air interface control function of the wireless access network through an open interface
  • An air interface control policy sent by the access network controller where the air interface control policy is generated by the radio access network controller; the open interface is between the enhanced base station and the radio access network controller Interface;
  • the processor is configured to perform air interface user plane data processing according to the air interface control policy.
  • radio access network controller having an air interface control function of a radio access network, where the radio access network controller includes:
  • a processor configured to generate an air interface control policy
  • a transmitter configured to send the air interface control policy to the enhanced base station by using an open interface, so that the enhanced base station performs air interface user plane data processing according to the air interface control policy;
  • the open interface is an interface between the radio access network controller and the enhanced base station.
  • an air interface information processing system including: a radio access network controller and an enhanced base station;
  • the radio access network controller has an air interface control function of the radio access network, and is configured to generate an air interface control policy, and send the air interface control policy to the enhanced base station by using an open interface; An interface between the radio access network controller and the enhanced base station; the enhanced base station, configured to receive the air interface control policy by using the open interface, and perform an air interface user according to the air interface control policy Processing of face data.
  • an air interface information processing method including:
  • the radio access network controller generates an air interface control policy, and the radio access network controller has an air interface control function of the radio access network;
  • the radio access network controller sends the air interface control policy to the enhanced base station through an open interface, so that the enhanced base station performs air interface user plane data processing according to the air interface control policy.
  • an air interface information processing method including:
  • the enhanced base station receives an air interface control policy sent by a wireless access network controller having an air interface control function of the radio access network through an open interface, where the air interface control policy is generated by the radio access network controller;
  • the enhanced base station performs air interface user plane data processing according to the air interface control policy.
  • the line access network controller has an air interface control function of the radio access network, and the radio access network controller is responsible for generating an air interface control policy, and sends the air interface control policy to the enhanced base station, and the enhanced base station is responsible for performing the air interface according to the air interface control strategy.
  • the processing of the user plane data, the radio access network controller is responsible for the processing of the air interface side control plane function of the radio access network, and the enhanced base station is responsible for processing the air interface side user plane function of the radio access network, realizing the radio access network.
  • the separation of the control surface and the user plane is responsible for processing of the air interface side control plane function of the radio access network, realizing the radio access network.
  • FIG. 1A is a schematic structural diagram of an air interface information processing system according to an embodiment of the present invention
  • FIG. 1B is a flowchart of an example of a radio access network controller and an enhanced base station cooperated to complete control and bearer separation according to an embodiment of the present invention
  • 1C is a flowchart of another example of a radio access network controller and an enhanced base station cooperating to complete control and bearer separation according to an embodiment of the present invention
  • FIG. 2A is a schematic structural diagram of an air interface information processing system according to another embodiment of the present invention
  • FIG. 2B is a schematic diagram of a No. C.
  • the NoC provides a wireless L2 and L3 layer pair enhanced type by using a C3 interface to trigger a radio access network controller.
  • 2C is a schematic diagram of a radio access network controller triggered by a C3 interface according to another embodiment of the present invention
  • NoC performs a flow chart of an example of forwarding control of user plane data of layers of the enhanced base station with IP layers above the IP layer;
  • 2D is a flowchart of another example of the radio access network controller triggering the NoC on the C3 interface to perform the forwarding control of the user plane data of each layer of the IP layer of the enhanced base station by using the C3 interface according to another embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a user plane and a control plane protocol stack of each network element in an air interface information processing system according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of an air interface information processing system according to another embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of an air interface information processing system according to another embodiment of the present invention
  • FIG. 8 is a schematic diagram of a wireless interface according to an embodiment of the present invention
  • Schematic diagram of the network controller
  • FIG. 9 is a schematic structural diagram of an enhanced base station according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of a method for processing air interface information according to an embodiment of the present invention.
  • FIG. 11 is a flowchart of a method for processing air interface information according to another embodiment of the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention.
  • the embodiments are a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • the technical solution of the present invention proposes a network architecture and scheme for separating the control plane and the user plane in the radio access network.
  • the core idea of the solution is: The function of the wireless L2 and L3 control planes is stripped from the access network base station, implemented by a separate functional entity, and coordinated with the core network control plane to implement end-to-end management of the user bearer, and wireless
  • the L2 and L3 user plane functions are implemented by separate functional entities, and are mainly responsible for completing air interface user plane data processing.
  • the air interface user plane data processing includes: data transmission, data segmentation, cascading, sorting, reassembly, discarding, data header Compression and decompression, data security protection, such as data encryption and decryption, integrity protection and so on.
  • FIG. 1A is a schematic structural diagram of an air interface information processing system according to an embodiment of the present invention. As shown in FIG. 1A, the system of this embodiment includes: a radio access network controller 10 and an enhanced base station 20.
  • the radio access network controller 10 has an air interface control function of the radio access network, and is mainly used to generate an air interface control policy, and the air interface control policy is sent to the enhanced base station 20 through the open interface.
  • the enhanced base station 20 is configured to receive the air interface control policy delivered by the radio access network controller 10 through the open interface, and process the air interface user plane data according to the air interface control policy.
  • the radio access network controller 10 and the enhanced base station 20 are located within the radio access network.
  • the radio access network controller 10 belongs to the control plane network element in the radio access network, that is, the air interface control plane network element, and is mainly used to control the enhanced base station 20 to complete the processing of the air interface user plane data through the air interface control policy, specifically including the extraction.
  • the functions of the wireless L2 and L3 layer protocol control planes include but are not limited to: radio resource allocation, uplink and downlink scheduling, scheduling priority selection, hybrid automatic repeat request (Hybrid Automatic Repeat Request, referred to as HARQ) retransmission, wireless chain Radio Link Control (RLC) connection control and management, protocol error detection and recovery, control plane protocol encryption and decryption, broadcast, paging, radio resource control (Radio Resource Control, RRC for short) connection management, Radio bearer management, mobility management, key management, UE measurement reporting and control, Multimedia Broadcast Multicast Service (MBMS) control, NAS message direct transmission, and Service of Service (QoS) ) Management and so on.
  • radio resource allocation radio resource allocation
  • uplink and downlink scheduling scheduling priority selection
  • Hybrid Automatic Repeat Request Hybrid Automatic Repeat Request, referred to as HARQ
  • RLC Radio Link Control
  • protocol error detection and recovery protocol error detection and recovery
  • control plane protocol encryption and decryption broadcast, paging, radio resource control (Radio Resource Control, R
  • the enhanced base station 20 belongs to the user plane network element in the radio access network, and is controlled by the radio access network controller 10 at the air interface level (or the Radio level), and is mainly completed under the control of the radio access network controller 10.
  • the processing of the air interface user plane data specifically integrates the processing functions of all user planes of the wireless L2 and L3 layers, generally only has the user plane function, and the processing functions of all user planes of the wireless L2 and L3 layers include but are not limited to: data transmission, data division Segmentation, cascading, sorting, reassembly, discarding, compression and decompression of data headers, data security protection, such as data encryption and decryption, integrity protection, etc.
  • the enhanced base station 20 may be various types of radio base stations of various standards, such as various macro base stations, micro base stations, and the like.
  • the number of enhanced base stations 20 is large, that is, one radio access network controller 10 can simultaneously control a plurality of enhanced base stations 20, and the plurality of enhanced base stations 20 pass through an open interface and a radio access.
  • the network controller 10 is connected and is controlled by the radio access network controller 10.
  • the interface between the radio access network controller 10 and the enhanced base station 20 is an open interface, and may also be referred to as an open wireless (English OpenRadio) interface, but is not limited to the OpenRadio interface.
  • the Open Radio interface is used to enable the enhanced base station 20 to implement the air interface side user plane function of the radio access network under the control of the radio access network controller 10, that is, to perform the air interface control function of the radio access network through the Open Radio interface.
  • Open to the radio access network controller 10 the openness mentioned here is relative to the prior art, and the air interface control function in the prior art is encapsulated in an enhanced base station (eNodeB in English) in the LTE system.
  • the encapsulation is implemented in a base station (NodeB in English) and a radio controller (RNC).
  • RNC radio controller
  • some or all of the air interface control functions are centralized to independent network elements, that is, radio access network control.
  • the device 10 is implemented in the same manner as the existing eNodeB, or the NodeB and the RNC open the air interface control function to the radio access network controller 10 in this embodiment, so that relatively centralized control can be implemented, and the control flow can also be implemented.
  • the Open Radio interface mainly carries the air interface control plane policy, because the L2 and L3 layer control plane functions of all air interfaces in the access network are concentrated in the radio access network controller 10 for processing.
  • the strong base station 20 is only responsible for the corresponding user plane function. Therefore, when the air interface control is involved, the air interface control policy needs to be carried through the Open Radio interface, and the air interface control includes but is not limited to the scheduling of air interface resources (such as QoS control), paging. , broadcasting, etc. That is, the control plane functions of the radio L2 and L3 layers of the radio access network controller 10 need to be sent to the enhanced base station 20 through the Open Radio interface.
  • the enhanced base station 20 can also actively request some control policies from the radio access network controller 10 through the Open Radio interface. That is, the enhanced base station 20 is further configured to send an air interface policy request to the radio access network controller 10 before receiving the air interface control policy. In this way, the radio access network controller 10 generates and delivers an air interface control policy for the enhanced base station 20 according to the air interface policy request.
  • radio access network controller 10 and the enhanced base station 20 in this embodiment are similar to the prior art by using some basic processes, such as bearer establishment and mobility management, which are not described in detail.
  • FIG. 1B An example is given below to illustrate how the radio access network controller 10 and the enhanced base station 20 cooperate to complete the entire process of control and bearer separation. Assume that the new user accesses the enhanced base station 20 that is currently connected by the UE of the user to trigger the radio access network controller 10 to perform radio resource allocation for the user.
  • the specific process is as shown in FIG. 1B, and includes:
  • Step S1 The user accesses the network, and the enhanced base station 20 discovers the new user, and determines that the UE needs to request the radio resource for the UE.
  • Step S2 Since the enhanced base station 20 has only the user plane function and does not have the control plane resource allocation function, the radio resource allocation request is sent to the radio access network controller 10 through the Open Radio interface, and the radio resource allocation request carries the UE.
  • the user flag is for the radio access network controller 10 to perform storage and subsequent identification.
  • Step S3 After receiving the radio resource allocation request, the radio access network controller 10 may obtain related information of the UE from the core network side according to the user identifier of the UE, and then according to the locally stored radio resource utilization situation and related information of the acquired UE. And other information, allocate radio resources to the UE.
  • the radio resources here can be a certain number of channels, time slots, even the priority of transmission, and the like.
  • Step S4 The radio access network controller 10 sends a radio resource allocation response to the enhanced base station 20, where the radio resource allocation response includes the resource allocation result.
  • Step S5 After receiving the radio resource allocation response, the enhanced base station 20 performs user plane data operations of the UE, such as transmitting data packets, on the radio resources allocated by the radio access network controller 10.
  • the radio resource allocation request is an air interface policy request
  • the radio resource allocation result is an air interface control policy.
  • the radio access network controller 10 and the enhanced base station 20 cooperate with the entire process of performing control and bearer separation.
  • the coverage of an enhanced base station 20 is too large, the number of access users is too large, which may cause the enhanced base station 20 to be overloaded, which has a greater impact on the QoS experience of the user, especially the cell edge user.
  • the QoS experience of the cell edge user is poor, and the experience level breaks the preset experience threshold. For example, the delay of the user receiving the service is greater than the preset delay threshold. Or the user receives the video/voice service resolution less than the preset resolution threshold and the like.
  • the problem of fairness of the user at the edge of the cell can be solved by forcing the cell edge user to implement the multi-base station joint processing technology.
  • the cooperation between the radio access network controller 10 and the enhanced base station 20 is required.
  • the specific process is as shown in FIG. 1C, and includes:
  • step A1 the enhanced base station 20 finds that there are too many users accessing the coverage area, and the service throughput of the edge users under the coverage of the enhanced base station does not meet the service throughput requirement, and/or the user experience of the access enhanced base station.
  • the degree of the preset experience threshold is broken, that is, the current situation is found to satisfy at least one of the preset trigger conditions.
  • Step A2 The enhanced base station 20 sends a neighbor cell measurement request to the UE, and triggers the UE to perform a neighbor cell measurement process.
  • the measurement of the neighboring cell here mainly refers to a process of acquiring various parameters capable of reflecting the current performance state of the neighboring cell, for example, including measurement of signal strength of the neighboring cell, measurement of the number of UEs in the adjacent cell, and the like.
  • Step A3 The UE reports the neighbor cell measurement result to the enhanced base station 20.
  • the UE only the neighboring cell of the UE is used as the first enhanced base station, and the UE may actually have multiple neighboring cells.
  • Step A4 The enhanced base station 20 sends an abnormality processing request to the radio access network controller 10, where the abnormal processing request includes the neighboring cell measurement result, and further includes: information such as insufficient user resources.
  • Step A5 After receiving the exception processing request sent by the enhanced base station 20, the radio access network controller 10 generates a joint processing policy. Specifically, the radio access network controller 10 can combine the neighboring cell topology and neighbor cell measurement results of the enhanced base station 20 with locally stored backhaul information to make a joint processing strategy.
  • the radio access network controller 10 may make different places according to actual conditions. For example, the decision is to move the user at the cell edge of the enhanced base station 20 to a cell that is relatively idle (referred to as a cell migration policy), or the decision-making enhanced base station 20 maintains the existing state, etc.
  • the network controller 10 decides to implement the multi-cell joint processing for the enhanced base station 20 as an example.
  • the radio access network controller 10 not only decides to implement multi-cell joint processing for the enhanced base station 20, but also decides other information related to the joint processing, such as which of the enhanced base stations involved, Which joint processing algorithm is used, the types of information that can be shared between enhanced base stations, and so on.
  • the radio access network controller 10 selects the enhanced base station 20 and the first enhanced base station to perform joint processing as an example, and the joint processing algorithm may select various joint processing algorithms of the prior art.
  • Step A6 The radio access network controller 10 delivers a joint processing policy to the enhanced base station 20 and the first enhanced base station.
  • Step A7 The enhanced base station 20 and the first enhanced base station perform joint processing for the UE according to the joint processing policy delivered by the radio access network controller 10.
  • the subsequent steps include: the radio access network controller 10 delivers the made control policy to the enhanced a type of base station (ie, a source enhanced base station), which includes details of the policy (that is, the edge user is moved to the neighboring cell) and the identity of the enhanced base station (ie, the enhanced base station) to which the mobile station is moved, and the radio access network control
  • the device 10 also sends a similar control policy to the enhanced base station in the neighboring cell to be moved to notify the enhanced base station of the cell that there will be a new user to move in, and the source enhanced base station and the enhanced type to be moved to
  • the base station starts to perform the handover process of the edge user, and the process is similar to the user switch in the prior art, and details are not described herein again.
  • the above exception handling request is an air interface policy request, and correspondingly, the joint processing policy or the cell migration policy is an air interface control policy.
  • a similar procedure can be used to implement the control of the radio access network controller 10 for other operations of the enhanced base station 20, such as data encryption mode control, scheduling priority. Level control, control of multicast broadcasts, etc.
  • the control plane function of the radio access network controller 10 can be communicated to the enhanced base station 20 by a similar process. This control process can be triggered by the request of the enhanced base station 20, or can be The radio access network controller 10 actively sends a control policy to the enhanced base station 20, and the enhanced base station 20 is responsible for performing corresponding operations on the user plane according to the control result of the radio access network controller 10.
  • the embodiment implements the control plane functions of the L2 and L3 layers in the radio access network through the radio access network controller, and implements the user plane functions of the L2 and L3 layers in the radio access network through the enhanced base station, thereby realizing The separation of the control plane and the user plane improves the performance of the overall network.
  • FIG. 2A is a schematic structural diagram of an air interface information processing system according to another embodiment of the present invention. The embodiment is implemented based on the embodiment shown in FIG. 1A. As shown in FIG. 2A, the air interface information processing system of this embodiment further includes: a network controller (Network Controller, NoC) 30.
  • Network Controller NoC
  • the NoC30 is configured to generate a data forwarding policy for the user planes of the IP layer and the IP layer and above, and send the data forwarding policy to the enhanced base station 20. Based on this, the enhanced base station 20 is further configured to receive the data forwarding policy sent by the NoC30, and process the user plane data of each layer above the IP layer and the IP layer according to the data forwarding policy.
  • the processing of user plane data on the IP layer and above the IP layer includes but is not limited to:
  • the NoC30 is located in the core network and is the main control plane network element of the core network. It is mainly responsible for the development of the user plane data forwarding strategy. Specifically, the NoC30 can generate IP layers and IP layers based on network status information and/or user information.
  • the data forwarding policy of the user plane is provided to the enhanced base station 20 to enable the enhanced base station 20 in the access network to route the user plane data of the IP layer and the IP layer above the IP layer according to the data forwarding policy.
  • the data forwarding policy includes the information that the enhanced base station 20 forwards the user plane data to, or who forwards the user plane data, or from whom the user plane data is received.
  • the NoC30 can perform end-to-end bearer management in addition to the function of establishing a data forwarding policy.
  • the NoC30 can process various requests sent by the radio access network controller 10 from the access network, such as a bearer setup request.
  • the user status information includes whether the user has moved or switched, from which enhanced base station 20 is cut, or whether the user initiates a new session, etc.; the network status information includes that the resource usage of an enhanced base station 20 in the network is saturated. Can no longer accept new business and so on.
  • the interface between the NoC30 and the enhanced base station 20 is called a C2 interface, but is not limited to the name of the C2 interface.
  • the C2 interface mainly carries the control plane signaling (ie, the data forwarding policy) of the IP layer and the IP layer and the above layers. That is, the enhanced base station 20 receives the IP layer delivered by the NoC30 and the data of the user planes above the IP layer. Forward the policy and route the data according to the data forwarding policy.
  • the data here mainly refers to the data above the IP layer and the IP layer.
  • the NoC30 can control and manage the enhanced base station 20 by using an OpenFlow (OF) protocol. From the perspective of the C2 interface, the relationship between the NoC30 and the enhanced base station 20 is similar to the OF controller. (OF Controller and OF Switch, it can be understood that the C2 interface is carried on the OF protocol. The OF protocol is described in detail below.
  • OF is a switching technology
  • OF network architecture mainly includes: OF switch and OF controller.
  • the OF switch is the core component of the entire OF network, and mainly manages the forwarding of the data layer.
  • Each OF switch has a flow table (flow table in English) for packet lookup and forwarding.
  • the OF switch can connect to the external controller through the OF protocol through a secure channel to query and manage the flow table.
  • the OF switch After receiving the data packet, the OF switch first searches for the forwarding destination port on the local flow table. If there is no match, the data packet is forwarded to the OF controller, and the control layer determines the forwarding port.
  • the OF controller implements the function of the control layer.
  • the OF controller controls the flow table in the OF switch through the standard interface of the OF protocol, thereby implementing centralized control of the entire network.
  • the flow table of OF consists of ⁇ multiple flow entries, and each flow entry is a forwarding rule.
  • the data packet entering the OF switch is obtained by querying the flow table to obtain the forwarded destination port.
  • Each flow entry (entry) in the OF flow table supports three parts: rules, operations, and status.
  • the rule is used to define the flow (flow is English).
  • the flow definition in the OF protocol is very broad. It supports 10 domains.
  • the switch port, Ethernet type, and Vlan lD are added.
  • the header field is a ten-element.
  • a group is an identifier of a flow entry.
  • An operation is a behavior such as forwarding, discarding, etc. The operation indicates the operation that the packet matching the flow entry should perform.
  • the status section is the statistics used primarily for traffic.
  • the key feature of the OF protocol is to support remote control.
  • you can define some special rules in the normal running network, so that the traffic conforming to the rules can follow any path as required, just as if a physical network is cut into several different virtual networks and run simultaneously. And each does not interfere.
  • the OF protocol transforms the traditional physical fixed hardware Internet into a dynamically variable software-defined Internet.
  • a software-defined controllable Internet in addition to being more flexible, will undoubtedly greatly improve the robustness, operational efficiency and security of the network itself through appropriate control algorithms.
  • the NoC30 in this embodiment can manage the enhanced base station 20 by using the OF protocol, and has the advantages of flexibility, convenience, and high operational efficiency.
  • the NoC 30 can also use the protocol to manage the enhanced base station 20.
  • the radio access network controller 10 can also use a similar TO association.
  • the control of the flow table form manages the enhanced base station 20, wherein the radio access network controller 10 and the enhanced base station 20 respectively correspond to the OF controller and the OF switch in the OF network.
  • the NoC30 and the radio access network controller 10 may be deployed separately or in combination.
  • the C3 interface and the radio access network are required.
  • the controller 10 interacts.
  • the interface between the NoC30 and the radio access network controller 10 is referred to as a C3 interface, but is not limited to the C3 interface.
  • the C3 interface is mainly used to carry the control information of the air interface reported by the radio access network controller 10 to the NoC30, and the end-to-end control information sent by the NoC30 to the radio access network controller 10.
  • the NoC 30 further stores user service information, user status information, and/or user identification information, and the NoC 30 may actively trigger some control on the access network according to the change of the information, and affect the access.
  • the intra-network radio access network controller 10 controls the air interface of the enhanced base station 20 to indirectly control the air interface.
  • the NoC30 is further configured to send user information to the radio access network controller 10, so that the radio access network controller 10 generates an air interface control policy according to the user information.
  • the radio access network controller 10 is specifically configured to receive user information sent by the NoC30, and generate an air interface control policy according to the user information.
  • the user information includes user service information, user status information, and/or user identification information, and the like.
  • the user status information includes whether the user is currently active (active in English) or idle (in English), and the user service information includes user subscription information, user QoS information, and the like. For example, if the user service information sent by the NoC30 to the radio access network controller 10 indicates that the user initiates or receives a new service, the radio access network controller 10 makes a decision for the user's new The service allocates radio resources, indicating which one or more of the enhanced base stations 20 to forward the new service related data packet (ie, the air interface control policy).
  • the user status information sent by the NoC30 to the radio access network controller 10 indicates that the user in the current idle (idle) state is under the coverage of one or some of the enhanced base stations 20, and then the wireless connection
  • the network access controller 10 can make a decision as to which enhanced base station 20 initiates a paging operation (i.e., an air interface control policy).
  • the NoC 30 triggers the radio access network controller 10 to perform control of the enhanced base station 20 by the radio L2 and L3 layers through the C3 interface.
  • the NoC30 stores some information related to the user service, such as QoS information, and the NoC30 sends the QoS information to the radio access network controller 10 for the purpose of improving system resource utilization or meeting user QoS requirements.
  • the radio access network controller 10 re-adjusts the resource allocation scheme, and adjusts the single/multiple enhanced type
  • the resources occupied by the base station 20 feed back the resource allocation result to the single/multiple enhanced base stations 20, and the enhanced base station 20 transmits the data on the newly allocated resources according to the received resource allocation result.
  • the specific process is shown in Figure 2B, including:
  • Step D1 When the UE enters the network, it negotiates a QoS policy with the NoC30, and the NoC30 stores the QoS information of the UE, or the NoC30 obtains the QoS information of the UE from the UE or the application server.
  • Steps D2 and NoC30 send the QoS information of the UE to the radio access network controller 10 through the C3 interface.
  • Step D3 After receiving the QoS information delivered by the NoC30, the radio access network controller 10 re-adjusts the L2 layer resource allocation scheme and adjusts the single or multiple enhanced types for the purpose of improving system resource utilization or meeting user QoS requirements.
  • the resources here may be channels, time slots, scheduling priorities, and the like.
  • the single or multiple enhanced base stations 20 can be adjusted because one radio access network controller 10 can control a plurality of enhanced base stations 20. In order to meet the demand, the radio access network controller 10 may adjust more than one at the same time.
  • the resource allocation scheme of the enhanced base station 20 A plurality of enhanced base stations 20 are indicated by ellipsis in Fig. 2B.
  • Step D4 The radio access network controller 10 sends the resource allocation result to the single or multiple enhanced base stations 20.
  • Step D5 After receiving the resource allocation result, the single or multiple enhanced base stations 20 transmit data on the re-allocated resources.
  • the NoC30 can trigger the wireless access by sending other information, such as the service information of the user, the network topology information, etc., in addition to the process of the QoS information being used to trigger the radio access network controller 10 to re-allocate the resources according to the QoS information.
  • the network controller 10 controls the other operations of the enhanced base station 20 in the air interface. The specific control process is similar to the foregoing process, and details are not described herein.
  • the radio access network controller 10 is further configured to send network status information and/or user status information to the NoC 30, so that the NoC 30 generates an IP according to the network status information and/or the user status information. Data forwarding strategy for user planes at layers and above IP layers.
  • the NoC 30 may pre-store the network status information and/or the user status information locally.
  • the network status information includes network topology information, user UE information, and the like.
  • the radio access network controller 10 triggers the NoC30 through the C3 interface to perform forwarding control on the IP plane of the enhanced base station 20 with user plane data of layers above the IP layer.
  • the radio access network controller 10 learns the change of the network topology information in the access network, and reports the change of the network topology information to the NoC30. Then, the NoC30 adjusts the user plane forwarding policy accordingly, and sends the adjusted user plane forwarding policy.
  • the enhanced base station 20 performs the IP layer to forward the user plane data of each layer above the IP layer according to the new user plane forwarding policy.
  • the specific process is shown in Figure 2C, including:
  • Step El. The radio access network controller 10 senses changes in network topology information. This change can be perceived by the radio access network controller 10 itself, or it can be communicated to the radio access network controller 10 by other network elements (e.g., the enhanced base station 20).
  • Step E2 The radio access network controller 10 notifies the NoC30 of the change of the network topology information through the C3 interface.
  • Steps E3 and NoC30 receive the change information of the network topology sent by the radio access network controller 10, and then re-define the user plane forwarding policy according to the new network topology information.
  • the user plane forwarding policy here is mainly for the user plane data of the IP layer above the IP layer, and the policy includes information such as which enhanced base stations 20 forward data.
  • Steps E4 and NoC30 send a new user plane forwarding policy to the corresponding enhanced base station 20 through the C2 interface.
  • Step E5 After receiving the new user plane forwarding policy, the enhanced base station 20 triggers the NoC30 to re-define and deliver the user plane forwarding according to the change of the network topology information in addition to the radio access network controller 10 given above.
  • the radio access network controller 10 may also trigger the NoC30 to re-define and deliver the user plane forwarding policy according to other information, such as user mobility information, and the specific implementation process is as shown in FIG. 2D.
  • Step F1 the enhanced base station senses that the user has moved, and the source enhanced base station switches to the enhanced base station (ie, the target enhanced base station), between the enhanced base station, the source enhanced base station, and the radio access network controller.
  • the enhanced base station ie, the target enhanced base station
  • the user mobility switching process is performed, and the switching process is prior art, and details are not described herein again.
  • Step F2 The radio access network controller sends the handover information to the NoC, where the handover information includes the identifier of the source enhanced base station and the identifier of the enhanced base station, where the identifier may be, for example, an IP address, etc., for NoC identification.
  • the steps F3 and NoC re-based the enhancement according to the position after the UE moves.
  • Base station the data plane forwarding strategy of the user planes of the above layers.
  • the data plane forwarding policy includes information such as which user plane data is forwarded by the enhanced base station.
  • the data plane forwarding policy mainly includes: indicating that the user plane data of the UE is forwarded by the enhanced base station, and the source The enhanced base station stops forwarding information of the user plane data of the UE.
  • Steps F4 and NoC send the data plane forwarding policy to the corresponding enhanced base station (that is, at least one of the source enhanced base station and the destination enhanced base station) through the C2 interface. If only one of the source enhanced base station and the destination enhanced base station is sent, the subsequent may be accompanied. The process of the base station receiving the forwarding policy forwarding the forwarding policy to another base station).
  • Step F5. The enhanced base station and/or the source enhanced base station perform the data plane forwarding policy.
  • the radio access network controller of the embodiment is further configured to send the handover information to the network controller, where the handover information is that the radio access network controller detects that the UE switches from the source enhanced base station to the handover.
  • the handover information After the enhanced base station transmits, the handover information includes an identifier of the source enhanced base station and an identifier of the enhanced base station to which the handover is performed.
  • the network controller is specifically configured to generate a data forwarding policy after receiving the foregoing switching information.
  • the above NoC30 triggers the radio access network controller 10 to perform wireless through the C3 interface.
  • the flow control of the enhanced base station 20 by the L2 and L3 layers is performed, and the radio access network controller 10 triggers the NoC 30 through the C3 interface to perform forwarding control of the user plane data of the IP layer of the enhanced base station 20 at each layer above the IP layer.
  • the process can be carried out at the same time, so that it is completely formed in this embodiment.
  • the NoC30, the radio access network controller 10, and the enhanced base station 20 cooperate with each other to implement an interface between the control plane and the user plane.
  • control plane and the user plane of the radio access network are separated by the cooperation of three functional entities and interfaces between them, and the control plane is divided into a core network (IP layer and above and above IP layer) Layer) and air interface (wireless L2 and L3 layers)
  • IP layer and above and above IP layer IP layer and above and above IP layer
  • air interface wireless L2 and L3 layers
  • the radio access network controller 10 mainly formulates and delivers air interfaces (ie, wireless L2 and L3 layers).
  • Control strategy two levels of control network elements can be integrated in the actual deployment, or can be deployed separately. When deployed separately, the control signaling carried by the interface between the two network elements can achieve mutual interaction between the two.
  • the primary network element enhanced base station of the user plane accepts wireless in the air interface
  • the control of the access network controller, and the control management of the NoC is accepted at the IP layer and the IP layer and above.
  • the user plane protocol stack of each network element in this embodiment is as shown in FIG. 3.
  • the user plane protocol stack of the enhanced base station 20 mainly includes a UE-oriented and an application-oriented server (APP Server).
  • the user plane protocol stack of the enhanced base station 20 for the UE is: PHY, MAC, RLC and PDCP layers from bottom to top;
  • the user plane protocol stack for the application server is: LI, L2 and IP1 layers from bottom to top.
  • the user plane protocol stack of the UE is from bottom to top: PHY, MAC, RLC, PDCP, IP1, TCP/UDP and APP layers.
  • the user plane protocol stack of the application server is from bottom to top: Ll, L2, IP1 TCP/UDP, and APP layer.
  • the enhanced base station 20 can receive user plane data from the application server under the control of the NoC 30, and the enhanced base station 20 can also receive the received base station 20 under the control of the radio access network controller 10.
  • User plane data of the UE is as shown in FIG. 4, and is not specifically described in detail.
  • IP1, L2, and L1 in FIG. 3 respectively represent an IP layer (also referred to as a network layer, English network layer) in the 7-layer protocol stack of the International Organization for Standardization (ISO).
  • the second layer also known as the data link layer, the English data link layer
  • one layer also known as the physical layer, the English is the physical layer
  • the OR in Figure 4 represents the Open Radio interface layer
  • C3 represents the C3 interface layer
  • C2 in Figure 5 represents the C2 interface layer.
  • At least two enhanced base stations 20 are present in the air interface information processing system of this embodiment.
  • the radio access network controller 10 is further configured to jointly process the physical layer functions of the at least two enhanced base stations 20.
  • the physical layer function here is also the function of the L1 layer on the wireless side, such as coding and decoding, modem, multi-antenna mapping and other typical physical layer functions.
  • the process of jointly processing the L1 layer functions of two or more enhanced base stations 20 is called Joint Processing (abbreviated as JP). Since the joint computing requires very high resources, the joint processing function is deployed in the radio access network controller instead of being dispersed in each enhanced base station 20. This centralized deployment method enables efficient resource utilization and can also reduce the enhancement. Mutual transmission between type base stations 20.
  • the radio access network controller 10 can jointly process the physical layer functions of the enhanced base stations 20 by using an existing algorithm, and the specific process is not described in detail.
  • the air interface information of this embodiment is The system also includes: a joint processing device 40.
  • the joint processing device 40 is connected to each enhanced base station 20 for jointly processing physical layer functions of at least two enhanced base stations 20.
  • the joint processing device 40 can also jointly process the physical layer functions of the enhanced base stations 20 by using an existing algorithm, and the specific process is not described in detail. It is explained herein that the joint processing device 40 is independent of the radio access network controller 10.
  • the functional entity that performs the joint processing on the physical layer functions of the enhanced base stations 20 can be located in the same physical network element as the radio access network controller 10, that is, can be executed by the radio access network controller 10, or It is located in a different physical network element than the radio access network controller.
  • the air interface information processing system of this embodiment further includes: a domain router (DR) 50.
  • the DR 50 is configured to receive the data forwarding policy sent by the NoC30, and process the user plane data of the IP layer and the IP layer and above according to the data forwarding policy.
  • the processing of the user plane data of the IP layer and the IP layer and above is also included, but not limited to: Transceiving and processing the user plane data of the IP layer and the IP layer and above.
  • the DR50 is further configured to allocate an IP address to the UE, send the allocated IP address to the UE, and report the allocated IP address to the NoC30.
  • the DR50 may report the identifier of the UE to the NoC30.
  • the NoC 30 receives information such as the assigned IP address and the identity of the UE reported by the DR 50, and facilitates the formulation of the data forwarding policy based on the information.
  • the DR 50 of the embodiment has a processing function of an IP layer and a user plane of each layer above the IP layer, and has an interface with the Internet (in English), located at a domain edge location, and may be located in the core network or in the access network. (The situation in the core network is illustrated in Figure 7.) It is responsible for data transmission and reception according to the data forwarding policy delivered by the NoC30. In addition, it can also participate in the process of bearer establishment and handover. In addition, the DR50 can also be responsible for the management, maintenance, distribution, and delivery of IP addresses. Different access systems can be connected to different DR50s, and each DR50 can be interconnected to achieve interworking. More preferably, the DR 50 is deployed at a location-independent network level.
  • the NoC30 and DR50 are connected through the C1 interface, and the interface between the NoC30 and the DR50 is called
  • the C1 interface can be used to transmit various control policies that the NoC30 delivers to the DR50.
  • the control of the DR50 by the NoC30 is mainly to control the routing and forwarding of the DR50 by issuing a data forwarding policy, and also includes control such as UE switching.
  • the NoC30 can control the DR50 by using the OF protocol. From the perspective of the C1 interface, the relationship between the NoC30 and the DR50 is similar to the OF controller and the OF switch in the OF protocol, and the C1 interface can be specifically learned from the OF protocol. Interface to achieve, but not Limited to this.
  • the DR 50 can also be connected to the enhanced base station 20 for forwarding user plane data between the IP layer and the IP layer and above, and implementing the user plane function in the entire network.
  • the interface between the DR 50 and the enhanced base station 20 is an IP-based interface, and the transmission is mainly the user plane data of the IP layer and the IP layer and above.
  • the joint processing device 40 is an optional network element.
  • FIG. 8 is an implementation of the present invention.
  • the radio access network controller of this embodiment has an air interface control function of the radio access network.
  • the radio access network controller of this embodiment includes: a processor 81 and a transmitter 82.
  • the processor 81 is configured to generate an air interface control policy.
  • the transmitter 82 is connected to the processor 81, and configured to send the air interface control policy generated by the processor 81 to the enhanced base station through the open interface, so that the enhanced base station performs air interface user plane data processing according to the air interface control policy.
  • the open interface is an interface between the radio access network controller and the enhanced base station in the embodiment, and is used to enable the enhanced base station to implement radio access under the control of the radio access network controller in this embodiment.
  • the air interface side user interface function of the network Compared with the prior art, the enhanced base station opens the air interface control function of the radio access network originally implemented by the enhanced base station to the wireless access network controller of the embodiment through the open interface.
  • the radio access network controller in this embodiment may be specifically the control plane network element in the radio access network.
  • the radio access network controller in this embodiment may be specifically the control plane network element in the radio access network.
  • the radio access network controller further includes: a receiver 83.
  • the receiver 83 is configured to receive user information sent by the NoC in the core network, and provide the user information to the processor 81.
  • the processor 81 is also coupled to the receiver 83 for generating an air interface control policy based on the user information received by the receiver 83.
  • the user information includes user service information, user status information, and/or user identification information.
  • the user status information includes whether the user has moved or switched, from which enhanced base station 20 has been cut, and the user service information includes whether the user initiates a new session, the user's QoS information, and the like.
  • the transmitter 82 is further configured to send network status information and/or user status information to the NoC in the core network, so that the NoC formulates an IP according to the network status information and/or the user status information.
  • Data forwarding strategy for user planes at layers and above IP layers The data forwarding strategy is used to enable the enhanced base station to process user plane data of each layer above the IP layer and the IP layer.
  • the transmitter 82 is further configured to send the handover information to the NoC in the core network, so that the NoC re-establishes the IP layer and the IP layer for the enhanced base station, and the The data forwarding policy of the user layer of the IP layer and the IP layer is sent to at least one of the source enhanced base station before handover and the enhanced base station after handover, and if only one base station is delivered, subsequent It may be accompanied by a process in which a base station that receives a forwarding policy forwards the forwarding policy to another base station.
  • the handover information is discovered by the radio access network controller of this embodiment.
  • the handover information includes an identifier of the source enhanced base station and an identifier of the enhanced base station.
  • the air interface control corresponding to the air interface control policy in this embodiment includes any one or a combination of the following: radio resource allocation, uplink and downlink scheduling, scheduling priority selection, HARQ retransmission, RLC connection control and management, protocol error detection and recovery, Control plane protocol encryption and decryption, broadcast, paging, RRC connection management, radio bearer management, mobility management, key management, UE measurement reporting and control, MBMS control, NAS message direct transmission and QoS management.
  • the transmitter 82 of this embodiment is specifically configured to send an air interface control policy to at least two enhanced base stations through an open interface.
  • the processor 81 of this embodiment is further configured to perform joint optimization processing on physical layer functions of at least two enhanced base stations.
  • the receiver 83 is further configured to: before the processor 81 generates the air interface control policy, receive an air interface policy request sent by the enhanced base station to request the air interface control policy, and adopt an air interface policy. The request is sent to the processor 81, causing the processor 81 to generate an air interface control policy for the enhanced base station based on the air interface policy request.
  • the air interface policy request is an exception processing request
  • the air interface control policy is a joint processing policy or a cell migration policy
  • the receiver 83 is specifically configured to receive, by using an open interface, an exception processing request sent by the enhanced base station, where the exception processing is performed.
  • the request includes the neighbor cell measurement result reported by the UE.
  • the processor 81 is specifically configured to perform processing and determining, and generate according to the measurement result of the neighboring cell.
  • the joint processing policy or the cell migration policy is provided to the transmitter 82.
  • the transmitter 82 is specifically configured to send the joint processing policy or the cell migration policy to the enhanced base station through the open interface.
  • the air interface control is a radio resource allocation
  • the air interface policy request is a radio resource allocation request
  • the air interface control policy is a radio resource allocation result
  • the receiver 83 is further configured to receive, by using an open interface, the radio resource allocation sent by the enhanced base station. Requested and provided to processor 81.
  • the wireless resource allocation request is sent by the enhanced base station when the new user accesses the enhanced base station.
  • the processor 81 is configured to perform resource allocation according to the radio resource allocation request received by the receiver 83, generate a radio resource allocation result, and provide the result to the transmitter 82.
  • the transmitter 82 is specifically configured to send the radio resource allocation result to the enhanced base station through the open interface.
  • the transmitter 82 is specifically configured to send, by using an open interface, a radio resource allocation response message to the enhanced base station.
  • the radio resource allocation response message carries a radio resource allocation result.
  • the interface between the radio access network controller and the enhanced base station is referred to as an OpenRadio interface
  • the interface between the radio access network controller and the NoC is referred to as a C2 interface.
  • OpenRadio interface the interface between the radio access network controller and the NoC
  • C2 interface the interface between the radio access network controller and the NoC
  • the radio access network controller of the embodiment and the enhanced base station cooperate with each other to implement the control plane function of the air interface of the radio access network, and the enhanced base station implements the function of the user plane, so that the control plane of the radio access network and The separation of user planes, so that the access network is included in the management scope, improves the performance of the overall network.
  • FIG. 9 is a schematic structural diagram of an enhanced base station according to an embodiment of the present invention. As shown in FIG. 9, the enhanced base station of this embodiment includes: a receiver 91 and a processor 92.
  • the receiver 91 is configured to receive, by using an open interface, an air interface control policy sent by a radio access network controller with an air interface control function of the radio access network.
  • the processor 92 is connected to the receiver 91 and configured to process the air interface user plane data according to the air interface control policy received by the receiver 91.
  • the above-mentioned open interface is an interface between the enhanced base station and the radio access network controller of the embodiment, and is used to enable the enhanced base station of the embodiment to implement the air interface of the radio access network under the control of the radio access network controller.
  • Side user plane function Compared with the prior art, the enhanced base station of the embodiment opens the air interface control function of the radio access network originally implemented by the enhanced base station to the wireless connection through its open interface with the radio access network control. Network controller.
  • the enhanced base station in this embodiment may be a user plane network element in the radio access network.
  • the receiver 91 is further configured to receive a data forwarding policy of the IP layer sent by the NoC in the core network and the user planes of the layers above the IP layer.
  • the processor 92 is further configured to perform processing on user plane data of each layer above the IP layer and the IP layer according to the data forwarding policy received by the receiver 91.
  • the air interface control corresponding to the air interface control policy in this embodiment includes any one or a combination of the following: radio resource allocation, uplink and downlink scheduling, scheduling priority selection, HARQ retransmission, RLC connection control and management, protocol error detection and recovery, Control plane protocol encryption and decryption, broadcast, paging, RRC connection management, radio bearer management, mobility management, key management, UE measurement reporting and control, MBMS control, NAS message direct transmission and QoS management.
  • the enhanced base station of this embodiment further includes: a transmitter 93.
  • the transmitter 93 is configured to send an air interface policy request to the radio access network controller by using the foregoing open interface, to request the air interface control policy from the radio access network controller, so that the radio access network controller according to the request is the embodiment.
  • the enhanced base station generates and delivers an air interface control policy.
  • the air interface control is a radio resource allocation
  • the transmitter 93 is specifically configured to: when the new user accesses the enhanced base station of the embodiment, send a radio resource allocation request to the radio access network controller through the open interface, and the radio access
  • the network controller receives the radio resource allocation request, generates a radio resource allocation result for the enhanced base station of the embodiment, and returns a radio resource allocation response message.
  • the above radio resource allocation request includes a user flag of the new user.
  • the receiver 91 is specifically configured to receive, by using an open interface, a radio resource allocation result sent by the radio access network controller.
  • the receiver 91 is configured to receive, by using an open interface, a radio resource allocation response message sent by the radio access network controller.
  • the radio resource allocation response message carries a radio resource allocation result.
  • the air interface policy request is an exception processing request
  • the air interface control policy is a joint processing policy or a cell migration policy
  • the transmitter 93 is further configured to send a neighbor cell measurement request to the UE when the preset trigger condition is met.
  • the UE is triggered to perform a neighbor cell measurement process.
  • the preset triggering condition includes any one of the following conditions or a combination thereof:
  • the number of users accessing the enhanced base station in this embodiment is greater than a preset number threshold; the throughput of the edge user covered by the enhanced base station does not satisfy the throughput.
  • the user experience of the enhanced base station in this embodiment breaks the preset experience threshold.
  • the receiver 91 is further configured to receive the neighbor cell measurement result sent by the UE.
  • the transmitter 93 is specifically configured to: after receiving the measurement result of the neighboring cell sent by the UE, the receiver 91 sends an abnormal processing request to the radio access network controller by using an open interface, where the abnormal processing request includes the foregoing neighboring cell measurement result, And causing the radio access network controller to determine an air interface control policy according to the neighbor cell measurement result.
  • the receiver 91 is specifically configured to receive, by using an open interface, a joint processing policy or a cell migration policy sent by the radio access network controller, where the joint processing policy or the cell migration policy is determined by the radio access network controller according to the measurement result of the neighboring cell. of.
  • the interface between the enhanced base station and the radio access network controller is called Open.
  • the Radio interface is called the C3 interface between the enhanced base station and the NoC.
  • the Radio interface refer to the embodiment of the air interface information processing system, and details are not described herein again.
  • the enhanced base station and the radio access network controller of the embodiment cooperate with each other to implement the function of the user plane, and the radio access network controller implements the control plane function of the air interface of the radio access network, so that the radio access network
  • FIG. 10 is a flowchart of a method for processing air interface information according to an embodiment of the present invention. As shown in FIG. 10, the method in this embodiment includes:
  • Step 1001 The radio access network controller generates an air interface control policy, where the radio access network controller has an air interface control function of the radio access network.
  • Step 1002 The radio access network controller sends the air interface control policy to the enhanced base station through the open interface, so that the enhanced base station performs air interface user plane data processing according to the air interface control policy.
  • the open interface is an interface between the radio access network controller and the enhanced base station, and is used to enable the enhanced base station to implement an air interface user of the radio access network under the control of the radio access network controller. Face function.
  • the enhanced base station opens the air interface control function of the radio access network originally implemented by the enhanced base station to the radio access network controller through its open interface with the radio access network control. .
  • the process for the radio access network controller to generate the air interface control policy includes: the radio access network controller receives the user information sent by the network controller in the core network, where the user information includes User service information, user status information, and/or user flag information; the radio access network controller generates the air interface control policy according to the user information.
  • the user service information includes user QoS information.
  • the air interface control corresponding to the air interface control policy includes any one or a combination of the following: radio resource allocation, uplink and downlink scheduling, scheduling priority selection, HARQ retransmission, RLC connection control and management, protocol error detection and recovery, and control plane protocol. Encryption and decryption, broadcast, paging, RRC connection Management, radio bearer management, mobility management, key management, UE measurement reporting and control, MBMS control, NAS message direct transmission and QoS management.
  • the air interface information processing method further includes: the radio access network controller sending network state information and/or user state information to a network controller in the core network, so that the network control Determining, according to the network state information and/or the user state information, a data forwarding policy of the user planes of the IP layer and the IP layer and above, where the data forwarding policy is used to enable the enhanced base station to perform IP layer and user layers above the IP layer. Processing of face data.
  • the air interface information processing method further includes: the radio access network controller sending the handover information to the network controller in the core network, so that the network controller re-establishes the enhanced base station
  • the data forwarding strategy for the IP layer and the user planes of the IP layer and above is performed for the processing of the user plane data of the IP layer and the IP layer and above, and the re-established IP layer and the user plane of the IP layer and above are layered.
  • At least one of the source-enhanced base station and the target enhanced base station (ie, the enhanced base station) after the handover is sent to the one of the base stations, and the subsequent forwarding policy may be accompanied by the forwarding policy.
  • the process by which the base station forwards the forwarding policy to another base station The handover information is sent by the radio access network controller after the discovery UE switches from the source enhanced base station to the enhanced base station, where the handover information includes an identifier of the source enhanced base station and an identifier of the enhanced base station.
  • the enhanced base station is at least two
  • the air interface information processing method further includes: performing joint optimization processing on physical layer functions of the at least two enhanced base stations.
  • the radio access network controller before the generating the air interface control policy, includes: the radio access network controller receiving, by using an open interface, an enhanced base station, configured to request the air interface control policy. Air interface policy request. Then, an air interface control policy is generated according to the air interface policy request.
  • the air interface policy request is an exception processing request that includes a neighboring cell measurement result of the UE, and correspondingly, the air interface control policy is a joint processing policy or a cell migration policy.
  • the air interface policy request is a radio resource allocation request, and correspondingly, the air interface control policy is a radio resource allocation result.
  • the radio access network controller is responsible for generating an air interface control policy, and sending the air interface control policy to the enhanced base station, and the enhanced base station is responsible for processing the air interface user plane data according to the air interface control policy, thereby implementing wireless access.
  • the separation of the control plane and the user plane of the network is responsible for generating an air interface control policy, and sending the air interface control policy to the enhanced base station, and the enhanced base station is responsible for processing the air interface user plane data according to the air interface control policy, thereby implementing wireless access.
  • FIG. 11 is a flowchart of a method for processing air interface information according to another embodiment of the present invention. As shown in FIG. 11, the air interface information processing method in this embodiment includes:
  • Step 1101 The enhanced base station receives, by using an open interface, an air interface control policy sent by a radio access network controller with an air interface control function of the radio access network.
  • the open interface is an interface between the enhanced base station and the radio access network controller, and is used to enable the enhanced base station to implement the air interface side user plane function of the radio access network under the control of the radio access network controller.
  • the enhanced base station of the embodiment opens the air interface control function of the radio access network originally implemented by the enhanced base station to the wireless connection through its open interface with the radio access network control. Network controller.
  • the air interface control strategy is generated by the radio access network controller.
  • Step 1102 The enhanced base station performs air interface user plane data processing according to the air interface control policy.
  • the air interface information processing method in this embodiment further includes: Step 1103: The enhanced base station receives an IP layer sent by a network controller in the core network and a user plane of each layer above the IP layer. Data forwarding strategy.
  • Step 1104 The enhanced base station performs processing on the user plane data of the IP layer and the IP layer and above according to the data forwarding policy.
  • the air interface information processing method includes, before step 1101, the enhanced base station sends an air interface policy request to the radio access network controller to request the air interface control policy.
  • the air interface policy request is an exception processing request that includes the measurement result of the neighboring cell reported by the UE.
  • the air interface control policy is a joint processing policy or a cell migration policy.
  • the air interface policy request is a radio resource allocation request, and correspondingly, the air interface control policy is a radio resource allocation result.
  • the air interface control corresponding to the air interface control policy includes any one or a combination of the following: radio resource allocation, uplink and downlink scheduling, scheduling priority selection, HARQ retransmission, RLC connection control and management, protocol error detection and recovery, and control plane protocol. Encryption and decryption, broadcast, paging, RRC connection Management, radio bearer management, mobility management, key management, UE measurement reporting and control, MBMS control, NAS message direct transmission and QoS management.
  • the enhanced base station receives the air interface control policy that is generated and delivered by the radio access network controller, and is responsible for processing the air interface user plane data according to the air interface control policy, thereby implementing the control plane and the user of the radio access network.
  • the separation of the faces are the air interface control policy that is generated and delivered by the radio access network controller, and is responsible for processing the air interface user plane data according to the air interface control policy, thereby implementing the control plane and the user of the radio access network.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Abstract

本发明实施例提供一种空口信息处理系统、方法及设备。增强型基站包括:接收器,用于通过开放接口接收具有无线接入网的空口控制功能的无线接入网控制器发送的空口控制策略;处理器,用于根据空口控制策略进行空口用户面数据的处理。本发明实施例提供的技术方案通过无线接入网控制器与增强型基站实现了无线接入网在控制面和用户面上的分离。

Description

空口信息处理系统、 方法及设备 技术领域 本发明涉及通信技术, 尤其涉及一种空口信息处理系统、 方法及设备。 背景技术
传统无线蜂窝网络, 例如 2G/3G/4G通信网络, 主要包括核心网和接入 网两部分。 无线接入网主要由基站 (eNodeB )构成, eNodeB 主要负责无线 资源管理, IP数据报头压缩, 空口加解密等。 用户设备(User Equipment, 简 称为 UE )与 eNodeB之间的接口属于空中接口。 该空中接口的协议栈, 可分 为物理层(L1 ) 、 数据链路层 ( L2 )和网络层(L3 )三层。 其中, L1层主要 用于为高层业务提供传输的无线物理通道; L2 层主要包括媒体接入控制 ( Media Access Control, 简称为 MAC )子层、 无线链路控制 (Radio Link Control, 简称为 RLC )子层、 分组数据集中协议(Packet Data Convergence Protocol, 简称为 PDCP )子层三个子层; 而 L3层的子层中, 最低层与 L2层 接口, 记作无线资源控制层(Radio Resource Control, 简称为 RRC ) , 而诸 如移动管理( Mobile Management, 简称为 MM )和呼叫控制 ( Call Control, 简称为 CC ) 的更高层信令属于非接入段, 属于核心网范畴。
从控制面 ( C-plane )和用户面 ( U-plane )的角度来讲, 上述空中接口的 各个层次在控制面和用户面上是混合的, 没有实现分离。 目前, 控制面和用 户面分离的方案,主要针对 IP层及 IP层以上各层,这就导致了这类方案主要 是对无线网络中核心网层面的改进, 无线接入网未纳入管理范围, 没有实现 无线接入网的承载和控制分离 , 影响了整体网络的性能。 发明内容
本发明提供一种空口信息处理系统、 方法及设备, 用以实现无线接入网 在控制面和用户面上的分离。
一个方面是提供一种增强型基站, 包括:
接收器, 用于通过开放接口接收具有无线接入网的空口控制功能的无线 接入网控制器发送的空口控制策略, 所述空口控制策略是由所述无线接入网 控制器生成的; 所述开放接口是所述增强型基站和所述无线接入网控制器之 间的接口;
处理器, 用于根据所述空口控制策略进行空口用户面数据的处理。
另一个方面提供一种无线接入网控制器, 具有无线接入网的空口控制功 能, 所述无线接入网控制器包括:
处理器, 用于生成空口控制策略;
发送器, 用于通过开放接口将所述空口控制策略发送给增强型基站, 以 使所述增强型基站根据所述空口控制策略进行空口用户面数据的处理;
其中, 所述开放接口是所述无线接入网控制器和所述增强型基站之间的 接口。
再一个方面提供一种空口信息处理系统, 包括: 无线接入网控制器和增 强型基站;
所述无线接入网控制器, 具有无线接入网的空口控制功能, 用于生成空 口控制策略, 通过开放接口将所述空口控制策略下发给所述增强型基站; 其 中, 所述开放接口是所述无线接入网控制器和所述增强型基站之间的接口; 所述增强型基站, 用于通过所述开放接口接收所述空口控制策略, 并根 据所述空口控制策略进行空口用户面数据的处理。
又一方面提供一种空口信息处理方法, 包括:
无线接入网控制器生成空口控制策略, 所述无线接入网控制器具有无线 接入网的空口控制功能;
所述无线接入网控制器通过开放接口将所述空口控制策略发送给增强型 基站, 以使所述增强型基站根据所述空口控制策略进行空口用户面数据的处 理。
又一方面提供一种空口信息处理方法, 包括:
增强型基站通过开放接口接收具有无线接入网的空口控制功能的无线接 入网控制器发送的空口控制策略, 所述空口控制策略是由所述无线接入网控 制器生成的;
所述增强型基站根据所述空口控制策略进行空口用户面数据的处理。 由上述可见, 本发明实施例提供的空口信息处理系统、 方法及设备, 无 线接入网控制器具有无线接入网的空口控制功能, 由无线接入网控制器负责 生成空口控制策略, 并将空口控制策略发送给增强型基站, 增强型基站根据 空口控制策略负责进行空口用户面数据的处理, 无线接入网控制器负责无线 接入网的空口侧控制面功能的处理, 增强型基站负责无线接入网的空口侧用 户面功能的处理, 实现了无线接入网的控制面和用户面的分离。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下 面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1A为本发明一实施例提供的空口信息处理系统的结构示意图; 图 1B 为本发明一实施例提供的无线接入网控制器和增强型基站配合完 成控制和承载分离的一种示例的流程图;
图 1C 为本发明一实施例提供的无线接入网控制器和增强型基站配合完 成控制和承载分离的另一种示例的流程图;
图 2A为本发明另一实施例提供的空口信息处理系统的结构示意图; 图 2B为本发明另一实施例提供的 NoC通过 C3接口触发无线接入网控 制器进行无线 L2和 L3层对增强型基站的控制的示例的流程图;
图 2C 为本发明另一实施例提供的无线接入网控制器通过 C3接口触发
NoC进行对增强型基站的 IP层以 IP层以上各层的用户面数据的转发控制的 一种示例的流程图;
图 2D为本发明另一实施例提供的无线接入网控制器通过 C3接口触发 NoC进行对增强型基站的 IP层以 IP层以上各层的用户面数据的转发控制的 另一种示例的流程图;
图 3-图 5为本发明一实施例提供的空口信息处理系统中各网元的用户面 和控制面协议栈的示意图;
图 6为本发明又一实施例提供的空口信息处理系统的结构示意图; 图 7为本发明又一实施例提供的空口信息处理系统的结构示意图; 图 8为本发明一实施例提供的无线接入网控制器的结构示意图; 图 9为本发明一实施例提供的增强型基站的结构示意图;
图 10为本发明一实施例提供的空口信息处理方法的流程图;
图 11为本发明另一实施例提供的空口信息处理方法的流程图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
为了实现无线接入网的控制面和用户面的分离, 为了将无线接入网纳入 管理范围, 本发明技术方案提出了在无线接入网实现控制面和用户面分离的 网络架构和方案。 该方案的核心思想是: 从接入网基站中剥离出无线 L2 和 L3控制面功能, 由单独的功能实体实现, 并通过与核心网控制面配合, 实现 对用户承载端到端的管理, 而无线 L2和 L3用户面功能由单独的功能实体实 现, 主要负责完成空口用户面数据处理, 所述空口用户面数据处理包括: 数 据传输, 数据分段、 级联、 排序、 重组、 丟弃, 数据报头的压缩和解压缩, 数据安全性保护, 如数据的加解密、 完整性保护等等。
图 1A 为本发明一实施例提供的空口信息处理系统的结构示意图。 如图 1A所示, 本实施例的系统包括: 无线接入网控制器 10和增强型基站 20。
其中, 无线接入网控制器 10具有无线接入网的空口控制功能, 主要用于 生成空口控制策略, 通过开放接口将空口控制策略下发给增强型基站 20。 增 强型基站 20用于通过开放接口接收无线接入网控制器 10下发的空口控制策 略, 并根据空口控制策略进行空口用户面数据的处理。
无线接入网控制器 10和增强型基站 20位于无线接入网内。 无线接入网 控制器 10属于无线接入网内的控制面网元, 即空口控制面网元, 主要用于通 过空口控制策略控制增强型基站 20完成空口用户面数据的处理,具体包括抽 离出的无线 L2和 L3层协议控制面的功能,无线 L2和 L3层协议控制面的功 能包括但不限于: 无线资源分配, 上下行调度, 调度优先级选择, 混合自动 重传请求( Hybrid Automatic Repeat Request, 简称为 HARQ )重传, 无线链 路控制 (Radio Link Control, 简称为 RLC )连接控制和管理, 协议错误检测 与恢复, 控制平面协议的加密和解密, 广播、 寻呼、 无线资源控制 (Radio Resource Control , 简称为 RRC )连接管理、 无线承载管理、 移动性管理、 密 钥管理、 UE 测量报告与控制、 多媒体广播多播业务(Multimedia Broadcast Multicast Service, 简称为 MBMS )控制、 NAS消息直传、 服务指令 ( Quality of Service, 简称为 QoS )管理等等。
增强型基站 20属于无线接入网内的用户面网元, 在空口层面(或者说是 Radio层面)接受无线接入网控制器 10的控制, 主要在无线接入网控制器 10 的控制下完成空口用户面数据的处理, 具体集成了无线 L2和 L3层所有用户 面的处理功能, 一般只具备用户面功能, 无线 L2和 L3层所有用户面的处理 功能包括但不限于: 数据传输, 数据分段、 级联、 排序、 重组、 丟弃, 数据 报头的压缩和解压缩, 数据安全性保护, 如数据的加解密、 完整性保护等等。 在本实施例中, 增强型基站 20可以是各种类型各种制式的无线基站, 例如各 种宏基站、 微基站等等。 在无线接入网中, 增强型基站 20的数量较多, 也就 是一个无线接入网控制器 10可同时控制多个增强型基站 20, 多个增强型基 站 20通过开放接口与一个无线接入网控制器 10相连, 并接受无线接入网控 制器 10的控制。
其中, 无线接入网控制器 10与增强型基站 20之间的接口为开放接口, 还可以称之为开放无线(英文为 OpenRadio )接口, 但不限于 OpenRadio接 口该名称。 Open Radio接口用于使增强型基站 20在无线接入网控制器 10的 控制下实现无线接入网的空口侧用户面功能, 也就是说通过该 Open Radio接 口将无线接入网的空口控制功能开放给了无线接入网控制器 10, 这里所说的 开放是相对于现有技术而言的, 现有技术中的空口控制功能在 LTE系统中是 封装在增强型基站(英文为 eNodeB ) 中实现的, 在 UMTS 系统中是封装在 基站 (英文为 NodeB )和无线控制器( RNC ) 中实现的, 本实施例中将部分 或全部空口控制功能集中到独立网元, 即无线接入网控制器 10中来实现, 相 当于现有 eNodeB,或者 NodeB和 RNC将空口控制功能开放给了本实施例中 的无线接入网控制器 10, 这样可以实现相对集中的控制, 也可以使控制的流 程等变得简洁。 Open Radio接口主要承载空口控制面策略, 因为接入网内所 有空口的 L2和 L3层控制面功能都集中在无线接入网控制器 10内处理, 增 强型基站 20只负责相应的用户面功能, 因此, 涉及到空口控制时, 需要通过 Open Radio接口来承载空口控制策略, 空口的控制包括但不限于空口资源的 调度(如 QoS控制 ) 、 寻呼、 广播等等。 即无线接入网控制器 10所具有的 无线 L2和 L3层的控制面功能,都需要通过 Open Radio接口下发给增强型基 站 20。 另外, 增强型基站 20也可以通过该 Open Radio接口主动向无线接入 网控制器 10请求一些控制策略。 即增强型基站 20还用于在接收空口控制策 略之前, 向无线接入网控制器 10发送空口策略请求。 这样无线接入网控制器 10就会根据空口策略请求为增强型基站 20生成并下发空口控制策略。
在此说明, 本实施例无线接入网控制器 10和增强型基站 20通过配合实 现的一些基本流程, 如承载建立、 移动性管理等, 与现有技术类似, 不再一 一详述。
下面给出一个例子, 说明无线接入网控制器 10和增强型基站 20是如何 配合完成控制和承载分离的整个过程的。 假设新用户接入, 由该用户的 UE 当前连接的增强型基站 20触发无线接入网控制器 10为该用户进行无线资源 分配, 具体流程如图 1B所示, 包括:
步骤 Sl、 用户接入网络, 增强型基站 20发现了这一新用户, 确定需要 为该用户的 UE请求无线资源。
步骤 S2、 由于增强型基站 20只具有用户面功能, 而不具有控制面资源 分配功能, 因此通过 Open Radio接口向无线接入网控制器 10发送无线资源 分配请求, 该无线资源分配请求中携带 UE的用户标志, 以便无线接入网控 制器 10进行存储和后续识别。
步骤 S3、 无线接入网控制器 10收到无线资源分配请求后, 可以根据 UE 的用户标志从核心网侧获取 UE的相关信息, 然后根据本地存储的无线资源 利用情况以及获取的 UE的相关信息等信息,为该 UE分配无线资源。这里的 无线资源可以为某一数量的信道、 时隙、 甚至是传输的优先级等等。
步骤 S4、无线接入网控制器 10向增强型基站 20发送无线资源分配应答, 该无线资源分配应答包括上述资源分配结果。
步骤 S5、 增强型基站 20接收到无线资源分配应答后, 在无线接入网控 制器 10分配的无线资源上, 进行该 UE的用户面数据操作, 如传输数据包等 等。 在该实施方式中, 无线资源分配请求即为一种空口策略请求, 上述无线 资源分配结果为一种空口控制策略。
下面再给出一个例子, 说明无线接入网控制器 10和增强型基站 20是如 何配合完成控制和承载分离的整个过程的。 当某一个增强型基站 20覆盖范围 下, 接入用户过多, 会造成该增强型基站 20过载, 对用户的 QoS体验有较 大影响, 特别是小区边缘用户。 另外, 由于增强型基站 20的资源不足等原因 会导致小区边缘用户的 QoS体验较差, 体验度打破预设体验度门限, 例如, 用户接收到业务的时延大于预设时延门限值, 或者用户接收到视频 /语音业务 清晰度小于预设的清晰度门限值等等。 在上述情景下, 可通过强迫小区边缘 用户实施多基站联合处理技术, 解决小区边缘用户的公平性问题。 为了实现 该过程, 需要无线接入网控制器 10和增强型基站 20的配合, 具体流程如图 1C所示, 包括:
步骤 Al、 增强型基站 20发现自己覆盖范围下, 接入的用户过多, 增强 型基站覆盖下的边缘用户的业务吞吐量不满足业务吞吐量需求, 和 /或接入增 强型基站的用户体验度打破预设体验度门限, 即发现当前情况满足上述预设 触发条件至少其中之一。
步骤 A2、增强型基站 20向 UE发送相邻小区测量请求,触发 UE进行相 邻小区测量过程。 这里的相邻小区测量主要是指获取能够反映相邻小区当前 性能状态的各种参数的过程, 例如包括对相邻小区的信号强度的测量、 对相 邻小区中 UE数量的测量等等。
步骤 A3、 UE向增强型基站 20上报相邻小区测量结果。在该实施例中仅 以 UE的相邻小区为第一增强型基站为例来说明,实际上 UE可以有多个相邻 小区。
步骤 A4、 增强型基站 20向无线接入网控制器 10发送异常处理请求, 该 异常处理请求包括相邻小区测量结果, 还包括: 用户资源不足的情况等信息。
步骤 A5、无线接入网控制器 10收到增强型基站 20发送的异常处理请求 后, 生成联合处理策略。 具体的, 无线接入网控制器 10可以结合该增强型基 站 20相邻小区拓朴和相邻小区测量结果, 以及本地存储的回程( backhaul ) 等信息, 做出联合处理策略。
在该步骤 A5中, 无线接入网控制器 10可能根据实际情况作出不同的处 理策略,如决策将增强型基站 20的该小区边缘处用户迁往临近比较空闲的小 区(称为小区迁移策略), 或者决策增强型基站 20保持现有状态等, 本实施 例以无线接入网控制器 10决策为增强型基站 20实施多小区联合处理为例说 明。 在该决策过程中, 无线接入网控制器 10除了决策出为增强型基站 20实 施多小区联合处理之外, 还要决策出联合处理相关的其他信息, 如涉及到的 增强型基站有哪些, 釆用哪种联合处理算法, 增强型基站之间可以共享的信 息类型等等。 在本实施例中, 以无线接入网控制器 10选择了增强型基站 20 和第一增强型基站进行联合处理为例, 而联合处理算法可选择现有技术的各 种联合处理算法。
步骤 A6、无线接入网控制器 10向增强型基站 20和第一增强型基站下发 联合处理策略。
步骤 A7、增强型基站 20和第一增强型基站按照无线接入网控制器 10下 发的联合处理策略为 UE实施联合处理。
在此说明, 如果步骤 A5中无线接入网控制器 10作出的处理策略为将边 缘用户迁往临近小区, 则之后的步骤包括: 无线接入网控制器 10将作出的控 制策略下发到增强型基站(即源增强型基站), 其中包含策略的详细内容(即 将边缘用户迁往相邻小区)和迁往的增强型基站 (即目的增强型基站) 的标 识等, 同时无线接入网控制器 10还会向即将迁往的相邻小区中的增强型基站 发送类似的控制策略, 通知该小区的增强型基站将有新的用户迁入, 而源增 强型基站和即将迁往的增强型基站收到控制策略后, 开始执行边缘用户的切 换过程, 其过程类似于现有技术中的用户切换, 这里不再赘述。
上述异常处理请求为一种空口策略请求, 相应的, 联合处理策略或小区 迁移策略为一种空口控制策略。
除了以上给出的无线资源分配控制和联合处理控制外, 还可以釆用类似 的流程, 实现无线接入网控制器 10对增强型基站 20其他操作的控制, 如数 据加密方式的控制, 调度优先级的控制, 多播广播的控制等等。 简而言之, 无线接入网控制器 10具有的控制面功能,都可以釆用类似的流程传达给增强 型基站 20, 这种控制过程可以由增强型基站 20请求而触发的, 也可以由无 线接入网控制器 10主动下发控制策略给增强型基站 20, 而增强型基站 20则 负责依据无线接入网控制器 10的控制结果, 进行用户面的相应操作。 由上述可见, 本实施例通过无线接入网控制器实现无线接入网中 L2 和 L3层的控制面功能,通过增强型基站实现无线接入网中 L2和 L3层的用户面 功能, 实现了控制面和用户面的分离, 提高了整体网络的性能。
图 2A 为本发明另一实施例提供的空口信息处理系统的结构示意图。 本 实施例基于图 1A所示实施例实现, 如图 2A所示, 本实施例的空口信息处理 系统还包括: 网络控制器( Network Controller, NoC ) 30。
NoC30用于生成 IP层及 IP层以上各层用户面的数据转发策略, 将数据 转发策略发送给增强型基站 20。 基于此, 增强型基站 20还用于接收 NoC30 发送的数据转发策略, 并根据数据转发策略进行 IP层及 IP层以上各层用户 面数据的处理。 对 IP层及 IP层以上各层用户面数据的处理包括但不限于:
NoC30位于核心网, 是核心网主要的控制面网元, 主要负责用户面数据 转发策略的制定, 具体的, NoC30可以根据网络状态信息和 /或用户信息等信 息生成 IP层及 IP层以上各层用户面的数据转发策略, 并提供给增强型基站 20以使接入网内的增强型基站 20根据该数据转发策略进行 IP层及 IP层以上 各层用户面数据的路由。上述数据转发策略包括增强型基站 20将用户面数据 转发给谁, 或者通过谁转发用户面数据, 或者从谁接收用户面数据等信息。 另外, NoC30除具有制定数据转发策略功能之外, 还可以进行端到端承载管 理,例如, NoC30可处理来自接入网的无线接入网控制器 10发送的各种请求, 如承载建立请求等。 上述用户状态信息包括用户是否发生了移动或切换, 从 哪个增强型基站 20切到了哪里, 或者用户是否发起新的会话等等; 网络状态 信息包括网络中某个增强型基站 20的资源使用已经饱和,不能再接受新的业 务等等。
其中, NoC30与增强型基站 20之间的接口称为 C2接口, 但不限于 C2 接口该名称。 C2接口主要承载 IP层及 IP层以上各层的控制面信令(即数据 转发策略) , 即通过 C2接口, 增强型基站 20接收 NoC30下发的 IP层及 IP 层以上各层用户面的数据转发策略, 并按照该数据转发策略路由数据, 这里 的数据主要指 IP层及 IP层以上的数据。 可选的, NoC30 可以通过开放流 ( OpenFlow, 简称为 OF )协议对增强型基站 20进行控制管理, 则从 C2接 口的角度来看, NoC30与增强型基站 20之间的关系类似于 OF控制器(OF controller )和 OF交换机 ( OF Switch ) , 则可理解为 C2接口承载在 OF协议 之上。 下面对 OF协议进行详细说明。
OF是一种交换技术, OF网络架构主要包括: OF交换机和 OF控制器。 OF交换机是整个 OF网络的核心部件, 主要管理数据层的转发。 每个 OF交 换机都有一张流表(英文为 flow table ) , 进行包查找和转发。 OF交换机可 以通过 OF协议经一个安全通道连接到外部控制器, 对流表进行查询和管理。 OF交换机接收到数据包后, 首先在本地的流表上查找转发目标端口, 如果没 有匹配, 则把数据包转发给 OF控制器, 由控制层决定转发端口。 OF控制器 实现了控制层的功能, OF控制器通过 OF协议这个标准接口对 OF交换机中 的流表进行控制, 从而实现对整个网络进行集中控制。
OF 的流表由 ^艮多个流表项组成, 每个流表项就是一个转发规则。 进入 OF交换机的数据包通过查询流表来获得转发的目的端口。 OF的流表中每一 个流表项 (entry ) 支持 3个部分: 规则、 操作和状态。 规则用来定义流(英 文为 flow ) , OF协议中的 flow定义十分宽泛, 支持 10个域, 除了传统的 Ί 元组之外增加了交换端口、 以太网类型、 Vlan lD , 头域是个十元组, 是流表 项的标识。 操作就是转发、 丟弃等行为, 操作标明了与该流表项匹配的数据 包应该执行的操作。 状态部分则是主要用来做流量的统计数据。
基于上述, OF协议关键的特性就是支持远端的控制, 试想, 如果要改变 流表项就必须跑到 OF交换机前重新编程写入, 这会 ^艮麻烦, 且效率会 ^艮低, 而通过远程控制可以提高便利性和效率, 因此, 远程控制成为 OF 的一大特 性。 有了 OF协议, 可以在正常运行的网络中自己定义一些特殊的规则, 让 符合规则的流量按照需求走任意的路径, 就仿佛将一张物理网络切成了若干 不同的虚拟网络一样, 同时运行而又各不干扰。 从这个意义上说, OF协议将 传统的物理固定的硬件互联网改造成为了动态可变的软件定义互联网。 而一 个软件定义的可控的互联网, 除了更加灵活以外, 毫无疑问, 通过恰当的控 制算法, 将大大提高网络自身的健壮性、 运行效率以及安全性。
基于 OF协议所具有的优势, 本实施例中 NoC30可釆用 OF协议对增强 型基站 20进行管理, 同样具有灵活、 方便、 运行效率高等优势。 当然, 如果 未来出现类似于 OF的协议或超越 OF的协议, NoC30也可釆用该协议对增强 型基站 20进行管理。 可选的, 无线接入网控制器 10也可以釆用类似 OF协 议的流表形式的控制, 对增强型基站 20 进行管理, 其中无线接入网控制器 10和增强型基站 20分别相当于 OF网络中的 OF控制器和 OF交换机。
在实际部署时, NoC30和无线接入网控制器 10可分别单独部署,也可以 合并起来部署, 当单独部署时, 为了在 NoC30上实现端到端承载管理, 需要 通过 C3接口与无线接入网控制器 10进行交互。 其中, 将 NoC30和无线接入 网控制器 10之间的接口称为 C3接口, 但不限于 C3接口该名称。 C3接口主 要用于承载无线接入网控制器 10 上报给 NoC30 的空口的控制信息, 以及 NoC30下发给无线接入网控制器 10的端到端的控制信息。
在本实施例的一个可选实施方式中, NoC30中还存储用户业务信息、 用 户状态信息和 /或用户标识信息, NoC30可根据这些信息的变化, 主动向接入 网触发一些控制, 影响接入网内无线接入网控制器 10对增强型基站 20的空 口控制, 以间接实现对空口的控制。 具体的, NoC30还用于向无线接入网控 制器 10发送用户信息, 以使无线接入网控制器 10根据用户信息生成空口控 制策略。 相应的, 无线接入网控制器 10具体用于接收 NoC30发送的用户信 息, 根据用户信息生成空口控制策略。 其中, 用户信息包括用户业务信息、 用户状态信息和 /或用户标识信息等等。 所述用户状态信息包括用户当前是激 活(英文为 active )还是空闲 (英文为 idle )状态, 用户业务信息包括用户签 约信息、 用户 QoS信息等等。举例说明, 例如 NoC30发给无线接入网控制器 10的用户业务信息中指示, 用户发起或接收了一项新的业务, 则无线接入网 控制器 10做出决策, 为用户的这项新业务分配无线资源, 指示由哪个或哪几 个增强型基站 20来转发这个新业务相关的数据包 (即空口控制策略 )。 又例 如, NoC30发给无线接入网控制器 10的用户状态信息中指示, 当前空闲(英 文为 idle )状态下的用户在某个或某些个增强型基站 20的覆盖范围下, 则无 线接入网控制器 10就可以做出决策, 由哪个增强型基站 20来发起寻呼操作 (即空口控制策略) 。
下面给出一个例子, 说明 NoC30如何通过 C3接口触发无线接入网控制 器 10进行无线 L2和 L3层对增强型基站 20的控制。 在该例子中, NoC30中 存储了用户业务相关的一些信息,如 QoS信息, NoC30将 QoS信息下发给无 线接入网控制器 10后, 出于提高系统资源利用率或者满足用户 QoS需求的 目的, 无线接入网控制器 10重新调整资源分配方案, 调整单个 /多个增强型 基站 20占有的资源, 将资源分配结果反馈给单个 /多个增强型基站 20, 增强 型基站 20按照接收到的资源分配结果, 在重新分配到的资源上传输数据。 具 体流程如图 2B所示, 包括:
步骤 Dl、 UE在入网时, 与 NoC30协商 QoS策略, NoC30中存储了 UE 的 QoS信息, 或者, NoC30从 UE或者应用服务器处得到 UE的 QoS信息。
步骤 D2、 NoC30将 UE的 QoS信息通过 C3接口下发给无线接入网控制 器 10。
步骤 D3、无线接入网控制器 10接收到 NoC30下发的 QoS信息后, 出于 提高系统资源利用率或者满足用户 QoS需求的目的, 重新调整 L2层资源分 配方案,调整单个或多个增强型基站 20占有的资源。这里的资源可以是信道、 时隙、 调度优先级等等。 这里之所以可以调整单个或多个增强型基站 20, 是 因为一个无线接入网控制器 10可以控制多个增强型基站 20, 为了满足需求, 无线接入网控制器 10可能会同时调整一个以上增强型基站 20的资源分配方 案。 图 2B中以省略号表示多个增强型基站 20。
步骤 D4、 无线接入网控制器 10将资源分配结果发送给单个或多个增强 型基站 20。
步骤 D5、 单个或多个增强型基站 20接收到资源分配结果后, 在重新分 配到的资源上传输数据。
除了上面给出的 NoC30根据 QoS信息触发无线接入网控制器 10重新进 行资源分配的流程外, NoC30还可以通过下发其他信息, 例如用户的业务信 息、 网络拓朴信息等, 触发无线接入网控制器 10在空口对增强型基站 20其 他操作进行控制, 具体控制流程与上述流程类似, 不再赘述。
在本实施例的一可选实施方式中,无线接入网控制器 10还用于向 NoC30 发送网络状态信息和 /或用户状态信息, 以使 NoC30根据网络状态信息和 /或 用户状态信息生成 IP层及 IP层以上各层用户面的数据转发策略。 可选的, NoC30除了接收无线接入网控制器 10上报的网络状态信息和 /或用户数据信 息之外, 还可以在本地预先存储网络状态信息和 /或用户状态信息。 网络状态 信息包括网络拓朴信息、 用户 UE的信息等等。
下面给出一个例子, 说明无线接入网控制器 10如何通过 C3 接口触发 NoC30进行对增强型基站 20的 IP层以 IP层以上各层的用户面数据的转发控 制。 无线接入网控制器 10获知接入网内网络拓朴信息的变化, 将该网络拓朴 信息的变化上报到 NoC30, 则 NoC30相应的调整用户面转发策略, 将调整后 的用户面转发策略发送给增强型基站 20, 增强型基站 20按照新的用户面转 发策略进行 IP层以 IP层以上各层的用户面数据的转发。具体流程如图 2C所 示, 包括:
步骤 El、 无线接入网控制器 10感知到网络拓朴信息的变化。 这种变化 可以无线接入网控制器 10自己感知到的, 也可以是其他网元(例如增强型基 站 20 )告知无线接入网控制器 10的。
步骤 E2、无线接入网控制器 10将网络拓朴信息的变化通过 C3接口告知 NoC30。
步骤 E3、 NoC30收到无线接入网控制器 10发送的网络拓朴的变化信息 后, 按照新的网络拓朴信息, 重新制定出用户面转发策略。 这里的用户面转 发策略主要是针对 IP层以 IP层以上各层的的用户面数据的, 策略中包含有 由哪些增强型基站 20来转发哪些数据等信息。
步骤 E4、 NoC30将新的用户面转发策略通过 C2接口发送给相应的增强 型基站 20。
步骤 E5、 增强型基站 20接收到新的用户面转发策略之后, 按照新的用 除了上面给出的无线接入网控制器 10 根据网络拓朴信息的变化触发 NoC30 重新制定并下发用户面转发策略的流程之外, 无线接入网控制器 10 还可以根据其他信息, 例如用户移动性信息等等触发 NoC30重新制定并下发 用户面转发策略, 具体实现流程如图 2D所示。
步骤 Fl、 增强型基站感知到用户发生了移动, 由源增强型基站切换到了 本增强型基站 (即目的增强型基站) , 本增强型基站、 源增强型基站以及无 线接入网控制器之间进行用户移动切换过程, 其切换过程为现有技术, 不再 赘述。
步骤 F2、无线接入网控制器向 NoC发送切换信息,该切换信息包括源增 强型基站的标识和本增强型基站的标识, 这里的标识例如可以是 IP地址等, 以便 NoC识别。
步骤 F3、 NoC收到切换信息后, 根据 UE移动后的位置, 重新为本增强 型基站 - 以上各层用户面的数据面转发策略。 例如, 数据面转发策略包含有由哪些增 强型基站来转发哪些用户面数据等信息, 在本实施例中, 数据面转发策略主 要包括指示由本增强型基站进行该 UE的用户面数据的转发, 源增强型基站 停止转发该 UE的用户面数据的信息。
步骤 F4、 NoC将上述数据面转发策略通过 C2接口下发到相应的增强型 基站(即源增强型基站和目的增强型基站中的至少一个, 如果只下发到其中 一个基站 , 则后续可能伴随接收到转发策略的基站将该转发策略转发给另 ― 个基站的过程) 。
步骤 F5、本增强型基站和 /或源增强型基站按照上述数据面转发策略进行
IP层及 IP层以上各层的用户面数据的转发。
由上述可见, 本实施例的无线接入网控制器还用于向网络控制器发送切 换信息; 所述切换信息是无线接入网控制器在发现 UE从源增强型基站切换 到该切换到的增强型基站后发送的, 所述切换信息包括源增强型基站的标识 和切换到的增强型基站的标识。 相应的, 网络控制器具体用于在接收到上述 切换信息后生成数据转发策略。
在此说明,上述 NoC30通过 C3接口触发无线接入网控制器 10进行无线
L2和 L3层对增强型基站 20的控制的流程, 与上述无线接入网控制器 10通 过 C3接口触发 NoC30进行对增强型基站 20的 IP层以 IP层以上各层的用户 面数据的转发控制的流程, 可同时进行, 这样就完整的构成了本实施例中
NoC30、 无线接入网控制器 10和增强型基站 20三者及他们之间的接口配合 实现的控制面和用户面分离的架构的功能。
由上述可见, 本实施例通过三个功能实体和它们之间接口的配合, 实现 了无线接入网的控制面和用户面的分离, 控制面分为核心网 (IP层及以上 IP 层以上各层)和空口 (无线 L2和 L3层) 两个层面, 核心网层面的主要控制 空口的主要控制网元无线接入网控制器 10主要制定和下发空口 (即无线 L2 和 L3层)的空口控制策略, 两个层面的控制网元在实际部署中可以集成在一 起, 也可以分开部署, 分开部署时, 两个网元之间的接口承载的控制信令, 可实现两者之间的相互控制; 用户面的主要网元增强型基站在空口接受无线 接入网控制器的控制, 而在 IP层以及 IP层以上各层接受 NoC的控制管理, 基于上述, 本实施例中各网元的用户面协议栈如图 3所示。 增强型基站 20的用户面协议栈主要包括面向 UE的和面向应用服务器( APP Server )的。 增强型基站 20面向 UE的用户面协议栈从下往上依次为: PHY、 MAC, RLC 和 PDCP层;面向应用服务器的用户面协议栈从下往上依次为: LI、 L2和 IP1 层。 UE的用户面协议栈从下往上依次为: PHY、 MAC, RLC、 PDCP, IPl , TCP/UDP和 APP层。 应用服务器的用户面协议栈从下往上依次为: Ll、 L2、 IPl TCP/UDP和 APP层。 如图 3协议栈所示, 增强型基站 20可以在 NoC30 的控制下接收来自于应用服务器的用户面数据, 同时, 增强型基站 20还可以 在无线接入网控制器 10的控制下接收来自于 UE的用户面数据。 本实施例中 各网元的控制面协议栈如图 4所示, 具体不再——详述。 增强型基站 20与 NoC30之间的控制面协议栈如图 5所示, 也不再——详述。 需要说明的是, 图 3中的 IPl、 L2和 L1分别表示国际标准化组织( International Organization for Standardization, 简称为 ISO ) 7层协议栈中的 IP层(还可称为网络层, 英文 为 Network layer ) , 二层(还可称为数据链路层, 英文为 Data link layer )和 一层 (还可称为物理层, 英文为 Physical layer ) , 而不是前文中所述的无线 侧的 L1和 L2层;图 4中的 OR表示 Open Radio接口层, C3表示 C3接口层; 图 5中的 C2表示 C2接口层。
在本实施例的一可选实施方式中, 本实施例空口信息处理系统中至少存 在两个增强型基站 20。 则无线接入网控制器 10还用于对至少两个增强型基 站 20的物理层功能进行联合处理。 这里的物理层功能也就是无线侧 L1层的 功能, 例如编译码、 调制解调、 多天线映射以及其他典型物理层功能等。 本 发明中,将两个或两个以上增强型基站 20的 L1层功能进行联合处理的过程, 称为联合处理(Joint Processing, 简称为 JP ) 。 由于联合计算要求资源非常 高, 将联合处理功能部署于无线接入网控制器中, 而不是分散在各个增强型 基站 20中, 通过这种集中部署方式可以实现资源高效利用, 并且还可以减少 增强型基站 20之间的相互传输。 无线接入网控制器 10可以釆用现有算法对 各增强型基站 20的物理层功能进行联合处理, 具体过程不再详述。
在本实施例的一可选实施方式中, 如图 6所示, 本实施例的空口信息处 理系统还包括: 联合处理设备 40。 该联合处理设备 40与各增强型基站 20连 接, 用于对至少两个增强型基站 20的物理层功能进行联合处理。 联合处理设 备 40也可以釆用现有算法对各增强型基站 20的物理层功能进行联合处理, 具体过程不再详述。 在此说明, 联合处理设备 40 独立于无线接入网控制器 10。
由上述可见,对各增强型基站 20的物理层功能进行联合处理的功能实体 可以与无线接入网控制器 10位于同一物理网元中,即可以由无线接入网控制 器 10执行, 也可以与无线接入网控制器位于不同的物理网元中。
在本实施例的一可选实施方式中, 如图 7所示, 本实施例的空口信息处 理系统还包括: 域路由器( Domain Router, DR ) 50。 DR50用于接收 NoC30 发送的数据转发策略, 根据数据转发策略进行 IP层及 IP层以上各层用户面 数据的处理。 这里对 IP层及 IP层以上各层用户面数据的处理同样包括但不 限于: 对 IP层及 IP层以上各层用户面数据的收发处理。 可选的, DR50还用 于为 UE分配 IP地址, 向 UE发送所分配的 IP地址, 以及将所分配的 IP地 址上报给 NoC30。 可选的, DR50还可以将 UE的标识等信息上报给 NoC30。 NoC30接收 DR50上报的所分配的 IP地址、 UE的标识等信息, 有利于基于 这些信息进行数据转发策略的制定。
具体来说,本实施例的 DR50具有 IP层以及 IP层以上各层用户面的处理 功能, 与互联网 (英文为 internet )存在接口, 位于域边缘位置, 可以位于核 心网也可以位于接入网内 (图 7 中示意了位于核心网的情况) , 负责根据 NoC30下发的数据转发策略进行数据的收发, 另外还可以参与承载建立、 切 换等处理流程。 除此之外, DR50还可负责 IP地址的管理、 维护、 分配和下 发等。 不同的接入制式可连接到不同的 DR50, 各个 DR50之间互联, 实现互 通。 较优选的, DR50部署在与位置无关的网络层次上。
NoC30与 DR50通过 C1接口连接, 将 NoC30和 DR50之间的接口称为
C1接口。 C1接口可用于传输 NoC30对 DR50下发的各种控制策略, 所谓 NoC30对 DR50的控制主要包括通过下发数据转发策略控制 DR50的路由转 发, 还包括 UE切换等控制。 可选的, NoC30可以釆用 OF协议对 DR50进行 控制, 则从 C1接口来看, NoC30和 DR50之间的关系类似于 OF协议中的 OF控制器和 OF交换机, C1接口具体可借鉴 OF协议中的接口来实现, 但不 限于此。
可选的, DR50还可以与增强型基站 20连接,用于彼此间进行 IP层及 IP 层以上各层用户面数据的转发, 通过两者的配合, 实现了整个网络中的用户 面功能。 DR50和增强型基站 20之间的接口, 是基于 IP的接口, 传输的主要 是 IP层及 IP层以上各层用户面数据。
在此说明, 在图 7所示系统中, 联合处理设备 40为一可选网元。
由以上功能实体和接口构成的空口信息处理系统实现了无线接入网的控 制面和用户面的分离, 从而将接入网纳入了管理范围, 提高了整体网络的性 图 8为本发明一实施例提供的无线接入网控制器的结构示意图。 本实施 例的无线接入网控制器, 具有无线接入网的空口控制功能, 如图 8所示, 本 实施例的无线接入网控制器包括: 处理器 81和发送器 82。
其中, 处理器 81 , 用于生成空口控制策略。 发送器 82, 与处理器 81连 接, 用于通过开放接口将处理器 81生成的空口控制策略发送给增强型基站, 以使增强型基站根据空口控制策略进行空口用户面数据的处理。 其中, 上述 开放接口是本实施例的无线接入网控制器和增强型基站之间的接口, 用于使 增强型基站在本实施例的无线接入网控制器的控制下实现将无线接入网的空 口侧用户面功能。 相对于现有技术来说, 增强型基站通过该开放接口将原来 由该增强型基站实现的无线接入网的空口控制功能开放给本实施例的无线接 入网控制器。
本实施例的无线接入网控制器具体可以是无线接入网中的控制面网元, 关于其具体介绍可参见上述空口信息处理系统实施例中的描述, 在此不再赘 述。
在本实施例的一可选实施方式中,无线接入网控制器还包括:接收器 83。 接收器 83 ,用于接收核心网内的 NoC发送的用户信息, 并将用户信息提供给 处理器 81。 处理器 81还与接收器 83连接, 用于根据接收器 83接收到的用 户信息生成空口控制策略。 其中, 用户信息包括用户业务信息、 用户状态信 息和 /或用户标识信息等。 用户状态信息包括用户是否发生了移动或切换, 从 哪个增强型基站 20切到了哪里, 用户业务信息包括用户是否发起新的会话、 用户的 QoS信息等等。 在本实施例的一可选实施方式中, 发送器 82还用于向核心网内的 NoC 发送网络状态信息和 /或用户状态信息, 以使 NoC根据网络状态信息和 /或用 户状态信息制定 IP层及 IP层以上各层用户面的数据转发策略。 该数据转发 策略用于使增强型基站进行 IP层及 IP层以上各层用户面数据的处理。
在本实施例的一可选实施方式中, 发送器 82还用于向核心网内的 NoC 发送切换信息, 以使 NoC重新为上述增强型基站制定进行 IP层及 IP层以上 并将所述重新制定的 IP层及 IP层以上各层用户面的数据转发策略下发到切 换前的源增强型基站和切换后的上述增强型基站中的至少一个, 如果只下发 到其中一个基站, 则后续可能伴随接收到转发策略的基站将该转发策略转发 给另一个基站的过程。 所述切换信息是本实施例的无线接入网控制器在发现
UE从源增强型基站切换到上述增强型基站后发送的,所述切换信息中包含源 增强型基站的标识和上述增强型基站的标识。
本实施例中的空口控制策略对应的空口控制包括以下任意一种或其组 合: 无线资源分配、 上下行调度、 调度优先级选择、 HARQ重传、 RLC连接 控制和管理、 协议错误检测与恢复、 控制平面协议的加密和解密、 广播、 寻 呼、 RRC连接管理、 无线承载管理、 移动性管理、 密钥管理、 UE测量报告 与控制、 MBMS控制、 NAS消息直传和 QoS管理。
在本实施例的一个可选实施方式中, 网络中至少存在两个增强型基站。 基于此,本实施例的发送器 82具体用于通过开放接口将空口控制策略发送至 少两个增强型基站。 相应的, 本实施例的处理器 81还用于对至少两个增强型 基站的物理层功能进行联合优化处理。
在本实施例的一个可选实施方式中, 接收器 83还用于在处理器 81生成 空口控制策略之前, 接收增强型基站发送的用于请求所述空口控制策略的空 口策略请求, 将空口策略请求发送给处理器 81 , 使处理器 81根据空口策略 请求为增强型基站生成空口控制策略。
举例说明, 空口策略请求为异常处理请求, 相应的, 空口控制策略为联 合处理策略或小区迁移策略,则接收器 83具体用于通过开放接口接收增强型 基站发送的异常处理请求, 所述异常处理请求包括 UE上报的相邻小区测量 结果。 处理器 81具体用于进行处理和决策, 根据所述相邻小区测量结果生成 联合处理策略或小区迁移策略并提供给发送器 82。 发送器 82具体用于通过 开放接口将联合处理策略或小区迁移策略发送给增强型基站。
举例说明, 空口控制为无线资源分配, 相应的, 空口策略请求为无线资 源分配请求, 空口控制策略为无线资源分配结果, 则接收器 83还用于通过开 放接口接收增强型基站发送的无线资源分配请求并提供给处理器 81。 所述无 线资源分配请求是增强型基站在新用户接入所述增强型基站时发送的。 处理 器 81用于根据接收器 83接收到的无线资源分配请求进行资源分配, 生成无 线资源分配结果, 并提供给发送器 82。 发送器 82具体用于通过开放接口将 无线资源分配结果发送给增强型基站。 可选的, 发送器 82具体用于通过开放 接口将无线资源分配应答消息发送给增强型基站。 该无线资源分配应答消息 携带有无线资源分配结果。
在本实施例中, 将无线接入网控制器与增强型基站之间的接口称为 OpenRadio接口, 将无线接入网控制器与 NoC之间的接口称为 C2接口。 关 于上述接口的描述可参见空口信息处理系统实施例, 在此不再赘述。
本实施例的无线接入网控制器与增强型基站相互配合, 实现了无线接入 网的空口的控制面功能, 而增强型基站实现了用户面的功能, 使得无线接入 网的控制面和用户面的分离, 从而将接入网纳入了管理范围, 提高了整体网 络的性能。
图 9为本发明一实施例提供的增强型基站的结构示意图。 如图 9所示, 本实施例的增强型基站包括: 接收器 91和处理器 92。
其中, 接收器 91 , 用于通过开放接口接收具有无线接入网的空口控制功 能的无线接入网控制器发送的空口控制策略。 处理器 92, 与接收器 91连接, 用于根据接收器 91接收到的空口控制策略进行空口用户面数据的处理。上述 开放接口是本实施例的增强型基站和无线接入网控制器之间的接口, 用于使 本实施例的增强型基站在无线接入网控制器的控制下实现无线接入网的空口 侧用户面功能。 相对于现有技术来说, 本实施例的增强型基站通过其与无线 接入网控制之间的开放接口, 将原来由增强型基站实现的无线接入网的空口 控制功能开放给了无线接入网控制器。
本实施例的增强型基站具体可以是无线接入网中的用户面网元, 关于其 具体介绍可参见上述空口信息处理系统实施例中的描述, 在此不再赘述。 在本实施例的一可选实施方式中,接收器 91还用于接收核心网内的 NoC 发送的 IP层及 IP层以上各层用户面的数据转发策略。 相应的, 处理器 92还 用于根据接收器 91接收到的数据转发策略进行 IP层及 IP层以上各层用户面 数据的处理。
本实施例中的空口控制策略对应的空口控制包括以下任意一种或其组 合: 无线资源分配、 上下行调度、 调度优先级选择、 HARQ重传、 RLC连接 控制和管理、 协议错误检测与恢复、 控制平面协议的加密和解密、 广播、 寻 呼、 RRC连接管理、 无线承载管理、 移动性管理、 密钥管理、 UE测量报告 与控制、 MBMS控制、 NAS消息直传和 QoS管理。
在本实施例的一可选实施方式中, 本实施例的增强型基站还包括: 发送 器 93。 发送器 93 , 用于通过上述开放接口向无线接入网控制器发送空口策略 请求, 以向无线接入网控制器请求上述空口控制策略, 使无线接入网控制器 根据该请求为本实施例的增强型基站生成并下发空口控制策略。
举例说明, 空口控制为无线资源分配, 则发送器 93具体用于在新用户接 入本实施例的增强型基站时, 通过开放接口向无线接入网控制器发送无线资 源分配请求, 无线接入网控制器收到无线资源分配请求为本实施例的增强型 基站生成无线资源分配结果, 并返回无线资源分配应答消息。 上述无线资源 分配请求包括所述新用户的用户标志。 相应的, 接收器 91具体用于通过开放 接口接收无线接入网控制器发送的无线资源分配结果。 可选的,接收器 91具 体用于通过开放接口接收无线接入网控制器发送的无线资源分配应答消息。 该无线资源分配应答消息携带有无线资源分配结果。
又例如, 空口策略请求为异常处理请求, 相应的, 空口控制策略为联合 处理策略或小区迁移策略, 则发送器 93 还用于在满足预设触发条件时, 向 UE发送相邻小区测量请求, 以触发 UE进行相邻小区测量过程。 所述预设触 发条件包括以下任一条件或其组合: 接入本实施例增强型基站的用户数量大 于预设数量门限; 本实施例增强型基站覆盖下的边缘用户的吞吐量不满足吞 吐量需求; 接入本实施例增强型基站的用户体验度打破预设体验度门限。 接 收器 91还用于接收 UE发送的相邻小区测量结果。 发送器 93具体用于在接 收器 91接收到 UE发送的相邻小区测量结果后, 通过开放接口向无线接入网 控制器发送异常处理请求, 该异常处理请求包含上述相邻小区测量结果, 以 使无线接入网控制器根据该相邻小区测量结果确定空口控制策略。 接收器 91 具体用于通过开放接口接收无线接入网控制器发送的联合处理策略或小区迁 移策略, 所述联合处理策略或小区迁移策略是无线接入网控制器根据上述相 邻小区测量结果确定的。
在本实施例中,将增强型基站与无线接入网控制器之间的接口称为 Open
Radio接口,将增强型基站与 NoC之间的接口称为 C3接口。关于上述接口的 描述可参见空口信息处理系统实施例, 在此不再赘述。
本实施例的增强型基站与无线接入网控制器相互配合, 实现了用户面的 功能, 而无线接入网控制器实现了无线接入网的空口的控制面功能, 使得无 线接入网的控制面和用户面的分离, 从而将接入网纳入了管理范围, 提高了 整体网络的性能。
图 10为本发明一实施例提供的空口信息处理方法的流程图。 如图 10所 示, 本实施例的方法包括:
步骤 1001、 无线接入网控制器生成空口控制策略, 所述无线接入网控制 器具有无线接入网的空口控制功能。
步骤 1002、 无线接入网控制器通过开放接口将空口控制策略发送给增强 型基站, 以使增强型基站根据空口控制策略进行空口用户面数据的处理。
在本实施例中, 上述开放接口是无线接入网控制器和增强型基站之间的 接口, 用于使增强型基站在无线接入网控制器的控制下实现无线接入网的空 口侧用户面功能。 相对于现有技术来说, 增强型基站通过其与无线接入网控 制之间的开放接口, 将原来由增强型基站实现的无线接入网的空口控制功能 开放给了无线接入网控制器。
在本实施例的一可选实施方式中, 无线接入网控制器生成空口控制策略 的过程包括:无线接入网控制器接收核心网内的网络控制器发送的用户信息, 所述用户信息包括用户业务信息、 用户状态信息和 /或用户标志信息; 无线接 入网控制器根据所述用户信息生成所述空口控制策略。 所述用户业务信息包 括用户 QoS信息。
上述空口控制策略对应的空口控制包括以下任意一种或其组合: 无线资 源分配、 上下行调度、 调度优先级选择、 HARQ重传、 RLC连接控制和管理、 协议错误检测与恢复、 控制平面协议的加密和解密、 广播、 寻呼、 RRC连接 管理、 无线承载管理、 移动性管理、 密钥管理、 UE测量报告与控制、 MBMS 控制、 NAS消息直传和 QoS管理。
在本实施例的一可选实施方式中, 所述空口信息处理方法还包括: 无线 接入网控制器向核心网内的网络控制器发送网络状态信息和 /或用户状态信 息, 以使网络控制器根据所述网络状态信息和 /或用户状态信息制定 IP层及 IP层以上各层用户面的数据转发策略, 所述数据转发策略用于使增强型基站 进行 IP层及 IP层以上各层用户面数据的处理。
在本实施例的一可选实施方式中, 所述空口信息处理方法还包括: 无线 接入网控制器向核心网内的网络控制器发送切换信息, 以使网络控制器重新 为该增强型基站制定进行 IP层及 IP层以上各层用户面数据的处理使用的 IP 层及 IP层以上各层用户面的数据转发策略, 并将所述重新制定的 IP层及 IP 层以上各层用户面的数据转发策略下发到切换前的源增强型基站和切换后的 目的增强型基站 (即上述增强型基站) 中的至少一个, 如果只下发到其中一 个基站, 则后续可能伴随接收到转发策略的基站将该转发策略转发给另一个 基站的过程。 所述切换信息是无线接入网控制器在发现 UE从源增强型基站 切换到该增强型基站后发送的, 所述切换信息包括源增强型基站的标识和上 述增强型基站的标识。
在本实施例的一可选实施方式中, 增强型基站为至少两个, 则上述空口 信息处理方法还包括: 对至少两个增强型基站的物理层功能进行联合优化处 理。
在本实施例的一可选实施方式中, 无线接入网控制器在生成空口控制策 略之前包括: 无线接入网控制器通过开放接口接收增强型基站发送的用于请 求所述空口控制策略的空口策略请求。 然后, 根据该空口策略请求生成空口 控制策略。
在本实施例的一可选实施方式中, 上述空口策略请求为包含 UE上 ·艮的 相邻小区测量结果的异常处理请求, 相应的, 上述空口控制策略为联合处理 策略或小区迁移策略。 或者, 上述空口策略请求为无线资源分配请求, 相应 的, 上述空口控制策略为无线资源分配结果。
本实施例提供的空口信息处理方法的具体实施过程可参见上述实施例的 描述, 在此不再赘述。 在本实施例中, 无线接入网控制器负责生成空口控制策略, 并将空口控 制策略发送给增强型基站, 增强型基站根据空口控制策略负责进行空口用户 面数据的处理, 实现了无线接入网的控制面和用户面的分离。
图 11 为本发明另一实施例提供的空口信息处理方法的流程图。 如图 11 所示, 本实施例的空口信息处理方法包括:
步骤 1101、 增强型基站通过开放接口接收具有无线接入网的空口控制功 能的无线接入网控制器发送的空口控制策略。
所述开放接口是增强型基站和无线接入网控制器之间的接口, 用于使增 强型基站在无线接入网控制器的控制下实现无线接入网的空口侧用户面功 能。 相对于现有技术来说, 本实施例的增强型基站通过其与无线接入网控制 之间的开放接口, 将原来由增强型基站实现的无线接入网的空口控制功能开 放给了无线接入网控制器。 空口控制策略是由无线接入网控制器生成的。
步骤 1102、 增强型基站根据空口控制策略进行空口用户面数据的处理。 在本实施例的一可选实施方式中,本实施例的空口信息处理方法还包括: 步骤 1103、 增强型基站接收核心网内的网络控制器发送的 IP层及 IP层 以上各层用户面的数据转发策略。
步骤 1104、 增强型基站根据数据转发策略进行 IP层及 IP层以上各层用 户面数据的处理。
上述步骤 1101、 1102描述的流程与上述步骤 1103、 1104描述的流程之 间没有严格的顺序关系, 可以独立执行, 也可以同时执行。
在本实施例的一可选实施方式中,上述空口信息处理方法在步骤 1101之 前包括: 增强型基站向无线接入网控制器发送空口策略请求, 以请求所述空 口控制策略。
在本实施例的一可选实施方式中, 上述空口策略请求为包含 UE上报的 相邻小区测量结果的异常处理请求, 相应的, 上述空口控制策略为联合处理 策略或小区迁移策略。 或者, 上述空口策略请求为无线资源分配请求, 相应 的, 上述空口控制策略为无线资源分配结果。
上述空口控制策略对应的空口控制包括以下任意一种或其组合: 无线资 源分配、 上下行调度、 调度优先级选择、 HARQ重传、 RLC连接控制和管理、 协议错误检测与恢复、 控制平面协议的加密和解密、 广播、 寻呼、 RRC连接 管理、 无线承载管理、 移动性管理、 密钥管理、 UE测量报告与控制、 MBMS 控制、 NAS消息直传和 QoS管理。
本实施例提供的空口信息处理方法的具体实施过程可参见上述实施例的 描述, 在此不再赘述。
在本实施例中, 增强型基站接收无线接入网控制器负责生成并下发的空 口控制策略, 根据空口控制策略负责进行空口用户面数据的处理, 实现了无 线接入网的控制面和用户面的分离。
本领域普通技术人员可以理解: 实现上述各方法实施例的全部或部分步 骤可以通过程序指令相关的硬件来完成。 前述的程序可以存储于一计算机可 读取存储介质中。 该程序在执行时, 执行包括上述各方法实施例的步骤; 而 前述的存储介质包括: ROM, RAM, 磁碟或者光盘等各种可以存储程序代码 的介质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要求 书
1、 一种增强型基站, 其特征在于, 包括:
接收器, 用于通过开放接口接收具有无线接入网的空口控制功能的无线 接入网控制器发送的空口控制策略, 所述空口控制策略是由所述无线接入网 控制器生成的; 所述开放接口是所述增强型基站和所述无线接入网控制器之 间的接口;
处理器, 用于根据所述空口控制策略进行空口用户面数据的处理。
2、 根据权利要求 1所述的增强型基站, 其特征在于, 所述接收器还用于 接收核心网内的网络控制器发送的网际协议 IP层及 IP层以上各层用户面的 数据转发策略;
所述处理器还用于根据所述数据转发策略进行 IP层及 IP层以上各层用 户面数据的处理。
3、 根据权利要求 1或 2所述的增强型基站, 其特征在于, 还包括: 发送器, 用于通过所述开放接口向所述无线接入网控制器发送空口策略 请求, 以请求所述空口控制策略。
4、 根据权利要求 3所述的增强型基站, 其特征在于, 所述空口策略请求 为异常处理请求, 所述空口控制策略为联合处理策略或小区迁移策略;
所述发送器还用于在满足预设触发条件时, 向用户设备 UE发送相邻小 区测量请求, 以触发所述 UE进行相邻小区测量过程;
所述接收器还用于接收所述 UE发送的相邻小区测量结果;
所述发送器具体用于在所述接收器接收到所述相邻小区测量结果后, 通 过所述开放接口向所述无线接入网控制器发送所述异常处理请求, 所述异常 处理请求包括所述相邻小区测量结果, 以使所述无线接入网控制器根据所述 相邻小区测量结果确定所述空口控制策略;
所述接收器具体用于通过所述开放接口接收所述无线接入网控制器发送 的联合处理策略或小区迁移策略, 所述联合处理策略或小区迁移策略是所述 无线接入网控制器根据所述相邻小区测量结果确定的。
5、 根据权利要求 4所述的增强型基站, 其特征在于, 所述预设触发条件 包括以下任一条件或其组合:
接入所述增强型基站的用户数量大于预设数量门限; 所述增强型基站覆盖下的边缘用户的吞吐量不满足吞吐量需求; 接入所述增强型基站的用户体验度打破预设体验度门限。
6、 根据权利要求 3所述的增强型基站, 其特征在于, 所述空口策略请求 为无线资源分配请求, 所述空口控制策略为无线资源分配结果;
所述发送器具体用于在新用户接入所述增强型基站时, 通过所述开放接 口向所述无线接入网控制器发送所述无线资源分配请求, 所述无线资源分配 请求包括所述新用户的用户标志;
所述接收器具体用于通过所述开放接口接收所述无线接入网控制器发送 的所述无线资源分配结果。
7、 根据权利要求 1或 2或 3所述的增强型基站, 其特征在于, 所述空口 控制策略对应的空口控制包括以下任意一种或其组合: 无线资源分配、 上下 行调度、 调度优先级选择、 混合自动重传请求 HARQ 重传、 无线链路控制 RLC连接控制和管理、 协议错误检测与恢复、 控制平面协议的加密和解密、 广播、 寻呼、 无线资源控制 RRC连接管理、 无线承载管理、 移动性管理、 密 钥管理、 用户设备 UE测量报告与控制、 多媒体广播多播业务 MBMS控制、 NAS消息直传和服务质量 QoS管理。
8、 根据权利要求 1-7任一项所述的增强型基站, 其特征在于, 所述开放 接口用于使所述增强型基站在所述无线接入网控制器的控制下实现所述无线 接入网的空口侧用户面功能。
9、 一种无线接入网控制器, 其特征在于, 具有无线接入网的空口控制功 能, 所述无线接入网控制器包括:
处理器, 用于生成空口控制策略;
发送器, 用于通过开放接口将所述空口控制策略发送给增强型基站, 以 使所述增强型基站根据所述空口控制策略进行空口用户面数据的处理;
其中, 所述开放接口是所述无线接入网控制器和所述增强型基站之间的 接口。
10、 根据权利要求 9所述的无线接入网控制器, 其特征在于, 还包括: 接收器, 用于接收核心网内的网络控制器发送的用户信息, 所述用户信 息包括用户业务信息、 用户状态信息和 /或用户标志信息;
所述处理器具体用于根据所述用户信息生成所述空口控制策略。
11、 根据权利要求 10所述的无线接入网控制器, 其特征在于, 所述用户 状态信息为用户服务质量 QoS信息。
12、 根据权利要求 9所述的无线接入网控制器, 其特征在于, 所述发送 器还用于向核心网内的网络控制器发送网络状态信息和 /或用户状态信息, 以 使所述网络控制器根据所述网络状态信息和 /或用户状态信息制定 IP层及 IP 层以上各层用户面的数据转发策略, 所述数据转发策略用于使所述增强型基 站进行 IP层及 IP层以上各层用户面数据的处理。
13、根据权利要求 9或 10或 11或 12所述的无线接入网控制器, 其特征 在于, 所述发送器还用于向核心网内的网络控制器发送切换信息, 以使所述 网络控制器重新制定 IP层及 IP层以上各层用户面的数据转发策略, 并将所 述重新制定的 IP层及 IP层以上各层用户面的数据转发策略下发到切换前的 源增强型基站和切换后的目的增强型基站中的至少一个;
所述切换信息是所述无线接入网控制器在发现用户设备 UE从所述源增 强型基站切换到所述增强型基站后发送的, 所述切换信息包含所述源增强型 基站的标识和所述增强型基站的标识。
14、 根据权利要求 9-12任一项所述的无线接入网控制器, 其特征在于, 所述发送器具体用于通过所述开放接口将所述空口控制策略发送至少两个增 强型基站;
所述处理器还用于对所述至少两个增强型基站的物理层功能进行联合优 处理。
15、 根据权利要求 10-14任一项所述的无线接入网控制器, 其特征在于, 所述接收器还用于通过所述开放接口接收所述增强型基站发送的用于请求所 述空口控制策略的空口策略请求。
16、 根据权利要求 15所述的无线接入网控制器, 其特征在于, 所述空口 策略请求为异常处理请求, 所述空口控制策略为联合处理策略或小区迁移策 略;
所述接收器具体用于通过所述开放接口接收所述增强型基站发送的所述 异常处理请求, 所述异常处理请求包括用户设备 UE上报的相邻小区测量结 果;
所述处理器具体用于根据所述相邻小区测量结果生成所述联合处理策略 或小区迁移策略;
所述发送器具体用于通过所述开放接口将所述联合处理策略或小区迁移 策略发送给所述增强型基站。
17、 根据权利要求 15所述的无线接入网控制器, 其特征在于, 所述空口 策略请求为无线资源分配请求, 所述空口控制策略为无线资源分配结果; 所述接收器具体用于通过所述开放接口接收所述增强型基站发送的所述 无线资源分配请求, 所述无线资源分配请求是所述增强型基站在新用户接入 所述增强型基站时发送的; 结果;
所述发送器具体用于通过所述开放接口将所述无线资源分配结果发送给 所述增强型基站。
18、 根据权利要求 9-15任一项所述的无线接入网控制器, 其特征在于, 所述空口控制策略对应的空口控制包括以下任意一种或其组合: 无线资源分 配、 上下行调度、 调度优先级选择、 混合自动重传请求 HARQ重传、 无线链 路控制 RLC连接控制和管理、 协议错误检测与恢复、 控制平面协议的加密和 解密、 广播、 寻呼、 无线资源控制 RRC连接管理、 无线承载管理、 移动性管 理、 密钥管理、 用户设备 UE测量报告与控制、 多媒体广播多播业务 MBMS 控制、 NAS消息直传和服务质量 QoS管理。
19、 根据权利要求 9-18任一项所述的无线接入网控制器, 其特征在于, 所述开放接口用于使所述增强型基站在所述无线接入网控制器的控制下实现 所述无线接入网的空口侧用户面功能。
20、 一种空口信息处理系统, 其特征在于, 包括: 无线接入网控制器和 增强型基站;
所述无线接入网控制器, 具有无线接入网的空口控制功能, 用于生成空 口控制策略, 通过开放接口将所述空口控制策略下发给所述增强型基站; 其 中, 所述开放接口是所述无线接入网控制器和所述增强型基站之间的接口; 所述增强型基站, 用于通过所述开放接口接收所述空口控制策略, 并根 据所述空口控制策略进行空口用户面数据的处理。
21、 根据权利要求 20所述的空口信息处理系统, 其特征在于, 还包括: 网络控制器, 用于生成网际协议 IP层及 IP层以上各层用户面的数据转 发策略, 将所述数据转发策略发送给所述增强型基站;
所述增强型基站还用于根据所述数据转发策略进行 IP层及 IP层以上各 层用户面数据的处理。
22、 根据权利要求 21所述的空口信息处理系统, 其特征在于, 所述网络 控制器还用于向所述无线接入网控制器发送用户信息, 以使所述无线接入网 控制器根据所述用户信息生成所述空口控制策略, 所述用户信息包括用户业 务信息、 用户状态信息和 /或用户标识信息;
所述无线接入网控制器具体用于接收所述用户信息, 根据所述用户生成 所述空口控制策略。
23、 根据权利要求 22所述的空口信息处理系统, 其特征在于, 所述用户 状态信息为用户服务质量 QoS信息。
24、 根据权利要求 21所述的空口信息处理系统, 其特征在于, 所述无线 接入网控制器还用于向所述网络控制器发送网络状态信息和 /或用户状态信 息, 以使所述网络控制器根据所述网络状态信息和 /或用户状态信息生成所述 数据转发策略。
25、 根据权利要求 21或 22或 23或 24所述的空口信息处理系统, 其特 征在于, 所述无线接入网控制器还用于向所述网络控制器发送切换信息; 所 述切换信息是所述无线接入网控制器在发现用户设备 UE从源增强型基站切 换到所述增强型基站后发送的, 所述切换信息包括所述源增强型基站的标识 和所述增强型基站的标识;
所述网络控制器具体用于在接收到所述切换信息后生成所述数据转发策 略。
26、 根据权利要求 20-24任一项所述的空口信息处理系统, 其特征在于, 所述增强型基站为至少两个。
27、 根据权利要求 26所述的空口信息处理系统, 其特征在于, 所述无线 接入网控制器还用于对所述至少两个增强型基站的物理层功能进行联合处 理。
28、 根据权利要求 26所述的空口信息处理系统, 其特征在于, 还包括: 联合处理设备, 用于对所述至少两个增强型基站的物理层功能进行联合 处理。
29、 根据权利要求 21-28任一项所述的空口信息处理系统, 其特征在于, 还包括:
域路由器, 用于接收所述网络控制器发送的所述数据转发策略, 根据所
30、 根据权利要求 29所述的空口信息处理系统, 其特征在于, 所述域路 由器还用于为用户设备 UE分配 IP地址,并向所述 UE发送所分配的 IP地址, 以及将所分配的 IP地址上 给所述网络控制器。
31、 根据权利要求 20-30任一项所述的空口信息处理系统, 其特征在于, 所述增强型基站还用于在接收所述空口控制策略之前, 通过所述开放接口向 所述无线接入网控制器发送空口策略请求, 以请求所述空口控制策略。
32、 根据权利要求 31所述的空口信息处理系统, 其特征在于, 所述空口 策略请求为异常处理请求, 所述空口控制策略为联合处理策略或小区迁移策 略;
所述增强型基站具体用于在满足预设触发条件时, 向用户设备 UE发送 相邻小区测量请求, 以触发所述 UE进行相邻小区测量过程, 并接收所述 UE 发送的相邻小区测量结果, 然后通过所述开放接口向所述无线接入网控制器 发送所述异常处理请求, 所述异常处理请求包括所述相邻小区测量结果, 以 使所述无线接入网控制器根据所述相邻小区测量结果确定所述空口控制策 略 ^
所述无线接入网控制器具体用于根据所述相邻小区测量结果生成所述联 合处理策略或小区迁移策略, 并通过所述开放接口将所述联合处理策略或小 区迁移策略发送给所述增强型基站。
33、 根据权利要求 32所述的空口信息处理系统, 其特征在于, 所述预设 触发条件包括以下任一条件或其组合:
接入所述增强型基站的用户数量大于预设数量门限;
所述增强型基站覆盖下的边缘用户的吞吐量不满足吞吐量需求; 接入所述增强型基站的用户体验度打破预设体验度门限。
34、 根据权利要求 31所述的空口信息处理系统, 其特征在于, 所述空口 策略请求为无线资源分配请求, 所述空口控制策略为无线资源分配结果; 所述增强型基站具体用于在新用户接入所述增强型基站时, 通过所述开 放接口向所述无线接入网控制器发送所述无线资源分配请求, 所述无线资源 分配请求包括所述新用户的用户标志; 线资源分配结果, 并通过所述开放接口将所述无线资源分配结果发送给所述 增强型基站。
35、 根据权利要求 20-31任一项所述的空口信息处理系统, 其特征在于, 所述空口控制策略对应的空口控制包括以下任意一种或其组合: 无线资源分 配、 上下行调度、 调度优先级选择、 混合自动重传请求 HARQ重传、 无线链 路控制 RLC连接控制和管理、 协议错误检测与恢复、 控制平面协议的加密和 解密、 广播、 寻呼、 无线资源控制 RRC连接管理、 无线承载管理、 移动性管 理、 密钥管理、 用户设备 UE测量报告与控制、 多媒体广播多播业务 MBMS 控制、 NAS消息直传和服务质量 QoS管理。
36、 根据权利要求 20-35任一项所述的无线接入网控制器, 其特征在于, 所述开放接口用于使所述增强型基站在所述无线接入网控制器的控制下实现 所述无线接入网的空口侧用户面功能。
37、 一种空口信息处理方法, 其特征在于, 包括:
无线接入网控制器生成空口控制策略, 所述无线接入网控制器具有无线 接入网的空口控制功能;
所述无线接入网控制器通过开放接口将所述空口控制策略发送给增强型 基站, 以使所述增强型基站根据所述空口控制策略进行空口用户面数据的处 理。
38、 根据权利要求 37所述的空口信息处理方法, 其特征在于, 所述无线 接入网控制器生成空口控制策略包括:
所述无线接入网控制器接收核心网内的网络控制器发送的用户信息, 所 述用户信息包括用户业务信息、 用户状态信息和 /或用户标志信息;
所述无线接入网控制器根据所述用户信息生成所述空口控制策略。
39、 根据权利要求 38所述的空口信息处理方法, 其特征在于, 所述用户 状态信息为用户服务质量 QoS信息。
40、 根据权利要求 37所述的空口信息处理方法, 其特征在于, 还包括: 所述无线接入网控制器向核心网内的网络控制器发送网络状态信息和 / 或用户状态信息, 以使所述网络控制器根据所述网络状态信息和 /或用户状态 信息制定网际协议 IP层及 IP层以上各层用户面的数据转发策略, 所述数据 转发策略用于使所述增强型基站进行 IP层及 IP层以上各层用户面数据的处 理。
41、 根据权利要求 37或 38或 39或 40所述的空口信息处理方法, 其特 征在于, 还包括:
所述无线接入网控制器向核心网内的网络控制器发送切换信息, 以使所 述网络控制器重新制定 IP层及 IP层以上各层用户面的数据转发策略, 并将 所述重新制定的 IP层及 IP层以上各层用户面的数据转发策略下发到切换前 的源增强型基站和切换后的目的增强型基站中的至少一个;
所述切换信息是所述无线接入网控制器在发现用户设备 UE从所述源增 强型基站切换到所述增强型基站后发送的, 所述切换信息包括所述源增强型 基站的标识和所述增强型基站的标识。
42、 根据权利要求 37-40任一项所述的空口信息处理方法, 其特征在于, 所述增强型基站为至少两个;
所述空口信息处理方法还包括:
所述无线接入网控制器对所述至少两个增强型基站的物理层功能进行联 合优化处理。
43、 根据权利要求 37-42任一项所述的空口信息处理方法, 其特征在于, 所述无线接入网控制器生成空口控制策略之前包括:
所述无线接入网控制器通过所述开放接口接收所述增强型基站发送的用 于请求所述空口控制策略的空口策略请求。
44、 根据权利要求 43所述的空口信息处理方法, 其特征在于, 所述空口 策略请求为包括用户设备 UE上报的相邻小区测量结果的异常处理请求, 所 述空口控制策略为联合处理策略或小区迁移策略; 或者
所述空口策略请求为无线资源分配请求, 所述空口控制策略为无线资源 分配结果。
45、 根据权利要求 37-43任一项所述的空口信息处理方法, 其特征在于, 所述空口控制策略对应的空口控制包括以下任意一种或其组合: 无线资源分 配、 上下行调度、 调度优先级选择、 混合自动重传请求 HARQ重传、 无线链 路控制 RLC连接控制和管理、 协议错误检测与恢复、 控制平面协议的加密和 解密、 广播、 寻呼、 无线资源控制 RRC连接管理、 无线承载管理、 移动性管 理、 密钥管理、 用户设备 UE测量报告与控制、 多媒体广播多播业务 MBMS 控制、 NAS消息直传和服务质量 QoS管理。
46、 一种空口信息处理方法, 其特征在于, 包括:
增强型基站通过开放接口接收具有无线接入网的空口控制功能的无线接 入网控制器发送的空口控制策略, 所述空口控制策略是由所述无线接入网控 制器生成的;
所述增强型基站根据所述空口控制策略进行空口用户面数据的处理。
47、 根据权利要求 46所述的空口信息处理方法, 其特征在于, 还包括: 所述增强型基站接收核心网内的网络控制器发送的网际协议 IP层及 IP 层以上各层用户面的数据转发策略;
所述增强型基站根据所述数据转发策略进行 IP层及 IP层以上各层用户 面数据的处理。
48、 根据权利要求 46或 47所述的空口信息处理方法, 其特征在于, 所 述增强型基站通过开放接口接收无线接入网控制器发送的空口控制策略之前 包括:
所述增强型基站通过所述开放接口向所述无线接入网控制器发送空口策 略请求, 以请求所述空口控制策略。
49、 根据权利要求 48所述的空口信息处理方法, 其特征在于, 所述空口 策略请求为包括用户设备 UE上报的相邻小区测量结果的异常处理请求, 所 述空口控制策略为联合处理策略或小区迁移策略; 或者
所述空口策略请求为无线资源分配请求, 所述空口控制策略为无线资源 分配结果。
50、根据权利要求 46或 47或 48所述的空口信息处理方法,其特征在于, 所述空口控制策略对应的空口控制包括以下任意一种或其组合: 无线资源分 配、 上下行调度、 调度优先级选择、 混合自动重传请求 HARQ重传、 无线链 路控制 RLC连接控制和管理、 协议错误检测与恢复、 控制平面协议的加密和 解密、 广播、 寻呼、 无线资源控制 RRC连接管理、 无线承载管理、 移动性管 理、 密钥管理、 用户设备 UE测量报告与控制、 多媒体广播多播业务 MBMS 控制、 NAS消息直传和服务质量 QoS管理。
PCT/CN2013/074079 2012-10-08 2013-04-11 空口信息处理系统、方法及设备 WO2014056317A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13844617.4A EP2897433B1 (en) 2012-10-08 2013-04-11 System, method and device for processing information about air interface
BR112015007725-0A BR112015007725B1 (pt) 2012-10-08 2013-04-11 Estação base melhorada, e sistema e método para processamento de informação sobre interface aérea
RU2015116261A RU2615500C2 (ru) 2012-10-08 2013-04-11 Система, способ и устройство для обработки информации радиоинтерфейса
US14/680,866 US10278165B2 (en) 2012-10-08 2015-04-07 System, method, and device for processing air interface information

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210377527.7 2012-10-08
CN201210377527.7A CN103716881B (zh) 2012-10-08 2012-10-08 空口信息处理系统、方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/680,866 Continuation US10278165B2 (en) 2012-10-08 2015-04-07 System, method, and device for processing air interface information

Publications (1)

Publication Number Publication Date
WO2014056317A1 true WO2014056317A1 (zh) 2014-04-17

Family

ID=50409333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/074079 WO2014056317A1 (zh) 2012-10-08 2013-04-11 空口信息处理系统、方法及设备

Country Status (6)

Country Link
US (1) US10278165B2 (zh)
EP (1) EP2897433B1 (zh)
CN (1) CN103716881B (zh)
BR (1) BR112015007725B1 (zh)
RU (1) RU2615500C2 (zh)
WO (1) WO2014056317A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3289732A4 (en) * 2015-05-13 2018-03-28 Huawei Technologies Co., Ltd. Systems and methods for making and disseminating local policy decisions in a software programmable radio network
CN112020873A (zh) * 2018-05-03 2020-12-01 华为技术有限公司 用于在多连接中发送和接收数据包流的客户端设备、网络控制节点、以及upf
RU2745111C1 (ru) * 2017-09-22 2021-03-22 Виасат, Инк. Гибкие внутриспутниковые маршруты сигналов

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2440170B1 (es) * 2012-07-27 2015-03-11 Telefonica Sa Metodo para implementar un mecanismo de equilibrado de carga de celula en redes inalambricas
JP2016540464A (ja) * 2013-10-30 2016-12-22 インターデイジタル パテント ホールディングス インコーポレイテッド 優先度サービス輻輳に対処するためのシステムおよび方法
CN104023355B (zh) * 2014-05-15 2017-07-21 北京邮电大学 基于集中控制和内容分发的无线通信网络系统
US9844070B2 (en) * 2014-09-10 2017-12-12 Cisco Technology, Inc. System and method for decoupling long term evolution media access control scheduling from subframe rate procedures
US9729396B2 (en) 2014-11-04 2017-08-08 Cisco Technology, Inc. System and method for providing dynamic radio access network orchestration
CN105813091B (zh) * 2014-12-30 2019-07-23 中国电信股份有限公司 信息收发方法和系统、虚拟宏基站控制装置、微基站
CN105813098B (zh) * 2014-12-30 2019-06-07 中国电信股份有限公司 双连接通信系统和方法
CN106162743A (zh) * 2015-04-08 2016-11-23 中兴通讯股份有限公司 数据传输方法及装置
CN106162519B (zh) 2015-04-24 2020-02-04 北京智谷睿拓技术服务有限公司 移动终端信息发送方法及发送装置
CN106162578B (zh) 2015-04-24 2020-03-17 北京智谷睿拓技术服务有限公司 转发控制方法、移动终端信息发送方法、及其装置
US10244422B2 (en) 2015-07-16 2019-03-26 Cisco Technology, Inc. System and method to manage network utilization according to wireless backhaul and radio access network conditions
EP3243352B1 (en) * 2015-08-07 2018-05-02 Telefonaktiebolaget LM Ericsson (publ) Conflict indication for radio transmission control by multiple devices
US10015640B2 (en) 2015-08-12 2018-07-03 At&T Intellectual Property I, L.P. Network device selection for broadcast content
US9979604B2 (en) * 2015-08-12 2018-05-22 At&T Intellectual Property I, L.P. Network management for content broadcast
CN106535330B (zh) * 2015-09-11 2020-12-04 华为技术有限公司 无线通信的方法和装置
US10057015B1 (en) * 2015-10-02 2018-08-21 Sprint Spectrum L.P. Hybrid ARQ re-transmission over peer-to-peer air interface upon error in transmission over client-server air interface
EP3799355A1 (en) * 2015-10-22 2021-03-31 Huawei Technologies Co., Ltd. Service processing method, apparatus, and system
WO2017088189A1 (zh) * 2015-11-27 2017-06-01 华为技术有限公司 一种用户数据处理方法、相关装置及系统
SG10201600276YA (en) * 2016-01-14 2017-08-30 Huawei Int Pte Ltd Device, method and system for routing global assistant signals in a network-on-chip
US10420134B2 (en) 2016-02-02 2019-09-17 Cisco Technology, Inc. System and method to facilitate subframe scheduling in a split medium access control radio access network environment
CN107277865B (zh) * 2016-04-07 2019-11-12 中国移动通信有限公司研究院 一种控制面融合时的用户切换方法及系统、网元
CN106102106B (zh) * 2016-06-20 2020-03-24 电信科学技术研究院 一种终端接入的方法、装置及网络架构
US10231254B2 (en) * 2016-08-05 2019-03-12 Nokia Technologies Oy 5G cloud RAN method for symbol by symbol bit streaming
US10080215B2 (en) * 2016-08-05 2018-09-18 Nokia Technologies Oy Transportation of user plane data across a split fronthaul interface
CN107846270B (zh) * 2016-09-20 2021-05-28 中国移动通信有限公司研究院 传输策略配置方法及装置、信息传输方法及装置
CN108012338A (zh) * 2016-11-02 2018-05-08 中兴通讯股份有限公司 数据传输方法、装置、应用及基站
CN108366397B (zh) * 2017-01-26 2024-02-23 中兴通讯股份有限公司 数据映射方法及装置和无线设备
WO2018195803A1 (zh) * 2017-04-26 2018-11-01 华为技术有限公司 一种报文处理方法及相关设备
CN107135487B (zh) * 2017-05-03 2019-08-09 西安科技大学 基于sdn的mbms网络架构及网络优化方法
US11277814B2 (en) * 2017-06-20 2022-03-15 Motorola Mobility Llc Methods and apparatuses for paging a remote unit with a direct mobile connection
CN112087722B (zh) * 2017-10-24 2022-03-29 华为技术有限公司 一种通信系统、通信方法及其装置
WO2019127068A1 (en) * 2017-12-27 2019-07-04 Intel Corporation User plane apparatus for edge computing
US10862804B2 (en) * 2018-10-09 2020-12-08 Colotokens Inc. Redirecting data packets between overlay network and underlay network
US11470479B2 (en) * 2020-02-11 2022-10-11 Altiostar Networks, Inc. Dynamic spectrum sharing in wireless communications systems
CN113382422B (zh) * 2020-03-09 2023-03-21 中国移动通信有限公司研究院 一种基站控制方法、装置和计算机可读存储介质
CN113923717A (zh) * 2020-07-07 2022-01-11 中国移动通信有限公司研究院 一种数据的传输方法、装置及设备
US11785427B2 (en) * 2021-10-20 2023-10-10 Qualcomm Incorporated Control plane-based communication of multimedia broadcast/multicast service service keys

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1969578A (zh) * 2004-06-15 2007-05-23 艾利森电话股份有限公司 平滑硬切换方法及适用于该方法的移动台和基站
CN101262277A (zh) * 2007-03-06 2008-09-10 中兴通讯股份有限公司 多媒体广播组播业务数据同步调度方法
US20090023453A1 (en) * 2007-07-20 2009-01-22 Jianhong Hu Owa converged network access architecture and method

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6714987B1 (en) * 1999-11-05 2004-03-30 Nortel Networks Limited Architecture for an IP centric distributed network
FI20000138A (fi) * 2000-01-24 2001-07-25 Nokia Networks Oy Palvelun laadun varaaminen langattomasa tietoliikennejärjestelmässä
SE0101846D0 (sv) * 2001-05-22 2001-05-22 Ericsson Telefon Ab L M Method and system of retransmission
US20030208601A1 (en) * 2001-10-25 2003-11-06 Campbell Edward P. System and method for session control in a mobile internet protocol network
EP1457013A1 (en) * 2001-12-21 2004-09-15 Nokia Corporation Traffic control in an ip based network
US6985459B2 (en) * 2002-08-21 2006-01-10 Qualcomm Incorporated Early transmission and playout of packets in wireless communication systems
KR100947741B1 (ko) * 2003-05-09 2010-03-17 엘지전자 주식회사 이동통신 시스템에서의 rrc연결설정 방법
US7983716B2 (en) * 2003-09-30 2011-07-19 Interdigital Technology Corporation Centralized radio network controller
DE602004011032T2 (de) * 2004-06-15 2008-04-30 Matsushita Electric Industrial Co., Ltd., Kadoma Auf Priorität basierte Behandlung von Datenübertragungen
CN100515102C (zh) * 2004-07-13 2009-07-15 Ut斯达康通讯有限公司 移动通信系统中的无线接入网系统
US7583635B2 (en) * 2005-02-18 2009-09-01 Lg Electronics Inc. Establishing network address of mobile terminal in mobile communication system
US7606200B2 (en) * 2005-02-18 2009-10-20 Lg Electronics, Inc. Supporting handover of multi-mode mobile terminal between heterogeneous networks
KR101137327B1 (ko) * 2005-05-06 2012-04-19 엘지전자 주식회사 상향링크 채널 스케쥴링을 위한 제어정보 전송 방법 및상향링크 채널 스케쥴링 방법
WO2007052972A1 (en) * 2005-11-04 2007-05-10 Lg Electronics Inc. Random access channel hopping for frequency division multiplexing access systems
EP1793520B1 (en) * 2005-11-30 2012-02-29 Panasonic Corporation Configurable acknowledgement mode for a hybrid automatic repeat request protocol
KR101268200B1 (ko) * 2006-01-05 2013-05-27 엘지전자 주식회사 이동통신 시스템에서의 무선자원 할당방법
US8121126B1 (en) * 2006-09-08 2012-02-21 Juniper Networks, Inc. Layer two (L2) network access node having data plane MPLS
WO2008096959A1 (en) * 2007-02-06 2008-08-14 Lg Electronics Inc. Use of dedicated rach signatures
US8515473B2 (en) * 2007-03-08 2013-08-20 Bae Systems Information And Electronic Systems Integration Inc. Cognitive radio methodology, physical layer policies and machine learning
EP2760238B1 (en) * 2007-04-30 2016-07-27 InterDigital Technology Corporation A home (e)node-b with new functionality
US7743121B2 (en) * 2007-08-15 2010-06-22 Motorola, Inc. Method and apparatus for setting up and managing operational environment in P2P wireless networks
GB2452698B (en) * 2007-08-20 2010-02-24 Ipwireless Inc Apparatus and method for signaling in a wireless communication system
KR101591824B1 (ko) * 2007-09-18 2016-02-04 엘지전자 주식회사 무선 통신 시스템에서의 폴링 과정 수행 방법
KR20100139021A (ko) * 2008-03-19 2010-12-31 가부시키가이샤 엔티티 도코모 기지국장치 및 통신제어방법
US8064907B2 (en) * 2008-04-29 2011-11-22 Kineto Wireless, Inc. Method and apparatus for network controller selection in a voice over long term evolution via generic access system
US8229812B2 (en) * 2009-01-28 2012-07-24 Headwater Partners I, Llc Open transaction central billing system
US8488634B2 (en) * 2008-07-07 2013-07-16 Apple Inc. Use of first and second preambles in wireless communication signals
US8554200B2 (en) * 2008-09-12 2013-10-08 Nokia Corporation Method and apparatus for providing interference measurements for device to-device communication
US9094943B2 (en) * 2008-09-19 2015-07-28 Qualcomm Incorporated Network and mobile device initiated quality of service
US8279817B2 (en) * 2008-11-03 2012-10-02 Htc Corporation Method of managing discontinuous reception offset in a wireless communications system and related communication device
US8792876B1 (en) * 2008-12-12 2014-07-29 Cisco Technology, Inc. System and method for provisioning flows in a WiMAX network environment
EP2407004B1 (en) * 2009-03-13 2017-10-25 Nokia Solutions and Networks Oy Local breakout with optimized interface
US8498208B2 (en) * 2009-07-20 2013-07-30 Qualcomm Incorporated Turning on flows in network initiated QoS
EP2296408A1 (en) * 2009-09-14 2011-03-16 Alcatel Lucent A method for scheduling transmissions between a base station and user terminals, a base station and a communication network therefor
US8831014B2 (en) * 2009-09-26 2014-09-09 Cisco Technology, Inc. Providing services at a communication network edge
WO2011069092A1 (en) * 2009-12-04 2011-06-09 Interdigital Patent Holdings, Inc. Extended local ip access for a converged gateway in a hybrid network
US8638815B2 (en) * 2010-01-08 2014-01-28 Blackberry Limited Method and apparatus for logical channel prioritization for uplink carrier aggregation
US8868029B2 (en) * 2010-01-29 2014-10-21 Alcatel Lucent Method and apparatus for managing mobile resource usage
CN102164375A (zh) * 2010-02-22 2011-08-24 华为技术有限公司 一种收集终端测量数据的方法和系统
US9001784B2 (en) * 2010-09-09 2015-04-07 Qualcomm Incorporated Handover of multimode user equipment between radio access technologies for reduced call setup time
US8787303B2 (en) * 2010-10-05 2014-07-22 Cisco Technology, Inc. Methods and apparatus for data traffic offloading at a router
EP2838230A3 (en) * 2010-10-27 2015-03-11 Interdigital Patent Holdings, Inc. Scalable policy-controlled packet inspection systems and methods for advanced application interface
CN105657773B (zh) * 2010-11-22 2019-05-10 日本电气株式会社 通信系统、通信设备、控制器和方法
US9565117B2 (en) * 2010-12-22 2017-02-07 Cisco Technology, Inc. Adaptive intelligent routing in a communication system
US20120230293A1 (en) * 2011-03-08 2012-09-13 Edward Grinshpun Method of performing an inter-technology handoff in a loosely coupled architecture
CN103460788A (zh) * 2011-04-01 2013-12-18 交互数字专利控股公司 用于控制到网络的连通性的方法和设备
CN103460786B (zh) * 2011-04-01 2016-11-09 交互数字专利控股公司 用于共享公共pdp上下文的系统和方法
US9473986B2 (en) * 2011-04-13 2016-10-18 Interdigital Patent Holdings, Inc. Methods, systems and apparatus for managing and/or enforcing policies for managing internet protocol (“IP”) traffic among multiple accesses of a network
US8873398B2 (en) * 2011-05-23 2014-10-28 Telefonaktiebolaget L M Ericsson (Publ) Implementing EPC in a cloud computer with openflow data plane
EP2538719B1 (en) * 2011-06-24 2020-03-11 Vodafone IP Licensing limited Telecommunication networks
EP3554133A1 (en) * 2011-07-12 2019-10-16 InterDigital Patent Holdings, Inc. Method and apparatus for multi-rat access mode operation
US8762501B2 (en) * 2011-08-29 2014-06-24 Telefonaktiebolaget L M Ericsson (Publ) Implementing a 3G packet core in a cloud computer with openflow data and control planes
US20130137469A1 (en) * 2011-11-30 2013-05-30 Intel Mobile Communications GmbH Method for transmitting an opportunistic network related message
US20130208605A1 (en) * 2012-01-04 2013-08-15 Qualcomm Incorporated Method and apparatus for ue-based handover during network coverage holes
US9119074B2 (en) * 2012-06-05 2015-08-25 Qualcomm Incorporated Uplink downlink resource partitions in access point design
US9084176B2 (en) * 2012-06-29 2015-07-14 At&T Intellectual Property I, L.P. Long term evolution network admission management

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1969578A (zh) * 2004-06-15 2007-05-23 艾利森电话股份有限公司 平滑硬切换方法及适用于该方法的移动台和基站
CN101262277A (zh) * 2007-03-06 2008-09-10 中兴通讯股份有限公司 多媒体广播组播业务数据同步调度方法
US20090023453A1 (en) * 2007-07-20 2009-01-22 Jianhong Hu Owa converged network access architecture and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3289732A4 (en) * 2015-05-13 2018-03-28 Huawei Technologies Co., Ltd. Systems and methods for making and disseminating local policy decisions in a software programmable radio network
US10791048B2 (en) 2015-05-13 2020-09-29 Futurewei Technologies, Inc. System and method for making and disseminating local policy decisions in a software programmable radio network
RU2745111C1 (ru) * 2017-09-22 2021-03-22 Виасат, Инк. Гибкие внутриспутниковые маршруты сигналов
US11463160B2 (en) 2017-09-22 2022-10-04 Viasat, Inc. Flexible intra-satellite signal pathways
CN112020873A (zh) * 2018-05-03 2020-12-01 华为技术有限公司 用于在多连接中发送和接收数据包流的客户端设备、网络控制节点、以及upf
CN112020873B (zh) * 2018-05-03 2022-04-22 华为技术有限公司 用于发送和接收数据包流的方法和相关设备

Also Published As

Publication number Publication date
CN103716881B (zh) 2018-08-14
BR112015007725B1 (pt) 2022-02-22
RU2015116261A (ru) 2016-12-10
EP2897433A1 (en) 2015-07-22
EP2897433B1 (en) 2019-07-31
US10278165B2 (en) 2019-04-30
RU2615500C2 (ru) 2017-04-05
CN103716881A (zh) 2014-04-09
US20150215918A1 (en) 2015-07-30
EP2897433A4 (en) 2016-01-06
BR112015007725A2 (pt) 2017-07-04

Similar Documents

Publication Publication Date Title
WO2014056317A1 (zh) 空口信息处理系统、方法及设备
US20220182896A1 (en) Identification of Time Sensitive Network Bridge
EP3823410B1 (en) Method and apparatus for requesting sidelink transmission resources in a wireless communication system
US10548023B2 (en) Cloud communication center system and method for processing data in a cloud communication system
US8948137B2 (en) Internetworking of cellular radio networks and wireless data networks
US10187928B2 (en) Methods and systems for controlling a SDN-based multi-RAT communication network
EP2854444A1 (en) Efficient uplink scheduling mechanism for dual connectivity
US20120250601A1 (en) Communication terminal, method for exchanging data, communication device and method for establishing a communication connection
US11516878B2 (en) Method and apparatus for releasing sidelink radio bearer in a wireless communication system
JP2018536347A (ja) D2d通信システムにおいてバッファ状態報告をトリガーする方法及びその装置
WO2013010420A1 (zh) 一种无线宽带通信方法,装置和系统
US20110128919A1 (en) Device and method for selecting transceiver in mobile communication system
WO2014114101A1 (zh) 数据多流传输方法及装置
CN112237028B (zh) 集成的接入和回程移动性
WO2012100744A1 (zh) 多制式联合通信的方法、系统及无线网络控制设备
US20190260857A1 (en) Data Packet Processing Method, Control Plane Network Element, And User Plane Network Element
EP3665890B1 (en) Access agnostic delivery of broadcast, multicast, or unicast content
Carneiro et al. The DAIDALOS architecture for QoS over heterogeneous wireless networks
WO2012155783A1 (zh) 数据传输方法及系统
WO2016029409A1 (zh) 一种数据传输方法及装置
WO2021253432A1 (zh) 无线通信方法、压缩端和解压缩端
Ali-Yahiya et al. Network Architecture and Protocols
Bezpalec LTE (Long Term Evolution)
MACH et al. Service-Tailored User-Plane Design Framework and Architecture Considerations in 5G Radio Access Networks
Ricardo et al. The DAIDALOS Architecture for QoS over Heterogeneous Wireless Networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13844617

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013844617

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015007725

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2015116261

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015007725

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150407