WO2013010420A1 - 一种无线宽带通信方法,装置和系统 - Google Patents

一种无线宽带通信方法,装置和系统 Download PDF

Info

Publication number
WO2013010420A1
WO2013010420A1 PCT/CN2012/077123 CN2012077123W WO2013010420A1 WO 2013010420 A1 WO2013010420 A1 WO 2013010420A1 CN 2012077123 W CN2012077123 W CN 2012077123W WO 2013010420 A1 WO2013010420 A1 WO 2013010420A1
Authority
WO
WIPO (PCT)
Prior art keywords
small node
base station
dedicated
macro base
srb
Prior art date
Application number
PCT/CN2012/077123
Other languages
English (en)
French (fr)
Inventor
熊新
于映辉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12814681.8A priority Critical patent/EP2712253B1/en
Publication of WO2013010420A1 publication Critical patent/WO2013010420A1/zh
Priority to US14/155,990 priority patent/US9386572B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels

Definitions

  • the invention relates to a Chinese patent application filed on July 15, 2011 by the Chinese Patent Office, the application number is 201110199370.9, and the invention is entitled "a wireless broadband communication method, device and system". Priority is hereby incorporated by reference in its entirety.
  • the present invention relates to the field of wireless communications, and in particular, to a method, apparatus and system for wireless broadband communication.
  • BACKGROUND OF THE INVENTION With the advancement of technology, the demand for mobile communication services and quality is also increasing, and research focuses on the use of limited spectrum resources to improve transmission quality and reduce operating costs.
  • the logical architecture of the LTE Home eNodeB is connected to the Mob ili management protocol (MME) through the S1 interface.
  • MME Mob ili management protocol
  • ⁇ E establishes a connection via the S1 interface, which has a relatively large impact on the performance and cost of the ⁇ E. Therefore, the standard adopts an intermediate node between the E and the LTE home base station, that is, the home base station gateway (HeNB Gateway, HeNB). GW ) to avoid excessive SI interfaces on the MME.
  • HeNB Gateway HeNB Gateway
  • Embodiments of the present invention provide a wireless broadband communication method, apparatus, and system for improving bandwidth and capacity of mobile broadband communication while reducing cost.
  • the small node receives the dedicated synchronization signal Preamble sent by the user equipment UE in the idle state through the first message, and the dedicated Preamble is allocated when the UE first accesses the network;
  • the small node replies to the UE in the second message with the indication information that the SRB 1 and/or the SRB2 between the small node and the UE need not be re-established or modified;
  • a method for wireless broadband communication including:
  • the UE sends a dedicated Preambl e through the first message when the UE is in an idle state, and the dedicated Preamble is allocated when the UE accesses the network for the first time;
  • the UE receives the indication information that the small node sends in the second message that the first signaling radio bearer SRB 1 and/or the second signaling radio bearer SRB2 of the UE does not need to be re-established or modified, the UE The uplink RRC message is sent through the dedicated control channel DCCH.
  • a transceiver module configured to receive a dedicated Preambl e sent by the UE in an idle state by using a first message, where the dedicated Preambl e is allocated when the UE accesses the network for the first time, and is used to determine that the processing module has been stored After the first signaling radio bearer SRB 1 and/or the second signaling radio bearer SRB2 of the UE, sending a second message to the UE,
  • a processing module configured to: according to the dedicated Preamble query received by the transceiver module SRB 1 and/or SRB2 of the UE have been stored,
  • a transceiver module configured to send, by using a first message, a dedicated synchronization signal Preamble when the UE is in an idle state, where the dedicated Preamble is allocated when the UE accesses the network for the first time, and the receiving small node is in the first Instructing information sent in the second message, and sending an uplink RRC message through the dedicated control channel DCCH based on the notification of the processing module;
  • a processing module configured to: when determining that the indication information received by the transceiver module is the first signaling radio bearer SRB 1 and/or the second signaling radio bearer SRB2 of the UE does not need to be re-established or modified indication information And sending the transceiver module to send an uplink RRC message by using the DCCH.
  • the small node determines whether the UE adopts the default or stored first signaling radio bearer SRB 1 by determining the Preamb le sent by the UE. And/or the second signaling radio bearer SRB2, if it is determined to continue to adopt the default or the last configuration, the reply directly in the random access response message does not need to re-establish or modify SRB 1 and/or SRB2, thereby saving unlimited resources.
  • the RRC signaling process is controlled to reduce the cost and share the effect of the macro base station data traffic, thereby improving the bandwidth and capacity of the mobile broadband communication.
  • 1 is a flowchart of a method for wireless broadband communication according to an embodiment of the present invention
  • 2 is a structural diagram of a network topology according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of another network according to an embodiment of the present invention.
  • FIG. 4 is a structural diagram of a protocol stack according to an embodiment of the present invention.
  • FIG. 5 is a structural diagram of another protocol stack according to an embodiment of the present invention.
  • FIG. 6 is a structural diagram of another protocol stack according to an embodiment of the present invention.
  • FIG. 7 is a structural diagram of another protocol stack according to an embodiment of the present invention.
  • FIG. 8 is a signaling interaction diagram of a method for wireless broadband communication according to an embodiment of the present invention
  • FIG. 9 is a signaling interaction diagram of a method for wireless broadband communication according to an embodiment of the present invention
  • FIG. 10 is another embodiment of the present invention.
  • FIG. 1 is a structural diagram of another network topology according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of another network according to an embodiment of the present invention.
  • FIG. 13 is a structural diagram of another protocol stack according to an embodiment of the present invention.
  • 15 is a structural diagram of another protocol stack according to an embodiment of the present invention.
  • 16 is a structural diagram of another protocol stack according to an embodiment of the present invention.
  • 17 is a signaling interaction diagram of another method for wireless broadband communication according to an embodiment of the present invention.
  • FIG. 18 is a structural diagram of a small node of wireless broadband communication according to an embodiment of the present invention.
  • FIG. 19 is a structural diagram of another small node of wireless broadband communication according to an embodiment of the present invention.
  • FIG. 20 is a structural diagram of a macro base station for wireless broadband communication according to an embodiment of the present invention.
  • FIG. 21 is a structural diagram of a UE according to an embodiment of the present invention.
  • FIG. 22 is a structural diagram of another UE according to an embodiment of the present invention.
  • FIG. 23 is a structural diagram of a system for wireless broadband communication according to an embodiment of the present invention.
  • 24 is a structural diagram of another system for wireless broadband communication according to an embodiment of the present invention.
  • FIG. 25 is a flowchart of another method for wireless broadband communication according to an embodiment of the present invention. Mode for carrying out the invention
  • FIG. 1 is a flowchart of a method for wireless broadband communication according to an embodiment of the present invention.
  • the embodiment includes: Step 101: The small node establishes a radio resource control RRC connection with the UE by using the macro base station.
  • Step 102 The small node receives a configuration message sent by the macro base station by using a wired or wireless interface, and establishes the small node according to the configuration message.
  • Step 103 The small node establishes a data bearer with the UE on the wireless connection.
  • the executor of the embodiment of the present invention is a small node, and the small node may be: a small base station (P i C0 ), an indoor base station (Femto), a low mobility base station (Low Mob ili ty, LoMo), and other local wireless access point APs. , or a UE with device-to-device (D2D) capabilities.
  • the small node is LoMo as an example.
  • the macro base station is mainly used to implement the control plane function of the UE, including the mobility management function of the UE.
  • LoMo is mainly used to carry indoor low-mobility data services and realize user plane functions.
  • the user plane data transmission and the control plane data transmission of the air interface adopt separate transmission modes of different paths, that is, the link of the LoMo to the UE is only responsible for the transmission of the user plane data, and the control plane signaling of the LoMo to the UE is The macro base station to the UE's link is established.
  • the macro base station and the UE are directly connected through the air interface, and the RRC connection is established through the interface between the macro base station and the UE without using LoMo and LoMo.
  • the macro base station and the LoMo are connected by a wired or wireless interface, wherein the wired interface may include: an S1 interface between the base station and the mobility management entity E, and/or an X2 interface between the base station and the base station, and/or a general public wireless interface CPRI And/or a lub interface between the radio network controller and the base station, and the LoMo receives, by using the interface, a configuration message sent by the macro base station by using a wired or wireless interface, where the radio interface includes: a Uu interface between the base station and the UE, And/or the microwave interface transmitted by the base station.
  • the data bearer between the LoMo and the UE is configured by the interface between the macro base station and the UE.
  • the LoMo may be sent to the macro base station by using a wired or wireless interface between the macro base station and the LoMo in FIG. 1 to enable the macro base station to use the user of the UE.
  • the face data is forwarded to the core network element.
  • the user plane data of the UE can be directly sent to the core network element through the interface between the core network element and the LoMo in FIG. 3, and the core network in FIG.
  • the network element is the monthly service gateway S-GW. If LoMo directly transmits data to the core network element, LoMo needs to inform its mobile management entity MME of its own address.
  • the MME informs the core network element, and the MME then informs the macro base station of the address of the core network element, and the macro base station forwards it to the macro base station.
  • LoMo The above address may include: a transport network layer address TNL addres s , a general wireless packet service tunneling protocol - a tunnel node identifier GTP-TE ID and/or an internet protocol IP address.
  • the air interface protocol stack between the LoMo and the UE may include only: a packet data convergence protocol PDCP, a radio link control RLC layer protocol, a media access control MAC layer protocol, and a layer one L1 protocol; and/or excludes: radio resource control RRC Layer protocol. That is, on the control plane, the air interface protocol stack of LoMo and UE can adopt a unified protocol stack architecture, for example, there is no RRC protocol entity. As shown in Figure 4. On the user side, LoMo and UE can use the original user plane protocol stack PDCP/RLC/MAC, which is only functionally tailored. As shown in Figure 5.
  • the control plane protocol stack between LoMo and the UE can also merge PDCP, RLC, and MAC into a new layer entity, as shown in Figure 6.
  • the user plane protocol stack between LoMo and the UE can also merge PDCP, RLC, and MAC into a new layer entity, as shown in Figure 7.
  • Step 1 04 When the small node is in the vicinity of the UE, the UE initiates an RRC connection to the macro base station to establish a service.
  • the macro base station determines that the small node stores data requested by the UE. That is, when the macro base station determines the data requested by the UE, the small node is directly transmitted to the UE when there is a nearby small node.
  • the foregoing configuration message may further include: allocation information of a static or semi-static configuration resource; resource allocation information for performing random access on the static or semi-static configuration resource, or resource allocation information for performing random access and data scheduling. If the configuration message includes only the resource allocation information for the random access, the small node and the UE establish a data bearer on the data plane connection, and further includes: the data bearer that is established by the small node And transmitting, to the UE, resource allocation information for performing random access on the static or semi-static configuration resource.
  • the method further includes: The node sends, by using the established data bearer, resource allocation information for performing random access and data scheduling on the configuration resource on the static or semi-static configuration resource to the UE. If the random access is performed according to the resource allocation information, or congestion occurs during random access and data scheduling, the method further includes: the small node re-applying for a static or semi-static configuration resource to the macro base station; or the small node notification The macro base station switches the UE to the macro base station; or the new access mode in which the small node congests resources is in a dynamic scheduling manner.
  • the following table compares the functions of the macro base station and LoMo.
  • the LoMo-column lists the functions that LoMo can implement:
  • the small node may establish an RRC connection with the radio resource control of the UE through the macro base station, and then configure the small node by the macro base station, thereby saving the establishment with the UE.
  • the RRC connection process reduces the cost; then the small node establishes a data bearer with the UE, and shares the data traffic of the macro base station, thereby improving the bandwidth of the mobile broadband communication, Valley.
  • FIG. 8 is a signaling interaction diagram of a method for wireless broadband communication according to an embodiment of the present invention. This embodiment includes:
  • Step 801 The UE does not directly access the LoMo.
  • the UE When the UE initiates the service, the UE first establishes an RRC connection with the macro base station, and performs normal authentication and encryption.
  • Step 802 The macro base station performs RRC reconfiguration on the UE to establish a corresponding second signaling radio bearer SRB2, a data radio bearer DRB, a measurement control configuration, and the like, and the UE receives an RRC re-authentication message.
  • the underlying configuration including radio resource configuration, measurement configuration and so on.
  • Step 803 The macro base station needs to complete the underlying user plane protocol stack (including PDCP, RLC, MAC) of LoMo through a newly defined interface (s imple IF) while transmitting the RRC reconfiguration message (RRC reconfiliation).
  • the newly defined user plane entity (new MAC) is configured.
  • the configuration messages passed by this interface (s imple IF) include:
  • Radio resource configuration (logical channel configuration, transport channel configuration, physical channel configuration) measurement configuration, etc.
  • the radio resource configuration may be static or semi-static RACH resources and/or static or semi-static physical transmission resources.
  • the static or semi-static resource information is set according to the resource usage of the permanent households under the AP.
  • Steps 202 and 203 can be performed simultaneously, or sequentially.
  • Step 804 The UE and the LoMo respectively feed back a configuration response message to the macro base station.
  • Option 1 Only static or semi-static RACH resources are included, and subsequent scheduling information is then notified by LoMo through the MAC CE (MAC layer control unit).
  • the configuration message includes static or semi-static resource information of the UE random access and subsequent scheduling. If the resource allocation is congested, the LoMo re-applies to the macro base station for semi-static resource allocation or switches the UE to the macro base station.
  • the configuration message includes static semi-static resource information of the UE's random access and subsequent scheduling. If the UE experiences resource congestion in the subsequent access process, the access after the resource is congested adopts dynamic scheduling mode.
  • Step 805 The UE and LoMo establish a user plane.
  • the small node receives the configuration message sent by the macro base station through the wired or wireless interface, and performs configuration according to the configuration message, including: The user plane protocol configuration information that is sent by the macro base station through a wired or wireless interface, where the small node is configured to establish a radio resource and a measurement parameter that are connected to the UE.
  • the small node may establish an RRC connection with the radio resource control of the UE through the macro base station, and then configure the small node by the macro base station, thereby saving the establishment with the UE.
  • the RRC connection process reduces the cost; then the small node establishes a data bearer with the UE, and shares the data traffic of the macro base station, thereby improving the bandwidth and the valley of the mobile broadband communication.
  • FIG. 9 is a signaling interaction diagram of a method for wireless broadband communication according to an embodiment of the present invention. The embodiment includes:
  • Step 901 The UE first establishes an RRC connection with the macro base station.
  • Step 902 The macro base station determines whether a secondary carrier (SCC) needs to be configured according to a quality of service (QoS), a scheduling policy, and/or a channel quality of the service.
  • SCC secondary carrier
  • QoS quality of service
  • Step 903 The macro base station configures the UE to perform SCC-related configuration by using dedicated signaling.
  • Step 904 The macro base station configures LoMo through the newly defined interface message, and the LoMo receives the SCC configuration message of the macro base station.
  • Step 905 Send an activation message to the UE by using the MAC CE of LoMo.
  • Step 906 After receiving the activation message, the UE performs random access of the LoMo to obtain a new second cell radio network temporary identifier (C-RNT I 2 ).
  • Step 907 The downlink data is split by the IP data in the LTE macro base station, and the services with higher QoS requirements such as voice and vedio continue to be scheduled under the primary carrier PCC, and the first cell wireless network temporary identifier C-RNTI 1 is allocated by using the RRC connection.
  • PDCH Physical downlink control channel
  • the small node receives the configuration message sent by the macro base station through the wired or wireless interface, and performs configuration according to the configuration message, including: The SCC configuration information sent by the macro base station through a wired or wireless interface, where the small node is configured to establish an SCC with a data plane connection with the UE.
  • the association relationship between the PCC and the SCC is always unchanged, that is, the link between the UE and the macro base station is always the PCC, and the link between the UE and the LoMo is always the SCC.
  • the small node may establish an RRC connection with the radio resource control of the UE through the macro base station, and then configure the small node by the macro base station, thereby saving the establishment with the UE.
  • the RRC connection process reduces the cost; then the small node establishes a data bearer with the UE, and shares the data traffic of the macro base station, thereby improving the bandwidth and the valley of the mobile broadband communication.
  • FIG. 10 is a flowchart of another method for wireless broadband communication according to an embodiment of the present invention. The embodiment includes:
  • Step 1001 The small node receives the dedicated synchronization signal Preamb e e sent by the user equipment UE in the idle state by using the first message, where the dedicated Preamb e e is allocated when the UE accesses the network for the first time;
  • Step 1002 The small node queries, according to the dedicated Preamb e e, whether the first signaling radio bearer SRB 1 and/or the second signaling radio bearer SRB2 of the UE are stored.
  • Step 1003 If stored, the small node returns, to the UE, the indication information that the SRB 1 and/or SRB2 between the small node and the UE does not need to be re-established or modified in the second message;
  • Step 1004 Receive an uplink radio resource control RRC message sent by the UE by using a dedicated control channel DCCH.
  • the execution entity of the embodiment of the present invention is a small node, and the small node may be: a small base station (P i co ), an indoor base station (Femto), or another local wireless access point AP, and a low mobility base station (Low Mob ili ty, LoMo ).
  • the small node is LoMo as an example.
  • the LoMo in the embodiment of the present invention may be in a blind zone of the macro base station.
  • the UE can reside on LoMo alone.
  • the macro base station and the LoMo are connected through a wired or wireless interface
  • the wired interface may include: an S1 interface between the base station and the mobility management entity ⁇ E, and/or an X2 interface between the base station and the base station, and Or a common public radio interface CPRI, and/or a 1 ub interface between the radio network controller and the base station, through which the LoMo receives configuration messages sent by the macro base station through a wired or wireless interface; wherein the radio interface includes: A Uu interface with the UE, and/or a microwave interface transmitted by the base station.
  • the LoMo and the UE are also connected through the air interface, and do not need to pass through the macro base station, which carries the signaling and data bearer between the UE and the LoMo.
  • the LoMo may be sent to the macro base station by using a wired or wireless interface between the macro base station and the LoMo in FIG. 11 to enable the macro base station to use the user of the UE.
  • the face data is forwarded to the core network element.
  • the user plane data of the UE can be directly sent to the core network element through the interface between the core network element and the LoMo in FIG. 12, and the core network in FIG.
  • the network element is the monthly service gateway S-GW.
  • LoMo directly transmits data to the core network element
  • LoMo needs to inform its mobile management entity MME of its own address.
  • the MME informs the core network element, and the MME then informs the macro base station of the address of the core network element, and the macro base station forwards it to the macro base station.
  • the above addresses may include: TNL address, GTP-TEI D, and/or Internet Protocol IP address.
  • the air interface protocol stack between the LoMo and the UE may include only: On the control plane, the air interface protocol stack of the LoMo and the UE may adopt a centralized protocol stack architecture, such as a RRC protocol entity, as shown in FIG. Functionally, the RRC process as described in FIG. 10 is employed.
  • a centralized protocol stack architecture such as a RRC protocol entity, as shown in FIG.
  • the RRC process as described in FIG. 10 is employed.
  • User plane, LoMo and UE The original user plane protocol stack PDCP/RLC/MAC can be used, but it is only functionally tailored.
  • the protocol stack is shown in Figure 14, and the functionalization is shown in Table 1.
  • the control plane protocol stack between LoMo and the UE can also merge PDCP, RLC, and MAC into a new layer entity, as shown in Figure 15.
  • the user plane protocol stack between LoMo and the UE can also merge PDCP, RLC, and MAC into a new layer entity, as shown in FIG.
  • the foregoing network configuration includes at least one of the following: a logical channel configuration; a signaling radio bearer SRB configuration; a MAC layer configuration; a semi-persistent scheduling configuration; a physical channel configuration; a timer parameter of the RRC message.
  • the small node may further include: before receiving the dedicated synchronization signal Preamble sent by the UE in the idle state by using the first message:
  • Step 1007 when the UE accesses the network by using the small node for the first time, the small node sends a dedicated Preamble, SRB, logical channel resource configuration, transport channel resource configuration, and physical channel resource configuration to the UE.
  • Step 1008 stores the dedicated Preamble, SRB, logical channel resource configuration, transport channel resource configuration, and physical channel resource configuration transmitted.
  • Step 1009 If the SRB 1 and/or SRB2 of the UE are not stored, the small node replies to the UE in the second message with the first signaling radio bearer SRB 1 and/or between the small node and the UE.
  • the second signaling radio bearer SRB2 needs to re-establish or modify the indication information.
  • the foregoing notification to the UE after the small node accesses the network includes:
  • Step 1004 The small node receives measurement control information sent by a macro base station, and forwards the measurement control information sent by a macro base station.
  • Step 1005 Receive a measurement report fed back by the UE, and forward the measurement report to the macro base station.
  • Step 1006 If the macro base station decides that handover is required, the handover notification sent by the macro base station is received.
  • the small node determines whether the UE needs to re-establish or modify SRB 1 and/or SRB2 by determining the Preamble sent by the UE.
  • FIG. 17 is a signaling interaction diagram of another method for wireless broadband communication according to an embodiment of the present invention. This embodiment includes:
  • Step 1701 When the UE accesses the registration network through the LoMo for the first time, the UE receives and stores the dedicated Preamble allocated by the network;
  • Step 1702 When the UE in idle state accesses LoMo again, send the dedicated Preamble to LoMo;
  • Step 1703 The LoMo queries, according to the dedicated Preamble, whether the SRB 1 and/or SRB2 corresponding to the UE are stored.
  • Step 1704 If the SRB 1 and/or SRB2 corresponding to the UE are stored, the LoMo replies to the UE with the indication information that the SRB 1 and/or the SRB 2 need not be re-established or modified; if re-establishment is required, the LoMo replies to the SRB 1 and the UE. / or SRB2 needs to re-establish or ⁇ fi tampering instructions.
  • Step 1705 The UE determines whether the random access needs to re-establish SRB 1 and/or SRB2.
  • Step 1706 If not stored, the UE accesses the network through an uplink RRC message, and notifies that the network connection establishment is completed, where the connection request reason, the resident PLMN network, and the like are carried. If necessary, the UE re-initiates random access in the contention mode.
  • the UE status and network status changes may be relatively small, so the default configuration may be adopted for many configurations, including: Configuration of logical channels (transmission mode, logical channel priority, etc.) Etc), SRB configuration (logical channel number, RLC configuration parameters, logical channel group, logical channel priority, priority bit rate, etc.), MAC layer configuration (whether it supports TTI binding TTI bundl ing, HARQ maximum retransmission times, buffer report BSR, power headroom report PHR, discontinuous reception DRX configuration), semi-persistent scheduling configuration, physical channel configuration, some RRC The timer parameter of the message.
  • Configuration of logical channels transmission mode, logical channel priority, etc.) Etc
  • SRB configuration logical channel number, RLC configuration parameters, logical channel group, logical channel priority, priority bit rate, etc.
  • MAC layer configuration whether it supports TTI binding TTI bundl ing, HARQ maximum retransmission times, buffer report BSR, power headroom report PHR, discontinuous reception DRX configuration
  • the UE and LoMo After the initial UE enters LoMo to obtain the configuration, the UE and LoMo store these configurations for the next use. The next time the access is made, the state of the UE and the state of the network change are small, so the RRC connection establishment process can be greatly simplified.
  • LoMo can identify the identity of the UE according to the dedicated P r eamb 1 e code;
  • the LoMo returns a random access response message (random acces s response) according to the identity of the UE, and indicates whether the configuration of the SRB1 and/or the SRB2 changes in the message, and the UE determines, according to the bit, whether the UE can be configured with the default configuration.
  • Random acces s response a random access response message (random acces s response) according to the identity of the UE, and indicates whether the configuration of the SRB1 and/or the SRB2 changes in the message, and the UE determines, according to the bit, whether the UE can be configured with the default configuration.
  • the uplink RRC message may be a new message or may be a RRC RRC connection completion (RRC connection ion complete) message or an RRC connection request (RRC connection ion reques t) message, including the UE ID, the establishment reason, and the selected carrier.
  • RRC connection ion complete RRC RRC connection completion
  • RRC connection request RRC connection ion reques t
  • the process of the UE switching from the LTE LoMo to the LTE macro base station firstly, the LTE macro base station sends a New IF conta ined Measurement Cont ro l message to the LTE LoMo, and then the LTE LoMo sends the measurement control (Measurement Cont ro l The UE corresponding to the message control performs measurement and sends a measurement report, and the LTE LoMo receives the corresponding measurement report. After that, the new IF message contained Measurement report is sent to the LTE macro base station, and the handover decision is made by the LTE macro base station.
  • the shell will send a new interface including the handover command (New IF message contained Handover Command) to LTE LoMo, the handover command (Handover Command) is sent by the LTE LoMo to the corresponding UE, and the UE switches to the corresponding LTE macro base station coverage area, and after establishing a connection with the LTE macro base station, the LTE macro base station notifies LoMo releases the corresponding resources.
  • the handover command (New IF message contained Handover Command) to LTE LoMo
  • the handover command (Handover Command) is sent by the LTE LoMo to the corresponding UE
  • the UE switches to the corresponding LTE macro base station coverage area, and after establishing a connection with the LTE macro base station, the LTE macro base station notifies LoMo releases the corresponding resources.
  • the UE switches from the LTE macro base station to the LTE LoMo.
  • the LTE macro base station sends a Measurement Control message to control the corresponding UE to perform measurement and send a measurement report, and then further obtains the corresponding LoMo load condition, and performs a handover decision.
  • the Handover Command is sent to the corresponding UE and LoMo, and the UE sends a Handover Confirm to LoMo, and after receiving the corresponding message, LoMo sends a Resource Release Request (Resource Release Request).
  • Resource Release Request Resource Release Request
  • the small node determines whether the UE needs to re-establish or modify SRB 1 and/or SRB2 by determining the Preamble sent by the UE. If it is determined that it is unnecessary, the direct reply does not need to be re-established or ⁇ ' ⁇ SRB 1 and/or SRB2 are changed, thereby saving the process of establishing SRB 1 and/or SRB2, reducing the cost, and then the UE accesses the network through the small node, and shares the data traffic of the macro base station, thereby improving the mobile broadband communication. Bandwidth, capacity.
  • FIG. 18 is a structural diagram of a small node of a wireless broadband communication according to an embodiment of the present invention. The embodiment includes:
  • the first connection establishing module 1801 is configured to establish a radio resource control RRC connection with the UE by using the macro base station;
  • the configuration message receiving module 1802 is configured to: after establishing an RRC connection, receive a configuration message sent by the macro base station by using a wired or wireless interface;
  • a first connection and bearer establishing module 1803 configured to establish the small node according to the configuration message And connecting to the data plane between the UE, and establishing a data bearer with the UE on the data plane connection.
  • the configuration message receiving module can be used to:
  • auxiliary carrier SCC configuration information sent by the macro base station through a wired or wireless interface, the small node activating a secondary carrier SCC for establishing a data plane connection with the UE.
  • a data transmission module 1804 configured to transmit, by using the data bearer, user plane data between the UE and a core network element;
  • the user plane data between the UE and the core network element is directly transmitted through the small node;
  • the user plane data between the UE and the core network element is transmitted through a path of the UE, the small node, the macro base station, and the core network element.
  • the wired interface may include any one or a combination of the following:
  • the wireless interface can include:
  • the Uu interface between the base station and the UE, and/or the microwave interface transmitted by the base station is not limited.
  • a small node according to an embodiment of the present invention, an air interface protocol stack between the small node and the UE,
  • Packet Data Convergence Protocol PDCP Packet Data Convergence Protocol
  • Wireless Link Control RLC Layer Protocol Wireless Link Control RLC Layer Protocol
  • Media Access Control MAC Layer Protocol and Layer 1 L1 Protocol; and / or
  • the configuration message receiving module may be further configured to: Receiving allocation information of static or semi-static configuration resources;
  • the small node according to the embodiment of the present invention may further include: if the configuration message receiving module is configured to receive the resource allocation information for performing random access,
  • the allocation information sending module 1805 is configured to send, by using the established data bearer, resource allocation information for performing data scheduling on the static or semi-static configuration resource to the UE.
  • the allocation information sending module may be further configured to: send, by using the established data bearer, resource allocation information that performs random access on the static or semi-static configuration resource to the UE.
  • the re-application module 1806 is configured to: if the configuration message receiving module is configured to receive the resource allocation information for performing random access and data scheduling, and if congestion occurs when the small node performs scheduling according to the resource allocation information
  • the macro base station re-applies for a static or semi-static configuration resource; or
  • the notification switching module 1807 is configured to: if the configuration message receiving module is configured to receive the resource allocation information for performing random access and data scheduling, and notify the congestion when the small node performs scheduling according to the resource allocation information
  • the macro base station switches the UE to the macro base station; or
  • the dynamic scheduling module 1808 is configured to: if the configuration message receiving module is configured to receive the resource allocation information for performing random access and data scheduling, and if congestion occurs when the small node performs scheduling according to the resource allocation information, New access to resource congestion uses dynamic scheduling.
  • the small node may include any one of the following: a small base station P i co , an indoor base station Femto, a mobility base station LoMo, a local wireless access point AP, with a device to device D2D Functional UE.
  • the small node provided by the embodiment of the present invention can establish an RRC connection with the radio resource control of the UE through the macro base station, and then configure the small node by the macro base station, thereby saving an RRC connection with the UE. The process reduces the cost; then the small node establishes a data bearer with the UE, and shares the data traffic of the macro base station, thereby improving the bandwidth and capacity of the mobile broadband communication.
  • FIG. 19 is a structural diagram of another small node of wireless broadband communication according to an embodiment of the present invention. This embodiment includes:
  • the transceiver module 1901 is configured to receive a dedicated Preamb le sent by the UE in an idle state by using a first message, where the dedicated Preamb le is allocated when the UE accesses the network for the first time, and is used to determine that the processing module has After storing the first signaling radio bearer SRB 1 and/or the second signaling radio bearer SRB2 of the UE, sending a second message to the UE,
  • the processing module 1902 is configured to: according to the dedicated Preamb e e query received by the transceiver module, whether the SRB 1 and/or the SRB2 of the UE are stored,
  • the transceiver module may be further configured to: after receiving the RRC message, receive user plane data of the UE,
  • Transmitting the user plane data of the UE to the macro base station so that the macro base station forwards the user plane data of the UE to the core network element, or sends the user plane data of the UE to Core network element.
  • the transceiver module may be further configured to access the network by using the small node for the first time in the UE. Transmitting, by the UE, a dedicated Preamble, SRB, logical channel resource configuration, transport channel resource configuration, and physical channel resource configuration allocated by the network;
  • the small node further includes: a mapping table storage module, configured to store the dedicated Preamble, SRB, logical channel resource configuration, transport channel resource configuration, and physical channel resource configuration sent by the transceiver module.
  • a mapping table storage module configured to store the dedicated Preamble, SRB, logical channel resource configuration, transport channel resource configuration, and physical channel resource configuration sent by the transceiver module.
  • the processing module may be further configured to:
  • the SRB 1 and/or SRB2 of the UE are not stored, the SRB 1 and/or SRB2 between the small node and the UE needs to be re-established or modified in the second message sent by the transceiver module. Instructions.
  • the transceiver module may be configured to receive measurement control information sent by the macro base station, and forward the measurement control information to the UE, and receive the measurement report fed back by the UE, and forward the measurement report to the macro base. And receiving a handover notification that is sent by the macro base station after determining that the handover is required.
  • Small base station Pico indoor base station Femto, mobile base station LoMo, local wireless access point
  • the small node determines whether the UE needs to re-establish or modify SRB 1 and/or SRB2 by determining the Preamble sent by the UE. If it is determined that it is unnecessary, the direct reply does not need to re-establish or tamper with SRB 1 and/or Or SRB2, thereby saving the process of establishing SRB 1 and/or SRB2, reducing the cost, and then the UE accesses the network through the small node, and shares the data traffic of the macro base station, thereby improving the bandwidth and capacity of the mobile broadband communication.
  • FIG. 20 is a structural diagram of a macro base station for wireless broadband communication according to an embodiment of the present invention. This embodiment includes:
  • the second connection establishing module 2001 is configured to establish a radio resource control RRC connection with the UE, and configure a message sending module 2002, configured to: after establishing the RRC connection, through the wireless interface
  • the UE sends an RRC reconfiguration message, and sends a configuration message to the small node through a wired or wireless interface, so that the small node establishes a data plane connection with the UE.
  • the configuration message sending module may be configured to: send user plane protocol configuration information by using a wired or wireless interface; or
  • the supplementary carrier SCC configuration information is transmitted through a wired or wireless interface.
  • the macro base station according to the embodiment of the present invention,
  • the wired interface may include any one or a combination of the following:
  • the wireless interface can include:
  • the Uu interface between the base station and the UE, and/or the microwave interface transmitted by the base station is not limited.
  • the configuration message sending module may be further configured to: send allocation information of static or semi-static configuration resources;
  • the application receiving module 2003 is configured to receive a request for static or semi-static configuration resources of the small node.
  • the handover notification receiving module 2004 is configured to receive a notification for switching the UE to the macro base station.
  • FIG. 21 is a structural diagram of a UE according to an embodiment of the present invention. This embodiment includes: a third connection establishing module 21 01 is configured to establish a radio resource control RRC connection with the macro base station;
  • the re-allocation message receiving module 21 02 is configured to: after establishing the RRC connection, receive an RRC reconfiguration message sent by the macro base station to the UE;
  • the second connection and bearer establishing module 21 03 is configured to establish a data plane connection with the small node according to the RRC reconfiguration message, and establish a data bearer with the small node on the data plane connection.
  • the UE according to the embodiment of the present invention is characterized in that: an empty interface protocol stack between the small node and the UE,
  • Packet Data Convergence Protocol PDCP Packet Data Convergence Protocol
  • Wireless Link Control RLC Layer Protocol Wireless Link Control RLC Layer Protocol
  • Media Access Control MAC Layer Protocol and Layer 1 L1 Protocol; and / or
  • FIG. 22 is a structural diagram of another UE according to an embodiment of the present invention. This embodiment includes:
  • the transceiver module 2201 is configured to send, by using a first message, a dedicated synchronization signal Preamble when the UE is in an idle state, where the dedicated Preamble is allocated when the UE accesses the network for the first time, and the receiving small node is The indication information sent in the second message, and based on the notification of the processing module, sending the uplink RRC message through the dedicated control channel DCCH;
  • the processing module 2202 is configured to: after determining that the indication information received by the transceiver module is the first signaling radio bearer SRB 1 and/or the second signaling radio bearer SRB2 of the UE, does not need to be re-established or modified.
  • the UE is notified to send the uplink RRC through the DCCH.
  • the UE described in the embodiment of the present invention may be used to perform the method as described in the corresponding embodiment of FIG. 25 .
  • the transceiver module may be further configured to: when the UE accesses the network through the small node for the first time, receive a dedicated Preamb le, SRB, logical channel resource configuration, and a transport channel that are sent by the small node and are allocated by the small node. Resource configuration and physical channel resource configuration;
  • the UE may further include: a mapping table storage module, configured to store the dedicated Preamb e e, SRB, logical channel resource configuration, transport channel resource configuration, and physical channel resource configuration received by the transceiver module.
  • a mapping table storage module configured to store the dedicated Preamb e e, SRB, logical channel resource configuration, transport channel resource configuration, and physical channel resource configuration received by the transceiver module.
  • the processing module can also be used to:
  • the network is randomly accessed through a contention manner.
  • a handover of a small node to a macro base station In order to perform handover between a small node and a small node, a handover of a small node to a macro base station, or a handover of a macro base station to a small node,
  • the transceiver module may be further configured to receive measurement control information forwarded by the small node, and report a measurement report according to the notification of the measurement feedback module;
  • the UE may further include: a measurement feedback module, configured to perform measurement according to the measurement control information received by the transceiver module, and notify the transceiver module to feed back the measurement report.
  • a measurement feedback module configured to perform measurement according to the measurement control information received by the transceiver module, and notify the transceiver module to feed back the measurement report.
  • FIG. 23 is a structural diagram of a system for wireless broadband communication according to an embodiment of the present invention, and this embodiment includes:
  • a small node 2301 configured to establish a radio resource control RRC connection with the UE by using the macro base station; After the RRC connection is received, receiving a configuration message sent by the macro base station by using a wired or wireless interface; establishing a data plane connection between the small node and the UE according to the configuration message, and performing the data with the UE Establish a data bearer on the surface connection;
  • the base station 2302 is configured to establish a radio resource control RRC connection with the UE. After the RRC connection is established, the RRC reconfiguration message is sent to the UE through the radio interface, and the configuration message is sent to the small node by using a wired or wireless interface. And causing the small node to establish a data plane connection with the UE;
  • a UE2303 configured to establish a radio resource control RRC connection with the macro base station; after establishing an RRC connection, receive an RRC reconfiguration message sent by the macro base station to the UE; and establish a data plane with the small node according to the RRC reconfiguration message. Connecting, and establishing a data bearer with the small node on the data plane connection.
  • the small node can establish an RRC connection with the radio resource control of the UE through the macro base station, and then configure the small node by the macro base station, thereby saving the establishment with the UE.
  • the RRC connection process reduces the cost; then the small node establishes a data bearer with the UE, and shares the data traffic of the macro base station, thereby improving the bandwidth and the valley of the mobile broadband communication.
  • FIG. 24 is a structural diagram of another system for wireless broadband communication according to an embodiment of the present invention. The embodiment includes:
  • a small node 2401 configured to receive a synchronization signal Preamb le sent by the UE in an idle state by using a first message, where the small node determines that the Preamb le is a dedicated Preamb le; and returns the first signaling wireless in the second message.
  • the UE 2402 when used in the idle state, sends the synchronization signal Preamble through the first message; the first signaling radio bearer SRB 1 and/or the second signaling radio bearer SRB2 received in the second message need not be re-established or modified. Instructing information; receiving a notification that the UE accesses the network through the small node.
  • the small node determines whether the UE needs to re-establish or modify SRB 1 and/or SRB2 by determining the Preamble sent by the UE.
  • FIG. 25 is a flowchart of another method for wireless broadband communication according to an embodiment of the present invention. This embodiment includes:
  • Step 2501 The UE sends a dedicated Preamble by using a first message when the UE is in an idle state, where the dedicated Preamble is allocated when the UE accesses the network for the first time;
  • Step 2502 If the UE receives the indication information that the small node sends the first signaling radio bearer SRB 1 and/or the second signaling radio bearer SRB2 of the UE in the second message without re-establishing or modifying, The UE sends an uplink RRC message through a dedicated control channel DCCH.
  • Step 2503 When the UE accesses the network through the small node for the first time, the UE receives a dedicated Preamble, SRB, logical channel resource configuration, transport channel resource configuration, and physical channel resource configuration allocated by the small node.
  • Step 2504 Store the received dedicated Preamble, SRB, logical channel resource configuration, transport channel resource configuration, and physical channel resource configuration.
  • Step 2505 If the UE receives the indication information that the first signaling radio bearer SRB 1 and/or the second signaling radio bearer SRB2 sent by the small node in the second message needs to be re-established or modified, the UE Then randomly access the network through competition.
  • the method may further include:
  • Step 2506 the UE receives measurement control information forwarded by the small node.
  • Step 2507 The UE performs measurement and feedback measurement reports according to the measurement control information.
  • the UE sends the Preamb le to make the small node know whether the UE needs to re-establish or modify the SRB 1 and/or the SRB2.
  • the receiving does not need to re-establish or modify the SRB 1 and / or SRB2, and the UE access network reply and notification, thereby saving the process of establishing SRB 1 and / or SRB2, reducing the cost, and then the UE accesses the network through the small node, sharing the data traffic of the macro base station, Thereby increasing the bandwidth and capacity of mobile broadband communication.
  • the computer software product of the present invention is stored in a readable storage medium, such as a floppy disk, a hard disk or an optical disk of a computer, and includes a plurality of instructions for causing a computer device (which may be an individual)
  • a computer device which may be an individual
  • a computer, server, or network device, etc. performs the above described methods of various embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种无线宽带通信方法,装置和系统,用于提高移动宽带通信的带宽、容量,同时降低成本。本发明实施例提供的方法包括:小节点(small cell)接收处于空闲状态的用户设备UE通过第一消息发送的专用同步信号Preamble,所述专用Preamble是在所述UE第一次接入网络时分配的;所述小节点根据所述专用Preamble查询是否已存储所述UE的第一信令无线承载SRB1和/或第二信令无线承载SRB2;如已存储,所述小节点在第二消息中向所述UE回复所述小节点与UE之间的SRB1和/或SRB2无需重新建立或者修改的指示信息;接收所述UE通过专用控制信道DCCH发送的上行无线资源控制RRC消息。

Description

一种无线宽带通信方法, 装置和系统 本申请要求于 2011 年 7 月 15 日提交中国专利局、 申请号为 201110199370.9、 发明名称为 "一种无线宽带通信方法, 装置和系统" 的中 国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及无线通信领域, 具体涉及一种无线宽带通信的方法、 装置 和系统。 发明背景 随着科技进步, 人们对移动通信业务和质量的要求也在不断提高, 而 研究的重点集中在利用有限的频谱资源提高传输质量及降低运营成本。
目前, 基于无线技术的移动通讯, 在家用市场和公用市场获得了广泛 的应用。 无线技术在如此大的规模下使用, 并且目前移动通信发展的驱动 力也来自于宽带数据业务的需求, 对公用移动无线网络同样造成了不小的 沖击,尤其是对同样定位为室内场景的长期演进技术( long term evolut ion LTE ) 更是如此。
现有技术中, LTE 家庭基站(LTE Home eNode B ) 的逻辑架构通过 S1 接口与移动管理实体 ( mob i l i ty management ent i ty, MME )相连, 由于 LTE 家庭基站数量多, 如果 LTE家庭基站直接与匪 E经由 S1接口建立连接, 会 对匪 E的性能和成本都有比较大的影响, 所以标准上采纳了在 E与 LTE 家庭基站之间增加一个中间节点, 即家庭基站网关 ( HeNB Gateway, HeNB GW ), 来避免 MME上有过多的 SI接口。
从功能上来看, 家庭基站的功能和一般基站的功能完全相同, 无法满 足下一代的移动宽带通信技术在提高带宽、 容量的同时降低成本的需求。 发明内容 本发明实施例提供了一种无线宽带通信方法、 装置和系统, 用于提高 移动宽带通信的带宽、 容量, 同时降低成本。
本发明实施例提供的一种无线宽带通信的方法, 包括:
小节点 (sma l l cel l )接收处于空闲状态的用户设备 UE通过第一消息 发送的专用同步信号 Preamble, 所述专用 Preamble是在所述 UE第一次接 入网络时分配的;
所述小节点根据所述专用 Preamble查询是否已存储所述 UE的第一信 令无线承载 SRB 1和 /或第二信令无线承载 SRB2;
如已存储, 所述小节点在第二消息中向所述 UE 回复所述小节点与 UE 之间的 SRB 1和 /或 SRB2无需重新建立或者修改的指示信息;
接收所述 UE通过专用控制信道 DCCH发送的上行无线资源控制 RRC消 本发明实施例提供的一种无线宽带通信的方法, 包括:
UE在空闲状态时通过第一消息发送专用 Preambl e,所述专用 Preamble 是在所述 UE第一次接入网络时分配的;
如果所述 UE收到小节点在第二消息中发送的、 所述 UE的第一信令无 线承载 SRB 1和 /或第二信令无线承载 SRB2无需重新建立或者修改的指示 信息, 所述 UE通过专用控制信道 DCCH发送上行 RRC消息。
本发明实施例提供的一种无线宽带通信的小节点, 包括:
收发模块, 用于接收处于空闲状态的 UE 通过第一消息发送的专用 Preambl e, 所述专用 Preambl e是在所述 UE第一次接入网络时分配的, 以及用于在处理模块确定已经存储所述 UE的第一信令无线承载 SRB 1 和 /或第二信令无线承载 SRB2之后, 向所述 UE发送第二消息,
以及用于在发送所述第二消息后,接收所述 UE通过专用控制信道 DCCH 发送的上行无线资源控制 RRC消息;
处理模块, 用于根据所述收发模块接收的所述专用 Preamble查询是否 已存储所述 UE的 SRB 1和 /或 SRB2 ,
以及用于在确认已存储所述 UE的 SRB 1和 /或 SRB2之后, 在由所述收 发模块发送的第二消息中携带所述小节点与 UE之间的 SRB 1和 /或 SRB2无 需重新建立或者修改的指示信息。
本发明实施例提供的一种无线宽带通信的 UE , 包括:
收发模块, 用于在所述 UE处于空闲状态时, 通过第一消息发送专用同 步信号 Preamb l e , 所述专用 Preamb l e是在所述 UE第一次接入网络时分配 的, 接收小节点在第二消息中发送的指示信息, 并基于处理模块的通知, 通过专用控制信道 DCCH发送上行 RRC消息;
处理模块, 用于在确定所述收发模块收到的所述指示信息为所述 UE的 第一信令无线承载 SRB 1和 /或第二信令无线承载 SRB2无需重新建立或者 修改的指示信息时, 通知所述收发模块通过所述 DCCH发送上行 RRC消息。
与现有技术相比, 在本发明实施例所提供的方法、 装置和系统中, 小 节点通过判断 UE发送的 Preamb l e , 获知 UE是否采用默认的或者存贮的第 一信令无线承载 SRB 1和 /或第二信令无线承载 SRB2 , 如果判断为继续采用 默认或者上次的配置, 则直接在随机接入响应消息中回复无需重新建立或 者修改 SRB 1和 /或 SRB2 , 从而节省了无限资源控制 RRC信令流程, 达到降 低成本, 分担宏基站数据流量的效果, 从而提高移动宽带通信的带宽、 容 量。 附图简要说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附 图。
图 1为本发明实施例一种无线宽带通信的方法的流程图; 图 2为本发明实施例网络拓朴结构图;
图 3为本发明实施例另一网络拓朴结构图;
图 4为本发明实施例协议栈结构图;
图 5为本发明实施例另一协议栈结构图;
图 6为本发明实施例另一协议栈结构图;
图 7为本发明实施例另一协议栈结构图;
图 8为本发明实施例一种无线宽带通信的方法的信令交互图; 图 9为本发明实施例一种无线宽带通信的方法的信令交互图; 图 1 0为本发明实施例另一种无线宽带通信的方法的流程图;
图 1 1为本发明实施例另一网络拓朴结构图;
图 12为本发明实施例另一网络拓朴结构图;
图 1 3为本发明实施例另一协议栈结构图;
图 14为本发明实施例另一协议栈结构图;
图 15为本发明实施例另一协议栈结构图;
图 16为本发明实施例另一协议栈结构图;
图 17为本发明实施例另一种无线宽带通信的方法的信令交互图;
图 18为本发明实施例一种无线宽带通信的小节点的结构图;
图 19为本发明实施例另一种无线宽带通信的小节点的结构图; 图 20为本发明实施例一种无线宽带通信的宏基站的结构图;
图 21为本发明实施例一种 UE的结构图;
图 22为本发明实施例另一种 UE的结构图;
图 23为本发明实施例一种无线宽带通信的系统的结构图;
图 24为本发明实施例另一种无线宽带通信的系统的结构图;
图 25为本发明实施例另一种无线宽带通信的方法的流程图。 实施本发明的方式
图 1为本发明实施例一种无线宽带通信的方法的流程图,本实施例包括: 步骤 101 , 小节点通过宏基站与 UE建立无线资源控制 RRC连接; 步骤 102 , 所述小节点接收所述宏基站通过有线或无线接口发送的配置 消息, 并按照所述配置消息建立所述小节点与所述 UE之间的数据面连接; 步骤 103 , 所述小节点与所述 UE在所述无线连接上建立数据承载。
本发明实施例的执行主体为小节点, 小节点可以为: 小基站 (P i C0 ), 室内基站(Femto ), 低移动性基站(Low Mob i l i ty, LoMo ), 其他本地无线 接入点 AP, 或者带有设备到设备 ( D2D )功能的 UE。 本实施例以小节点为 LoMo为例。
宏基站主要用于实现该 UE的控制面功能,包括该 UE的移动性管理功能。 LoMo主要用于承载室内低移动性数据业务, 实现用户面功能。 具体而言, 该空中接口的用户面数据传送和控制面数据传送采用不同路径的分离传送 方式, 即, LoMo到 UE的链路只负责用户面数据的传输, LoMo到 UE的控制 面信令由宏基站到 UE的链路进行建立。
如图 2所示,宏基站与 UE通过空中接口直接连接,无需经过 LoMo , LoMo 通过宏基站与 UE之间的这一接口建立 RRC连接。 宏基站与 LoMo通过有线 或者无线接口相连, 其中有线接口可以包括: 基站和移动性管理实体 E 之间的 S1接口, 和 /或基站与基站之间的 X2接口, 和 /或通用公共无线接 口 CPRI , 和 /或无线网络控制器与基站之间的 lub接口, LoMo通过这一接 口接收所述宏基站通过有线或无线接口发送的配置消息; 其中无线接口包 括: 基站与 UE之间的 Uu接口, 和 /或基站传输的微波接口。 LoMo与 UE之 间的数据承载由上述宏基站与 UE的接口进行配置。
LoMo通过所述数据承载接收所述 UE的用户面数据之后, 可以通过图 1 中的宏基站与 LoMo之间的有线或者无线接口发送给宏基站, 以使所述宏基 站将所述 UE的用户面数据转发给核心网网元; 或者, 还可以通过图 3中的 核心网网元与 LoMo之间的接口将所述 UE的用户面数据直接发送给核心网 网元, 图 3中的核心网网元为月良务网关 S-GW。 若 LoMo直接和核心网网元进行数据传输, 则 LoMo需要将自身的地址告 知移动管理实体 MME , MME告知核心网网元, MME再将核心网网元的地址告 知宏基站, 由宏基站转发给 LoMo。上述地址可以包括: 传输网络层地址 TNL addres s , 通用无线分组业务隧道协议-隧道节点标识 GTP-TE I D和 /或互联 网协议 IP地址。
LoMo与 UE之间的空中接口协议栈可以仅包括:分组数据汇聚协议 PDCP , 无线链接控制 RLC层协议, 媒体访问控制 MAC层协议, 和层一 L1协议; 和 /或不包括: 无线资源控制 RRC层协议。 即控制面上, LoMo和 UE的空口协 议栈可以采用筒化的协议栈架构, 例如没有 RRC协议实体。 如图 4所示。 用户面上, LoMo和 UE可以采用原来的用户面协议栈 PDCP/RLC/MAC , 只是 从功能上裁剪。 如图 5所示。
LoMo与 UE之间的控制面协议栈还可以将 PDCP、 RLC , MAC合并为一新层 实体, 如图 6所示。 LoMo与 UE之间的用户面协议栈还可以将 PDCP、 RLC , MAC合并为一新层实体, 如图 7所示。
当小节点为带有 D2D功能的 UE时, 在步骤 1 01之前还可以包括以下步 骤: 步骤 1 04 , 当小节点在 UE附近时, UE向宏基站发起 RRC连接以建立业 务。 宏基站判断所述小节点存储有 UE请求的数据。 即当宏基站确定 UE请 求的数据, 在附近的小节点就有时, 直接让该小节点传输给 UE。
上述配置消息还可以包括: 静态或半静态配置资源的分配信息; 在所述 静态或半静态配置资源上进行随机接入的资源分配信息, 或进行随机接入 和数据调度的资源分配信息。 如果所述配置消息仅包括所述进行随机接入 的资源分配信息, 则所述小节点与所述 UE在所述数据面连接上建立数据承 载之后进一步包括: 所述小节点通过建立的数据承载, 向所述 UE发送在所 述静态或半静态配置资源上进行随机接入的资源分配信息。 如果所述配置 消息包括所述随机接入和数据调度的资源分配的静态半静态信息, 所述小 节点与所述 UE在所述数据面连接上建立数据承载之后进一步包括: 所述小 节点通过建立的数据承载向所述 UE发送在所述静态或半静态配置资源上配 置资源上进行随机接入和数据调度的资源分配信息。 如果按照所述资源分 配信息进行随机接入, 或随机接入和数据调度时发生拥塞, 则进一步包括: 所述小节点向宏基站重新申请静态或半静态的配置资源; 或者所述小节点 通知所述宏基站将所述 UE切换到所述宏基站下; 或者所述小节点将资源发 生拥塞的新接入采用动态调度方式。
下表为宏基站与 LoMo的功能比较, 其中 LoMo—列列出了 LoMo可以筒 化的功能:
宏基站与 LoMo的功能比较表
Figure imgf000008_0001
与现有技术相比, 在本发明实施例所提供的方法中, 小节点可以通过宏 基站建立与 UE的无线资源控制 RRC连接, 再由宏基站对小节点进行配置, 从而节省了与 UE建立 RRC连接的流程, 降低了成本; 然后小节点与 UE建 立数据承载, 分担了宏基站的数据流量, 从而提高移动宽带通信的带宽、 谷里。 图 8为本发明实施例一种无线宽带通信的方法的信令交互图, 本实施例 包括:
步骤 801 : UE不直接接入 LoMo, UE发起业务时首先同宏基站建立 RRC 连接, 进行正常的鉴权加密。
步骤 802:宏基站对所述 UE进行 RRC重配以建立相应的第二信令无线承 载 SRB2,数据无线承载 DRB,测量控制配置等等, UE收到 RRC重配消息(RRC reconf i gurat ion)后进行底层配置, 包括无线资源配置, 测量配置等等。
步骤 803: 宏基站在发送 RRC重配消息(RRC reconf igurat ion)的同时, 需要通过一个新定义的接口 (s imple IF ) 完成对 LoMo 的底层用户面协议 栈(包括 PDCP, RLC, MAC )或者新定义的用户面实体(new MAC )进行配置。 该接口 (s imple IF)传递的配置消息包括:
无线资源配置 (逻辑信道配置, 传输信道配置, 物理信道配置) 测量配置等等。
特别地, 由于室内覆盖场景下, UE数比较少, 无线资源配置可以是静态 或者半静态的 RACH 资源和 /或静态或半静态的物理传输资源。 静态或半静 态资源信息根据 AP下的常住户的资源使用情况设定
此处步骤 202和 203可以同时进行, 或依次进行。
步骤 804: UE和 LoMo分别向宏基站反馈配置响应消息。
根据该接口(s impe IF)传递的信息不同, 有以下三种选择:
选择 1: 只包括静态或者半静态的 RACH资源,后续调度的信息再由 LoMo 通过 MAC CE ( MAC层控制单元)进行通知。
选择 2: 配置消息包括 UE 随机接入和后续调度的静态或半静态资源信 息, 如果资源分配发生拥塞, 则 LoMo向宏基站重新申请半静态的资源分配 或者把 UE切换到宏基站下。 选择 3: 配置消息包括 UE随机接入和后续调度的静态半静态资源信息, 如果 UE在后续接入过程中发生资源拥塞, 资源发生拥塞后的接入采用动态 调度方式。
步骤 805 : UE和 LoMo建立用户面 7 载。
本实施例与图 1实施例的关系在于, 在本实施例中, 小节点接收所述宏 基站通过有线或无线接口发送的配置消息, 并按照所述配置消息进行配置 包括: 所述小节点接收所述宏基站通过有线或无线接口发送的用户面协议 配置信息, 所述小节点配置用于和所述 UE建立数据面连接的无线资源和测 量参数。
与现有技术相比, 在本发明实施例所提供的方法中, 小节点可以通过宏 基站建立与 UE的无线资源控制 RRC连接, 再由宏基站对小节点进行配置, 从而节省了与 UE建立 RRC连接的流程, 降低了成本; 然后小节点与 UE建 立数据承载, 分担了宏基站的数据流量, 从而提高移动宽带通信的带宽、 谷里。 图 9为本发明实施例一种无线宽带通信的方法的信令交互图, 本实施例 包括:
步骤 901 , UE首先同宏基站建立 RRC连接;
步骤 902 : 宏基站根据业务的服务质量( QoS )、 调度策略、 和 /或信道质 量等判断是否需要配置一个辅载波( SCC );
步骤 903 : 宏基站通过专用信令配置给 UE进行 SCC相关的配置; 步骤 904 : 宏基站通过新定义的接口消息配置 LoMo , LoMo接收到宏基站 的 SCC配置消息。
步骤 905 : 通过 LoMo的 MAC CE向 UE发送激活消息。
步骤 906 : UE收到激活消息之后, 进行 LoMo的随机接入, 获得新的第 二小区无线网络临时标识(C-RNT I 2 )。 步骤 907 : 下行数据在 LTE宏基站进行 IP数据分流, 语音, vedio等 QoS要求比较高的业务继续在主载波 PCC下进行调度,采用 RRC连接分配的 第一小区无线网络临时标识 C-RNTI 1 进行物理下行控制信道(PDCCH )加 扰; Qos要求比较低的业务在 SCC下提供服务, 采用在 LoMo下的随机接入 获得的 C-RNTI 2进行 pdcch加扰。
本实施例与图 1实施例的关系在于, 在本实施例中, 小节点接收所述宏 基站通过有线或无线接口发送的配置消息, 并按照所述配置消息进行配置 包括: 所述小节点接收所述宏基站通过有线或无线接口发送的 SCC 配置信 息, 所述小节点配置用于和所述 UE建立数据面连接的 SCC。
本实施例中 PCC和 SCC的关联关系永远不变, 也就是说 UE和宏基站的 链路永远是 PCC , UE和 LoMo的链路永远是 SCC。
与现有技术相比, 在本发明实施例所提供的方法中, 小节点可以通过宏 基站建立与 UE的无线资源控制 RRC连接, 再由宏基站对小节点进行配置, 从而节省了与 UE建立 RRC连接的流程, 降低了成本; 然后小节点与 UE建 立数据承载, 分担了宏基站的数据流量, 从而提高移动宽带通信的带宽、 谷里。 图 10 为本发明实施例另一种无线宽带通信的方法的流程图, 本实施例 包括:
步骤 1001 , 小节点接收处于空闲状态的用户设备 UE通过第一消息发送 的专用同步信号 Preamb l e , 所述专用 Preamb l e是在所述 UE第一次接入网 络时分配的;
步骤 1002 , 所述小节点根据所述专用 Preamb l e查询是否已存储所述 UE 的第一信令无线承载 SRB 1和 /或第二信令无线承载 SRB2;
步骤 1003 , 如已存储, 所述小节点在第二消息中向所述 UE回复所述小 节点与 UE之间的 SRB 1和 /或 SRB2无需重新建立或者修改的指示信息; 步骤 1004 ,接收所述 UE通过专用控制信道 DCCH发送的上行无线资源控 制 RRC消息。
本发明实施例的执行主体为小节点, 小节点可以为: 小基站 (P i co ), 室内基站 ( Femto ) , 或其他本地无线接入点 AP, 低移动性基站 (Low Mob i l i ty, LoMo )。 本实施例以小节点为 LoMo为例。
本发明实施例中的 LoMo可以处于宏基站的盲区中。 UE可以单独驻留在 LoMo上。
如图 11所示, 宏基站与 LoMo通过有线或者无线接口相连, 其中有线接 口可以包括: 基站和移动性管理实体匪 E之间的 S1接口, 和 /或基站与基 站之间的 X2接口, 和 /或通用公共无线接口 CPRI , 和 /或无线网络控制器与 基站之间的 1 ub接口, LoMo通过这一接口接收所述宏基站通过有线或无线 接口发送的配置消息; 其中无线接口包括: 基站与 UE之间的 Uu接口, 和 / 或基站传输的微波接口。 LoMo与 UE之间也通过空中接口连接, 且无需通过 宏基站, 这一接口承载了 UE与 LoMo之间的信令和数据承载。
LoMo通过所述数据承载接收所述 UE的用户面数据之后, 可以通过图 11 中的宏基站与 LoMo之间的有线或者无线接口发送给宏基站, 以使所述宏基 站将所述 UE的用户面数据转发给核心网网元; 或者, 还可以通过图 12 中 的核心网网元与 LoMo之间的接口将所述 UE的用户面数据直接发送给核心 网网元, 图 12中的核心网网元为月良务网关 S-GW。
若 LoMo直接和核心网网元进行数据传输, 则 LoMo需要将自身的地址告 知移动管理实体 MME , MME告知核心网网元, MME再将核心网网元的地址告 知宏基站, 由宏基站转发给 LoMo。上述地址可以包括: TNL地址, GTP-TEI D, 和 /或互联网协议 IP地址。
LoMo与 UE之间的空中接口协议栈可以仅包括: 控制面上, LoMo和 UE 的空口协议栈可以采用筒化的协议栈架构, 例如筒化 RRC协议实体, 如图 1 3所示。 功能上采用如图 10所述的筒化 RRC过程。 用户面上, LoMo和 UE 可以采用原来的用户面协议栈 PDCP/RLC/MAC, 只是从功能上裁剪。 协议栈 如图 14所示, 功能筒化部分如表一所示。
LoMo与 UE之间的控制面协议栈还可以将 PDCP、 RLC、 MAC合并为一新层 实体, 如图 15所示。 LoMo与 UE之间的用户面协议栈还可以将 PDCP、 RLC、 MAC合并为一新层实体, 如图 16所示。
上述网络配置包括以下至少一项: 逻辑信道配置; 信令无线承载 SRB配 置; MAC层配置; 半静态调度配置; 物理信道配置; RRC消息的定时器参数。
本发明实施例所述的方法, 所述小节点接收处于空闲状态的 UE通过第 一消息发送的专用同步信号 Preamble之前还可以包括:
步骤 1007所述小节点在所述 UE第一次通过所述小节点接入网络时, 向 UE发送网络分配的专用 Preamble, SRB, 逻辑信道资源配置、 传输信道资 源配置和物理信道资源配置;
步骤 1008存储发送的所述专用 Preamble, SRB, 逻辑信道资源配置、 传 输信道资源配置和物理信道资源配置。
本发明实施例所述的方法, 还可以包括:
步骤 1009如未存储所述 UE的 SRB 1和 /或 SRB2, 所述小节点在第二消 息中向所述 UE回复所述小节点与 UE之间的第一信令无线承载 SRB 1和 /或 第二信令无线承载 SRB2需要重新建立或者修改的指示信息。
若需要执行小节点和小节点间的, 或小节点向宏基站方向的切换, 或宏 基站向小节点方向的切换, 上述通知所述 UE通过所述小节点接入网络之后 还包括:
步骤 1004, 所述小节点接收宏基站发送的测量控制信息, 并转发至所述
UE;
步骤 1005, 所接收所述 UE反馈的测量报告, 并转发至所述宏基站; 步骤 1006, 所若所述宏基站判决需要进行切换, 则接收所述宏基站发送 的切换通知。 本发明实施例所提供的方法, 小节点通过判断 UE发送的 Preamble, 获 知 UE是否需要重新建立或修改 SRB 1和 /或 SRB2, 如果判断为不需要, 则 直接回复无需重新建立或者 ^ί'爹改 SRB 1和 /或 SRB2, 从而节省了建立 SRB 1 和 /或 SRB2的流程, 降低了成本, 然后 UE通过所述小节点接入网络, 分担 了宏基站的数据流量, 从而提高移动宽带通信的带宽、 容量。 图 17 为本发明实施例另一种无线宽带通信的方法的信令交互图, 本实 施例包括:
步骤 1701: UE第一次通过 LoMo接入注册网络的时候, 接收并存贮网络 分配的专用 Preamble;
步骤 1702: 处于空闲状态的 UE 再次接入 LoMo 时, 发送上述专用 Preamble到 LoMo;
步骤 1703: LoMo根据专用 Preamble查询是否存贮有该 UE对应的 SRB 1 和 /或 SRB2;
步骤 1704: 如果存储有该 UE对应的 SRB 1和 /或 SRB2, 则 LoMo向 UE 回复 SRB 1和 /或 SRB2无需重新建立或者修改的指示信息; 如果需要重新 建立, 则 LoMo向 UE回复 SRB 1和 /或 SRB2需要重新建立或者^ fi爹改的指示 信息。
步骤 1705: UE判断随机接入是否需要重新建立 SRB 1和 /或 SRB2;
步骤 1706: 如果未存储, UE通过一个上行 RRC消息接入网络, 并通知 网络连接建立完成, 其中携带连接请求原因, 驻留的 PLMN网络等等。 如果 需要, UE则重新发起竟争方式的随机接入。
考虑到 UE的低移动性和室内覆盖的场景, 所以 UE状态以及网络状态变 化可能都比较小, 所以对于很多配置都可以采用默认配置, 包括: 逻辑信 道的配置(传输模式, 逻辑信道优先级等等), SRB的配置(逻辑信道号, RLC的配置参数, 逻辑信道组, 逻辑信道优先级以及优先比特速率等等), MAC层的配置(是否支持 TTI绑定 TTI bundl ing , HARQ最大重传次数, 緩 沖区报告 BSR, 功率余量报告 PHR, 非连续接收 DRX的配置), 半静态调度 配置, 物理信道配置, 一些 RRC消息的定时器参数。
初始 UE进入 LoMo获取到配置之后, UE和 LoMo存贮这些配置供下次使 用。下次接入的时候由于 UE的状态以及网络的状态变化都 ^艮小,所以在 RRC 连接建立流程可以大大筒化。
空闲状态用户接入 LoMo , 发起专用的随机接入, LoMo根据专用 P r eamb 1 e 码就可以识别 UE的身份;
LoMo根据 UE的身份回随机接入响应消息 (random acces s response) , 在 该消息里用比特表示 SRB1和 /或 SRB2配置是否发生变化, UE根据该比特确 定是否可以用默认的配置进行该 UE的专用资源配置;
如果配置相同, 则说明 UE不需要重新建立 SRB 1和 /或 SRB2 , 在随机接 入完成后, UE可以直接发送上行的 RRC消息, 而不需重新进行 RRC连接。 这个上行的 RRC消息可以是新消息也可以是复用现在的 RRC建立完成( RRC connect ion complete ) 消息或者 RRC建立请求 ( RRC connect ion reques t ) 消息, 包含 UE ID,建立原因,选择的运营商网络 PLMN和专用 NAS消息等, 修改流程如下图所示。
如果发生切换, 无论是以下哪种切换类型, 切换判决和接纳控制都在宏 基站上, 如图 11和图 12所示:
LoMo切向宏基站;
宏基站切向 LoMo;
从 LoMo切向另夕卜一个 LoMo;
UE从 LTE LoMo切换到 LTE宏基站的过程, 首先由 LTE宏基站发送新 接口包含的测量控制 ( New IF conta ined Measurement Cont ro l ) 消息至 LTE LoMo , 然后 LTE LoMo发送测量控制 (Measurement Cont ro l ) 消息控 制对应的 UE进行测量并发送测量报告, LTE LoMo在收到对应的测量报告之 后,会发送新接口包含的测量报告( New IF message contained Measurement report )至 LTE宏基站, 由 LTE宏基站进行切换判决, 如果允许该 UE接 入, 贝' J会发送新接口包含切换命令 ( New IF message contained Handover Command )至 LTE LoMo, 由 LTE LoMo发送切换命令 ( Handover Command ) 至对应的 UE, UE切换至对应的 LTE宏基站覆盖区域, 在与 LTE宏基站建 立好连接之后, LTE宏基站通知 LoMo释放相应的资源。
UE 从 LTE 宏基站切换到 LTE LoMo 的过程, 首先由 LTE 宏基站发送 Measurement Control消息控制对应的 UE进行测量并发送测量艮告, 然后 可进一步获取对应的 LoMo的负载情况, 并进行切换的判决, 当确认需要切 换至对应的 LoMo时, 发送 Handover Command至对应的 UE以及 LoMo, UE 在发送切换确认 ( Handover Confirm) 至 LoMo, LoMo在接收到对应的消息 之后, 发送资源释放请求(Resource Release Request )至 LTE宏基站, 最后, LTE宏基站释放对应的资源。
本发明实施例所提供的方法, 小节点通过判断 UE发送的 Preamble, 获 知 UE是否需要重新建立或修改 SRB 1和 /或 SRB2, 如果判断为不需要, 则 直接回复无需重新建立或者 ^ί'爹改 SRB 1和 /或 SRB2, 从而节省了建立 SRB 1 和 /或 SRB2的流程, 降低了成本, 然后 UE通过所述小节点接入网络, 分担 了宏基站的数据流量, 从而提高移动宽带通信的带宽、 容量。 图 18 为本发明实施例一种无线宽带通信的小节点的结构图, 本实施例 包括:
第一连接建立模块 1801, 用于通过宏基站与 UE建立无线资源控制 RRC 连接;
配置消息接收模块 1802, 用于在建立 RRC连接之后,接收所述宏基站通 过有线或无线接口发送的配置消息;
第一连接与承载建立模块 1803,用于按照所述配置消息建立所述小节点 与所述 UE之间的数据面连接, 并与所述 UE在所述数据面连接上建立数据 承载。
本发明实施例所述的小节点, 其配置消息接收模块可以用于:
接收所述宏基站通过有线或无线接口发送的用户面协议配置信息, 所述 小节点配置用于和所述 UE建立数据面连接的无线资源和测量参数; 或
接收所述宏基站通过有线或无线接口发送的辅助载波 SCC配置信息, 所 述小节点激活用于和所述 UE建立数据面连接的辅助载波 SCC。
本发明实施例所述的小节点, 还可以包括:
数据传输模块 1804 , 用于通过所述数据承载传输所述 UE和核心网网元 之间的用户面数据;
其中所述 UE和核心网网元之间的用户面数据直接通过所述小节点传输; 或者
所述 UE和核心网网元之间的用户面数据通过 UE、 所述小节点、 所述宏 基站、 所述核心网网元的路径传输。
本发明实施例所述的小节点,
所述有线接口可以包括以下任意一项或几项的组合:
基站和移动性管理实体 MME之间的 S1接口,基站与基站之间的 X2接口, 通用公共无线接口 CPRI , 无线网络控制器与基站之间的 lub接口;
所述无线接口可以包括:
基站与 UE之间的 Uu接口, 和 /或基站传输的微波接口。
本发明实施例所述的小节点, 所述小节点与所述 UE之间的空中接口协 议栈,
仅包括: 分组数据汇聚协议 PDCP , 无线链接控制 RLC层协议, 媒体访问 控制 MAC层协议, 和层一 L1协议; 和 /或
不包括: 无线资源控制 RRC层协议。
本发明实施例所述的小节点, 所述配置消息接收模块还可以用于: 接收静态或半静态配置资源的分配信息;
接收在所述静态或半静态配置资源上进行随机接入的资源分配信息, 或 进行随机接入和数据调度的资源分配信息。
本发明实施例所述的小节点, 如果所述配置消息接收模块用于接收所述 进行随机接入的资源分配信息, 可以进一步包括:
分配信息发送模块 1 805 , 用于通过建立的数据承载, 向所述 UE发送在 所述静态或半静态配置资源上进行数据调度的资源分配信息。
本发明实施例所述的小节点, 分配信息发送模块可以进一步用于: 通过建立的数据承载向所述 UE发送在所述静态或半静态配置资源上进 行随机接入的资源分配信息。
本发明实施例所述的小节点, 可以进一步包括:
重新申请模块 1806 ,用于如果所述配置消息接收模块用于接收所述进行 随机接入和数据调度的资源分配信息, 且如果所述小节点按照所述资源分 配信息进行调度时发生拥塞时向宏基站重新申请静态或半静态的配置资 源; 或者
通知切换模块 1807 ,用于如果所述配置消息接收模块用于接收所述进行 随机接入和数据调度的资源分配信息, 且如果所述小节点按照所述资源分 配信息进行调度时发生拥塞时通知所述宏基站将所述 UE切换到所述宏基站 下; 或者
动态调度模块 1808 ,用于如果所述配置消息接收模块用于接收所述进行 随机接入和数据调度的资源分配信息, 且如果所述小节点按照所述资源分 配信息进行调度时发生拥塞时将资源发生拥塞的新接入采用动态调度方 式。
本发明实施例所述的小节点, 所述小节点可以包括以下任意一种: 小基站 P i co , 室内基站 Femto , 氏移动性基站 LoMo , 本地无线接入点 AP , 带有设备到设备 D2D功能的 UE。 与现有技术相比, 在本发明实施例所提供的小节点, 可以通过宏基站建 立与 UE的无线资源控制 RRC连接, 再由宏基站对小节点进行配置, 从而节 省了与 UE建立 RRC连接的流程, 降低了成本; 然后小节点与 UE建立数据 承载, 分担了宏基站的数据流量, 从而提高移动宽带通信的带宽、 容量。 图 19 为本发明实施例另一种无线宽带通信的小节点的结构图, 本实施 例包括:
收发模块 1901 , 用于接收处于空闲状态的 UE通过第一消息发送的专用 Preamb l e , 所述专用 Preamb l e是在所述 UE第一次接入网络时分配的, 以及用于在处理模块确定已经存储所述 UE 的第一信令无线承载 SRB 1 和 /或第二信令无线承载 SRB2之后, 向所述 UE发送第二消息,
以及用于在发送所述第二消息后, 接收所述 UE通过专用控制信道 DCCH 发送的上行无线资源控制 RRC消息;
处理模块 1902 , 用于根据所述收发模块接收的所述专用 Preamb l e查询 是否已存储所述 UE的 SRB 1和 /或 SRB2 ,
以及用于在确认已存储所述 UE的 SRB 1和 /或 SRB2之后, 在由所述收 发模块发送的第二消息中携带所述小节点与 UE之间的 SRB 1和 /或 SRB2无 需重新建立或者修改的指示信息。
本发明实施例所述的小节点:
所述收发模块, 还可以用于在接收所述 RRC消息之后, 接收所述 UE的 用户面数据,
以及将所述 UE 的用户面数据发送给所述宏基站, 以使所述宏基站将所 述 UE的用户面数据转发给核心网网元, 或者用于将所述 UE的用户面数据 发送给核心网网元。
本发明实施例提供的小节点:
所述收发模块, 还可以用于在所述 UE第一次通过所述小节点接入网络 时, 向 UE发送网络分配的专用 Preamble, SRB、 逻辑信道资源配置、 传输 信道资源配置和物理信道资源配置;
所述小节点还包括: 映射表存储模块, 用于存储所述收发模块发送的所 述专用 Preamble, SRB、 逻辑信道资源配置、 传输信道资源配置和物理信道 资源配置。
本发明实施例所述的小节点, 所述处理模块还可以用于:
如未存储所述 UE的 SRB 1和 /或 SRB2, 在由所述收发模块发送的所述第 二消息中携带所述小节点与 UE之间的 SRB 1和 /或 SRB2需要重新建立或者 修改的指示信息。
本发明实施例所述的小节点, 所述收发模块, 还可以用于接收宏基站发 送的测量控制信息, 并转发至所述 UE; 接收所述 UE反馈的测量报告, 并转 发至所述宏基站; 以及接收所述宏基站确定需要进行切换后发送的切换通 知。
本发明实施例所述的小节点, 可以包括以下任意一种:
小基站 Pico, 室内基站 Femto, 氏移动性基站 LoMo, 本地无线接入点
AP。
本发明实施例所提供的小节点通过判断 UE发送的 Preamble,获知 UE是 否需要重新建立或修改 SRB 1和 /或 SRB2, 如果判断为不需要, 则直接回复 无需重新建立或者爹改 SRB 1和 /或 SRB2,从而节省了建立 SRB 1和 /或 SRB2 的流程, 降低了成本, 然后 UE通过所述小节点接入网络, 分担了宏基站的 数据流量, 从而提高移动宽带通信的带宽、 容量。 图 20 为本发明实施例一种无线宽带通信的宏基站的结构图, 本实施例 包括:
第二连接建立模块 2001,用于建立与 UE之间的无线资源控制 RRC连接; 配置消息发送模块 2002, 用于在建立 RRC连接之后, 通过无线接口向 UE发送 RRC重配消息, 并通过有线或无线接口向小节点发送配置消息, 以 使所述小节点与所述 UE建立数据面连接。
本发明实施例所述的宏基站, 所述配置消息发送模块可以用于: 通过有线或无线接口发送用户面协议配置信息; 或
通过有线或无线接口发送辅助载波 SCC配置信息。
本发明实施例所述的宏基站,
所述有线接口可以包括以下任意一项或几项的组合:
基站和移动性管理实体 MME之间的 S1接口,基站与基站之间的 X2接口, 通用公共无线接口 CPRI , 无线网络控制器与基站之间的 lub接口;
所述无线接口可以包括:
基站与 UE之间的 Uu接口, 和 /或基站传输的微波接口。
本发明实施例所述的宏基站, 所述配置消息发送模块还可以用于: 发送静态或半静态配置资源的分配信息;
发送在所述静态或半静态配置资源上进行随机接入的资源分配信息, 或 进行随机接入和数据调度的资源分配信息。
本发明实施例所述的宏基站, 可以进一步包括:
申请接收模块 2003 , 用于接收小节点的静态或半静态的配置资源的申 请; 或者
切换通知接收模块 2004 , 用于接收将所述 UE切换到所述宏基站下的通 知。
与现有技术相比, 在本发明实施例所提供的宏基站, 可以建立 UE与小 基站之间的 RRC连接, 再对小节点进行配置, 使得小基站和 UE建立数据承 载, 小基站分担了宏基站的数据流量, 从而提高移动宽带通信的带宽、 容 量, 并且系统总体成本较低。 图 21为本发明实施例一种 UE的结构图, 本实施例包括: 第三连接建立模块 21 01 ,用于建立与宏基站之间的无线资源控制 RRC连 接;
重配消息接收模块 21 02 , 用于在建立 RRC连接之后, 接收宏基站向 UE 发送的 RRC重配消息;
第二连接与承载建立模块 21 03 ,用于按照所述 RRC重配消息与所述小节 点建立数据面连接, 并与所述小节点在所述数据面连接上建立数据承载。
本发明实施例所述的 UE , 其特征在于, 所述小节点与所述 UE之间的空 中接口协议栈,
仅包括: 分组数据汇聚协议 PDCP , 无线链接控制 RLC层协议, 媒体访问 控制 MAC层协议, 和层一 L1协议; 和 /或
不包括: 无线资源控制 RRC层协议。
与现有技术相比, 在本发明实施例所提供的 UE , 可以通过宏基站建立与 与小基站之间的 RRC连接, 再通过 RRC重配, 与小基站建立数据面连接, 小基站分担了宏基站的数据流量, 从而提高移动宽带通信的带宽、 容量, 并且系统总体成本较低。 图 22为本发明实施例另一种 UE的结构图, 本实施例包括:
收发模块 2201 , 用于在所述 UE处于空闲状态时, 通过第一消息发送专 用同步信号 Preamb l e , 所述专用 Preamb l e是在所述 UE第一次接入网络时 分配的, 接收小节点在第二消息中发送的指示信息, 并基于处理模块的通 知, 通过专用控制信道 DCCH发送上行 RRC消息;
处理模块 2202 , 用于在确定所述收发模块收到的所述指示信息为所述 UE的第一信令无线承载 SRB 1和 /或第二信令无线承载 SRB2无需重新建立 或者修改的指示信息时, 通知所述收发模块通过所述 DCCH发送上行 RRC消 本发明实施例所述的 UE可以用于执行如图 25对应实施例所述的方法。 本发明实施例提供的 UE:
所述收发模块, 还可以用于在所述 UE第一次通过所述小节点接入网络 时, 接收所述小节点发送的、 网络分配的专用 Preamb l e , SRB、 逻辑信道资 源配置、 传输信道资源配置和物理信道资源配置;
所述 UE 还可以包括: 映射表存储模块, 用于存储所述收发模块接收的 所述专用 Preamb l e , SRB、 逻辑信道资源配置、 传输信道资源配置和物理信 道资源配置。
所述处理模块还可以用于:
在确定所述收发模块收到的所述指示信息为所述 SRB 1和 /或 SRB2需要 重新建立或者修改的指示信息时, 通过竟争方式随机接入网络。
为执行小节点和小节点间的切换、 小节点向宏基站方向的切换、 或宏基 站向小节点方向的切换,
所述收发模块, 还可以用于接收所述小节点转发的测量控制信息, 以及 根据测量反馈模块的通知反馈测量报告;
所述 UE还可以包括: 测量反馈模块, 用于按照所述收发模块接收的测 量控制信息进行测量, 以及通知所述收发模块反馈测量报告。
本发明实施例所提供的 UE通过发送 Preamb l e ,使得小节点获知 UE是否 需要重新建立或修改 SRB 1和 /或 SRB2 , 如果判断为不需要, 则接收无需重 新建立或者爹改 SRB 1和 /或 SRB2 , 及 UE接入网络的回复和通知, 从而节 省了建立 SRB 1和 /或 SRB2的流程, 降低了成本, 然后 UE通过所述小节点 接入网络, 分担了宏基站的数据流量, 从而提高移动宽带通信的带宽、 容 量。 图 23 为本发明实施例一种无线宽带通信的系统的结构图, 本实施例包 括:
小节点 2301 , 用于通过宏基站与 UE建立无线资源控制 RRC连接; 在建 立 RRC连接之后, 接收所述宏基站通过有线或无线接口发送的配置消息; 按照所述配置消息建立所述小节点与所述 UE之间的数据面连接, 并与所述 UE在所述数据面连接上建立数据承载;
基站 2302 , 用于建立与 UE之间的无线资源控制 RRC连接; 用于在建立 RRC连接之后, 通过无线接口向 UE发送 RRC重配消息, 并通过有线或无线 接口向小节点发送配置消息, 以使所述小节点与所述 UE建立数据面连接;
UE2303 , 用于建立与宏基站之间的无线资源控制 RRC连接; 在建立 RRC 连接之后, 接收宏基站向 UE发送的 RRC重配消息; 按照所述 RRC重配消息 与所述小节点建立数据面连接, 并与所述小节点在所述数据面连接上建立 数据承载。
与现有技术相比, 在本发明实施例所提供的系统中, 小节点可以通过宏 基站建立与 UE的无线资源控制 RRC连接, 再由宏基站对小节点进行配置, 从而节省了与 UE建立 RRC连接的流程, 降低了成本; 然后小节点与 UE建 立数据承载, 分担了宏基站的数据流量, 从而提高移动宽带通信的带宽、 谷里。 图 24 为本发明实施例另一种无线宽带通信的系统的结构图, 本实施例 包括:
小节点 2401 , 用于接收处于空闲状态的 UE通过第一消息发送的同步信 号 Preamb l e , 所述小节点确定所述 Preamb l e为专用 Preamb l e; 在第二消 息中回复所述第一信令无线承载 SRB 1和 /或第二信令无线承载 SRB2无需 重新建立或者修改的指示信息; 通知所述 UE通过所述小节点接入网络;
UE2402 , 用于空闲状态时通过第一消息发送同步信号 Preamb l e; 接收在 第二消息中的所述第一信令无线承载 SRB 1 和 /或第二信令无线承载 SRB2 无需重新建立或者修改的指示信息; 接收所述 UE通过所述小节点接入网络 的通知。 本发明实施例所提供的系统, 小节点通过判断 UE发送的 Preamble, 获 知 UE是否需要重新建立或修改 SRB 1和 /或 SRB2, 如果判断为不需要, 则 直接回复无需重新建立或者 ^ί'爹改 SRB 1和 /或 SRB2, 从而节省了建立 SRB 1 和 /或 SRB2的流程, 降低了成本, 然后 UE通过所述小节点接入网络, 分担 了宏基站的数据流量, 从而提高移动宽带通信的带宽、 容量。 图 25 为本发明实施例另一种无线宽带通信的方法的流程图, 本实施例 包括:
步骤 2501, UE在空闲状态时通过第一消息发送专用 Preamble, 所述专 用 Preamble是在所述 UE第一次接入网络时分配的;
步骤 2502, 如果所述 UE收到小节点在第二消息中发送的、所述 UE的第 一信令无线承载 SRB 1和 /或第二信令无线承载 SRB2无需重新建立或者修 改的指示信息, 所述 UE通过专用控制信道 DCCH发送上行 RRC消息。
本发明实施例提供的方法还可以包括:
步骤 2503, 所述 UE在第一次通过所述小节点接入网络时, 接收小节点 发送的网络分配的专用 Preamble, SRB, 逻辑信道资源配置、 传输信道资源 配置和物理信道资源配置;
步骤 2504, 存储接收的所述专用 Preamble, SRB, 逻辑信道资源配置、 传输信道资源配置和物理信道资源配置。
本发明实施例提供的方法还可以包括:
步骤 2505, 如果所述 UE收到小节点在第二消息中发送的所述第一信令 无线承载 SRB 1和 /或第二信令无线承载 SRB2需要重新建立或者修改的指 示信息, 所述 UE则通过竟争方式随机接入网络。
若需要执行小节点和小节点间的切换、 小节点向宏基站方向的切换、 或 宏基站向小节点方向的切换, 还可以包括:
步骤 2506, 所述 UE接收所述小节点转发的测量控制信息; 步骤 2507 ,所述 UE按照所述测量控制信息进行测量并反馈的测量报告。 本发明实施例所提供的方法中, UE通过发送 Preamb l e , 使得小节点获 知 UE是否需要重新建立或修改 SRB 1和 /或 SRB2 , 如果判断为不需要, 则 接收无需重新建立或者修改 SRB 1和 /或 SRB2 , 及 UE接入网络的回复和通 知, 从而节省了建立 SRB 1和 /或 SRB2的流程, 降低了成本, 然后 UE通过 所述小节点接入网络, 分担了宏基站的数据流量, 从而提高移动宽带通信 的带宽、 容量。 通过以上的实施方式的描述, 所属领域的技术人员可以清楚地了解到本 发明可借助软件加必需的通用硬件的方式来实现, 当然也可以通过硬件, 但很多情况下前者是更佳的实施方式。 基于这样的理解, 本发明的技术方 来, 该计算机软件产品存储在可读取的存储介质中, 如计算机的软盘, 硬 盘或光盘等, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例上述的方法。
以上上述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻 易想到的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明 的保护范围应上述以权利要求的保护范围为准。

Claims

权利要求
1. 一种无线宽带通信的方法, 其特征在于, 包括:
小节点接收处于空闲状态的用户设备 UE通过第一消息发送的专用同步 信号 Preamb l e ,所述专用 Preamb l e是在所述 UE第一次接入网络时分配的; 所述小节点根据所述专用 Preamb l e查询是否已存储所述 UE的第一信 令无线承载 SRB 1和 /或第二信令无线承载 SRB2 ;
如已存储, 所述小节点在第二消息中向所述 UE 回复所述小节点与 UE 之间的 SRB 1和 /或 SRB2无需重新建立或者修改的指示信息;
接收所述 UE通过专用控制信道 DCCH发送的上行无线资源控制 RRC消 息。
2. 如权利要求 1所述的方法, 其特征在于, 所述接收所述 UE通过专 用控制信道 DCCH发送的上行无线资源控制 RRC消息之后还包括:
所述小节点接收所述 UE的用户面数据;
所述小节点将所述 UE的用户面数据发送给所述宏基站, 以使所述宏基 站将所述 UE的用户面数据转发给核心网网元, 或者
所述小节点将所述 UE的用户面数据发送给核心网网元。
3. 如权利要求 1或 2所述的方法, 其特征在于, 所述小节点接收处于 空闲状态的 UE通过第一消息发送的专用同步信号 Preamb l e之前还包括: 所述小节点在所述 UE第一次通过所述小节点接入网络时, 向 UE发送 网络分配的专用 Preamb l e , SRB, 逻辑信道资源配置、 传输信道资源配置和 物理信道资源配置;
存储发送的所述专用 Preamb l e SRB, 逻辑信道资源配置、 传输信道资 源配置和物理信道资源配置。
4. 如权利要求 1或 2所述的方法, 其特征在于, 还包括:
如未存储所述 UE的 SRB 1和 /或 SRB2 , 所述小节点在第二消息中向所 述 UE回复所述小节点与 UE之间的第一信令无线承载 SRB 1和 /或第二信令 无线承载 SRB2需要重新建立或者修改的指示信息。
5. 如权利要求 1或 2所述的方法, 其特征在于, 若需要执行小节点和 小节点间的切换、 小节点向宏基站方向的切换、 或宏基站向小节点方向的 切换, 还包括:
所述小节点接收宏基站发送的测量控制信息, 并转发至所述 UE;
接收所述 UE反馈的测量报告, 并转发至所述宏基站;
若所述宏基站判决需要进行切换, 则接收所述宏基站发送的切换通知。
6. 如权利要求 1或 2所述的方法, 其特征在于, 所述小节点包括以下 任意一种:
小基站 P i co , 室内基站 Femto , 氏移动性基站 LoMo , 本地无线接入点 AP。
7. 一种无线宽带通信的方法, 其特征在于, 包括:
UE在空闲状态时通过第一消息发送专用 Preamb l e ,所述专用 Preamb l e 是在所述 UE第一次接入网络时分配的;
所述 UE收到小节点在第二消息中发送的、 所述 UE的第一信令无线承 载 SRB 1和 /或第二信令无线承载 SRB2无需重新建立或者修改的指示信息, 所述 UE通过专用控制信道 DCCH发送上行 RRC消息。
8. 如权利要求 7所述的方法, 其特征在于, 还包括:
所述 UE在第一次通过所述小节点接入网络时, 接收小节点发送的网络 分配的专用 Preamb l e , SRB, 逻辑信道资源配置、 传输信道资源配置和物理 信道资源配置;
存储接收的所述专用 Preamb l e , SRB, 逻辑信道资源配置、 传输信道资 源配置和物理信道资源配置。
9. 如权利要求 7或 8所述的方法, 其特征在于, 还包括:
所述 UE收到小节点在第二消息中发送的所述第一信令无线承载 SRB 1 和 /或第二信令无线承载 SRB2需要重新建立或者修改的指示信息, 所述 UE 则通过竟争方式随机接入网络。
1 0. 如权利要求 7或 8所述的方法, 其特征在于, 若需要执行小节点 和小节点间的切换、 小节点向宏基站方向的切换、 或宏基站向小节点方向 的切换, 还包括:
所述 UE接收所述小节点转发的测量控制信息;
所述 UE按照所述测量控制信息进行测量并反馈的测量报告。
1 1. 一种无线宽带通信的小节点, 其特征在于, 包括:
收发模块, 用于接收处于空闲状态的 UE 通过第一消息发送的专用 Preamb l e , 所述专用 Preamb l e是在所述 UE第一次接入网络时分配的, 以及用于在处理模块确定已经存储所述 UE的第一信令无线承载 SRB 1 和 /或第二信令无线承载 SRB2之后, 向所述 UE发送第二消息,
以及用于在发送所述第二消息后,接收所述 UE通过专用控制信道 DCCH 发送的上行无线资源控制 RRC消息;
处理模块, 用于根据所述收发模块接收的所述专用 Preamb l e查询是否 已存储所述 UE的 SRB 1和 /或 SRB2 ,
以及用于在确认已存储所述 UE的 SRB 1和 /或 SRB2之后, 在由所述收 发模块发送的第二消息中携带所述小节点与 UE之间的 SRB 1和 /或 SRB2无 需重新建立或者修改的指示信息。
12. 如权利要求 11所述的小节点, 其特征在于,
所述收发模块, 还用于在接收所述 RRC消息之后, 接收所述 UE的用户 面数据,
以及将所述 UE的用户面数据发送给所述宏基站, 以使所述宏基站将所 述 UE的用户面数据转发给核心网网元, 或者用于将所述 UE的用户面数据 发送给核心网网元。
1 3. 如权利要求 11或 12所述的小节点, 其特征在于,
所述收发模块, 还用于在所述 UE第一次通过所述小节点接入网络时, 向 UE发送网络分配的专用 Preamb l e , SRB, 逻辑信道资源配置、 传输信道 资源配置和物理信道资源配置;
所述小节点还包括: 映射表存储模块, 用于存储所述收发模块发送的 所述专用 Preamble, SRB、 逻辑信道资源配置、 传输信道资源配置和物理信 道资源配置。
14. 如权利要求 11或 12所述的小节点, 其特征在于, 所述处理模块 还用于:
如未存储所述 UE的 SRB 1和 /或 SRB2, 在由所述收发模块发送的所述 第二消息中携带所述小节点与 UE之间的 SRB 1和 /或 SRB2需要重新建立或 者修改的指示信息。
15. 如权利要求 11或 12所述的小节点, 其特征在于,
所述收发模块, 还用于接收宏基站发送的测量控制信息, 并转发至所 述 UE; 接收所述 UE反馈的测量报告, 并转发至所述宏基站; 以及接收所述 宏基站确定需要进行切换后发送的切换通知。
16. 如权利要求 11至 15 中任意一项所述的小节点, 其特征在于, 所 述小节点包括以下任意一种:
小基站 Pico, 室内基站 Femto, 氏移动性基站 LoMo, 本地无线接入点 AP, 低功率节点 low power node。
17. 一种无线宽带通信的 UE, 其特征在于, 包括:
收发模块, 用于在所述 UE处于空闲状态时, 通过第一消息发送专用同 步信号 Preamble, 所述专用 Preamble是在所述 UE第一次接入网络时分配 的, 接收小节点在第二消息中发送的指示信息, 并基于处理模块的通知, 通过专用控制信道 DCCH发送上行 RRC消息;
处理模块, 用于在确定所述收发模块收到的所述指示信息为所述 UE的 第一信令无线承载 SRB 1和 /或第二信令无线承载 SRB2无需重新建立或者 修改的指示信息时, 通知所述收发模块通过所述 DCCH发送上行 RRC消息。
18. 如权利要求 17所述的 UE, 其特征在于, 还包括:
所述收发模块, 还用于在所述 UE第一次通过所述小节点接入网络时, 接收所述小节点发送的、 网络分配的专用 Preamble, SRB, 逻辑信道资源配 置、 传输信道资源配置和物理信道资源配置; 所述 UE还包括: 映射表存储模块, 用于存储所述收发模块接收的所述 专用 Preamb l e , SRB、 逻辑信道资源配置、 传输信道资源配置和物理信道资 源配置。
19. 如权利要求 17或 18所述的 UE , 其特征在于, 所述处理模块还用 于:
在确定所述收发模块收到的所述指示信息为所述 SRB 1和 /或 SRB2需 要重新建立或者修改的指示信息时, 通过竟争方式随机接入网络。
20. 如权利要求 17或 18所述的 UE , 其特征在于, 为执行小节点和小 节点间的切换、 小节点向宏基站方向的切换、 或宏基站向小节点方向的切 换,
所述收发模块, 还用于接收所述小节点转发的测量控制信息, 以及根 据测量反馈模块的通知反馈测量报告;
所述 UE还包括: 测量反馈模块, 用于按照所述收发模块接收的测量控 制信息进行测量, 以及通知所述收发模块反馈测量报告。
PCT/CN2012/077123 2011-07-15 2012-06-19 一种无线宽带通信方法,装置和系统 WO2013010420A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12814681.8A EP2712253B1 (en) 2011-07-15 2012-06-19 Wireless broadband communication method, device, and system
US14/155,990 US9386572B2 (en) 2011-07-15 2014-01-15 Method, device and system for wireless broadband communications

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110199370.9 2011-07-15
CN201110199370.9A CN102883441B (zh) 2011-07-15 2011-07-15 一种无线宽带通信方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/155,990 Continuation US9386572B2 (en) 2011-07-15 2014-01-15 Method, device and system for wireless broadband communications

Publications (1)

Publication Number Publication Date
WO2013010420A1 true WO2013010420A1 (zh) 2013-01-24

Family

ID=47484530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/077123 WO2013010420A1 (zh) 2011-07-15 2012-06-19 一种无线宽带通信方法,装置和系统

Country Status (4)

Country Link
US (1) US9386572B2 (zh)
EP (1) EP2712253B1 (zh)
CN (1) CN102883441B (zh)
WO (1) WO2013010420A1 (zh)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103368930B (zh) * 2012-03-27 2017-11-28 华为技术有限公司 用于控制访问核心网的方法和用户设备
CN103945420B (zh) * 2013-01-18 2017-11-17 华为技术有限公司 小区优化方法及装置
CN104113881B (zh) * 2013-04-16 2019-09-17 中兴通讯股份有限公司 一种无线资源管理方法、宏基站及低功率节点
WO2014169431A1 (zh) 2013-04-16 2014-10-23 华为技术有限公司 小区切换方法及设备
CN110830227B (zh) * 2013-07-04 2022-08-19 韩国电子通信研究院 用于多连接性的方法
WO2015013986A1 (zh) * 2013-08-02 2015-02-05 富士通株式会社 信令无线承载的管理方法、装置和系统
US10361833B2 (en) * 2013-12-11 2019-07-23 Innovative Sonic Corporation Method and apparatus for improving device to device (D2D) communication in a wireless communication system
CN106165524B (zh) 2014-01-29 2020-01-07 交互数字专利控股公司 用于设备到设备发现或通信的资源选择
EP3111703B1 (en) * 2014-02-28 2018-10-17 Telecom Italia S.p.A. Method for power consumption optimization in mobile cellular networks
WO2015143170A1 (en) * 2014-03-19 2015-09-24 Interdigital Patent Holdings, Inc. Device-to-device synchronization
US10292191B2 (en) * 2014-03-25 2019-05-14 Futurewei Technologies, Inc. Systems and methods for control plane for D2D communications
CN105338518B (zh) 2014-07-31 2020-03-31 索尼公司 无线通信系统中的装置和方法
WO2016072711A2 (ko) * 2014-11-03 2016-05-12 엘지전자 주식회사 무선 통신 시스템에서 단말이 d2d(device-to-device) 동작을 위한 동기화 신호를 전송하는 방법 및 상기 방법을 이용하는 단말
JP6544666B2 (ja) * 2015-01-30 2019-07-17 華為技術有限公司Huawei Technologies Co.,Ltd. 通信方法、ネットワークデバイス、ユーザ機器、および通信システム
CN106332129B (zh) * 2015-06-30 2020-03-31 华为技术有限公司 无线网络功能的配置方法、无线网络节点及核心网设备
US9949142B2 (en) * 2015-09-17 2018-04-17 Verizon Patent And Licensing Inc. Small cell self-validation and provisioning without using backhaul
WO2017081360A1 (en) * 2015-11-10 2017-05-18 Nokia Solutions And Networks Oy Multi-connectivity of terminal device in cellular system
CN105376836B (zh) * 2015-11-24 2019-04-09 京信通信系统(中国)有限公司 Ue终端设备的接入控制方法及系统
CN106911366A (zh) * 2015-12-22 2017-06-30 华为技术有限公司 无线通信方法和装置
CN107135543B (zh) * 2016-02-29 2022-12-02 中兴通讯股份有限公司 无线资源管理rrm的控制方法及装置
CN117460072A (zh) 2016-03-30 2024-01-26 交互数字专利控股公司 5g灵活的rat系统中的独立的l2处理和控制架构
KR102207467B1 (ko) * 2016-05-20 2021-01-25 후아웨이 테크놀러지 컴퍼니 리미티드 패킷 도메인에서 음성 서비스를 스케줄링하는 방법 및 장치
CN107547218B (zh) * 2016-06-24 2019-01-22 中兴通讯股份有限公司 一种网元管理方法、设备、系统及控制面功能实体
CN107548161A (zh) * 2016-06-29 2018-01-05 中兴通讯股份有限公司 消息发送方法、装置、rrc实体及pdcp实体
WO2018029853A1 (ja) * 2016-08-12 2018-02-15 富士通株式会社 無線基地局、無線装置、無線制御装置、無線通信システム、通信方法および無線端末
US10405353B2 (en) * 2016-09-23 2019-09-03 Samsung Electronics Co., Ltd. Method and apparatus for random access in wireless systems
US10841829B2 (en) * 2016-09-29 2020-11-17 Nokia Technologies Oy Radio bearer switching in radio access
WO2019002073A1 (en) * 2017-06-29 2019-01-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. APPARATUS, BASE STATION, AND METHODS FOR RELIABLE WIRELESS COMMUNICATION
CN109391410B (zh) * 2017-08-10 2020-09-11 电信科学技术研究院 同步信号块传输信息的指示、确定方法、基站及终端
US10624151B2 (en) * 2017-12-17 2020-04-14 Htc Corporation Device and method of handling a signalling radio bearer configuration
CN110719629B (zh) * 2018-07-11 2021-09-03 维沃移动通信有限公司 信号处理方法和设备
CN109196794B (zh) * 2018-08-30 2021-09-07 北京小米移动软件有限公司 飞行路径的配置方法及装置、飞行方法及装置和基站
US10638475B2 (en) * 2018-09-12 2020-04-28 Verizon Patent And Licensing Inc. Systems and methods for dynamically adjusting subframes
CN110461023B (zh) * 2019-06-26 2022-01-25 中国移动通信集团海南有限公司 语音业务的小区驻留方法、装置、存储介质和主基站
EP4005325A4 (en) 2019-07-30 2023-04-26 ZTE Corporation RANDOM ACCESS MESSAGING ARCHITECTURE
US11202255B1 (en) 2020-07-31 2021-12-14 T-Mobile Usa, Inc. Cached entity profiles at network access nodes to re-authenticate network entities
US11696137B2 (en) 2020-07-31 2023-07-04 T-Mobile Usa, Inc. Detecting malicious small cells based on a connectivity schedule

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101772199A (zh) * 2008-11-24 2010-07-07 华为终端有限公司 一种d2d网络建立的方法和装置
EP2309817A1 (en) * 2009-10-12 2011-04-13 Electronics and Telecommunications Research Institute Method and System for Random Access in Small Cell of 3GPP LTE-Advanced System
US20110149728A1 (en) * 2009-12-21 2011-06-23 Electronics And Telecommunications Research Institute Method and apparatus for avoiding collision of uplink preamble using cell identifier

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101000682B1 (ko) * 2004-08-13 2010-12-10 엘지전자 주식회사 이동통신시스템에서의 rrc연결 설정방법
FI20075297A0 (fi) * 2007-04-27 2007-04-27 Nokia Siemens Networks Oy Menetelmä, radiojärjestelmä ja tukiasema
WO2009057932A2 (en) * 2007-10-29 2009-05-07 Lg Electronics Inc. Method of performing random access procedure in wireless communication system
US8396037B2 (en) * 2008-06-23 2013-03-12 Htc Corporation Method for synchronizing PDCP operations after RRC connection re-establishment in a wireless communication system and related apparatus thereof
KR101503842B1 (ko) * 2008-11-03 2015-03-18 삼성전자주식회사 이동 통신 시스템에서 불연속 수신 동작 제어 방법 및 장치
CN101848539B (zh) * 2009-03-25 2013-06-05 电信科学技术研究院 确定发起随机接入的成员载波及发起时间的方法及设备
KR101493580B1 (ko) * 2010-05-26 2015-02-13 엘지전자 주식회사 무선 통신 시스템에서 로그된 측정 보고 방법 및 장치
KR101724371B1 (ko) * 2010-05-28 2017-04-10 삼성전자주식회사 셀들이 중첩되는 무선통신 시스템에서 이동성을 지원하기 위한 장치 및 방법
US8744450B2 (en) * 2011-04-04 2014-06-03 Kyocera Corporation Mobile communication method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101772199A (zh) * 2008-11-24 2010-07-07 华为终端有限公司 一种d2d网络建立的方法和装置
EP2309817A1 (en) * 2009-10-12 2011-04-13 Electronics and Telecommunications Research Institute Method and System for Random Access in Small Cell of 3GPP LTE-Advanced System
US20110149728A1 (en) * 2009-12-21 2011-06-23 Electronics And Telecommunications Research Institute Method and apparatus for avoiding collision of uplink preamble using cell identifier

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2712253A4 *

Also Published As

Publication number Publication date
CN102883441A (zh) 2013-01-16
EP2712253A1 (en) 2014-03-26
EP2712253A4 (en) 2014-06-25
CN102883441B (zh) 2015-04-22
EP2712253B1 (en) 2017-08-16
US20140126527A1 (en) 2014-05-08
US9386572B2 (en) 2016-07-05

Similar Documents

Publication Publication Date Title
US11382001B2 (en) Wireless broadband communication method, device, and system, for establishing a user plane connection between a small cell and a user equipment
WO2013010420A1 (zh) 一种无线宽带通信方法,装置和系统
WO2018028694A1 (zh) 设备直通系统的通信方法及装置、通信系统
JP7168056B2 (ja) 無線端末、基地局、及びこれらの方法
KR102245654B1 (ko) 데이터 통신에서의 경량 ota 시그널링 메카니즘을 위한 시스템, 장치, 및 방법
US9320075B2 (en) Method, system and transmission distribution network element for indicating data-distribution
KR20200074068A (ko) Ue-ambr을 구성하는 방법
EP3461216B1 (en) Multi-connection communication method and device
WO2012107004A1 (zh) 一种基于服务质量的调度方法、设备及系统
WO2013075602A1 (zh) 实现载波聚合的方法、基站和用户设备
WO2014023173A1 (zh) 一种终端控制方法、设备及系统
WO2011150774A1 (zh) 一种多个无线接入网聚合系统及其实现方法
WO2014059663A1 (zh) 切换方法和设备
WO2014183617A1 (zh) 一种中继节点的发现方法及装置
WO2014032311A1 (zh) 回程链路的信息传输方法及系统、代理设备、接入设备
WO2013170673A1 (zh) 一种接入方法、基站、接入点和用户设备
WO2012116623A1 (zh) 一种移动通信系统和组网方法
WO2014101677A1 (zh) 一种发送rrc信令的方法、基站和系统
WO2015062287A1 (zh) 终端的本地交换方法及系统
WO2014048361A1 (zh) 一种资源配置方法及设备
US20220408317A1 (en) Handover method and communication apparatus
WO2014071881A1 (zh) 回程网络承载管理方法及设备
WO2016029409A1 (zh) 一种数据传输方法及装置
WO2023092507A1 (zh) 侧链路通信方法及装置
WO2024027260A1 (zh) 通信方法、终端、通信装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12814681

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012814681

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012814681

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE