WO2014054687A1 - 結晶質半導体の製造方法および結晶質半導体の製造装置 - Google Patents

結晶質半導体の製造方法および結晶質半導体の製造装置 Download PDF

Info

Publication number
WO2014054687A1
WO2014054687A1 PCT/JP2013/076814 JP2013076814W WO2014054687A1 WO 2014054687 A1 WO2014054687 A1 WO 2014054687A1 JP 2013076814 W JP2013076814 W JP 2013076814W WO 2014054687 A1 WO2014054687 A1 WO 2014054687A1
Authority
WO
WIPO (PCT)
Prior art keywords
peak intensity
maximum peak
intensity ratio
pulse
crystalline semiconductor
Prior art date
Application number
PCT/JP2013/076814
Other languages
English (en)
French (fr)
Inventor
石煥 鄭
純一 次田
政志 町田
Original Assignee
株式会社日本製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本製鋼所 filed Critical 株式会社日本製鋼所
Priority to CN201380052225.5A priority Critical patent/CN104704610B/zh
Priority to KR1020157008506A priority patent/KR102108025B1/ko
Priority to SG11201502614VA priority patent/SG11201502614VA/en
Publication of WO2014054687A1 publication Critical patent/WO2014054687A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation

Definitions

  • the present invention relates to a method for manufacturing a crystalline semiconductor and an apparatus for manufacturing a crystalline semiconductor, in which an amorphous semiconductor is irradiated with a pulse laser beam and crystallized to obtain a crystalline semiconductor.
  • a step of obtaining a crystalline semiconductor using laser light is included as part of a manufacturing method of a low temperature process.
  • a non-single crystal semiconductor film formed on a substrate is irradiated with a laser beam and locally heated, and the semiconductor thin film is crystallized into a polycrystal or a single crystal in the cooling process. Since the crystallized semiconductor thin film has high carrier mobility, the performance of the thin film transistor can be improved.
  • the energy density of the pulsed laser beam applied to the amorphous film is controlled to be constant.
  • Patent Document 1 proposes a laser irradiation apparatus that enables high-quality crystallization by maintaining the maximum peak height of pulsed laser light constant.
  • Patent Document 2 proposes a laser irradiation apparatus that creates a pulse waveform by controlling the operation timing of a plurality of laser beams by a method of combining and bundling a plurality of laser beams output from a laser light source.
  • laser light is oscillated by a discharge method. At that time, after the first discharge due to the high voltage, a plurality of discharges are generated due to the residual voltage, and as a result, a laser beam having a plurality of peak groups is generated.
  • a plurality of pulse laser beams output from such a pulse laser source even if the irradiated object is irradiated with the pulse laser beam with the same energy density due to the difference in peak shape, the laser beam irradiation Results may vary.
  • the conventional laser irradiation apparatus is generally configured to control the output of the laser beam with an energy monitor, and can be operated while maintaining the same energy density of the laser beam.
  • the pulse laser light source even if the energy density is kept constant, the peak shape changes over time due to a change in the gas mixture ratio. For this reason, when an amorphous semiconductor is crystallized by laser light irradiation, there is a problem that the crystallization action changes and it is difficult to obtain a high quality equivalent crystal.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a method for manufacturing a crystalline semiconductor and an apparatus for manufacturing a crystalline semiconductor, which can crystallize an amorphous semiconductor more uniformly. .
  • the first aspect of the present invention is to crystallize the amorphous semiconductor by irradiating the amorphous semiconductor with a plurality of pulsed laser beams guided along different paths.
  • a method for producing a crystalline semiconductor comprising: The plurality of pulsed laser beams have at least a first peak group and a second peak group appearing thereafter in one pulse in a temporal intensity change, and a maximum peak intensity in the first peak group Is the maximum height in one pulse, A ratio b / a between the maximum peak intensity a of the first peak group and the maximum peak intensity b of the second peak group is defined as a maximum peak intensity ratio, and the reference maximum peak intensity ratio is a reference maximum peak.
  • the maximum peak intensity ratio of the plurality of pulsed laser beams is set to be a difference of 4% or less with respect to the reference maximum peak intensity ratio.
  • the method for producing a crystalline semiconductor according to a second aspect of the present invention is characterized in that, in the first aspect of the present invention, the plurality of pulse laser beams are irradiated onto the amorphous semiconductor at different pulse generation timings.
  • the method for producing a crystalline semiconductor according to a third aspect of the present invention is characterized in that, in the first or second aspect of the present invention, the plurality of pulse laser beams are output from a plurality of laser light sources.
  • the method for producing a crystalline semiconductor according to any one of the first to third aspects of the invention, wherein the plurality of pulsed laser beams are irradiated onto the amorphous semiconductor at the same energy density. It is characterized by that.
  • the method for producing a crystalline semiconductor according to any one of the first to fourth aspects, wherein the maximum peak intensity ratio in the plurality of pulsed laser beams is within a predetermined range. It is characterized by being.
  • the crystalline semiconductor manufacturing method according to any one of the first to fifth aspects, wherein the reference maximum peak intensity ratio is one pulse laser beam among the plurality of pulse laser beams.
  • the maximum peak intensity ratio at.
  • a seventh aspect of the present invention there is provided the method for producing a crystalline semiconductor according to any one of the first to sixth aspects of the present invention, wherein the plurality of pulsed laser beams are included in any one of the pulsed laser beams.
  • the maximum peak intensity ratio of the pulsed laser beam is defined as a reference maximum peak intensity ratio, and the maximum peak intensity ratio of the other pulsed laser beam is 4% or less of the reference maximum peak intensity ratio. To do.
  • the method for producing a crystalline semiconductor according to an eighth aspect of the present invention is characterized in that, in any of the first to seventh aspects of the present invention, the amorphous semiconductor is an amorphous silicon thin film formed on a substrate. To do.
  • a crystalline semiconductor manufacturing apparatus includes one or more laser light sources, Output from the laser light source and having at least a first peak group and a second peak group appearing thereafter in one pulse in a temporal intensity change, and the maximum peak intensity in the first peak group is An optical system having a maximum height in one pulse and guiding a plurality of pulsed laser beams guided along different paths to an amorphous semiconductor, The plurality of pulsed laser beams have a ratio of the maximum peak intensity a of the first peak group a and the maximum peak intensity b of the second peak group b / a of each pulsed laser beam.
  • the maximum peak intensity ratio as a reference is set as a reference maximum peak intensity ratio, and the maximum peak intensity ratio is set to be 4% or less of the reference maximum peak intensity ratio. .
  • the crystalline semiconductor manufacturing apparatus wherein the plurality of pulse laser beams are irradiated to the amorphous semiconductor with different pulse generation timings. It is characterized by that.
  • the crystalline semiconductor manufacturing apparatus is characterized in that, in the ninth or tenth aspect of the present invention, the different pulse generation timing is given by the laser light source or / and the optical system. To do.
  • a crystalline semiconductor manufacturing apparatus includes the peak intensity ratio adjusting unit for adjusting the maximum peak intensity ratio output from the laser light source in any of the ninth to eleventh aspects of the present invention. It is characterized by that.
  • a crystalline semiconductor manufacturing apparatus is the apparatus according to any one of the ninth to twelfth aspects of the present invention, wherein the amorphous semiconductor is irradiated with the plurality of pulse laser beams at the same energy density.
  • An energy density setting unit for setting the density is provided.
  • the crystalline semiconductor manufacturing apparatus according to any one of the ninth to thirteenth aspects of the present invention, wherein the plurality of pulse laser beams are relatively scanned and irradiated to the amorphous semiconductor. It has a scanning device.
  • each pulsed laser light is changed by one pulse in the temporal intensity change.
  • three or more peak groups may appear in one pulse.
  • the peak group in the pulse laser beam is a group of one or a plurality of peaks appearing close in time in one pulse, and at least two peak groups appear in one pulse. There is a minimum energy intensity between the peak groups.
  • the plurality of pulse laser beams may be output from a plurality of laser light sources, may be output from one laser light source and may be demultiplexed, or may be a combination thereof.
  • the paths through which the plurality of pulsed laser beams are guided may be at least partially different including the light source and the optical system, and it is not excluded to have a common path.
  • FIGS. 6 to 8 show amorphous silicon thin films formed by irradiation with pulsed laser beams having different energy densities when the 2nd / 1st maximum peak intensity ratio is 18.2%, 23.0%, and 26.2%, respectively.
  • 3 shows a photograph (a contrast enhancement process) of a non-uniformity monitor of a polycrystalline silicon thin film obtained by crystallizing the film. From these, it can be confirmed that the optimum energy density is deviated.
  • the irradiation unevenness evaluation of the crystalline silicon film was performed by the following method.
  • the inspection light is irradiated to the crystalline silicon film at five points, the reflected light is received to obtain a color image, the color component of the color image is detected, and the color image is detected based on the detected color component.
  • Monochrome Next, the image data with the image density enhanced was acquired by convolution of the monochrome image data, and the surface unevenness was evaluated.
  • Monochrome can be performed using the main color components among the detected color components, and the main color components are color components having a light distribution that is relatively larger than other color components. be able to.
  • Monochrome image data is indicated by matrix data in which the laser beam direction is a row and the laser scanning direction is a column.
  • convolution a matrix of predetermined coefficients is multiplied by a monochrome image data matrix. went.
  • the matrix of the predetermined coefficients is unevenly divided between the image data that emphasizes the image density in the beam direction and the image data that emphasizes the image density in the scan direction by using the one that emphasizes the beam direction and the one that emphasizes the scan direction, respectively. Obtained as a monitor. Specifically, the following convolution was performed. Note that the matrix of the predetermined coefficients is not limited to the following.
  • the graph shown in FIG. 9 shows the optimum energy density obtained as described above and the 2nd / 1st maximum peak intensity ratio in association with each other.
  • the graph also shows other than the measurement results described above. As is apparent from the graph shown in FIG. 9, it is understood that the irradiation energy density optimum for crystallization increases as the 2nd / 1st maximum peak intensity ratio increases.
  • the ratio of b / a between the maximum peak intensity a of the first peak group and the maximum peak intensity b of the second peak group is defined as a maximum peak intensity ratio
  • the reference maximum peak Using the intensity ratio as a reference maximum peak intensity ratio, the maximum peak intensity ratio of the plurality of pulse laser beams is set to be a difference of 4% or less with respect to the reference maximum peak intensity ratio.
  • the maximum peak intensity ratio is difficult to adjust after being output from the laser light source, and is usually set when the laser light source is output.
  • the maximum peak intensity ratio can be set by adjusting the output of the laser light source, setting the output circuit, adjusting the mixing ratio of the gas as the medium.
  • the reference maximum peak intensity ratio can be the initial maximum peak intensity ratio of any one of a plurality of pulsed laser beams, or can be determined experimentally in advance. Further, the maximum peak intensity ratio of the pulse laser beam in the last irradiation may be set as the reference maximum peak intensity ratio. Further, the maximum peak intensity ratio of one pulse laser beam is set as a reference maximum peak intensity ratio between a plurality of arbitrary pulse laser beams, and the maximum peak intensity ratio of the other pulse laser beam is relative to this reference maximum peak intensity ratio. The difference may be 4% or less.
  • the difference between the maximum peak intensity ratio and the reference maximum peak intensity ratio is 4% or less is as follows.
  • the energy density can be represented by the sum of the time integration of the energy intensity in the first peak group and the time integration of the energy intensity in the second peak group in one pulse.
  • the energy density optimum for crystallization of the amorphous semiconductor is constant.
  • the optimum energy density is influenced by the laser pulse waveform, specifically, the maximum peak intensity ratio.
  • the area of the pulse waveform means the energy density.
  • the optimum energy density has a permissible width (OED range: optimum energy density range) of about 10 mJ / cm 2 in a normal amorphous silicon thin film. If it is within this allowable width, crystallization by laser processing is performed equally. In order to satisfy the allowable width, the difference in maximum peak intensity ratio needs to be within 4%. Therefore, the difference is set to 4% or less.
  • the maximum peak intensity in the first peak group is 100 in relative value
  • the maximum peak in the second peak group If the intensity is also 18.2, the optimum energy density is 439.5 mJ / cm 2 .
  • the maximum peak intensity in the first peak group is 93 as a relative value
  • the maximum peak intensity in the second peak group is 21.5.
  • the density is 451.3 mJ / cm 2 .
  • the maximum peak intensity in the first peak group is 89 as a relative value
  • the maximum peak intensity in the second peak group is 23.5.
  • the density is 459.2 mJ / cm 2 .
  • a linear A shown in FIG. 9 is obtained. Based on this line A, for example, when the 2nd / 1st maximum peak intensity ratio is 22.4%, the optimum energy density width (10 mJ / cm 2 ) is 455 mJ / cm 2 to 445 mJ / cm 2. It is in the range.
  • the 2nd / 1st maximum peak intensity ratio corresponding to the optimum energy density of 445 mJ / cm 2 is 20.44%
  • the 2nd / 1st maximum peak intensity ratio corresponding to the optimum energy density of 455 mJ / cm 2 is 24.49%.
  • a plurality of pulsed laser beams are irradiated to the amorphous semiconductor at different pulse generation timings, and the number of pulses irradiated to the amorphous semiconductor per unit time can be increased.
  • the width can be increased.
  • Different pulse generation timings may be obtained at the time of output from the laser light source, or may be obtained by giving a phase difference in the middle of the path.
  • phase difference can be given by demultiplexing
  • the means for demultiplexing pulsed laser light is not particularly limited, and a beam splitter or the like can be used as appropriate.
  • the pulses may not overlap each other, or a part of the pulses may overlap.
  • a variable attenuator capable of adjusting the transmittance of the pulse laser beam can be provided in the path of the pulse laser beam.
  • the variable attenuator can irradiate the amorphous semiconductor with pulsed laser light at a desired energy density, and can irradiate the amorphous semiconductor with a plurality of pulsed laser light with a common energy density.
  • the energy density of the pulse laser light can be controlled by controlling the output of the pulse laser light source and one or both of the variable attenuators.
  • a method for producing a crystalline semiconductor wherein the amorphous semiconductor is crystallized by irradiating the amorphous semiconductor with a plurality of pulsed laser beams guided along different paths,
  • the plurality of pulsed laser beams have at least a first peak group and a second peak group appearing thereafter in one pulse in a temporal intensity change, and a maximum peak intensity in the first peak group Is the maximum height in one pulse,
  • a ratio b / a between the maximum peak intensity a of the first peak group and the maximum peak intensity b of the second peak group is defined as a maximum peak intensity ratio
  • the reference maximum peak intensity ratio is a reference maximum peak.
  • the maximum peak intensity ratio of the plurality of pulsed laser beams is set to a difference of 4% or less with respect to the reference maximum peak intensity ratio, so that the amorphous semiconductor can be crystallized more uniformly. Can do.
  • a laser annealing apparatus 1 corresponding to a crystalline semiconductor manufacturing apparatus has two pulse laser light sources 2 and 3 that output pulse laser light.
  • Each of the pulse laser light sources 2 and 3 is, for example, an excimer laser oscillation light source and outputs pulse laser light having a wavelength of 308 nm and a pulse frequency of 1 to 600 Hz.
  • variable attenuator 4 capable of adjusting the attenuation rate of the pulse laser light output from the pulse laser light source 2 is disposed.
  • variable attenuator 5 capable of adjusting the attenuation rate of the pulse laser light output from the pulse laser light source 3 is disposed.
  • a half mirror 6 that transmits part of the pulsed laser light output from the variable attenuator 4 for measurement and reflects the remaining part for processing.
  • a light receiving part 7a of a measuring instrument 7 for measuring the waveform of the pulse laser beam can be arranged.
  • a control unit 8 is electrically connected to the measuring instrument 7, and a measurement result of the measuring instrument 7 is output to the control unit 8.
  • the pulse laser beam reflected by the half mirror 6 is reflected on one side to the optical system 12 side, and the pulse laser beam output from the variable attenuator 5 is reflected on the other side.
  • a mirror 9 is arranged.
  • a half mirror 10 is disposed on the other-surface reflecting side of the mirror 9, and part of the pulsed laser light reflected by the mirror 9 is transmitted for measurement and the remaining part is reflected to the optical system 12 side for processing. To do.
  • a light receiving part 11a of a measuring instrument 11 for measuring the waveform of the pulse laser beam can be arranged on the transmission side of the half mirror 10, as shown in FIG. 2, a light receiving part 11a of a measuring instrument 11 for measuring the waveform of the pulse laser beam can be arranged.
  • the control unit 8 is electrically connected to the measuring instrument 11, and the measurement result of the measuring instrument 11 is output to the control unit 8.
  • the optical system 12 guides two pulse laser beams, that is, a pulse laser beam reflected by one reflecting surface of the mirror 9 and a pulse laser beam reflected by the half mirror 10, and performs beam shape shaping or the like.
  • the light is emitted to the same path.
  • the optical system 12 includes, for example, a mirror, a lens, a homogenizer, and the like.
  • the configuration of the optical system is not particularly limited as the present invention, and a plurality of optical systems can be provided according to the number of pulse laser beams.
  • control unit 8 is connected to the pulse laser light sources 2 and 3 and the variable attenuators 4 and 5 in a controllable manner.
  • the control unit 8 adjusts the output of the pulse laser light sources 2 and 3 and starts the pulse. Control of the entire laser annealing apparatus 1 is performed, such as timing setting and control of the attenuation rate in the variable attenuators 4 and 5.
  • the control unit 8 may include a CPU, a program that operates the CPU, a ROM that stores the program, a RAM that is a work area, a flash memory that holds data in a nonvolatile manner, and the like.
  • the control unit 8 can adjust the maximum peak intensity ratio in the pulse laser light by adjusting the output of the pulse laser light sources 2 and 3.
  • the gas mixture ratio of the pulse laser light sources 2 and 3 may be adjusted under the control of the control unit 8, and as a result, the maximum peak intensity ratio in the pulse laser light may be adjusted.
  • the control unit 8 corresponds to a peak intensity ratio adjustment unit.
  • the energy density of the pulse laser beam on the amorphous semiconductor can be set by adjusting the output of the pulse laser light sources 2 and 3 by the control unit 8 and adjusting the attenuation factor by the variable attenuators 4 and 5. That is, the control unit 8 and the variable attenuators 4 and 5 correspond to an energy density setting unit.
  • a half mirror 13 that transmits a part of a plurality of pulsed laser beams for measurement and reflects the remaining part for processing is disposed.
  • a light receiving portion 14a of a measuring instrument 14 for measuring the energy density of each pulse laser beam is arranged on the transmission side of the half mirror 13, a light receiving portion 14a of a measuring instrument 14 for measuring the energy density of each pulse laser beam is arranged on the transmission side of the half mirror 13, a light receiving portion 14a of a measuring instrument 14 for measuring the energy density of each pulse laser beam is arranged.
  • the control unit 8 is electrically connected to the measuring instrument 14, and the measurement result of the measuring instrument 14 is output to the control unit 8.
  • a stage 16 for holding the substrate 15 on which the amorphous semiconductor film 15a is formed is disposed.
  • the substrate 15 is, for example, a glass substrate, and the amorphous semiconductor film 15a is, for example, an amorphous silicon thin film.
  • the stage 16 is movable along the surface direction (XY direction) of the stage 16.
  • the stage 16 is provided with a moving device 17 that moves the stage 16 at high speed along the surface direction.
  • a semiconductor manufacturing method using the amorphous semiconductor film 15a as a raw material using the laser annealing apparatus 1 will be described.
  • a substrate 15 on which an amorphous semiconductor 15a to be crystallized is formed is placed and held.
  • an amorphous silicon thin film formed on a substrate is preferably used as the amorphous semiconductor.
  • a polycrystalline silicon thin film can be obtained by crystallizing the amorphous silicon thin film.
  • the amorphous silicon thin film is usually formed to a thickness of 45 to 55 nm, but the thickness is not particularly limited in the present invention.
  • a glass substrate is usually used as the substrate, the material of the substrate is not particularly limited in the present invention, and other materials may be used.
  • the control unit 8 controls the pulse laser light sources 2 and 3 to output pulse laser light from the pulse laser light sources 2 and 3, respectively.
  • Each pulse laser beam has the same wavelength and the same repetition frequency, has different pulse start timings, and has a phase difference on the amorphous semiconductor film.
  • the pulse laser beam is output at different pulse generation timings so that there is a phase difference with respect to the repetition frequency between the different pulse laser beams, and the amorphous semiconductor film 15a Irradiate.
  • the pulse laser light output from the pulse laser light sources 2 and 3 such as an excimer laser oscillator has a first peak group P1 and a second peak appearing thereafter in one pulse in a temporal change. And a group P2.
  • the maximum peak intensity a in the first peak group P1 is larger than the maximum peak intensity b in the second peak group P2, and the maximum peak intensity a is the maximum height in one pulse.
  • FIG. 3 shows pulse waveforms when the same excimer laser oscillator is used and the output energy is set to 850 mJ, 950 mJ, and 1050 mJ, respectively.
  • the maximum peak intensity ratio b / a (hereinafter, appropriately referred to as “2nd / 1st maximum peak intensity ratio”) increases as the output energy increases, and decreases as the output energy decreases.
  • the pulse laser beams output from the pulse laser light sources 2 and 3 reach the variable attenuators 4 and 5, respectively, and are attenuated at a predetermined attenuation rate by passing through them.
  • the attenuation rate is controlled by the control unit 8 and adjusted so that the pulse laser beams output from the pulse laser light sources 2 and 3 have the same energy density on the amorphous semiconductor film 15a.
  • a part of the pulse laser beam attenuated and output by the variable attenuator 4 is transmitted by the half mirror 6 and the remaining part is reflected.
  • the pulsed laser light that has passed through the half mirror 6 is received by the light receiving unit 7a, and the pulse waveform is measured by the measuring instrument 7.
  • the measurement result of the pulse waveform by the measuring instrument 7 is transmitted to the control unit 8.
  • the remaining part of the pulse laser beam reflected by the half mirror 6 is reflected by one reflection surface of the total reflection mirror 9 and introduced into the optical system 12.
  • the pulse laser beam attenuated and output by the variable attenuator 5 is reflected by the other reflecting surface of the mirror 9 and is incident on the half mirror 10.
  • a part of the pulse laser beam incident on the half mirror 10 is transmitted through the half mirror 10 and received by the light receiving unit 11 a, and the remaining part is reflected and incident on the optical system 12.
  • the pulse waveform of the pulse laser beam received by the light receiving unit 11a is measured by the measuring instrument 11.
  • the measurement result of the pulse waveform by the measuring instrument 11 is transmitted to the control unit 8.
  • the control unit 8 maximizes the ratio between the maximum peak intensity of the first peak group and the maximum peak intensity of the second peak group based on the measurement result of the pulse waveform obtained by the measuring instruments 7 and 11. Calculated as the peak intensity ratio. Specifically, as shown in FIG. 4, regarding the pulse laser beam output from the pulse laser light source 2, the 2nd / 1st maximum peak intensity ratio R1 is the second peak with respect to the maximum peak intensity a1 in the first peak group. It is represented by the ratio b1 / a1 of the maximum peak intensity b1 in the peak group.
  • the 2nd / 1st maximum peak intensity ratio R2 of the pulse laser beam output from the other pulse laser light source 3 is the ratio b2 of the maximum peak intensity b2 in the second peak group to the maximum peak intensity a2 in the first peak group. / A2.
  • the initial value of the maximum peak intensity ratio R1 is set as a reference maximum peak intensity ratio R0, and the subsequent maximum peak intensity ratio R1 and maximum peak intensity ratio R2 are 4% or less with respect to the reference maximum peak intensity ratio R0. Control to make a difference.
  • the fluctuation of the maximum peak intensity ratio can be adjusted to 4% or less by adjusting the outputs of the pulse laser light sources 2 and 3. It is clear that the output change of the pulse laser beam appears as the maximum peak intensity ratio as shown in FIG.
  • the fluctuation of the energy density due to the output adjustment of the pulse laser light sources 2 and 3 is canceled by adjusting the attenuation rate of the variable attenuators 4 and 5. Since adjustment of the attenuation rate in the variable attenuators 4 and 5 hardly affects the maximum peak intensity ratio, the attenuation rate can be adjusted only for the purpose of adjusting the energy density.
  • Each pulse laser beam whose maximum peak intensity ratio falls within a difference of 4% or less with respect to the reference maximum peak intensity ratio is guided by the optical system 12 while being shaped as desired, and is emitted onto the same optical path.
  • the plurality of pulse laser beams emitted from the optical system 12 are partially transmitted by the half mirror 13 and received by the light receiving unit 14a, and the remaining part is reflected by the half mirror 13 and irradiated to the amorphous semiconductor film 15a. .
  • the amorphous semiconductor film 15a moves with the stage 16 moved by the moving device 17, so that the pulsed laser light is irradiated while being relatively scanned.
  • the attenuation rate of the variable attenuators 4 and 5 is set so that each pulse laser beam received by the light receiving unit 14a has the same energy density in the measurement result of the measuring instrument 14.
  • the light receiving position in the light receiving portion 14a is set to a position that assumes an irradiation surface to the amorphous semiconductor film 15a.
  • the energy density is set to be the same, and the maximum peak intensity ratio is maintained at a difference of 4% or less with respect to the reference maximum peak intensity ratio. Crystallized.
  • the pulse laser light sources 2 and 3 preferably output the pulse laser beams at different pulse generation timings so that the pulses in the pulse laser beams do not overlap each other and have a predetermined phase difference with respect to the repetition frequency.
  • the pulse laser light source 3 is half of the pulse laser light source 2.
  • a pulse laser beam is output at a pulse generation timing delayed by a period.
  • the amorphous semiconductor film 15a is substantially irradiated with pulsed laser light having a pulse frequency of 1200 Hz that is twice that of the pulsed laser light sources 2 and 3.
  • the pulse laser beam is relatively scanned by moving the stage 16, but the pulse laser beam is relatively moved by operating the optical system to which the pulse laser beam is guided at high speed. It may be scanned.
  • the amorphous semiconductor film is irradiated with a plurality of pulsed laser beams at the same energy density.
  • the amorphous semiconductor is irradiated with a plurality of pulsed laser beams at different energy densities. It may be set so that.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Laser Beam Processing (AREA)

Abstract

非晶質半導体をより均一に結晶化することができる結晶質半導体の製造方法および結晶質半導体の製造装置を提供するため、複数のパルスレーザ光源2、3と、複数のパルスレーザ光を非晶質半導体に導く光学系12を有し、各パルスレーザ光が、時間的強度変化において1パルスに、少なくとも、1番目のピーク群と、その後に現れる2番目のピーク群とを有し、かつ前記1番目のピーク群における最大ピーク強度が前記1パルスにおける最大高さになっており、前記1番目のピーク群の前記最大ピーク強度aと、前記2番目のピーク群の最大ピーク強度bとの比b/aを最大ピーク強度比とし、基準となる前記最大ピーク強度比を基準最大ピーク強度比として、前記複数のパルスレーザ光の前記最大ピーク強度比が、前記基準最大ピーク強度比に対し4%以下の差になるようにする。

Description

結晶質半導体の製造方法および結晶質半導体の製造装置
 本発明は、パルスレーザ光を非晶質半導体に照射し結晶化して結晶質半導体を得る、結晶質半導体の製造方法および結晶質半導体の製造装置に関するものである。
 液晶ディスプレイや有機EL(Electro-Luminescence)ディスプレイの画素スイッチや駆動回路に用いられる薄膜トランジスタでは、低温プロセスの製造方法の一環として、レーザ光を用いて結晶質半導体を得る工程が含まれている。この工程は、基板上に成膜された非単結晶半導体膜にレーザ光を照射して局部的に加熱し、その冷却過程で半導体薄膜を多結晶あるいは単結晶に結晶化するものである。結晶化した半導体薄膜は、キャリアの移動度が高くなるため薄膜トランジスタを高性能化することができる。
 上記レーザ光の照射においては、半導体薄膜で均質な処理が行われる必要があり、一般に、非晶質膜に照射されるパルスレーザ光のエネルギー密度を一定にする制御がなされている。
 例えば、特許文献1では、パルスレーザ光の最大ピーク高さを一定に維持することで、良質な結晶化を可能にするレーザ照射装置が提案されている。
 また、特許文献2では、レーザ光源から出力された複数のレーザビームを結合して束ねる方法で、複数のレーザビームの動作タイミングを制御してパルス波形を作製するレーザ照射装置が提案されている。
特許3293136号公報 特開2002-176006号公報
 上記パルスレーザ光源としてエキシマガスなどのガスを利用するものでは、放電方式によりレーザ光を発振させている。その際に、1回目の高電圧による放電後、残留電圧により複数の放電が発生し、その結果、複数のピーク群を有するレーザ光が発生する。このようなパルスレーザ光源から出力される複数のパルスレーザ光を使用する場合、ピーク形状の差異により、同一のエネルギー密度でパルスレーザ光を被照射物に照射した場合であっても、レーザ光照射による結果が異なることがある。
 また、従来のレーザ照射装置は、一般的に、レーザ光の出力をエネルギーモニターで制御する構成になっており、レーザ光のエネルギー密度を同一に維持して動作させることができる。しかし、パルスレーザ光源では、エネルギー密度を一定に維持しても、ガス混合比の変化などによって経時的にピーク形状が変化する。このため、レーザ光の照射により非晶質半導体を結晶化する場合、結晶化作用が変化し、良質で同等の結晶が得られにくくなるという問題がある。
 本発明は、上記事情を背景としてなされたものであり、非晶質半導体をより均一に結晶化することができる結晶質半導体の製造方法および結晶質半導体の製造装置を提供することを目的としている。
 すなわち、本発明の結晶質半導体の製造方法のうち、第1の本発明は、異なる経路で導波される複数のパルスレーザ光を非晶質半導体に照射して前記非晶質半導体を結晶化する結晶質半導体の製造方法であって、
 前記複数のパルスレーザ光は、時間的強度変化において1パルスに、少なくとも、1番目のピーク群と、その後に現れる2番目のピーク群とを有し、かつ前記1番目のピーク群における最大ピーク強度が前記1パルスにおける最大高さになっており、
 前記1番目のピーク群の前記最大ピーク強度aと、前記2番目のピーク群の最大ピーク強度bとの比b/aを最大ピーク強度比とし、基準となる前記最大ピーク強度比を基準最大ピーク強度比として、前記複数のパルスレーザ光の前記最大ピーク強度比が、前記基準最大ピーク強度比に対し4%以下の差になるようにすることを特徴とする。
 第2の本発明の結晶質半導体の製造方法は、前記第1の本発明において、前記複数のパルスレーザ光が、前記非晶質半導体上で、互いに異なるパルス発生タイミングで照射されることを特徴とする。
 第3の本発明の結晶質半導体の製造方法は、前記第1または第2の本発明において、前記複数のパルスレーザ光が、複数のレーザ光源から出力されたものであることを特徴とする。
 第4の本発明の結晶質半導体の製造方法は、前記第1~第3の本発明のいずれかにおいて、前記複数のパルスレーザ光は、前記非晶質半導体上に、同じエネルギー密度で照射されることを特徴とする。
 第5の本発明の結晶質半導体の製造方法は、前記第1~第4の本発明のいずれかにおいて、 前記複数のパルスレーザ光における前記最大ピーク強度比は、予め設定された所定範囲内にあることを特徴とする。
 第6の本発明の結晶質半導体の製造方法は、前記第1~第5の本発明のいずれかにおいて、前記基準最大ピーク強度比は、前記複数のパルスレーザ光のうち、一のパルスレーザ光における最大ピーク強度比であることを特徴とする。
 第7の本発明の結晶質半導体の製造方法は、前記第1~第6の本発明のいずれかにおいて、前記複数のパルスレーザ光は、各パルスレーザ光のいずれの間においても、一方の前記パルスレーザ光の最大ピーク強度比を基準最大ピーク強度比として、他方の前記パルスレーザ光の最大ピーク強度比が前記基準最大ピーク強度比に対し、4%以下の差になっていることを特徴とする。
 第8の本発明の結晶質半導体の製造方法は、前記第1~第7の本発明のいずれかにおいて、前記非晶質半導体が、基板上に形成されたアモルファスシリコン薄膜であることを特徴とする。
 第9の本発明の結晶質半導体の製造装置は、1つまたは2つ以上のレーザ光源と、
 前記レーザ光源から出力され、時間的強度変化において1パルスに、少なくとも、1番目のピーク群と、その後に現れる2番目のピーク群とを有し、前記1番目のピーク群における最大ピーク強度が前記1パルスにおける最大高さであり、異なる経路で導波される複数のパルスレーザ光を非晶質半導体に導く光学系と、を有し、
 前記複数のパルスレーザ光は、それぞれのパルスレーザ光で前記1番目のピーク群の前記最大ピーク強度aと、前記2番目のピーク群の最大ピーク強度bとの比b/aを最大ピーク強度比、基準となる前記最大ピーク強度比を基準最大ピーク強度比として、前記最大ピーク強度比が、前記基準最大ピーク強度比に対し4%以下の差になるように設定されていることを特徴とする。
 第10の本発明の結晶質半導体の製造装置は、前記第9の本発明において、前記複数のパルスレーザ光が、異なるパルス発生タイミングを有して前記非晶質半導体に照射されるものであることを特徴とする。
 第11の本発明の結晶質半導体の製造装置は、前記第9または第10の本発明において、前記異なるパルス発生タイミングは、前記レーザ光源または/および前記光学系で与えられていることを特徴とする。
 第11の本発明の結晶質半導体の製造装置は、前記第9~第11の本発明のいずれかにおいて、前記レーザ光源から出力される前記最大ピーク強度比を調整するピーク強度比調整部を備えることを特徴とする。
 第13の本発明の結晶質半導体の製造装置は、前記第9~第12の本発明のいずれかにおいて、前記複数のパルスレーザ光を同じエネルギー密度で前記非晶質半導体に照射するため前記エネルギー密度を設定するエネルギー密度設定部を備えることを特徴とする。
 第14の本発明の結晶質半導体の製造装置は、前記第9~第13の本発明のいずれかにおいて、前記複数のパルスレーザ光を前記非晶質半導体に対し相対的に走査して照射する走査装置を有することを特徴とする。
 本発明では、異なる経路を導波される複数のパルスレーザ光を非晶質半導体に照射して前記非晶質半導体を結晶化する際に、各パルスレーザ光が、時間的強度変化において1パルスに、1番目のピーク群と、その後に現れる2番目のピーク群とを含む複数のピーク群を有し、1番目のピーク群における最大ピーク強度が1パルスにおける最大高さになっている。なお、本発明としては、1パルスにピーク群が3つ以上現れるものであってもよい。
 パルスレーザ光におけるピーク群とは、1パルス中で時間的に近接して現れる1つまたは複数のピークがまとまったものであって、一パルスには、少なくとも二つのピーク群が現れる。ピーク群間には、エネルギー強度の極小値が存在する。
 複数のパルスレーザ光は、複数のレーザ光源から出力されたものでも、1つのレーザ光源から出力されて分波されたものでもよく、また、これらが組み合わされたものであってもよい。複数のパルスレーザ光が導波される経路は、光源、光学系を含めて少なくとも一部が異なっていればよく、共通経路を有することは除外されない。
 2nd/1st最大ピーク強度比が異なると、非晶質半導体の結晶化に最適な照射エネルギー密度が異なることは本願発明者らの研究により明らかにされている。
 図6~図8は、2nd/1st最大ピーク強度比が18.2%、23.0%、および26.2%である場合のそれぞれについて、異なるエネルギー密度のパルスレーザ光の照射によりアモルファスシリコン薄膜を結晶化して得られた多結晶シリコン薄膜のムラモニターの写真(コントラストの強調処理)を示している。これらから最適とするエネルギー密度がずれていることを確認できる。
 図6に示すように、2nd/1st最大ピーク強度比が18.2%である場合、照射エネルギー密度430mJ/cm、440mJ/cm、および450mJ/cmのうち、440mJ/cmで最もムラが少ない多結晶シリコン薄膜表面が得られ、440mJ/cmが最適な照射エネルギー密度であることが分かる。
 また、図7に示すように、2nd/1st最大ピーク強度比が23.0%である場合、照射エネルギー密度440mJ/cm、450mJ/cm、および460mJ/cmのうち、450mJ/cmで最もムラが少ない多結晶シリコン薄膜表面が得られ、450mJ/cmが最適な照射エネルギー密度であることが分かる。
 さらに、図8に示すように、2nd/1st最大ピーク強度比が26.2%である場合、照射エネルギー密度450mJ/cm、460mJ/cm、および470mJ/cmのうち、460mJ/cmで最もムラが少ない多結晶シリコン薄膜表面が得られ、460mJ/cmが最適な照射エネルギー密度であることが分かる。
 なお、結晶シリコン膜の照射ムラ評価は以下の方法によって行った。
 結晶シリコン膜に検査光をそれぞれの例で5地点に照射し、それぞれ反射光を受光してカラー画像を取得し、カラー画像の色成分を検出し、検出された色成分に基づいてカラー画像をモノクロ化した。次いで、モノクロ化された画像のデータをコンボリューションして画像濃淡を強調した画像データを取得し、表面ムラを評価した。
 モノクロ化は、検出がされた色成分のうち、主となる色成分を用いて行うことができ、主となる色成分は、光分布が他の色成分よりも相対的に大きい色成分とすることができる。
 モノクロ化した画像データは、レーザのビーム方向を行、レーザの走査方向を列とする行列データで示し、コンボリューションでは、所定係数の行列をモノクロ化された画像のデータの行列に掛け合わせることによって行った。
 所定係数の行列は、ビーム方向を強調するものと、スキャン方向を強調するものとをそれぞれ用いてビーム方向の画像濃淡を強調した画像データとスキャン方向の画像濃淡を強調した画像データとをそれぞれムラモニターとして取得した。
 具体的には、以下のコンボリューションを行った。なお、所定係数の行列が下記に限定されるものではない。
Figure JPOXMLDOC01-appb-M000001
 図9に示すグラフは、上記のようにして得られた最適なエネルギー密度と2nd/1st最大ピーク強度比とを対応付けて示したものである。なお、グラフには、上記で説明した測定結果以外も図示されている。図9に示すグラフから明らかなように、2nd/1st最大ピーク強度比が増加するに従って、結晶化に最適な照射エネルギー密度も増加することが分かる。
 上述のように、2nd/1st最大ピーク強度比が異なれば、非晶質半導体の結晶化に最適な照射エネルギー密度も異なってくる。
 そこで、本発明では、前記1番目のピーク群の前記最大ピーク強度aと、前記2番目のピーク群の最大ピーク強度bとの比b/aを最大ピーク強度比とし、基準となる前記最大ピーク強度比を基準最大ピーク強度比として、前記複数のパルスレーザ光の前記最大ピーク強度比が、前記基準最大ピーク強度比に対し4%以下の差になるようにしている。
 前記最大ピーク強度比は、レーザ光源から出力された後に調整することは難しく、通常は、レーザ光源の出力時に設定される。最大ピーク強度比の設定は、レーザ光源の出力調整、出力回路の設定、媒質であるガスの混合比の調整などにより行うことができる。
 また、基準最大ピーク強度比は、複数のパルスレーザ光のうちのいずれか一のパルスレーザ光における初期の最大ピーク強度比を使用したり、実験的に予め定めておいたりすることができる。また、直前の照射におけるパルスレーザ光の最大ピーク強度比を基準最大ピーク強度比に設定してもよい。さらには、複数の任意のパルスレーザ光間で、一方のパルスレーザ光の最大ピーク強度比を基準最大ピーク強度比として、この基準最大ピーク強度比に対し他方のパルスレーザ光における最大ピーク強度比が4%以下の差になるようにしてもよい。
 上記のように、最大ピーク強度比を、基準最大ピーク強度比に対し、差が4%以下になるようにするのは、次の理由による、
 図10に示すように、エネルギー密度は、一パルスにおいて、第1ピーク群におけるエネルギー強度の時間積分と第2ピーク群におけるエネルギー強度の時間積分の和によって示すことができる。また、同一基板上では、非晶質半導体の結晶化に最適となるエネルギー密度は一定である。その最適エネルギー密度は、レーザパルス波形、具体的には最大ピーク強度比に影響されている。パルス波形の面積は、エネルギー密度を意味する。最適エネルギー密度は、通常のアモルファスシリコン薄膜において、10mJ/cm程度の許容幅(OED範囲:最適エネルギー密度範囲)を有する。この許容幅内であれば、レーザ処理による結晶化は同等に行われる。その許容幅を満たすため、最大ピーク強度比の差は4%以内とすることが必要になる。そのため、上記差を4%以下とした。
 例えば、ピーク強度の単位を任意単位として、2nd/1st最大ピーク強度比が18.2%である場合、1番目のピーク群における最大ピーク強度が相対数値で100、2番目のピーク群における最大ピーク強度が同じく18.2であると、最適エネルギー密度は439.5mJ/cmとなる。2nd/1st最大ピーク強度比が23.1%である場合、1番目のピーク群における最大ピーク強度が相対数値で93、2番目のピーク群における最大ピーク強度が21.5であると、最適エネルギー密度は451.3mJ/cmとなる。2nd/1st最大ピーク強度比が26.2%である場合、1番目のピーク群における最大ピーク強度が相対数値で89、2番目のピーク群における最大ピーク強度が23.5であると、最適エネルギー密度は459.2mJ/cmとなる。
 これらの関係から最小二乗法による一次回帰を行うと、図9に示す線形Aが得られる。この線形Aに基づくと、例えば、2nd/1st最大ピーク強度比が22.4%である場合を見ると、最適エネルギー密度の幅(10mJ/cm)は、455mJ/cm~445mJ/cmの範囲内にある。最適エネルギー密度445mJ/cmに対応する2nd/1st最大ピーク強度比は20.44%で、最適エネルギー密度455mJ/cmに対応する2nd/1st最大ピーク強度比が24.49%である。この幅を最大ピーク強度比の差で表すと、24.49%-20.44%=4.05%となる。したがって、最大ピーク強度比の差を4%以下にすれば、最適エネルギー密度における許容範囲内に収めることができる。
 また、複数のパルスレーザ光は、互いに異なるパルス発生タイミングで非晶質半導体に照射され、単位時間当たりに非晶質半導体に照射されるパルス数を増加させることができ、また、擬似的にパルス幅を大きくすることができる。
 互いに異なるパルス発生タイミングは、レーザ光源での出力時に得られていてもよく、また、経路途中で位相差が与えられて得られるものであってもよい。分波により位相差を与えることができるが、パルスレーザ光の分波もその手段が特に限定されるものではなく、ビームスプリッタなどを適宜用いることができる。
 異なるパルス発生タイミングで非晶質半導体でパルスレーザ光が照射される際に、パルスが互いに重ならないようにしてもよく、また、パルスの一部が重なるようにしてもよい。
 また、パルスレーザ光の経路には、パルスレーザ光の透過率を調整可能な可変減衰器を設けることができる。可変減衰器により、パルスレーザ光を所望のエネルギー密度で非晶質半導体に照射することができ、さらに、共通するエネルギー密度で複数のパルスレーザ光を非晶質半導体に照射することができる。
 なお、パルスレーザ光のエネルギー密度は、パルスレーザ光源の出力の制御と、上記可変減衰器の一方または両方により行うことができる。
 以上のとおり、本発明によれば、異なる経路で導波される複数のパルスレーザ光を非晶質半導体に照射して前記非晶質半導体を結晶化する結晶質半導体の製造方法であって、
 前記複数のパルスレーザ光は、時間的強度変化において1パルスに、少なくとも、1番目のピーク群と、その後に現れる2番目のピーク群とを有し、かつ前記1番目のピーク群における最大ピーク強度が前記1パルスにおける最大高さになっており、
 前記1番目のピーク群の前記最大ピーク強度aと、前記2番目のピーク群の最大ピーク強度bとの比b/aを最大ピーク強度比とし、基準となる前記最大ピーク強度比を基準最大ピーク強度比として、前記複数のパルスレーザ光の前記最大ピーク強度比が、前記基準最大ピーク強度比に対し4%以下の差になるようにするので、非晶質半導体をより均一に結晶化することができる。
本発明の一実施形態のレーザアニール装置を示す概略図である。 同じく、パルスレーザ光の計測構成を示す概略図である。 同じく、パルスレーザ光におけるパルス波形の例を示す図である。 同じく、2台のパルスレーザ光源から出力されるパルスレーザ光の最大ピーク強度比を説明する図である。 同じく、2台のパルスレーザ光源から出力されるパルスレーザ光の重ね合わせを説明する図である。 同じく、最大ピーク強度比18.2%でエネルギー密度を変えたパルスレーザ光の照射によりアモルファスシリコン薄膜を結晶化して得られた多結晶シリコン薄膜のムラモニターによる図面代用写真である。 同じく、最大ピーク強度比23.0%でエネルギー密度を変えたパルスレーザ光の照射によりアモルファスシリコン薄膜を結晶化して得られた多結晶シリコン薄膜のムラモニターによる図面代用写真である。 同じく、最大ピーク強度比26.2%でエネルギー密度を変えたパルスレーザ光の照射によりアモルファスシリコン薄膜を結晶化して得られた多結晶シリコン薄膜のムラモニターによる図面代用写真である。 同じく、パルスレーザ光における1番目のピーク群における最大ピーク強度に対する2番目のピーク群における最大ピーク強度の比と、結晶化に最適な照射エネルギー密度との関係を示す図である。 同じく、基準パルスレーザ光以外の他のパルスレーザ光の最大ピーク強度比を、基準最大ピーク強度比に対し4%以下の差に設定する理由を説明する図である。
 本発明の一実施形態について添付図面に基づいて説明する。
 まず、本実施形態の結晶質半導体の製造装置について図1および図2を用いて説明する。
 図1に示すように、結晶質半導体の製造装置に相当するレーザアニール装置1は、パルスレーザ光を出力する2台のパルスレーザ光源2、3を有している。
 パルスレーザ光源2、3は、それぞれ例えば、エキシマレーザ発振光源であり、波長308nm、パルス周波数1~600Hzのパルスレーザ光を出力するものである。
 パルスレーザ光源2の出力側には、パルスレーザ光源2から出力されるパルスレーザ光の減衰率を調整可能な可変減衰器4が配置されている。また、パルスレーザ光源3の出力側には、パルスレーザ光源3から出力されるパルスレーザ光の減衰率を調整可能な可変減衰器5が配置されている。
 可変減衰器4の出力側には、可変減衰器4から出力されるパルスレーザ光の一部を計測用に透過し、残部を処理用に反射するハーフミラー6が配置されている。
 ハーフミラー6の透過側には、図2に示すように、パルスレーザ光の波形を計測する計測器7の受光部7aが配置可能になっている。計測器7には、制御部8が電気的に接続されており、計測器7の計測結果が制御部8に出力される。
 可変減衰器5の出力側には、ハーフミラー6で反射されたパルスレーザ光を一面側で光学系12側に反射し、可変減衰器5から出力されるパルスレーザ光を他面側で反射するミラー9が配置されている。
 ミラー9の前記他面反射側には、ハーフミラー10が配置されており、ミラー9で反射されたパルスレーザ光の一部を計測用に透過し、残部を処理用に光学系12側に反射する。
 ハーフミラー10の透過側には、図2に示すように、パルスレーザ光の波形を計測する計測器11の受光部11aが配置可能になっている。計測器11には、制御部8が電気的に接続されており、計測器11の計測結果が制御部8に出力される。
 光学系12は、ミラー9の一方の反射面で反射されたパルスレーザ光と、ハーフミラー10で反射されたパルスレーザ光との2つのパルスレーザ光を導波し、ビーム形状の整形などを行って同一経路に出射するように構成されている。光学系12は、例えば、ミラー、レンズ、ホモジナイザなどにより構成される。
 光学系の構成は、本発明としては特に限定されるものではなく、パルスレーザ光の数に応じて複数設けることもできる。
 また、制御部8には、パルスレーザ光源2、3、および可変減衰器4、5が、制御可能に接続されており、制御部8は、パルスレーザ光源2、3の出力調整や、パルス開始タイミングの設定、可変減衰器4、5での減衰率の制御など、レーザアニール装置1全体の制御を行う。
 制御部8は、CPUとこれを動作させるプログラム、該プログラムなどを格納するROM、作業領域となるRAM、データを不揮発に保持するフラッシュメモリなどを備えたものとすることができる。
 制御部8は、パルスレーザ光源2、3の出力調整により、パルスレーザ光における最大ピーク強度比の調整を行うことができる。また、制御部8の制御によりパルスレーザ光源2、3のガス混合比を調整し、結果としてパルスレーザ光における最大ピーク強度比の調整を行うようにしてもよい。これら制御において、制御部8はピーク強度比調整部に相当する。
 また、パルスレーザ光の非晶質半導体上のエネルギー密度は、制御部8によるパルスレーザ光源2、3での出力調整や可変減衰器4、5での減衰率調整により、設定することができる。すなわち、制御部8および可変減衰器4、5は、エネルギー密度設定部に相当する。
 光学系12の出射側には、複数からなるパルスレーザ光の一部を計測用に透過し、残部を処理用に反射するハーフミラー13が配置されている。
 ハーフミラー13の透過側には、各パルスレーザ光のエネルギー密度を測定する計測器14の受光部14aが配置されている。計測器14には、制御部8が電気的に接続されており、計測器14の計測結果が制御部8に出力される。
 ハーフミラー13の反射側には、非晶質半導体膜15aが形成された基板15を保持するステージ16が配置されている。基板15は、例えばガラス基板であり、非晶質半導体膜15aは、例えばアモルファスシリコン薄膜である。
 ステージ16は、ステージ16の面方向(XY方向)に沿って移動可能になっている。ステージ16には、前記面方向に沿ってステージ16を高速移動させる移動装置17が備えられている。
 次に、レーザアニール装置1を用いた、非晶質半導体膜15aを原料とする半導体製造方法について説明する。
 ステージ16上には、結晶化すべき非結晶質半導体15aが上層に形成された基板15を載置し保持する。
 本発明では、非晶質半導体として、基板上に形成されたアモルファスシリコン薄膜が好適に使用される。アモルファスシリコン薄膜を結晶化することにより、多結晶シリコン薄膜を得ることができる。アモルファスシリコン薄膜は、通常は45~55nmの厚さに形成されているが、本発明としてはその厚さが特に限定されるものではない。
 なお、基板には通常はガラス基板が用いられるが、本発明としては基板の材質が特に限定されるものではなく、その他の材質であってもよい。
 次に、制御部8によりパルスレーザ光源2、3をそれぞれ制御して、パルスレーザ光源2、3からそれぞれパルスレーザ光を出力する。各パルスレーザ光は、同一の波長、同一の繰り返し周波数を有し、パルス開始タイミングが異なって、非晶質半導体膜上で位相差を有するようにする。各パルスレーザ光におけるパルス開始タイミングの設定により、異なるパルスレーザ光間で、繰り返し周波数に対し位相差を有するように、互いに異なるパルス発生タイミングでそれぞれパルスレーザ光を出力し、非晶質半導体膜15aに照射する。
 エキシマレーザ発振器などのパルスレーザ光源2、3から出力されるパルスレーザ光は、図3に示すように、時間的変化において1パルスに、1番目のピーク群P1と、その後に現れる2番目のピーク群P2とを有している。また、1番目のピーク群P1における最大ピーク強度aは、2番目のピーク群P2における最大ピーク強度bよりも大きく、最大ピーク強度aが1パルスにおける最大高さになっている。
 図3では、同一のエキシマレーザ発振器を用い、その出力エネルギーを850mJ、950mJ、および1050mJにそれぞれ設定した場合のパルス波形を示している。最大ピーク強度比b/a(以後、適宜「2nd/1st最大ピーク強度比」と称する)は、出力エネルギーが高いほど大きくなっており、出力エネルギーが小さいほど小さくなる。
 パルスレーザ光源2、3から出力されたパルスレーザ光は、それぞれ可変減衰器4、5に至り、これを通過することで所定の減衰率で減衰される。減衰率は、制御部8により制御され、非晶質半導体膜15a上で、パルスレーザ光源2、3から出力されたパルスレーザ光がそれぞれ同一のエネルギー密度となるように調整される。
 可変減衰器4により減衰されて出力されたパルスレーザ光は、ハーフミラー6で一部が透過し、残部が反射される。ハーフミラー6を透過したパルスレーザ光は、受光部7aで受光され、計測器7によりパルス波形が計測される。計測器7によるパルス波形の計測結果は、制御部8に送信される。
 ハーフミラー6で反射されたパルスレーザ光の残部は、全反射ミラー9の一方の反射面で反射されて光学系12に導入される。
 可変減衰器5により減衰されて出力されたパルスレーザ光は、ミラー9の他方の反射面で反射されてハーフミラー10に入射される。ハーフミラー10に入射したパルスレーザ光は、ハーフミラー10で一部が透過されて受光部11aで受光され、残部が反射して光学系12に入射される。受光部11aで受光されたパルスレーザ光は計測器11によりパルス波形が計測される。計測器11によるパルス波形の計測結果は、制御部8に送信される。
 制御部8では、計測器7、11によって得られたパルス波形の計測結果に基づいて、1番目のピーク群の前記最大ピーク強度と、前記2番目のピーク群の最大ピーク強度との比を最大ピーク強度比として算出する。
 具体的には、図4に示すように、パルスレーザ光源2から出力されたパルスレーザ光に関しては、2nd/1st最大ピーク強度比R1は、1番目のピーク群における最大ピーク強度a1に対する2番目のピーク群における最大ピーク強度b1の比b1/a1で表される。また、他方のパルスレーザ光源3から出力されるパルスレーザ光の2nd/1st最大ピーク強度比R2は、1番目のピーク群における最大ピーク強度a2に対する2番目のピーク群における最大ピーク強度b2の比b2/a2で表される。
 この実施形態では、最大ピーク強度比R1の初期値を基準最大ピーク強度比R0として、その後の最大ピーク強度比R1および最大ピーク強度比R2が、基準最大ピーク強度比R0に対し、4%以下の差になるように制御する。
 制御方法としては、パルスレーザ光源2、3の出力を調整することで、最大ピーク強度比が変動を4%以下に調整することができる。パルスレーザ光の出力変化が最大ピーク強度比として現れることは図3に示すように明らかである。
 パルスレーザ光源2、3の出力調整によるエネルギー密度の変動は、可変減衰器4、5の減衰率を調整することで相殺する。可変減衰器4、5での減衰率の調整は、最大ピーク強度比に影響を殆ど与えないため、エネルギー密度の調整のみを目的にして減衰率を調整することができる。
 最大ピーク強度比が基準最大ピーク強度比に対し4%以下の差に収まっている各パルスレーザ光は、光学系12で所望による整形がなされつつ導波がなされ、同一光路上に出射される。光学系12を出射された複数のパルスレーザ光は、ハーフミラー13で一部が透過して受光部14aで受光され、残部がハーフミラー13で反射されて非晶質半導体膜15aに照射される。非晶質半導体膜15aは、移動装置17によって移動するステージ16とともに移動することで、パルスレーザ光が相対的に走査されつつ照射される。
 また、受光部14aで受光される各パルスレーザ光は、計測器14の計測結果において、各パルスレーザ光が同一のエネルギー密度となるように、可変減衰器4、5の減衰率を設定する。受光部14aにおける受光位置は、非晶質半導体膜15aへの照射面を想定する位置に設定されている。
 非晶質半導体膜15a上では、エネルギー密度が同一に設定され、かつ最大ピーク強度比が基準最大ピーク強度比に対し差が4%以下に維持されており、非晶質膜が均一かつ良好に結晶化される。上記最大ピーク強度比の調整により、異なるパルスレーザ光源2、3から出力されたパルスレーザ光の最大ピーク強度比の差を小さくでき、また、経時的な変化も小さくすることができる。
 また、パルスレーザ光源2、3は、好適には、パルスレーザ光におけるパルスが互いに重ならず、繰り返し周波数に対し所定の位相差を有するように、互いに異なるパルス発生タイミングでそれぞれパルスレーザ光を出力する。
 具体的には、例えば、図5に示すように、パルスレーザ光源2、3がともにパルス周波数600Hzでパルスレーザ光を出力する場合において、パルスレーザ光源2に対して、パルスレーザ光源3は、半周期遅延したパルス発生タイミングでパルスレーザ光を出力する。これにより、非晶質半導体膜15aには、パルスレーザ光源2、3の2倍のパルス周波数1200Hzのパルスレーザ光が実質的に照射されることになる。
 互いに異なるパルス発生タイミングでそれぞれパルスレーザ光を非晶質半導体に照射することで、パルス周波数を実質的に増加させることができ、高い生産性でパルスレーザ光の照射を行うことができる。
 なお、上記実施形態では、2台のパルスレーザ光源2、3を使用するものについて説明したが、2台を超える複数台のパルスレーザ光源を使用することもできる。
 また、上記実施形態では、ステージ16を移動させることでパルスレーザ光を相対的に走査するものとしたが、パルスレーザ光が導かれる光学系を高速に動作させることでパルスレーザ光を相対的に走査するものとしてもよい。
 また、上記実施形態では、複数のパルスレーザ光で同一のエネルギー密度で非晶質半導体膜に照射されるものとして説明したが、複数のパルスレーザ光が異なるエネルギー密度で非晶質半導体に照射されるように設定されるものであってもよい。
 以上、本発明について上記実施形態に基づいて説明を行ったが、本発明は上記実施形態の内容に限定されるものではなく、本発明の範囲を逸脱しない限りは適宜の変更が可能である。
 1  レーザアニール装置
 2  パルスレーザ光源
 3  パルスレーザ光源
 4  可変減衰器
 5  可変減衰器
 6  ハーフミラー
 7  計測器
 7a 受光部
 8  制御部
 9  全反射ミラー
10  ハーフミラー
11  計測器
11a 受光部
12  光学系
13  ハーフミラー
14  計測器
14a 受光部
15  基板
15a 非晶質半導体膜
16  ステージ
17  移動装置

Claims (14)

  1.  異なる経路で導波される複数のパルスレーザ光を非晶質半導体に照射して前記非晶質半導体を結晶化する結晶質半導体の製造方法であって、
     前記複数のパルスレーザ光は、時間的強度変化において1パルスに、少なくとも、1番目のピーク群と、その後に現れる2番目のピーク群とを有し、かつ前記1番目のピーク群における最大ピーク強度が前記1パルスにおける最大高さになっており、
     前記1番目のピーク群の前記最大ピーク強度aと、前記2番目のピーク群の最大ピーク強度bとの比b/aを最大ピーク強度比とし、基準となる前記最大ピーク強度比を基準最大ピーク強度比として、前記複数のパルスレーザ光の前記最大ピーク強度比が、前記基準最大ピーク強度比に対し4%以下の差になるようにすることを特徴とする結晶質半導体の製造方法。
  2.  前記複数のパルスレーザ光が、前記非晶質半導体上で、互いに異なるパルス発生タイミングで照射されることを特徴とする請求項1記載の結晶質半導体の製造方法。
  3.  前記複数のパルスレーザ光が、複数のレーザ光源から出力されたものであることを特徴とする請求項1または2に記載の結晶質半導体の製造方法。
  4.  前記複数のパルスレーザ光は、前記非晶質半導体上に、同じエネルギー密度で照射されることを特徴とする請求項1~3のいずれかに記載の結晶質半導体の製造方法。
  5.  前記複数のパルスレーザ光における前記最大ピーク強度比は、予め設定された所定範囲内にあることを特徴とする請求項1~4のいずれかに記載の結晶質半導体の製造方法。
  6.  前記基準最大ピーク強度比は、前記複数のパルスレーザ光のうち、一のパルスレーザ光における最大ピーク強度比であることを特徴とする請求項1~5のいずれかに記載の結晶質半導体の製造方法。
  7.  前記複数のパルスレーザ光は、各パルスレーザ光のいずれの間においても、一方の前記パルスレーザ光の最大ピーク強度比を基準最大ピーク強度比として、他方の前記パルスレーザ光の最大ピーク強度比が前記基準最大ピーク強度比に対し、4%以下の差になっていることを特徴とする請求項1~6のいずれかに記載の結晶質半導体の製造方法。
  8.  前記非晶質半導体が、基板上に形成されたアモルファスシリコン薄膜であることを特徴とする請求項1~7のいずれかに記載の結晶質半導体の製造方法。
  9.  1つまたは2つ以上のレーザ光源と、
     前記レーザ光源から出力され、時間的強度変化において1パルスに、少なくとも、1番目のピーク群と、その後に現れる2番目のピーク群とを有し、前記1番目のピーク群における最大ピーク強度が前記1パルスにおける最大高さであり、異なる経路で導波される複数のパルスレーザ光を非晶質半導体に導く光学系と、を有し、
     前記複数のパルスレーザ光は、それぞれのパルスレーザ光で前記1番目のピーク群の前記最大ピーク強度aと、前記2番目のピーク群の最大ピーク強度bとの比b/aを最大ピーク強度比、基準となる前記最大ピーク強度比を基準最大ピーク強度比として、前記最大ピーク強度比が、前記基準最大ピーク強度比に対し4%以下の差になるように設定されていることを特徴とする結晶質半導体の製造装置。
  10.  前記複数のパルスレーザ光が、異なるパルス発生タイミングを有して前記非晶質半導体に照射されるものであることを特徴とする請求項9記載の結晶質半導体の製造装置。
  11.  前記異なるパルス発生タイミングは、前記レーザ光源または/および前記光学系で与えられていることを特徴とする請求項9または10に記載の結晶質半導体の製造装置。
  12.  前記レーザ光源から出力される前記最大ピーク強度比を調整するピーク強度比調整部を備えることを特徴とする請求項9~11のいずれか1項に記載の結晶質半導体の製造装置。
  13.  前記複数のパルスレーザ光を同じエネルギー密度で前記非晶質半導体に照射するため前記エネルギー密度を設定するエネルギー密度設定部を備えることを特徴とする請求項9~12のいずれか1項に記載の結晶質半導体の製造装置。
  14.  前記複数のパルスレーザ光を前記非晶質半導体に対し相対的に走査して照射する走査装置を有することを特徴とする請求項9~13のいずれかに記載のレーザアニール装置。
PCT/JP2013/076814 2012-10-05 2013-10-02 結晶質半導体の製造方法および結晶質半導体の製造装置 WO2014054687A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380052225.5A CN104704610B (zh) 2012-10-05 2013-10-02 结晶质半导体的制造方法和结晶质半导体的制造装置
KR1020157008506A KR102108025B1 (ko) 2012-10-05 2013-10-02 결정질 반도체의 제조 방법 및 결정질 반도체의 제조 장치
SG11201502614VA SG11201502614VA (en) 2012-10-05 2013-10-02 Crystalline semiconductor manufacturing method and crystalline semiconductor manufacturing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-223680 2012-10-05
JP2012223680A JP5904590B2 (ja) 2012-10-05 2012-10-05 結晶質半導体の製造方法および結晶質半導体の製造装置

Publications (1)

Publication Number Publication Date
WO2014054687A1 true WO2014054687A1 (ja) 2014-04-10

Family

ID=50435009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076814 WO2014054687A1 (ja) 2012-10-05 2013-10-02 結晶質半導体の製造方法および結晶質半導体の製造装置

Country Status (6)

Country Link
JP (1) JP5904590B2 (ja)
KR (1) KR102108025B1 (ja)
CN (1) CN104704610B (ja)
SG (1) SG11201502614VA (ja)
TW (1) TWI605499B (ja)
WO (1) WO2014054687A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11187953B2 (en) 2016-07-26 2021-11-30 The Japan Steel Works, Ltd. Laser processing apparatus, semiconductor device manufacturing method, and amorphous silicon crystallization method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102397423B1 (ko) * 2015-10-26 2022-05-12 삼성디스플레이 주식회사 레이저 장치 및 이의 구동방법
KR102507094B1 (ko) * 2016-01-13 2023-03-08 삼성디스플레이 주식회사 레이저 결정화 장치
JP6904567B2 (ja) * 2017-09-29 2021-07-21 三星ダイヤモンド工業株式会社 スクライブ加工方法及びスクライブ加工装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012549A (ja) * 1996-06-25 1998-01-16 Toshiba Corp パルスガスレーザ発振装置、レーザアニール装置、半導体装置の製造方法、及び半導体装置
JP2001338892A (ja) * 2000-05-26 2001-12-07 Toshiba Corp レーザアニール装置および薄膜トランジスタの製造方法
JP2003109912A (ja) * 2001-10-01 2003-04-11 Matsushita Electric Ind Co Ltd レーザアニール装置
JP2011238804A (ja) * 2010-05-11 2011-11-24 Japan Steel Works Ltd:The レーザアニール処理装置、レーザアニール処理体の製造方法およびレーザアニール処理プログラム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0656241B1 (en) 1993-06-04 1998-12-23 Seiko Epson Corporation Apparatus and method for laser machining
JP3530484B2 (ja) 2000-12-08 2004-05-24 住友重機械工業株式会社 レーザ加工装置及び方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012549A (ja) * 1996-06-25 1998-01-16 Toshiba Corp パルスガスレーザ発振装置、レーザアニール装置、半導体装置の製造方法、及び半導体装置
JP2001338892A (ja) * 2000-05-26 2001-12-07 Toshiba Corp レーザアニール装置および薄膜トランジスタの製造方法
JP2003109912A (ja) * 2001-10-01 2003-04-11 Matsushita Electric Ind Co Ltd レーザアニール装置
JP2011238804A (ja) * 2010-05-11 2011-11-24 Japan Steel Works Ltd:The レーザアニール処理装置、レーザアニール処理体の製造方法およびレーザアニール処理プログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11187953B2 (en) 2016-07-26 2021-11-30 The Japan Steel Works, Ltd. Laser processing apparatus, semiconductor device manufacturing method, and amorphous silicon crystallization method

Also Published As

Publication number Publication date
KR102108025B1 (ko) 2020-05-07
JP5904590B2 (ja) 2016-04-13
JP2014075562A (ja) 2014-04-24
TW201421548A (zh) 2014-06-01
KR20150060743A (ko) 2015-06-03
CN104704610A (zh) 2015-06-10
CN104704610B (zh) 2017-09-29
SG11201502614VA (en) 2015-05-28
TWI605499B (zh) 2017-11-11

Similar Documents

Publication Publication Date Title
US8802580B2 (en) Systems and methods for the crystallization of thin films
US9245757B2 (en) Laser annealing treatment apparatus and laser annealing treatment method
KR20060048219A (ko) 반도체 박막의 제조 방법 및 반도체 박막 제조 장치
US20090314755A1 (en) Laser annealing apparatus
WO2014054687A1 (ja) 結晶質半導体の製造方法および結晶質半導体の製造装置
JP5214662B2 (ja) 多結晶シリコン薄膜の製造方法
KR20130100996A (ko) 레이저 어닐링 장치 및 레이저 어닐링 방법
TW201903855A (zh) 用於準分子雷射矽結晶之能量控制器
KR102108024B1 (ko) 결정 반도체막의 제조방법 및 제조장치
CN111065759B (zh) 激光装置和对薄膜进行加工的方法
KR102293472B1 (ko) 레이저 어닐 가공 장치, 반도체 장치의 제조 방법, 및 어모퍼스 실리콘의 결정화 방법
KR100667899B1 (ko) 저온 다결정 폴리 실리콘 박막트랜지스터 액정표시장치의레이저 어닐링 장치 및 방법
KR102238080B1 (ko) 레이저 어닐 장치 및 방법
KR20090045057A (ko) 레이저 어닐 방법
WO2014080728A1 (ja) レーザ処理方法およびレーザ処理装置
JP2007005412A (ja) ポリシリコン膜の形成方法
KR100683662B1 (ko) 레이저 가공 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13843535

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157008506

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13843535

Country of ref document: EP

Kind code of ref document: A1