WO2014054676A1 - Hybrid vehicle control device - Google Patents

Hybrid vehicle control device Download PDF

Info

Publication number
WO2014054676A1
WO2014054676A1 PCT/JP2013/076789 JP2013076789W WO2014054676A1 WO 2014054676 A1 WO2014054676 A1 WO 2014054676A1 JP 2013076789 W JP2013076789 W JP 2013076789W WO 2014054676 A1 WO2014054676 A1 WO 2014054676A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
valve timing
timing changing
hybrid vehicle
stopped
Prior art date
Application number
PCT/JP2013/076789
Other languages
French (fr)
Japanese (ja)
Inventor
崇一 折田
奈月 中倉
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2014054676A1 publication Critical patent/WO2014054676A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/06Ignition switch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/43Control of engines
    • B60Y2300/437Control of engine valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a control apparatus for a hybrid vehicle that includes an engine and a motor as power sources and includes a valve timing changing mechanism that can change the valve timing of the engine.
  • Patent Document 1 As a valve timing control device for an engine, a technique described in Patent Document 1 is disclosed.
  • This publication includes a valve timing changing mechanism that operates using an oil pump that is driven by the driving force of the engine as a hydraulic pressure source.
  • the valve timing is set to a predetermined advance position (most retarded position). Therefore, the valve timing changing mechanism is activated by delaying the engine stop for a predetermined time in order to move and lock to a position substantially intermediate between the most advanced angle position and slightly closer to the advanced angle position.
  • the present invention has been made paying attention to the above problem, and an object of the present invention is to provide a control device for a hybrid vehicle that can move the valve timing to a predetermined position when the system is stopped without causing the driver to feel uncomfortable. .
  • the valve timing changing means when the ignition switch is turned off and the valve timing changing means is other than the predetermined advance position, the stop of the vehicle system is delayed, and the engine In the state where the fuel injection is stopped, the rotation of the engine is maintained by the motor, the valve timing changing means is changed to the predetermined advance position and locked, and then the vehicle system is stopped.
  • valve timing changing means can be advanced without causing the driver to feel uncomfortable.
  • 1 is an overall system diagram illustrating a hybrid vehicle according to a first embodiment.
  • 3 is a flowchart illustrating a valve timing control process executed in the hybrid vehicle control apparatus according to the first embodiment.
  • 3 is a time chart showing a valve timing control process executed when the engine is operated in the hybrid vehicle control apparatus of the first embodiment.
  • 4 is a time chart showing a valve timing control process executed when the engine is stopped in the hybrid vehicle control apparatus according to the first embodiment.
  • FIG. 1 is an overall system diagram illustrating a hybrid vehicle according to a first embodiment.
  • the drive system of the hybrid vehicle in the first embodiment includes an engine E, a first clutch CL1, a motor generator MG, a second clutch CL2, a belt type continuously variable transmission CVT, and a propeller shaft. It has PS, differential gear DF, left drive shaft DSL, right drive shaft DSR, left front wheel FL (drive wheel), and right front wheel FR (drive wheel).
  • the engine E is, for example, a gasoline engine, and the valve opening degree of the throttle valve is controlled based on a control command from the engine controller 1 described later. Further, the engine E is provided with a valve timing changing mechanism IVC capable of changing the intake timing. Specifically, the IVC pump OP1 operated by the engine E is operated as a hydraulic pressure source, and the valve timing on the intake side can be changed in the range from the most retarded position to the most advanced position. Further, it has a lock mechanism that can fix the valve timing to a predetermined timing even when the IVC pump OP1 is not operated.
  • the lock mechanism includes: a first lock mechanism that can be fixed at the most retarded angle position; and a second lock mechanism that can be fixed at an intermediate position located slightly on the advance side of the intermediate position between the most retarded angle position and the most advanced angle position. It is configured.
  • the valve timing fixed by the first lock mechanism is described as a decompression valve tie (most retarded position)
  • the valve timing fixed by the second lock mechanism is described as an intermediate lock valve tie.
  • the valve timing set when the engine E is idling is described as idle time valve timing.
  • the first clutch CL1 is a clutch interposed between the engine E and the motor generator MG, and slips by the control hydraulic pressure generated by the first clutch hydraulic unit based on the control command from the first clutch controller 5.
  • the fastening / opening is controlled including the fastening.
  • Motor generator MG is a synchronous motor generator in which a permanent magnet is embedded in a rotor and a stator coil is wound around a stator, and applies a three-phase alternating current generated by inverter 2a based on a control command from motor controller 2. Is controlled.
  • the motor generator MG can operate as an electric motor that is driven to rotate by receiving power supplied from the battery 20 (hereinafter, this state is referred to as “powering”), or when the rotor is rotated by an external force.
  • powering this state is referred to as “powering”), or when the rotor is rotated by an external force.
  • the second clutch CL2 is a clutch interposed between the motor generator MG and the left and right front wheels FL, FR. Based on the control command from the CL2 controller 6, the second clutch CL2 is controlled by the control hydraulic pressure generated by the second clutch hydraulic unit. The fastening and opening are controlled including slip fastening.
  • the belt-type continuously variable transmission CVT consists of a primary pulley, a secondary pulley, and a belt that is stretched around these pulleys. It is a step transmission, and the gear ratio is controlled based on a control command from the CVT controller 7. Further, the belt type continuously variable transmission CVT has a transmission pump OP2 driven by a motor generator MG, and even when the engine is stopped, the hydraulic pressure is secured by the operation of the motor generator MG, and the gear ratio or The engagement state of the two clutch CL2 is configured to be controllable.
  • the output shaft of the belt type continuously variable transmission CVT is connected to the left and right front wheels FL and FR via a propeller shaft PS, a differential gear DF, a left drive shaft DSL, and a right drive shaft DSR as vehicle drive shafts.
  • the first clutch CL1 and the second clutch CL2 are, for example, wet multi-plate clutches that can continuously control the oil flow rate and hydraulic pressure with a proportional solenoid.
  • the first travel mode is an electric vehicle travel mode (hereinafter abbreviated as “EV travel mode”) as a motor use travel mode that travels using only the power of the motor generator MG as a power source with the first clutch CL1 opened. It is.
  • the second travel mode is an engine use travel mode (hereinafter abbreviated as “HEV travel mode”) in which the first clutch CL1 is engaged and the engine E is included in the power source.
  • HEV travel mode engine use travel mode
  • the “HEV travel mode” has three travel modes of “engine travel mode”, “motor assist travel mode”, and “travel power generation mode”.
  • engine running mode the drive wheels are moved using only the engine E as a power source.
  • motor assist travel mode the drive wheels are moved by using the engine E and the motor generator MG as power sources.
  • the “running power generation mode” causes the motor generator MG to function as a generator at the same time as the drive wheels RR and RL are moved using the engine E as a power source.
  • motor generator MG is operated as a generator using the power of engine E.
  • braking energy is regenerated to generate electric power by the motor generator MG and used for charging the battery 20.
  • there is a power generation mode in which the motor generator MG is operated as a generator using the power of the engine E when the vehicle is stopped.
  • the integrated controller 10 manages the energy consumption of the entire vehicle and has a function for running the vehicle with maximum efficiency. Various sensor information and range position information detected by the range position sensor 8 provided on the shift lever. , The on / off information of the ignition switch 9 and the information obtained via the CAN communication line 11 are input.
  • the integrated controller 10 also controls the operation of the engine E according to the control command to the engine controller 1, the operation control of the motor generator MG based on the control command to the motor controller 2, and the first control command to the first clutch controller 5. Engagement / release control of the clutch CL1, engagement / release control of the second clutch CL2 by a control command to the second clutch controller 6, and shift control by a control command to the CVT controller 7 are performed.
  • valve timing control processing Next, a description will be given of the valve timing control process for controlling the vehicle from being in a stopped position to a position other than the intermediate lock valve tie.
  • the valve timing changing mechanism IVC controls to the decompression tie. This is because when the engine is restarted, where the friction is considered to be sufficiently reduced due to the end of warm-up, the engine speed is set so that the engine speed can quickly get out of the low speed range where the engine speed and the vehicle body side resonate (eg, 200 rpm to 400 rpm). This is to raise the speed quickly. That is, by using a decompression tie, the intake valve closing timing when moving toward the piston top dead center is delayed, and the pumping load in the engine cylinder is reduced.
  • the decompression valve tie and the idle valve tie are extremely retarded because of the demand to increase the fuel efficiency to the limit and the fact that the motor generator MG can recover even if the engine start by the normal starter motor fails.
  • the amount of control (the magnitude of the angle to move from the retarded position to the advanced position) is larger than that of the engine vehicle, which may take time.
  • the hybrid vehicle of the first embodiment employs an inexpensive valve timing changing mechanism IVC that uses the IVC pump OP1 driven by the engine E as a hydraulic pressure source, an intermediate lock is provided if the engine E is not operating. It cannot be moved to Valtai. That is, it may take time from the ignition off to the stop of the engine E, which may give the driver a sense of discomfort.
  • the system may stop with the decompression tie.
  • FIG. 2 is a flowchart showing a valve timing control process executed in the hybrid vehicle control apparatus of the first embodiment.
  • step S1 it is determined whether or not there is a request for ignition off. If it is determined that there is a request, the process proceeds to step S2, and otherwise, the control flow ends.
  • step S2 it is determined whether or not the valve timing changing mechanism IVC is positioned at the intermediate lock valve tie. When the valve timing change mechanism IVC is positioned at the intermediate lock valve tie, the process proceeds to step S15 and the system off process is executed. Proceed to S3.
  • step S3 it is determined whether or not the shift range is located in the P range or the N range. If the shift range is located in the P or N range, the process proceeds to step S5. Otherwise, the process proceeds to step S4. move on.
  • step S4 it is determined whether or not the vehicle is in the HEV traveling mode. If it is determined that the vehicle is in the HEV traveling mode, that is, the engine is operating, the process proceeds to step S7. Otherwise, the control flow is terminated. In other words, if the engine is in an operating state, the process proceeds to step S7 and subsequent steps in this control flow regardless of the shift range position.
  • step S5 it is determined whether or not the engine is stopped. If the engine is stopped, the process proceeds to step S6. If the engine is operated, the process proceeds to step S7. In step S6, the first clutch CL1 is engaged by slip control or the like, and the engine speed is increased by the motor generator MG. This is to operate the IVC pump OP1.
  • an ignition-off delay request is output.
  • This ignition-off delay request is a request for shutting down the system after performing a process to be described later by delaying the system shut-off by a predetermined time if it is a normal ignition-off process.
  • the timer starts counting.
  • the advance processing of the valve timing changing mechanism IVC is started. Specifically, control is performed from the current position (decompression valve tie or idle valve tie) toward the intermediate lock valve tie. When locked by the first lock mechanism, first secure the hydraulic pressure, unlock the first lock mechanism, perform advance processing, and operate the second lock mechanism to complete the movement to the intermediate lock valve tie Execute the process.
  • step S10 it is determined whether or not the timer count value has reached a predetermined time T1, which is set in advance. If it is determined that the timer count value has not been reached, the process proceeds to step S14. Otherwise, the process proceeds to step S11. In step S11, the fuel injection of the engine is stopped.
  • step S12 rotation maintenance control by motor generator MG is performed, and the engine rotation speed is maintained by rotation speed control of motor generator MG. As a result, the operation of the IVC pump OP1 is secured, and the advance processing of the valve timing changing mechanism IVC is continued.
  • step S13 it is determined whether or not the timer count value has reached a predetermined time T2 longer than T1, and when it is determined that the timer count value has not reached, the process proceeds to step S14. Execute the system stop process.
  • step S14 it is determined whether or not the second lock mechanism has been locked by moving to the intermediate lock valve tie. If it is determined that the lock has been completed, the process proceeds to step S15. If it is determined that the lock has not been completed, Returning to step S10, the advance angle processing is continued. Whether or not the lock has been completed is determined by providing the second lock mechanism with a hydraulic switch, a contact switch, or the like, thereby determining whether the lock has been completed, or outputting an operation request signal for the second lock mechanism. The determination may be made based on whether or not a predetermined time has passed. In step S15, a system stop process is executed.
  • FIG. 3 is a time chart showing valve timing control processing executed when the engine is operated in the hybrid vehicle control apparatus of the first embodiment.
  • This time chart shows a case where the ignition switch is turned off in the engine operating state and in the P range position.
  • the state before the valve timing control process is a vehicle stop state in which the engine E is operating, the first clutch CL1 is engaged, and the second clutch CL2 is released.
  • the motor generator MG is controlled so as to maintain the idle rotational speed.
  • the system is stopped.
  • the first clutch CL1 is released, and the engine E and the motor generator MG are reduced in speed according to their respective inertia and friction and stopped.
  • the system is stopped when the predetermined time T2 elapses. Thereby, the situation where a system does not stop can be avoided.
  • FIG. 4 is a time chart showing a valve timing control process executed when the engine is stopped in the hybrid vehicle control apparatus of the first embodiment. This time chart shows a case where the engine is stopped and the ignition switch is turned off in the P range position.
  • the state before the valve timing control process is the vehicle stop state in which the engine E is stopped and the first clutch CL1 and the second clutch CL2 are released, and the transmission pump OP2 is driven by the idle rotation of the motor generator MG. Is in a state where a predetermined hydraulic pressure is supplied to the belt type continuously variable transmission CVT.
  • the hydraulic oil is supplied by the IVC pump OP1 (pump) driven by the engine E, and the intake valve can be changed to the advance side or the retard side within a predetermined range.
  • the valve timing changing mechanism IVC valve timing changing means having a second locking mechanism that can be locked at the advanced angle position, the motor generator MG (motor) arranged in series with the engine E, and the ignition switch 9 being turned off, the vehicle
  • the integrated controller 10 system stop means for stopping the system and the ignition switch 9 are turned off and the valve timing changing mechanism IVC is other than the intermediate lock valve tie (predetermined advance position)
  • the motor generator MG maintains the rotation of the engine E with the delay and the fuel injection of the engine E stopped. Holding the hydraulic fluid, changing the valve timing changing mechanism IVC to the intermediate lock valve tie and locking the vehicle system, and then stopping the vehicle system. Therefore, the system can be stopped after moving to the intermediate lock valve timing position regardless of the advance angle or retard angle position, so that the engine can be reliably restarted when the ignition is turned on next time. Even if it takes time to stop the system, the fuel injection is stopped and the engine speed is maintained by the motor generator MG. Therefore, the valve timing changing mechanism IVC can be advanced without causing the driver to feel uncomfortable.

Abstract

In this hybrid vehicle control device, when the ignition switch is switched off and a valve timing changing means is not in a prescribed advanced position, stopping of the vehicle system is delayed, and in a state in which the engine fuel injection has stopped, rotation of the engine is maintained by the motor, the valve timing changing means is changed to the prescribed advanced position and locked, and thereafter the vehicle system is stopped.

Description

ハイブリッド車両の制御装置Control device for hybrid vehicle
 本発明は、動力源としてエンジンとモータとを備え、該エンジンにバルブタイミングを変更可能なバルブタイミング変更機構を備えたハイブリッド車両の制御装置に関する。 The present invention relates to a control apparatus for a hybrid vehicle that includes an engine and a motor as power sources and includes a valve timing changing mechanism that can change the valve timing of the engine.
 エンジンのバルブタイミング制御装置として、特許文献1に記載の技術が開示されている。この公報には、エンジンの駆動力により作動するオイルポンプを油圧源として作動するバルブタイミング変更機構を備え、イグニッションスイッチがオフとされた時は、バルブタイミングを所定の進角位置(最遅角位置と最進角位置の略中間位置であり、若干進角位置寄り)に移動させてロックするために、所定時間エンジン停止を遅延してバルブタイミング変更機構を作動させるものである。 As a valve timing control device for an engine, a technique described in Patent Document 1 is disclosed. This publication includes a valve timing changing mechanism that operates using an oil pump that is driven by the driving force of the engine as a hydraulic pressure source. When the ignition switch is turned off, the valve timing is set to a predetermined advance position (most retarded position). Therefore, the valve timing changing mechanism is activated by delaying the engine stop for a predetermined time in order to move and lock to a position substantially intermediate between the most advanced angle position and slightly closer to the advanced angle position.
特開2011-179418号公報JP 2011-179418 A
 しかしながら、イグニッションスイッチのオフ時に所定の進角位置に移動させる際、進角位置までの移動量が大きいと、エンジン停止を遅延させる所定時間が長くなるおそれがある。このことは、イグニッションスイッチをオフにしたにも関わらずエンジン点火状態が継続することを意味し、運転者にとって違和感となる。また、ハイブリッド車両のようにイグニッションスイッチがオンの状態でエンジンを停止している場合があり、その状態でイグニッションスイッチをオフしたとしてもエンジンが停止しているためバルブタイミング変更機構を作動させることができない。 However, when moving to a predetermined advance position when the ignition switch is off, if the amount of movement to the advance position is large, the predetermined time for delaying the engine stop may become longer. This means that the engine ignition state continues even though the ignition switch is turned off, which makes the driver feel uncomfortable. Also, there are cases where the engine is stopped with the ignition switch turned on as in a hybrid vehicle, and even if the ignition switch is turned off in that state, the engine is stopped, so the valve timing changing mechanism can be operated. Can not.
 本発明は、上記問題に着目してなされたもので、運転者に違和感を与えることなく、システム停止時にバルブタイミングを所定の位置に移動可能なハイブリッド車両の制御装置を提供することを目的とする。 The present invention has been made paying attention to the above problem, and an object of the present invention is to provide a control device for a hybrid vehicle that can move the valve timing to a predetermined position when the system is stopped without causing the driver to feel uncomfortable. .
 上記目的を達成するため、本発明のハイブリッド車両の制御装置では、イグニッションスイッチがオフとされ、かつ、バルブタイミング変更手段が所定の進角位置以外の場合は、車両システムの停止を遅延させ、エンジンの燃料噴射を停止した状態で、モータによりエンジンの回転を維持してバルブタイミング変更手段を所定の進角位置に変更してロックした後に車両システムを停止することとした。 In order to achieve the above object, in the hybrid vehicle control device of the present invention, when the ignition switch is turned off and the valve timing changing means is other than the predetermined advance position, the stop of the vehicle system is delayed, and the engine In the state where the fuel injection is stopped, the rotation of the engine is maintained by the motor, the valve timing changing means is changed to the predetermined advance position and locked, and then the vehicle system is stopped.
 よって、燃料噴射を停止してモータによりエンジン回転数を維持するため、運転者に違和感を与えることなくバルブタイミング変更手段を進角作動できる。 Therefore, since the fuel injection is stopped and the engine speed is maintained by the motor, the valve timing changing means can be advanced without causing the driver to feel uncomfortable.
実施例1のハイブリッド車両を示す全体システム図である。1 is an overall system diagram illustrating a hybrid vehicle according to a first embodiment. 実施例1のハイブリッド車両の制御装置において実行されるバルブタイミング制御処理を表すフローチャートである。3 is a flowchart illustrating a valve timing control process executed in the hybrid vehicle control apparatus according to the first embodiment. 実施例1のハイブリッド車両の制御装置においてエンジン作動時に実行されるバルブタイミング制御処理を表すタイムチャートである。3 is a time chart showing a valve timing control process executed when the engine is operated in the hybrid vehicle control apparatus of the first embodiment. 実施例1のハイブリッド車両の制御装置においてエンジン停止時に実行されるバルブタイミング制御処理を表すタイムチャートである。4 is a time chart showing a valve timing control process executed when the engine is stopped in the hybrid vehicle control apparatus according to the first embodiment.
E エンジン
CL1 第1クラッチ
MG モータジェネレータ
CL2 第2クラッチ
CVT ベルト式無段変速機
1 エンジンコントローラ
2 モータコントローラ
5 第1クラッチコントローラ
6 第2クラッチコントローラ
7 CVTコントローラ
8 レンジ位置センサ
9 イグニッションスイッチ
10 統合コントローラ
IVC バルブタイミング変更機構
OP1 IVCポンプ
OP2 変速機用ポンプ

E engine
CL1 1st clutch
MG motor generator
CL2 2nd clutch
CVT belt type continuously variable transmission 1 engine controller 2 motor controller 5 first clutch controller 6 second clutch controller 7 CVT controller 8 range position sensor 9 ignition switch 10 integrated controller
IVC valve timing change mechanism
OP1 IVC pump
OP2 Transmission pump

 まず、ハイブリッド車両の駆動系構成を説明する。図1は実施例1のハイブリッド車両を示す全体システム図である。実施例1におけるハイブリッド車の駆動系は、図1に示すように、エンジンEと、第1クラッチCL1と、モータジェネレータMGと、第2クラッチCL2と、ベルト式無段変速機CVTと、プロペラシャフトPSと、ディファレンシャルギヤDFと、左ドライブシャフトDSLと、右ドライブシャフトDSRと、左前輪FL(駆動輪)と、右前輪FR(駆動輪)と、を有する。 First, the drive system configuration of the hybrid vehicle will be described. FIG. 1 is an overall system diagram illustrating a hybrid vehicle according to a first embodiment. As shown in FIG. 1, the drive system of the hybrid vehicle in the first embodiment includes an engine E, a first clutch CL1, a motor generator MG, a second clutch CL2, a belt type continuously variable transmission CVT, and a propeller shaft. It has PS, differential gear DF, left drive shaft DSL, right drive shaft DSR, left front wheel FL (drive wheel), and right front wheel FR (drive wheel).
 エンジンEは、例えばガソリンエンジンであり、後述するエンジンコントローラ1からの制御指令に基づいて、スロットルバルブのバルブ開度等が制御される。また、エンジンEには、吸気タイミングを変更可能なバルブタイミング変更機構IVCが設けられている。具体的には、エンジンEにより作動するIVCポンプOP1を油圧源として作動し、吸気側のバルブタイミングを最遅角位置から最進角位置の範囲で変更可能としている。また、IVCポンプOP1が非作動であってもバルブタイミングを所定のタイミングに固定可能なロック機構を有する。ロック機構は、最遅角位置に固定可能な第1ロック機構と、最遅角位置と最進角位置の中間よりもやや進角側に位置する中間位置に固定可能な第2ロック機構とから構成されている。以下、第1ロック機構により固定されるバルブタイミングをデコンプバルタイ(最遅角位置)と記載し、第2ロック機構により固定されるバルブタイミングを中間ロックバルタイと記載する。また、特にロック機構は存在しないが、エンジンEのアイドリング時に設定されるバルブタイミングをアイドル時バルタイと記載する。 The engine E is, for example, a gasoline engine, and the valve opening degree of the throttle valve is controlled based on a control command from the engine controller 1 described later. Further, the engine E is provided with a valve timing changing mechanism IVC capable of changing the intake timing. Specifically, the IVC pump OP1 operated by the engine E is operated as a hydraulic pressure source, and the valve timing on the intake side can be changed in the range from the most retarded position to the most advanced position. Further, it has a lock mechanism that can fix the valve timing to a predetermined timing even when the IVC pump OP1 is not operated. The lock mechanism includes: a first lock mechanism that can be fixed at the most retarded angle position; and a second lock mechanism that can be fixed at an intermediate position located slightly on the advance side of the intermediate position between the most retarded angle position and the most advanced angle position. It is configured. Hereinafter, the valve timing fixed by the first lock mechanism is described as a decompression valve tie (most retarded position), and the valve timing fixed by the second lock mechanism is described as an intermediate lock valve tie. Further, although there is no particular locking mechanism, the valve timing set when the engine E is idling is described as idle time valve timing.
 第1クラッチCL1は、エンジンEとモータジェネレータMGとの間に介装されたクラッチであり、第1クラッチコントローラ5からの制御指令に基づいて、第1クラッチ油圧ユニットにより作り出される制御油圧により、スリップ締結を含み締結・開放が制御される。 The first clutch CL1 is a clutch interposed between the engine E and the motor generator MG, and slips by the control hydraulic pressure generated by the first clutch hydraulic unit based on the control command from the first clutch controller 5. The fastening / opening is controlled including the fastening.
 モータジェネレータMGは、ロータに永久磁石を埋設しステータにステータコイルが巻き付けられた同期型モータジェネレータであり、モータコントローラ2からの制御指令に基づいて、インバータ2aにより作り出された三相交流を印加することにより制御される。このモータジェネレータMGは、バッテリ20からの電力の供給を受けて回転駆動する電動機として動作することもできるし(以下、この状態を「力行」と呼ぶ)、ロータが外力により回転している場合には、ステータコイルの両端に起電力を生じさせる発電機として機能してバッテリ20を充電することもできる(以下、この動作状態を「回生」と呼ぶ)。 Motor generator MG is a synchronous motor generator in which a permanent magnet is embedded in a rotor and a stator coil is wound around a stator, and applies a three-phase alternating current generated by inverter 2a based on a control command from motor controller 2. Is controlled. The motor generator MG can operate as an electric motor that is driven to rotate by receiving power supplied from the battery 20 (hereinafter, this state is referred to as “powering”), or when the rotor is rotated by an external force. Can function as a generator that generates electromotive force at both ends of the stator coil to charge the battery 20 (hereinafter, this operation state is referred to as “regeneration”).
 第2クラッチCL2は、モータジェネレータMGと左右前輪FL,FRとの間に介装されたクラッチであり、CL2コントローラ6からの制御指令に基づいて、第2クラッチ油圧ユニットにより作り出される制御油圧により、スリップ締結を含み締結・開放が制御される。 The second clutch CL2 is a clutch interposed between the motor generator MG and the left and right front wheels FL, FR. Based on the control command from the CL2 controller 6, the second clutch CL2 is controlled by the control hydraulic pressure generated by the second clutch hydraulic unit. The fastening and opening are controlled including slip fastening.
 ベルト式無段変速機CVTは、プライマリプーリとセカンダリプーリとこれらプーリに掛けあわされたベルトからなり、プーリ溝幅を油圧制御により変更することで無段階に変速比を変更可能なベルト式の無段変速機であり、CVTコントローラ7からの制御指令に基づいて変速比が制御される。また、ベルト式無段変速機CVTは、モータジェネレータMGにより駆動される変速機用ポンプOP2を有し、エンジン停止時であっても、モータジェネレータMGの作動により油圧を確保し、変速比もしくは第2クラッチCL2の締結状態等を制御可能に構成されている。 The belt-type continuously variable transmission CVT consists of a primary pulley, a secondary pulley, and a belt that is stretched around these pulleys. It is a step transmission, and the gear ratio is controlled based on a control command from the CVT controller 7. Further, the belt type continuously variable transmission CVT has a transmission pump OP2 driven by a motor generator MG, and even when the engine is stopped, the hydraulic pressure is secured by the operation of the motor generator MG, and the gear ratio or The engagement state of the two clutch CL2 is configured to be controllable.
 ベルト式無段変速機CVTの出力軸は、車両駆動軸としてのプロペラシャフトPS、ディファレンシャルギヤDF、左ドライブシャフトDSL、右ドライブシャフトDSRを介して左右前輪FL,FRに連結されている。尚、前記第1クラッチCL1と第2クラッチCL2には、例えば、比例ソレノイドで油流量および油圧を連続的に制御できる湿式多板クラッチを用いている。 The output shaft of the belt type continuously variable transmission CVT is connected to the left and right front wheels FL and FR via a propeller shaft PS, a differential gear DF, a left drive shaft DSL, and a right drive shaft DSR as vehicle drive shafts. The first clutch CL1 and the second clutch CL2 are, for example, wet multi-plate clutches that can continuously control the oil flow rate and hydraulic pressure with a proportional solenoid.
 このハイブリッド駆動系には、第1クラッチCL1の締結・開放状態に応じて少なくとも2つの走行モードを有する。第1走行モードは、第1クラッチCL1の開放状態で、モータジェネレータMGの動力のみを動力源として走行するモータ使用走行モードとしての電気自動車走行モード(以下、「EV走行モード」と略称する。)である。第2走行モードは、第1クラッチCL1の締結状態で、エンジンEを動力源に含みながら走行するエンジン使用走行モード(以下、「HEV走行モード」と略称する。)である。尚、EV走行モードからHEV走行モードに遷移するときは、第1クラッチCL1を締結し、モータジェネレータMGのトルクを用いてエンジン始動を行う。 This hybrid drive system has at least two travel modes according to the engaged / released state of the first clutch CL1. The first travel mode is an electric vehicle travel mode (hereinafter abbreviated as “EV travel mode”) as a motor use travel mode that travels using only the power of the motor generator MG as a power source with the first clutch CL1 opened. It is. The second travel mode is an engine use travel mode (hereinafter abbreviated as “HEV travel mode”) in which the first clutch CL1 is engaged and the engine E is included in the power source. When transitioning from the EV travel mode to the HEV travel mode, the first clutch CL1 is engaged and the engine is started using the torque of the motor generator MG.
 上記「HEV走行モード」には、「エンジン走行モード」と「モータアシスト走行モード」と「走行発電モード」との3つの走行モードを有する。「エンジン走行モード」は、エンジンEのみを動力源として駆動輪を動かす。「モータアシスト走行モード」は、エンジンEとモータジェネレータMGの2つを動力源として駆動輪を動かす。「走行発電モード」は、エンジンEを動力源として駆動輪RR,RLを動かすと同時に、モータジェネレータMGを発電機として機能させる。定速運転時や加速運転時には、エンジンEの動力を利用してモータジェネレータMGを発電機として動作させる。また、減速運転時は、制動エネルギを回生してモータジェネレータMGにより発電し、バッテリ20の充電のために使用する。また、更なるモードとして、車両停止時には、エンジンEの動力を利用してモータジェネレータMGを発電機として動作させる発電モードを有する。 The “HEV travel mode” has three travel modes of “engine travel mode”, “motor assist travel mode”, and “travel power generation mode”. In the “engine running mode”, the drive wheels are moved using only the engine E as a power source. In the “motor assist travel mode”, the drive wheels are moved by using the engine E and the motor generator MG as power sources. The “running power generation mode” causes the motor generator MG to function as a generator at the same time as the drive wheels RR and RL are moved using the engine E as a power source. During constant speed operation or acceleration operation, motor generator MG is operated as a generator using the power of engine E. Further, during deceleration operation, braking energy is regenerated to generate electric power by the motor generator MG and used for charging the battery 20. Further, as a further mode, there is a power generation mode in which the motor generator MG is operated as a generator using the power of the engine E when the vehicle is stopped.
 統合コントローラ10は、車両全体の消費エネルギを管理し、最高効率で車両を走らせるための機能を担うもので、各種センサ情報,シフトレバーに設けられたレンジ位置センサ8により検知されたレンジ位置情報,イグニッションスイッチ9のオン・オフ情報及びCAN通信線11を介して得られた情報を入力する。また、統合コントローラ10は、エンジンコントローラ1への制御指令によるエンジンEの動作制御と、モータコントローラ2への制御指令によるモータジェネレータMGの動作制御と、第1クラッチコントローラ5への制御指令による第1クラッチCL1の締結・開放制御と、第2クラッチコントローラ6への制御指令による第2クラッチCL2の締結・開放制御と、CVTコントローラ7への制御指令による変速制御と、を行う。 The integrated controller 10 manages the energy consumption of the entire vehicle and has a function for running the vehicle with maximum efficiency. Various sensor information and range position information detected by the range position sensor 8 provided on the shift lever. , The on / off information of the ignition switch 9 and the information obtained via the CAN communication line 11 are input. The integrated controller 10 also controls the operation of the engine E according to the control command to the engine controller 1, the operation control of the motor generator MG based on the control command to the motor controller 2, and the first control command to the first clutch controller 5. Engagement / release control of the clutch CL1, engagement / release control of the second clutch CL2 by a control command to the second clutch controller 6, and shift control by a control command to the CVT controller 7 are performed.
 (バルブタイミング制御処理)
 次に、停車中であって中間ロックバルタイ以外の位置にいる状態から中間ロックバルタイの位置に制御するバルブタイミング制御処理について説明する。まず、バルブタイミング制御処理の必要性について説明する。バルブタイミング変更機構IVCは、例えばエンジンEの暖気が終了している状態でHEV走行モードからEV走行モードに変更され、エンジンEを停止する場合には、デコンプバルタイに制御する。これは、暖気終了によりフリクションが十分に低下していると考えられるエンジン再始動時に、エンジン回転数と車体側とが共振する低回転数領域(例えば200rpm~400rpm)を素早く抜けるためにエンジン回転数を素早く上昇させるためである。即ち、デコンプバルタイとすることで、ピストン上死点に向かう際の吸気バルブ閉塞タイミングを遅らせ、エンジンシリンダ内のポンピング負荷の軽減を図るものである。
(Valve timing control processing)
Next, a description will be given of the valve timing control process for controlling the vehicle from being in a stopped position to a position other than the intermediate lock valve tie. First, the necessity of the valve timing control process will be described. For example, when the engine E is warmed up, the valve timing changing mechanism IVC is changed from the HEV running mode to the EV running mode, and when the engine E is stopped, the valve timing changing mechanism IVC controls to the decompression tie. This is because when the engine is restarted, where the friction is considered to be sufficiently reduced due to the end of warm-up, the engine speed is set so that the engine speed can quickly get out of the low speed range where the engine speed and the vehicle body side resonate (eg, 200 rpm to 400 rpm). This is to raise the speed quickly. That is, by using a decompression tie, the intake valve closing timing when moving toward the piston top dead center is delayed, and the pumping load in the engine cylinder is reduced.
 一方、イグニッションオフのようにシステム停止とされる場合、再度イグニッションオンされるタイミングがいつになるかは不明である。このような場合、仮にデコンプバルタイのままでエンジンEを停止すると、次回のエンジン始動が冷機始動のようにエンジンフリクションが大きい場合、十分なトルクを得られず、適切なエンジン始動を達成できないおそれがある。そこで、冷機始動が行われる可能性がある場面では、中間ロックバルタイとすることで、吸気バルブ閉塞タイミングを遅らせることなく、エンジンシリンダ内のポンピング負荷を確保することで、エンジン始動時のトルクを確保する。 On the other hand, when the system is stopped such as when the ignition is turned off, it is unknown when the timing when the ignition is turned on again. In such a case, if the engine E is stopped with the decompression valve tie still maintained, if the engine friction is large as in the case of the cold engine start next time, sufficient torque cannot be obtained and proper engine start may not be achieved. is there. Therefore, when there is a possibility of cold start, the intermediate lock valve tie secures the pumping load in the engine cylinder without delaying the intake valve closing timing, thereby securing the torque at engine start. To do.
 実施例1のハイブリッド車両にあっては、デコンプバルタイの状態、もしくは中間ロックバルタイよりも遅角側のアイドルバルタイの状態でイグニッションオフとされた場合、そのままエンジンEを停止すると、その後のイグニッションオンによるエンジン再始動時に適切なバルブタイミングを得られないおそれがある。そこで、イグニッションオフに伴うエンジン停止時には、中間ロックバルタイに移行してからエンジンEの作動を停止することが好ましい。 In the hybrid vehicle of the first embodiment, when the ignition is turned off in the state of the decompression valve tie or in the state of the idle valve tie that is retarded from the intermediate lock valve tie, if the engine E is stopped as it is, the subsequent ignition on Appropriate valve timing may not be obtained when the engine is restarted. Therefore, when the engine is stopped due to the ignition off, it is preferable to stop the operation of the engine E after shifting to the intermediate lock valve timing.
 しかしながら、ハイブリッド車両の場合、燃費を限界まで高めるという要求、及び、仮に通常のスタータモータによるエンジン始動に失敗してもモータジェネレータMGによってリカバーできるという背景から、デコンプバルタイやアイドルバルタイが極めて遅角位置側に設定される傾向が強い。このことから、中間ロックバルタイの位置まで移動させる際にはエンジン車両に比べて制御量(遅角位置から進角位置まで移動させる角度の大きさ)が大きく、時間がかかるおそれがある。 However, in the case of a hybrid vehicle, the decompression valve tie and the idle valve tie are extremely retarded because of the demand to increase the fuel efficiency to the limit and the fact that the motor generator MG can recover even if the engine start by the normal starter motor fails. There is a strong tendency to be set on the side. For this reason, when moving to the position of the intermediate lock valve tie, the amount of control (the magnitude of the angle to move from the retarded position to the advanced position) is larger than that of the engine vehicle, which may take time.
 このとき、実施例1のハイブリッド車両では、油圧源としてエンジンEにより駆動されるIVCポンプOP1を使用する安価なバルブタイミング変更機構IVCを採用しているため、エンジンEが作動していなければ中間ロックバルタイまで移動させることができない。すなわち、イグニッションオフからエンジンEを停止するまでに時間がかかるおそれがあり、運転者に違和感を与えるおそれがある。また、EV走行モードで走行中のエンジン停止中にイグニッションオフされた場合、デコンプバルタイのままシステムが停止するおそれがある。 At this time, since the hybrid vehicle of the first embodiment employs an inexpensive valve timing changing mechanism IVC that uses the IVC pump OP1 driven by the engine E as a hydraulic pressure source, an intermediate lock is provided if the engine E is not operating. It cannot be moved to Valtai. That is, it may take time from the ignition off to the stop of the engine E, which may give the driver a sense of discomfort. In addition, if the ignition is turned off while the engine is running in the EV running mode, the system may stop with the decompression tie.
 そこで、実施例1では、ハイブリッド車両においてイグニッションオフする場合であっても、不要な燃料噴射を行うことなくバルブタイミングを適切な位置に制御することで、上記課題を解決するものである。 Therefore, in the first embodiment, even when the ignition is turned off in the hybrid vehicle, the above problem is solved by controlling the valve timing to an appropriate position without performing unnecessary fuel injection.
 図2は実施例1のハイブリッド車両の制御装置において実行されるバルブタイミング制御処理を表すフローチャートである。
 ステップS1では、イグニッションオフの要求があるか否かを判断し、要求ありと判断した場合はステップS2に進み、それ以外の場合は本制御フローを終了する。
 ステップS2では、バルブタイミング変更機構IVCが中間ロックバルタイに位置するか否かを判断し、中間ロックバルタイに位置しているときにはステップS15に進んでシステムオフ処理を実行し、それ以外の場合はステップS3に進む。
FIG. 2 is a flowchart showing a valve timing control process executed in the hybrid vehicle control apparatus of the first embodiment.
In step S1, it is determined whether or not there is a request for ignition off. If it is determined that there is a request, the process proceeds to step S2, and otherwise, the control flow ends.
In step S2, it is determined whether or not the valve timing changing mechanism IVC is positioned at the intermediate lock valve tie. When the valve timing change mechanism IVC is positioned at the intermediate lock valve tie, the process proceeds to step S15 and the system off process is executed. Proceed to S3.
 ステップS3では、シフトレンジがPレンジもしくはNレンジに位置しているか否かを判断し、PもしくはNレンジに位置している場合はステップS5に進み、それ以外のレンジ位置の場合はステップS4に進む。
 ステップS4では、HEV走行モードか否かが判断され、HEV走行モードすなわちエンジン作動状態であると判断された場合はステップS7に進み、それ以外の場合は本制御フローを終了する。言い換えると、エンジン作動状態であれば、シフトレンジ位置が何れの位置にあっても本制御フローのステップS7以降へと進むこととなる。
In step S3, it is determined whether or not the shift range is located in the P range or the N range. If the shift range is located in the P or N range, the process proceeds to step S5. Otherwise, the process proceeds to step S4. move on.
In step S4, it is determined whether or not the vehicle is in the HEV traveling mode. If it is determined that the vehicle is in the HEV traveling mode, that is, the engine is operating, the process proceeds to step S7. Otherwise, the control flow is terminated. In other words, if the engine is in an operating state, the process proceeds to step S7 and subsequent steps in this control flow regardless of the shift range position.
 ステップS5では、エンジン停止状態か否かを判断し、エンジン停止状態の場合はステップS6に進み、エンジン作動状態の場合はステップS7に進む。
 ステップS6では、第1クラッチCL1をスリップ制御等により締結し、モータジェネレータMGでエンジン回転を引き上げる。IVCポンプOP1を作動させるためである。
In step S5, it is determined whether or not the engine is stopped. If the engine is stopped, the process proceeds to step S6. If the engine is operated, the process proceeds to step S7.
In step S6, the first clutch CL1 is engaged by slip control or the like, and the engine speed is increased by the motor generator MG. This is to operate the IVC pump OP1.
 ステップS7では、イグニッションオフ遅延要求を出力する。このイグニッションオフ遅延要求は、通常のイグニッションオフ処理であれば、システム遮断を行うところを所定時間だけ遅延させて、後述する処理を行った後にシステム遮断を行うための要求である。
 ステップS8では、タイマーのカウントを開始する。
 ステップS9では、バルブタイミング変更機構IVCの進角処理を開始する。具体的には、現在の位置(デコンプバルタイもしくはアイドルバルタイ)から中間ロックバルタイに向けて制御する。第1ロック機構によりロックされている場合は、まず油圧を確保し、第1ロック機構のロックを解除し、進角処理を行い、第2ロック機構を作動させて中間ロックバルタイへの移動を完了させる処理を実行する。
In step S7, an ignition-off delay request is output. This ignition-off delay request is a request for shutting down the system after performing a process to be described later by delaying the system shut-off by a predetermined time if it is a normal ignition-off process.
In step S8, the timer starts counting.
In step S9, the advance processing of the valve timing changing mechanism IVC is started. Specifically, control is performed from the current position (decompression valve tie or idle valve tie) toward the intermediate lock valve tie. When locked by the first lock mechanism, first secure the hydraulic pressure, unlock the first lock mechanism, perform advance processing, and operate the second lock mechanism to complete the movement to the intermediate lock valve tie Execute the process.
 ステップS10では、タイマーカウント値が予め設定された所定時間T1に到達したか否かを判断し、到達していないと判断した場合はステップS14に進み、それ以外の場合はステップS11に進む。
 ステップS11では、エンジンの燃料噴射を停止する。
In step S10, it is determined whether or not the timer count value has reached a predetermined time T1, which is set in advance. If it is determined that the timer count value has not been reached, the process proceeds to step S14. Otherwise, the process proceeds to step S11.
In step S11, the fuel injection of the engine is stopped.
 ステップS12では、モータジェネレータMGによる回転維持制御を行い、エンジン回転数をモータジェネレータMGの回転数制御により維持する。これによりIVCポンプOP1の作動を確保し、バルブタイミング変更機構IVCの進角処理を継続する。
 ステップS13では、タイマーカウント値がT1よりも長い所定時間T2に到達したか否かを判断し、到達していないと判断した場合はステップS14に進み、到達したと判断した場合はステップS15に進んでシステム停止処理を実行する。
In step S12, rotation maintenance control by motor generator MG is performed, and the engine rotation speed is maintained by rotation speed control of motor generator MG. As a result, the operation of the IVC pump OP1 is secured, and the advance processing of the valve timing changing mechanism IVC is continued.
In step S13, it is determined whether or not the timer count value has reached a predetermined time T2 longer than T1, and when it is determined that the timer count value has not reached, the process proceeds to step S14. Execute the system stop process.
 ステップS14では、中間ロックバルタイに移動して第2ロック機構によるロックが完了したか否かを判断し、ロック完了と判断した場合にはステップS15に進み、ロック完了していないと判断した場合はステップS10に戻って進角処理を継続する。尚、ロック完了が達成されたか否かは、第2ロック機構に油圧スイッチや接触スイッチ等を備え、これによりロック完了を判断してもよいし、第2ロック機構の作動要求信号を出力してから所定時間が経過したか否かで判断してもよい。
 ステップS15では、システム停止処理を実行する。
In step S14, it is determined whether or not the second lock mechanism has been locked by moving to the intermediate lock valve tie. If it is determined that the lock has been completed, the process proceeds to step S15. If it is determined that the lock has not been completed, Returning to step S10, the advance angle processing is continued. Whether or not the lock has been completed is determined by providing the second lock mechanism with a hydraulic switch, a contact switch, or the like, thereby determining whether the lock has been completed, or outputting an operation request signal for the second lock mechanism. The determination may be made based on whether or not a predetermined time has passed.
In step S15, a system stop process is executed.
 図3は実施例1のハイブリッド車両の制御装置においてエンジン作動時に実行されるバルブタイミング制御処理を表すタイムチャートである。このタイムチャートは、エンジン作動状態、かつ、Pレンジ位置においてイグニッションスイッチがオフとされた場合を示す。尚、バルブタイミング制御処理を行う前の状態は、エンジンEが作動しており、第1クラッチCL1は締結しており、第2クラッチCL2は解放された車両停止状態である。また、モータジェネレータMGはアイドル回転数を維持するように回転数制御が行われているものとする。 FIG. 3 is a time chart showing valve timing control processing executed when the engine is operated in the hybrid vehicle control apparatus of the first embodiment. This time chart shows a case where the ignition switch is turned off in the engine operating state and in the P range position. The state before the valve timing control process is a vehicle stop state in which the engine E is operating, the first clutch CL1 is engaged, and the second clutch CL2 is released. In addition, it is assumed that the motor generator MG is controlled so as to maintain the idle rotational speed.
 時刻t1において、運転者がイグニッションスイッチ9を押し込むとPush信号が出力され、イグニッションスイッチ9をオンからオフに切り換える処理が開始される。このとき、バルブタイミング変更機構IVCはアイドルバルタイに位置しているため、イグニッションオフ遅延要求が出力され、T1(例えば1秒)だけ遅延される。この間は、エンジン燃料噴射が継続され、素早い進角処理を促す。 At time t1, when the driver pushes the ignition switch 9, a Push signal is output, and the process of switching the ignition switch 9 from on to off is started. At this time, since the valve timing changing mechanism IVC is located in the idle valve timing, an ignition-off delay request is output and delayed by T1 (for example, 1 second). During this time, engine fuel injection is continued, prompting rapid advance processing.
 時刻t2において、所定時間T1が経過すると、燃料噴射が停止される。運転者がイグニッションスイッチ9をオフしてからあまり長い時間、エンジン燃料噴射を継続することは違和感となり、燃費性能も悪化するおそれがあるからである。そして、モータジェネレータMGの回転数制御によりエンジン回転数はアイドル回転数を維持し、これによりIVCポンプOP1のポンプ吐出量を確保することで進角処理の継続を確保する。尚、燃料噴射を停止した状態でエンジンEが空回りする場合、振動等が発生しないため、運転者に違和感を与えることはない。 At time t2, when a predetermined time T1 has elapsed, fuel injection is stopped. This is because it is uncomfortable to continue the engine fuel injection for a long time after the driver turns off the ignition switch 9, and the fuel efficiency may deteriorate. Then, by controlling the rotational speed of the motor generator MG, the engine rotational speed is maintained at the idle rotational speed, thereby ensuring the pump discharge amount of the IVC pump OP1, thereby ensuring the continuation of the advance processing. It should be noted that when the engine E rotates idly with fuel injection stopped, no vibration or the like is generated, so that the driver does not feel uncomfortable.
 時刻t3において、所定時間T2が経過する前の時点で中間ロックバルタイへの移動が確実に終了していると判断されると、システムを停止する。システムが停止されると、第1クラッチCL1が解放され、エンジンE及びモータジェネレータMGはそれぞれのイナーシャやフリクションに応じて回転数が低下し、停止する。尚、所定時間T2経過前の段階で中間ロックバルタイに移動し、ロック完了と判断されなかった場合は、所定時間T2の経過によってシステムを停止する。これにより、システムが停止しないという事態を回避できる。 At time t3, if it is determined that the movement to the intermediate lock valve tie has been completed with certainty before the predetermined time T2 has elapsed, the system is stopped. When the system is stopped, the first clutch CL1 is released, and the engine E and the motor generator MG are reduced in speed according to their respective inertia and friction and stopped. In addition, when it moves to the intermediate lock valve tie before the predetermined time T2 elapses and it is not determined that the lock is completed, the system is stopped when the predetermined time T2 elapses. Thereby, the situation where a system does not stop can be avoided.
 図4は実施例1のハイブリッド車両の制御装置においてエンジン停止時に実行されるバルブタイミング制御処理を表すタイムチャートである。このタイムチャートは、エンジン停止状態、かつ、Pレンジ位置においてイグニッションスイッチがオフとされた場合を示す。尚、バルブタイミング制御処理を行う前の状態は、エンジンEが停止し、第1クラッチCL1及び第2クラッチCL2は解放された車両停止状態であり、モータジェネレータMGのアイドル回転により変速機用ポンプOP2を作動させてベルト式無段変速機CVTに所定の油圧を供給している状態である。 FIG. 4 is a time chart showing a valve timing control process executed when the engine is stopped in the hybrid vehicle control apparatus of the first embodiment. This time chart shows a case where the engine is stopped and the ignition switch is turned off in the P range position. The state before the valve timing control process is the vehicle stop state in which the engine E is stopped and the first clutch CL1 and the second clutch CL2 are released, and the transmission pump OP2 is driven by the idle rotation of the motor generator MG. Is in a state where a predetermined hydraulic pressure is supplied to the belt type continuously variable transmission CVT.
 時刻t1において、運転者がイグニッションスイッチ9を押し込むとPush信号が出力され、イグニッションスイッチ9をオンからオフに切り換える処理が開始される。このとき、エンジン停止状態であることからバルブタイミング変更機構IVCはデコンプバルタイに位置しており、イグニッションオフ遅延要求が出力され、T1だけ遅延される。しかし、エンジン停止状態であることから燃料噴射を再開することはない。
 更に、第1クラッチCL1をスリップ制御等により締結し、エンジン回転数をモータジェネレータMGにより引き上げ、これによりIVCポンプOP1のポンプ吐出量を確保することで進角処理を実行する。
When the driver depresses the ignition switch 9 at time t1, a Push signal is output, and a process of switching the ignition switch 9 from on to off is started. At this time, since the engine is stopped, the valve timing changing mechanism IVC is positioned in the decompression tie, and an ignition-off delay request is output and delayed by T1. However, fuel injection is not resumed because the engine is stopped.
Further, the first clutch CL1 is engaged by slip control or the like, the engine speed is increased by the motor generator MG, and thereby the advancement process is executed by securing the pump discharge amount of the IVC pump OP1.
 時刻t2において、所定時間T1が経過するものの、燃料噴射はもともと行っていないため、継続してモータジェネレータMGによる回転数制御が行われ、進角制御を継続する。時刻t3において、中間ロックバルタイへの移動が確実に終了していると判断してシステムを停止する。システムが停止されると、第1クラッチCL1が解放され、エンジンE及びモータジェネレータMGはそれぞれのイナーシャやフリクションに応じて回転数が低下し、停止する。尚、所定時間T2経過前の段階で中間ロックバルタイに移動し、ロック完了と判断されなかった場合は、所定時間T2の経過によってシステムを停止する。これにより、システムが停止しないという事態を回避できる。 At time t2, although the predetermined time T1 has elapsed, since fuel injection is not originally performed, the rotational speed control by the motor generator MG is continuously performed, and the advance angle control is continued. At time t3, it is determined that the movement to the intermediate lock valve tie has been completed, and the system is stopped. When the system is stopped, the first clutch CL1 is released, and the engine E and the motor generator MG are reduced in speed according to their respective inertia and friction and stopped. In addition, when it moves to the intermediate lock valve tie before the predetermined time T2 elapses and it is not determined that the lock is completed, the system is stopped when the predetermined time T2 elapses. Thereby, the situation where a system does not stop can be avoided.
 以上説明したように、実施例1のハイブリッド車両にあっては、下記に列挙する作用効果を得ることができる。
 (1)エンジンEにより駆動されるIVCポンプOP1(ポンプ)により作動油を供給し、吸気バルブを所定範囲で進角側もしくは遅角側に変更可能であって、作動油の有無にかかわらず所定の進角位置にロック可能な第2ロック機構を有するバルブタイミング変更機構IVC(バルブタイミング変更手段)と、エンジンEと直列に配置されたモータジェネレータMG(モータ)と、イグニッションスイッチ9のオフにより車両システムを停止する統合コントローラ10(システム停止手段)と、イグニッションスイッチ9がオフとされ、かつ、バルブタイミング変更機構IVCが中間ロックバルタイ(所定の進角位置)以外の場合は、車両システムの停止を遅延させ、エンジンEの燃料噴射を停止した状態で、モータジェネレータMGによりエンジンEの回転を維持して作動油を供給し、バルブタイミング変更機構IVCを中間ロックバルタイに変更してロックした後に車両システムを停止するステップS11,S12(システム停止遅延手段)と、を備えた。
 よって、進角もしくは遅角位置に係わらず中間ロックバルタイ位置に移動させてからシステムを停止できるため、次回のイグニッションオン時に確実にエンジン再始動できる。また、システム停止までに時間がかかったとしても、燃料噴射を停止してモータジェネレータMGによりエンジン回転数を維持するため、運転者に違和感を与えることなくバルブタイミング変更機構IVCを進角作動できる。
As described above, in the hybrid vehicle of the first embodiment, the following effects can be obtained.
(1) The hydraulic oil is supplied by the IVC pump OP1 (pump) driven by the engine E, and the intake valve can be changed to the advance side or the retard side within a predetermined range. The valve timing changing mechanism IVC (valve timing changing means) having a second locking mechanism that can be locked at the advanced angle position, the motor generator MG (motor) arranged in series with the engine E, and the ignition switch 9 being turned off, the vehicle When the integrated controller 10 (system stop means) for stopping the system and the ignition switch 9 are turned off and the valve timing changing mechanism IVC is other than the intermediate lock valve tie (predetermined advance position), the vehicle system is stopped. The motor generator MG maintains the rotation of the engine E with the delay and the fuel injection of the engine E stopped. Holding the hydraulic fluid, changing the valve timing changing mechanism IVC to the intermediate lock valve tie and locking the vehicle system, and then stopping the vehicle system.
Therefore, the system can be stopped after moving to the intermediate lock valve timing position regardless of the advance angle or retard angle position, so that the engine can be reliably restarted when the ignition is turned on next time. Even if it takes time to stop the system, the fuel injection is stopped and the engine speed is maintained by the motor generator MG. Therefore, the valve timing changing mechanism IVC can be advanced without causing the driver to feel uncomfortable.
 (2)エンジン作動状態でイグニッションスイッチ9がオフとされ、かつ、バルブタイミング変更機構IVCが中間ロックバルタイ以外の場合は、車両システムの停止を遅延させ、エンジンEの燃料噴射を所定時間T1継続した状態で、モータジェネレータMGによりエンジンEの回転を維持して作動油を供給し、バルブタイミング変更機構IVCを中間ロックバルタイに変更し、所定時間T1内にバルブタイミング変更機構IVCを第2ロック機構によりロックした場合はステップS11,S12を経ることなく(システム停止遅延手段を行うことなく)車両システムを停止し、所定時間T1内にバルブタイミング変更機構IVCをロックできない場合はステップS11,S12(前記システム停止遅延手段)に移行する(第2のシステム停止遅延手段)。
 すなわち、運転者に違和感の生じない範囲で燃料噴射を継続することで、電力消費を抑制しつつバルブタイミング変更機構IVCを進角作動できる。
(2) When the ignition switch 9 is turned off in the engine operating state and the valve timing changing mechanism IVC is other than the intermediate lock valve tie, the stop of the vehicle system is delayed and the fuel injection of the engine E is continued for a predetermined time T1. In this state, the motor generator MG maintains the rotation of the engine E to supply hydraulic oil, the valve timing changing mechanism IVC is changed to the intermediate lock valve tie, and the valve timing changing mechanism IVC is changed to the second lock mechanism within a predetermined time T1. If locked, the vehicle system is stopped without going through steps S11 and S12 (without performing system stop delay means), and if the valve timing changing mechanism IVC cannot be locked within a predetermined time T1, steps S11 and S12 (the system The system shifts to (stop delay means) (second system stop delay means).
That is, by continuing fuel injection in a range where the driver does not feel uncomfortable, the valve timing changing mechanism IVC can be advanced while suppressing power consumption.
 (3)エンジンEが非作動状態で、イグニッションスイッチ9がオフとされ、かつ、バルブタイミング変更機構IVCが中間ロックバルタイ以外の場合は、モータジェネレータMGによりエンジンEの回転を上昇させてから、ステップS11,S12を実行することとした。
 よって、エンジン停止状態でのイグニッションスイッチオフ時であっても、バルブタイミング変更機構IVCを中間ロックバルタイに移動させることができ、次回のイグニッションスイッチオン時おけるエンジン始動性を確保することができる。
(3) When the engine E is not operating, the ignition switch 9 is turned off, and the valve timing changing mechanism IVC is other than the intermediate lock valve tie, the motor generator MG increases the rotation of the engine E, and the step S11 and S12 are executed.
Therefore, even when the ignition switch is off while the engine is stopped, the valve timing changing mechanism IVC can be moved to the intermediate lock valve tie, and the engine startability can be ensured when the ignition switch is turned on the next time.

Claims (3)

  1.  エンジンにより駆動されるポンプにより作動油を供給し、吸気バルブを所定範囲で進角側もしくは遅角側に変更可能であって、前記作動油の有無にかかわらず所定の進角位置にロック可能なバルブタイミング変更手段と、
     前記エンジンと直列に配置されたモータと、
     イグニッションスイッチのオフにより車両システムを停止するシステム停止手段と、
     イグニッションスイッチがオフとされ、かつ、前記バルブタイミング変更手段が所定の進角位置以外の場合は、前記システム停止手段による車両システムの停止を遅延させ、前記エンジンの燃料噴射を停止した状態で、前記モータにより前記エンジンの回転を維持して前記作動油を供給し、前記バルブタイミング変更手段を前記所定の進角位置に変更してロックした後に車両システムを停止するシステム停止遅延手段と、
     を備えたことを特徴とするハイブリッド車両の制御装置。
    Hydraulic oil is supplied by a pump driven by the engine, and the intake valve can be changed to the advance side or retard side within a predetermined range, and can be locked at a predetermined advance position regardless of the presence or absence of the hydraulic oil. Valve timing changing means;
    A motor arranged in series with the engine;
    System stopping means for stopping the vehicle system by turning off the ignition switch;
    When the ignition switch is turned off and the valve timing changing means is other than a predetermined advance position, the stop of the vehicle system by the system stop means is delayed, and the fuel injection of the engine is stopped. A system stop delay means for stopping the vehicle system after maintaining the rotation of the engine by a motor, supplying the hydraulic oil, changing the valve timing changing means to the predetermined advance position and locking;
    A control apparatus for a hybrid vehicle, comprising:
  2.  請求項1に記載のハイブリッド車両の制御装置において、
     エンジン作動状態でイグニッションスイッチがオフとされ、かつ、前記バルブタイミング変更手段が所定の進角位置以外の場合は、前記システム停止手段による車両システムの停止を遅延させ、前記エンジンの燃料噴射を所定時間継続した状態で、前記モータにより前記エンジンの回転を維持して前記作動油を供給し、前記バルブタイミング変更手段を前記所定の進角位置に変更し、前記所定時間内に前記バルブタイミング変更手段をロックした場合は前記システム停止遅延手段を行うことなく車両システムを停止し、前記所定時間内に前記バルブタイミング変更手段をロックできない場合は前記システム停止遅延手段に移行する第2のシステム停止遅延手段を備えたことを特徴とするハイブリッド車両の制御装置。
    In the hybrid vehicle control device according to claim 1,
    When the ignition switch is turned off in the engine operating state and the valve timing changing means is other than a predetermined advance position, the stop of the vehicle system by the system stop means is delayed, and fuel injection of the engine is performed for a predetermined time. In a continued state, the engine is rotated by the motor and the hydraulic oil is supplied, the valve timing changing means is changed to the predetermined advance position, and the valve timing changing means is changed within the predetermined time. A second system stop delay means that stops the vehicle system without performing the system stop delay means when locked, and shifts to the system stop delay means when the valve timing changing means cannot be locked within the predetermined time. A control device for a hybrid vehicle, comprising:
  3.  請求項1に記載のハイブリッド車両の制御装置において、
     前記エンジンが非作動状態で、イグニッションスイッチがオフとされ、かつ、前記バルブタイミング変更手段が所定の進角位置以外の場合は、前記モータにより前記エンジンの回転を上昇させてから、前記システム停止遅延手段を実行することを特徴とするハイブリッド車両の制御装置。
    In the hybrid vehicle control device according to claim 1,
    When the engine is inactive, the ignition switch is turned off, and the valve timing changing means is in a position other than a predetermined advance position, the rotation of the engine is increased by the motor before the system stop delay A control apparatus for a hybrid vehicle, characterized in that the means is executed.
PCT/JP2013/076789 2012-10-03 2013-10-02 Hybrid vehicle control device WO2014054676A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-220973 2012-10-03
JP2012220973A JP2015231749A (en) 2012-10-03 2012-10-03 Hybrid electric vehicle control unit

Publications (1)

Publication Number Publication Date
WO2014054676A1 true WO2014054676A1 (en) 2014-04-10

Family

ID=50434998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076789 WO2014054676A1 (en) 2012-10-03 2013-10-02 Hybrid vehicle control device

Country Status (2)

Country Link
JP (1) JP2015231749A (en)
WO (1) WO2014054676A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016148298A (en) * 2015-02-13 2016-08-18 アイシン精機株式会社 Intake system for internal combustion engine and internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003172165A (en) * 2001-12-07 2003-06-20 Aisin Aw Co Ltd On-vehicle driving control device
JP2010024891A (en) * 2008-07-16 2010-02-04 Toyota Motor Corp Automobile and its control method
JP2010195308A (en) * 2009-02-26 2010-09-09 Toyota Motor Corp Controller for hybrid vehicle
WO2010131334A1 (en) * 2009-05-12 2010-11-18 トヨタ自動車株式会社 Control device for hybrid vehicle
JP2011179418A (en) * 2010-03-02 2011-09-15 Nissan Motor Co Ltd Engine having variable valve timing mechanism

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003172165A (en) * 2001-12-07 2003-06-20 Aisin Aw Co Ltd On-vehicle driving control device
JP2010024891A (en) * 2008-07-16 2010-02-04 Toyota Motor Corp Automobile and its control method
JP2010195308A (en) * 2009-02-26 2010-09-09 Toyota Motor Corp Controller for hybrid vehicle
WO2010131334A1 (en) * 2009-05-12 2010-11-18 トヨタ自動車株式会社 Control device for hybrid vehicle
JP2011179418A (en) * 2010-03-02 2011-09-15 Nissan Motor Co Ltd Engine having variable valve timing mechanism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016148298A (en) * 2015-02-13 2016-08-18 アイシン精機株式会社 Intake system for internal combustion engine and internal combustion engine

Also Published As

Publication number Publication date
JP2015231749A (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP5039098B2 (en) Control device for hybrid vehicle
WO2014021012A1 (en) Motor control device
JP5822029B2 (en) Vehicle control device with automatic engine stop function
JP6350751B2 (en) Vehicle control method and vehicle control apparatus
JP6197874B2 (en) Vehicle control device
WO2013084269A1 (en) Vehicle control apparatus
JP2009024614A (en) Idling stop control device for vehicle
JP5617301B2 (en) Vehicle drive control device
JP3702897B2 (en) Control device for hybrid vehicle
JP2001193612A (en) Engine starter, engine starting method and hybrid vehicle
JP2018031378A (en) Starting method and starting device for starting combustion engine and/or driving vehicle
JP6829770B2 (en) Vehicle control device and control method
WO2014054676A1 (en) Hybrid vehicle control device
JP5678572B2 (en) Vehicle engine start control device
JP4305452B2 (en) Vehicle control apparatus and vehicle
JP5803626B2 (en) Vehicle control device
JP2004251452A (en) Controller for hybrid vehicle
JP3577971B2 (en) Vehicle start control device
JP3589076B2 (en) Hybrid vehicle control device
JP2012076740A (en) Hybrid vehicle control device
JP2008238838A (en) Control device for hybrid vehicle
JP6435804B2 (en) Control device for hybrid vehicle
WO2019031277A1 (en) Vehicle control device and control method
JP6291171B2 (en) Vehicle control device
JP6522784B2 (en) Vehicle control device, vehicle control system, and control method of vehicle control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13843766

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13843766

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP