WO2014054657A1 - Control device for electric vehicle and control method for electric vehicle - Google Patents

Control device for electric vehicle and control method for electric vehicle Download PDF

Info

Publication number
WO2014054657A1
WO2014054657A1 PCT/JP2013/076743 JP2013076743W WO2014054657A1 WO 2014054657 A1 WO2014054657 A1 WO 2014054657A1 JP 2013076743 W JP2013076743 W JP 2013076743W WO 2014054657 A1 WO2014054657 A1 WO 2014054657A1
Authority
WO
WIPO (PCT)
Prior art keywords
command value
torque command
electric vehicle
motor torque
motor
Prior art date
Application number
PCT/JP2013/076743
Other languages
French (fr)
Japanese (ja)
Inventor
弘征 小松
翔 大野
雄史 勝又
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2014539768A priority Critical patent/JP5850171B2/en
Publication of WO2014054657A1 publication Critical patent/WO2014054657A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to an electric vehicle control device and an electric vehicle control method.
  • a torque target value for controlling a motor is calculated by the following method.
  • a drive torque target value is calculated by performing a filtering process for removing or reducing the natural vibration frequency component of the vehicle torque transmission system on the drive torque request value of the drive motor calculated from the accelerator opening and the vehicle speed.
  • the motor rotation speed estimation value is calculated from the drive torque target value in consideration of the motor characteristic model, and the deviation between the calculated motor rotation speed estimation value and the actual motor rotation speed is calculated as the natural vibration frequency of the driving force transmission system.
  • a torque command value is calculated by passing through a filter constituted by an inverse system of a band pass filter and a motor characteristic model as a center frequency.
  • the final drive torque target value is calculated by adding the calculated torque command value to the drive torque target value. This eliminates the effects of road gradients, torque transmission system disturbances, motor characteristic model errors, etc., and also eliminates or reduces the natural vibration frequency component of the vehicle torque transmission system, thereby reducing the damping effect and steep torque. Can be achieved at the same time.
  • the natural frequency of torsional vibration of a general vehicle drive shaft is about 6 to 10 Hz. Since the drive shaft is twisted with respect to the output torque, vibration is excited, and the vibration is expressed in the motor rotation speed. Therefore, the drive shaft can be removed using the technique described in JP2003-9566A. As a result, the output shaft torque of the vehicle can be raised sharply without causing overshoot or hunting and so as to reach a steady value in about 50 ms from the input of the torque command.
  • a vibration component having a natural frequency of about 20 to 40 Hz may be excited. Vibrations with a natural frequency of about 20 to 40 Hz are excited when the vehicle accelerates and the reaction force of the driving force excites the motor unit (unsprung) including the suspension member back and forth via the lower arm. Therefore, no vibration component is generated in the drive shaft torque and the motor rotation speed. In other words, the vehicle vibration damping control device described in JP2003-9566A cannot remove unsprung longitudinal vibrations having a natural frequency of about 20 to 40 Hz.
  • the present invention aims to suppress vibration in the front-rear direction under the spring.
  • the control device for an electric vehicle in one embodiment sets a motor torque command value based on the vehicle information, and controls the torque of the motor connected to the drive wheels.
  • the control device for an electric vehicle includes a filtering unit that applies a filtering process to the motor torque command value to reduce a natural vibration frequency component in the unsprung direction, and the filtering process is performed on the motor torque command value.
  • FIG. 1 is a block diagram illustrating a main configuration of an electric vehicle including a control device for an electric vehicle according to the first embodiment.
  • FIG. 2 is a flowchart showing a flow of processing of motor current control performed by the electric motor controller.
  • FIG. 3 is a diagram showing an example of an accelerator opening-torque table.
  • FIG. 4A is a perspective view showing an unsprung structure on the lower side of the suspension spring.
  • FIG. 4B is a top view showing an unsprung structure on the lower side of the suspension spring.
  • FIG. 5 is a diagram illustrating a configuration of the vehicle longitudinal vibration suppression filter.
  • FIG. 6 is an example of a control block diagram for performing processing for calculating the third torque command value Tm3 *.
  • FIG. 7 is an example of a control block diagram illustrating the configuration of the vibration suppression control FF calculation unit 402B.
  • FIG. 8 is another example of a control block diagram illustrating the configuration of the vibration suppression control FF calculation unit 402B.
  • FIG. 9 is a detailed block diagram of the vibration suppression control FB calculation unit 600A.
  • FIG. 10 is a diagram illustrating the characteristics of the transfer function H (s).
  • FIG. 11 is a configuration diagram of an unsprung spring / mass / damper model.
  • FIG. 12A is a diagram for explaining the response of acceleration when the torque command value is increased in steps at the time of sudden acceleration from the creep state, and is a control device for an electric vehicle in the first and second embodiments. It is a figure which shows the control result by.
  • FIG. 12B is a diagram for explaining the response of acceleration when the torque command value is increased stepwise at the time of sudden acceleration from the creep state, and an example of a control result by the control device described in JP2013-9566A
  • FIG. 13A is a diagram for explaining the response of acceleration when the torque command value is increased stepwise during sudden acceleration from the coast state, and is based on the control device for the electric vehicle in the first and second embodiments. It is another figure for demonstrating a control result.
  • FIG. 13B is a diagram for explaining an acceleration response when the torque command value is increased stepwise during sudden acceleration from the coast state, and shows an example of a control result by the control device described in JP2013-9566A.
  • FIG. 13A is a diagram for explaining the response of acceleration when the torque command value is increased stepwise during sudden acceleration from the coast state, and shows an example of a control result by the control device described in JP2013-9566A.
  • FIG. 1 is a block diagram illustrating a main configuration of an electric vehicle including a control device for an electric vehicle according to the first embodiment.
  • the control apparatus for an electric vehicle according to the present invention includes an electric motor as a part or all of the drive source of the vehicle, and can be applied to an electric vehicle that can be driven by the driving force of the electric motor. And can be applied to fuel cell vehicles.
  • the electric motor controller 2 uses, as digital signals, signals indicating the vehicle state such as the vehicle speed V, the accelerator pedal opening AP, the rotor phase ⁇ of the electric motor (three-phase AC motor) 4, and the currents iu, iv, iw of the electric motor 4. Based on the input signal, a PWM signal for controlling the electric motor 4 is generated. Further, a drive signal for the inverter 3 is generated according to the generated PWM signal.
  • the inverter 3 includes, for example, two switching elements (for example, power semiconductor elements such as IGBTs and MOS-FETs) for each phase.
  • the supplied direct current is converted into alternating current, and a desired current is passed through the electric motor 4.
  • the electric motor 4 generates a driving force by the alternating current supplied from the inverter 3, and transmits the driving force to the left and right driving wheels 9 a and 9 b via the speed reducer 5 and the driving shaft (drive shaft) 8. Further, when the vehicle is driven and rotated by the drive wheels 9a and 9b, the kinetic energy of the vehicle is recovered as electric energy by generating a regenerative driving force. In this case, the inverter 3 converts an alternating current generated during the regenerative operation of the electric motor 4 into a direct current and supplies the direct current to the battery 1.
  • the current sensor 7 detects the three-phase alternating currents iu, iv, iw flowing through the electric motor 4. However, since the sum of the three-phase alternating currents iu, iv, and iw is 0, any two-phase current may be detected, and the remaining one-phase current may be obtained by calculation.
  • the rotation sensor 6 is, for example, a resolver or an encoder, and detects the rotor phase ⁇ of the electric motor 4.
  • FIG. 2 is a flowchart showing a process flow of motor current control performed by the electric motor controller 2.
  • step S201 a signal indicating the vehicle state is input.
  • the vehicle speed V (km / h), the accelerator opening AP (%), the rotor phase ⁇ (rad) of the electric motor 4, the rotational speed Nm (rpm) of the electric motor 4, and the three-phase AC flowing through the electric motor 4 Currents iu, iv, iw, and a DC voltage value Vdc (V) between the battery 1 and the inverter 3 are input.
  • the vehicle speed V (km / h) is acquired by communication from another controller such as a vehicle speed sensor (not shown) or a brake controller (not shown).
  • the vehicle rotational speed ⁇ m is multiplied by the tire dynamic radius R, and the vehicle speed v (m / s) is obtained by dividing by the gear ratio of the final gear, and unit conversion is performed by multiplying by 3600/1000 to obtain the vehicle speed V (Km / h) is obtained.
  • Accelerator opening AP (%) is acquired from an accelerator opening sensor (not shown), or is acquired by communication from another controller such as a vehicle controller (not shown).
  • the rotor phase ⁇ (rad) of the electric motor 4 is acquired from the rotation sensor 6.
  • the rotational speed Nm (rpm) of the electric motor 4 is obtained by dividing the angular speed ⁇ (electrical angle) of the rotor by the number of pole pairs of the electric motor 4 to obtain a motor rotational speed ⁇ m (rad / s) is obtained by multiplying the obtained motor rotational speed ⁇ m by 60 / (2 ⁇ ).
  • the angular velocity ⁇ of the rotor is obtained by differentiating the rotor phase ⁇ .
  • the currents iu, iv, iw (A) flowing through the electric motor 4 are acquired from the current sensor 7.
  • DC voltage value Vdc (V) is obtained from a voltage sensor (not shown) provided on a DC power supply line between battery 1 and inverter 3 or a power supply voltage value transmitted from a battery controller (not shown).
  • a first torque command value Tm1 * which is a basic target torque command value, is set.
  • the first torque command value Tm1 * is set by referring to the accelerator opening-torque table shown in FIG. 3 based on the accelerator opening AP and the vehicle speed V input in step S201.
  • step S203 the vehicle longitudinal vibration suppression filter process for suppressing the natural vibration frequency component in the unsprung front-rear direction is performed on the first torque command value Tm1 * set in step S202, whereby the second torque command value Tm1 * is set. Torque command value Tm2 * is calculated.
  • the unsprung member includes a motor unit including a suspension member. Details of the vehicle longitudinal vibration suppression filter processing will be described later.
  • step S204 based on the second torque command value Tm2 * set in step S203 and the motor rotation speed ⁇ m, the vibration of the driving force transmission system (the driving shaft 8 A third torque command value Tm3 * that suppresses (torsional vibration) is calculated. A detailed calculation method of the third torque command value Tm3 * will be described later.
  • step S205 the d-axis current target value id * and the q-axis current target value iq * are obtained based on the third torque command value Tm3 * , the motor rotation speed ⁇ m, and the DC voltage value Vdc calculated in step S204.
  • step S206 current control is performed to match the d-axis current id and the q-axis current iq with the d-axis current target value id * and the q-axis current target value iq * obtained in step S205, respectively. For this reason, first, the d-axis current id and the q-axis current iq are obtained based on the three-phase AC current values iu, iv, iw input in step S201 and the rotor phase ⁇ of the electric motor 4.
  • d-axis and q-axis voltage command values vd and vq are calculated from a deviation between the d-axis and q-axis current command values id * and iq * and the d-axis and q-axis current id and iq.
  • three-phase AC voltage command values vu, vv, and vw are obtained from the d-axis and q-axis voltage command values vd and vq and the rotor phase ⁇ of the electric motor 4.
  • PWM signals tu (%), tv (%), and tw (%) are obtained from the obtained three-phase AC voltage command values vu, vv, and vw and the DC voltage value Vdc.
  • the electric motor 4 can be driven with a desired torque indicated by the torque command value by opening and closing the switching element of the inverter 3 by the PWM signals tu, tv, and tw obtained in this way.
  • FIG. 4A and FIG. 4B are views showing an unsprung structure on the lower side of the suspension spring, FIG. 4A is a perspective view, and FIG. 4B is a top view. As shown in FIG. 4A, the electric motor 5 is provided under the spring.
  • the unsprung longitudinal vibration is excited when the reaction force of the driving force transmitted from the road surface vibrates the motor unit including the suspension member back and forth via the lower arm (see FIG. 4B). Therefore, the acceleration sensed by the passenger can be approximated by the sum of the following (A) and (B).
  • acceleration disturbance (B) can be expressed by the following equation (1) by parameter identification or the like.
  • Gv (s) in the formula (1) is represented by the following formula (2).
  • F in Formula (1) is a driving force
  • ⁇ v is an acceleration disturbance
  • ⁇ v and ⁇ v in Formula (2) are a damping coefficient and natural vibration frequency of unsprung longitudinal vibration, respectively.
  • each parameter in the equations (3) to (8) is as follows.
  • Jm Motor inertia
  • Jw Drive wheel inertia (for one wheel)
  • M Vehicle weight
  • Kd Torsional rigidity of drive shaft
  • Kt Coefficient related to friction between tire and road surface
  • Nal Overall gear ratio
  • r Tire load radius
  • ⁇ m Motor rotation speed
  • ⁇ w Angular speed
  • Tm of drive wheel Motor torque
  • Td Drive Shaft shaft torque
  • F Vehicle driving force
  • V Vehicle speed
  • Torsion angle of drive shaft
  • St ((theta)) in Formula (6) is a saturation function, and is represented by following Formula (9).
  • ⁇ BL is the amount of gear backlash in the overall from the motor 4 to the drive shaft (drive shaft) 8.
  • equations (3) to (8) are Laplace transformed, they are represented by the following equations (10) to (15).
  • p1 and p0 in Formula (21) and Formula (22) are represented by the following Formula (23).
  • ⁇ p and ⁇ p are the damping coefficient and natural vibration frequency of the drive torque transmission system, respectively.
  • the torque command value Tm ** in the equation (25) is a second torque command value Tm2 * that is a torque command value after the vehicle longitudinal vibration suppression filter is applied (in step 204 of FIG. 2, vibration suppression control is performed). Is the torque command value).
  • kf in Formula (28) is represented by following Formula (29).
  • Tm * is a basic torque command value (first torque command value Tm1 * ).
  • Hv (s) in Formula (33) is represented by the following Formula (34).
  • the time constant ⁇ should be a sufficiently small value and set to an appropriate value by simulation or experiment.
  • the drive shaft twist angle ⁇ in the equation (33) may be calculated from the equation (20) or may be obtained from the following equation (38).
  • Equation (38) is obtained by obtaining a torque command value such that the drive shaft torque Td and the motor torque Tm coincide with each other and substituting the obtained torque command value into Equation (20).
  • FIG. 5 is a diagram illustrating a configuration of the vehicle longitudinal vibration suppression filter.
  • the torque command value Tm ** (second torque command value Tm2 * ) is expressed by the equation (33).
  • FIG. 5 shows the second torque command value by inputting the first torque command value Tm1 *.
  • the structure of the vehicle longitudinal vibration suppression filter which outputs Tm2 * is shown.
  • the vehicle longitudinal vibration suppression filter is represented by a control block 501 represented by (s 2 + 2 ⁇ v ⁇ ⁇ v ⁇ s + ⁇ v 2 ) / (s 2 + 2 ⁇ v ⁇ s + ⁇ v 2 ) and Expression (9).
  • step S204 in FIG. 2 that is, a method for calculating the third torque command value Tm3 * will be described.
  • FIG. 6 is an example of a control block diagram for performing processing for calculating the third torque command value Tm3 * .
  • the vibration suppression control calculation unit 600 that calculates the third torque command value Tm3 * includes a vibration suppression control FB calculation unit 600A, a vibration suppression control FF calculation unit 600B, and an adder 600C.
  • the vibration suppression control FF calculation unit 600B includes a control block 601 having a transfer characteristic G INV (s), a control block 602 having a transfer characteristic Gt (s), and a characteristic represented by the equation (9).
  • a limiter 603, a control block 604 having a transfer characteristic of Fs (s), an adder 605, an adder 606, and a subtractor 607 are provided.
  • the vibration suppression control FF calculation unit 600B includes a linear filter G INV (s) for reducing the natural vibration frequency component of the torque transmission of the vehicle, a filter Gtm (s) for calculating the ideal response of the drive shaft torsion angle, and saturation.
  • a function (limiter), a wheel inertia of a drive shaft torsion angle, and a filter Fs (s) that compensates for a phase shift due to tire frictional force can also be configured as shown in FIG. According to the configuration shown in FIG.
  • the vibration suppression control FF calculation unit 600B includes a control block 601 having a transfer characteristic G INV (s), a limiter 603 having a characteristic represented by Expression (9), and Fs (s ), A control block 604 having a transfer characteristic, an adder 606, a subtractor 607, a control block 612 having a transfer characteristic Gtm (s), and an adder 611.
  • FIG. 9 is a detailed block diagram of the vibration suppression control FB calculation unit 600A.
  • the vibration suppression control FB operation unit 600A has a control block 651 having a transfer characteristic Gp (s), a control block 652 having a transfer characteristic Gps (s), and a transfer characteristic H (s) / Gp (s).
  • a control block 658 having characteristics and an adder 659 are provided.
  • Gp (s) is a linear plant model indicating the transfer characteristic of the motor rotation speed with respect to the motor torque input to the vehicle, and Gps (s) is a transfer function for calculating the backlash compensation amount of the motor rotation speed.
  • Gt (s) is a filter that calculates the drive shaft twist angle
  • Fs (s) is a filter that compensates for a phase shift caused by wheel inertia and tire friction force of the drive shaft twist angle. ), (22).
  • the vibration suppression control FB calculation unit 600A receives the post-vibration control torque command value Tm3 * and the output FF out of the vibration suppression control FF calculation unit 600B, and receives the linear plant model Gp (s), the filter Gt (s), and the filter Fs. (S), a saturation function (limiter), and a transfer function Gps (s), a motor rotational speed estimated value ⁇ m ⁇ is calculated. Further, the difference between the calculated motor rotation speed estimated value ⁇ m ⁇ and the actual motor rotation speed ⁇ m is input, and the output FB out of the vibration suppression control FB calculation unit 600A is calculated from the transfer function H (s) / Gp (s). .
  • the transfer function H (s) is a feedback element that reduces only vibration when a band-pass filter is used. At this time, the greatest effect can be obtained by setting the filter characteristics as shown in FIG. That is, the transfer function H (s) has substantially the same attenuation characteristics on the low-pass side and the high-pass side, and the torsional resonance frequency of the drive system is close to the center of the passband on the logarithmic axis (log scale).
  • ⁇ L 1 / (2 ⁇ f HC)
  • f HC k ⁇ f p
  • ⁇ H 1 / (2 ⁇ f LC)
  • f LC f p / k.
  • Formula (17) is arranged and expressed as the following formula (43).
  • ⁇ p and ⁇ p are the damping coefficient and natural vibration frequency of the drive torsional vibration system, respectively.
  • the control apparatus for an electric vehicle in the control apparatus for an electric vehicle that sets the motor torque command value based on the vehicle information and controls the torque of the motor connected to the drive wheels, A filtering process for reducing the natural vibration frequency component in the unsprung direction in the unsprung direction is performed on the value, and the motor torque is controlled according to the final torque command value obtained by performing the filtering process on the motor torque command value.
  • a filter (control block 501 in FIG. 5) including a reverse characteristic of the unsprung front-rear direction transfer characteristic as a filter used in the filtering process for reducing the unsprung front-rear natural vibration frequency component. It is possible to accurately calculate a compensation torque that reduces vibration in the front-rear direction under the vehicle spring. As a result, smooth acceleration can be realized without causing the occupant to feel a shock or unpleasant vibration even in a scene of start acceleration accompanied by a steep torque change.
  • the filter used in the filtering process for reducing the unsprung front-rear natural vibration frequency component includes a filter (control block 501 in FIG. 5) including a reverse characteristic of the unsprung front-rear transmission characteristic, and a drive shaft twist.
  • the backlash correction amount can be calculated.
  • a filtering process for suppressing the torsional vibration of the drive shaft (FIG. 2) with respect to the motor torque command value subjected to the filtering process (S203 in FIG. 2) for reducing the natural vibration frequency component in the front-rear direction under the spring.
  • the motor torque is controlled using the motor torque command value subjected to the filtering process (vibration control) for suppressing the torsional vibration of the drive shaft as the final torque command value.
  • the damping control of the driving force transmission system may be configured in consideration of a detection delay of the motor rotation speed, assuming a model to be controlled from the motor torque to the motor rotation speed.
  • the filtering process to reduce the natural vibration frequency component in the front-rear direction under the spring is arranged after the filtering process (vibration control) to suppress the torsional vibration of the drive shaft, it is considered in the vibration suppression control.
  • the filtering process for reducing the unsprung natural vibration frequency component in the front-rear direction is performed in the previous stage of the vibration suppression control, thereby achieving the effect of the vibration suppression control of the driving force transmission system vibration.
  • the vibration in the front-rear direction under the spring of about 20 to 40 Hz can be suppressed.
  • Embodiment- The unsprung longitudinal vibration is excited when the reaction force of the driving force transmitted from the road surface is vibrated back and forth through the lower arm, so the acceleration sensed by the occupant is shown in FIG. Can be modeled with a spring, mass, damper system.
  • the transfer characteristic up to the vehicle longitudinal acceleration ⁇ v represented by the equation (47) is derived, and the unsprung longitudinal vibration existing in the transfer characteristic.
  • each parameter in the equations (50) to (55) is as follows.
  • Jm Motor inertia
  • Jw Drive wheel inertia (for one wheel)
  • M Vehicle weight
  • Kd Torsional rigidity of drive shaft
  • Kt Coefficient related to friction between tire and road surface
  • Nal Overall gear ratio
  • r Tire load radius
  • ⁇ m Motor rotation speed
  • ⁇ w Angular speed
  • Tm of drive wheel Motor torque
  • Td Drive Wheel torque
  • V Vehicle speed
  • Torsion angle of drive shaft
  • St ((theta)) in Formula (53) is a saturation function, and is represented by following Formula (56).
  • ⁇ BL is a gear backlash amount in the overall from the motor 4 to the drive shaft (drive shaft) 8.
  • p1 and p0 in Formula (68) and Formula (69) are represented by the following Formula (70).
  • ⁇ p and ⁇ p are the damping coefficient and natural vibration frequency of the drive torque transmission system, respectively.
  • the drive shaft shaft torque is defined by the following equations (72) and (73).
  • the torque command value Tm ** in the equation (72) is a second torque command value Tm2 * that is a torque command value after the vehicle longitudinal vibration suppression filter is applied (in step 204 of FIG. 2, vibration suppression control is performed). Is the torque command value).
  • kf in Formula (75) is represented by following Formula (76).
  • the reference response ⁇ vm of the vehicle longitudinal acceleration expressed by the equation (77) is expressed by the following equation (78).
  • Gvm (s) in the formula (78) is represented by the following formula (79).
  • Tm * is a basic torque command value.
  • Hv (s) in Formula (80) is represented by the following Formula (81).
  • the time constant ⁇ should be a sufficiently small value and set to an appropriate value by simulation or experiment.
  • the drive shaft twist angle ⁇ in the equation (80) may be calculated from the equation (67) or may be obtained from the following equation (85).
  • Expression (85) is obtained by obtaining a torque command value such that the drive shaft torque Td and the motor torque Tm coincide with each other and substituting the obtained torque command value into Expression (67).
  • the configuration of the vehicle longitudinal vibration suppression filter in the control apparatus for an electric vehicle in the second embodiment is shown in FIG. 5 as in the first embodiment.
  • the vibration in the front-rear direction under the vehicle spring is reduced, and the shock and unpleasant vibration are given to the occupant. Smooth acceleration can be realized without feeling.
  • FIG. 12A is a diagram showing an example of a control result by the control device for the electric vehicle in the first and second embodiments.
  • FIG. 12A shows, in order from the top, the time change of the torque command value, the time change of the vehicle longitudinal acceleration, the time change of the drive shaft shaft torque, and the time change of the motor rotation speed after the vibration damping control is performed.
  • FIG. 12B is a diagram illustrating an example of a control result by the control device described in Japanese Patent Laid-Open No. 2003-9566.
  • the torque command value after vibration suppression control is obtained by vibration suppression control to suppress vibration of the driving force transmission system.
  • the torque command value is obtained by suppressing the vibration frequency component of the driving force transmission system with respect to the basic target torque command value, and the drive shaft torque rises without stepwise vibration and converges without reaching time t2.
  • vibrations of about 20 to 40 Hz remain from the rising time t1 to the time t2.
  • FIG. 13A is a diagram illustrating an example of a control result by the control device for the electric vehicle in the first and second embodiments.
  • FIG. 13A shows, in order from the top, the time change of the torque command value, the time change of the vehicle longitudinal acceleration, the time change of the drive shaft shaft torque, and the time change of the motor rotation speed after the vibration damping control is performed.
  • the drive shaft torque converges to a substantially steady value at time t2.
  • the vibration of about 20 to 40 Hz which is seen in the conventional example described later, is suppressed, rises smoothly, and converges to a substantially steady value at time t2. That is, vibration in the front-rear direction under the spring can be suppressed even in a scene with gear backlash.
  • FIG. 13B is a diagram illustrating an example of a control result by the control device described in Japanese Patent Laid-Open No. 2003-9566.
  • the basic target torque command value suddenly rises by stepping on the accelerator at time t1 from the coast state, in order to correct the error of the dead zone of the gear backlash, by generating the torque command value on the acceleration side, From time t1 to time t2, vibration (shock) of acceleration of about 20 to 40 Hz is promoted.
  • the control device for the electric vehicle in the first and second embodiments regardless of the presence or absence of the backlash of the gear, the occupant feels shock and unpleasant vibration, while being smooth, A steep acceleration performance without impairing the response can be realized.
  • the present invention is not limited to the first and second embodiments described above, and various modifications and applications can be made without departing from the gist of the present invention.
  • the drive shaft torsion angle ⁇ used in the filtering process for reducing the unsprung front-rear natural vibration frequency component suppresses the vibration of the driving force transmission system (torsional vibration of the drive shaft 8) performed in step S204 of FIG. You may use the value calculated by the filtering process to do.

Abstract

In a control device for an electric vehicle which sets a motor torque command value on the basis of vehicle information and controls the torque of a motor connected to a driving wheel, the control device applies a filter processing to the motor torque command to reduce natural vibration frequency component in a back and forth direction under a spring and controls the motor torque in accordance with a final torque command value acquired by applying the filter processing to the motor torque command value.

Description

電動車両の制御装置および電動車両の制御方法Electric vehicle control device and electric vehicle control method
 本発明は、電動車両の制御装置および電動車両の制御方法に関する。 The present invention relates to an electric vehicle control device and an electric vehicle control method.
 JP2003-9566Aに記載の車両の制振制御装置では、以下の方法により、モータを制御する際のトルク目標値を算出している。まず、アクセル開度や車速などから算出される駆動モータの駆動トルク要求値に対して、車両のトルク伝達系の固有振動周波数成分を除去又は低減するフィルタリング処理を行って駆動トルク目標値を算出する。続いて、駆動トルク目標値からモータ特性モデルを考慮してモータ回転速度推定値を算出し、算出したモータ回転速度推定値と実モータ回転速度との偏差を、駆動力伝達系の固有振動周波数を中心周波数とするバンドパスフィルタとモータ特性モデルの逆系で構成されたフィルタに通すことによって、トルク指令値を算出する。そして、算出したトルク指令値を、駆動トルク目標値に対して加えることによって、最終駆動トルク目標値を算出している。これにより、道路勾配やトルク伝達系の外乱やモータ特性モデル誤差などによる影響を除去し、かつ、車両のトルク伝達系の固有振動周波数成分を除去または低減することにより、制振効果と急峻なトルクの立ち上がりを両立することができる。 In the vibration suppression control device for a vehicle described in JP2003-9566A, a torque target value for controlling a motor is calculated by the following method. First, a drive torque target value is calculated by performing a filtering process for removing or reducing the natural vibration frequency component of the vehicle torque transmission system on the drive torque request value of the drive motor calculated from the accelerator opening and the vehicle speed. . Subsequently, the motor rotation speed estimation value is calculated from the drive torque target value in consideration of the motor characteristic model, and the deviation between the calculated motor rotation speed estimation value and the actual motor rotation speed is calculated as the natural vibration frequency of the driving force transmission system. A torque command value is calculated by passing through a filter constituted by an inverse system of a band pass filter and a motor characteristic model as a center frequency. Then, the final drive torque target value is calculated by adding the calculated torque command value to the drive torque target value. This eliminates the effects of road gradients, torque transmission system disturbances, motor characteristic model errors, etc., and also eliminates or reduces the natural vibration frequency component of the vehicle torque transmission system, thereby reducing the damping effect and steep torque. Can be achieved at the same time.
 ところで、一般的な車両のドライブシャフトのねじり振動の固有振動数は、6~10Hz程度である。出力したトルクに対してドライブシャフトが捻れることで振動が励起され、その振動がモータ回転速度に表されるため、JP2003-9566Aに記載の技術を用いて除去することができる。この結果、車両の出力軸トルクを、オーバーシュートやハンチングを起こすことなく滑らかに、かつ、トルク指令の入力から50ms程度で定常値まで至るように急峻に立ち上げることができる。 By the way, the natural frequency of torsional vibration of a general vehicle drive shaft is about 6 to 10 Hz. Since the drive shaft is twisted with respect to the output torque, vibration is excited, and the vibration is expressed in the motor rotation speed. Therefore, the drive shaft can be removed using the technique described in JP2003-9566A. As a result, the output shaft torque of the vehicle can be raised sharply without causing overshoot or hunting and so as to reach a steady value in about 50 ms from the input of the torque command.
 ところが、車両の出力軸トルクを急峻に立ち上げたことによる結果、固有振動数20~40Hz程度の振動成分を励起してしまうことがある。固有振動数20~40Hz程度の振動は、車両が加速した場合に、駆動力の反力がロアアームを介してサスペンションメンバーを含むモータユニット(バネ下)を前後に加振することで励起されるものであり、駆動軸トルクおよびモータ回転速度にその振動成分が発生しない。すなわち、JP2003-9566Aに記載の車両の制振制御装置では、固有振動数20~40Hz程度のバネ下前後振動を除去することができない。 However, as a result of steeply raising the output shaft torque of the vehicle, a vibration component having a natural frequency of about 20 to 40 Hz may be excited. Vibrations with a natural frequency of about 20 to 40 Hz are excited when the vehicle accelerates and the reaction force of the driving force excites the motor unit (unsprung) including the suspension member back and forth via the lower arm. Therefore, no vibration component is generated in the drive shaft torque and the motor rotation speed. In other words, the vehicle vibration damping control device described in JP2003-9566A cannot remove unsprung longitudinal vibrations having a natural frequency of about 20 to 40 Hz.
 本発明は、バネ下の前後方向の振動を抑制することを目的とする。 The present invention aims to suppress vibration in the front-rear direction under the spring.
 一実施形態における電動車両の制御装置は、車両情報に基づいてモータトルク指令値を設定し、駆動輪につながるモータのトルクを制御する。この電動車両の制御装置は、モータトルク指令値に対して、バネ下の前後方向の固有振動周波数成分を低減するフィルタリング処理を施すフィルタリング手段と、モータトルク指令値に前記フィルタリング処理が施されることによって求められる最終トルク指令値に従ってモータトルクを制御するモータトルク制御手段とを備える。 The control device for an electric vehicle in one embodiment sets a motor torque command value based on the vehicle information, and controls the torque of the motor connected to the drive wheels. The control device for an electric vehicle includes a filtering unit that applies a filtering process to the motor torque command value to reduce a natural vibration frequency component in the unsprung direction, and the filtering process is performed on the motor torque command value. Motor torque control means for controlling the motor torque in accordance with the final torque command value obtained by
 本発明の実施形態については、添付された図面とともに以下に詳細に説明される。 Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
図1は、第1の実施形態における電動車両の制御装置を備えた電気自動車の主要構成を示すブロック図である。FIG. 1 is a block diagram illustrating a main configuration of an electric vehicle including a control device for an electric vehicle according to the first embodiment. 図2は、電動モータコントローラによって行われるモータ電流制御の処理の流れを示すフローチャートである。FIG. 2 is a flowchart showing a flow of processing of motor current control performed by the electric motor controller. 図3は、アクセル開度-トルクテーブルの一例を示す図である。FIG. 3 is a diagram showing an example of an accelerator opening-torque table. 図4Aは、サスペンションスプリングの下側であるバネ下の構造を示す斜視図である。FIG. 4A is a perspective view showing an unsprung structure on the lower side of the suspension spring. 図4Bは、サスペンションスプリングの下側であるバネ下の構造を示す上面図である。FIG. 4B is a top view showing an unsprung structure on the lower side of the suspension spring. 図5は、車両前後振動抑制フィルタの構成を示す図である。FIG. 5 is a diagram illustrating a configuration of the vehicle longitudinal vibration suppression filter. 図6は、第3のトルク指令値Tm3*を算出する処理を行う制御ブロック図の一例である。FIG. 6 is an example of a control block diagram for performing processing for calculating the third torque command value Tm3 *. 図7は、制振制御FF演算部402Bの構成を示す制御ブロック図の一例である。FIG. 7 is an example of a control block diagram illustrating the configuration of the vibration suppression control FF calculation unit 402B. 図8は、制振制御FF演算部402Bの構成を示す制御ブロック図の別の例である。FIG. 8 is another example of a control block diagram illustrating the configuration of the vibration suppression control FF calculation unit 402B. 図9は、制振制御FB演算部600Aの詳細なブロック構成図である。FIG. 9 is a detailed block diagram of the vibration suppression control FB calculation unit 600A. 図10は、伝達関数H(s)の特性を示す図である。FIG. 10 is a diagram illustrating the characteristics of the transfer function H (s). 図11は、バネ下のバネ・マス・ダンパーモデル構成図である。FIG. 11 is a configuration diagram of an unsprung spring / mass / damper model. 図12Aは、クリープ状態からの発進急加速時に、トルク指令値をステップ増加させた場合の加速度の応答を説明するための図であって、第1、第2の実施形態における電動車両の制御装置による制御結果を示す図である。FIG. 12A is a diagram for explaining the response of acceleration when the torque command value is increased in steps at the time of sudden acceleration from the creep state, and is a control device for an electric vehicle in the first and second embodiments. It is a figure which shows the control result by. 図12Bは、クリープ状態からの発進急加速時に、トルク指令値をステップ増加させた場合の加速度の応答を説明するための図であって、JP2013-9566Aに記載の制御装置による制御結果の一例を示す図である。FIG. 12B is a diagram for explaining the response of acceleration when the torque command value is increased stepwise at the time of sudden acceleration from the creep state, and an example of a control result by the control device described in JP2013-9566A FIG. 図13Aは、コースト状態からの急加速時に、トルク指令値をステップ増加させた場合の加速度の応答を説明するための図であって、第1、第2の実施形態における電動車両の制御装置による制御結果について説明するための別の図である。FIG. 13A is a diagram for explaining the response of acceleration when the torque command value is increased stepwise during sudden acceleration from the coast state, and is based on the control device for the electric vehicle in the first and second embodiments. It is another figure for demonstrating a control result. 図13Bは、コースト状態からの急加速時に、トルク指令値をステップ増加させた場合の加速度の応答を説明するための図であって、JP2013-9566Aに記載の制御装置による制御結果の一例を示す図である。FIG. 13B is a diagram for explaining an acceleration response when the torque command value is increased stepwise during sudden acceleration from the coast state, and shows an example of a control result by the control device described in JP2013-9566A. FIG.
 -第1の実施形態-
 図1は、第1の実施形態における電動車両の制御装置を備えた電気自動車の主要構成を示すブロック図である。本発明の電動車両の制御装置は、車両の駆動源の一部または全部として電動モータを備え、電動モータの駆動力により走行可能な電動車両に適用可能であり、電気自動車だけでなく、ハイブリッド自動車や燃料電池自動車に適用可能である。
-First embodiment-
FIG. 1 is a block diagram illustrating a main configuration of an electric vehicle including a control device for an electric vehicle according to the first embodiment. The control apparatus for an electric vehicle according to the present invention includes an electric motor as a part or all of the drive source of the vehicle, and can be applied to an electric vehicle that can be driven by the driving force of the electric motor. And can be applied to fuel cell vehicles.
 電動モータコントローラ2は、車速V、アクセル開度AP、電動モータ(三相交流モータ)4の回転子位相α、電動モータ4の電流iu、iv、iw等の車両状態を示す信号をデジタル信号として入力し、入力された信号に基づいて、電動モータ4を制御するためのPWM信号を生成する。また、生成したPWM信号に応じてインバータ3の駆動信号を生成する。 The electric motor controller 2 uses, as digital signals, signals indicating the vehicle state such as the vehicle speed V, the accelerator pedal opening AP, the rotor phase α of the electric motor (three-phase AC motor) 4, and the currents iu, iv, iw of the electric motor 4. Based on the input signal, a PWM signal for controlling the electric motor 4 is generated. Further, a drive signal for the inverter 3 is generated according to the generated PWM signal.
 インバータ3は、例えば、各相ごとに2個のスイッチング素子(例えば、IGBTやMOS-FET等のパワー半導体素子)を備え、駆動信号に応じてスイッチング素子をオン/オフすることにより、バッテリ1から供給される直流の電流を交流に変換し、電動モータ4に所望の電流を流す。 The inverter 3 includes, for example, two switching elements (for example, power semiconductor elements such as IGBTs and MOS-FETs) for each phase. The supplied direct current is converted into alternating current, and a desired current is passed through the electric motor 4.
 電動モータ4は、インバータ3から供給される交流電流により駆動力を発生し、減速機5および駆動軸(ドライブシャフト)8を介して、左右の駆動輪9a、9bに駆動力を伝達する。また、車両の走行時に駆動輪9a、9bに連れ回されて回転するときに、回生駆動力を発生させることで、車両の運動エネルギーを電気エネルギーとして回収する。この場合、インバータ3は、電動モータ4の回生運転時に発生する交流電流を直流電流に変換して、バッテリ1に供給する。 The electric motor 4 generates a driving force by the alternating current supplied from the inverter 3, and transmits the driving force to the left and right driving wheels 9 a and 9 b via the speed reducer 5 and the driving shaft (drive shaft) 8. Further, when the vehicle is driven and rotated by the drive wheels 9a and 9b, the kinetic energy of the vehicle is recovered as electric energy by generating a regenerative driving force. In this case, the inverter 3 converts an alternating current generated during the regenerative operation of the electric motor 4 into a direct current and supplies the direct current to the battery 1.
 電流センサ7は、電動モータ4に流れる3相交流電流iu、iv、iwを検出する。ただし、3相交流電流iu、iv、iwの和は0であるため、任意の2相の電流を検出して、残りの1相の電流は演算により求めてもよい。 The current sensor 7 detects the three-phase alternating currents iu, iv, iw flowing through the electric motor 4. However, since the sum of the three-phase alternating currents iu, iv, and iw is 0, any two-phase current may be detected, and the remaining one-phase current may be obtained by calculation.
 回転センサ6は、例えば、レゾルバやエンコーダであり、電動モータ4の回転子位相αを検出する。 The rotation sensor 6 is, for example, a resolver or an encoder, and detects the rotor phase α of the electric motor 4.
 図2は、電動モータコントローラ2によって行われるモータ電流制御の処理の流れを示すフローチャートである。 FIG. 2 is a flowchart showing a process flow of motor current control performed by the electric motor controller 2.
 ステップS201では、車両状態を示す信号を入力する。ここでは、車速V(km/h)、アクセル開度AP(%)、電動モータ4の回転子位相α(rad)、電動モータ4の回転数Nm(rpm)、電動モータ4に流れる三相交流電流iu、iv、iw、バッテリ1とインバータ3間の直流電圧値Vdc(V)を入力する。 In step S201, a signal indicating the vehicle state is input. Here, the vehicle speed V (km / h), the accelerator opening AP (%), the rotor phase α (rad) of the electric motor 4, the rotational speed Nm (rpm) of the electric motor 4, and the three-phase AC flowing through the electric motor 4 Currents iu, iv, iw, and a DC voltage value Vdc (V) between the battery 1 and the inverter 3 are input.
 車速V(km/h)は、図示しない車速センサや、図示しないブレーキコントローラ等の他のコントローラより通信にて取得する。または、モータ回転速度ωmにタイヤ動半径Rを乗算し、ファイナルギアのギア比で除算することにより車速v(m/s)を求め、3600/1000を乗算することにより単位変換して、車速V(km/h)を求める。 The vehicle speed V (km / h) is acquired by communication from another controller such as a vehicle speed sensor (not shown) or a brake controller (not shown). Alternatively, the vehicle rotational speed ωm is multiplied by the tire dynamic radius R, and the vehicle speed v (m / s) is obtained by dividing by the gear ratio of the final gear, and unit conversion is performed by multiplying by 3600/1000 to obtain the vehicle speed V (Km / h) is obtained.
 アクセル開度AP(%)は、図示しないアクセル開度センサから取得するか、図示しない車両コントローラ等の他のコントローラから通信にて取得する。 Accelerator opening AP (%) is acquired from an accelerator opening sensor (not shown), or is acquired by communication from another controller such as a vehicle controller (not shown).
 電動モータ4の回転子位相α(rad)は、回転センサ6から取得する。電動モータ4の回転数Nm(rpm)は、回転子の角速度ω(電気角)を電動モータ4の極対数で除算して、電動モータ4の機械的な角速度であるモータ回転速度ωm(rad/s)を求め、求めたモータ回転速度ωmに60/(2π)を乗算することによって求める。回転子の角速度ωは、回転子位相αを微分することによって求める。 The rotor phase α (rad) of the electric motor 4 is acquired from the rotation sensor 6. The rotational speed Nm (rpm) of the electric motor 4 is obtained by dividing the angular speed ω (electrical angle) of the rotor by the number of pole pairs of the electric motor 4 to obtain a motor rotational speed ωm (rad / s) is obtained by multiplying the obtained motor rotational speed ωm by 60 / (2π). The angular velocity ω of the rotor is obtained by differentiating the rotor phase α.
 電動モータ4に流れる電流iu、iv、iw(A)は、電流センサ7から取得する。 The currents iu, iv, iw (A) flowing through the electric motor 4 are acquired from the current sensor 7.
 直流電圧値Vdc(V)は、バッテリ1とインバータ3間の直流電源ラインに設けられた電圧センサ(不図示)、または、図示しないバッテリコントローラから送信される電源電圧値から求める。 DC voltage value Vdc (V) is obtained from a voltage sensor (not shown) provided on a DC power supply line between battery 1 and inverter 3 or a power supply voltage value transmitted from a battery controller (not shown).
 ステップS202では、基本目標トルク指令値である第1のトルク指令値Tm1*を設定する。具体的には、ステップS201で入力されたアクセル開度APおよび車速Vに基づいて、図3に示すアクセル開度-トルクテーブルを参照することにより、第1のトルク指令値Tm1*を設定する。 In step S202, a first torque command value Tm1 * , which is a basic target torque command value, is set. Specifically, the first torque command value Tm1 * is set by referring to the accelerator opening-torque table shown in FIG. 3 based on the accelerator opening AP and the vehicle speed V input in step S201.
 ステップS203では、ステップS202で設定された第1のトルク指令値Tm1*に対して、バネ下の前後方向における固有振動周波数成分を抑制するための車両前後振動抑制フィルタ処理を行うことによって、第2のトルク指令値Tm2*を算出する。バネ下の部材には、サスペンションメンバーを含むモータユニットが含まれる。車両前後振動抑制フィルタ処理の詳細については後述する。 In step S203, the vehicle longitudinal vibration suppression filter process for suppressing the natural vibration frequency component in the unsprung front-rear direction is performed on the first torque command value Tm1 * set in step S202, whereby the second torque command value Tm1 * is set. Torque command value Tm2 * is calculated. The unsprung member includes a motor unit including a suspension member. Details of the vehicle longitudinal vibration suppression filter processing will be described later.
 ステップS204では、ステップS203で設定した第2のトルク指令値Tm2*、およびモータ回転速度ωmに基づいて、駆動軸トルクの応答を犠牲にすることなく、駆動力伝達系の振動(駆動軸8のねじり振動)を抑制する第3のトルク指令値Tm3*を算出する。第3のトルク指令値Tm3*の詳しい算出方法については後述する。 In step S204, based on the second torque command value Tm2 * set in step S203 and the motor rotation speed ωm, the vibration of the driving force transmission system (the driving shaft 8 A third torque command value Tm3 * that suppresses (torsional vibration) is calculated. A detailed calculation method of the third torque command value Tm3 * will be described later.
 ステップS205では、ステップS204で算出した第3のトルク指令値Tm3*、モータ回転速度ωmおよび直流電圧値Vdcに基づいて、d軸電流目標値id*、q軸電流目標値iq*を求める。 In step S205, the d-axis current target value id * and the q-axis current target value iq * are obtained based on the third torque command value Tm3 * , the motor rotation speed ωm, and the DC voltage value Vdc calculated in step S204.
 ステップS206では、d軸電流idおよびq軸電流iqをそれぞれ、ステップS205で求めたd軸電流目標値id*およびq軸電流目標値iq*と一致させるための電流制御を行う。このため、まず初めに、ステップS201で入力された三相交流電流値iu、iv、iwと、電動モータ4の回転子位相αとに基づいて、d軸電流idおよびq軸電流iqを求める。続いて、d軸、q軸電流指令値id*、iq*と、d軸、q軸電流id、iqとの偏差から、d軸、q軸電圧指令値vd、vqを算出する。 In step S206, current control is performed to match the d-axis current id and the q-axis current iq with the d-axis current target value id * and the q-axis current target value iq * obtained in step S205, respectively. For this reason, first, the d-axis current id and the q-axis current iq are obtained based on the three-phase AC current values iu, iv, iw input in step S201 and the rotor phase α of the electric motor 4. Subsequently, d-axis and q-axis voltage command values vd and vq are calculated from a deviation between the d-axis and q-axis current command values id * and iq * and the d-axis and q-axis current id and iq.
 次に、d軸、q軸電圧指令値vd、vqと、電動モータ4の回転子位相αから、三相交流電圧指令値vu、vv、vwを求める。そして、求めた三相交流電圧指令値vu、vv、vwと直流電圧値Vdcから、PWM信号tu(%)、tv(%)、tw(%)を求める。このようにして求めたPWM信号tu、tv、twにより、インバータ3のスイッチング素子を開閉することによって、電動モータ4をトルク指令値で指示された所望のトルクで駆動することができる。 Next, three-phase AC voltage command values vu, vv, and vw are obtained from the d-axis and q-axis voltage command values vd and vq and the rotor phase α of the electric motor 4. Then, PWM signals tu (%), tv (%), and tw (%) are obtained from the obtained three-phase AC voltage command values vu, vv, and vw and the DC voltage value Vdc. The electric motor 4 can be driven with a desired torque indicated by the torque command value by opening and closing the switching element of the inverter 3 by the PWM signals tu, tv, and tw obtained in this way.
 図2のステップS203で行う車両前後振動抑制フィルタ処理の詳細について説明する。 Details of the vehicle longitudinal vibration suppression filter processing performed in step S203 of FIG. 2 will be described.
 図4Aおよび図4Bは、サスペンションスプリングの下側であるバネ下の構造を示す図であり、図4Aは斜視図、図4Bは上面図である。図4Aに示すように、電動モータ5は、バネ下に設けられている。 FIG. 4A and FIG. 4B are views showing an unsprung structure on the lower side of the suspension spring, FIG. 4A is a perspective view, and FIG. 4B is a top view. As shown in FIG. 4A, the electric motor 5 is provided under the spring.
 バネ下前後振動は、路面から伝わる駆動力の反力がロアアーム(図4B参照)を介して、サスペンションメンバーを含むモータユニットを前後に加振することで励起される。従って、乗員が感知する加速度は、下記(A)、(B)の和で近似することができる。
(A)駆動力により、車体が推進されることで発生する加速度
(B)駆動力により、バネ下が前後に加振されることで発生する加速度外乱
The unsprung longitudinal vibration is excited when the reaction force of the driving force transmitted from the road surface vibrates the motor unit including the suspension member back and forth via the lower arm (see FIG. 4B). Therefore, the acceleration sensed by the passenger can be approximated by the sum of the following (A) and (B).
(A) Acceleration generated when the vehicle body is propelled by the driving force (B) Acceleration disturbance generated when the unsprung portion is vibrated back and forth by the driving force
 ここで、上記(B)の加速度外乱は、パラメータ同定などにより、次式(1)で表すことができる。
Figure JPOXMLDOC01-appb-M000001
Here, the acceleration disturbance (B) can be expressed by the following equation (1) by parameter identification or the like.
Figure JPOXMLDOC01-appb-M000001
 式(1)中のGv(s)は、次式(2)により表される。ただし、式(1)中のFは駆動力、αvは加速度外乱であり、式(2)中のζv、ωvはそれぞれ、バネ下前後振動の減衰係数、固有振動周波数である。
Figure JPOXMLDOC01-appb-M000002
Gv (s) in the formula (1) is represented by the following formula (2). However, F in Formula (1) is a driving force, αv is an acceleration disturbance, and ζv and ωv in Formula (2) are a damping coefficient and natural vibration frequency of unsprung longitudinal vibration, respectively.
Figure JPOXMLDOC01-appb-M000002
 以下では、基本目標トルク指令値から式(1)で表される加速度外乱までの伝達特性を導出し、その伝達特性に存在するバネ下前後振動成分をキャンセルする車両前後振動抑制フィルタを導出する方法について説明する。 In the following, a method for deriving a vehicle longitudinal vibration suppression filter for deriving a transfer characteristic from the basic target torque command value to the acceleration disturbance represented by Equation (1) and canceling the unsprung longitudinal vibration component present in the transfer characteristic is described. Will be described.
 ギアバックラッシュによる不感帯を線形関数と飽和関数の差分で表現すると、車両の運動方程式は次式(3)~式(8)で表される。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
If the dead zone due to gear backlash is expressed by the difference between the linear function and the saturation function, the equation of motion of the vehicle is expressed by the following equations (3) to (8).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 ここで、式(3)~(8)における各パラメータは下記の通りである。
Jm:モータのイナーシャ
Jw:駆動輪のイナーシャ(1輪分)
M:車両の重量
Kd:ドライブシャフトのねじり剛性
Kt:タイヤと路面の摩擦に関する係数
Nal:オーバーオールギア比
r:タイヤの荷重半径
ωm:モータ回転速度
ωw:駆動輪の角速度
Tm:モータトルク
Td:ドライブシャフト軸トルク
F:車両の駆動力
V:車両の速度
θ:ドライブシャフトの捻り角
Here, each parameter in the equations (3) to (8) is as follows.
Jm: Motor inertia Jw: Drive wheel inertia (for one wheel)
M: Vehicle weight Kd: Torsional rigidity of drive shaft Kt: Coefficient related to friction between tire and road surface Nal: Overall gear ratio r: Tire load radius ωm: Motor rotation speed ωw: Angular speed Tm of drive wheel: Motor torque Td: Drive Shaft shaft torque F: Vehicle driving force V: Vehicle speed θ: Torsion angle of drive shaft
 ただし、式(6)中のSt(θ)は飽和関数であり、次式(9)で表される。式(9)中のθBLは、モータ4から駆動軸(ドライブシャフト)8までのオーバーオールでのギアバックラッシュ量である。
Figure JPOXMLDOC01-appb-M000009
However, St ((theta)) in Formula (6) is a saturation function, and is represented by following Formula (9). In formula (9), θBL is the amount of gear backlash in the overall from the motor 4 to the drive shaft (drive shaft) 8.
Figure JPOXMLDOC01-appb-M000009
 式(3)~式(8)をラプラス変換すると、次式(10)~(15)で表される。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
When equations (3) to (8) are Laplace transformed, they are represented by the following equations (10) to (15).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 式(10)~式(15)より、モータトルクTmからモータ回転速度ωmまでの伝達特性は、次式(16)で表される。ただし、式(16)中のGp(s)、Gps(s)はそれぞれ、式(17)、(18)にて表される。
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
From the equations (10) to (15), the transfer characteristic from the motor torque Tm to the motor rotation speed ωm is expressed by the following equation (16). However, Gp (s) and Gps (s) in Expression (16) are represented by Expressions (17) and (18), respectively.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
 ただし、式(17)、(18)中の各パラメータは、次式(19)で表される。
Figure JPOXMLDOC01-appb-M000019
However, each parameter in the equations (17) and (18) is represented by the following equation (19).
Figure JPOXMLDOC01-appb-M000019
 式(10)~(15)より、モータトルクTmからドライブシャフトの捻り角θまでの伝達特性は、次式(20)で表される。ただし、式(20)中のGt(s)、Fs(s)はそれぞれ、式(21)、式(22)で表される。
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
From equations (10) to (15), the transmission characteristic from the motor torque Tm to the twist angle θ of the drive shaft is expressed by the following equation (20). However, Gt (s) and Fs (s) in Formula (20) are represented by Formula (21) and Formula (22), respectively.
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
 ただし、式(21)、式(22)中のp1、p0は、次式(23)により表される。また、ζp、ωpはそれぞれ、駆動トルク伝達系の減衰係数、固有振動周波数である。
Figure JPOXMLDOC01-appb-M000023
However, p1 and p0 in Formula (21) and Formula (22) are represented by the following Formula (23). Also, ζp and ωp are the damping coefficient and natural vibration frequency of the drive torque transmission system, respectively.
Figure JPOXMLDOC01-appb-M000023
 式(13)、式(20)より、ドライブシャフト軸トルクTdは、次式(24)にて表される。
Figure JPOXMLDOC01-appb-M000024
From the equations (13) and (20), the drive shaft shaft torque Td is expressed by the following equation (24).
Figure JPOXMLDOC01-appb-M000024
 ここで、図2のステップS204で行う制振制御を適用した場合、ドライブシャフト軸トルクは、次式(25)、(26)で表される。
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000026
Here, when the vibration suppression control performed in step S204 of FIG. 2 is applied, the drive shaft shaft torque is expressed by the following equations (25) and (26).
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000026
 ここで、式(25)中のトルク指令値Tm**は、車両前後振動抑制フィルタを適用した後のトルク指令値である第2のトルク指令値Tm2*(図2のステップ204で制振制御を行う前のトルク指令値)である。 Here, the torque command value Tm ** in the equation (25) is a second torque command value Tm2 * that is a torque command value after the vehicle longitudinal vibration suppression filter is applied (in step 204 of FIG. 2, vibration suppression control is performed). Is the torque command value).
 次に、式(11)、式(12)、式(14)より、ドライブシャフト軸トルクTdから駆動力Fまでの伝達特性は、次式(27)、(28)で表される。
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000028
Next, from the equations (11), (12), and (14), the transmission characteristics from the drive shaft shaft torque Td to the driving force F are expressed by the following equations (27) and (28).
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000028
 ただし、式(28)中のkfは、次式(29)で表される。
Figure JPOXMLDOC01-appb-M000029
However, kf in Formula (28) is represented by following Formula (29).
Figure JPOXMLDOC01-appb-M000029
 さらに、駆動力Fから加速度外乱αvまでの伝達特性は、式(1)、(2)で表されるから、式(1)、(25)、(27)より、制振制御前トルク指令値Tm**からバネ下前後加速度αvまでの伝達関数は、次式(30)で表される。
Figure JPOXMLDOC01-appb-M000030
Furthermore, since the transmission characteristic from the driving force F to the acceleration disturbance αv is expressed by the equations (1) and (2), the torque command value before damping control is obtained from the equations (1), (25), and (27). The transfer function from Tm ** to the unsprung longitudinal acceleration αv is expressed by the following equation (30).
Figure JPOXMLDOC01-appb-M000030
 ここで、式(30)で表されるバネ下前後加速度の規範応答αvmを次式(31)で表す。式(31)中のGvm(s)は、次式(32)で表される。なお、Tm*は、基本トルク指令値(第1のトルク指令値Tm1*)である。
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000032
Here, the reference response αvm of the unsprung longitudinal acceleration expressed by the equation (30) is expressed by the following equation (31). Gvm (s) in the formula (31) is represented by the following formula (32). Tm * is a basic torque command value (first torque command value Tm1 * ).
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000032
 式(30)に示すαvと式(31)に示すαvmについて、αv=αvmとすると、トルク指令値Tm**は、次式(33)で表される。
Figure JPOXMLDOC01-appb-M000033
Assuming that αv shown in the equation (30) and αvm shown in the equation (31) are αv = αvm, the torque command value Tm ** is expressed by the following equation (33).
Figure JPOXMLDOC01-appb-M000033
 ただし、式(33)中のHv(s)は、次式(34)で表される。
Figure JPOXMLDOC01-appb-M000034
However, Hv (s) in Formula (33) is represented by the following Formula (34).
Figure JPOXMLDOC01-appb-M000034
 一般的な車両の特性では、次式(35)の近似式が成り立つので、極零相殺により、式(34)は、次式(36)に書き換えられる。
Figure JPOXMLDOC01-appb-M000035
Figure JPOXMLDOC01-appb-M000036
In general vehicle characteristics, an approximate expression of the following expression (35) is established, and therefore, expression (34) is rewritten to the following expression (36) by pole-zero cancellation.
Figure JPOXMLDOC01-appb-M000035
Figure JPOXMLDOC01-appb-M000036
 ただし、式(36)は、非プロパとなるため、時定数τのローパスフィルタを付加することにより、式(36)は、次式(37)のように3次/3次=(1次/1次)×(2次×2次)のフィルタで表される
Figure JPOXMLDOC01-appb-M000037
However, since the expression (36) is non-proper, by adding a low-pass filter with a time constant τ, the expression (36) can be expressed by the third order / third order = (first order / Expressed by a filter of (primary) x (secondary x secondary)
Figure JPOXMLDOC01-appb-M000037
 時定数τは十分小さい値とし、シミュレーションまたは実験等により適切な値を設定する。 時 The time constant τ should be a sufficiently small value and set to an appropriate value by simulation or experiment.
 式(33)中のドライブシャフト捻り角θは、式(20)から演算してもよいし、次式(38)から求めてもよい。式(38)は、駆動軸トルクTdとモータトルクTmとが一致するようなトルク指令値を求め、求めたトルク指令値を式(20)に代入することにより得られる。
Figure JPOXMLDOC01-appb-M000038
The drive shaft twist angle θ in the equation (33) may be calculated from the equation (20) or may be obtained from the following equation (38). Equation (38) is obtained by obtaining a torque command value such that the drive shaft torque Td and the motor torque Tm coincide with each other and substituting the obtained torque command value into Equation (20).
Figure JPOXMLDOC01-appb-M000038
 図5は、車両前後振動抑制フィルタの構成を示す図である。トルク指令値Tm**(第2のトルク指令値Tm2*)は、式(33)で表されるが、図5は、第1のトルク指令値Tm1*を入力して第2のトルク指令値Tm2*を出力する車両前後振動抑制フィルタの構成を示している。図5に示すように、車両前後振動抑制フィルタは、(s2+2ζv・ωv・s+ωv2)/(s2+2ωv・s+ωv2)で表される制御ブロック501と、式(9)で表される飽和関数(リミッタ)502と、式(37)で表されるHv(s)なる伝達特性を有する制御ブロック503と、式(22)で表されるFs(s)なる伝達特性を有する制御ブロック504とを備える。 FIG. 5 is a diagram illustrating a configuration of the vehicle longitudinal vibration suppression filter. The torque command value Tm ** (second torque command value Tm2 * ) is expressed by the equation (33). FIG. 5 shows the second torque command value by inputting the first torque command value Tm1 *. The structure of the vehicle longitudinal vibration suppression filter which outputs Tm2 * is shown. As shown in FIG. 5, the vehicle longitudinal vibration suppression filter is represented by a control block 501 represented by (s 2 + 2ζv · ωv · s + ωv 2 ) / (s 2 + 2ωv · s + ωv 2 ) and Expression (9). A control block 503 having a saturation function (limiter) 502, a transfer characteristic Hv (s) represented by Expression (37), and a control block 504 having a transfer characteristic Fs (s) represented by Expression (22). With.
 続いて、図2のステップS204で行われる処理、すなわち、第3のトルク指令値Tm3*を算出する方法について説明する。 Next, the process performed in step S204 in FIG. 2, that is, a method for calculating the third torque command value Tm3 * will be described.
 図6は、第3のトルク指令値Tm3*を算出する処理を行う制御ブロック図の一例である。第3のトルク指令値Tm3*を算出する制振制御演算部600は、制振制御FB演算部600Aと、制振制御FF演算部600Bと、加算器600Cを備える。 FIG. 6 is an example of a control block diagram for performing processing for calculating the third torque command value Tm3 * . The vibration suppression control calculation unit 600 that calculates the third torque command value Tm3 * includes a vibration suppression control FB calculation unit 600A, a vibration suppression control FF calculation unit 600B, and an adder 600C.
 まず始めに、制振制御FF演算部600Bの構成について説明する。 First, the configuration of the vibration suppression control FF calculation unit 600B will be described.
 ドライブシャフト軸トルクTdとモータトルクTmとが一致するようなトルク指令値を求めると、次式(39)、(40)となる。
Figure JPOXMLDOC01-appb-M000039
Figure JPOXMLDOC01-appb-M000040
When a torque command value is obtained such that the drive shaft shaft torque Td and the motor torque Tm coincide with each other, the following equations (39) and (40) are obtained.
Figure JPOXMLDOC01-appb-M000039
Figure JPOXMLDOC01-appb-M000040
 従って、車両のトルク伝達の固有振動周波数成分を低減する線形フィルタGINV(s)と、駆動軸ねじり角を演算するフィルタGt(s)、飽和関数(リミッタ)、駆動軸ねじり角の車輪イナーシャとタイヤ摩擦力による位相ずれを補償するフィルタFs(s)より、制振制御FF演算部600Bの構成は、図7で表される。すなわち、制振制御FF演算部600Bは、GINV(s)なる伝達特性を有する制御ブロック601と、Gt(s)なる伝達特性を有する制御ブロック602と、式(9)で表される特性のリミッタ603と、Fs(s)なる伝達特性を有する制御ブロック604と、加算器605と、加算器606と、減算器607とを備える。 Therefore, a linear filter G INV (s) that reduces the natural vibration frequency component of the torque transmission of the vehicle, a filter Gt (s) that calculates the drive shaft torsion angle, a saturation function (limiter), and a wheel inertia of the drive shaft torsion angle The configuration of the vibration suppression control FF calculation unit 600B is represented in FIG. 7 by the filter Fs (s) that compensates for the phase shift due to the tire friction force. That is, the vibration suppression control FF calculation unit 600B includes a control block 601 having a transfer characteristic G INV (s), a control block 602 having a transfer characteristic Gt (s), and a characteristic represented by the equation (9). A limiter 603, a control block 604 having a transfer characteristic of Fs (s), an adder 605, an adder 606, and a subtractor 607 are provided.
 式(20)に式(39)を代入すると、次式(41)と等価変換することができる。
Figure JPOXMLDOC01-appb-M000041
By substituting equation (39) into equation (20), equivalent conversion to the following equation (41) can be made.
Figure JPOXMLDOC01-appb-M000041
 従って、制振制御FF演算部600Bは、車両のトルク伝達の固有振動周波数成分を低減する線形フィルタGINV(s)と、駆動軸ねじり角の理想応答を演算するフィルタGtm(s)と、飽和関数(リミッタ)と、駆動軸ねじり角の車輪イナーシャとタイヤ摩擦力による位相ずれを補償するフィルタFs(s)により、図8のように構成することもできる。図8に示す構成によれば、制振制御FF演算部600Bは、GINV(s)なる伝達特性を有する制御ブロック601と、式(9)で表される特性のリミッタ603と、Fs(s)なる伝達特性を有する制御ブロック604と、加算器606と、減算器607と、Gtm(s)なる伝達特性を有する制御ブロック612と、加算器611とを備える。 Accordingly, the vibration suppression control FF calculation unit 600B includes a linear filter G INV (s) for reducing the natural vibration frequency component of the torque transmission of the vehicle, a filter Gtm (s) for calculating the ideal response of the drive shaft torsion angle, and saturation. A function (limiter), a wheel inertia of a drive shaft torsion angle, and a filter Fs (s) that compensates for a phase shift due to tire frictional force can also be configured as shown in FIG. According to the configuration shown in FIG. 8, the vibration suppression control FF calculation unit 600B includes a control block 601 having a transfer characteristic G INV (s), a limiter 603 having a characteristic represented by Expression (9), and Fs (s ), A control block 604 having a transfer characteristic, an adder 606, a subtractor 607, a control block 612 having a transfer characteristic Gtm (s), and an adder 611.
 続いて、制振制御FB演算部600Aで行われるフィードバック演算処理について説明する。図9は、制振制御FB演算部600Aの詳細なブロック構成図である。制振制御FB演算部600Aは、Gp(s)なる伝達特性を有する制御ブロック651と、Gps(s)なる伝達特性を有する制御ブロック652と、H(s)/Gp(s)なる伝達特性を有する制御ブロック653と、加算器654と、減算器655と、Gt(s)なる伝達特性を有する制御ブロック656と、式(9)で表される特性のリミッタ657と、Fs(s)なる伝達特性を有する制御ブロック658と、加算器659とを備える。 Subsequently, feedback calculation processing performed by the vibration suppression control FB calculation unit 600A will be described. FIG. 9 is a detailed block diagram of the vibration suppression control FB calculation unit 600A. The vibration suppression control FB operation unit 600A has a control block 651 having a transfer characteristic Gp (s), a control block 652 having a transfer characteristic Gps (s), and a transfer characteristic H (s) / Gp (s). A control block 653, an adder 654, a subtractor 655, a control block 656 having a transfer characteristic Gt (s), a limiter 657 having a characteristic expressed by the equation (9), and a transfer Fs (s). A control block 658 having characteristics and an adder 659 are provided.
 Gp(s)は、車両へのモータトルク入力に対するモータ回転速度の伝達特性を示す線形プラントモデルであり、Gps(s)は、モータ回転速度のバックラッシュ補償分を算出する伝達関数である。Gt(s)は、駆動軸捻り角を演算するフィルタ、Fs(s)は、駆動軸捻り角の車輪イナーシャとタイヤ摩擦力による位相ずれを補償するフィルタであり、具体的には、式(21)、(22)で表される。 Gp (s) is a linear plant model indicating the transfer characteristic of the motor rotation speed with respect to the motor torque input to the vehicle, and Gps (s) is a transfer function for calculating the backlash compensation amount of the motor rotation speed. Gt (s) is a filter that calculates the drive shaft twist angle, and Fs (s) is a filter that compensates for a phase shift caused by wheel inertia and tire friction force of the drive shaft twist angle. ), (22).
 制振制御FB演算部600Aは、制振制御後トルク指令値Tm3*と制振制御FF演算部600Bの出力FFoutを入力として、線形プラントモデルGp(s)、フィルタGt(s)、フィルタFs(s)、飽和関数(リミッタ)、伝達関数Gps(s)より、モータ回転速度推定値ωm^を演算する。さらに、算出したモータ回転速度推定値ωm^と実モータ回転速度ωmの差分を入力として、伝達関数H(s)/Gp(s)より、制振制御FB演算部600Aの出力FBoutを演算する。 The vibration suppression control FB calculation unit 600A receives the post-vibration control torque command value Tm3 * and the output FF out of the vibration suppression control FF calculation unit 600B, and receives the linear plant model Gp (s), the filter Gt (s), and the filter Fs. (S), a saturation function (limiter), and a transfer function Gps (s), a motor rotational speed estimated value ωm ^ is calculated. Further, the difference between the calculated motor rotation speed estimated value ωm ^ and the actual motor rotation speed ωm is input, and the output FB out of the vibration suppression control FB calculation unit 600A is calculated from the transfer function H (s) / Gp (s). .
 伝達関数H(s)は、バンドバスフィルタとした場合に、振動のみを低減するフィードバック要素となる。この際、図10に示すようにフィルタの特性を設定すると、最も大きな効果を得ることができる。即ち、伝達関数H(s)は、ローパス側およびハイパス側での減衰特性が略一致し、かつ、駆動系のねじり共振周波数が対数軸(logスケール)上で通過帯域の中央部近傍となるように設定されている。そして、例えば、H(s)を1次のハイパスフィルタと1次のローパスフィルタで構成する場合、周波数fpを駆動系のねじり共振周波数とし、kを任意の値として、式(42)のように構成する。
Figure JPOXMLDOC01-appb-M000042
The transfer function H (s) is a feedback element that reduces only vibration when a band-pass filter is used. At this time, the greatest effect can be obtained by setting the filter characteristics as shown in FIG. That is, the transfer function H (s) has substantially the same attenuation characteristics on the low-pass side and the high-pass side, and the torsional resonance frequency of the drive system is close to the center of the passband on the logarithmic axis (log scale). Is set to For example, when H (s) is composed of a first-order high-pass filter and a first-order low-pass filter, the frequency fp is the torsional resonance frequency of the drive system, k is an arbitrary value, and the equation (42) Constitute.
Figure JPOXMLDOC01-appb-M000042
 ただし、τL=1/(2πfHC)、fHC=k・fp、τH=1/(2πfLC)、fLC=fp/kである。 However, τ L = 1 / (2πf HC), f HC = k · f p, τ H = 1 / (2πf LC), it is f LC = f p / k.
 以下、車両へのモータトルク入力に対するモータ回転速度の伝達特性を示す線形プラントモデルGp(s)、モータ回転速度のバックラッシュ補償分を算出する伝達関数Gps(s)について説明する。 Hereinafter, the linear plant model Gp (s) indicating the transfer characteristic of the motor rotation speed with respect to the motor torque input to the vehicle and the transfer function Gps (s) for calculating the backlash compensation amount of the motor rotation speed will be described.
 上述したように、モータトルクTmからモータ回転速度ωmまでの伝達特性は、式(16)~(18)で表される。 As described above, the transfer characteristics from the motor torque Tm to the motor rotational speed ωm are expressed by the equations (16) to (18).
 式(17)を整理して次式(43)のように表す。一般的な車両では、式(43)の伝達関数の極と零点を調べると、1つの極と1つの零点は極めて近い値を示す。これは、式(43)のαとβが極めて近い値を示すことに相当する。ここで、ζpとωpはそれぞれ、駆動ねじり振動系の減衰係数と固有振動周波数である。
Figure JPOXMLDOC01-appb-M000043
Formula (17) is arranged and expressed as the following formula (43). In a general vehicle, when the poles and zeros of the transfer function of Equation (43) are examined, one pole and one zero show extremely close values. This corresponds to the fact that α and β in Equation (43) show extremely close values. Here, ζp and ωp are the damping coefficient and natural vibration frequency of the drive torsional vibration system, respectively.
Figure JPOXMLDOC01-appb-M000043
 従って、式(43)における極零相殺(α=βと近似)を行うことにより、次式(44)に示すように、(2次)/(3次)の伝達特性Gp(s)を構成する。
Figure JPOXMLDOC01-appb-M000044
Therefore, by performing pole-zero cancellation (approximate with α = β) in equation (43), the (second order) / (third order) transfer characteristic Gp (s) is configured as shown in the following equation (44). To do.
Figure JPOXMLDOC01-appb-M000044
 以上、第1の実施形態における電動車両の制御装置によれば、車両情報に基づいてモータトルク指令値を設定し、駆動輪につながるモータのトルクを制御する電動車両の制御装置において、モータトルク指令値に対して、バネ下の前後方向の固有振動周波数成分を低減するフィルタリング処理を施し、モータトルク指令値にフィルタリング処理が施されることによって求められる最終トルク指令値に従ってモータトルクを制御する。これにより、車両バネ下の前後方向における振動を低減し、乗員にショックや不快な振動を感じさせることなく、滑らかな加速を実現することができる。 As described above, according to the control apparatus for an electric vehicle in the first embodiment, in the control apparatus for an electric vehicle that sets the motor torque command value based on the vehicle information and controls the torque of the motor connected to the drive wheels, A filtering process for reducing the natural vibration frequency component in the unsprung direction in the unsprung direction is performed on the value, and the motor torque is controlled according to the final torque command value obtained by performing the filtering process on the motor torque command value. Thereby, vibration in the front-rear direction under the vehicle spring can be reduced, and smooth acceleration can be realized without causing the occupant to feel a shock or unpleasant vibration.
 また、バネ下の前後方向の固有振動周波数成分を低減するフィルタリング処理で用いられるフィルタを、バネ下の前後方向の伝達特性の逆特性を含むフィルタ(図5の制御ブロック501)とすることにより、車両バネ下の前後方向における振動を低減する補償トルクを適確に算出することが可能となる。この結果、急峻なトルク変化を伴う発進加速のシーンにおいても、乗員にショックや不快な振動を感じさせることなく、滑らかな加速を実現することができる。 Further, by using a filter (control block 501 in FIG. 5) including a reverse characteristic of the unsprung front-rear direction transfer characteristic as a filter used in the filtering process for reducing the unsprung front-rear natural vibration frequency component. It is possible to accurately calculate a compensation torque that reduces vibration in the front-rear direction under the vehicle spring. As a result, smooth acceleration can be realized without causing the occupant to feel a shock or unpleasant vibration even in a scene of start acceleration accompanied by a steep torque change.
 特に、バネ下の前後方向の固有振動周波数成分を低減するフィルタリング処理で用いられるフィルタは、バネ下の前後方向の伝達特性の逆特性を含むフィルタ(図5の制御ブロック501)と、ドライブシャフト捻り角を入力とする飽和関数502と、ギアによる不感帯で補正トルクを出力するフィルタ(制御ブロック503)と、ドライブシャフト捻り角の車輪イナーシャとタイヤ摩擦力による位相ずれを算出するフィルタ(制御ブロック504)とを含む。これにより、コーストや減速からの加速時でも、ギアによる不感帯を有する車両の駆動力伝達系のバネ下前後方向の固有振動周波数成分を抑制し、バネ下前後方向の振動を抑えることができる。また、飽和関数(リミッタ)により、ギアによる不感帯の有無によるフィルタ構成を変更する必要がないため、複雑な演算(初期化、条件判定、切替など)をする必要がない。 In particular, the filter used in the filtering process for reducing the unsprung front-rear natural vibration frequency component includes a filter (control block 501 in FIG. 5) including a reverse characteristic of the unsprung front-rear transmission characteristic, and a drive shaft twist. Saturation function 502 with angle as input, filter that outputs correction torque in dead zone due to gear (control block 503), filter that calculates phase shift due to wheel inertia and tire friction force of drive shaft twist angle (control block 504) Including. As a result, even during acceleration from coasting or deceleration, the natural vibration frequency component in the unsprung front-rear direction of the driving force transmission system of the vehicle having the dead zone due to the gear can be suppressed, and vibration in the unsprung front-rear direction can be suppressed. In addition, since it is not necessary to change the filter configuration depending on the presence or absence of the dead band due to the saturation function (limiter), it is not necessary to perform complicated calculations (initialization, condition determination, switching, etc.).
 また、飽和関数502の上下限値を、ギアのバックラッシュ量に基づいて定める(式(9)参照)ので、バックラッシュ補正量を算出することができる。 Since the upper and lower limit values of the saturation function 502 are determined based on the gear backlash amount (see equation (9)), the backlash correction amount can be calculated.
 さらに、バネ下の前後方向の固有振動周波数成分を低減するフィルタリング処理(図2のS203)が施されたモータトルク指令値に対して、駆動軸のねじり振動を抑制するためのフィルタリング処理(図2のS204)を施し、駆動軸のねじり振動を抑制するためのフィルタリング処理(制振制御)が施されたモータトルク指令値を最終トルク指令値としてモータトルクを制御する。駆動力伝達系の制振制御では、モータトルクからモータ回転速度までの制御対象のモデルを想定し、モータ回転速度の検出遅れ等を考慮して構成されていることがある。このような場合、バネ下の前後方向の固有振動周波数成分を低減するフィルタリング処理を駆動軸のねじり振動を抑制するためのフィルタリング処理(制振制御)の後段に配置すると、制振制御内で考慮している制御対象のモデルと異なる応答になってしまい、さらに想定しているモータ回転速度の応答と検出遅れ等の適合にズレが生じる。この結果、制振制御の性能悪化につながる場合がある。これに対して、本実施形態のように、バネ下の前後方向の固有振動周波数成分を低減するフィルタリング処理を制振制御の前段で実施することにより、駆動力伝達系振動の制振制御の効果を残しつつ、20~40Hz程度のバネ下の前後方向における振動を抑制することができる。 Further, a filtering process for suppressing the torsional vibration of the drive shaft (FIG. 2) with respect to the motor torque command value subjected to the filtering process (S203 in FIG. 2) for reducing the natural vibration frequency component in the front-rear direction under the spring. The motor torque is controlled using the motor torque command value subjected to the filtering process (vibration control) for suppressing the torsional vibration of the drive shaft as the final torque command value. The damping control of the driving force transmission system may be configured in consideration of a detection delay of the motor rotation speed, assuming a model to be controlled from the motor torque to the motor rotation speed. In such a case, if the filtering process to reduce the natural vibration frequency component in the front-rear direction under the spring is arranged after the filtering process (vibration control) to suppress the torsional vibration of the drive shaft, it is considered in the vibration suppression control. This results in a response different from that of the model to be controlled, and there is a difference between the expected response of the motor rotational speed and the detection delay. As a result, the performance of the vibration suppression control may be deteriorated. On the other hand, as in this embodiment, the filtering process for reducing the unsprung natural vibration frequency component in the front-rear direction is performed in the previous stage of the vibration suppression control, thereby achieving the effect of the vibration suppression control of the driving force transmission system vibration. The vibration in the front-rear direction under the spring of about 20 to 40 Hz can be suppressed.
 -第2の実施形態-
 バネ下前後振動は、路面から伝わる駆動力の反力がロアアームを介して、サスペンションメンバーを含むモータユニットを前後に加振することで励起されるため、乗員が感知する加速度は、図11に示すバネ・マス・ダンパー系でモデル化できる。
-Second Embodiment-
The unsprung longitudinal vibration is excited when the reaction force of the driving force transmitted from the road surface is vibrated back and forth through the lower arm, so the acceleration sensed by the occupant is shown in FIG. Can be modeled with a spring, mass, damper system.
 図11に示すバネ下のバネ・マス・ダンパーモデル構成図の運動方程式は、次式(45)で表される。
Figure JPOXMLDOC01-appb-M000045
The equation of motion of the unsprung spring-mass-damper model configuration diagram shown in FIG. 11 is expressed by the following equation (45).
Figure JPOXMLDOC01-appb-M000045
 式(45)より、駆動力Fから車両(車室)の変位量xvまでの伝達特性は、次式(46)で表される。
Figure JPOXMLDOC01-appb-M000046
From Expression (45), the transfer characteristic from the driving force F to the displacement amount xv of the vehicle (vehicle compartment) is expressed by the following Expression (46).
Figure JPOXMLDOC01-appb-M000046
 従って、駆動力Fから車両前後加速度αvまでの伝達特性は、次式(47)で表される。また、式(47)中のGv(s)は、式(48)で表される。
Figure JPOXMLDOC01-appb-M000047
Figure JPOXMLDOC01-appb-M000048
Therefore, the transfer characteristic from the driving force F to the vehicle longitudinal acceleration αv is expressed by the following equation (47). Further, Gv (s) in the formula (47) is represented by the formula (48).
Figure JPOXMLDOC01-appb-M000047
Figure JPOXMLDOC01-appb-M000048
 ただし、式(48)中のv1、v0、ωv、ζvは式(49)で表される。
Figure JPOXMLDOC01-appb-M000049
However, v1, v0, ωv, and ζv in Expression (48) are expressed by Expression (49).
Figure JPOXMLDOC01-appb-M000049
 以下では、基本目標トルク指令値である第1のトルク指令値Tm1*から、式(47)で表される車両前後加速度αvまでの伝達特性を導出し、その伝達特性に存在するバネ下前後振動成分をキャンセルする車両前後振動抑制フィルタを導出する方法について説明する。 Hereinafter, from the first torque command value Tm1 * , which is the basic target torque command value, the transfer characteristic up to the vehicle longitudinal acceleration αv represented by the equation (47) is derived, and the unsprung longitudinal vibration existing in the transfer characteristic. A method for deriving a vehicle longitudinal vibration suppression filter that cancels components will be described.
 ギアバックラッシュによる不感帯を線形関数と飽和関数の差分で表現すると、車両の運動方程式は次式(50)~式(55)で表される。
Figure JPOXMLDOC01-appb-M000050
Figure JPOXMLDOC01-appb-M000051
Figure JPOXMLDOC01-appb-M000052
Figure JPOXMLDOC01-appb-M000053
Figure JPOXMLDOC01-appb-M000054
Figure JPOXMLDOC01-appb-M000055
If the dead zone due to gear backlash is expressed by the difference between the linear function and the saturation function, the equation of motion of the vehicle is expressed by the following equations (50) to (55).
Figure JPOXMLDOC01-appb-M000050
Figure JPOXMLDOC01-appb-M000051
Figure JPOXMLDOC01-appb-M000052
Figure JPOXMLDOC01-appb-M000053
Figure JPOXMLDOC01-appb-M000054
Figure JPOXMLDOC01-appb-M000055
 ここで、式(50)~(55)における各パラメータは下記の通りである。
Jm:モータのイナーシャ
Jw:駆動輪のイナーシャ(1輪分)
M:車両の重量
Kd:ドライブシャフトのねじり剛性
Kt:タイヤと路面の摩擦に関する係数
Nal:オーバーオールギア比
r:タイヤの荷重半径
ωm:モータ回転速度
ωw:駆動輪の角速度
Tm:モータトルク
Td:駆動輪のトルク
F:車両の駆動力
V:車両の速度
θ:ドライブシャフトの捻り角
Here, each parameter in the equations (50) to (55) is as follows.
Jm: Motor inertia Jw: Drive wheel inertia (for one wheel)
M: Vehicle weight Kd: Torsional rigidity of drive shaft Kt: Coefficient related to friction between tire and road surface Nal: Overall gear ratio r: Tire load radius ωm: Motor rotation speed ωw: Angular speed Tm of drive wheel: Motor torque Td: Drive Wheel torque F: Vehicle driving force V: Vehicle speed θ: Torsion angle of drive shaft
 ただし、式(53)中のSt(θ)は飽和関数であり、次式(56)で表される。式(56)中のθBLは、モータ4から駆動軸(ドライブシャフト)8までのオーバーオールでのギアバックラッシュ量である。
Figure JPOXMLDOC01-appb-M000056
However, St ((theta)) in Formula (53) is a saturation function, and is represented by following Formula (56). In the equation (56), θBL is a gear backlash amount in the overall from the motor 4 to the drive shaft (drive shaft) 8.
Figure JPOXMLDOC01-appb-M000056
 式(50)~式(55)をラプラス変換すると、次式(57)~(62)で表される。
Figure JPOXMLDOC01-appb-M000057
Figure JPOXMLDOC01-appb-M000058
Figure JPOXMLDOC01-appb-M000059
Figure JPOXMLDOC01-appb-M000060
Figure JPOXMLDOC01-appb-M000061
Figure JPOXMLDOC01-appb-M000062
When Laplace transform is performed on the equations (50) to (55), the following equations (57) to (62) are obtained.
Figure JPOXMLDOC01-appb-M000057
Figure JPOXMLDOC01-appb-M000058
Figure JPOXMLDOC01-appb-M000059
Figure JPOXMLDOC01-appb-M000060
Figure JPOXMLDOC01-appb-M000061
Figure JPOXMLDOC01-appb-M000062
 式(57)~式(62)より、モータトルクTmからモータ回転速度ωmまでの伝達特性は、次式(63)で表される。ただし、式(63)中のGp(s)、Gps(s)はそれぞれ、式(64)、(65)にて表される。
Figure JPOXMLDOC01-appb-M000063
Figure JPOXMLDOC01-appb-M000064
Figure JPOXMLDOC01-appb-M000065
From the equations (57) to (62), the transfer characteristic from the motor torque Tm to the motor rotational speed ωm is expressed by the following equation (63). However, Gp (s) and Gps (s) in Expression (63) are expressed by Expressions (64) and (65), respectively.
Figure JPOXMLDOC01-appb-M000063
Figure JPOXMLDOC01-appb-M000064
Figure JPOXMLDOC01-appb-M000065
 ただし、式(64)、(65)中の各パラメータは、次式(66)で表される。
Figure JPOXMLDOC01-appb-M000066
However, each parameter in the equations (64) and (65) is represented by the following equation (66).
Figure JPOXMLDOC01-appb-M000066
 式(57)~(62)より、モータトルクTmからドライブシャフトの捻り角θまでの伝達特性は、次式(67)で表される。ただし、式(67)中のGt(s)、Fs(s)はそれぞれ、式(68)、式(69)で表される。
Figure JPOXMLDOC01-appb-M000067
Figure JPOXMLDOC01-appb-M000068
Figure JPOXMLDOC01-appb-M000069
From equations (57) to (62), the transmission characteristic from the motor torque Tm to the twist angle θ of the drive shaft is expressed by the following equation (67). However, Gt (s) and Fs (s) in Formula (67) are represented by Formula (68) and Formula (69), respectively.
Figure JPOXMLDOC01-appb-M000067
Figure JPOXMLDOC01-appb-M000068
Figure JPOXMLDOC01-appb-M000069
 ただし、式(68)、式(69)中のp1、p0は、次式(70)により表される。また、ζp、ωpはそれぞれ、駆動トルク伝達系の減衰係数、固有振動周波数である。
Figure JPOXMLDOC01-appb-M000070
However, p1 and p0 in Formula (68) and Formula (69) are represented by the following Formula (70). Also, ζp and ωp are the damping coefficient and natural vibration frequency of the drive torque transmission system, respectively.
Figure JPOXMLDOC01-appb-M000070
 式(60)、式(67)より、ドライブシャフト軸トルクTdは、次式(71)にて表される。
Figure JPOXMLDOC01-appb-M000071
From the equations (60) and (67), the drive shaft shaft torque Td is expressed by the following equation (71).
Figure JPOXMLDOC01-appb-M000071
 ここで、図2のステップS204で行う制振制御を適用した場合、ドライブシャフト軸トルクは、次式(72)、(73)で定義する。
Figure JPOXMLDOC01-appb-M000072
Figure JPOXMLDOC01-appb-M000073
Here, when the vibration suppression control performed in step S204 of FIG. 2 is applied, the drive shaft shaft torque is defined by the following equations (72) and (73).
Figure JPOXMLDOC01-appb-M000072
Figure JPOXMLDOC01-appb-M000073
 ここで、式(72)中のトルク指令値Tm**は、車両前後振動抑制フィルタを適用した後のトルク指令値である第2のトルク指令値Tm2*(図2のステップ204で制振制御を行う前のトルク指令値)である。 Here, the torque command value Tm ** in the equation (72) is a second torque command value Tm2 * that is a torque command value after the vehicle longitudinal vibration suppression filter is applied (in step 204 of FIG. 2, vibration suppression control is performed). Is the torque command value).
 次に、式(58)、式(59)、式(61)より、ドライブシャフト軸トルクTdから駆動力Fまでの伝達特性は、次式(74)、(75)で表される。
Figure JPOXMLDOC01-appb-M000074
Figure JPOXMLDOC01-appb-M000075
Next, from the equations (58), (59), and (61), the transmission characteristics from the drive shaft shaft torque Td to the driving force F are expressed by the following equations (74) and (75).
Figure JPOXMLDOC01-appb-M000074
Figure JPOXMLDOC01-appb-M000075
 ただし、式(75)中のkfは、次式(76)で表される。
Figure JPOXMLDOC01-appb-M000076
However, kf in Formula (75) is represented by following Formula (76).
Figure JPOXMLDOC01-appb-M000076
 さらに、駆動力Fから車両前後加速度αvまでの伝達特性は、式(47)、(48)で表されるから、式(47)、(72)、(74)より、制振制御前トルク指令値Tm**から車両前後加速度αvまでの伝達関数は、次式(77)で表される。
Figure JPOXMLDOC01-appb-M000077
Further, since the transmission characteristic from the driving force F to the vehicle longitudinal acceleration αv is expressed by the equations (47) and (48), the torque command before vibration suppression control is obtained from the equations (47), (72), and (74). The transfer function from the value Tm ** to the vehicle longitudinal acceleration αv is expressed by the following equation (77).
Figure JPOXMLDOC01-appb-M000077
 ここで、式(77)で表される車両前後加速度の規範応答αvmを次式(78)で表す。式(78)中のGvm(s)は、次式(79)で表される。なお、Tm*は、基本トルク指令値である。
Figure JPOXMLDOC01-appb-M000078
Figure JPOXMLDOC01-appb-M000079
Here, the reference response αvm of the vehicle longitudinal acceleration expressed by the equation (77) is expressed by the following equation (78). Gvm (s) in the formula (78) is represented by the following formula (79). Tm * is a basic torque command value.
Figure JPOXMLDOC01-appb-M000078
Figure JPOXMLDOC01-appb-M000079
 式(77)に示すαvと式(78)に示すαvmについて、αv=αvmとすると、トルク指令値Tm**は、次式(80)で表される。
Figure JPOXMLDOC01-appb-M000080
Assuming that αv shown in the equation (77) and αvm shown in the equation (78) are αv = αvm, the torque command value Tm ** is expressed by the following equation (80).
Figure JPOXMLDOC01-appb-M000080
 ただし、式(80)中のHv(s)は、次式(81)で表される。
Figure JPOXMLDOC01-appb-M000081
However, Hv (s) in Formula (80) is represented by the following Formula (81).
Figure JPOXMLDOC01-appb-M000081
 一般的な車両の特性では、次式(82)の近似式が成り立つので、極零相殺により、式(81)は、次式(83)に書き換えられる。
Figure JPOXMLDOC01-appb-M000082
Figure JPOXMLDOC01-appb-M000083
In general vehicle characteristics, the approximate expression of the following expression (82) is established. Therefore, the expression (81) is rewritten to the following expression (83) by pole-zero cancellation.
Figure JPOXMLDOC01-appb-M000082
Figure JPOXMLDOC01-appb-M000083
 ただし、式(83)は、非プロパとなるため、時定数τのローパスフィルタを付加することにより、式(83)は、次式(84)のように3次/3次=(1次/1次)×(2次×2次)のフィルタで表される。
Figure JPOXMLDOC01-appb-M000084
However, since the equation (83) is non-proper, by adding a low-pass filter with a time constant τ, the equation (83) can be expressed as the third order / third order = (first order / It is represented by a filter of (primary) × (secondary × secondary).
Figure JPOXMLDOC01-appb-M000084
 時定数τは十分小さい値とし、シミュレーションまたは実験等により適切な値を設定する。 時 The time constant τ should be a sufficiently small value and set to an appropriate value by simulation or experiment.
 式(80)中のドライブシャフト捻り角θは、式(67)から演算してもよいし、次式(85)から求めてもよい。式(85)は、駆動軸トルクTdとモータトルクTmとが一致するようなトルク指令値を求め、求めたトルク指令値を式(67)に代入することにより得られる。
Figure JPOXMLDOC01-appb-M000085
The drive shaft twist angle θ in the equation (80) may be calculated from the equation (67) or may be obtained from the following equation (85). Expression (85) is obtained by obtaining a torque command value such that the drive shaft torque Td and the motor torque Tm coincide with each other and substituting the obtained torque command value into Expression (67).
Figure JPOXMLDOC01-appb-M000085
 第2の実施形態における電動車両の制御装置における車両前後振動抑制フィルタの構成は、第1の実施形態と同様に図5で示される。 The configuration of the vehicle longitudinal vibration suppression filter in the control apparatus for an electric vehicle in the second embodiment is shown in FIG. 5 as in the first embodiment.
 以上、第2の実施形態における電動車両の制御装置においても第1の実施形態における電動車両の制御装置と同様に、車両バネ下の前後方向における振動を低減し、乗員にショックや不快な振動を感じさせることなく、滑らかな加速を実現することができる。 As described above, in the control apparatus for the electric vehicle in the second embodiment, as in the control apparatus for the electric vehicle in the first embodiment, the vibration in the front-rear direction under the vehicle spring is reduced, and the shock and unpleasant vibration are given to the occupant. Smooth acceleration can be realized without feeling.
 第1、第2の実施形態における電動車両の制御装置による制御結果について説明する。まず始めに、クリープ状態から(ギアのバックラッシュを伴わない)発進急加速時に、トルク指令値をステップ的に増加させた場合の加速度の応答について、図12Aおよび図12Bを用いて説明する。 The control result by the control device for the electric vehicle in the first and second embodiments will be described. First, the acceleration response when the torque command value is increased stepwise from the creep state (without gear backlash) during start-up and rapid acceleration will be described with reference to FIGS. 12A and 12B.
 図12Aは、第1、第2の実施形態における電動車両の制御装置による制御結果の一例を示す図である。図12Aでは、上から順に、制振制御を行った後のトルク指令値の時間変化、車両前後加速度の時間変化、ドライブシャフト軸トルクの時間変化、モータ回転数の時間変化をそれぞれ示している。 FIG. 12A is a diagram showing an example of a control result by the control device for the electric vehicle in the first and second embodiments. FIG. 12A shows, in order from the top, the time change of the torque command value, the time change of the vehicle longitudinal acceleration, the time change of the drive shaft shaft torque, and the time change of the motor rotation speed after the vibration damping control is performed.
 停車状態から時刻t1でアクセルをステップ的に踏み込んで基本目標トルク指令値が急激に立ち上がった場合、駆動軸トルクは時刻t2でほぼ定常値に収束している。また、加速度についても、後述する従来例で見られる20~40Hz程度の振動が抑制され、滑らかに立ち上がり、時刻t2にほぼ定常値に収束している。 When the basic target torque command value suddenly rises by stepping on the accelerator step by step at time t1 from the stopped state, the drive shaft torque converges to a substantially steady value at time t2. As for the acceleration, the vibration of about 20 to 40 Hz, which is seen in the conventional example described later, is suppressed, rises smoothly, and converges to a substantially steady value at time t2.
 図12Bは、特開2003-9566号公報に記載の制御装置による制御結果の一例を示す図である。クリープ状態から時刻t1でアクセルをステップ的に踏み込んで基本目標トルク指令値が急激に立ち上がった場合、駆動力伝達系の振動を抑制するための制振制御により、制振制御後のトルク指令値は、基本目標トルク指令値に対して駆動力伝達系の振動周波数成分を抑制したトルク指令値となり、駆動軸トルクがステップ的に振動無く立ち上がり、時刻t2に至るまでもなく収束する。一方、加速度は、立ち上がり時刻t1から時刻t2にかけて20~40Hz程度の振動が残っている。 FIG. 12B is a diagram illustrating an example of a control result by the control device described in Japanese Patent Laid-Open No. 2003-9566. When the basic target torque command value suddenly rises by stepping on the accelerator at time t1 from the creep state, the torque command value after vibration suppression control is obtained by vibration suppression control to suppress vibration of the driving force transmission system. The torque command value is obtained by suppressing the vibration frequency component of the driving force transmission system with respect to the basic target torque command value, and the drive shaft torque rises without stepwise vibration and converges without reaching time t2. On the other hand, in the acceleration, vibrations of about 20 to 40 Hz remain from the rising time t1 to the time t2.
 次に、コースト状態からの(ギアのバックラッシュを伴う)急加速時に、トルク指令値をステップ的に増加させた場合の加速度の応答について、図13Aおよび図13Bを用いて説明する。 Next, the response of acceleration when the torque command value is increased stepwise during sudden acceleration from the coast state (with gear backlash) will be described with reference to FIGS. 13A and 13B.
 図13Aは、第1、第2の実施形態における電動車両の制御装置による制御結果の一例を示す図である。図13Aでは、上から順に、制振制御を行った後のトルク指令値の時間変化、車両前後加速度の時間変化、ドライブシャフト軸トルクの時間変化、モータ回転数の時間変化をそれぞれ示している。 FIG. 13A is a diagram illustrating an example of a control result by the control device for the electric vehicle in the first and second embodiments. FIG. 13A shows, in order from the top, the time change of the torque command value, the time change of the vehicle longitudinal acceleration, the time change of the drive shaft shaft torque, and the time change of the motor rotation speed after the vibration damping control is performed.
 停車状態から時刻t1でアクセルをステップ的に踏み込んで基本目標トルク指令値が急激に立ち上がった場合、駆動軸トルクは時刻t2でほぼ定常値に収束している。また、加速度についても、後述する従来例で見られる20~40Hz程度の振動が抑制され、滑らかに立ち上がり、時刻t2にほぼ定常値に収束している。すなわち、ギアのバックラッシュを伴うシーンにおいても、バネ下の前後方向における振動を抑制することができる。 When the basic target torque command value suddenly rises by stepping on the accelerator step by step at time t1 from the stopped state, the drive shaft torque converges to a substantially steady value at time t2. As for the acceleration, the vibration of about 20 to 40 Hz, which is seen in the conventional example described later, is suppressed, rises smoothly, and converges to a substantially steady value at time t2. That is, vibration in the front-rear direction under the spring can be suppressed even in a scene with gear backlash.
 図13Bは、特開2003-9566号公報に記載の制御装置による制御結果の一例を示す図である。コースト状態から時刻t1でアクセルをステップ的に踏み込んで基本目標トルク指令値が急激に立ち上がった場合、ギアバックラッシュの不感帯の誤差を補正するために、トルク指令値を加速側に発生させることにより、時刻t1から時刻t2にかけて20~40Hz程度の加速度の振動(ショック)が助長されている。 FIG. 13B is a diagram illustrating an example of a control result by the control device described in Japanese Patent Laid-Open No. 2003-9566. When the basic target torque command value suddenly rises by stepping on the accelerator at time t1 from the coast state, in order to correct the error of the dead zone of the gear backlash, by generating the torque command value on the acceleration side, From time t1 to time t2, vibration (shock) of acceleration of about 20 to 40 Hz is promoted.
 このように、第1、第2の実施形態における電動車両の制御装置によれば、ギアのバックラッシュの有無によらず、乗員にショックや不快な振動を感じさせることなく、滑らかでありながら、レスポンスを損なうことのない急峻な加速性能を実現することができる。 Thus, according to the control device for the electric vehicle in the first and second embodiments, regardless of the presence or absence of the backlash of the gear, the occupant feels shock and unpleasant vibration, while being smooth, A steep acceleration performance without impairing the response can be realized.
 本発明は、上述した第1、第2の実施形態に限定されることはなく、本発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。例えば、バネ下の前後方向の固有振動周波数成分を低減するフィルタリング処理で用いるドライブシャフトの捻り角θは、図2のステップS204で行う駆動力伝達系の振動(駆動軸8のねじり振動)を抑制するフィルタリング処理で算出した値を用いてもよい。 The present invention is not limited to the first and second embodiments described above, and various modifications and applications can be made without departing from the gist of the present invention. For example, the drive shaft torsion angle θ used in the filtering process for reducing the unsprung front-rear natural vibration frequency component suppresses the vibration of the driving force transmission system (torsional vibration of the drive shaft 8) performed in step S204 of FIG. You may use the value calculated by the filtering process to do.
 本願は、2012年10月4日に日本国特許庁に出願された特願2012-222371に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2012-222371 filed with the Japan Patent Office on October 4, 2012, the entire contents of which are incorporated herein by reference.

Claims (6)

  1.  車両情報に基づいてモータトルク指令値を設定し、駆動輪につながるモータのトルクを制御する電動車両の制御装置において、
     前記モータトルク指令値に対して、バネ下の前後方向の固有振動周波数成分を低減するフィルタリング処理を施すフィルタリング手段と、
     前記モータトルク指令値に前記フィルタリング処理が施されることによって求められる最終トルク指令値に従ってモータトルクを制御するモータトルク制御手段と、
    を備える電動車両の制御装置。
    In a control device for an electric vehicle that sets a motor torque command value based on vehicle information and controls the torque of a motor connected to a drive wheel,
    Filtering means for applying a filtering process to reduce the natural vibration frequency component of the unsprung front and rear direction with respect to the motor torque command value;
    Motor torque control means for controlling the motor torque in accordance with a final torque command value obtained by applying the filtering process to the motor torque command value;
    The control apparatus of the electric vehicle provided with.
  2.  請求項1に記載の電動車両の制御装置において、
     前記フィルタリング処理で用いられるフィルタは、バネ下の前後方向の伝達特性の逆特性を含むフィルタである、
    電動車両の制御装置。
    In the control apparatus of the electric vehicle according to claim 1,
    The filter used in the filtering process is a filter including a reverse characteristic of the unsprung front-rear transmission characteristic.
    Control device for electric vehicle.
  3.  請求項2に記載の電動車両の制御装置において、
     前記フィルタリング処理で用いられるフィルタは、バネ下の前後方向の伝達特性の逆特性を含むフィルタと、ドライブシャフト捻り角を入力とする飽和関数と、ギアによる不感帯で補正トルクを出力するフィルタと、ドライブシャフト捻り角の車輪イナーシャとタイヤ摩擦力による位相ずれを算出するフィルタとを含む、
    電動車両の制御装置。
    In the control apparatus of the electric vehicle according to claim 2,
    The filter used in the filtering process includes a filter including a reverse characteristic of the unsprung front-rear transmission characteristic, a saturation function that receives a drive shaft torsion angle, a filter that outputs a correction torque in a dead zone by a gear, and a drive Including a wheel inertia of a shaft twist angle and a filter for calculating a phase shift due to tire friction force,
    Control device for electric vehicle.
  4.  請求項3に記載の電動車両の制御装置において、
     前記飽和関数の上下限値を、ギアのバックラッシュ量に基づいて定める、
    電動車両の制御装置。
    In the control apparatus of the electric vehicle according to claim 3,
    The upper and lower limit values of the saturation function are determined based on the gear backlash amount.
    Control device for electric vehicle.
  5.  請求項1から請求項4のいずれか一項に記載の電動車両の制御装置において、
     前記フィルタリング処理が施されたモータトルク指令値に対して、駆動軸のねじり振動を抑制するためのフィルタリング処理を施すねじり振動抑制手段をさらに備え、
     前記モータトルク制御手段は、前記駆動軸のねじり振動を抑制するためのフィルタリング処理が施されたモータトルク指令値を最終トルク指令値としてモータトルクを制御する、
    電動車両の制御装置。
    In the control apparatus of the electric vehicle as described in any one of Claims 1-4,
    The motor torque command value subjected to the filtering process further includes a torsional vibration suppressing means for performing a filtering process for suppressing the torsional vibration of the drive shaft,
    The motor torque control means controls the motor torque with a motor torque command value subjected to filtering processing for suppressing torsional vibration of the drive shaft as a final torque command value;
    Control device for electric vehicle.
  6.  車両情報に基づいてモータトルク指令値を設定し、駆動輪につながるモータのトルクを制御する電動車両の制御方法において、
     前記モータトルク指令値に対して、バネ下の前後方向の固有振動周波数成分を低減するフィルタリング処理を施し、
     前記モータトルク指令値に前記フィルタリング処理が施されることによって求められる最終トルク指令値に従ってモータトルクを制御する、
    電動車両の制御方法。
    In a control method for an electric vehicle that sets a motor torque command value based on vehicle information and controls the torque of a motor connected to a drive wheel,
    Applying a filtering process to reduce the natural vibration frequency component of the unsprung longitudinal direction to the motor torque command value,
    Controlling the motor torque according to a final torque command value obtained by performing the filtering process on the motor torque command value;
    Control method of electric vehicle.
PCT/JP2013/076743 2012-10-04 2013-10-01 Control device for electric vehicle and control method for electric vehicle WO2014054657A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014539768A JP5850171B2 (en) 2012-10-04 2013-10-01 Electric vehicle control device and electric vehicle control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012222371 2012-10-04
JP2012-222371 2012-10-04

Publications (1)

Publication Number Publication Date
WO2014054657A1 true WO2014054657A1 (en) 2014-04-10

Family

ID=50434981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076743 WO2014054657A1 (en) 2012-10-04 2013-10-01 Control device for electric vehicle and control method for electric vehicle

Country Status (2)

Country Link
JP (1) JP5850171B2 (en)
WO (1) WO2014054657A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105667344A (en) * 2016-04-19 2016-06-15 清华大学 Distributed hub motor driven electric automobile torque response optimal control system and method
JP2017085706A (en) * 2015-10-23 2017-05-18 日産自動車株式会社 Control apparatus for electric vehicle, and control method therefor
CN108657018A (en) * 2018-04-16 2018-10-16 常州科研试制中心有限公司 The control method of mining electric vehicle
JP2022064064A (en) * 2020-10-13 2022-04-25 トヨタ自動車株式会社 Control device of electric vehicle
US11511629B2 (en) 2019-08-01 2022-11-29 Toyota Jidosha Kabushiki Kaisha Electrified vehicle system and control method of controlling electrified vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001045613A (en) * 1999-07-29 2001-02-16 Nissan Motor Co Ltd Motor controller for electric vehicle
JP2005269836A (en) * 2004-03-19 2005-09-29 Nissan Motor Co Ltd Vehicle vibration damping and control device and vehicle vibration damping and control method
JP2007053859A (en) * 2005-08-18 2007-03-01 Toyota Motor Corp Controller for vehicle
JP2008179196A (en) * 2007-01-23 2008-08-07 Toyota Motor Corp Traveling device
JP2010200567A (en) * 2009-02-27 2010-09-09 Nissan Motor Co Ltd Damping controller of electric vehicle
JP2010288332A (en) * 2009-06-09 2010-12-24 Nissan Motor Co Ltd Controller of electric vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001045613A (en) * 1999-07-29 2001-02-16 Nissan Motor Co Ltd Motor controller for electric vehicle
JP2005269836A (en) * 2004-03-19 2005-09-29 Nissan Motor Co Ltd Vehicle vibration damping and control device and vehicle vibration damping and control method
JP2007053859A (en) * 2005-08-18 2007-03-01 Toyota Motor Corp Controller for vehicle
JP2008179196A (en) * 2007-01-23 2008-08-07 Toyota Motor Corp Traveling device
JP2010200567A (en) * 2009-02-27 2010-09-09 Nissan Motor Co Ltd Damping controller of electric vehicle
JP2010288332A (en) * 2009-06-09 2010-12-24 Nissan Motor Co Ltd Controller of electric vehicle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017085706A (en) * 2015-10-23 2017-05-18 日産自動車株式会社 Control apparatus for electric vehicle, and control method therefor
CN105667344A (en) * 2016-04-19 2016-06-15 清华大学 Distributed hub motor driven electric automobile torque response optimal control system and method
CN105667344B (en) * 2016-04-19 2018-02-09 清华大学 The Optimal Control System and control method of distributed In-wheel motor driving electric automobile torque response
CN108657018A (en) * 2018-04-16 2018-10-16 常州科研试制中心有限公司 The control method of mining electric vehicle
CN108657018B (en) * 2018-04-16 2021-01-15 常州科研试制中心有限公司 Control method of mining electric vehicle
US11511629B2 (en) 2019-08-01 2022-11-29 Toyota Jidosha Kabushiki Kaisha Electrified vehicle system and control method of controlling electrified vehicle
JP2022064064A (en) * 2020-10-13 2022-04-25 トヨタ自動車株式会社 Control device of electric vehicle
JP7334705B2 (en) 2020-10-13 2023-08-29 トヨタ自動車株式会社 electric vehicle controller

Also Published As

Publication number Publication date
JP5850171B2 (en) 2016-02-03
JPWO2014054657A1 (en) 2016-08-25

Similar Documents

Publication Publication Date Title
JP5862436B2 (en) Control device for electric vehicle
JP6787410B2 (en) Electric vehicle control method and control device
JP6135775B2 (en) Electric vehicle control device and electric vehicle control method
JP6402783B2 (en) Electric vehicle control device and electric vehicle control method
EP3078539A1 (en) Control device for electric vehicle and control method for electric vehicle
JP6492399B2 (en) Electric vehicle control device and electric vehicle control method
EP3492305B1 (en) Vehicle control method and control device
WO2017183231A1 (en) Electric vehicle control method and electric vehicle control device
JP5850171B2 (en) Electric vehicle control device and electric vehicle control method
JP2017175853A (en) Electric-vehicular control method, and electric-vehicular control apparatus
JP6237789B2 (en) Electric vehicle control device and electric vehicle control method
JP6819081B2 (en) Electric vehicle control method and control device
JP6720714B2 (en) Electric vehicle control method and electric vehicle control device
JP5862792B2 (en) Motor control device for electric vehicle and motor control method for electric vehicle
JP6597174B2 (en) Electric vehicle control device and electric vehicle control method
JP6686658B2 (en) Electric vehicle control method and electric vehicle control device
JP6992298B2 (en) Electric vehicle control device and electric vehicle control method
JP6880674B2 (en) Electric vehicle control method and electric vehicle control device
JP2017046367A (en) Control method of electric vehicle and control device
JP5915349B2 (en) Vibration suppression control device for electric vehicle
WO2014057946A1 (en) Motor control device for electric vehicle and motor control method for electric vehicle
JP2015023623A (en) Control device of electric vehicle and control method of electric vehicle
JP6954062B2 (en) Electric vehicle control method and control device
JP2017046419A (en) Control method of electric vehicle and control device
JP2013240258A (en) Damping control device for electric vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13843243

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014539768

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13843243

Country of ref document: EP

Kind code of ref document: A1