WO2014057946A1 - Motor control device for electric vehicle and motor control method for electric vehicle - Google Patents

Motor control device for electric vehicle and motor control method for electric vehicle Download PDF

Info

Publication number
WO2014057946A1
WO2014057946A1 PCT/JP2013/077371 JP2013077371W WO2014057946A1 WO 2014057946 A1 WO2014057946 A1 WO 2014057946A1 JP 2013077371 W JP2013077371 W JP 2013077371W WO 2014057946 A1 WO2014057946 A1 WO 2014057946A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
control
electric vehicle
control device
vibration suppression
Prior art date
Application number
PCT/JP2013/077371
Other languages
French (fr)
Japanese (ja)
Inventor
澤田 彰
伊藤 健
中島 孝
雄史 勝又
翔 大野
弘征 小松
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2014057946A1 publication Critical patent/WO2014057946A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a motor control device for an electric vehicle and a motor control method for the electric vehicle.
  • a torque target value for controlling a motor is calculated by the following method.
  • a drive torque target value is calculated by performing a filtering process for removing or reducing the natural vibration frequency component of the vehicle torque transmission system on the drive torque request value of the drive motor calculated from the accelerator opening and the vehicle speed.
  • the motor rotation speed estimation value is calculated from the drive torque target value in consideration of the motor characteristic model, and the deviation between the calculated motor rotation speed estimation value and the actual motor rotation speed is calculated as the natural vibration frequency of the driving force transmission system.
  • a torque command value is calculated by passing through a filter constituted by an inverse system of a band pass filter and a motor characteristic model as a center frequency.
  • the final drive torque target value is calculated by adding the calculated torque command value to the drive torque target value. This eliminates the effects of road gradients, torque transmission system disturbances, motor characteristic model errors, etc., and also eliminates or reduces the natural vibration frequency component of the vehicle torque transmission system, thereby reducing the damping effect and steep torque. Can be achieved at the same time.
  • the parking range (P range) is set on the uphill road and the vehicle stops without applying the foot brake or parking brake.
  • the park lock mechanism that locks and rotates the wheel operates, and the vehicle can be stopped even if the brake is released.
  • the drive shaft is twisted by a predetermined amount according to the gradient and stopped.
  • the parking lock mechanism is released, and the torsion accumulated in the drive shaft is released, which causes a rattling vibration, and the occupant feels a sudden shock, anxiety and I feel uncomfortable.
  • this vibration / shock is expressed as a park lock release shock.
  • the configuration of the above feature can suppress the vibration component of the drive system such as the drive shaft with respect to the motor rotation speed by feedback processing. Can also be reduced.
  • the natural vibration frequency component of the vehicle torque transmission is calculated from a vehicle model that considers the wheels.
  • the wheel at the time of releasing the park lock is fixed because the brake is grasped. Strictly speaking, considering the wheel in the vehicle model, an error occurs in the vehicle model when the parking lock is released. Therefore, when the vibration suppression control described in JP2003-9566A is applied as it is as the vibration suppression control at the time of releasing the park lock, torque overshoot occurs, the convergence of the park lock release shock is delayed, and there is a park lock release shock. .
  • the gear fluctuation crosses the backlash section, a tooth contact sound is generated due to the backlash, which may cause anxiety and discomfort to the driver.
  • the object of the present invention is to suppress vibrations that occur when parking lock is released.
  • the motor control apparatus for an electric vehicle calculates the vibration control for suppressing the vehicle vibration with respect to the motor torque command value, and calculates the vehicle lock state from the vehicle model when the park lock state is released. Performs vibration suppression control using control constants.
  • FIG. 1 is a block diagram illustrating a main configuration of an electric vehicle including a motor control device for an electric vehicle according to the first embodiment.
  • FIG. 2 is a flowchart showing a flow of processing of motor current control performed by the electric motor controller.
  • FIG. 3 is a diagram showing an example of an accelerator opening-torque table.
  • FIG. 4 is a control block diagram of the vibration suppression control calculation process in the first embodiment.
  • FIG. 5 is a diagram modeling a vehicle driving force transmission system in a wheel lock state.
  • FIG. 6 is a flowchart of the vibration suppression control calculation process in the first embodiment.
  • FIG. 7 is a control block diagram of a vibration suppression control calculation process at the time of park lock release in the second embodiment.
  • FIG. 8 is a flowchart of the vibration suppression control calculation process in the second embodiment.
  • FIG. 9 is a diagram illustrating an example of a control result by the motor control device of the electric vehicle according to the first and second embodiments.
  • FIG. 1 is a block diagram illustrating a main configuration of an electric vehicle including a motor control device for an electric vehicle according to the first embodiment.
  • the motor control device for an electric vehicle according to the present invention includes an electric motor as a part or all of the drive source of the vehicle, and can be applied to an electric vehicle that can run by the driving force of the electric motor. It can be applied to automobiles and fuel cell vehicles.
  • the electric motor controller 2 uses, as digital signals, signals indicating the vehicle state such as the vehicle speed V, the accelerator opening APO, the rotor phase ⁇ re of the electric motor (three-phase AC motor) 4, and the currents iu, iv, iw of the electric motor 4. Based on the input signal, a PWM signal for controlling the electric motor 4 is generated. Further, a drive signal for the inverter 3 is generated according to the generated PWM signal.
  • the inverter 3 includes, for example, two switching elements (for example, power semiconductor elements such as IGBTs and MOS-FETs) for each phase.
  • the supplied direct current is converted into alternating current, and a desired current is passed through the electric motor 4.
  • the electric motor 4 generates a driving force by the alternating current supplied from the inverter 3, and transmits the driving force to the left and right driving wheels 9 a and 9 b via the speed reducer 5 and the drive shaft 8. Further, when the vehicle is driven and rotated by the drive wheels 9a and 9b, the kinetic energy of the vehicle is recovered as electric energy by generating a regenerative driving force. In this case, the inverter 3 converts an alternating current generated during the regenerative operation of the electric motor 4 into a direct current and supplies the direct current to the battery 1.
  • the current sensor 7 detects the three-phase alternating currents iu, iv, iw flowing through the electric motor 4. However, since the sum of the three-phase alternating currents iu, iv, and iw is 0, any two-phase current may be detected, and the remaining one-phase current may be obtained by calculation.
  • the rotation sensor 6 is, for example, a resolver or an encoder, and detects the rotor phase ⁇ re of the electric motor 4.
  • FIG. 2 is a flowchart showing a process flow of motor current control performed by the electric motor controller 2.
  • step S201 a signal indicating the vehicle state is input.
  • the vehicle speed V (km / h), the accelerator opening APO (%), the rotor phase ⁇ re (rad) of the electric motor 4, the rotational speed Nm (rpm) of the electric motor 4, and the three-phase AC flowing through the electric motor 4 Currents iu, iv, iw, a DC voltage value Vdc (V) between the battery 1 and the inverter 3, and a park lock-related signal to be described later are input.
  • the rotor phase ⁇ re (rad) of the electric motor 4 is acquired from the rotation sensor 6.
  • the rotor angular velocity ⁇ re (rad / s) is obtained by differentiating the rotor phase ⁇ re.
  • the rotational speed Nm (rpm) of the electric motor 4 is obtained by dividing the rotor angular speed ⁇ re (electrical angle) by the number of pole pairs of the electric motor 4 to obtain the rotor mechanical angular speed ⁇ m (rad / s) is obtained by multiplying the obtained rotor mechanical angular velocity ⁇ m by 60 / (2 ⁇ ).
  • the vehicle speed V (km / h) is acquired by communication from another controller such as a vehicle speed sensor (not shown) or a brake controller (not shown).
  • the rotor mechanical angular speed ⁇ m is multiplied by the tire dynamic radius R, and the vehicle speed v (m / s) is obtained by dividing by the gear ratio of the final gear, and unit conversion is performed by multiplying by 3600/1000 to obtain the vehicle speed.
  • V (km / h) is obtained.
  • Accelerator opening APO (%) is acquired from an accelerator opening sensor (not shown), or is acquired by communication from another controller such as a vehicle controller (not shown).
  • the currents iu, iv, iw (A) flowing through the electric motor 4 are acquired from the current sensor 7.
  • DC voltage value Vdc (V) is obtained from a voltage sensor (not shown) provided on a DC power supply line between battery 1 and inverter 3 or a power supply voltage value transmitted from a battery controller (not shown).
  • a drive torque target value Tm * which is a basic target torque command value, is set.
  • the drive torque target value Tm * is set by referring to the accelerator opening-torque table shown in FIG. 3 based on the accelerator opening APO, the vehicle speed V, and the shift position input in step S201. To do.
  • the shift position is N or P
  • the drive torque target value Tm * is 0 Nm.
  • step S203 vibration suppression control calculation processing is performed. More specifically, on the basis of the drive torque target value Tm * set in step S202 and the motor rotation speed ⁇ m, the vibration of the drive force transmission system (drive shaft vibration) can be achieved without sacrificing the response of the drive shaft torque.
  • the final torque target value Tmfin * that suppresses torsional vibration and the like is calculated.
  • vibration suppression control is performed using the control constant calculated from the vehicle model in the wheel locked state.
  • the control constant calculated from the vehicle model not in the wheel locked state is used. Vibration suppression control using is performed. A detailed calculation method of the final torque target value Tmfin * will be described later.
  • step S204 the d-axis current target value id * and the q-axis current target value iq * are obtained based on the final torque target value Tmfin * , the electric motor rotation speed ⁇ m, and the DC voltage value Vdc calculated in step S203.
  • step S205 current control is performed to match the d-axis current id and the q-axis current iq with the d-axis current target value id * and the q-axis current target value iq * obtained in step S204, respectively. For this reason, first, the d-axis current id and the q-axis current iq are obtained based on the three-phase AC current values iu, iv, iw input in step S201 and the rotor phase ⁇ re of the electric motor 4.
  • d-axis and q-axis voltage command values vd and vq are calculated from deviations between the d-axis and q-axis current target values id * and iq * and the d-axis and q-axis currents id and iq.
  • three-phase AC voltage command values vu, vv, vw are obtained from the d-axis and q-axis voltage command values vd, vq and the electric motor rotation speed ⁇ m.
  • PWM signals tu (%), tv (%), and tw (%) are obtained from the obtained three-phase AC voltage command values vu, vv, and vw and the DC voltage value Vdc.
  • the electric motor 4 can be driven with a desired torque indicated by the drive torque target value Tm * by opening and closing the switching element of the inverter 3 by the PWM signals tu, tv, and tw thus obtained.
  • vibration suppression control calculation process performed in step S203 of FIG. 2 will be described.
  • vibration suppression control is performed using the control constant calculated from the vehicle model in the wheel locked state, and when the parking lock is not released, the vehicle model is not in the wheel locked state.
  • Vibration suppression control using the control constant calculated from the above is performed.
  • the method of damping control during normal driving other than when the park lock is released is the same as the damping control method described in JP2003-9566A.
  • FIG. 4 is a control block diagram of vibration suppression control calculation processing.
  • the vibration suppression control calculation process is performed by the F / F compensator 41, the F / B compensator 42, and the adder 43.
  • the F / F compensator 41 includes a control block 401 having a transfer characteristic of Gm (s) / Gp (s).
  • Gp (s) is a vehicle model showing a transmission characteristic between torque input to the vehicle and the motor rotational speed
  • Gm (s) is between the torque input to the vehicle and the response target of the motor rotational speed. It is an ideal model showing transfer characteristics.
  • the F / F compensator 41 is a filter that reduces a natural vibration frequency component of the torque transmission system of the vehicle.
  • the F / F compensator 41 receives the drive torque target value Tm * and outputs the first torque target value Tm1 * .
  • the F / B compensator 42 includes a control block 402 representing the vehicle model Gp (s), a control block 403 having a transfer characteristic of H (s) / Gp (s), and a subtractor 404.
  • the control block 402 inputs the final torque target value Tmfin * and outputs a motor rotation speed estimated value.
  • the subtractor 404 obtains a deviation between the estimated motor speed value calculated by the control block 402 and the detected motor speed value ⁇ m.
  • the deviation between the estimated motor speed value and the detected motor speed value ⁇ m is input to the control block 403, and the output of the control block 403 is multiplied by the F / B gain k to obtain the second torque target value Tm2 *. Calculated.
  • H (s) has the characteristics of a bandpass filter whose center frequency matches the torsional resonance frequency of the vehicle drive system.
  • the F / B compensator 42 functions as a disturbance suppression filter based on the deviation between the estimated value of the motor speed and the detected value of the motor speed.
  • the adder 43 adds the first torque target value Tm1 * output from the F / F compensator 41 and the second torque target value Tm2 * output from the F / B compensator 42 to obtain a final value. Obtain the torque target value Tmfin * .
  • the vibration suppression control calculation processing according to the control block diagram shown in FIG. 4 is common during normal driving other than when the parking lock is released, and when the parking lock is released, details of which are described in JP2003-9566A. Are listed.
  • the control constant calculated as Gp (s) is used as the vehicle model, and in the vibration suppression control when the parking lock is released, the vehicle is locked.
  • the control constant calculated as the vehicle model Gpl (s) is used. Since the calculation method of the vehicle model Gp (s) is described in detail in JP2003-9566A, a detailed description of the calculation method is omitted here.
  • FIG. 5 is a diagram modeling a vehicle driving force transmission system in a wheel lock state, and a vehicle motion equation is expressed by the following equations (1) to (3).
  • Expressions (4) and (5) are obtained when Laplace conversion is performed on Expressions (1) to (3) to obtain transfer characteristics from the drive torque target value Tm * to the motor angular velocity ⁇ m.
  • the feedback gain k of the F / B compensator 42 in FIG. 4 takes into account the influence of the control computation time, motor response delay, and sensor signal processing time in order to take into account the delay elements of the control system in the feedback loop. In order to compensate, it is set within the range of 0 to 1 in consideration of the stability of the feedback loop.
  • FIG. 6 is a flowchart of the vibration suppression control calculation process in the first embodiment. The process starting from step S701 is performed by the electric motor controller 2.
  • step S701 a signal related to park lock cancellation is input as input processing.
  • the shift position signal, the shift lock park lock release SW signal, and the brake SW signal are detected as hardware signals or acquired by communication from another controller such as a shift controller.
  • step S702 it is determined whether or not the brake is on based on the brake SW signal in order to determine whether or not to use the vibration suppression control constant when the parking lock is released. If it is determined that the brake is on, the process proceeds to step S703. If it is determined that the brake is not on, it is determined that normal vibration suppression control is being performed, and the process proceeds to step S708.
  • step S703 it is determined whether or not the timer 1 is greater than 0 in order to determine whether or not to use the vibration suppression control constant when the park lock is released. If it is determined that the timer 1 is greater than 0, the process proceeds to step S704. If it is determined that the timer 1 is 0, it is determined that normal vibration suppression control is being performed, and the process proceeds to step S708. Note that the value of the timer 1 is initialized to 0 when the electric motor controller 2 is powered on.
  • step S704 it is determined whether or not the second torque target value Tm2 * is 0 and the motor rotation speed Nm is smaller than a predetermined value N0. If the second torque target value Tm2 * is 0 and the motor rotation speed Nm is smaller than the predetermined value N0, it is possible to suppress the parking lock release shock although the vibration control is being performed when the parking lock is released. Since there is a possibility, it progresses to step S705. In other cases, the process proceeds to step S711 in order to continue the control for suppressing the park lock release shock.
  • the predetermined value N0 a value adapted in advance is used as a value capable of detecting that the electric motor 4 has been substantially stopped.
  • step S704 instead of determining whether the motor speed Nm is smaller than the predetermined value N0, it may be determined whether the vehicle speed is lower than the predetermined vehicle speed.
  • step S705 the timer 2 for counting the time during which the second torque target value Tm2 * is 0 and the motor rotation speed Nm is kept smaller than the predetermined value N0 is counted up. Note that the value of the timer 2 is initialized to 0 when the electric motor controller 2 is powered on.
  • step S706 it is determined whether or not the value of timer 2 is greater than a predetermined value T2. If the value of timer 2 is greater than the predetermined value T2, it is determined that the park lock release shock has been suppressed, and the process proceeds to step S707. On the other hand, if it is determined that the value of timer 2 is equal to or smaller than the predetermined value T2, it is determined that the park lock release shock is still being suppressed, and the process proceeds to step S712.
  • step S707 timer 1 and timer 2 are initialized to 0.
  • step S708 it is not necessary to suppress the park lock release shock, or it is determined that the park lock release shock has been suppressed after a predetermined period T1 has elapsed since the start of vibration suppression control at the time of park lock release.
  • the timer 2 value indicating that the vibration suppression control is in progress is initialized to zero.
  • step S709 it is determined whether or not to shift to park lock cancellation. If it is determined to shift to park lock release, the process proceeds to step S710 to set a vibration suppression control constant at the time of park lock release. If it is determined not to shift to park lock, the process proceeds to step S716.
  • step S710 in order to start the vibration suppression control at the time of canceling the park lock, the timer 1 indicating the control state and the elapsed time from the start of the control is set to a predetermined value T1.
  • the damping control at the time of releasing the parking lock can be performed until the timer 1 becomes 0 in the determination in step S703 or the shock determined in steps S704 to S707 is suppressed.
  • step S711 the determination in step S704 is denied and it is determined that it is necessary to continue the vibration suppression control when the parking lock is released. Therefore, the timer 2 used in the timer processing (steps S704 to S707) based on the torque condition is set to 0. And
  • step S712 a constant Gpl for vibration suppression control at the time of canceling the park lock is set (see equation (5)).
  • step S713 it is determined whether the shift range is D or R. If it is determined that the shift range is D or R, the process proceeds to step S714. If it is determined that the shift range is N, the process proceeds to step S715.
  • step S714 the drive torque target value Tm * is set to zero. This prevents a switching shock that occurs in the vibration suppression control during normal traveling and the vibration suppression control during parking lock release.
  • step S715 the timer 1 is counted down to adjust the time for returning to the normal vibration suppression control constant.
  • step S716 a constant Gp for damping control during normal running is set.
  • the constant Gp for vibration suppression control during normal traveling can be obtained by the method described in JP2003-9566A and is expressed by the following equation (13).
  • b3, b2, b1, b0, a3, a2, a1, and a0 in Formula (13) are each represented by Formula (14).
  • Jm is motor inertia
  • Jw is inertia of the drive wheel
  • M vehicle weight
  • Kd torsional rigidity of the drive shaft
  • Kt is a coefficient relating to friction between the tire and the road surface
  • N is an overall gear ratio
  • r is the excessive radius of the tire.
  • step S717 the final torque target value Tmfin * is calculated by performing the damping control shown in the control block diagram of FIG. 4 using the damping control constant set in step S712 or step S716.
  • the motor control device for the electric vehicle is a control device that sets the motor torque command value based on the vehicle information and controls the torque of the motor connected to the drive wheels.
  • vibration suppression control for suppressing vehicle vibration is performed, and motor torque is controlled according to the motor torque command value for which vibration suppression control has been performed.
  • the vibration suppression control using the control constant calculated from the vehicle model in the wheel lock state is performed. Since the vehicle model when the park lock is released is different from the vehicle model in a situation other than when the park lock is released, vibration suppression control using a control constant calculated from a vehicle model that is not in the wheel lock state is performed when the park lock is released.
  • the parklock release shock cannot be completely suppressed.
  • vibration suppression control is performed using a control constant calculated from the vehicle model in the wheel locked state, so that overshoot of the drive shaft torque can be suppressed, and the parking lock release shock can be suppressed. Can be suppressed. Further, since the gear fluctuation does not straddle the backlash section, the tooth contact noise caused by the gear backlash can be suppressed.
  • the processing means for performing vibration suppression control receives a motor torque command value, and calculates a first torque target value by performing a feedforward calculation for suppressing vibration of the driving force transmission system of the vehicle.
  • Feedback calculation for suppressing vibration of the driving force transmission system of the vehicle based on the deviation of the torque target value calculation means (F / F compensator 41) and the estimated value of the motor rotational speed and the detected value of the motor rotational speed
  • second torque target value calculating means F / B compensator 42
  • additive 43 for calculating a motor torque command value after damping control. Since this configuration is common for canceling the park lock state and normal driving, there is no need to prepare a separate control system for canceling the park lock. Compared with the case of doing, the amount of calculation can be suppressed.
  • the feedback gain k of the F / B compensator 42 is set to a value corresponding to the delay element of the control system in the feedback loop, the control calculation time, motor response delay, sensor signal processing time The effect can be compensated.
  • the park lock release timing can be reliably detected. Furthermore, when it is detected that the shift position is in the P range and the brake is changed from OFF to ON, it is determined that the park lock state has been released, and therefore the park lock release timing can be reliably detected. Further, since it is determined that the park lock state has been released when it is detected that the motor rotation speed is equal to or less than the predetermined rotation speed or the vehicle speed is equal to or less than the predetermined vehicle speed and the brake is changed from OFF to ON, Can be reliably detected.
  • vibration control is performed using a control constant calculated from a vehicle model that is not in the wheel lock state. After that, it is possible to shift to vibration control during normal driving.
  • the control constant calculated from the vehicle model not in the wheel locked state is used. Perform vibration control. Thereby, even in a vehicle without a park lock signal, it is possible to shift to vibration suppression control during normal traveling.
  • the brake changes from on to off while vibration suppression control is performed using the control constant calculated from the vehicle model in the wheel locked state
  • the control using the control constant calculated from the vehicle model not in the wheel locked state is performed. Perform vibration control. Thereby, even in a vehicle without a park lock signal, it is possible to shift to vibration suppression control during normal traveling.
  • the motor torque command value for suppressing the vibration generated when the park lock state is released is 0 in a state where the vibration suppression control using the control constant calculated from the vehicle model in the wheel lock state is performed, and When a state in which the motor rotational speed is equal to or lower than the predetermined rotational speed has elapsed for a predetermined time, vibration suppression control using a control constant calculated from a vehicle model that is not in the wheel locked state is performed. As a result, it is possible to shift to the vibration suppression control during normal traveling after reliably suppressing the shock when the parking lock is released.
  • the wheel is not in the locked state.
  • the motor torque command value set based on the vehicle information is set to 0 for a predetermined time.
  • the motor control device for the electric vehicle in the second embodiment differs from the motor control device for the electric vehicle in the first embodiment in the vibration suppression control calculation processing performed in step S203 of the flowchart of FIG. It is vibration suppression control calculation processing at the time of unlocking. It is.
  • FIG. 7 is a control block diagram of a vibration suppression control calculation process at the time of park lock release in the second embodiment.
  • the control in the control block diagram shown in FIG. 7 is motor angular velocity feedback control, and the second torque target value Tm2 * is calculated by multiplying the motor rotation speed ⁇ m by the feedback gain K ⁇ and further multiplying the feedback gain k. To do.
  • a method for calculating the feedback gain K ⁇ will be described below.
  • the feedback gain K ⁇ is expressed by the following equation (19) from the transfer characteristic equation (16) of the motor angular velocity feedback control and the equation (17) of the norm response to the disturbance response.
  • the feedback gain k of the feedback compensator in FIG. 7 takes into account the delay elements of the control system in the feedback loop, and therefore can compensate for the effects of control calculation time, motor response delay, and sensor signal processing time. Set as possible.
  • FIG. 8 is a flowchart of the vibration suppression control calculation process in the second embodiment. Steps in which the same processing as that in the flowchart shown in FIG. 6 is performed are denoted by the same reference numerals and detailed description thereof is omitted. Similar to the flowchart shown in FIG. 6, the process starting from step S ⁇ b> 701 is performed by the electric motor controller 2.
  • step S706 determines whether the determination in step S706 is negative, the process in step S710 is terminated, or the process in step S711 is terminated, the process proceeds to step S901.
  • step S901 the timer 1 is counted down to adjust the time for returning from the vibration suppression control at the time of canceling the park lock to the vibration suppression control at the time of normal traveling.
  • step S902 a vibration suppression control process (see FIG. 7) at the time of canceling the park lock is performed.
  • step S903 which proceeds when the determination in step S709 is negative, a vibration suppression control process during normal traveling (see FIG. 4) is performed.
  • the parking lock release shock is suppressed by a simple control system that multiplies the motor rotation speed by the control gain calculated from the vehicle model at the time of park lock release. Can do.
  • the parking position is set to the P range, the parking lock is applied, the brake is released, and the drive shaft is twisted and stopped. After that, in order to start again, a phenomenon in the case of releasing the park lock while stepping on the brake will be described with reference to FIG.
  • FIG. 9 is a diagram illustrating an example of a control result by the motor control device of the electric vehicle according to the first and second embodiments.
  • FIG. 9 shows, in order from the top, the time change of the torque command value (second torque target value Tm2 * ), the time change of the motor rotation speed Nm, the time change of the drive shaft twist angle, and the time change of the drive shaft torque.
  • the solid line indicates the control result of the motor control device of the electric vehicle according to the first and second embodiments
  • the dotted line indicates the control result of the vibration suppression control device described in JP2003-9566A, which is a conventional example.
  • the P-lock shifts from the P range to the N range, the park lock is released, and the torsion accumulated on the drive shaft is released.
  • the motor rotation speed decreases in response to the drive shaft torque decreasing to 0 Nm, and the vibration suppression control works to suppress this change, thereby changing the torque command value.
  • the present invention is not limited to the embodiment described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

Disclosed is a motor control device for electric vehicles that controls the torque of a motor connected to drive wheels by setting a motor torque command value on the basis of vehicle information, wherein the motor control device comprises: a damping control unit that executes, with respect to the motor torque command value, damping control for suppressing vehicle vibration; a motor torque control unit that controls the motor torque in accordance with the motor torque command value that has been subjected to said damping control; and a parking-lock release determination unit that determines whether or not a parking-locked state, in which the wheels are locked from rotating, is released. When said parking-locked state is released, the damping control unit executes damping control using a control constant calculated from a vehicle model in a wheel-locked state.

Description

電動車両のモータ制御装置および電動車両のモータ制御方法Motor control device for electric vehicle and motor control method for electric vehicle
 本発明は、電動車両のモータ制御装置および電動車両のモータ制御方法に関する。 The present invention relates to a motor control device for an electric vehicle and a motor control method for the electric vehicle.
 JP2003-9566Aに記載の車両の制振制御装置では、以下の方法により、モータを制御する際のトルク目標値を算出している。まず、アクセル開度や車速などから算出される駆動モータの駆動トルク要求値に対して、車両のトルク伝達系の固有振動周波数成分を除去又は低減するフィルタリング処理を行って駆動トルク目標値を算出する。続いて、駆動トルク目標値からモータ特性モデルを考慮してモータ回転速度推定値を算出し、算出したモータ回転速度推定値と実モータ回転速度との偏差を、駆動力伝達系の固有振動周波数を中心周波数とするバンドパスフィルタとモータ特性モデルの逆系で構成されたフィルタに通すことによって、トルク指令値を算出する。そして、算出したトルク指令値を、駆動トルク目標値に対して加えることによって、最終駆動トルク目標値を算出している。これにより、道路勾配やトルク伝達系の外乱やモータ特性モデル誤差などによる影響を除去し、かつ、車両のトルク伝達系の固有振動周波数成分を除去または低減することにより、制振効果と急峻なトルクの立ち上がりを両立することができる。 In the vibration suppression control device for a vehicle described in JP2003-9566A, a torque target value for controlling a motor is calculated by the following method. First, a drive torque target value is calculated by performing a filtering process for removing or reducing the natural vibration frequency component of the vehicle torque transmission system on the drive torque request value of the drive motor calculated from the accelerator opening and the vehicle speed. . Subsequently, the motor rotation speed estimation value is calculated from the drive torque target value in consideration of the motor characteristic model, and the deviation between the calculated motor rotation speed estimation value and the actual motor rotation speed is calculated as the natural vibration frequency of the driving force transmission system. A torque command value is calculated by passing through a filter constituted by an inverse system of a band pass filter and a motor characteristic model as a center frequency. Then, the final drive torque target value is calculated by adding the calculated torque command value to the drive torque target value. This eliminates the effects of road gradients, torque transmission system disturbances, motor characteristic model errors, etc., and also eliminates or reduces the natural vibration frequency component of the vehicle torque transmission system, thereby reducing the damping effect and steep torque. Can be achieved at the same time.
 ここで、登坂路においてパーキングレンジ(Pレンジ)に設定し、フットブレーキまたはパーキングブレーキをかけずに停車した場合を想定する。この場合、Pレンジに設定したことで、車輪を回転ロックするパークロック機構が作動し、ブレーキを離しても停車状態を維持することができる。ただし、この際、車輪は固定されていないため、ドライブシャフトは勾配に応じて所定量ねじれて停車することになる。この様な停車状況から車両を発進しようとする場合、ブレーキを踏んでPレンジを解除する必要がある。この時、Pレンジを解除することによりパークロック機構が解除され、ドライブシャフトに蓄積されていたねじりが開放されることで、ガクガク振動を引き起こすことになり、乗員は不意のショックを感じ、不安や不快感を感じる。以降、この振動・ショックのことを、パークロック解除ショックと表現する。 Suppose here that the parking range (P range) is set on the uphill road and the vehicle stops without applying the foot brake or parking brake. In this case, by setting to the P range, the park lock mechanism that locks and rotates the wheel operates, and the vehicle can be stopped even if the brake is released. However, at this time, since the wheels are not fixed, the drive shaft is twisted by a predetermined amount according to the gradient and stopped. In order to start the vehicle from such a stopping situation, it is necessary to release the P range by stepping on the brake. At this time, by releasing the P range, the parking lock mechanism is released, and the torsion accumulated in the drive shaft is released, which causes a rattling vibration, and the occupant feels a sudden shock, anxiety and I feel uncomfortable. Hereinafter, this vibration / shock is expressed as a park lock release shock.
 JP2003-9566Aに記載の車両の制振制御装置では、上記特徴の構成により、モータ回転数に対してドライブシャフト等の駆動系の振動成分をフィードバック処理により抑制することができるため、パークロック解除ショックも低減することができる。 In the vehicle vibration damping control device described in JP2003-9566A, the configuration of the above feature can suppress the vibration component of the drive system such as the drive shaft with respect to the motor rotation speed by feedback processing. Can also be reduced.
 ところで、JP2003-9566Aに記載の車両の制振制御装置では、車両のトルク伝達の固有振動周波数成分を、車輪を考慮した車両モデルより算出している。パークロック解除時の車輪は、ブレーキを掴まれているため固定されており、厳密には車両モデルに車輪を考慮すると、パークロック解除時は車両モデルに誤差が生じる。そのため、パークロック解除時の制振制御としてJP2003-9566Aに記載の制振制御をそのまま適用した場合、トルクのオーバーシュートが発生し、パークロック解除ショックの収束が遅くなり、パークロック解除ショックがある。また、ギアの変動がバックラッシュ区間を跨ぐため、バックラッシュによる歯当り音が発生し、ドライバーへの不安や不快感を与える可能性がある。 By the way, in the vehicle vibration damping control device described in JP2003-9566A, the natural vibration frequency component of the vehicle torque transmission is calculated from a vehicle model that considers the wheels. The wheel at the time of releasing the park lock is fixed because the brake is grasped. Strictly speaking, considering the wheel in the vehicle model, an error occurs in the vehicle model when the parking lock is released. Therefore, when the vibration suppression control described in JP2003-9566A is applied as it is as the vibration suppression control at the time of releasing the park lock, torque overshoot occurs, the convergence of the park lock release shock is delayed, and there is a park lock release shock. . In addition, since the gear fluctuation crosses the backlash section, a tooth contact sound is generated due to the backlash, which may cause anxiety and discomfort to the driver.
 本発明は、パークロック解除時に発生する振動を抑制することを目的とする。 The object of the present invention is to suppress vibrations that occur when parking lock is released.
 一実施形態における電動車両のモータ制御装置は、モータトルク指令値に対して車両振動を抑制するための制振制御を行う際に、パークロック状態の解除時には、車輪ロック状態における車両モデルより算出した制御定数を用いた制振制御を行う。 The motor control apparatus for an electric vehicle according to an embodiment calculates the vibration control for suppressing the vehicle vibration with respect to the motor torque command value, and calculates the vehicle lock state from the vehicle model when the park lock state is released. Performs vibration suppression control using control constants.
 本発明の実施形態については、添付された図面とともに以下に詳細に説明される。 Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
図1は、第1の実施形態における電動車両のモータ制御装置を備えた電気自動車の主要構成を示すブロック図である。FIG. 1 is a block diagram illustrating a main configuration of an electric vehicle including a motor control device for an electric vehicle according to the first embodiment. 図2は、電動モータコントローラによって行われるモータ電流制御の処理の流れを示すフローチャートである。FIG. 2 is a flowchart showing a flow of processing of motor current control performed by the electric motor controller. 図3は、アクセル開度-トルクテーブルの一例を示す図である。FIG. 3 is a diagram showing an example of an accelerator opening-torque table. 図4は、第1の実施形態における制振制御演算処理の制御ブロック図である。FIG. 4 is a control block diagram of the vibration suppression control calculation process in the first embodiment. 図5は、車輪ロック状態における車両の駆動力伝達系をモデル化した図である。FIG. 5 is a diagram modeling a vehicle driving force transmission system in a wheel lock state. 図6は、第1の実施形態における制振制御演算処理のフローチャートである。FIG. 6 is a flowchart of the vibration suppression control calculation process in the first embodiment. 図7は、第2の実施形態におけるパークロック解除時の制振制御演算処理の制御ブロック図である。FIG. 7 is a control block diagram of a vibration suppression control calculation process at the time of park lock release in the second embodiment. 図8は、第2の実施形態における制振制御演算処理のフローチャートである。FIG. 8 is a flowchart of the vibration suppression control calculation process in the second embodiment. 図9は、第1および第2の実施形態における電動車両のモータ制御装置による制御結果の一例を示す図である。FIG. 9 is a diagram illustrating an example of a control result by the motor control device of the electric vehicle according to the first and second embodiments.
 -第1の実施形態-
 図1は、第1の実施形態における電動車両のモータ制御装置を備えた電気自動車の主要構成を示すブロック図である。本発明の電動車両のモータ制御装置は、車両の駆動源の一部または全部として電動モータを備え、電動モータの駆動力により走行可能な電動車両に適用可能であり、電気自動車だけでなく、ハイブリッド自動車や燃料電池自動車に適用可能である。
-First embodiment-
FIG. 1 is a block diagram illustrating a main configuration of an electric vehicle including a motor control device for an electric vehicle according to the first embodiment. The motor control device for an electric vehicle according to the present invention includes an electric motor as a part or all of the drive source of the vehicle, and can be applied to an electric vehicle that can run by the driving force of the electric motor. It can be applied to automobiles and fuel cell vehicles.
 電動モータコントローラ2は、車速V、アクセル開度APO、電動モータ(三相交流モータ)4の回転子位相θre、電動モータ4の電流iu、iv、iw等の車両状態を示す信号をデジタル信号として入力し、入力された信号に基づいて、電動モータ4を制御するためのPWM信号を生成する。また、生成したPWM信号に応じてインバータ3の駆動信号を生成する。 The electric motor controller 2 uses, as digital signals, signals indicating the vehicle state such as the vehicle speed V, the accelerator opening APO, the rotor phase θre of the electric motor (three-phase AC motor) 4, and the currents iu, iv, iw of the electric motor 4. Based on the input signal, a PWM signal for controlling the electric motor 4 is generated. Further, a drive signal for the inverter 3 is generated according to the generated PWM signal.
 インバータ3は、例えば、各相ごとに2個のスイッチング素子(例えば、IGBTやMOS-FET等のパワー半導体素子)を備え、駆動信号に応じてスイッチング素子をオン/オフすることにより、バッテリ1から供給される直流の電流を交流に変換し、電動モータ4に所望の電流を流す。 The inverter 3 includes, for example, two switching elements (for example, power semiconductor elements such as IGBTs and MOS-FETs) for each phase. The supplied direct current is converted into alternating current, and a desired current is passed through the electric motor 4.
 電動モータ4は、インバータ3から供給される交流電流により駆動力を発生し、減速機5およびドライブシャフト8を介して、左右の駆動輪9a、9bに駆動力を伝達する。また、車両の走行時に駆動輪9a、9bに連れ回されて回転するときに、回生駆動力を発生させることで、車両の運動エネルギーを電気エネルギーとして回収する。この場合、インバータ3は、電動モータ4の回生運転時に発生する交流電流を直流電流に変換して、バッテリ1に供給する。 The electric motor 4 generates a driving force by the alternating current supplied from the inverter 3, and transmits the driving force to the left and right driving wheels 9 a and 9 b via the speed reducer 5 and the drive shaft 8. Further, when the vehicle is driven and rotated by the drive wheels 9a and 9b, the kinetic energy of the vehicle is recovered as electric energy by generating a regenerative driving force. In this case, the inverter 3 converts an alternating current generated during the regenerative operation of the electric motor 4 into a direct current and supplies the direct current to the battery 1.
 電流センサ7は、電動モータ4に流れる3相交流電流iu、iv、iwを検出する。ただし、3相交流電流iu、iv、iwの和は0であるため、任意の2相の電流を検出して、残りの1相の電流は演算により求めてもよい。 The current sensor 7 detects the three-phase alternating currents iu, iv, iw flowing through the electric motor 4. However, since the sum of the three-phase alternating currents iu, iv, and iw is 0, any two-phase current may be detected, and the remaining one-phase current may be obtained by calculation.
 回転センサ6は、例えば、レゾルバやエンコーダであり、電動モータ4の回転子位相θreを検出する。 The rotation sensor 6 is, for example, a resolver or an encoder, and detects the rotor phase θre of the electric motor 4.
 図2は、電動モータコントローラ2によって行われるモータ電流制御の処理の流れを示すフローチャートである。 FIG. 2 is a flowchart showing a process flow of motor current control performed by the electric motor controller 2.
 ステップS201では、車両状態を示す信号を入力する。ここでは、車速V(km/h)、アクセル開度APO(%)、電動モータ4の回転子位相θre(rad)、電動モータ4の回転数Nm(rpm)、電動モータ4に流れる三相交流電流iu、iv、iw、バッテリ1とインバータ3間の直流電圧値Vdc(V)、後述するパークロック関連の信号を入力する。 In step S201, a signal indicating the vehicle state is input. Here, the vehicle speed V (km / h), the accelerator opening APO (%), the rotor phase θre (rad) of the electric motor 4, the rotational speed Nm (rpm) of the electric motor 4, and the three-phase AC flowing through the electric motor 4 Currents iu, iv, iw, a DC voltage value Vdc (V) between the battery 1 and the inverter 3, and a park lock-related signal to be described later are input.
 電動モータ4の回転子位相θre(rad)は、回転センサ6から取得する。回転子角速度ωre(rad/s)は、回転子位相θreを微分することにより求める。 The rotor phase θre (rad) of the electric motor 4 is acquired from the rotation sensor 6. The rotor angular velocity ωre (rad / s) is obtained by differentiating the rotor phase θre.
 電動モータ4の回転数Nm(rpm)は、回転子角速度ωre(電気角)を電動モータ4の極対数で除算して、電動モータ4の機械的な角速度である回転子機械角速度ωm(rad/s)を求め、求めた回転子機械角速度ωmに60/(2π)を乗算することによって求める。 The rotational speed Nm (rpm) of the electric motor 4 is obtained by dividing the rotor angular speed ωre (electrical angle) by the number of pole pairs of the electric motor 4 to obtain the rotor mechanical angular speed ωm (rad / s) is obtained by multiplying the obtained rotor mechanical angular velocity ωm by 60 / (2π).
 車速V(km/h)は、図示しない車速センサや、図示しないブレーキコントローラ等の他のコントローラより通信にて取得する。または、回転子機械角速度ωmにタイヤ動半径Rを乗算し、ファイナルギアのギア比で除算することにより車速v(m/s)を求め、3600/1000を乗算することにより単位変換して、車速V(km/h)を求める。 The vehicle speed V (km / h) is acquired by communication from another controller such as a vehicle speed sensor (not shown) or a brake controller (not shown). Alternatively, the rotor mechanical angular speed ωm is multiplied by the tire dynamic radius R, and the vehicle speed v (m / s) is obtained by dividing by the gear ratio of the final gear, and unit conversion is performed by multiplying by 3600/1000 to obtain the vehicle speed. V (km / h) is obtained.
 アクセル開度APO(%)は、図示しないアクセル開度センサから取得するか、図示しない車両コントローラ等の他のコントローラから通信にて取得する。 Accelerator opening APO (%) is acquired from an accelerator opening sensor (not shown), or is acquired by communication from another controller such as a vehicle controller (not shown).
 電動モータ4に流れる電流iu、iv、iw(A)は、電流センサ7から取得する。 The currents iu, iv, iw (A) flowing through the electric motor 4 are acquired from the current sensor 7.
 直流電圧値Vdc(V)は、バッテリ1とインバータ3間の直流電源ラインに設けられた電圧センサ(不図示)、または、図示しないバッテリコントローラから送信される電源電圧値から求める。 DC voltage value Vdc (V) is obtained from a voltage sensor (not shown) provided on a DC power supply line between battery 1 and inverter 3 or a power supply voltage value transmitted from a battery controller (not shown).
 ステップS202では、基本目標トルク指令値である駆動トルク目標値Tmを設定する。具体的には、ステップS201で入力されたアクセル開度APO、車速V、およびシフト位置に基づいて、図3に示すアクセル開度-トルクテーブルを参照することにより、駆動トルク目標値Tmを設定する。なお、シフト位置がNまたはPの場合、駆動トルク目標値Tmは0Nmとする。 In step S202, a drive torque target value Tm * , which is a basic target torque command value, is set. Specifically, the drive torque target value Tm * is set by referring to the accelerator opening-torque table shown in FIG. 3 based on the accelerator opening APO, the vehicle speed V, and the shift position input in step S201. To do. When the shift position is N or P, the drive torque target value Tm * is 0 Nm.
 ステップS203では、制振制御演算処理を行う。より具体的には、ステップS202で設定した駆動トルク目標値Tm、および、モータ回転数ωmに基づいて、駆動軸トルクの応答を犠牲にすることなく、駆動力伝達系の振動(ドライブシャフトのねじり振動等)を抑制する最終トルク目標値Tmfinを算出する。 In step S203, vibration suppression control calculation processing is performed. More specifically, on the basis of the drive torque target value Tm * set in step S202 and the motor rotation speed ωm, the vibration of the drive force transmission system (drive shaft vibration) can be achieved without sacrificing the response of the drive shaft torque. The final torque target value Tmfin * that suppresses torsional vibration and the like is calculated.
 本実施形態では、パークロック解除時には、車輪ロック状態における車両モデルより算出した制御定数を用いた制振制御を行い、パークロック解除時以外の時には、車輪ロック状態ではない車両モデルより算出した制御定数を用いた制振制御を行う。最終トルク目標値Tmfinの詳しい算出方法については後述する。 In the present embodiment, when the parking lock is released, vibration suppression control is performed using the control constant calculated from the vehicle model in the wheel locked state. When the parking lock is not released, the control constant calculated from the vehicle model not in the wheel locked state is used. Vibration suppression control using is performed. A detailed calculation method of the final torque target value Tmfin * will be described later.
 ステップS204では、ステップS203で算出した最終トルク目標値Tmfin、電動モータ回転数ωmおよび直流電圧値Vdcに基づいて、d軸電流目標値id、q軸電流目標値iqを求める。 In step S204, the d-axis current target value id * and the q-axis current target value iq * are obtained based on the final torque target value Tmfin * , the electric motor rotation speed ωm, and the DC voltage value Vdc calculated in step S203.
 ステップS205では、d軸電流idおよびq軸電流iqをそれぞれ、ステップS204で求めたd軸電流目標値idおよびq軸電流目標値iqと一致させるための電流制御を行う。このため、まず初めに、ステップS201で入力された三相交流電流値iu、iv、iwと、電動モータ4の回転子位相θreとに基づいて、d軸電流idおよびq軸電流iqを求める。続いて、d軸、q軸電流目標値id、iqと、d軸、q軸電流id、iqとの偏差から、d軸、q軸電圧指令値vd、vqを算出する。 In step S205, current control is performed to match the d-axis current id and the q-axis current iq with the d-axis current target value id * and the q-axis current target value iq * obtained in step S204, respectively. For this reason, first, the d-axis current id and the q-axis current iq are obtained based on the three-phase AC current values iu, iv, iw input in step S201 and the rotor phase θre of the electric motor 4. Subsequently, d-axis and q-axis voltage command values vd and vq are calculated from deviations between the d-axis and q-axis current target values id * and iq * and the d-axis and q-axis currents id and iq.
 次に、d軸、q軸電圧指令値vd、vqと、電動モータ回転数ωmから、三相交流電圧指令値vu、vv、vwを求める。そして、求めた三相交流電圧指令値vu、vv、vwと直流電圧値Vdcから、PWM信号tu(%)、tv(%)、tw(%)を求める。このようにして求めたPWM信号tu、tv、twにより、インバータ3のスイッチング素子を開閉することによって、電動モータ4を駆動トルク目標値Tmで指示された所望のトルクで駆動することができる。 Next, three-phase AC voltage command values vu, vv, vw are obtained from the d-axis and q-axis voltage command values vd, vq and the electric motor rotation speed ωm. Then, PWM signals tu (%), tv (%), and tw (%) are obtained from the obtained three-phase AC voltage command values vu, vv, and vw and the DC voltage value Vdc. The electric motor 4 can be driven with a desired torque indicated by the drive torque target value Tm * by opening and closing the switching element of the inverter 3 by the PWM signals tu, tv, and tw thus obtained.
 図2のステップS203で行う制振制御演算処理の詳細について説明する。上述したように、本実施形態では、パークロック解除時には、車輪ロック状態における車両モデルより算出した制御定数を用いた制振制御を行い、パークロック解除時以外の時には、車輪ロック状態ではない車両モデルより算出した制御定数を用いた制振制御を行う。パークロック解除時以外の通常の走行時における制振制御の方法は、JP2003-9566Aに記載の制振制御方法と同じである。 Details of the vibration suppression control calculation process performed in step S203 of FIG. 2 will be described. As described above, in the present embodiment, when the parking lock is released, vibration suppression control is performed using the control constant calculated from the vehicle model in the wheel locked state, and when the parking lock is not released, the vehicle model is not in the wheel locked state. Vibration suppression control using the control constant calculated from the above is performed. The method of damping control during normal driving other than when the park lock is released is the same as the damping control method described in JP2003-9566A.
 図4は、制振制御演算処理の制御ブロック図である。制振制御演算処理は、F/F補償器41、F/B補償器42、および、加算器43によって行われる。 FIG. 4 is a control block diagram of vibration suppression control calculation processing. The vibration suppression control calculation process is performed by the F / F compensator 41, the F / B compensator 42, and the adder 43.
 F/F補償器41は、Gm(s)/Gp(s)なる伝達特性を有する制御ブロック401を備える。Gp(s)は、車両へのトルク入力とモータ回転数との間の伝達特性を示す車両モデルであり、Gm(s)は、車両へのトルク入力とモータ回転数の応答目標との間の伝達特性を示す理想モデルである。F/F補償器41は、車両のトルク伝達系の固有振動周波数成分を低減するフィルタであり、駆動トルク目標値Tmを入力して、第1のトルク目標値Tm1を出力する。 The F / F compensator 41 includes a control block 401 having a transfer characteristic of Gm (s) / Gp (s). Gp (s) is a vehicle model showing a transmission characteristic between torque input to the vehicle and the motor rotational speed, and Gm (s) is between the torque input to the vehicle and the response target of the motor rotational speed. It is an ideal model showing transfer characteristics. The F / F compensator 41 is a filter that reduces a natural vibration frequency component of the torque transmission system of the vehicle. The F / F compensator 41 receives the drive torque target value Tm * and outputs the first torque target value Tm1 * .
 F/B補償器42は、車両モデルGp(s)を表す制御ブロック402と、H(s)/Gp(s)なる伝達特性を有する制御ブロック403と、減算器404とを有する。制御ブロック402は、最終トルク目標値Tmfinを入力して、モータ回転数推定値を出力する。減算器404は、制御ブロック402で算出されるモータ回転数推定値と、モータ回転数検出値ωmとの偏差を求める。モータ回転数推定値とモータ回転数検出値ωmとの偏差は制御ブロック403に入力され、制御ブロック403の出力に対してF/Bゲインkが乗算されて、第2のトルク目標値Tm2が算出される。H(s)は、中心周波数が車両の駆動系のねじり共振周波数と一致しているバンドパスフィルタの特性を有する。F/B補償器42は、モータ回転数の推定値とモータ回転数の検出値の偏差に基づいた外乱抑制フィルタとして機能する。 The F / B compensator 42 includes a control block 402 representing the vehicle model Gp (s), a control block 403 having a transfer characteristic of H (s) / Gp (s), and a subtractor 404. The control block 402 inputs the final torque target value Tmfin * and outputs a motor rotation speed estimated value. The subtractor 404 obtains a deviation between the estimated motor speed value calculated by the control block 402 and the detected motor speed value ωm. The deviation between the estimated motor speed value and the detected motor speed value ωm is input to the control block 403, and the output of the control block 403 is multiplied by the F / B gain k to obtain the second torque target value Tm2 *. Calculated. H (s) has the characteristics of a bandpass filter whose center frequency matches the torsional resonance frequency of the vehicle drive system. The F / B compensator 42 functions as a disturbance suppression filter based on the deviation between the estimated value of the motor speed and the detected value of the motor speed.
 加算器43は、F/F補償器41から出力される第1のトルク目標値Tm1と、F/B補償器42から出力される第2のトルク目標値Tm2とを加算して、最終トルク目標値Tmfinを求める。 The adder 43 adds the first torque target value Tm1 * output from the F / F compensator 41 and the second torque target value Tm2 * output from the F / B compensator 42 to obtain a final value. Obtain the torque target value Tmfin * .
 図4に示す制御ブロック図による制振制御演算処理は、パークロック解除時以外の通常の走行時であっても、パークロック解除時であっても共通であり、その詳細は、JP2003-9566Aに記載されている。本実施形態では、パークロック解除時以外の通常の走行時における制振制御では、車両モデルをGp(s)として算出した制御定数を用い、パークロック解除時の制振制御では、車輪ロック状態における車両モデルGpl(s)として算出した制御定数を用いる。車両モデルGp(s)の算出方法は、JP2003-9566Aに詳しく記載されているため、ここでは詳しい算出方法の説明は省略する。 The vibration suppression control calculation processing according to the control block diagram shown in FIG. 4 is common during normal driving other than when the parking lock is released, and when the parking lock is released, details of which are described in JP2003-9566A. Are listed. In the present embodiment, in the vibration suppression control during normal travel other than when the parking lock is released, the control constant calculated as Gp (s) is used as the vehicle model, and in the vibration suppression control when the parking lock is released, the vehicle is locked. The control constant calculated as the vehicle model Gpl (s) is used. Since the calculation method of the vehicle model Gp (s) is described in detail in JP2003-9566A, a detailed description of the calculation method is omitted here.
 駆動トルク目標値Tmからモータ回転数ωmまでの伝達特性Gpl(s)について説明する。図5は、車輪ロック状態における車両の駆動力伝達系をモデル化した図であり、車両の運動方程式は、次式(1)~(3)で表される。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
The transfer characteristic Gpl (s) from the drive torque target value Tm * to the motor rotational speed ωm will be described. FIG. 5 is a diagram modeling a vehicle driving force transmission system in a wheel lock state, and a vehicle motion equation is expressed by the following equations (1) to (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 ここで、式(1)~(3)における各パラメータは、下記の通りである。
Jm:モータイナーシャ
Kd:ドライブシャフトのねじり剛性
N:オーバーオールギヤ比
ωm:モータ角速度
Tm:モータトルク
Td:駆動軸トルク
θ:ドライブシャフトのねじり角
Here, each parameter in the equations (1) to (3) is as follows.
Jm: Motor inertia Kd: Torsional rigidity of drive shaft N: Overall gear ratio ωm: Motor angular speed Tm: Motor torque Td: Drive shaft torque θ: Torsion angle of drive shaft
 式(1)~(3)をラプラス変換して駆動トルク目標値Tmからモータ角速度ωmまでの伝達特性を求めると、式(4)、(5)となる。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Expressions (4) and (5) are obtained when Laplace conversion is performed on Expressions (1) to (3) to obtain transfer characteristics from the drive torque target value Tm * to the motor angular velocity ωm.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 ただし、式(5)中のωplは、次式(6)で表される。
Figure JPOXMLDOC01-appb-M000008
However, ω pl in the equation (5) is expressed by the following equation (6).
Figure JPOXMLDOC01-appb-M000008
 次に、パークロック解除時の制振制御について説明する。PレンジからNレンジにパークロックを解除した時の駆動トルク目標値Tmは、0Nmとなるため、図4に示す通常走行時の制振制御のF/B補償器42の部分のみの演算となり、次式(7)で表される。
Figure JPOXMLDOC01-appb-M000009
Next, the vibration suppression control at the time of canceling the park lock will be described. Since the drive torque target value Tm * when the parking lock is canceled from the P range to the N range is 0 Nm, only the F / B compensator 42 of the vibration suppression control during normal travel shown in FIG. 4 is calculated. Is expressed by the following equation (7).
Figure JPOXMLDOC01-appb-M000009
 また、外乱からモータ回転数までの伝達関数は、次式(8)で表される。
Figure JPOXMLDOC01-appb-M000010
Further, the transfer function from the disturbance to the motor rotational speed is expressed by the following equation (8).
Figure JPOXMLDOC01-appb-M000010
 式(7)および(8)をまとめると、次式(9)となる。
Figure JPOXMLDOC01-appb-M000011
When the expressions (7) and (8) are put together, the following expression (9) is obtained.
Figure JPOXMLDOC01-appb-M000011
 外乱応答に対する規範応答(ζ=1)を次式(10)で表す。ただし、式(10)中のGm(s)は次式(11)で表される。
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
The normative response (ζ = 1) to the disturbance response is expressed by the following equation (10). However, Gm (s) in Formula (10) is represented by the following Formula (11).
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
 よって、車輪ロック状態における車両の駆動力伝達特性の式(9)と、外乱応答に対する規範応答の式(10)が一致するためのH(s)は、次式(12)で表される。
Figure JPOXMLDOC01-appb-M000014
Therefore, H (s) for the equation (9) of the driving force transmission characteristic of the vehicle in the wheel locked state to coincide with the equation (10) of the norm response to the disturbance response is expressed by the following equation (12).
Figure JPOXMLDOC01-appb-M000014
 なお、図4中のF/B補償器42のフィードバックゲインkは、フィードバックループの中にある制御系の持つ遅れ要素を加味するため、制御演算時間、モータ応答遅れ、センサ信号処理時間の影響を補償することができるように、フィードバックループの安定性を考慮し、0~1の範囲内で設定する。 Note that the feedback gain k of the F / B compensator 42 in FIG. 4 takes into account the influence of the control computation time, motor response delay, and sensor signal processing time in order to take into account the delay elements of the control system in the feedback loop. In order to compensate, it is set within the range of 0 to 1 in consideration of the stability of the feedback loop.
 図6は、第1の実施形態における制振制御演算処理のフローチャートである。ステップS701から始まる処理は、電動モータコントローラ2によって行われる。 FIG. 6 is a flowchart of the vibration suppression control calculation process in the first embodiment. The process starting from step S701 is performed by the electric motor controller 2.
 ステップS701では、入力処理として、パークロック解除に関連した信号を入力する。具体的には、シフト位置信号、シフトノブのパークロック解除SW信号、ブレーキSW信号を、ハードウェア信号として検出するか、シフトコントローラ等の他のコントローラより通信にて取得する。 In step S701, a signal related to park lock cancellation is input as input processing. Specifically, the shift position signal, the shift lock park lock release SW signal, and the brake SW signal are detected as hardware signals or acquired by communication from another controller such as a shift controller.
 ステップS702では、パークロック解除時の制振制御定数を使うか否かを判断するために、ブレーキSW信号に基づいて、ブレーキがオンであるか否かを判定する。ブレーキがオンであると判定するとステップS703に進み、ブレーキがオンではないと判定すると、通常の制振制御中であると判断してステップS708に進む。 In step S702, it is determined whether or not the brake is on based on the brake SW signal in order to determine whether or not to use the vibration suppression control constant when the parking lock is released. If it is determined that the brake is on, the process proceeds to step S703. If it is determined that the brake is not on, it is determined that normal vibration suppression control is being performed, and the process proceeds to step S708.
 ステップS703では、パークロック解除時の制振制御定数を使うか否かを判断するために、タイマ1が0より大きいか否かを判定する。タイマ1が0より大きいと判定するとステップS704に進み、0であると判定すると、通常の制振制御中であると判断してステップS708に進む。なお、タイマ1の値は、電動モータコントローラ2の電源投入時に0に初期化する。 In step S703, it is determined whether or not the timer 1 is greater than 0 in order to determine whether or not to use the vibration suppression control constant when the park lock is released. If it is determined that the timer 1 is greater than 0, the process proceeds to step S704. If it is determined that the timer 1 is 0, it is determined that normal vibration suppression control is being performed, and the process proceeds to step S708. Note that the value of the timer 1 is initialized to 0 when the electric motor controller 2 is powered on.
 ステップS704では、第2のトルク目標値Tm2が0であり、かつ、モータ回転数Nmが所定値N0より小さいか否かを判定する。第2のトルク目標値Tm2が0であり、かつ、モータ回転数Nmが所定値N0より小さければ、パークロック解除時の制振制御中ではあるが、パークロック解除ショックを抑制できている可能性があるため、ステップS705に進む。それ以外の場合には、パークロック解除ショックを抑制するための制御を継続して行うためにステップS711に進む。なお、所定値N0は、電動モータ4がほぼ停止できたことを検知できる値として、予め適合した値を用いる。 In step S704, it is determined whether or not the second torque target value Tm2 * is 0 and the motor rotation speed Nm is smaller than a predetermined value N0. If the second torque target value Tm2 * is 0 and the motor rotation speed Nm is smaller than the predetermined value N0, it is possible to suppress the parking lock release shock although the vibration control is being performed when the parking lock is released. Since there is a possibility, it progresses to step S705. In other cases, the process proceeds to step S711 in order to continue the control for suppressing the park lock release shock. As the predetermined value N0, a value adapted in advance is used as a value capable of detecting that the electric motor 4 has been substantially stopped.
 なお、ステップS704の判定において、モータ回転数Nmが所定値N0より小さいか否かを判定する代わりに、車速が所定車速より低いか否かを判定してもよい。 In step S704, instead of determining whether the motor speed Nm is smaller than the predetermined value N0, it may be determined whether the vehicle speed is lower than the predetermined vehicle speed.
 ステップS705では、第2のトルク目標値Tm2が0であり、かつ、モータ回転数Nmが所定値N0より小さい状態を継続している時間を計測するためのタイマ2をカウントアップする。なお、タイマ2の値は、電動モータコントローラ2の電源投入時に0に初期化する。 In step S705, the timer 2 for counting the time during which the second torque target value Tm2 * is 0 and the motor rotation speed Nm is kept smaller than the predetermined value N0 is counted up. Note that the value of the timer 2 is initialized to 0 when the electric motor controller 2 is powered on.
 ステップS706では、タイマ2の値が所定値T2より大きいか否かを判定する。タイマ2の値が所定値T2より大きければ、パークロック解除ショックを抑制できたと判断して、ステップS707に進む。一方、タイマ2の値が所定値T2以下であると判定すると、依然としてパークロック解除ショック抑制中として、ステップS712に進む。 In step S706, it is determined whether or not the value of timer 2 is greater than a predetermined value T2. If the value of timer 2 is greater than the predetermined value T2, it is determined that the park lock release shock has been suppressed, and the process proceeds to step S707. On the other hand, if it is determined that the value of timer 2 is equal to or smaller than the predetermined value T2, it is determined that the park lock release shock is still being suppressed, and the process proceeds to step S712.
 ステップS707では、タイマ1およびタイマ2を0に初期化する。 In step S707, timer 1 and timer 2 are initialized to 0.
 ステップS708では、パークロック解除ショックを抑制する必要がない状態であるか、または、パークロック解除時の制振制御開始から所定期間T1経過し、パークロック解除ショックを抑制できたとして、パークロック解除時の制振制御中であることを示すタイマ2の値を0に初期化する。 In step S708, it is not necessary to suppress the park lock release shock, or it is determined that the park lock release shock has been suppressed after a predetermined period T1 has elapsed since the start of vibration suppression control at the time of park lock release. The timer 2 value indicating that the vibration suppression control is in progress is initialized to zero.
 ステップS709では、パークロック解除に移行するか否かを判定する。パークロック解除に移行と判定すると、パークロック解除時の制振制御定数をセットするためにステップS710に進み、パークロック解除移行ではないと判定すると、ステップS716に進む。 In step S709, it is determined whether or not to shift to park lock cancellation. If it is determined to shift to park lock release, the process proceeds to step S710 to set a vibration suppression control constant at the time of park lock release. If it is determined not to shift to park lock, the process proceeds to step S716.
 ここで、パークロック解除移行判断の方法としては、下記の(M1)~(M4)の方法がある。 Here, there are the following methods (M1) to (M4) as a method for determining the transition to park lock cancellation.
(M1)変速機のシフト位置がPレンジから他のレンジに変化した場合、すなわち、今回のシフト位置がPレンジ以外で、前回のシフト位置がPレンジの場合、パークロック解除の移行ありと判断する。
(M2)シフトノブのパークロック解除SWがONされた場合、パークロック解除の移行ありと判断する。
(M3)シフト位置がPレンジで、ブレーキSW信号がOFF→ON、すなわち、今回のブレーキSW信号がONで、前回値がOFFの場合、パークロック解除の移行ありと判断する。
(M4)モータ回転数Nmが所定回転数以下(または、車速が所定車速以下)、かつ、ブレーキSW信号がOFF→ON、すなわち、今回のブレーキSW信号がONで、前回値がOFFの場合、パークロック解除の移行ありと判断する。
(M1) When the shift position of the transmission changes from the P range to another range, that is, when the current shift position is other than the P range and the previous shift position is the P range, it is determined that there is a transition to park lock release. To do.
(M2) When the park lock release SW of the shift knob is turned on, it is determined that there is a transition to the park lock release.
(M3) When the shift position is in the P range and the brake SW signal is OFF → ON, that is, when the current brake SW signal is ON and the previous value is OFF, it is determined that there is a transition to park lock release.
(M4) When the motor rotation speed Nm is equal to or less than the predetermined rotation speed (or the vehicle speed is equal to or less than the predetermined vehicle speed), and the brake SW signal is OFF → ON, that is, the current brake SW signal is ON and the previous value is OFF, Judge that there is a transition to park lock release.
 ステップS710では、パークロック解除時の制振制御を開始するため、制御中の状態および制御開始からの経過時間を表すタイマ1を所定値T1にセットする。これにより、ステップS703の判定でタイマ1が0になるか、または、ステップS704~S707で判断するショックが抑制されるまで、パークロック解除時の制振制御を行うことができるようになる。 In step S710, in order to start the vibration suppression control at the time of canceling the park lock, the timer 1 indicating the control state and the elapsed time from the start of the control is set to a predetermined value T1. As a result, the damping control at the time of releasing the parking lock can be performed until the timer 1 becomes 0 in the determination in step S703 or the shock determined in steps S704 to S707 is suppressed.
 ステップS711では、ステップS704の判定を否定して、パークロック解除時の制振制御を継続する必要があると判断されたため、トルク条件によるタイマ処理(ステップS704~S707)で使用するタイマ2を0とする。 In step S711, the determination in step S704 is denied and it is determined that it is necessary to continue the vibration suppression control when the parking lock is released. Therefore, the timer 2 used in the timer processing (steps S704 to S707) based on the torque condition is set to 0. And
 ステップS712では、パークロック解除時の制振制御の定数Gplをセットする(式(5)参照)。 In step S712, a constant Gpl for vibration suppression control at the time of canceling the park lock is set (see equation (5)).
 ステップS713では、シフトレンジがDまたはRであるか否かを判定する。シフトレンジがDまたはRであると判定するとステップS714に進み、シフトレンジがNであると判定するとステップS715に進む。 In step S713, it is determined whether the shift range is D or R. If it is determined that the shift range is D or R, the process proceeds to step S714. If it is determined that the shift range is N, the process proceeds to step S715.
 ステップS714では、駆動トルク目標値Tmを0とする。これにより、通常の走行時の制振制御とパークロック解除時の制振制御で発生する切替ショックを防止する。 In step S714, the drive torque target value Tm * is set to zero. This prevents a switching shock that occurs in the vibration suppression control during normal traveling and the vibration suppression control during parking lock release.
 ステップS715では、通常の制振制御定数に戻す時間を調整するために、タイマ1をカウントダウンする。 In step S715, the timer 1 is counted down to adjust the time for returning to the normal vibration suppression control constant.
 ステップS716では、通常走行時の制振制御の定数Gpをセットする。通常走行時の制振制御の定数Gpは、JP2003-9566Aに記載の方法により求めることができ、次式(13)で表される。ただし、式(13)中のb3、b2、b1、b0、a3、a2、a1、a0はそれぞれ式(14)で表される。
Figure JPOXMLDOC01-appb-M000015
In step S716, a constant Gp for damping control during normal running is set. The constant Gp for vibration suppression control during normal traveling can be obtained by the method described in JP2003-9566A and is expressed by the following equation (13). However, b3, b2, b1, b0, a3, a2, a1, and a0 in Formula (13) are each represented by Formula (14).
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 ただし、式(14)中のJmはモータイナーシャ、Jwは駆動輪のイナーシャ、Mは車両の重量、Kdはドライブシャフトのねじり剛性、Ktはタイヤと路面の摩擦に関する係数、Nはオーバーオールギヤ比、rはタイヤの過重半径である。 In the equation (14), Jm is motor inertia, Jw is inertia of the drive wheel, M is vehicle weight, Kd is torsional rigidity of the drive shaft, Kt is a coefficient relating to friction between the tire and the road surface, N is an overall gear ratio, r is the excessive radius of the tire.
 ステップS717では、ステップS712またはステップS716でセットされた制振制御の定数を用いて、図4の制御ブロック図で示す制振制御を行うことにより、最終トルク目標値Tmfinを算出する。 In step S717, the final torque target value Tmfin * is calculated by performing the damping control shown in the control block diagram of FIG. 4 using the damping control constant set in step S712 or step S716.
 以上、第1の実施形態における電動車両のモータ制御装置は、車両情報に基づいてモータトルク指令値を設定し、駆動輪につながるモータのトルクを制御する制御装置であって、モータトルク指令値に対して、車両振動を抑制するための制振制御を行い、制振制御が行われたモータトルク指令値に従って、モータトルクを制御する。このモータ制御装置において、車輪を回転ロックしたパークロック状態の解除時には、車輪ロック状態における車両モデルより算出した制御定数を用いた制振制御を行う。パークロック解除時の車両モデルと、パークロック解除時以外の状況の車両モデルとは異なるため、パークロック解除時に、車輪ロック状態ではない車両モデルより算出した制御定数を用いた制振制御を行うと、パークロック解除ショックを完全に抑制することはできない。しかしながら、本実施形態では、パークロック解除時には、車輪ロック状態における車両モデルより算出した制御定数を用いた制振制御を行うので、ドライブシャフトトルクのオーバーシュートを抑制することができ、パークロック解除ショックを抑制することができる。また、ギアの変動がバックラッシュ区間を跨がないので、ギアのバックラッシュによる歯当たり音も抑制できる。 As described above, the motor control device for the electric vehicle according to the first embodiment is a control device that sets the motor torque command value based on the vehicle information and controls the torque of the motor connected to the drive wheels. On the other hand, vibration suppression control for suppressing vehicle vibration is performed, and motor torque is controlled according to the motor torque command value for which vibration suppression control has been performed. In this motor control device, when the park lock state in which the wheel is rotationally locked is released, the vibration suppression control using the control constant calculated from the vehicle model in the wheel lock state is performed. Since the vehicle model when the park lock is released is different from the vehicle model in a situation other than when the park lock is released, vibration suppression control using a control constant calculated from a vehicle model that is not in the wheel lock state is performed when the park lock is released. The parklock release shock cannot be completely suppressed. However, in this embodiment, when the parking lock is released, vibration suppression control is performed using a control constant calculated from the vehicle model in the wheel locked state, so that overshoot of the drive shaft torque can be suppressed, and the parking lock release shock can be suppressed. Can be suppressed. Further, since the gear fluctuation does not straddle the backlash section, the tooth contact noise caused by the gear backlash can be suppressed.
 また、制振制御を行う処理手段は、モータトルク指令値を入力し、車両の駆動力伝達系の振動を抑制するためのフィードフォワード演算を行うことにより第1のトルク目標値を算出する第1のトルク目標値算出手段(F/F補償器41)と、モータ回転数の推定値およびモータ回転数の検出値の偏差に基づいて、車両の駆動力伝達系の振動を抑制するためのフィードバック演算を行うことにより第2のトルク目標値を算出する第2のトルク目標値算出手段(F/B補償器42)と、第1のトルク目標値および第2のトルク目標値を加算することによって、制振制御後のモータトルク指令値を算出する加算手段(加算器43)とを備える。この構成は、パークロック状態の解除時と、通常の走行時とで共通であるため、パークロック解除時に限定した制御系を別途用意する必要がなく、パークロック解除時に限定した制御系を別途用意する場合に比べて、演算量を抑制することができる。 Further, the processing means for performing vibration suppression control receives a motor torque command value, and calculates a first torque target value by performing a feedforward calculation for suppressing vibration of the driving force transmission system of the vehicle. Feedback calculation for suppressing vibration of the driving force transmission system of the vehicle based on the deviation of the torque target value calculation means (F / F compensator 41) and the estimated value of the motor rotational speed and the detected value of the motor rotational speed By adding the first torque target value and the second torque target value, second torque target value calculating means (F / B compensator 42) for calculating the second torque target value by performing And adding means (adder 43) for calculating a motor torque command value after damping control. Since this configuration is common for canceling the park lock state and normal driving, there is no need to prepare a separate control system for canceling the park lock. Compared with the case of doing, the amount of calculation can be suppressed.
 さらに、F/B補償器42のフィードバックゲインkは、フィードバックループの中にある制御系の持つ遅れ要素に応じた値が設定されているので、制御演算時間、モータ応答遅れ、センサ信号処理時間の影響を補償することができる。 Further, since the feedback gain k of the F / B compensator 42 is set to a value corresponding to the delay element of the control system in the feedback loop, the control calculation time, motor response delay, sensor signal processing time The effect can be compensated.
 また、シフト位置がPレンジからPレンジ以外の他のレンジに移行したことを検出すると、パークロック状態が解除されたと判断するので、パークロック解除タイミングを確実に検出することができる。さらに、シフト位置がPレンジであり、かつ、ブレーキがオフからオンに変化したことを検出すると、パークロック状態が解除されたと判断するので、パークロック解除タイミングを確実に検出することができる。また、モータ回転数が所定回転数以下または車速が所定車速以下であって、かつ、ブレーキがオフからオンに変化したことを検出すると、パークロック状態が解除されたと判断するので、パークロック解除タイミングを確実に検出することができる。 Also, when it is detected that the shift position has shifted from the P range to another range other than the P range, it is determined that the park lock state has been released, so the park lock release timing can be reliably detected. Furthermore, when it is detected that the shift position is in the P range and the brake is changed from OFF to ON, it is determined that the park lock state has been released, and therefore the park lock release timing can be reliably detected. Further, since it is determined that the park lock state has been released when it is detected that the motor rotation speed is equal to or less than the predetermined rotation speed or the vehicle speed is equal to or less than the predetermined vehicle speed and the brake is changed from OFF to ON, Can be reliably detected.
 パークロック状態の解除を検知してから所定時間が経過すると、車輪ロック状態ではない車両モデルより算出した制御定数を用いた制振制御を行うので、パークロック解除時の制振制御を確実に行ってから通常の走行時の制振制御に移行することができる。 When a predetermined time has elapsed after detecting the release of the park lock state, vibration control is performed using a control constant calculated from a vehicle model that is not in the wheel lock state. After that, it is possible to shift to vibration control during normal driving.
 また、車輪ロック状態における車両モデルより算出した制御定数を用いた制振制御を行っている状態で車速が所定の閾値を超えると、車輪ロック状態ではない車両モデルより算出した制御定数を用いた制振制御を行う。これにより、パークロック信号が無い車両においても、通常の走行時の制振制御に移行することができる。 In addition, if the vehicle speed exceeds a predetermined threshold while the vibration suppression control is performed using the control constant calculated from the vehicle model in the wheel locked state, the control constant calculated from the vehicle model not in the wheel locked state is used. Perform vibration control. Thereby, even in a vehicle without a park lock signal, it is possible to shift to vibration suppression control during normal traveling.
 さらに、車輪ロック状態における車両モデルより算出した制御定数を用いた制振制御を行っている状態でブレーキがオンからオフに変化すると、車輪ロック状態ではない車両モデルより算出した制御定数を用いた制振制御を行う。これにより、パークロック信号が無い車両においても、通常の走行時の制振制御に移行することができる。 Furthermore, if the brake changes from on to off while vibration suppression control is performed using the control constant calculated from the vehicle model in the wheel locked state, the control using the control constant calculated from the vehicle model not in the wheel locked state is performed. Perform vibration control. Thereby, even in a vehicle without a park lock signal, it is possible to shift to vibration suppression control during normal traveling.
 また、車輪ロック状態における車両モデルより算出した制御定数を用いた制振制御を行っている状態で、パークロック状態の解除時に生じる振動を抑制するためのモータトルク指令値が0であって、かつ、モータ回転数が所定回転数以下の状態が所定時間経過すると、車輪ロック状態ではない車両モデルより算出した制御定数を用いた制振制御を行う。これにより、パークロック解除時ショックを確実に抑制した後に通常の走行時の制振制御へ移行することができる。 Further, the motor torque command value for suppressing the vibration generated when the park lock state is released is 0 in a state where the vibration suppression control using the control constant calculated from the vehicle model in the wheel lock state is performed, and When a state in which the motor rotational speed is equal to or lower than the predetermined rotational speed has elapsed for a predetermined time, vibration suppression control using a control constant calculated from a vehicle model that is not in the wheel locked state is performed. As a result, it is possible to shift to the vibration suppression control during normal traveling after reliably suppressing the shock when the parking lock is released.
 さらに、車輪ロック状態における車両モデルより算出した制御定数を用いた制振制御を行っている状態で、シフト位置がPレンジからDレンジまたはRレンジに移行したことを検出すると、車輪ロック状態ではない車両モデルより算出した制御定数を用いた制振制御を行うとともに、所定時間の間は、車両情報に基づいて設定されるモータトルク指令値を0に設定する。これにより、パークロック解除時の制振制御から通常の走行時の制振制御へ切り替えた際の制御切り替えショックを防止することができる。 Further, when it is detected that the shift position has shifted from the P range to the D range or the R range in the state where the vibration suppression control is performed using the control constant calculated from the vehicle model in the wheel locked state, the wheel is not in the locked state. While performing vibration suppression control using the control constant calculated from the vehicle model, the motor torque command value set based on the vehicle information is set to 0 for a predetermined time. As a result, it is possible to prevent a control switching shock when switching from the vibration suppression control when the parking lock is released to the vibration suppression control during normal traveling.
 -第2の実施形態-
 第2の実施形態における電動車両のモータ制御装置が第1の実施形態における電動車両のモータ制御装置と異なるのは、図2のフローチャートのステップS203で行う制振制御演算処理であり、特に、パークロック解除時の制振制御演算処理である。
である。
-Second Embodiment-
The motor control device for the electric vehicle in the second embodiment differs from the motor control device for the electric vehicle in the first embodiment in the vibration suppression control calculation processing performed in step S203 of the flowchart of FIG. It is vibration suppression control calculation processing at the time of unlocking.
It is.
 図7は、第2の実施形態におけるパークロック解除時の制振制御演算処理の制御ブロック図である。図7に示す制御ブロック図の制御は、モータ角速度フィードバック制御であり、モータ回転数ωmにフィードバックゲインKωを乗算し、さらにフィードバックゲインkを乗算することによって、第2のトルク目標値Tm2を算出する。フィードバックゲインKωの算出方法を以下で説明する。 FIG. 7 is a control block diagram of a vibration suppression control calculation process at the time of park lock release in the second embodiment. The control in the control block diagram shown in FIG. 7 is motor angular velocity feedback control, and the second torque target value Tm2 * is calculated by multiplying the motor rotation speed ωm by the feedback gain Kω and further multiplying the feedback gain k. To do. A method for calculating the feedback gain Kω will be described below.
 外乱dからモータ回転数ωmまでの伝達関数は、次式(15)で表される。
Figure JPOXMLDOC01-appb-M000017
A transfer function from the disturbance d to the motor rotational speed ωm is expressed by the following equation (15).
Figure JPOXMLDOC01-appb-M000017
 式(5)、式(15)をまとめると、次式(16)となる。
Figure JPOXMLDOC01-appb-M000018
When the formulas (5) and (15) are put together, the following formula (16) is obtained.
Figure JPOXMLDOC01-appb-M000018
 外乱応答に対する規範応答(ζ=1)を次式(17)で表す。ただし、式(17)中のGm(s)は次式(18)で表される。
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
The normative response (ζ = 1) to the disturbance response is expressed by the following equation (17). However, Gm (s) in Formula (17) is represented by the following Formula (18).
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
 よって、モータ角速度フィードバック制御の伝達特性式(16)と、外乱応答に対する規範応答の式(17)より、フィードバックゲインKωは、次式(19)で表される。
Figure JPOXMLDOC01-appb-M000021
Therefore, the feedback gain Kω is expressed by the following equation (19) from the transfer characteristic equation (16) of the motor angular velocity feedback control and the equation (17) of the norm response to the disturbance response.
Figure JPOXMLDOC01-appb-M000021
 ただし、式(19)中のωplは、次式(20)で表される。
Figure JPOXMLDOC01-appb-M000022
However, ω pl in the equation (19) is expressed by the following equation (20).
Figure JPOXMLDOC01-appb-M000022
 なお、図7のフィードバック補償器のフィードバックゲインkは、フィードバックループの中にある制御系の持つ遅れ要素を加味するため、制御演算時間、モータ応答遅れ、センサ信号処理時間の影響を補償することができるように設定する。 Note that the feedback gain k of the feedback compensator in FIG. 7 takes into account the delay elements of the control system in the feedback loop, and therefore can compensate for the effects of control calculation time, motor response delay, and sensor signal processing time. Set as possible.
 図8は、第2の実施形態における制振制御演算処理のフローチャートである。図6に示すフローチャートの処理と同一の処理を行うステップについては、同一の符号を付して詳しい説明は省略する。図6に示すフローチャートと同様に、ステップS701から始まる処理は、電動モータコントローラ2によって行われる。 FIG. 8 is a flowchart of the vibration suppression control calculation process in the second embodiment. Steps in which the same processing as that in the flowchart shown in FIG. 6 is performed are denoted by the same reference numerals and detailed description thereof is omitted. Similar to the flowchart shown in FIG. 6, the process starting from step S <b> 701 is performed by the electric motor controller 2.
 ステップS706の判定を否定した場合、ステップS710の処理を終了した場合、または、ステップS711の処理を終了した場合には、ステップS901に進む。ステップS901では、パークロック解除時の制振制御から通常の走行時の制振制御に戻す時間を調整するために、タイマ1をカウントダウンする。 If the determination in step S706 is negative, the process in step S710 is terminated, or the process in step S711 is terminated, the process proceeds to step S901. In step S901, the timer 1 is counted down to adjust the time for returning from the vibration suppression control at the time of canceling the park lock to the vibration suppression control at the time of normal traveling.
 ステップS902では、パークロック解除時の制振制御処理(図7参照)を行う。 In step S902, a vibration suppression control process (see FIG. 7) at the time of canceling the park lock is performed.
 ステップS709の判定を否定した場合に進むステップS903では、通常の走行時の制振制御処理(図4参照)を行う。 In step S903, which proceeds when the determination in step S709 is negative, a vibration suppression control process during normal traveling (see FIG. 4) is performed.
 以上、第2の実施形態における電動車両のモータ制御装置によれば、モータ回転数にパークロック解除時の車両モデルより算出した制御ゲインを乗じる簡素な制御系で、パークロック解除ショックを抑制することができる。 As described above, according to the motor control device for an electric vehicle in the second embodiment, the parking lock release shock is suppressed by a simple control system that multiplies the motor rotation speed by the control gain calculated from the vehicle model at the time of park lock release. Can do.
 第1および第2の実施形態における電動車両のモータ制御装置によって行われる制振制御の効果について説明する。 The effect of the vibration suppression control performed by the motor control device of the electric vehicle in the first and second embodiments will be described.
 登坂路で駐車した後、シフト位置をPレンジにしてパークロックをかけ、ブレーキを離してドライブシャフトがねじれた状態で停車しているものとする。この後、再度発進するために、ブレーキを踏みながらパークロックを解除する場合の現象について、図9を用いて説明する。 After parking on the uphill road, the parking position is set to the P range, the parking lock is applied, the brake is released, and the drive shaft is twisted and stopped. After that, in order to start again, a phenomenon in the case of releasing the park lock while stepping on the brake will be described with reference to FIG.
 図9は、第1および第2の実施形態における電動車両のモータ制御装置による制御結果の一例を示す図である。図9では上から順に、トルク指令値(第2のトルク目標値Tm2)の時間変化、モータ回転数Nmの時間変化、ドライブシャフト捻れ角の時間変化、ドライブシャフトトルクの時間変化を示している。図9において、実線は第1、第2の実施形態における電動車両のモータ制御装置の制御結果を、点線は従来例であるJP2003-9566Aに記載の制振制御装置の制御結果を示す。 FIG. 9 is a diagram illustrating an example of a control result by the motor control device of the electric vehicle according to the first and second embodiments. FIG. 9 shows, in order from the top, the time change of the torque command value (second torque target value Tm2 * ), the time change of the motor rotation speed Nm, the time change of the drive shaft twist angle, and the time change of the drive shaft torque. . In FIG. 9, the solid line indicates the control result of the motor control device of the electric vehicle according to the first and second embodiments, and the dotted line indicates the control result of the vibration suppression control device described in JP2003-9566A, which is a conventional example.
 時刻t0においてPレンジからNレンジに移行してパークロックが解除され、ドライブシャフトに蓄積されていたねじりが開放される。この時、ドライブシャフトトルクが0Nmへと減少するのに対応してモータ回転数が減少し、この変化を抑制しようと制振制御が働き、トルク指令値を変化させる。 At time t0, the P-lock shifts from the P range to the N range, the park lock is released, and the torsion accumulated on the drive shaft is released. At this time, the motor rotation speed decreases in response to the drive shaft torque decreasing to 0 Nm, and the vibration suppression control works to suppress this change, thereby changing the torque command value.
 従来例の制振制御装置では、パークロック解除時であっても、通常の走行時の車両モデルを用いるため、車両モデルに誤差が生じ、時刻t2を過ぎると、ドライブシャフトトルクとドライブシャフトの捻れ角にオーバーシュートが発生している。そのため、ドライブシャフトの捻れ角は、バックラッシュ区間を跨ぎ(ドライブシャフトトルク≦0Nm)、ギアのバックラッシュによる歯当たり音が発生する。 In the conventional vibration suppression control device, even when the parking lock is released, the vehicle model during normal travel is used. Therefore, an error occurs in the vehicle model, and after time t2, the drive shaft torque and the drive shaft twist There is an overshoot at the corner. Therefore, the torsion angle of the drive shaft straddles the backlash section (driveshaft torque ≦ 0 Nm), and tooth contact noise is generated due to gear backlash.
 これに対し、第1および第2の実施形態における電動車両のモータ制御装置による制御結果では、パークロック解除時には、車輪ロック状態における車両モデルより算出した制御定数を用いた制振制御処理を行うことで、ドライブシャフトトルクとドライブシャフトの捻れ角のオーバーシュートが抑制されている。これにより、ドライブシャフトの捻れ角はバックラッシュ区間を跨がない(ドライブシャフトトルク>0Nm)ので、ギアのバックラッシュによる歯当たり音が抑制できる。 On the other hand, in the control result by the motor control device for the electric vehicle in the first and second embodiments, when the parking lock is released, the vibration suppression control process using the control constant calculated from the vehicle model in the wheel locked state is performed. Thus, overshoot of the drive shaft torque and the twist angle of the drive shaft is suppressed. Thereby, since the torsion angle of the drive shaft does not straddle the backlash section (drive shaft torque> 0 Nm), the tooth contact noise due to the gear backlash can be suppressed.
 本発明は、上述した実施形態に限定されることはない。 The present invention is not limited to the embodiment described above.
 本願は、2012年10月9日に日本国特許庁に出願された特願2012-224174に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2012-224174 filed with the Japan Patent Office on October 9, 2012, the entire contents of which are incorporated herein by reference.

Claims (14)

  1.  車両情報に基づいてモータトルク指令値を設定し、駆動輪につながるモータのトルクを制御する電動車両のモータ制御装置において、
     前記モータトルク指令値に対して、車両振動を抑制するための制振制御を行う制振制御手段と、
     前記制振制御が行われたモータトルク指令値に従って、モータトルクを制御するモータトルク制御手段と、
     車輪を回転ロックしたパークロック状態の解除の有無を判断するパークロック解除判断手段と、
    を備え、
     前記制振制御手段は、前記パークロック状態の解除時には、車輪ロック状態における車両モデルより算出した制御定数を用いた制振制御を行う、
    電動車両のモータ制御装置。
    In a motor control device for an electric vehicle that sets a motor torque command value based on vehicle information and controls the torque of a motor connected to a drive wheel,
    Vibration suppression control means for performing vibration suppression control for suppressing vehicle vibration with respect to the motor torque command value;
    Motor torque control means for controlling the motor torque according to the motor torque command value for which the vibration suppression control has been performed;
    Park lock release determination means for determining whether or not the park lock state in which the wheel is rotationally locked is released,
    With
    The vibration suppression control means performs vibration suppression control using a control constant calculated from a vehicle model in a wheel lock state when the park lock state is released.
    A motor control device for an electric vehicle.
  2.  請求項1に記載の電動車両のモータ制御装置において、
     前記車輪ロック状態における車両モデルGpl(s)は、モータのイナーシャをJ、駆動系のねじり合成をK、オーバーオールギヤ比をN、モータ回転速度をω、モータトルク指令値をTとすると、次式にて定義する電動車両のモータ制御装置。
    Figure JPOXMLDOC01-appb-M000001
    In the motor control device of the electric vehicle according to claim 1,
    The vehicle model Gpl (s) in the wheel lock state has a motor inertia J m , a drive system torsional synthesis K d , an overall gear ratio N, a motor rotation speed ω m , and a motor torque command value T m . Then, the motor control apparatus of the electric vehicle defined by the following formula.
    Figure JPOXMLDOC01-appb-M000001
  3.  請求項1または請求項2に記載の電動車両のモータ制御装置において、
     前記制振制御手段は、前記モータトルク指令値を入力し、車両の駆動力伝達系の振動を抑制するためのフィードフォワード演算を行うことにより第1のトルク目標値を算出する第1のトルク目標値算出手段と、モータ回転数の推定値およびモータ回転数の検出値の偏差に基づいて、車両の駆動力伝達系の振動を抑制するためのフィードバック演算を行うことにより第2のトルク目標値を算出する第2のトルク目標値算出手段と、前記第1のトルク目標値および前記第2のトルク目標値を加算することによって、制振制御後のモータトルク指令値を算出する加算手段とを備える、
    電動車両のモータ制御装置。
    In the motor control device of the electric vehicle according to claim 1 or 2,
    The vibration suppression control means receives the motor torque command value and calculates a first torque target value by performing a feedforward calculation for suppressing vibration of the driving force transmission system of the vehicle. The second torque target value is obtained by performing a feedback calculation for suppressing vibration of the driving force transmission system of the vehicle based on the deviation between the value calculating means, the estimated value of the motor speed and the detected value of the motor speed. A second torque target value calculating means for calculating; and an adding means for calculating a motor torque command value after damping control by adding the first torque target value and the second torque target value. ,
    A motor control device for an electric vehicle.
  4.  請求項1に記載の電動車両のモータ制御装置において、
     前記制振制御手段は、前記パークロック状態の解除時には、モータ回転数に、車輪ロック状態における車両モデルより算出した制御ゲインKωを乗算することにより、制振制御後のモータトルク指令値を算出する電動車両のモータ制御装置。ただし、制御ゲインKωは、モータのイナーシャをJ、駆動系のねじり合成をK、オーバーオールギヤ比をNとすると、次式にて定義する。
    Figure JPOXMLDOC01-appb-M000002
    In the motor control device of the electric vehicle according to claim 1,
    The vibration suppression control means calculates a motor torque command value after vibration suppression control by multiplying the motor rotation speed by a control gain calculated from a vehicle model in a wheel locked state when the park lock state is released. A motor control device for an electric vehicle. However, the control gain K ω is defined by the following equation where J m is the inertia of the motor, K d is the torsional composition of the drive system, and N is the overall gear ratio.
    Figure JPOXMLDOC01-appb-M000002
  5.  請求項1から請求項4のいずれか一項に記載の電動車両のモータ制御装置において、
     前記制振制御手段は、モータ回転数を入力してモータトルク指令値を出力するフィードバック補償器を有し、前記フィードバック補償器を含むフィードバックループの中にある制御系の持つ遅れ要素に応じたフィードバックゲインが設定されている、
    電動車両のモータ制御装置。
    In the motor control device of the electric vehicle according to any one of claims 1 to 4,
    The vibration suppression control means includes a feedback compensator that inputs a motor rotation speed and outputs a motor torque command value, and feedback according to a delay element of a control system in a feedback loop including the feedback compensator Gain is set,
    A motor control device for an electric vehicle.
  6.  請求項1から請求項5のいずれか一項に記載の電動車両のモータ制御装置において、
     前記パークロック解除判断手段は、シフト位置がPレンジからPレンジ以外の他のレンジに移行したことを検出すると、前記パークロック状態が解除されたと判断する、
    電動車両のモータ制御装置。
    In the motor control device of the electric vehicle according to any one of claims 1 to 5,
    The park lock cancellation determination means determines that the park lock state has been canceled when it is detected that the shift position has shifted from the P range to another range other than the P range.
    A motor control device for an electric vehicle.
  7.  請求項1から請求項6のいずれか一項に記載の電動車両のモータ制御装置において、
     前記パークロック解除判断手段は、シフト位置がPレンジであり、かつ、ブレーキがオフからオンに変化したことを検出すると、前記パークロック状態が解除されたと判断する、
    電動車両のモータ制御装置。
    In the motor control device of the electric vehicle according to any one of claims 1 to 6,
    The parking lock release determination means determines that the parking lock state has been released when detecting that the shift position is in the P range and the brake has changed from OFF to ON,
    A motor control device for an electric vehicle.
  8.  請求項1から請求項7のいずれか一項に記載の電動車両のモータ制御装置において、
     前記パークロック解除判断手段は、モータ回転数が所定回転数以下または車速が所定車速以下であって、かつ、ブレーキがオフからオンに変化したことを検出すると、前記パークロック状態が解除されたと判断する、
    電動車両のモータ制御装置。
    In the motor control device of the electric vehicle according to any one of claims 1 to 7,
    The parking lock release determination means determines that the parking lock state has been released when detecting that the motor rotation speed is equal to or less than the predetermined rotation speed or the vehicle speed is equal to or less than the predetermined vehicle speed and the brake is changed from OFF to ON. To
    A motor control device for an electric vehicle.
  9.  請求項1から請求項8のいずれか一項に記載の電動車両のモータ制御装置において、
     前記制振制御手段は、前記パークロック状態の解除を検知してから所定時間が経過すると、車輪ロック状態ではない車両モデルより算出した制御定数を用いた制振制御を行う、
    電動車両のモータ制御装置。
    In the motor control device of the electric vehicle according to any one of claims 1 to 8,
    The vibration suppression control means performs vibration suppression control using a control constant calculated from a vehicle model that is not in a wheel lock state when a predetermined time has elapsed after detecting the release of the park lock state.
    A motor control device for an electric vehicle.
  10.  請求項1から請求項9のいずれか一項に記載の電動車両のモータ制御装置において、
     前記制振制御手段は、前記車輪ロック状態における車両モデルより算出した制御定数を用いた制振制御を行っている状態で車速が所定の閾値を超えると、車輪ロック状態ではない車両モデルより算出した制御定数を用いた制振制御を行う、
    電動車両のモータ制御装置。
    In the motor control device of the electric vehicle according to any one of claims 1 to 9,
    The vibration suppression control means calculates from a vehicle model that is not in a wheel locked state when the vehicle speed exceeds a predetermined threshold in a state where vibration control is performed using a control constant calculated from the vehicle model in the wheel locked state. Perform vibration control using control constants,
    A motor control device for an electric vehicle.
  11.  請求項1から請求項10のいずれか一項に記載の電動車両のモータ制御装置において、
     前記制振制御手段は、前記車輪ロック状態における車両モデルより算出した制御定数を用いた制振制御を行っている状態でブレーキがオンからオフに変化すると、車輪ロック状態ではない車両モデルより算出した制御定数を用いた制振制御を行う、
    電動車両のモータ制御装置。
    In the motor control device of the electric vehicle according to any one of claims 1 to 10,
    The vibration suppression control means is calculated from a vehicle model that is not in a wheel lock state when the brake changes from on to off in a state where vibration control is performed using a control constant calculated from the vehicle model in the wheel lock state. Perform vibration control using control constants,
    A motor control device for an electric vehicle.
  12.  請求項1から請求項11のいずれか一項に記載の電動車両のモータ制御装置において、
     前記制振制御手段は、前記車輪ロック状態における車両モデルより算出した制御定数を用いた制振制御を行っている状態で、前記パークロック状態の解除時に生じる振動を抑制するためのモータトルク指令値が0であって、かつ、モータ回転数が所定回転数以下の状態が所定時間経過すると、車輪ロック状態ではない車両モデルより算出した制御定数を用いた制振制御を行う、
    電動車両のモータ制御装置。
    In the motor control device of the electric vehicle according to any one of claims 1 to 11,
    The vibration suppression control means is a motor torque command value for suppressing vibration generated when the park lock state is released in a state in which vibration suppression control is performed using a control constant calculated from a vehicle model in the wheel lock state. Is zero, and when a state where the motor rotational speed is equal to or lower than the predetermined rotational speed has elapsed for a predetermined time, vibration suppression control is performed using a control constant calculated from a vehicle model that is not in the wheel locked state
    A motor control device for an electric vehicle.
  13.  請求項1から請求項12のいずれか一項に記載の電動車両のモータ制御装置において、
     前記制振制御手段は、前記車輪ロック状態における車両モデルより算出した制御定数を用いた制振制御を行っている状態で、シフト位置がPレンジからDレンジまたはRレンジに移行したことを検出すると、車輪ロック状態ではない車両モデルより算出した制御定数を用いた制振制御を行うとともに、所定時間の間は、車両情報に基づいて設定されるモータトルク指令値を0に設定する、
    電動車両のモータ制御装置。
    In the motor control device of the electric vehicle according to any one of claims 1 to 12,
    The vibration suppression control unit detects that the shift position has shifted from the P range to the D range or the R range in a state where the vibration suppression control is performed using the control constant calculated from the vehicle model in the wheel lock state. In addition to performing vibration suppression control using a control constant calculated from a vehicle model that is not in a wheel locked state, a motor torque command value set based on vehicle information is set to 0 for a predetermined time.
    A motor control device for an electric vehicle.
  14.  車両情報に基づいてモータトルク指令値を設定し、駆動輪につながるモータのトルクを制御する電動車両のモータ制御方法において、
     車輪を回転ロックしたパークロック状態の解除の有無を判断し、
     前記パークロック状態の解除時には、車輪ロック状態における車両モデルより算出した制御定数を用いて、前記モータトルク指令値に対して車両振動を抑制するための制振制御を行い、
     前記制振制御が行われたモータトルク指令値に従って、モータトルクを制御する、
    電動車両のモータ制御方法。
    In a motor control method for an electric vehicle that sets a motor torque command value based on vehicle information and controls the torque of a motor connected to a drive wheel,
    Judge whether the park lock state with the wheel locked and
    When releasing the park lock state, using a control constant calculated from a vehicle model in a wheel lock state, performing vibration suppression control for suppressing vehicle vibration with respect to the motor torque command value,
    According to the motor torque command value for which the vibration suppression control is performed, the motor torque is controlled.
    A motor control method for an electric vehicle.
PCT/JP2013/077371 2012-10-09 2013-10-08 Motor control device for electric vehicle and motor control method for electric vehicle WO2014057946A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012224174 2012-10-09
JP2012-224174 2012-10-09

Publications (1)

Publication Number Publication Date
WO2014057946A1 true WO2014057946A1 (en) 2014-04-17

Family

ID=50477414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077371 WO2014057946A1 (en) 2012-10-09 2013-10-08 Motor control device for electric vehicle and motor control method for electric vehicle

Country Status (1)

Country Link
WO (1) WO2014057946A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109747433A (en) * 2018-12-29 2019-05-14 中国第一汽车股份有限公司 A kind of electric car P gear control method
EP3517346A4 (en) * 2016-09-21 2020-05-06 NSK Ltd. Electric vehicle drive device
CN112208349A (en) * 2019-07-12 2021-01-12 北京新能源汽车股份有限公司 Control method and device of electric automobile, control equipment and automobile

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005269834A (en) * 2004-03-19 2005-09-29 Nissan Motor Co Ltd Vehicle vibration damping and controlling device
JP2008162348A (en) * 2006-12-27 2008-07-17 Toyota Motor Corp Apparatus and method for controlling power train, program for implementing the method, and recording medium with the program recorded
WO2011155015A1 (en) * 2010-06-07 2011-12-15 トヨタ自動車株式会社 Hybrid vehicle and method of controlling thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005269834A (en) * 2004-03-19 2005-09-29 Nissan Motor Co Ltd Vehicle vibration damping and controlling device
JP2008162348A (en) * 2006-12-27 2008-07-17 Toyota Motor Corp Apparatus and method for controlling power train, program for implementing the method, and recording medium with the program recorded
WO2011155015A1 (en) * 2010-06-07 2011-12-15 トヨタ自動車株式会社 Hybrid vehicle and method of controlling thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3517346A4 (en) * 2016-09-21 2020-05-06 NSK Ltd. Electric vehicle drive device
US11305653B2 (en) 2016-09-21 2022-04-19 Nsk Ltd. Electric vehicle drive device
CN109747433A (en) * 2018-12-29 2019-05-14 中国第一汽车股份有限公司 A kind of electric car P gear control method
CN112208349A (en) * 2019-07-12 2021-01-12 北京新能源汽车股份有限公司 Control method and device of electric automobile, control equipment and automobile
CN112208349B (en) * 2019-07-12 2022-03-15 北京新能源汽车股份有限公司 Control method and device of electric automobile, control equipment and automobile

Similar Documents

Publication Publication Date Title
JP6884098B2 (en) Electric vehicle control device and electric vehicle control method
JP6787410B2 (en) Electric vehicle control method and control device
JP5857781B2 (en) Vehicle vibration control device using electric motor
CN109070763B (en) Method for controlling electric vehicle and device for controlling electric vehicle
JP5862436B2 (en) Control device for electric vehicle
JP5900609B2 (en) Electric vehicle control device and electric vehicle control method
WO2018139375A1 (en) Method for controlling electrically driven vehicle and device for controlling electrically driven vehicle
JP6711064B2 (en) Electric vehicle control method and electric vehicle control device
JP5862792B2 (en) Motor control device for electric vehicle and motor control method for electric vehicle
JP6844655B2 (en) Electric vehicle control device and electric vehicle control method
JP5850171B2 (en) Electric vehicle control device and electric vehicle control method
JP2015043669A (en) Motor vibration damping controller for electric vehicle
JP6586856B2 (en) Control method and control apparatus for electric vehicle
WO2014057946A1 (en) Motor control device for electric vehicle and motor control method for electric vehicle
JP6720714B2 (en) Electric vehicle control method and electric vehicle control device
JP6819081B2 (en) Electric vehicle control method and control device
JP6597174B2 (en) Electric vehicle control device and electric vehicle control method
JP6992298B2 (en) Electric vehicle control device and electric vehicle control method
JP6880674B2 (en) Electric vehicle control method and electric vehicle control device
JP2015023623A (en) Control device of electric vehicle and control method of electric vehicle
WO2023032012A1 (en) Control method for electric motor vehicle and control device for electric motor vehicle
JP2023088683A (en) Electric vehicle control method and electric vehicle control device
JP2021175279A (en) Control method for electric vehicle and control device for electric vehicle
JP2013240258A (en) Damping control device for electric vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13844648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13844648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP