WO2014054548A1 - Battery deterioration evaluation device, resistance value calculation device, battery deterioration evaluating method and program - Google Patents

Battery deterioration evaluation device, resistance value calculation device, battery deterioration evaluating method and program Download PDF

Info

Publication number
WO2014054548A1
WO2014054548A1 PCT/JP2013/076400 JP2013076400W WO2014054548A1 WO 2014054548 A1 WO2014054548 A1 WO 2014054548A1 JP 2013076400 W JP2013076400 W JP 2013076400W WO 2014054548 A1 WO2014054548 A1 WO 2014054548A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
secondary battery
value
battery
current value
Prior art date
Application number
PCT/JP2013/076400
Other languages
French (fr)
Japanese (ja)
Inventor
和基 尾▲崎▼
一幸 若杉
克明 森田
重水 哲郎
橋本 雅之
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2014054548A1 publication Critical patent/WO2014054548A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0069Charging or discharging for charge maintenance, battery initiation or rejuvenation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery deterioration determination device, a resistance value calculation device, a battery deterioration determination method, and a program.
  • secondary batteries such as power systems that perform electrical control using the power stored in secondary batteries and automobiles equipped with secondary batteries, receive stable power supply from secondary batteries, and In order to reduce the battery replacement cost, it is desired to accurately determine the deterioration state of the secondary battery and replace the secondary battery at an appropriate time.
  • the deterioration state of the secondary battery can be determined based on the internal resistance value of the secondary battery.
  • the internal high value calculation unit inputs the current value input to and output from the secondary battery and the voltage applied to the secondary battery.
  • the current internal resistance value of the secondary battery is calculated using the fluctuation range of the current value when the current value fluctuates more than a certain value and the fluctuation range of the voltage value at that time.
  • the battery deterioration information processing unit divides the current internal resistance value by the initial internal resistance value corresponding to the current temperature of the secondary battery, and the deterioration rate of the secondary battery at the current temperature of the secondary battery. And the deterioration rate is output to the monitor device.
  • the battery degradation detection apparatus of patent document 1 can detect the degradation condition of a battery irrespective of the load pattern of a secondary battery.
  • the calculated internal resistance value may vary depending on the power supply status of the secondary battery. For example, the timing at which the current value changes may deviate from the timing at which the voltage value changes, such as when the voltage value changes behind the current value in the secondary battery. Due to the difference in the change timing between the current value and the voltage value, a difference may occur in the internal resistance value calculated according to the measurement time of the current value or the voltage value, and the determination accuracy of the deterioration state of the secondary battery may be reduced. There is.
  • the present invention provides a battery deterioration determination device, a resistance value calculation device, a battery deterioration determination method, and a program capable of determining a deterioration state of a secondary battery with higher accuracy.
  • the magnitude of the change rate of the measured value that is at least one of the current value or the voltage value of the secondary battery is equal to or less than the predetermined change rate.
  • the magnitude of the change rate of the measurement value is equal to or less than a predetermined change rate at one time, and the magnitude of the change amount of the measurement value between the first time and the predetermined change amount is greater than or equal to the predetermined change amount.
  • a resistance value calculating unit that calculates an internal resistance value of the secondary battery; and a battery deterioration state determining unit that determines a deterioration state of the secondary battery based on the internal resistance value of the secondary battery.
  • the battery deterioration determination device is the above-described battery deterioration determination device, and the time detection unit detects a plurality of combinations of the first time and the second time.
  • the resistance value calculation unit calculates an internal resistance value of the secondary battery for each combination of the first time and the second time detected by the time detection unit, and calculates the internal resistance value obtained.
  • An average value is obtained, and the battery deterioration state determination unit determines the deterioration state of the secondary battery based on the average value of the internal resistance values obtained by the resistance value calculation unit.
  • the battery deterioration determination device is the above-described battery deterioration determination device, wherein the time detection unit has a predetermined rate of change in the current value of the secondary battery. And the time when the magnitude of the change rate of the voltage value of the secondary battery is not more than a predetermined change rate is detected as the first time, and the current value of the secondary battery And the change rate of the voltage value of the secondary battery is less than or equal to a predetermined change rate, and further, A time at which the amount of change in the current value of the secondary battery during the period is equal to or greater than a predetermined change is detected as the second time.
  • the magnitude of the change rate of the measured value that is at least one of the current value or the voltage value of the secondary battery is equal to or less than the predetermined change rate.
  • the magnitude of the change rate of the measurement value is equal to or less than a predetermined change rate, and the magnitude of the change amount of the measurement value between the first time and the first change time is a predetermined change amount.
  • the battery deterioration determination method is a battery deterioration determination method of the battery deterioration determination device, and a change in the measured value that is at least one of the current value or the voltage value of the secondary battery.
  • the first time when the magnitude of the rate is less than or equal to a predetermined change rate, and the magnitude of the change rate of the measurement value is less than or equal to a predetermined change rate and the first time A time detection step of detecting a second time when the magnitude of the change amount of the measured value is greater than or equal to a predetermined change amount; a current value and a voltage value of the secondary battery at the first time; and a time at the second time
  • a resistance value calculating step for calculating an internal resistance value of the secondary battery based on the current value and the voltage value of the secondary battery, and a deterioration of the secondary battery based on the internal resistance value of the secondary battery.
  • Battery deterioration status judgment step Comprising a flop, the.
  • the program stores a predetermined rate of change in the measured value, which is at least one of the current value or the voltage value of the secondary battery, in the computer as the battery deterioration determination device.
  • the first time when the change rate is less than or equal to the change rate of the measurement value is less than or equal to a predetermined change rate and the change amount of the measurement value between the first time and the change time
  • a time detecting step for detecting a second time having a predetermined change amount or more, a current value and a voltage value of the secondary battery at the first time, and a current value of the secondary battery at the second time
  • a resistance value calculating step for calculating an internal resistance value of the secondary battery based on the voltage value and a battery deterioration status for determining a degradation status of the secondary battery based on the internal resistance value of the secondary battery
  • a determination step Is a program for causing the line.
  • the deterioration state of the secondary battery can be determined with higher accuracy.
  • FIG. 1 is a schematic block diagram showing a functional configuration of a power supply system according to an embodiment of the present invention.
  • the power supply system 1 includes a secondary battery system 100, a battery deterioration determination device 200, and a display device 300.
  • the secondary battery system 100 includes a battery cell 110 and a BMU (Battery Management Unit) 120.
  • the battery cell 110 includes a secondary battery 111 and a CMU (Cell Management Unit) 112.
  • the battery deterioration determination device 200 includes a storage unit 210, a measurement value acquisition unit 220, a time detection unit 230, a resistance value calculation unit 240, and a battery deterioration state determination unit 250.
  • the secondary battery system 100 is connected to the power load 900 via the path W11 and supplies power to the power load 900.
  • the present embodiment can be applied to the secondary battery system 100 for various uses.
  • the secondary battery system 100 is installed in a stationary system such as a grid-connected smoothing power storage system used in combination with a power generation facility using natural energy such as wind power or sunlight, or a household power storage system. It may be provided.
  • the secondary battery system 100 may be provided in a moving body such as an automobile or a train.
  • the battery cell 110 is a unit for replacing the battery in the secondary battery system 100 (that is, replaceable for each battery cell 110).
  • the secondary battery system 100 includes one or more battery cells 110.
  • the configuration of the battery cell 110 in the secondary battery system 100 may be arbitrary.
  • a plurality of battery cells 110 may be connected in series, may be connected in parallel, or a plurality of battery cells 110 connected in parallel may be connected in series.
  • the secondary battery 111 is a chargeable / dischargeable battery.
  • the secondary battery 111 may be a battery whose internal resistance increases when it is deteriorated by repeated charge and discharge.
  • the secondary battery 111 may be a lithium ion battery or a lead battery.
  • the CMU 112 performs charge / discharge control and monitoring of the secondary battery 111 in units of cells. In particular, the CMU 112 detects the current value, voltage value, and temperature of the secondary battery 111 and notifies the battery deterioration determination device 200 via the BMU 120.
  • the battery cell 110 acquires a current value, a voltage value, and a temperature from a current sensor, a voltage sensor, and a temperature sensor provided in the secondary battery 111, respectively, as a measured value of the sensor at every predetermined sampling period. , Output to the BMU 120.
  • the BMU 120 communicates with a higher-level control device of the secondary battery system 100 to control and monitor the secondary battery system 100 as a whole. Further, the BMU 120 transmits the current value, voltage value, and temperature of the secondary battery 111 for each battery cell 110 detected by the CMU 112 to the battery deterioration determination device 200.
  • the battery deterioration determination device 200 calculates the internal resistance of the secondary battery 111 and determines whether or not the secondary battery 111 is deteriorated.
  • the battery deterioration determination device 200 may be configured by a computer, or may be realized by dedicated hardware.
  • the storage unit 210 stores various data according to the control of the measurement value acquisition unit 220.
  • the measurement value acquisition unit 220 writes / reads various data to / from the storage unit 210.
  • the measurement value acquisition unit 220 stores the current value, voltage value, and temperature of the secondary battery 111 for each battery cell 110 transmitted from the BMU 120 in the storage unit 210, and also calculates the time detection unit 230 and the resistance value. Data is read from the storage unit 210 and output in accordance with the processing of the unit 240.
  • the time detection unit 230 detects the first time and the second time for each battery cell 110 based on the current value of the secondary battery 111 detected by the CMU 112.
  • the first time is a time at which the magnitude of the rate of change of the measured value that is at least one of the current value or the voltage value of the secondary battery 111 is equal to or less than the predetermined rate of change.
  • the second time here means that the change rate of the measurement value is equal to or less than a predetermined change rate, and the change amount of the measurement value between the first time and the predetermined change rate. It is a time that is more than the amount.
  • FIG. 2 is an explanatory diagram showing an example of the first time and the second time detected by the time detection unit 230.
  • a line L11 indicates the current value of the secondary battery 111
  • a line L12 indicates the rate of change of the current value (hereinafter, the rate of change of the current value is referred to as “current rate of change”).
  • each point of the line L11 indicates the current value of the secondary battery 111 detected by the CMU 112 for each sampling period dts
  • a line L11 is obtained by connecting the points.
  • Each point of the line L12 indicates a difference obtained by subtracting the current value at the previous sampling from the current value of the secondary battery 111 for each sampling period, and the line L12 is obtained by connecting the points.
  • the resistance value calculated based on the current value and the voltage value varies, and the accuracy of determining the deterioration status of the secondary battery 111 based on the resistance value is reduced. .
  • the time detection unit 230 displays the time before the time T12 when the current value is in a steady state, and the time T14 after the time T14 when the current value is in a static state again after the current value has changed significantly from the time.
  • the time of is detected.
  • the sampling time in the static state before the current value change is referred to as “previous time”
  • the sampling time in the static state after the current value change is referred to as “post time”.
  • the time detection unit 230 detects time T12 as the previous time from the sampling time when the storage unit 210 stores the current value and voltage value of the secondary battery 111 in the following procedure. Then, the time T15 is detected as a later time.
  • the combination of the previous time and the later time corresponds to an example of a combination of the first time and the second time.
  • the time T12 corresponds to an example of the first time
  • the time T15 corresponds to an example of the second time.
  • the current value of the secondary battery 111 at the sampling time t is expressed as I (t), and the rate of change of the current value of the secondary battery 111 at the sampling time t is expressed as dI (t).
  • I (t) I (t) ⁇ I (t ⁇ dts).
  • time dts shows a sampling period.
  • dI_const is a positive constant set in advance as a determination threshold value as to whether or not the current value is in a static state.
  • indicates an absolute value.
  • the current change rate dI (T15'-dt1) before the time dt1 from the time T15 ' is calculated.
  • the time dt1 is an assumed time of current rising.
  • the time dt1 can be set in advance as a constant.
  • the following processing may be performed for a plurality of times dt1, for example, the time detection unit 230 sets the time dt1 in the range from 1 sampling before 20 times before the time T15 '.
  • dI_rise is a positive constant set in advance as a determination threshold value for determining whether or not the current is in a transient state. 5.
  • Expression (2) it is determined whether or not the current value is in a static state at all sampling times from time T15′-dt1 one time before time T15′-dt1-dts to time dt0. judge.
  • the time dt1 is a positive constant set in advance as a settling time before the current rises.
  • Step 4 in the above procedure is a step for detecting the sampling time immediately before the current rise as the previous time, and is not an essential step.
  • the number of samplings for determining whether or not the state is a static state may be one or more before and after the current rise. Therefore, in step 5, it may be determined whether the current change rate is equal to or less than dI_const for only one sampling time. Further, in step 2, it may be determined whether the current change rate is equal to or less than dI_const for a plurality of sampling times.
  • the resistance value calculation unit 240 is based on the current value and voltage value of the secondary battery 111 at the first time and the current value and voltage value of the secondary battery 111 at the second time.
  • An internal resistance value of 111 is calculated.
  • the resistance value calculation unit 240 performs a secondary operation based on the difference between the current value and voltage value at time T12, which is the previous time, and the current value and voltage value at time T15, which is the subsequent time.
  • the internal resistance value of the battery 111 is calculated, and the temperature of the internal resistance value is corrected based on the temperature of the secondary battery 111.
  • the resistance value calculation unit 240 does not perform temperature correction. It may be.
  • Battery deterioration state determination unit 250 determines the deterioration state of secondary battery 111 based on the internal resistance value of secondary battery 111 after temperature correction acquired by resistance value calculation unit 240. For example, the battery deterioration state determination unit 250 compares the internal resistance value of the secondary battery 111 after temperature correction with a predetermined threshold value, and the battery cell 110 needs to be replaced when the internal resistance value is equal to or greater than the threshold value (secondary battery It is determined that the degree of deterioration of the battery 111 is large). On the other hand, when the internal resistance value is less than the threshold value, the battery deterioration state determination unit 250 determines that the replacement of the battery cell 110 is unnecessary (the degree of deterioration of the secondary battery 111 is small).
  • the display device 300 has a display screen such as a liquid crystal panel or an organic EL (Organic Electroluminescence) panel, for example, and displays the determination result of the battery deterioration state determination unit 250.
  • the display device 300 only needs to be able to notify the determination result of the battery deterioration state determination unit 250.
  • the display device 300 may include a lamp such as a light-emitting diode, and turn on the lamp to display that the secondary battery 111 needs to be replaced.
  • the display device 300 outputs a sound such as a voice message or a buzzer sound in addition to or instead of the visual display to indicate that the secondary battery 111 needs to be replaced. You may do it.
  • FIG. 3 is a flowchart illustrating a processing procedure in which the battery deterioration determination device 200 determines whether or not the battery cell 110 needs to be replaced.
  • the battery deterioration determination device 200 is illustrated for each of the battery cells 110 periodically, for example, every day or every month, or in response to a request from a user of the battery deterioration determination device 200 (for example, an administrator of the power supply system 1). Process 3 is performed. Note that the battery deterioration determination device 200 may perform the processing of FIG. 3 in real time for each sampling period of the current value, voltage value, and temperature of the secondary battery 111.
  • the time detection unit 230 initially sets a candidate for a later time (step S101). For example, the time detection unit 230 sets any of the sampling times when the storage unit 210 stores the current value of the secondary battery 111 or the like as a later time candidate. In addition, when the battery deterioration determination apparatus 200 performs the process of FIG. 3 for each current value, voltage value, and temperature sampling period of the secondary battery 111, the time detection unit 230 sets the latest sampling time as a candidate for a later time. Set.
  • the time detection unit 230 determines whether or not the storage unit 210 stores data at the sampling time that is a determination target of the static state before rising (step S102). For example, in the example shown in FIG. 2, the time detection unit 230 determines whether the storage unit 210 stores data at each sampling time from time T11 to time T12.
  • Step S111 the time detection unit 230 calculates a current change rate in a later time candidate (step S111).
  • Step 1 of the process described above with reference to FIG. 2 corresponds to an example of steps S101 and S111 of FIG.
  • the time detection unit 230 determines whether or not the current value of the secondary battery 111 is in a static state in a later time candidate based on the current change rate calculated in step S111 (step S112).
  • Step 2 of the above process corresponds to an example of step S112 in FIG.
  • the time detection part 230 calculates the electric current change rate in the assumption time of an electric current value rise start (step S121).
  • Step 3 of the above process corresponds to an example of step S121 in FIG.
  • the time detection unit 230 determines whether or not the current actually rises at the estimated current value rise start time (step S122).
  • Step 4 of the above process corresponds to an example of step S122 in FIG.
  • the time detection unit 230 calculates a current change rate for each sampling time that is a determination target of the static state before the rising (step S131).
  • step S132 the time detection unit 230 sets the current value of the secondary battery 111 to the static state at all the sampling times that are targets for determination of the static state before rising. It is determined whether or not there is (step S132). Step 5 of the above process corresponds to an example of steps S131 to S132 in FIG.
  • step S132 YES
  • the time detection unit 230 subtracts the current value in the candidate at the later time from the current value in the candidate at the previous time as the current change amount due to the rising of the current. The amount of change is calculated (step S141).
  • step S142 determines whether or not the change amount calculated in step S141 is a significant current value change amount for accurately determining the current value of the secondary battery 111 (step S142).
  • Step 6 of the above process corresponds to an example of step S142 in FIG.
  • step S142 YES
  • the time detection unit 230 sets the previous time candidate as the previous time, sets the subsequent time candidate as the subsequent time, The time and the later time are output to the resistance value calculation unit 240 (step S151).
  • step S151 Step 7 of the above process corresponds to an example of step S151 in FIG.
  • the resistance value calculation unit 240 calculates the internal resistance value of the secondary battery 111 based on the previous time and the later time set by the time detection unit 230 (step S152). And the resistance value calculation part 240 correct
  • step S102 when it is determined in step S102 that the corresponding data is not stored in the storage unit 210 (step S102: NO), the time detection unit 230 changes the later time candidate (step S161). For example, the time detection unit 230 sets a sampling time that has not yet been set as a later time candidate among the sampling times at which the storage unit 210 stores data as a later time candidate. After step S161, the process returns to step S102.
  • the battery deterioration determination device 200 When there is no sampling time that has not yet been set as a later time candidate, or when the battery deterioration determination device 200 performs the process of FIG. 3 for each sampling period of the current value, voltage value, or temperature of the secondary battery 111. Then, the battery deterioration determination device 200 ends the process of FIG. In this case, the battery deterioration determination device 200 fails to determine the deterioration state of the secondary battery 111, and waits for the storage unit 210 to store new data, for example, and performs the process of FIG. 3 again.
  • step S112 determines with the electric current value of the secondary battery 111 not being in a static state in step S112 (step S112: NO). It progresses to step S161. If it is determined in step S122 that the current has not risen at the estimated start time of the current value rise (step S122: NO), the process also proceeds to step S161. Moreover, also when it determines with the electric current value of the secondary battery 111 not being in a static state in step S132 (step S132: NO), it progresses to step S161. If it is determined in step S142 that the amount of change calculated in step S141 is not a significant current value change amount (step S142: NO), the process also proceeds to step S161.
  • the time detection unit 230 determines that the current value of the secondary battery 111 is in a static state, the current value of the secondary battery 111 is in a static state, and the first time.
  • the second time at which the magnitude of the change amount of the current value during the period is equal to or greater than the predetermined change amount is detected.
  • the resistance value calculation unit 240 determines whether the internal value of the secondary battery 111 is based on the current value and the voltage value at two times when the current value is in a static state and the current value is significantly different.
  • the value can be calculated with higher accuracy, and the battery deterioration state determination unit 250 can determine the deterioration state of the secondary battery 111 with higher accuracy using the internal resistance value.
  • the time detection unit 230 detects the static state after the current rise after detecting the static state after the current rise, but conversely, the static state before the current rise is detected. You may make it detect the static state after electric current rise after detecting. In the above description, the time detection unit 230 detects the sampling time in the static state before and after the current rise. However, the time detection unit 230 detects the sampling time in the static state before and after the current fall. You may do it. When the entire secondary battery system 100 is replaced when the secondary battery 111 is deteriorated, the battery deterioration determination device 200 determines the deterioration state by obtaining the internal resistance value of the secondary battery 111 for the entire secondary battery system 100. It may be.
  • the battery deterioration determination device 200 calculates the internal resistance value of the secondary battery 111 a plurality of times to obtain an average, and determines the deterioration state of the secondary battery 111 based on the obtained average value of the internal resistance values. You may do it.
  • the time detection unit 230 detects a plurality of combinations of the first time and the second time.
  • the resistance value calculation part 240 calculates the internal resistance value of the secondary battery 111 for every combination of the 1st time detected by the time detection part 230, and the 2nd time, and average value of the obtained internal resistance value Ask for.
  • the battery deterioration state determination unit 250 determines the deterioration state of the secondary battery 111 based on the average value of the internal resistance values obtained by the resistance value calculation unit 240. Thereby, the battery deterioration determination device 200 determines the internal resistance value with higher accuracy by reducing the influence of the temporary measurement error of the sensor and external noise, and determines the deterioration state of the secondary battery 111 with higher accuracy. be able to.
  • the time detection unit 230 detects the sampling time when the current value of the secondary battery 111 is stabilized has been described above. However, the time detection unit 230 stabilizes the current value of the secondary battery 111. In addition to or instead of the state, the sampling time in the static state of the voltage value of the secondary battery 111 may be detected.
  • FIG. 4 is an explanatory diagram showing an example of a change in the current value and a change in the voltage value of the secondary battery 111.
  • a line L21 indicates a change in the current value of the secondary battery 111
  • a line L22 indicates a change in the voltage value of the secondary battery 111.
  • the current value of the secondary battery 111 is in a static state during the period from time T21 to T22.
  • the voltage value of the secondary battery 111 continues to change after time T21 and is not in a static state.
  • the timing at which the current value changes may not match the timing at which the voltage value changes.
  • the time detection unit 230 detects the sampling time in the state where the voltage value of the secondary battery 111 is stabilized in addition to or instead of the state where the current value of the secondary battery 111 is stabilized. You may make it do.
  • the magnitude of the change rate of the current value of the secondary battery 111 is equal to or less than a predetermined change rate, and the magnitude of the change rate of the voltage value of the secondary battery 111 is a predetermined change.
  • a time that is lower than the rate is detected as one time.
  • the time detection unit 230 has a change rate of the current value of the secondary battery 111 equal to or less than a predetermined change rate, and a change rate of the voltage value of the secondary battery 111 has a predetermined change.
  • the time when the amount of change in the current value of the secondary battery 111 between the first time and the first time is equal to or greater than a predetermined change is detected as the second time.
  • the resistance value calculation unit 240 determines the secondary value based on the current value and the voltage value at two times when the voltage value is in a static state in addition to the current value and there is a significant difference in the current value.
  • the internal resistance value of the battery 111 can be calculated with higher accuracy, and the battery deterioration state determination unit 250 can determine the deterioration state of the secondary battery 111 with higher accuracy using the internal resistance value.
  • the time detection part 230 switch itself whether it detects the steady state of a voltage value. For example, when the time detection unit 230 determines whether both the current value and the voltage value of the secondary battery 111 are in a static state, the first time and the second time are detected for a predetermined time or more. If it fails, it may be switched to the determination of whether or not the current value is in a static state. That is, the time detection unit 230 may not determine whether the voltage value is in a static state. Thereby, the time detection unit 230 can detect the first time and the second time. Note that, among the units of the battery deterioration determination device 200, the storage unit 210, the measurement value acquisition unit 220, the time detection unit 230, and the resistance value calculation unit 240 may constitute a resistance value calculation device.
  • a computer can be used as the battery deterioration determination device 200. Therefore, a program for realizing all or a part of the functions of the battery deterioration determination apparatus 200 is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system and executed. You may process each part by.
  • the “computer system” includes an OS and hardware such as peripheral devices. Further, the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.
  • the “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system.
  • the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line.
  • a volatile memory in a computer system serving as a server or a client in that case and a program that holds a program for a certain period of time are also included.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • the present invention provides the first time when the magnitude of the change rate of the measured value that is at least one of the current value or the voltage value of the secondary battery is equal to or less than the predetermined change rate, and the magnitude of the change rate of the measured value.
  • a time detection unit for detecting a second time when the second change time is less than or equal to a predetermined change rate and the magnitude of the change amount of the measured value between the first time and the predetermined change amount.
  • the resistance value for calculating the internal resistance value of the secondary battery based on the current value and voltage value of the secondary battery at the first time and the current value and voltage value of the secondary battery at the second time
  • the present invention relates to a battery deterioration determination device including a calculation unit and a battery deterioration state determination unit that determines a deterioration state of the secondary battery based on an internal resistance value of the secondary battery. According to the present invention, it is possible to determine the deterioration state of the secondary battery with higher accuracy.

Abstract

A battery deterioration evaluation device provided with: a time detecting unit that detects a first time, at which the rate of change of a measured value, namely the current value and/or the voltage value of a secondary battery, reaches or falls below a prescribed rate of change, and a second time, at which the rate of change of the measured value reaches or falls below the prescribed rate of change, and the amount of change to the measured value since the first time reached or surpassed a prescribed amount of change; a resistance value calculating unit that calculates the internal resistance value of the secondary battery on the basis of the current value and the voltage value of the secondary battery at the first time, and the current value and the voltage value of the secondary battery at the second time; and a battery deterioration state evaluation unit that evaluates the deterioration state of the secondary battery on the basis of the internal resistance value of the secondary battery.

Description

電池劣化判定装置、抵抗値算出装置、電池劣化判定方法およびプログラムBattery deterioration determination device, resistance value calculation device, battery deterioration determination method, and program
 本発明は、電池劣化判定装置、抵抗値算出装置、電池劣化判定方法およびプログラムに関する。
 本願は、2012年10月2日に、日本国に出願された特願2012-220242号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a battery deterioration determination device, a resistance value calculation device, a battery deterioration determination method, and a program.
This application claims priority based on Japanese Patent Application No. 2012-220242 filed in Japan on October 2, 2012, the contents of which are incorporated herein by reference.
 二次電池に蓄えられた電力を用いて電気制御を行う電力システムや、二次電池を搭載した自動車など、二次電池の様々な用途において、二次電池から安定的に電力供給を受け、かつ電池交換コストを低減するために、二次電池の劣化状態を正確に判定し、適切な時期に二次電池を交換することが望まれる。ここで、二次電池の劣化に応じて内部抵抗値が大きくなることから、二次電池の内部抵抗値に基づいて当該二次電池の劣化状況を判定することができる。 In various applications of secondary batteries, such as power systems that perform electrical control using the power stored in secondary batteries and automobiles equipped with secondary batteries, receive stable power supply from secondary batteries, and In order to reduce the battery replacement cost, it is desired to accurately determine the deterioration state of the secondary battery and replace the secondary battery at an appropriate time. Here, since the internal resistance value increases according to the deterioration of the secondary battery, the deterioration state of the secondary battery can be determined based on the internal resistance value of the secondary battery.
 かかる二次電池の劣化状況の判定に関連して、特許文献1に記載の電池劣化検出装置では、内部的高値算出部が、二次電池に入出力する電流値と、二次電池にかかる電圧値とを取得し、電流値が一定値以上変動した場合の当該電流値の変動幅と、そのときの電圧値の変動幅とを用いて二次電池の現在の内部抵抗値を算出する。そして、電池劣化情報処理部が、現在の内部抵抗値を、二次電池の現在の温度に対応する内部抵抗初期値により除して、二次電池の現在の温度における当該二次電池の劣化率を算出し、当該劣化率をモニタ装置へと出力する。
 これにより、特許文献1に記載の電池劣化検出装置は、二次電池の負荷パターンに関係なく、電池の劣化状況を検知することができる。
In relation to the determination of the deterioration state of the secondary battery, in the battery deterioration detection device described in Patent Document 1, the internal high value calculation unit inputs the current value input to and output from the secondary battery and the voltage applied to the secondary battery. The current internal resistance value of the secondary battery is calculated using the fluctuation range of the current value when the current value fluctuates more than a certain value and the fluctuation range of the voltage value at that time. Then, the battery deterioration information processing unit divides the current internal resistance value by the initial internal resistance value corresponding to the current temperature of the secondary battery, and the deterioration rate of the secondary battery at the current temperature of the secondary battery. And the deterioration rate is output to the monitor device.
Thereby, the battery degradation detection apparatus of patent document 1 can detect the degradation condition of a battery irrespective of the load pattern of a secondary battery.
国際公開WO2012/018028号International Publication WO2012 / 018028
 二次電池の電流値や電圧値を測定して内部抵抗値を算出する際、二次電池の電力供給状況によって算出される内部抵抗値が異なる場合がある。例えば、二次電池において電流値に遅れて電圧値が変化するなど、電流値が変化するタイミングと電圧値が変化するタイミングとがずれる場合がある。かかる電流値と電圧値との変化タイミングのずれに起因して、電流値や電圧値の測定時刻によって算出される内部抵抗値に差が生じ、二次電池の劣化状況の判定精度が低下するおそれがある。 When calculating the internal resistance value by measuring the current value or voltage value of the secondary battery, the calculated internal resistance value may vary depending on the power supply status of the secondary battery. For example, the timing at which the current value changes may deviate from the timing at which the voltage value changes, such as when the voltage value changes behind the current value in the secondary battery. Due to the difference in the change timing between the current value and the voltage value, a difference may occur in the internal resistance value calculated according to the measurement time of the current value or the voltage value, and the determination accuracy of the deterioration state of the secondary battery may be reduced. There is.
 本発明は、二次電池の劣化状況をより高精度に判定することのできる電池劣化判定装置、抵抗値算出装置、電池劣化判定方法およびプログラムを提供する。 The present invention provides a battery deterioration determination device, a resistance value calculation device, a battery deterioration determination method, and a program capable of determining a deterioration state of a secondary battery with higher accuracy.
 本発明の第1の態様によれば、電池劣化判定装置は、二次電池の電流値または電圧値の少なくとも一方である測定値の変化率の大きさが所定の変化率以下となっている第1時刻、および、前記測定値の変化率の大きさが所定の変化率以下となっており、かつ前記第1時刻との間における前記測定値の変化量の大きさが所定の変化量以上となっている第2時刻を検出する時刻検出部と、前記第1時刻における前記二次電池の電流値および電圧値と前記第2時刻における前記二次電池の電流値および電圧値とに基づいて、当該二次電池の内部抵抗値を算出する抵抗値算出部と、前記二次電池の内部抵抗値に基づいて、当該二次電池の劣化状況を判定する電池劣化状況判定部と、を具備する。 According to the first aspect of the present invention, in the battery deterioration determination device, the magnitude of the change rate of the measured value that is at least one of the current value or the voltage value of the secondary battery is equal to or less than the predetermined change rate. The magnitude of the change rate of the measurement value is equal to or less than a predetermined change rate at one time, and the magnitude of the change amount of the measurement value between the first time and the predetermined change amount is greater than or equal to the predetermined change amount. Based on the time detection unit that detects the second time, the current value and voltage value of the secondary battery at the first time, and the current value and voltage value of the secondary battery at the second time, A resistance value calculating unit that calculates an internal resistance value of the secondary battery; and a battery deterioration state determining unit that determines a deterioration state of the secondary battery based on the internal resistance value of the secondary battery.
 また、本発明の第2の態様によれば、電池劣化判定装置は、上述の電池劣化判定装置であって、前記時刻検出部は、前記第1時刻と前記第2時刻との組み合わせを複数検出し、前記抵抗値算出部は、前記時刻検出部が検出した前記第1時刻と前記第2時刻との組み合わせ毎に前記二次電池の内部抵抗値を算出して、得られた内部抵抗値の平均値を求め、前記電池劣化状況判定部は、前記抵抗値算出部が求めた前記内部抵抗値の平均値に基づいて、前記二次電池の劣化状況を判定する。 According to the second aspect of the present invention, the battery deterioration determination device is the above-described battery deterioration determination device, and the time detection unit detects a plurality of combinations of the first time and the second time. The resistance value calculation unit calculates an internal resistance value of the secondary battery for each combination of the first time and the second time detected by the time detection unit, and calculates the internal resistance value obtained. An average value is obtained, and the battery deterioration state determination unit determines the deterioration state of the secondary battery based on the average value of the internal resistance values obtained by the resistance value calculation unit.
 また、本発明の第3の態様によれば、電池劣化判定装置は、上述の電池劣化判定装置であって、前記時刻検出部は、前記二次電池の電流値の変化率の大きさが所定の変化率以下となっており、かつ前記二次電池の電圧値の変化率の大きさが所定の変化率以下となっている時刻を前記第1時刻として検出し、前記二次電池の電流値の変化率の大きさが所定の変化率以下となっており、かつ前記二次電池の電圧値の変化率の大きさが所定の変化率以下となっており、さらに、前記第1時刻との間における前記二次電池の電流値の変化量の大きさが所定の変化量以上となっている時刻を前記第2時刻として検出する。 According to the third aspect of the present invention, the battery deterioration determination device is the above-described battery deterioration determination device, wherein the time detection unit has a predetermined rate of change in the current value of the secondary battery. And the time when the magnitude of the change rate of the voltage value of the secondary battery is not more than a predetermined change rate is detected as the first time, and the current value of the secondary battery And the change rate of the voltage value of the secondary battery is less than or equal to a predetermined change rate, and further, A time at which the amount of change in the current value of the secondary battery during the period is equal to or greater than a predetermined change is detected as the second time.
 また、本発明の第4の態様によれば、抵抗値算出装置は、二次電池の電流値または電圧値の少なくとも一方である測定値の変化率の大きさが所定の変化率以下となっている第1時刻、および、前記測定値の変化率の大きさが所定の変化率以下となっており、かつ前記第1時刻との間における前記測定値の変化量の大きさが所定の変化量以上となっている第2時刻を検出する時刻検出部と、前記第1時刻における前記二次電池の電流値および電圧値と前記第2時刻における前記二次電池の電流値および電圧値とに基づいて、当該二次電池の内部抵抗値を算出する抵抗値算出部と、を具備する。 According to the fourth aspect of the present invention, in the resistance value calculating apparatus, the magnitude of the change rate of the measured value that is at least one of the current value or the voltage value of the secondary battery is equal to or less than the predetermined change rate. The magnitude of the change rate of the measurement value is equal to or less than a predetermined change rate, and the magnitude of the change amount of the measurement value between the first time and the first change time is a predetermined change amount. Based on the time detection unit that detects the second time, the current value and voltage value of the secondary battery at the first time, and the current value and voltage value of the secondary battery at the second time. And a resistance value calculation unit for calculating an internal resistance value of the secondary battery.
 また、本発明の第5の態様によれば、電池劣化判定方法は、電池劣化判定装置の電池劣化判定方法であって、二次電池の電流値または電圧値の少なくとも一方である測定値の変化率の大きさが所定の変化率以下となっている第1時刻、および、前記測定値の変化率の大きさが所定の変化率以下となっており、かつ前記第1時刻との間における前記測定値の変化量の大きさが所定の変化量以上となっている第2時刻を検出する時刻検出ステップと、前記第1時刻における前記二次電池の電流値および電圧値と前記第2時刻における前記二次電池の電流値および電圧値とに基づいて、当該二次電池の内部抵抗値を算出する抵抗値算出ステップと、前記二次電池の内部抵抗値に基づいて、当該二次電池の劣化状況を判定する電池劣化状況判定ステップと、を具備する。 According to the fifth aspect of the present invention, the battery deterioration determination method is a battery deterioration determination method of the battery deterioration determination device, and a change in the measured value that is at least one of the current value or the voltage value of the secondary battery. The first time when the magnitude of the rate is less than or equal to a predetermined change rate, and the magnitude of the change rate of the measurement value is less than or equal to a predetermined change rate and the first time A time detection step of detecting a second time when the magnitude of the change amount of the measured value is greater than or equal to a predetermined change amount; a current value and a voltage value of the secondary battery at the first time; and a time at the second time A resistance value calculating step for calculating an internal resistance value of the secondary battery based on the current value and the voltage value of the secondary battery, and a deterioration of the secondary battery based on the internal resistance value of the secondary battery. Battery deterioration status judgment step Comprising a flop, the.
 また、本発明の第6の態様によれば、プログラムは、電池劣化判定装置としてのコンピュータに、二次電池の電流値または電圧値の少なくとも一方である測定値の変化率の大きさが所定の変化率以下となっている第1時刻、および、前記測定値の変化率の大きさが所定の変化率以下となっており、かつ前記第1時刻との間における前記測定値の変化量の大きさが所定の変化量以上となっている第2時刻を検出する時刻検出ステップと、前記第1時刻における前記二次電池の電流値および電圧値と前記第2時刻における前記二次電池の電流値および電圧値とに基づいて、当該二次電池の内部抵抗値を算出する抵抗値算出ステップと、前記二次電池の内部抵抗値に基づいて、当該二次電池の劣化状況を判定する電池劣化状況判定ステップと、を実行させるためのプログラムである。 Further, according to the sixth aspect of the present invention, the program stores a predetermined rate of change in the measured value, which is at least one of the current value or the voltage value of the secondary battery, in the computer as the battery deterioration determination device. The first time when the change rate is less than or equal to the change rate of the measurement value is less than or equal to a predetermined change rate and the change amount of the measurement value between the first time and the change time A time detecting step for detecting a second time having a predetermined change amount or more, a current value and a voltage value of the secondary battery at the first time, and a current value of the secondary battery at the second time A resistance value calculating step for calculating an internal resistance value of the secondary battery based on the voltage value and a battery deterioration status for determining a degradation status of the secondary battery based on the internal resistance value of the secondary battery A determination step; Is a program for causing the line.
 上記した電池劣化判定装置、抵抗値算出装置、電池劣化判定方法およびプログラムによれば、二次電池の劣化状況をより高精度に判定することができる。 According to the above-described battery deterioration determination device, resistance value calculation device, battery deterioration determination method and program, the deterioration state of the secondary battery can be determined with higher accuracy.
本発明の一実施形態における電源システムの機能構成を示す概略ブロック図である。It is a schematic block diagram which shows the function structure of the power supply system in one Embodiment of this invention. 同実施形態における時刻検出部が検出する第1時刻および第2時刻の例を示す説明図である。It is explanatory drawing which shows the example of 1st time and 2nd time which the time detection part in the embodiment detects. 同実施形態において、電池劣化判定装置が電池セルの交換の要否を判定する処理手順を示すフローチャートである。In the same embodiment, it is a flowchart which shows the process sequence in which a battery deterioration determination apparatus determines the necessity of replacement | exchange of a battery cell. 同実施形態における二次電池の電流値の変化および電圧値の変化の例を示す説明図である。It is explanatory drawing which shows the example of the change of the electric current value of the secondary battery in the same embodiment, and the change of a voltage value.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1は、本発明の一実施形態における電源システムの機能構成を示す概略ブロック図である。同図において、電源システム1は、二次電池システム100と、電池劣化判定装置200と、表示装置300とを具備する。二次電池システム100は、電池セル110と、BMU(Battery Management Unit)120とを具備する。電池セル110は、二次電池111と、CMU(Cell Management Unit)112とを具備する。電池劣化判定装置200は、記憶部210と、測定値取得部220と、時刻検出部230と、抵抗値算出部240と、電池劣化状況判定部250とを具備する。
Hereinafter, the present invention will be described through embodiments of the invention, but the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.
FIG. 1 is a schematic block diagram showing a functional configuration of a power supply system according to an embodiment of the present invention. In FIG. 1, the power supply system 1 includes a secondary battery system 100, a battery deterioration determination device 200, and a display device 300. The secondary battery system 100 includes a battery cell 110 and a BMU (Battery Management Unit) 120. The battery cell 110 includes a secondary battery 111 and a CMU (Cell Management Unit) 112. The battery deterioration determination device 200 includes a storage unit 210, a measurement value acquisition unit 220, a time detection unit 230, a resistance value calculation unit 240, and a battery deterioration state determination unit 250.
 二次電池システム100は、経路W11を介して電力負荷900に接続され、当該電力負荷900へ電力を供給する。ここで、様々な用途の二次電池システム100に本実施形態を適用可能である。例えば、二次電池システム100は、風力または太陽光などの自然エネルギーを利用した発電設備と組み合わせて用いられる系統連系円滑化蓄電システムや、家庭用の電力貯蔵システムなど、定置用のシステム内に備えられていてもよい。あるいは、二次電池システム100は、自動車や電車などの移動体に備えられていてもよい。 The secondary battery system 100 is connected to the power load 900 via the path W11 and supplies power to the power load 900. Here, the present embodiment can be applied to the secondary battery system 100 for various uses. For example, the secondary battery system 100 is installed in a stationary system such as a grid-connected smoothing power storage system used in combination with a power generation facility using natural energy such as wind power or sunlight, or a household power storage system. It may be provided. Alternatively, the secondary battery system 100 may be provided in a moving body such as an automobile or a train.
 電池セル110は、二次電池システム100において電池を交換する際の単位(すなわち、電池セル110毎に交換可能)であり、二次電池システム100は、1つ以上の電池セル110を具備する。
 ここで、二次電池システム100における電池セル110の構成は任意のものでよい。例えば、複数の電池セル110が直列に接続されていてもよいし、並列に接続されていてもよいし、あるいは、並列に接続された複数の電池セル110が直列に接続されていてもよい。
The battery cell 110 is a unit for replacing the battery in the secondary battery system 100 (that is, replaceable for each battery cell 110). The secondary battery system 100 includes one or more battery cells 110.
Here, the configuration of the battery cell 110 in the secondary battery system 100 may be arbitrary. For example, a plurality of battery cells 110 may be connected in series, may be connected in parallel, or a plurality of battery cells 110 connected in parallel may be connected in series.
 二次電池111は、充放電可能な電池である。二次電池111は、充放電を繰り返して劣化すると内部抵抗が大きくなる電池であればよい。例えば、二次電池111は、リチウムイオン電池であってもよいし、鉛電池であってもよい。
 CMU112は、セル単位で二次電池111の充放電制御や監視を行う。特に、CMU112は、二次電池111の電流値と電圧値と温度とを検出し、BMU120を介して電池劣化判定装置200へ通知する。具体的には、電池セル110は、二次電池111に設けられた電流センサ、電圧センサおよび温度センサから、それぞれ電流値、電圧値および温度をセンサの測定値として所定のサンプリング周期毎に取得し、BMU120へ出力する。
The secondary battery 111 is a chargeable / dischargeable battery. The secondary battery 111 may be a battery whose internal resistance increases when it is deteriorated by repeated charge and discharge. For example, the secondary battery 111 may be a lithium ion battery or a lead battery.
The CMU 112 performs charge / discharge control and monitoring of the secondary battery 111 in units of cells. In particular, the CMU 112 detects the current value, voltage value, and temperature of the secondary battery 111 and notifies the battery deterioration determination device 200 via the BMU 120. Specifically, the battery cell 110 acquires a current value, a voltage value, and a temperature from a current sensor, a voltage sensor, and a temperature sensor provided in the secondary battery 111, respectively, as a measured value of the sensor at every predetermined sampling period. , Output to the BMU 120.
 BMU120は、二次電池システム100の上位の制御装置と通信して、二次電池システム100全体の制御や監視を行う。また、BMU120は、CMU112が検出した電池セル110毎の二次電池111の電流値と電圧値と温度とを電池劣化判定装置200へ送信する。 The BMU 120 communicates with a higher-level control device of the secondary battery system 100 to control and monitor the secondary battery system 100 as a whole. Further, the BMU 120 transmits the current value, voltage value, and temperature of the secondary battery 111 for each battery cell 110 detected by the CMU 112 to the battery deterioration determination device 200.
 電池劣化判定装置200は、二次電池111の内部抵抗を算出して、当該二次電池111が劣化しているか否かを判定する。電池劣化判定装置200はコンピュータにて構成されていてもよいし、あるいは、専用のハードウェアにて実現されていてもよい。
 記憶部210は、測定値取得部220の制御に従って各種データを記憶する。
 測定値取得部220は、記憶部210に対して各種データの書込や読出を行う。特に、測定値取得部220は、BMU120の送信する、電池セル110毎の二次電池111の電流値と電圧値と温度とを記憶部210に記憶させ、また、時刻検出部230や抵抗値算出部240の処理に応じて記憶部210からデータを読み出して出力する。
The battery deterioration determination device 200 calculates the internal resistance of the secondary battery 111 and determines whether or not the secondary battery 111 is deteriorated. The battery deterioration determination device 200 may be configured by a computer, or may be realized by dedicated hardware.
The storage unit 210 stores various data according to the control of the measurement value acquisition unit 220.
The measurement value acquisition unit 220 writes / reads various data to / from the storage unit 210. In particular, the measurement value acquisition unit 220 stores the current value, voltage value, and temperature of the secondary battery 111 for each battery cell 110 transmitted from the BMU 120 in the storage unit 210, and also calculates the time detection unit 230 and the resistance value. Data is read from the storage unit 210 and output in accordance with the processing of the unit 240.
 時刻検出部230は、CMU112の検出した二次電池111の電流値に基づいて、電池セル110毎に第1時刻と第2時刻とを検出する。ここでいう第1時刻とは、二次電池111の電流値または電圧値の少なくとも一方である測定値の変化率の大きさが所定の変化率以下となっている時刻である。なお、以下では、測定値として電流値を用いる場合を例に説明する。また、ここでいう第2時刻とは、測定値の変化率の大きさが所定の変化率以下となっており、かつ第1時刻との間における測定値の変化量の大きさが所定の変化量以上となっている時刻である。 The time detection unit 230 detects the first time and the second time for each battery cell 110 based on the current value of the secondary battery 111 detected by the CMU 112. Here, the first time is a time at which the magnitude of the rate of change of the measured value that is at least one of the current value or the voltage value of the secondary battery 111 is equal to or less than the predetermined rate of change. In the following, a case where a current value is used as a measured value will be described as an example. In addition, the second time here means that the change rate of the measurement value is equal to or less than a predetermined change rate, and the change amount of the measurement value between the first time and the predetermined change rate. It is a time that is more than the amount.
 図2は、時刻検出部230が検出する第1時刻および第2時刻の例を示す説明図である。同図において、線L11は二次電池111の電流値を示し、線L12は当該電流値の変化率(以下、電流値の変化率を「電流変化率」と称する)を示す。具体的には、線L11の各点は、CMU112がサンプリング周期dts毎に検出した二次電池111の電流値を示しており、各点を結んで線L11を得られる。また、線L12の各点は、サンプリング周期毎の二次電池111の電流値から前回のサンプリング時における電流値を減算した差分を示しており、各点を結んで線L12を得られる。 FIG. 2 is an explanatory diagram showing an example of the first time and the second time detected by the time detection unit 230. In the figure, a line L11 indicates the current value of the secondary battery 111, and a line L12 indicates the rate of change of the current value (hereinafter, the rate of change of the current value is referred to as “current rate of change”). Specifically, each point of the line L11 indicates the current value of the secondary battery 111 detected by the CMU 112 for each sampling period dts, and a line L11 is obtained by connecting the points. Each point of the line L12 indicates a difference obtained by subtracting the current value at the previous sampling from the current value of the secondary battery 111 for each sampling period, and the line L12 is obtained by connecting the points.
 ここで、時刻T12から前の時間、および、時刻T14から後の時間において電流値がほぼ一定の静定状態にあり、時刻T12から時刻T14までの時間において電流値が変化している過渡状態にあることを、線L12が示している。
 二次電池111において電流値が変化するタイミングと電圧値が変化するタイミングとは必ずしも一致しておらず、特に過渡状態において両者のタイミングのずれが大きくなりがちである。このタイミングのずれにより、電流値と電圧値との比が測定タイミングによって異なる。
Here, in a transient state in which the current value is almost constant at a time before time T12 and at a time after time T14, and the current value is changing from time T12 to time T14. This is indicated by the line L12.
In the secondary battery 111, the timing at which the current value changes and the timing at which the voltage value change do not necessarily coincide with each other. Due to this timing shift, the ratio between the current value and the voltage value varies depending on the measurement timing.
 電流値と電圧値との比の違いにより、これら電流値および電圧値に基づいて算出する抵抗値にばらつきが生じ、当該抵抗値に基づく二次電池111の劣化状況判定の精度が低下してしまう。かかる判定精度の低下を避けるため、静定状態において測定した電流値および電圧値に基づいて二次電池111の劣化状況を判定することが好ましい。
 また、二次電池111の劣化状況を精度よく判定するために、電流値に有意な差がある2つの時刻において電流値および電圧値を測定することが好ましい。
Due to the difference in the ratio between the current value and the voltage value, the resistance value calculated based on the current value and the voltage value varies, and the accuracy of determining the deterioration status of the secondary battery 111 based on the resistance value is reduced. . In order to avoid such a decrease in determination accuracy, it is preferable to determine the deterioration status of the secondary battery 111 based on the current value and voltage value measured in the static state.
In order to accurately determine the deterioration state of the secondary battery 111, it is preferable to measure the current value and the voltage value at two times when there is a significant difference in the current value.
 そこで、時刻検出部230は、電流値が静定状態にある時刻T12から前の時刻と、当該時刻から電流値が有意な変化を示した後、再び静定状態となっている時刻T14から後の時刻を検出する。なお、以下では電流値変化前の静定状態におけるサンプリング時刻を「前時刻」と称し、電流値変化後の静定状態におけるサンプリング時刻を「後時刻」と称する。 Therefore, the time detection unit 230 displays the time before the time T12 when the current value is in a steady state, and the time T14 after the time T14 when the current value is in a static state again after the current value has changed significantly from the time. The time of is detected. Hereinafter, the sampling time in the static state before the current value change is referred to as “previous time”, and the sampling time in the static state after the current value change is referred to as “post time”.
 具体的には、時刻検出部230は、記憶部210が二次電池111の電流値および電圧値を記憶しているサンプリング時刻の中から、以下の手順にて、前時刻として時刻T12を検出し、後時刻として時刻T15を検出する。
 なお、前時刻と後時刻との組み合わせは、第1時刻と第2時刻との組み合わせの一例に該当する。図2の例では、時刻T12が第1時刻の一例に該当し、時刻T15が第2時刻の一例に該当する。
Specifically, the time detection unit 230 detects time T12 as the previous time from the sampling time when the storage unit 210 stores the current value and voltage value of the secondary battery 111 in the following procedure. Then, the time T15 is detected as a later time.
The combination of the previous time and the later time corresponds to an example of a combination of the first time and the second time. In the example of FIG. 2, the time T12 corresponds to an example of the first time, and the time T15 corresponds to an example of the second time.
 なお、以下では、サンプリング時刻tにおける二次電池111の電流値をI(t)と表記し、サンプリング時刻tにおける二次電池111の電流値の変化率をdI(t)と表記する。線L12に示すように、ここでは、dI(t)=I(t)-I(t-dts)として算出する。なお、図2に示すように時間dtsはサンプリング周期を示す。 In the following, the current value of the secondary battery 111 at the sampling time t is expressed as I (t), and the rate of change of the current value of the secondary battery 111 at the sampling time t is expressed as dI (t). As indicated by the line L12, here, it is calculated as dI (t) = I (t) −I (t−dts). In addition, as shown in FIG. 2, time dts shows a sampling period.
 1.サンプリング時刻のうちの、ある時刻を後時刻の候補として設定し、当該時刻における電流変化率を算出する。以下では、設定した候補をT15’と表記する。時刻T15’における電流変化率はdI(T15’)と表記される。
 2.|dI(T15’)|≦dI_const ・・・(1)
を満たすか否かを判定する。ここで、dI_constは、電流値が静定状態にあるか否かの判定閾値として予め設定されている正定数である。また、||は絶対値を示す。
1. Among sampling times, a certain time is set as a candidate for a later time, and the current change rate at that time is calculated. Hereinafter, the set candidate is denoted as T15 ′. The current change rate at time T15 ′ is expressed as dI (T15 ′).
2. | DI (T15 ′) | ≦ dI_const (1)
It is determined whether or not the above is satisfied. Here, dI_const is a positive constant set in advance as a determination threshold value as to whether or not the current value is in a static state. || indicates an absolute value.
 3.式(1)を満たす場合、時刻T15’から時間dt1前の電流変化率dI(T15’-dt1)を算出する。ここで、時間dt1は、電流立ち上がりの想定時間である。電力負荷900における負荷変動が定型的であり電流立ち上がり時間が一定の場合は、時間dt1を定数として予め設定しておくことができる。あるいは、時刻検出部230が時刻T15’の1サンプリング前から20サンプリング前までの範囲で時間dt1を設定するなど、複数の時間dt1について以下の処理を行うようにしてもよい。 3. When the expression (1) is satisfied, the current change rate dI (T15'-dt1) before the time dt1 from the time T15 'is calculated. Here, the time dt1 is an assumed time of current rising. When the load fluctuation in the power load 900 is regular and the current rise time is constant, the time dt1 can be set in advance as a constant. Alternatively, the following processing may be performed for a plurality of times dt1, for example, the time detection unit 230 sets the time dt1 in the range from 1 sampling before 20 times before the time T15 '.
 4.|dI(T15’-dt1)|≧dI_raise ・・・(2)
を満たすか否かを判定する。ここで、dI_raiseは、電流が過渡状態にあるか否かの判定閾値として予め設定されている正定数である。
 5.式(2)を満たす場合、時刻T15’-dt1から1サンプリング前の時刻T15’-dt1-dtsから前へ時間dt0の間の全てのサンプリング時刻において電流値が静定状態にあるか否かを判定する。具体的には、
T15’-dt1-dt0≦t≦T15’-dt1-dts ・・・(3)
を満たす全てのサンプリング時刻tが、
|dI(t)|≦dI_const ・・・(4)
を満たすか否かを判定する。ここで、時間dt1は、電流立ち上がり前の静定時間として予め設定されている正定数である。
4). | DI (T15′−dt1) | ≧ dI_rise (2)
It is determined whether or not the above is satisfied. Here, dI_rise is a positive constant set in advance as a determination threshold value for determining whether or not the current is in a transient state.
5. When Expression (2) is satisfied, it is determined whether or not the current value is in a static state at all sampling times from time T15′-dt1 one time before time T15′-dt1-dts to time dt0. judge. In particular,
T15'-dt1-dt0≤t≤T15'-dt1-dts (3)
All sampling times t satisfying
| DI (t) | ≦ dI_const (4)
It is determined whether or not the above is satisfied. Here, the time dt1 is a positive constant set in advance as a settling time before the current rises.
 6.式(4)を満たす場合、時刻T15’-dt1-dtsから時刻T15’までの間の電流立ち上がり量が有意な変化量か否かを判定する。具体的には、
I(T15’)-I(T15’-dt1-dts)≧dI_diff
                              ・・・(5)
を満たすか否かを判定する。ここで、dI_diffは、二次電池111の電流値を精度よく判定するための有意な電流値変化量の閾値として予め設定されている正定数である。
 7.式(5)を満たす場合、時刻T15’-dt1-dtsを前時刻として検出し、時刻T15’を後時刻として検出する。例えば、図2に示す例において、時刻検出部230は、前時刻として時刻T12を検出し、後時刻として時刻T15を検出する。
6). When Expression (4) is satisfied, it is determined whether or not the current rising amount between time T15′-dt1-dts and time T15 ′ is a significant change amount. In particular,
I (T15 ′) − I (T15′−dt1-dts) ≧ dI_diff
... (5)
It is determined whether or not the above is satisfied. Here, dI_diff is a positive constant set in advance as a significant current value change threshold value for accurately determining the current value of the secondary battery 111.
7). When the expression (5) is satisfied, time T15′-dt1-dts is detected as the previous time, and time T15 ′ is detected as the subsequent time. For example, in the example shown in FIG. 2, the time detection unit 230 detects time T12 as the previous time and detects time T15 as the subsequent time.
 なお、上記の手順のうちステップ4は、電流立ち上がり直前のサンプリング時刻を前時刻として検出するためのステップであり、必須のステップではない。
 また、電流立ち上がり前、立ち上がり後の何れについても、静定状態か否かを判定するためのサンプリング数は1以上であればよい。従って、ステップ5において、1つのサンプリング時刻についてのみ電流変化率がdI_const以下か否かを判定するようにしてもよい。また、ステップ2において、複数のサンプリング時刻について電流変化率がdI_const以下か否かを判定するようにしてもよい。
Step 4 in the above procedure is a step for detecting the sampling time immediately before the current rise as the previous time, and is not an essential step.
In addition, the number of samplings for determining whether or not the state is a static state may be one or more before and after the current rise. Therefore, in step 5, it may be determined whether the current change rate is equal to or less than dI_const for only one sampling time. Further, in step 2, it may be determined whether the current change rate is equal to or less than dI_const for a plurality of sampling times.
 図1に戻って、抵抗値算出部240は、第1時刻における二次電池111の電流値および電圧値と第2時刻における二次電池111の電流値および電圧値とに基づいて、二次電池111の内部抵抗値を算出する。例えば、図2に示す例において、抵抗値算出部240は、前時刻である時刻T12における電流値および電圧値と、後時刻である時刻T15における電流値および電圧値との差に基づいて二次電池111の内部抵抗値を算出し、二次電池111の温度に基づいて内部抵抗値の温度補正を行う。
 なお、二次電池システム100が空調設備の動作している屋内に設置されている場合など、二次電池111の温度変化の影響を無視できる場合、抵抗値算出部240が温度補正を行わないようにしてもよい。
Returning to FIG. 1, the resistance value calculation unit 240 is based on the current value and voltage value of the secondary battery 111 at the first time and the current value and voltage value of the secondary battery 111 at the second time. An internal resistance value of 111 is calculated. For example, in the example illustrated in FIG. 2, the resistance value calculation unit 240 performs a secondary operation based on the difference between the current value and voltage value at time T12, which is the previous time, and the current value and voltage value at time T15, which is the subsequent time. The internal resistance value of the battery 111 is calculated, and the temperature of the internal resistance value is corrected based on the temperature of the secondary battery 111.
In addition, when the influence of the temperature change of the secondary battery 111 can be disregarded, such as when the secondary battery system 100 is installed indoors where the air conditioning equipment is operating, the resistance value calculation unit 240 does not perform temperature correction. It may be.
 電池劣化状況判定部250は、抵抗値算出部240が取得した温度補正後の二次電池111の内部抵抗値に基づいて、二次電池111の劣化状況を判定する。例えば、電池劣化状況判定部250は、温度補正後の二次電池111の内部抵抗値と所定の閾値とを比較し、内部抵抗値が閾値以上の場合に電池セル110の交換が必要(二次電池111の劣化の程度が大きい)と判定する。一方、内部抵抗値が閾値未満の場合、電池劣化状況判定部250は、電池セル110の交換は不要(二次電池111の劣化の程度が小さい)と判定する。 Battery deterioration state determination unit 250 determines the deterioration state of secondary battery 111 based on the internal resistance value of secondary battery 111 after temperature correction acquired by resistance value calculation unit 240. For example, the battery deterioration state determination unit 250 compares the internal resistance value of the secondary battery 111 after temperature correction with a predetermined threshold value, and the battery cell 110 needs to be replaced when the internal resistance value is equal to or greater than the threshold value (secondary battery It is determined that the degree of deterioration of the battery 111 is large). On the other hand, when the internal resistance value is less than the threshold value, the battery deterioration state determination unit 250 determines that the replacement of the battery cell 110 is unnecessary (the degree of deterioration of the secondary battery 111 is small).
 表示装置300は、例えば液晶パネルまたは有機EL(Organic Electroluminescence)パネル等の表示画面を有し、電池劣化状況判定部250の判定結果を表示する。
 ただし、表示装置300は、電池劣化状況判定部250の判定結果を通知可能なものであればよい。例えば、表示装置300が、発光ダイオード等のランプを有し、当該ランプを点灯させることで、二次電池111の交換が必要なことを表示するようにしてもよい。あるいは、表示装置300が視覚的な表示に加えて、あるいは視覚的な表示に代えて、音声メッセージまたはブザー音等の音を出力することで、二次電池111の交換が必要なことを表示するようにしてもよい。
The display device 300 has a display screen such as a liquid crystal panel or an organic EL (Organic Electroluminescence) panel, for example, and displays the determination result of the battery deterioration state determination unit 250.
However, the display device 300 only needs to be able to notify the determination result of the battery deterioration state determination unit 250. For example, the display device 300 may include a lamp such as a light-emitting diode, and turn on the lamp to display that the secondary battery 111 needs to be replaced. Alternatively, the display device 300 outputs a sound such as a voice message or a buzzer sound in addition to or instead of the visual display to indicate that the secondary battery 111 needs to be replaced. You may do it.
 次に、図3を参照して電池劣化判定装置200の動作について説明する。
 図3は、電池劣化判定装置200が電池セル110の交換の要否を判定する処理手順を示すフローチャートである。電池劣化判定装置200は、例えば一日毎または一月毎など定期的に、あるいは、電池劣化判定装置200のユーザ(例えば電源システム1の管理者)の要求に応じて、電池セル110の各々について図3の処理を行う。なお、電池劣化判定装置200が、二次電池111の電流値や電圧値や温度のサンプリング周期毎に、いわばリアルタイムで図3の処理を行うようにしてもよい。
Next, the operation of the battery deterioration determination device 200 will be described with reference to FIG.
FIG. 3 is a flowchart illustrating a processing procedure in which the battery deterioration determination device 200 determines whether or not the battery cell 110 needs to be replaced. The battery deterioration determination device 200 is illustrated for each of the battery cells 110 periodically, for example, every day or every month, or in response to a request from a user of the battery deterioration determination device 200 (for example, an administrator of the power supply system 1). Process 3 is performed. Note that the battery deterioration determination device 200 may perform the processing of FIG. 3 in real time for each sampling period of the current value, voltage value, and temperature of the secondary battery 111.
 図3の処理において、まず、時刻検出部230が後時刻の候補を初期設定する(ステップS101)。例えば、時刻検出部230は、記憶部210が二次電池111の電流値等を記憶しているサンプリング時刻の何れかを後時刻の候補として設定する。なお、電池劣化判定装置200が、二次電池111の電流値や電圧値や温度のサンプリング周期毎に図3の処理を行う場合、時刻検出部230は、最新のサンプリング時刻を後時刻の候補として設定する。 In the process of FIG. 3, first, the time detection unit 230 initially sets a candidate for a later time (step S101). For example, the time detection unit 230 sets any of the sampling times when the storage unit 210 stores the current value of the secondary battery 111 or the like as a later time candidate. In addition, when the battery deterioration determination apparatus 200 performs the process of FIG. 3 for each current value, voltage value, and temperature sampling period of the secondary battery 111, the time detection unit 230 sets the latest sampling time as a candidate for a later time. Set.
 次に、時刻検出部230は、立ち上がり前の静定状態の判定対象となるサンプリング時刻におけるデータを記憶部210が記憶しているか否かを判定する(ステップS102)。例えば、図2に示す例において、時刻検出部230は、時刻T11~時刻T12の各サンプリング時刻におけるデータを記憶部210が記憶しているか否かを判定する。 Next, the time detection unit 230 determines whether or not the storage unit 210 stores data at the sampling time that is a determination target of the static state before rising (step S102). For example, in the example shown in FIG. 2, the time detection unit 230 determines whether the storage unit 210 stores data at each sampling time from time T11 to time T12.
 該当するデータを記憶部210が記憶していると判定した場合(ステップS102:YES)、時刻検出部230は、後時刻の候補における電流変化率を算出する(ステップS111)。図2を参照して上述した処理(以下、「上記処理」と称する)のステップ1は、図3のステップS101およびS111の一例に該当する。 When it is determined that the corresponding data is stored in the storage unit 210 (step S102: YES), the time detection unit 230 calculates a current change rate in a later time candidate (step S111). Step 1 of the process described above with reference to FIG. 2 (hereinafter referred to as “the above process”) corresponds to an example of steps S101 and S111 of FIG.
 次に、時刻検出部230は、ステップS111で算出した電流変化率に基づいて、後時刻の候補において二次電池111の電流値が静定状態にあるか否かを判定する(ステップS112)。上記処理のステップ2は、図3のステップS112の一例に該当する。
 静定状態にあると判定した場合(ステップS112:YES)、時刻検出部230は、電流値立ち上がり開始の想定時刻における電流変化率を算出する(ステップS121)。上記処理のステップ3は、図3のステップS121の一例に該当する。
Next, the time detection unit 230 determines whether or not the current value of the secondary battery 111 is in a static state in a later time candidate based on the current change rate calculated in step S111 (step S112). Step 2 of the above process corresponds to an example of step S112 in FIG.
When it determines with it being in a static state (step S112: YES), the time detection part 230 calculates the electric current change rate in the assumption time of an electric current value rise start (step S121). Step 3 of the above process corresponds to an example of step S121 in FIG.
 次に、時刻検出部230は、ステップS121で算出した電流変化率に基づいて、電流値立ち上がり開始の想定時刻において実際に電流が立ち上がっているか否かを判定する(ステップS122)。上記処理のステップ4は、図3のステップS122の一例に該当する。
 電流が立ち上がっていると判定した場合(ステップS122:YES)、時刻検出部230は、立ち上がり前の静定状態の判定対象となるサンプリング時刻の各々について、電流変化率を算出する(ステップS131)。
Next, based on the current change rate calculated in step S121, the time detection unit 230 determines whether or not the current actually rises at the estimated current value rise start time (step S122). Step 4 of the above process corresponds to an example of step S122 in FIG.
When it is determined that the current is rising (step S122: YES), the time detection unit 230 calculates a current change rate for each sampling time that is a determination target of the static state before the rising (step S131).
 そして、時刻検出部230は、ステップS131にて算出した電流変化率に基づいて、立ち上がり前の静定状態の判定対象となるサンプリング時刻の全てにおいて、二次電池111の電流値が静定状態にあるか否かを判定する(ステップS132)。上記処理のステップ5は、図3のステップS131~S132の一例に該当する。
 静定状態にあると判定した場合(ステップS132:YES)、時刻検出部230は、電流の立ち上がりによる電流変化量として、前時刻の候補における電流値から、後時刻の候補における電流値を減算した変化量を算出する(ステップS141)。
Then, based on the current change rate calculated in step S131, the time detection unit 230 sets the current value of the secondary battery 111 to the static state at all the sampling times that are targets for determination of the static state before rising. It is determined whether or not there is (step S132). Step 5 of the above process corresponds to an example of steps S131 to S132 in FIG.
When it is determined that it is in a static state (step S132: YES), the time detection unit 230 subtracts the current value in the candidate at the later time from the current value in the candidate at the previous time as the current change amount due to the rising of the current. The amount of change is calculated (step S141).
 次に、時刻検出部230は、ステップS141で算出した変化量が、二次電池111の電流値を精度よく判定するための有意な電流値変化量か否かを判定する(ステップS142)。上記処理のステップ6は、図3のステップS142の一例に該当する。
 有意な電流値変化量であると判定した場合(ステップS142:YES)、時刻検出部230は、前時刻の候補を前時刻として設定し、後時刻の候補を後時刻として設定して、当該前時刻および後時刻を抵抗値算出部240へ出力する(ステップS151)。上記処理のステップ7は、図3のステップS151の一例に該当する。
Next, the time detection unit 230 determines whether or not the change amount calculated in step S141 is a significant current value change amount for accurately determining the current value of the secondary battery 111 (step S142). Step 6 of the above process corresponds to an example of step S142 in FIG.
When it is determined that the current value change amount is significant (step S142: YES), the time detection unit 230 sets the previous time candidate as the previous time, sets the subsequent time candidate as the subsequent time, The time and the later time are output to the resistance value calculation unit 240 (step S151). Step 7 of the above process corresponds to an example of step S151 in FIG.
 次に、抵抗値算出部240は、時刻検出部230が設定した前時刻および後時刻に基づいて、二次電池111の内部抵抗値を算出する(ステップS152)。そして、抵抗値算出部240は、二次電池111の温度に基づいて内部抵抗値を補正し、補正後の内部抵抗値を電池劣化状況判定部250へ出力する(ステップS153)。
 そして、電池劣化状況判定部250は、補正後の内部抵抗値に基づいて、二次電池111の劣化状況を判定し、判定結果を表示装置300へ出力する(ステップS154)。
 その後、図3の処理を終了する。
Next, the resistance value calculation unit 240 calculates the internal resistance value of the secondary battery 111 based on the previous time and the later time set by the time detection unit 230 (step S152). And the resistance value calculation part 240 correct | amends an internal resistance value based on the temperature of the secondary battery 111, and outputs the internal resistance value after correction | amendment to the battery degradation condition determination part 250 (step S153).
Then, the battery deterioration state determination unit 250 determines the deterioration state of the secondary battery 111 based on the corrected internal resistance value, and outputs the determination result to the display device 300 (step S154).
Thereafter, the process of FIG. 3 is terminated.
 一方、ステップS102において、該当するデータを記憶部210が記憶していないと判定した場合(ステップS102:NO)、時刻検出部230は、後時刻の候補を変更する(ステップS161)。例えば、時刻検出部230は、記憶部210がデータを記憶しているサンプリング時刻のうち、後時刻の候補として未だ設定していないサンプリング時刻を、後時刻の候補として設定する。
 ステップS161の後、ステップS102へ戻る。
On the other hand, when it is determined in step S102 that the corresponding data is not stored in the storage unit 210 (step S102: NO), the time detection unit 230 changes the later time candidate (step S161). For example, the time detection unit 230 sets a sampling time that has not yet been set as a later time candidate among the sampling times at which the storage unit 210 stores data as a later time candidate.
After step S161, the process returns to step S102.
 なお、後時刻の候補として未だ設定していないサンプリング時刻が無い場合や、電池劣化判定装置200が、二次電池111の電流値や電圧値や温度のサンプリング周期毎に図3の処理を行う場合、電池劣化判定装置200は図3の処理を終了する。この場合、電池劣化判定装置200は、二次電池111の劣化状況の判定に失敗し、例えば記憶部210が新たなデータを記憶するのを待って図3の処理を再度行う。 When there is no sampling time that has not yet been set as a later time candidate, or when the battery deterioration determination device 200 performs the process of FIG. 3 for each sampling period of the current value, voltage value, or temperature of the secondary battery 111. Then, the battery deterioration determination device 200 ends the process of FIG. In this case, the battery deterioration determination device 200 fails to determine the deterioration state of the secondary battery 111, and waits for the storage unit 210 to store new data, for example, and performs the process of FIG. 3 again.
 また、ステップS112において、二次電池111の電流値が静定状態にないと判定した場合(ステップS112:NO)も、ステップS161へ進む。
 また、ステップS122において、電流値立ち上がり開始の想定時刻において電流が立ち上がっていないと判定した場合(ステップS122:NO)も、ステップS161へ進む。
 また、ステップS132において、二次電池111の電流値が静定状態にないと判定した場合(ステップS132:NO)も、ステップS161へ進む。
 また、ステップS142において、ステップS141で算出した変化量が有意な電流値変化量でないと判定した場合(ステップS142:NO)も、ステップS161へ進む。
Moreover, also when it determines with the electric current value of the secondary battery 111 not being in a static state in step S112 (step S112: NO), it progresses to step S161.
If it is determined in step S122 that the current has not risen at the estimated start time of the current value rise (step S122: NO), the process also proceeds to step S161.
Moreover, also when it determines with the electric current value of the secondary battery 111 not being in a static state in step S132 (step S132: NO), it progresses to step S161.
If it is determined in step S142 that the amount of change calculated in step S141 is not a significant current value change amount (step S142: NO), the process also proceeds to step S161.
 以上のように、時刻検出部230が、二次電池111の電流値が静定状態にある第1時刻、および、二次電池111の電流値が静定状態にあり、かつ第1時刻との間における電流値の変化量の大きさが所定の変化量以上となっている第2時刻を検出する。
 これにより、抵抗値算出部240は、電流値が静定状態にあり、かつ、電流値に有意な差がある2つの時刻における電流値と電圧値とに基づいて、二次電池111の内部抵抗値をより高精度に算出でき、電池劣化状況判定部250は、当該内部抵抗値を用いて、二次電池111の劣化状態をより高精度に判定することができる。
As described above, the time detection unit 230 determines that the current value of the secondary battery 111 is in a static state, the current value of the secondary battery 111 is in a static state, and the first time. The second time at which the magnitude of the change amount of the current value during the period is equal to or greater than the predetermined change amount is detected.
Thereby, the resistance value calculation unit 240 determines whether the internal value of the secondary battery 111 is based on the current value and the voltage value at two times when the current value is in a static state and the current value is significantly different. The value can be calculated with higher accuracy, and the battery deterioration state determination unit 250 can determine the deterioration state of the secondary battery 111 with higher accuracy using the internal resistance value.
 なお、以上では、時刻検出部230が、電流立ち上がり後の静定状態を検出してから電流立ち上がり前の静定状態を検出する場合について説明したが、逆に、電流立ち上がり前の静定状態を検出してから電流立ち上がり後の静定状態を検出するようにしてもよい。
 また、以上では、時刻検出部230が、電流立ち上がり前後の静定状態におけるサンプリング時刻を検出する場合について説明したが、時刻検出部230が、電流立ち下がり前後の静定状態におけるサンプリング時刻を検出するようにしてもよい。
 また、二次電池111の劣化時に二次電池システム100全体を交換する場合、電池劣化判定装置200が二次電池システム100全体について二次電池111の内部抵抗値を求めて劣化状況を判定するようにしてもよい。
In the above description, the time detection unit 230 detects the static state after the current rise after detecting the static state after the current rise, but conversely, the static state before the current rise is detected. You may make it detect the static state after electric current rise after detecting.
In the above description, the time detection unit 230 detects the sampling time in the static state before and after the current rise. However, the time detection unit 230 detects the sampling time in the static state before and after the current fall. You may do it.
When the entire secondary battery system 100 is replaced when the secondary battery 111 is deteriorated, the battery deterioration determination device 200 determines the deterioration state by obtaining the internal resistance value of the secondary battery 111 for the entire secondary battery system 100. It may be.
 また、電池劣化判定装置200が、二次電池111の内部抵抗値を複数回算出して平均を求め、得られた内部抵抗値の平均値に基づいて、二次電池111の劣化状況を判定するようにしてもよい。
 この場合、時刻検出部230は、第1時刻と第2時刻との組み合わせを複数検出する。そして、抵抗値算出部240は、時刻検出部230が検出した第1時刻と第2時刻との組み合わせ毎に二次電池111の内部抵抗値を算出して、得られた内部抵抗値の平均値を求める。そして、電池劣化状況判定部250は、抵抗値算出部240が求めた内部抵抗値の平均値に基づいて、二次電池111の劣化状況を判定する。
 これにより、電池劣化判定装置200は、センサの一時的な測定誤差や外部ノイズの影響を低減させて内部抵抗値をより高精度に求め、二次電池111の劣化状況をより高精度に判定することができる。
Moreover, the battery deterioration determination device 200 calculates the internal resistance value of the secondary battery 111 a plurality of times to obtain an average, and determines the deterioration state of the secondary battery 111 based on the obtained average value of the internal resistance values. You may do it.
In this case, the time detection unit 230 detects a plurality of combinations of the first time and the second time. And the resistance value calculation part 240 calculates the internal resistance value of the secondary battery 111 for every combination of the 1st time detected by the time detection part 230, and the 2nd time, and average value of the obtained internal resistance value Ask for. Then, the battery deterioration state determination unit 250 determines the deterioration state of the secondary battery 111 based on the average value of the internal resistance values obtained by the resistance value calculation unit 240.
Thereby, the battery deterioration determination device 200 determines the internal resistance value with higher accuracy by reducing the influence of the temporary measurement error of the sensor and external noise, and determines the deterioration state of the secondary battery 111 with higher accuracy. be able to.
 また、以上では、時刻検出部230が、二次電池111の電流値の静定状態におけるサンプリング時刻を検出する場合について説明したが、時刻検出部230が、二次電池111の電流値の静定状態に加えて、あるいは代えて、二次電池111の電圧値の静定状態におけるサンプリング時刻を検出するようにしてもよい。 Further, the case where the time detection unit 230 detects the sampling time when the current value of the secondary battery 111 is stabilized has been described above. However, the time detection unit 230 stabilizes the current value of the secondary battery 111. In addition to or instead of the state, the sampling time in the static state of the voltage value of the secondary battery 111 may be detected.
 ここで、図4は、二次電池111の電流値の変化および電圧値の変化の例を示す説明図である。同図において、線L21は二次電池111の電流値の変化を示し、線L22は二次電池111の電圧値の変化を示している。図4に示す例において、時刻T21からT22までの時間では、二次電池111の電流値は静定状態にある。一方、二次電池111の電圧値は、時刻T21以後も変化し続けており、静定状態となっていない。このように、電流値が変化するタイミングと電圧値が変化するタイミングが一致しない場合がある。 Here, FIG. 4 is an explanatory diagram showing an example of a change in the current value and a change in the voltage value of the secondary battery 111. In the figure, a line L21 indicates a change in the current value of the secondary battery 111, and a line L22 indicates a change in the voltage value of the secondary battery 111. In the example shown in FIG. 4, the current value of the secondary battery 111 is in a static state during the period from time T21 to T22. On the other hand, the voltage value of the secondary battery 111 continues to change after time T21 and is not in a static state. Thus, the timing at which the current value changes may not match the timing at which the voltage value changes.
 この場合、電流値が静定状態にあっても、サンプリング時刻によって電圧値が異なり、電池劣化判定装置200(抵抗値算出部240)が算出する抵抗値にばらつきが生じ、当該抵抗値に基づく二次電池111の劣化状況判定の精度が低下してしまう。かかる判定精度の低下を避けるため、時刻検出部230が、二次電池111の電流値の静定状態に加えて、あるいは代えて、二次電池111の電圧値の静定状態におけるサンプリング時刻を検出するようにしてもよい。 In this case, even when the current value is in a static state, the voltage value varies depending on the sampling time, and the resistance value calculated by the battery deterioration determination device 200 (resistance value calculation unit 240) varies, and the two values based on the resistance value are generated. The accuracy of determining the deterioration status of the secondary battery 111 is reduced. In order to avoid such a decrease in determination accuracy, the time detection unit 230 detects the sampling time in the state where the voltage value of the secondary battery 111 is stabilized in addition to or instead of the state where the current value of the secondary battery 111 is stabilized. You may make it do.
 例えば、時刻検出部230は、二次電池111の電流値の変化率の大きさが所定の変化率以下となっており、かつ二次電池111の電圧値の変化率の大きさが所定の変化率以下となっている時刻を1時刻として検出する。また、時刻検出部230は、二次電池111の電流値の変化率の大きさが所定の変化率以下となっており、かつ二次電池111の電圧値の変化率の大きさが所定の変化率以下となっており、さらに、第1時刻との間における二次電池111の電流値の変化量の大きさが所定の変化量以上となっている時刻を第2時刻として検出する。 For example, in the time detection unit 230, the magnitude of the change rate of the current value of the secondary battery 111 is equal to or less than a predetermined change rate, and the magnitude of the change rate of the voltage value of the secondary battery 111 is a predetermined change. A time that is lower than the rate is detected as one time. In addition, the time detection unit 230 has a change rate of the current value of the secondary battery 111 equal to or less than a predetermined change rate, and a change rate of the voltage value of the secondary battery 111 has a predetermined change. The time when the amount of change in the current value of the secondary battery 111 between the first time and the first time is equal to or greater than a predetermined change is detected as the second time.
 これにより、抵抗値算出部240は、電流値に加えて電圧値が静定状態にあり、かつ、電流値に有意な差がある2つの時刻における電流値と電圧値とに基づいて、二次電池111の内部抵抗値をより高精度に算出でき、電池劣化状況判定部250は、当該内部抵抗値を用いて、二次電池111の劣化状態をより高精度に判定することができる。 As a result, the resistance value calculation unit 240 determines the secondary value based on the current value and the voltage value at two times when the voltage value is in a static state in addition to the current value and there is a significant difference in the current value. The internal resistance value of the battery 111 can be calculated with higher accuracy, and the battery deterioration state determination unit 250 can determine the deterioration state of the secondary battery 111 with higher accuracy using the internal resistance value.
 なお、時刻検出部230が、電圧値の静定状態を検出するか否かを自ら切り替えるようにしてもよい。例えば、時刻検出部230が、二次電池111の電流値と電圧値とが共に静定状態にあるか否かを判定している場合に、所定時間以上、第1時刻および第2時刻の検出に失敗すると、電流値が静定状態にあるか否かの判定に切り替えるようにしてもよい。すなわち、時刻検出部230が、電圧値が静定状態にあるか否かの判定を行わないようにしてもよい。
 これにより、時刻検出部230が、第1時刻および第2時刻を検出できるようになる。
 なお、電池劣化判定装置200の各部のうち、記憶部210と、測定値取得部220と、時刻検出部230と、抵抗値算出部240とで、抵抗値算出装置を構成してもよい。
In addition, you may make it the time detection part 230 switch itself whether it detects the steady state of a voltage value. For example, when the time detection unit 230 determines whether both the current value and the voltage value of the secondary battery 111 are in a static state, the first time and the second time are detected for a predetermined time or more. If it fails, it may be switched to the determination of whether or not the current value is in a static state. That is, the time detection unit 230 may not determine whether the voltage value is in a static state.
Thereby, the time detection unit 230 can detect the first time and the second time.
Note that, among the units of the battery deterioration determination device 200, the storage unit 210, the measurement value acquisition unit 220, the time detection unit 230, and the resistance value calculation unit 240 may constitute a resistance value calculation device.
 なお、上述したように、電池劣化判定装置200としてコンピュータを用いることができる。従って、電池劣化判定装置200の全部または一部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各部の処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
 また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。
As described above, a computer can be used as the battery deterioration determination device 200. Therefore, a program for realizing all or a part of the functions of the battery deterioration determination apparatus 200 is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system and executed. You may process each part by. Here, the “computer system” includes an OS and hardware such as peripheral devices.
Further, the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.
The “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system. Furthermore, the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. In this case, a volatile memory in a computer system serving as a server or a client in that case, and a program that holds a program for a certain period of time are also included. The program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
 以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。 As described above, the embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes design changes and the like without departing from the gist of the present invention.
 本発明は、二次電池の電流値または電圧値の少なくとも一方である測定値の変化率の大きさが所定の変化率以下となっている第1時刻、および、前記測定値の変化率の大きさが所定の変化率以下となっており、かつ前記第1時刻との間における前記測定値の変化量の大きさが所定の変化量以上となっている第2時刻を検出する時刻検出部と、前記第1時刻における前記二次電池の電流値および電圧値と前記第2時刻における前記二次電池の電流値および電圧値とに基づいて、当該二次電池の内部抵抗値を算出する抵抗値算出部と、前記二次電池の内部抵抗値に基づいて、当該二次電池の劣化状況を判定する電池劣化状況判定部と、を具備する電池劣化判定装置に関する。
 本発明によれば、二次電池の劣化状況をより高精度に判定することができる。
The present invention provides the first time when the magnitude of the change rate of the measured value that is at least one of the current value or the voltage value of the secondary battery is equal to or less than the predetermined change rate, and the magnitude of the change rate of the measured value. A time detection unit for detecting a second time when the second change time is less than or equal to a predetermined change rate and the magnitude of the change amount of the measured value between the first time and the predetermined change amount The resistance value for calculating the internal resistance value of the secondary battery based on the current value and voltage value of the secondary battery at the first time and the current value and voltage value of the secondary battery at the second time The present invention relates to a battery deterioration determination device including a calculation unit and a battery deterioration state determination unit that determines a deterioration state of the secondary battery based on an internal resistance value of the secondary battery.
According to the present invention, it is possible to determine the deterioration state of the secondary battery with higher accuracy.
1 電源システム
100 二次電池システム
110 電池セル
111 二次電池
112 CMU
120 BMU
200 電池劣化判定装置
210 記憶部
220 測定値取得部
230 時刻検出部
240 抵抗値算出部
250 電池劣化状況判定部
300 表示装置
900 電力負荷
1 power supply system 100 secondary battery system 110 battery cell 111 secondary battery 112 CMU
120 BMU
200 Battery Degradation Determination Device 210 Storage Unit 220 Measurement Value Acquisition Unit 230 Time Detection Unit 240 Resistance Value Calculation Unit 250 Battery Degradation State Determination Unit 300 Display Device 900 Power Load

Claims (6)

  1.  二次電池の電流値または電圧値の少なくとも一方である測定値の変化率の大きさが所定の変化率以下となっている第1時刻、および、前記測定値の変化率の大きさが所定の変化率以下となっており、かつ前記第1時刻との間における前記測定値の変化量の大きさが所定の変化量以上となっている第2時刻を検出する時刻検出部と、
     前記第1時刻における前記二次電池の電流値および電圧値と前記第2時刻における前記二次電池の電流値および電圧値とに基づいて、当該二次電池の内部抵抗値を算出する抵抗値算出部と、
     前記二次電池の内部抵抗値に基づいて、当該二次電池の劣化状況を判定する電池劣化状況判定部と、
     を具備する電池劣化判定装置。
    The first time when the magnitude of the change rate of the measured value that is at least one of the current value or the voltage value of the secondary battery is equal to or less than the predetermined change rate, and the magnitude of the change rate of the measured value is a predetermined value A time detection unit that detects a second time that is equal to or less than a change rate and has a magnitude of a change amount of the measured value between the first time and a predetermined change amount;
    Resistance value calculation for calculating the internal resistance value of the secondary battery based on the current value and voltage value of the secondary battery at the first time and the current value and voltage value of the secondary battery at the second time And
    A battery deterioration state determination unit for determining a deterioration state of the secondary battery based on the internal resistance value of the secondary battery;
    A battery deterioration determination device comprising:
  2.  前記時刻検出部は、前記第1時刻と前記第2時刻との組み合わせを複数検出し、
     前記抵抗値算出部は、前記時刻検出部が検出した前記第1時刻と前記第2時刻との組み合わせ毎に前記二次電池の内部抵抗値を算出して、得られた内部抵抗値の平均値を求め、
     前記電池劣化状況判定部は、前記抵抗値算出部が求めた前記内部抵抗値の平均値に基づいて、前記二次電池の劣化状況を判定する、
     請求項1に記載の電池劣化判定装置。
    The time detection unit detects a plurality of combinations of the first time and the second time,
    The resistance value calculation unit calculates an internal resistance value of the secondary battery for each combination of the first time and the second time detected by the time detection unit, and an average value of the obtained internal resistance values Seeking
    The battery deterioration state determination unit determines a deterioration state of the secondary battery based on an average value of the internal resistance values obtained by the resistance value calculation unit.
    The battery deterioration determination device according to claim 1.
  3.  前記時刻検出部は、前記二次電池の電流値の変化率の大きさが所定の変化率以下となっており、かつ前記二次電池の電圧値の変化率の大きさが所定の変化率以下となっている時刻を前記第1時刻として検出し、前記二次電池の電流値の変化率の大きさが所定の変化率以下となっており、かつ前記二次電池の電圧値の変化率の大きさが所定の変化率以下となっており、さらに、前記第1時刻との間における前記二次電池の電流値の変化量の大きさが所定の変化量以上となっている時刻を前記第2時刻として検出する、請求項1に記載の電池劣化判定装置。 In the time detection unit, the magnitude of the change rate of the current value of the secondary battery is equal to or less than a predetermined change rate, and the magnitude of the change rate of the voltage value of the secondary battery is equal to or less than the predetermined change rate. Is detected as the first time, the magnitude of the rate of change of the current value of the secondary battery is equal to or less than a predetermined rate of change, and the rate of change of the voltage value of the secondary battery is The time when the magnitude is less than or equal to a predetermined change rate, and the magnitude of the change amount of the current value of the secondary battery between the first time and the predetermined change quantity is greater than or equal to the predetermined change amount. The battery deterioration determination device according to claim 1, which is detected as two times.
  4.  二次電池の電流値または電圧値の少なくとも一方である測定値の変化率の大きさが所定の変化率以下となっている第1時刻、および、前記測定値の変化率の大きさが所定の変化率以下となっており、かつ前記第1時刻との間における前記測定値の変化量の大きさが所定の変化量以上となっている第2時刻を検出する時刻検出部と、
     前記第1時刻における前記二次電池の電流値および電圧値と前記第2時刻における前記二次電池の電流値および電圧値とに基づいて、当該二次電池の内部抵抗値を算出する抵抗値算出部と、
     を具備する抵抗値算出装置。
    The first time when the magnitude of the change rate of the measured value that is at least one of the current value or the voltage value of the secondary battery is equal to or less than the predetermined change rate, and the magnitude of the change rate of the measured value is a predetermined value A time detection unit that detects a second time that is equal to or less than a change rate and has a magnitude of a change amount of the measured value between the first time and a predetermined change amount;
    Resistance value calculation for calculating the internal resistance value of the secondary battery based on the current value and voltage value of the secondary battery at the first time and the current value and voltage value of the secondary battery at the second time And
    A resistance value calculation device comprising:
  5.  電池劣化判定装置の電池劣化判定方法であって、
     二次電池の電流値または電圧値の少なくとも一方である測定値の変化率の大きさが所定の変化率以下となっている第1時刻、および、前記測定値の変化率の大きさが所定の変化率以下となっており、かつ前記第1時刻との間における前記測定値の変化量の大きさが所定の変化量以上となっている第2時刻を検出する時刻検出ステップと、
     前記第1時刻における前記二次電池の電流値および電圧値と前記第2時刻における前記二次電池の電流値および電圧値とに基づいて、当該二次電池の内部抵抗値を算出する抵抗値算出ステップと、
     前記二次電池の内部抵抗値に基づいて、当該二次電池の劣化状況を判定する電池劣化状況判定ステップと、
     を具備する電池劣化判定方法。
    A battery deterioration determination method for a battery deterioration determination device,
    The first time when the magnitude of the change rate of the measured value that is at least one of the current value or the voltage value of the secondary battery is equal to or less than the predetermined change rate, and the magnitude of the change rate of the measured value is a predetermined value A time detection step of detecting a second time that is equal to or less than a change rate and has a magnitude of a change amount of the measurement value between the first time and a predetermined change amount;
    Resistance value calculation for calculating the internal resistance value of the secondary battery based on the current value and voltage value of the secondary battery at the first time and the current value and voltage value of the secondary battery at the second time Steps,
    A battery deterioration state determination step for determining a deterioration state of the secondary battery based on the internal resistance value of the secondary battery;
    A battery deterioration determination method comprising:
  6.  電池劣化判定装置としてのコンピュータに、
     二次電池の電流値または電圧値の少なくとも一方である測定値の変化率の大きさが所定の変化率以下となっている第1時刻、および、前記測定値の変化率の大きさが所定の変化率以下となっており、かつ前記第1時刻との間における前記測定値の変化量の大きさが所定の変化量以上となっている第2時刻を検出する時刻検出ステップと、
     前記第1時刻における前記二次電池の電流値および電圧値と前記第2時刻における前記二次電池の電流値および電圧値とに基づいて、当該二次電池の内部抵抗値を算出する抵抗値算出ステップと、
     前記二次電池の内部抵抗値に基づいて、当該二次電池の劣化状況を判定する電池劣化状況判定ステップと、
     を実行させるためのプログラム。
    To a computer as a battery deterioration determination device,
    The first time when the magnitude of the change rate of the measured value that is at least one of the current value or the voltage value of the secondary battery is equal to or less than the predetermined change rate, and the magnitude of the change rate of the measured value is a predetermined value A time detection step of detecting a second time that is equal to or less than a change rate and has a magnitude of a change amount of the measurement value between the first time and a predetermined change amount;
    Resistance value calculation for calculating the internal resistance value of the secondary battery based on the current value and voltage value of the secondary battery at the first time and the current value and voltage value of the secondary battery at the second time Steps,
    A battery deterioration state determination step for determining a deterioration state of the secondary battery based on the internal resistance value of the secondary battery;
    A program for running
PCT/JP2013/076400 2012-10-02 2013-09-27 Battery deterioration evaluation device, resistance value calculation device, battery deterioration evaluating method and program WO2014054548A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012220242A JP5960017B2 (en) 2012-10-02 2012-10-02 Battery deterioration determination device, resistance value calculation device, battery deterioration determination method, and program
JP2012-220242 2012-10-02

Publications (1)

Publication Number Publication Date
WO2014054548A1 true WO2014054548A1 (en) 2014-04-10

Family

ID=50434876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076400 WO2014054548A1 (en) 2012-10-02 2013-09-27 Battery deterioration evaluation device, resistance value calculation device, battery deterioration evaluating method and program

Country Status (2)

Country Link
JP (1) JP5960017B2 (en)
WO (1) WO2014054548A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104931888A (en) * 2014-03-19 2015-09-23 丰田自动车株式会社 Deterioration determining device for battery
CN110217108A (en) * 2018-03-02 2019-09-10 丰田自动车株式会社 The diagnostic device and diagnostic method of battery
US10634729B2 (en) 2015-03-27 2020-04-28 Gs Yuasa International Ltd. Deterioration detector for non-aqueous electrolyte power storage element, power storage device, deterioration detection system for non-aqueous electrolyte power storage element, and deterioration detection method for non-aqueous electrolyte power storage element

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6504544B2 (en) * 2015-10-26 2019-04-24 パナソニックIpマネジメント株式会社 Control method of display device and display system
DE102017208770B4 (en) * 2017-05-23 2019-03-28 Audi Ag Method for checking a battery condition and tester for checking a battery condition
KR102261481B1 (en) 2017-10-30 2021-06-07 (주)엘지에너지솔루션 Apparatus and method for estimating state of health of battery
JP7003751B2 (en) * 2018-03-12 2022-01-21 トヨタ自動車株式会社 Battery diagnostic device and battery diagnostic method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197613A (en) * 1997-01-14 1998-07-31 Fujitsu Denso Ltd Method for measuring internal resistance
JP2010093875A (en) * 2008-10-03 2010-04-22 Hitachi Ltd Power control apparatus, vehicle running control system, and method for detecting deterioration state of storage battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197613A (en) * 1997-01-14 1998-07-31 Fujitsu Denso Ltd Method for measuring internal resistance
JP2010093875A (en) * 2008-10-03 2010-04-22 Hitachi Ltd Power control apparatus, vehicle running control system, and method for detecting deterioration state of storage battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104931888A (en) * 2014-03-19 2015-09-23 丰田自动车株式会社 Deterioration determining device for battery
CN104931888B (en) * 2014-03-19 2017-08-29 丰田自动车株式会社 Deterioration judging device for battery
US10634729B2 (en) 2015-03-27 2020-04-28 Gs Yuasa International Ltd. Deterioration detector for non-aqueous electrolyte power storage element, power storage device, deterioration detection system for non-aqueous electrolyte power storage element, and deterioration detection method for non-aqueous electrolyte power storage element
CN110217108A (en) * 2018-03-02 2019-09-10 丰田自动车株式会社 The diagnostic device and diagnostic method of battery

Also Published As

Publication number Publication date
JP5960017B2 (en) 2016-08-02
JP2014071098A (en) 2014-04-21

Similar Documents

Publication Publication Date Title
WO2014054548A1 (en) Battery deterioration evaluation device, resistance value calculation device, battery deterioration evaluating method and program
CN107690585B (en) Method and apparatus for determining the state of health and state of charge of a lithium sulfur battery
US20180156873A1 (en) Battery Deterioration Degree Estimating Apparatus and Estimating Method
US20140055100A1 (en) Battery state estimation system, battery control system, battery system, and battery state estimation method
WO2014119328A1 (en) Battery state estimating device
KR20160004077A (en) Method and apparatus for estimating state of battery
JP2006275797A (en) Residual capacity arithmetic unit for capacitor device
US9891287B2 (en) Temperature-compensated state of charge estimation for rechargeable batteries
CN109669131B (en) SOC estimation method of power battery under working condition environment
JP2014025738A (en) Residual capacity estimation device
WO2011098771A1 (en) Management of battery charging through coulomb counting
US10054645B2 (en) Deterioration determination method, deterioration determination device, and storage medium
JP2015038444A (en) Secondary battery remaining capacity estimation method and secondary battery remaining capacity estimation apparatus
CN103675704A (en) Battery capacity evaluation method
JP2014025739A (en) Battery state estimation apparatus
US20210311127A1 (en) Battery Status Estimation Apparatus and Battery Control Apparatus
US10578675B2 (en) Estimation method for battery capacity
JPWO2018211824A1 (en) Battery control device and vehicle system
JP2016161448A (en) Internal state estimation device
JP2016211923A (en) Charging amount estimation method and charging amount estimation device
US20170254853A1 (en) Information processing device, information processing method, and recording medium
JP2016065844A (en) Battery system control apparatus and control method of battery system
JP2019060807A (en) State diagnostic device and state diagnostic method for secondary battery
JP5558391B2 (en) Secondary battery replacement method and replacement secondary battery acquisition device
JP2005195388A (en) Instrument for measuring residual level of battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13843784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13843784

Country of ref document: EP

Kind code of ref document: A1