WO2014052200A1 - Polymères à terminaison vinyle et procédé de production associé - Google Patents

Polymères à terminaison vinyle et procédé de production associé Download PDF

Info

Publication number
WO2014052200A1
WO2014052200A1 PCT/US2013/060953 US2013060953W WO2014052200A1 WO 2014052200 A1 WO2014052200 A1 WO 2014052200A1 US 2013060953 W US2013060953 W US 2013060953W WO 2014052200 A1 WO2014052200 A1 WO 2014052200A1
Authority
WO
WIPO (PCT)
Prior art keywords
mol
group
independently
hydrogen
higher olefin
Prior art date
Application number
PCT/US2013/060953
Other languages
English (en)
Inventor
Matthew W. Holtcamp
Charles J. Ruff
Donna J. Crowther
John R. Hagadorn
Patrick Brant
Original Assignee
Exxonmobil Chemical Patents Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/628,296 external-priority patent/US8841397B2/en
Application filed by Exxonmobil Chemical Patents Inc. filed Critical Exxonmobil Chemical Patents Inc.
Priority to CN201380034581.4A priority Critical patent/CN104428326A/zh
Publication of WO2014052200A1 publication Critical patent/WO2014052200A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+

Definitions

  • This invention relates to olefin polymerization, particularly to produce vinyl terminated polymers.
  • Alpha-olefins especially those containing 6 to 20 carbon atoms, have been used as intermediates in the manufacture of detergents or other types of commercial products. Such alpha-olefins have also been used as comonomers, especially in linear low density polyethylene. Commercially produced alpha-olefins are typically made by oligomerizing ethylene. Longer chain alpha-olefins, such as vinyl-terminated polyethylenes are also known and can be useful as building blocks following functionalization or as macromonomers.
  • U.S. Patent No. 4,814,540 discloses bis(pentamethyl cyclopentadienyl) hafnium dichloride, bis(pentamethyl cyclopentadienyl) zirconium dichloride and bis(tetramethyl n-butyl cyclopentadienyl) hafnium dichloride with methylalumoxane in toluene or hexane with or without hydrogen to make allylic vinyl terminated propylene homo-oligomers having a low degree of polymerization of 2-10. These oligomers do not have high Mn's and do not have at least 93% allylic vinyl unsaturation.
  • Weng et al. discloses materials with up to 81 percent vinyl termination made using dimethylsilyl bis(2 -methyl, 4-phenyl- indenyl) zirconium dichloride and methylalumoxane in toluene at 120°C.
  • the materials have a Mn of 12,300 (measured with l R NMR) and a melting point of 143°C.
  • Macromolecules, 33, 2000, 8541-8548 discloses preparation of branch-block ethylene-butene polymer made by reincorporation of vinyl terminated polyethylene, said branch-block polymer made by a combination of Cp 2 ZrCL2 and (C5Me 4 SiMe2NC 1 2H23)TiCl2 activated with methylalumoxane.
  • branch-block polymer made by a combination of Cp 2 ZrCL2 and (C5Me 4 SiMe2NC 1 2H23)TiCl2 activated with methylalumoxane.
  • JP 2005-336092 A2 discloses the manufacture of vinyl-terminated propylene polymers using materials such as H2SO4 treated montmorillonite, triethylaluminum, triisopropyl aluminum, where the liquid propylene is fed into a catalyst slurry in toluene. This process produces substantially isotactic macromonomers that do not have a significant amount of amorphous material.
  • % allylic chain ends (of total unsaturations) -0.95(mol% ethylene incorporated) + 100.
  • 65% allyl (compared to total unsaturation) was reported for E-P copolymer containing 29 mol% ethylene. This is the highest allyl population achieved.
  • 64 mol% incorporated ethylene only 42% of the unsaturations are allylic.
  • Productivity of these polymerizations ranged from 0.78 x 10 2 g/ mmol Ti/hr to 4.62 x 10 2 g/ mmol Ti/hr.
  • Example 4 of U.S. Patent No. 6,017,859 discloses a copolymer of octene and tetradecene reported to have a Mn of 109,100 and a vinyl content of 41.
  • Examples 8-10 and 17-22 in EP 0 958 309 disclose various ethylene butene copolymers having up to 44 mol% butene varying levels of vinyls, typically higher levels of vinyl with lower mol% butene.
  • This invention relates to vinyl terminated polymers having an Mn of at least 200 g/mol (measured by l R NMR) comprising of one or more C 4 to C 4 Q higher olefin derived units, where the higher olefin vinyl terminated polymer comprises substantially no propylene derived units; and wherein the higher olefin polymer has at least 5% allyl chain ends relative to total unsaturation.
  • the vinyl terminated polymers may optionally comprise ethylene derived units.
  • the higher olefin vinyl terminated polymers preferably do not have isobutyl chain ends. Isobutyl chain ends are determined according to the procedure set out in WO 2009/155471.
  • This invention also relates to a process for making vinyl terminated polymers, wherein the process comprises contacting, under polymerization conditions: one or more C 4 to C 4 o higher olefins, where substantially no propylene is present; wherein the contacting occurs in the presence of a catalyst system comprising an activator and at least one metallocene compound represented by one of the formulae:
  • M is hafnium or zirconium; each X, Q, R and other parameter are as described further herein.
  • Figure 1 is a representation of the NMR spectrum of poly(l-decene), where the 1- decene starting material was isotopically enriched.
  • the inventors have surprisingly discovered a new class of vinyl terminated polymers. Described herein are vinyl terminated polymers comprising substantially no propylene-derived units, processes to produce such vinyl terminated polymers, and compositions comprising vinyl terminated polymers. These vinyl terminated polymers may find utility as macromonomers for the synthesis of poly(macromonomers), block copolymers, and as additives, for example, as additives to lubricants.
  • the vinyl group of these vinyl terminated polymers provides a path to functionalization.
  • These functionalized polymers may be also useful as additives, such as in lubricants and/or fuels.
  • molecular weight means number average molecular weight (Mn), unless otherwise stated.
  • Catalyst activity is a measure of how many grams of polymer (P) are produced using a polymerization catalyst comprising W g of catalyst (cat), over a period of time of T hours; and may be expressed by the following formula: P/(T x W) and expressed in units of gPgcaHhr 1 .
  • an "olefin,” alternatively referred to as “alkene,” is a linear, branched, or cyclic compound of carbon and hydrogen having at least one double bond.
  • alkene is a linear, branched, or cyclic compound of carbon and hydrogen having at least one double bond.
  • a polymer or copolymer is referred to as comprising an olefin, including, but not limited to ethylene, propylene, and butene
  • the olefin present in such polymer or copolymer is the polymerized form of the olefin.
  • a copolymer when a copolymer is said to have an "ethylene" content of 35 wt% to 55 wt%, it is understood that the mer unit in the copolymer is derived from ethylene in the polymerization reaction and said derived units are present at 35 wt% to 55 wt%, based upon the weight of the copolymer.
  • a "polymer” has two or more of the same or different mer units.
  • the term "polymer,” as used herein, includes oligomers (up to 100 mer units), and larger polymers (greater than 100 mer units).
  • a “homopolymer” is a polymer having mer units that are the same.
  • a “copolymer” is a polymer having two or more mer units that are different from each other.
  • a “terpolymer” is a polymer having three mer units that are different from each other.
  • "Different” as used to refer to mer units indicates that the mer units differ from each other by at least one atom or are different isomerically. Accordingly, the definition of copolymer, as used herein, includes terpolymers, and the like.
  • Higher olefin means C 4 to C 4 Q olefins; preferably C 4 to C30 a- olefins; more preferably C 4 to C20 a-olefins; or even more preferably, C 4 to a-olefins.
  • a "higher olefin copolymer” is a polymer comprising two or more different monomer units, at least one of which is a higher olefin. In a preferred embodiment, all monomer units in the polymer are derived from higher olefins.
  • Mn is number average molecular weight (measured by ⁇ NMR, unless stated otherwise), Mw is weight average molecular weight (measured by Gel Permeation Chromatography, GPC), and Mz is z average molecular weight (measured by GPC), wt% is weight percent, mol% is mole percent, vol% is volume percent, and mol is mole.
  • Molecular weight distribution (MWD) is defined to be Mw (measured by GPC) divided by Mn (measured by GPC), Mw/Mn. Unless otherwise noted, all molecular weights (e.g., Mw, Mn, Mz) have units of g/mol.
  • Preferred vinyl terminated polymers have an Mn at least 200 g/mol, (preferably 200 to 100,000 g/mol, preferably 200 to 75,000 g/mol, preferably 200 to 60,000 g/mol, preferably 300 to 60,000 g/mol, or preferably 750 to 30,000 g/mol) (measured by l R NMR) comprising of one or more (preferably two or more, three or more, four or more, and the like) C 4 to C 4 Q (preferably C 4 to C30, C 4 to C20, or C 4 to C ⁇ , preferably butene, pentene, hexene, heptene, octene, nonene, decene, undecene, dodecene, norbornene, norbornadiene, dicyclopentadiene, cyclopentene, cycloheptene, cyclooctene, cyclooctadiene, cyclododecene, 7
  • these higher olefin vinyl terminated polymers may comprise ethylene derived units, preferably at least 5 mol% ethylene (preferably at least 15 mol% ethylene, preferably at least 25 mol% ethylene, preferably at least 35 mol% ethylene, preferably at least 45 mol% ethylene, preferably at least 60 mol% ethylene, preferably at least 75 mol% ethylene, or preferably at least 90 mol% ethylene).
  • the VT-HO polymer may be a homopolymer, a copolymer, a terpolymer, or so on.
  • the VT-HO may comprise ethylene derived units, preferably 5 mol% or less ethylene (preferably 10 mol% or less ethylene, preferably 15 mol% or less ethylene, preferably 20 mol% or less ethylene, preferably 25 mol% or less ethylene, preferably 35 mol% or less ethylene, preferably 45 mol% or less ethylene, preferably 60 mol% or less ethylene, preferably 75 mol% or less ethylene, or preferably 90 mol% or less ethylene).
  • the vinyl terminated polymer comprises substantially no ethylene derived units (preferably less than 0.1 wt%, preferably 0 wt%).
  • the vinyl terminated polymer comprises from 0.5 to 100 mol% of one or more C 4 to C20 higher olefin derived units, preferably from 1 to 99 mol%, preferably from 5 to 98 mol%, preferably from 10 to 90 mol%.
  • the one or more C 4 to C20 higher olefin derived units are present at at least 5 mol%, preferably at least 10 mol%, preferably at least 15 mol%, preferably at least 20 mol%, preferably at least 25 mol%, preferably at least 30 mol%, preferably at least 35 mol%, preferably at least 40 mol%, preferably at least 45 mol%, preferably at least 50 mol%, preferably at least 55 mol%, preferably at least 60 mol%, preferably at least 65 mol%, preferably at least 70 mol%, preferably at least 75 mol%, preferably at least 80 mol%, preferably at least 85 mol%, preferably at least 90 mol%, preferably at least 95 mol%, preferably at least 98 mol%, preferably at least 99 mol%, preferably at 100 mol%, where the one or more C 4 to C20 higher olefin derived units (preferably two or more, three or more,
  • the VT-HO may comprise butene derived units, preferably 5 mol% or less butene (preferably 10 mol% or less butene, preferably 15 mol% or less butene, preferably 20 mol% or less butene, preferably 25 mol% or less butene, preferably 35 mol% or less butene, preferably 45 mol% or less butene, preferably 60 mol% or less butene, preferably 75 mol% or less butene, or preferably 90 mol% or less butene).
  • the vinyl terminated polymer comprises substantially no butene derived units (preferably less than 0.1 wt%, preferably 0 wt%).
  • the vinyl terminated polymer comprises at least 30 mol% of one C 4 to C20 higher olefin derived unit, preferably at least 40 mol%, preferably from 50 to 98 mol%, preferably from 60 to 90 mol% of one C 4 to C20 higher olefin derived unit with the balance of the copolymer being made of up one or more different C 4 to C20 higher olefin derived units.
  • the VT-HO copolymer comprises ethylene and butene, where the butene is present at at least 5 mol%, preferably at least 10 mol%, preferably at least 15 mol%, preferably at least 20 mol%, preferably at least 25 mol%, preferably at least 30 mol%, preferably at least 35 mol%, preferably at least 40 mol%, preferably at least 45 mol%, preferably at least 50 mol%, preferably at least 55 mol%, preferably at least 60 mol%, preferably at least 65 mol%, preferably at least 70 mol%, preferably at least 75 mol%, preferably at least 80 mol%, preferably at least 85 mol%, preferably at least 90 mol%, preferably at least 95 mol%, preferably at least 98 mol%, preferably at least 99 mol%, and where the copolymer has at least 5% (at least 10%, at least 15%, at least 20%, at least 30%,
  • the VT-HO copolymer comprises ethylene and one or more C 4 to C20 higher olefin derived unit, where the C 4 to C20 higher olefin derived unit(s) are present at at least 15 mol%, preferably at least 20 mol%, preferably at least 25 mol%, preferably at least 30 mol%, preferably at least 35 mol%, preferably at least 40 mol%, preferably at least 45 mol%, preferably at least 50 mol%, preferably at least 55 mol%, preferably at least 60 mol%, preferably at least 65 mol%, preferably at least 70 mol%, preferably at least 75 mol%, preferably at least 80 mol%, preferably at least 85 mol%, preferably at least 90 mol%, preferably at least 95 mol%, preferably at least 98 mol%, preferably at least 99 mol%, (and the ethylene makes up the balance of the copolymer) and where the ethylene makes up the balance of the copolymer
  • the VT-HO copolymer consists essentially of ethylene and butene, where the butene is present at at least 15 mol%, preferably at least 20 mol%, preferably at least 25 mol%, preferably at least 30 mol%, preferably at least 35 mol%, preferably at least 40 mol%, preferably at least 45 mol%, preferably at least 50 mol%, preferably at least 55 mol%, preferably at least 60 mol%, preferably at least 65 mol%, preferably at least 70 mol%, preferably at least 75 mol%, preferably at least 80 mol%, preferably at least 85 mol%, preferably at least 90 mol%, preferably at least 95 mol%, preferably at least 98 mol%, preferably at least 99 mol%, (where the ethylene makes up the balance of the copolymer) and where the copolymer has at least 20% (at least 25%, at least 30%, at least 40%, at least 50%
  • VT-HO polymers generally have a saturated chain end (or terminus) and/or an unsaturated chain end, or terminus.
  • the unsaturated chain end of inventive VT-HO polymers comprises an "allyl chain end.”
  • An allyl chain end is represented by C ⁇ CH-CT ⁇ ., as shown in the formula:
  • the VT-HO polymer has at least 5% allyl chain ends (preferably at least 10% allyl chain ends, at least 15% allyl chain ends, at least 20% allyl chain ends, at least 30% allyl chain ends, at least 40% allyl chain ends, at least 50% allyl chain ends, at least 60% allyl chain ends, at least 70% allyl chain ends; at least 80% allyl chain ends, at least 90% allyl chain ends, or at least 95% allyl chain ends) relative to total unsaturation.
  • allyl chain ends preferably at least 10% allyl chain ends, at least 15% allyl chain ends, at least 20% allyl chain ends, at least 30% allyl chain ends, at least 40% allyl chain ends, at least 50% allyl chain ends, at least 60% allyl chain ends, at least 70% allyl chain ends; at least 80% allyl chain ends, at least 90% allyl chain ends, or at least 95% allyl chain ends
  • the number of allyl chain ends, vinylidene chain ends, vinylene chain ends, and other unsaturated chain ends is determined using X H NMR at 120°C using deuterated tetrachloroethane as the solvent on an at least 250 MHz NMR spectrometer, and in selected cases, confirmed by 13 C NMR.
  • the "allyl chain end to vinylidene chain end ratio" is defined to be the ratio of the percentage of allyl chain ends to the percentage of vinylidene chain ends.
  • the allyl chain end to vinylidene chain end ratio of 1 : 1 or greater preferably greater than 2: 1, greater than 2.5: 1, greater than 3 : 1, greater than 5: 1, or greater than 10: 1).
  • the allyl chain end to vinylidene chain end ratio is in the range of from 10: 1 to 1 : 1 (preferably from 5: 1 to 2: 1 or preferably from 10: 1 to 2.5: 1).
  • the "allyl chain end to vinylene chain end ratio" is defined to be the ratio of the percentage of allyl chain ends to the percentage of vinylene chain ends. In some embodiments, the allyl chain end to vinylene ratio is greater than 1 : 1 (preferably greater than 2 : 1 , or greater than 5: 1).
  • VT-HO polymers typically also have a saturated chain end.
  • the saturated chain end is a higher olefin chain end, as shown in the formula below:
  • VT-HO polymers herein comprise substantially no propylene (preferably less than 0.1 wt%, preferably 0 wt%), and therefore have substantially no isobutyl chain ends (preferably less than 0.1 wt%, preferably 0 wt%). Isobutyl chain ends are determined according to the procedure set out in WO 2009/155471.
  • the VT-HO polymer may further comprise ethylene derived units.
  • these VT-HO polymers comprise at least 5 mol% ethylene (preferably at least 15 mol% ethylene, preferably at least 25 mol% ethylene, preferably at least 35 mol% ethylene, preferably at least 45 mol% ethylene, preferably at least 60 mol% ethylene, preferably at least 75 mol% ethylene, or preferably at least 90 mol% ethylene).
  • the VT-HO polymers comprise from 1.0 to 99 mol% of ethylene (from 10 to 90 mol%, from 15 to 95 mol%, from 20 to 85 mol%, from 25 to 75 mol%, or from 30 to 70 mol%).
  • the VT-HO copolymer has a Mn of greater than 300 g/mol (preferably of in the range from 300 to 60,000 g/mol, 400 to 50,000 g/mol, preferably 500 to 35,000 g/mol, preferably 300 to 15,000 g/mol, preferably 400 to 12,000 g/mol, or preferably 750 to 10,000 g/mol), a Mw of 1000 or more (preferably from 1,000 to 60400,000 g/mol, preferably from 2000 to 50300,000 g/mol, preferably from 3,000 to 35200,000 g/mol), and a Mz of from 1700 to 150,000 g/mol, or preferably from 800 to 100,000 g/mol.
  • a desirable molecular weight range can be any combination of any upper molecular weight limit with any lower molecular weight limit described above.
  • Mn (3 ⁇ 4 NMR) is determined according to the NMR method described below in the Examples section. Mn may also be determined using a GPC-DRI method, as described below. For the purpose of the claims, Mn is determined by !H NMR.
  • Mn, Mw, and Mz may be measured by using a Gel Permeation Chromatography (GPC) method using a High Temperature Size Exclusion Chromatograph (SEC, either from Waters Corporation or Polymer Laboratories), equipped with a differential refractive index detector (DRI).
  • GPC Gel Permeation Chromatography
  • SEC High Temperature Size Exclusion Chromatograph
  • DRI differential refractive index detector
  • Solvent for the SEC experiment is prepared by dissolving 6 grams of butylated hydroxy toluene as an antioxidant in 4 liters of Aldrich reagent grade 1,2,4 trichlorobenzene (TCB). The TCB mixture is then filtered through a 0.7 ⁇ glass pre- filter and subsequently through a 0.1 ⁇ Teflon filter. The TCB is then degassed with an online degasser before entering the SEC. Polymer solutions are prepared by placing dry polymer in a glass container, adding the desired amount of TCB, then heating the mixture at 160°C with continuous agitation for 2 hours.
  • the TCB densities used to express the polymer concentration in mass/volume units are 1.463 g/mL at room temperature and 1.324 g/mL at 135°C.
  • the injection concentration is from 1.0 to 2.0 mg/mL, with lower concentrations being used for higher molecular weight samples.
  • the DRI detector and the injector Prior to running each sample the DRI detector and the injector are purged. Flow rate in the apparatus is then increased to 0.5 mL/minute, and the DRI is allowed to stabilize for 8 to 9 hours before injecting the first sample.
  • the concentration, c, at each point in the chromatogram is calculated from the baseline-subtracted DRI signal, I DR[ , using the following equation:
  • K D RJ is a constant determined by calibrating the DRI
  • (dn/dc) is the refractive index increment for the system.
  • (dn/dc) 0.104 for propylene polymers and 0.1 otherwise.
  • concentration is expressed in g/cm 3
  • molecular weight is expressed in g/mol
  • intrinsic viscosity is expressed in dL/g.
  • the VT-HO polymer comprises less than 3 wt% of functional groups selected from hydroxide, aryls and substituted aryls, halogens, alkoxys, carboxylates, esters, acrylates, oxygen, nitrogen, and carboxyl, preferably less than 2 wt%, more preferably less than 1 wt%, more preferably less than 0.5 wt%, more preferably less than 0.1 wt%, more preferably 0 wt%, based upon the weight of the copolymer.
  • functional groups selected from hydroxide, aryls and substituted aryls, halogens, alkoxys, carboxylates, esters, acrylates, oxygen, nitrogen, and carboxyl, preferably less than 2 wt%, more preferably less than 1 wt%, more preferably less than 0.5 wt%, more preferably less than 0.1 wt%, more preferably 0 wt%, based upon the weight of the copolymer.
  • the VT-HO polymer comprises at least 50 wt% (preferably at least 75 wt%, preferably at least 90 wt%, based upon the weight of the copolymer composition) olefins having at least 36 carbon atoms (preferably at least 51 carbon atoms, preferably at least 102 carbon atoms) as measured by NMR, assuming one unsaturation per chain.
  • the VT-HO polymer comprises less than 20 wt% dimer and trimer (preferably less than 10 wt%, preferably less than 5 wt%, more preferably less than 2 wt%, based upon the weight of the copolymer composition), as measured by gas chromatography (GC). Products were analyzed by GC (Agilent 6890N with auto-injector) using helium as a carrier gas at 38 cm/sec.
  • GC gas chromatography
  • a column having a length of 60 m(J & W Scientific DB-1, 60 m x 0.25 mm I.D.x 1.0 ⁇ film thickness) packed with a flame ionization detector (FID), an Injector temperature of 250°C, and a Detector temperature of 250°C were used.
  • the sample was injected into the column in an oven at 70°C, then heated to 275°C over 22 minutes (ramp rate 10°C/min to 100°C, 30°C/min to 275°C, hold).
  • An internal standard usually the monomer, is used to derive the amount of dimer or trimer product that is obtained. Yields of dimer and trimer product are calculated from the data recorded on the spectrometer. The amount of dimer or trimer product is calculated from the area under the relevant peak on the GC trace, relative to the internal standard.
  • the VT-HO polymers described herein preferably have a melting temperature (T m , DSC first melt) in the range of from 60 to 150°C, alternately 50 to 100°C.
  • the copolymers described herein have no detectable melting temperature by DSC following storage at ambient temperature (23°C) for at least 48 hours.
  • the VT-HO polymer preferably has a glass transition temperature (Tg) of less than 0°C or less (as determined by differential scanning calorimetry as described below), preferably -10°C or less, more preferably -20°C or less, more preferably -30°C or less, more preferably - 50°C or less.
  • T m and Tg are measured using Differential Scanning Calorimetry (DSC) using commercially available equipment such as a TA Instruments 2920 DSC.
  • DSC Differential Scanning Calorimetry
  • the sample is equilibrated at 25°C, then it is cooled at a cooling rate of 10°C/min to -80°C.
  • the sample is held at -80°C for 5 min and then heated at a heating rate of 10°C/min to 25°C.
  • the glass transition temperature is measured from the heating cycle.
  • the sample is equilibrated at 25°C, then heated at a heating rate of 10°C/min to 150°C.
  • the endothermic melting transition if present, is analyzed for onset of transition and peak temperature.
  • the melting temperatures reported are the peak melting temperatures from the first heat unless otherwise specified.
  • the melting point is defined to be the peak melting temperature (i.e., associated with the largest endothermic calorimetric response in that range of temperatures) from the DSC melting trace.
  • the VT-HO polymers described herein have a viscosity at 60°C of greater than 1000 cP, greater than 12,000 cP, or greater than 100,000 cP. In other embodiments, the VT-HO polymers have a viscosity of less than 200,000 cP, less than 150,000 cP, or less than 100,000 cP. Viscosity is defined as resistance to flow and the melt viscosity of neat copolymers is measured at elevated temperature using a Brookfield Digital Viscometer.
  • the VT-HO polymers are hexene/octene copolymers, hexene/decene copolymers, hexene/dodecene copolymers, octene/decene copolymers, octene/dodecene copolymers, decene/dodecene copolymers, hexene/decene/dodecene terpolymers, hexene/octene/decene terpolymers, octene/decene/dodecene terpolymers, and the like.
  • This invention also relates to a process for making higher olefin polymers, wherein the process comprises contacting, one or more (preferably two or more, three or more, four or more, and the like) C 4 to C 4 Q (preferably C 4 to C30, C 4 to C20, or C 4 to C ⁇ , preferably butene, pentene, hexene, heptene, octene, nonene, decene, undecene, dodecene, norbornene, norbornadiene, dicyclopentadiene, cyclopentene, cycloheptene, cyclooctene, cyclooctadiene, cyclododecene, 7-oxanorbornene, 7-oxanorbornadiene, substituted derivatives thereof, and isomers thereof) monomers, where substantially no propylene (preferably less than 0.1 wt% propylene, preferably 0 wt% propy
  • each X is, independently, selected from the group consisting of hydrocarbyl radicals having from 1 to 20 carbon atoms, hydrides, amides, alkoxides, sulfides, phosphides, halogens, dienes, amines, phosphines, ethers, and a combination thereof, (two X's may form a part of a fused ring or a ring system) each Q is, independently carbon or a heteroatom; each R 1 is, independently, a to Cg alkyl group, R 1 may the same or different as R 2 ; each R 2 is, independently, a Q to Cg alkyl group; each R 3 is, independently, hydrogen, or a substituted or unsubstituted hydrocarbyl group having from 1 to 8 carbon atoms, provided, however, that at least three R 3 groups are not hydrogen; each R 4 is, independently, hydrogen or a substituted or unsubstituted hydrocar
  • each X is, independently, selected from the group consisting of hydrocarbyl radicals having from 1 to 20 carbon atoms, hydrides, amides, alkoxides, sulfides, phosphides, halides, dienes, amines, phosphines, ethers, and a combination thereof, (two X's may form a part of a fused ring or a ring system); each R 8 is, independently, a to alkyl group; each R 9 is, independently, a Q to CIQ alkyl group; each R 10 is hydrogen; each R 1 1 , R 12 , and R 13 , is, independently, hydrogen or a substituted or unsubstituted hydrocarbyl group, a heteroatom or heteroatom containing group; T is a bridging group (such as R2 a T described above); and further provided that any of adjacent R 1 1 , R 12 , and R 13 groups may form a fused
  • M is hafnium or zirconium; each X is, independently, selected from the group consisting of hydrocarbyl radicals having from 1 to 20 carbon atoms, hydrides, amides, alkoxides, sulfides, phosphides, halogens, dienes, amines, phosphines, ethers, or a combination thereof; each R 15 and R 17 are, independently, a to Cg alkyl group; and each R 16 , R 18 , R 19 , R 20 , R21, R22, R23 ; R 24 ; R 25 ; R 26 ; R 27 ; AND R 28 ar6j independently, hydrogen, or a substituted or unsubstituted hydrocarbyl group having from 1 to 8 carbon atoms.
  • higher olefin monomers such as hexene or octene
  • C 4 to C 4 Q preferably C 4 to C30, C 4 to C20, or C 4 to C ⁇ , preferably butene, pentene, hexene, heptene, octene, nonene, decene, undecene, dodecene, norbornene, norbornadiene, dicyclopentadiene, cyclopentene, cycloheptene, cyclooctene, cyclooctadiene, cyclododecene, 7-oxanorbornene, 7-oxanorbornadiene, substituted derivatives thereof, and isomers thereof); wherein the contacting occurs in the presence of
  • scavengers may also be used, as desired, such as one or more scavengers, promoters, modifiers, reducing agents, oxidizing agents, hydrogen, aluminum alkyls, or silanes.
  • little or no scavenger is used in the process to produce the VT-HO copolymers.
  • scavenger is present at zero mol%, alternately the scavenger is present at a molar ratio of scavenger metal to transition metal of less than 100: 1, preferably less than 50: 1, preferably less than 15: 1, preferably less than 10: 1.
  • the higher olefin monomers may be linear, branched, or cyclic.
  • the higher olefin cyclic olefins may be strained or unstrained, monocyclic or polycyclic, and may optionally include hetero atoms and/or one or more functional groups.
  • Exemplary higher olefin monomers include butene, pentene, hexene, heptene, octene, nonene, decene, undecene, dodecene, norbornene, norbornadiene, dicyclopentadiene, cyclopentene, cycloheptene, cyclooctene, cyclooctadiene, cyclododecene, 7-oxanorbornene, 7-oxanorbornadiene, substituted derivatives thereof, and isomers thereof (preferably hexane, heptene, octene, nonene, decene, dodecene, cyclooctene, 1,5-cyclooctad
  • the butene source may be a mixed butene stream comprising various isomers of butene.
  • the 1 -butene monomers are expected to be preferentially consumed by the polymerization process.
  • Use of such mixed butene streams will provide an economic benefit, as these mixed streams are often waste streams from refining processes, for example C 4 raffinate streams, and can therefore be substantially less expensive than pure 1 -butene.
  • Processes of this invention can be carried out in any manner known in the art. Any suspension, homogeneous bulk, solution, slurry, or gas phase polymerization process known in the art can be used. Such processes can be run in a batch, semi-batch, or continuous mode. Such processes and modes are well known in the art. Homogeneous polymerization processes and slurry are preferred. (A homogeneous polymerization process is defined to be a process where at least 90 wt% of the product is soluble in the reaction media.) A bulk homogeneous process is particularly preferred.
  • a bulk process is defined to be a process where monomer concentration in all feeds to the reactor is 70 vol% or more.
  • no solvent or diluent is present or added in the reaction medium, (except for the small amounts used as the carrier for the catalyst system or other additives, or amounts typically found with the monomer; e.g., propane in propylene).
  • Suitable diluents/solvents for polymerization include non-coordinating, inert liquids.
  • examples include straight and branched-chain hydrocarbons such as isobutane, butane, pentane, isopentane, hexanes, isohexane, heptane, octane, dodecane, and mixtures thereof; cyclic and alicyclic hydrocarbons such as cyclohexane, cycloheptane, methylcyclohexane, methylcycloheptane, and mixtures thereof such as can be found commercially (IsoparTM); perhalogenated hydrocarbons such as perfluorinated C4 0 alkanes, chlorobenzene, and aromatic and alkylsubstituted aromatic compounds such as benzene, toluene, mesitylene, and xylene.
  • straight and branched-chain hydrocarbons such as isobutane, butane
  • Suitable solvents also include liquid olefins which may act as monomers or comonomers including ethylene, propylene, 1-butene, 1-hexene, 1-pentene, 3-methyl-l-pentene, 4-methyl- 1-pentene, 1-octene, 1-decene, and mixtures thereof.
  • aliphatic hydrocarbon solvents are used as the solvent, such as isobutane, butane, pentane, isopentane, hexanes, isohexane, heptane, octane, dodecane, and mixtures thereof; cyclic and alicyclic hydrocarbons, such as cyclohexane, cycloheptane, methylcyclohexane, methylcycloheptane, and mixtures thereof.
  • the solvent is not aromatic, preferably aromatics are present in the solvent at less than 1 wt%, preferably at 0.5 wt%, preferably at 0 wt% based upon the weight of the solvents.
  • the feed concentration for the polymerization is 60 vol% solvent or less, preferably 40 vol% or less, or preferably 20 vol% or less, based on the total volume of the feedstream.
  • the polymerization is run in a bulk process.
  • Catalyst productivity is a measure of how many grams of polymer (P) are produced using a polymerization catalyst comprising W g of catalyst (cat), over a period of time of T hours; and may be expressed by the following formula: P/(T x W) and expressed in units of gPgcat ⁇ hr "1 . Conversion is the amount of monomer that is converted to polymer product, and is reported as mol% and is calculated based on the polymer yield and the amount of monomer fed into the reactor. Catalyst activity is a measure of how active the catalyst is and is reported as the mass of product polymer (P) produced per mole of catalyst (cat) used (kgP/molcat).
  • the activity of the catalyst is at least 50 g/mmol/hour, preferably 500 or more g/mmol/hour, preferably 5000 or more g/mmol/hr, preferably 50,000 or more g/mmol/hr.
  • the conversion of olefin monomer is at least 10%, based upon polymer yield and the weight of the monomer entering the reaction zone, preferably 20% or more, preferably 30% or more, preferably 50% or more, preferably 80% or more.
  • the productivity is 4500 g/mmol/hour or more, preferably 5000 g/mmol/hour or more, preferably 10,000 g/mmol/hr or more, preferably 50,000 g/mmol/hr or more. In other embodiments, the productivity is at least 80,000 g/mmol/hr, preferably at least 150,000 g/mmol/hr, preferably at least 200,000 g/mmol/hr, preferably at least 250,000 g/mmol/hr, preferably at least 300,000 g/mmol/hr.
  • Preferred polymerizations can be run at any temperature and/or pressure suitable to obtain the desired VT-HO polymers.
  • the polymerization may be run at any suitable temperature, such as at a temperature in the range of from 0 to 250°C, preferably from 15 to 200°C, preferably from 23 to 120°C; and at any suitable pressure, preferable pressures may be in the range of from 0.35 to 10 MPa, preferably from 0.45 to 6 MPa, or preferably from 0.5 to 4 MPa.
  • the run time of the reaction is up to 300 minutes, preferably in the range of from 5 to 250 minutes, or preferably from 10 to 120 minutes.
  • hydrogen is present in the polymerization reactor at a partial pressure of 0.001 to 50 psig (0.007 to 345 kPa), preferably from 0.01 to 25 psig (0.07 to 172 kPa), more preferably 0.1 to 10 psig (0.7 to 70 kPa). It has been found that in the present systems, hydrogen can be used to provide increased activity without significantly impairing the catalyst's ability to produce allylic chain ends.
  • the catalyst activity (calculated as g/mmol catalyst/hr) is at least 20% higher than the same reaction without hydrogen present, preferably at least 50% higher, preferably at least 100% higher.
  • the polymerization 1) is conducted at temperatures of 0 to 300°C (preferably 25 to 150°C, preferably 40 to 120°C, preferably 45 to 80°C); 2) is conducted at a pressure of atmospheric pressure to 10 MPa (preferably 0.35 to 10 MPa, preferably from 0.45 to 6 MPa, preferably from 0.5 to 4 MPa); 3) is conducted in an aliphatic hydrocarbon solvent (such as isobutane, butane, pentane, isopentane, hexanes, isohexane, heptane, octane, dodecane, and mixtures thereof; cyclic and alicyclic hydrocarbons, such as cyclohexane, cycloheptane, methylcyclohexane, methylcycloheptane, and mixtures thereof; preferably where aromatics are present in the solvent at less than 1 wt%, preferably at less than 0.5 wt%, preferably at
  • the catalyst system used in the polymerization comprises no more than one catalyst compound.
  • a "reaction zone” also referred to as a "polymerization zone” is a vessel where polymerization takes place, for example a batch reactor. When multiple reactors are used in either series or parallel configuration, each reactor is considered as a separate polymerization zone. For a multi-stage polymerization in both a batch reactor and a continuous reactor, each polymerization stage is considered as a separate polymerization zone. In a preferred embodiment, the polymerization occurs in one reaction zone. Room temperature is 23°C unless otherwise noted.
  • the invention relates to a process for making higher olefin polymers, wherein the process comprises contacting the higher olefin monomers in the presence of a catalyst system comprising an activator and at least one metallocene compound, as shown below.
  • the metallocene catalyst may be described as a catalyst precursor, a pre-catalyst compound, or a transition metal compound, and these terms are used interchangeably.
  • a polymerization catalyst system is a catalyst system that can polymerize monomers to polymer.
  • a “catalyst system” is combination of at least one catalyst compound, at least one activator, an optional co-activator, and an optional support material.
  • An "anionic ligand” is a negatively charged ligand which donates one or more pairs of electrons to a metal ion.
  • a “neutral donor ligand” is a neutrally charged ligand which donates one or more pairs of electrons to a metal ion.
  • catalyst systems are described as comprising neutral stable forms of the components, it is well understood by one of ordinary skill in the art, that the ionic form of the component is the form that reacts with the monomers to produce polymers.
  • a metallocene catalyst is defined as an organometallic compound with at least one ⁇ -bound cyclopentadienyl moiety (or substituted cyclopentadienyl moiety) and more frequently two ⁇ -bound cyclopentadienyl-moieties or substituted moieties. This includes other ⁇ -bound moieties such as indenyls or fluorenyls or derivatives thereof.
  • substituted means that a hydrogen group has been replaced with a hydrocarbyl group, a heteroatom, or a heteroatom containing group.
  • methyl cyclopentadiene (Cp) is a Cp group substituted with a methyl group
  • ethyl alcohol is an ethyl group substituted with an -OH group
  • a "substituted hydrocarbyl” is a radical made of carbon and hydrogen where at least one hydrogen is replaced by a heteroatom.
  • alkoxides include those where the alkyl group is a C ⁇ to hydrocarbyl.
  • the alkyl group may be straight chain, branched, or cyclic.
  • the alkyl group may be saturated or unsaturated.
  • the alkyl group may comprise at least one aromatic group.
  • the metallocene component of the catalyst system is represented by at least one of the formulae I, II, III, IV, V, or VI.
  • the metallocene compound is represented by at least one of Formulae I, II, III, and IV.
  • M is hafnium or zirconium
  • each X is, independently, selected from the group consisting of hydrocarbyl radicals having from 1 to 20 carbon atoms, hydrides, amides, alkoxides, sulfides, phosphides, halogens, dienes, amines, phosphines, ethers, or a combination thereof; preferably methyl, ethyl, propyl, butyl, phenyl, benzyl, chloride, bromide, iodide, (alternately two X's may form a part of a fused ring or a ring system);
  • each Q is, independently carbon or a heteroatom, preferably C, N, P, S (preferably at least one Q is a heteroatom, alternately at least two Q's are the same or different heteroatoms, alternately at least three Q's are the same or different heteroatoms, alternately at least four Q's are the same or different heteroatoms);
  • each R 1 is, independently, hydrogen or a C to Cg alkyl group, preferably a Q to Cg linear alkyl group, preferably methyl ethyl, propyl, butyl, pentyl, hexyl, heptyl or octyl, R 1 may the same or different as R 2 ;
  • each R 2 is, independently, hydrogen or a to Cg alkyl group, preferably a Q to Cg linear alkyl group, preferably methyl ethyl, propyl, butyl, pentyl, hexyl, heptyl or octyl, provided that at least one of R 1 or R 2 is not hydrogen, preferably both of R 1 and R 2 are not hydrogen, preferably R 1 and/or R 2 are not branched; each R 3 is, independently, hydrogen, or a substituted or unsubstituted hydrocarbyl group having from 1 to 8 carbon atoms, preferably 1 to 6 carbon atoms, preferably a substituted or unsubstituted Q to Cg linear alkyl group, preferably methyl ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, provided however that at least three R 3 groups are not hydrogen (alternately four R 3 groups are not hydrogen,
  • each R 4 is, independently, hydrogen or a substituted or unsubstituted hydrocarbyl group, a heteroatom or heteroatom containing group, preferably a substituted or unsubstituted hydrocarbyl group having from 1 to 20 carbon atoms, preferably 1 to 8 carbon atoms, preferably a substituted or unsubstituted Ci to Cg linear alkyl group, preferably methyl ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, substituted phenyl (such as propyl phenyl), phenyl, silyl, substituted silyl, (such as CH 2 SiR' ; where R is a to Ci2 hydrocarbyl, such as methyl, ethyl, propyl, butyl, phenyl);
  • R 5 is hydrogen or a to Cg alkyl group, preferably a Q to Cg linear alkyl group, preferably methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl or octyl;
  • R 6 is hydrogen or a Ci to Cg alkyl group, preferably a Q to Cg linear alkyl group, preferably methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl or octyl;
  • each R 7 is, independently, hydrogen, or a to Cg alkyl group, preferably a Q to Cg linear alkyl group, preferably methyl ethyl, propyl, butyl, pentyl, hexyl, heptyl or octyl, provided however that at least seven R 7 groups are not hydrogen, alternately at least eight R 7 groups are not hydrogen, alternately all R 7 groups are not hydrogen, (preferably the R 7 groups at the 3 and 4 positions on each Cp ring of Formula IV are not hydrogen);
  • R2 a T is a bridging group, preferably T comprises C, Si, or Ge, preferably Si;
  • each R a is, independently, hydrogen, halogen or a C j to C20 hydrocarbyl, such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, phenyl, benzyl, substituted phenyl, and two R a can form a cyclic structure including aromatic, partially saturated, or saturated cyclic or fused ring system; and
  • any two adjacent R groups may form a fused ring or multicenter fused ring system where the rings may be aromatic, partially saturated or saturated.
  • At least one R 4 group is not hydrogen, alternately at least two R 4 groups are not hydrogen, alternately at least three R 4 groups are not hydrogen, alternately at least four R 4 groups are not hydrogen, alternately all R 4 groups are not hydrogen.
  • the bridging group T includes bridging groups containing at least one Group 13 to 16 atom, often referred to as a divalent moiety, such as, but not limited to, at least one of a carbon, oxygen, nitrogen, silicon, aluminum, boron, germanium and tin atom, or a combination thereof.
  • bridging group T contains a carbon, silicon or germanium atom, most preferably, T contains at least one silicon atom or at least one carbon atom.
  • the bridging group T may also contain substituent groups R* as defined below including halogens and iron.
  • Non-limiting examples of substituent groups R* include one or more from the group selected from hydrogen, or linear, or branched alkyl radicals, alkenyl radicals, alkynyl radicals, cycloalkyl radicals, aryl radicals, acyl radicals, aryl radicals, alkoxy radicals, aryloxy radicals, alkylthio radicals, dialkylamino radicals, alkoxycarbonyl radicals, aryloxycarbonyl radicals, carbomoyl radicals, alkyl- or dialkyl- carbamoyl radicals, acyloxy radicals, acylamino radicals, arylamino radicals, or combination thereof.
  • substituent groups R* have up to 50 non-hydrogen atoms, preferably from 1 to 30 carbon, that may also be substituted with halogens or heteroatoms, or the like.
  • alkyl substituents R* include methyl, ethyl, propyl, butyl, pentyl, hexyl, cyclopentyl, cyclohexyl, benzyl or phenyl groups, and the like, including all their isomers, for example tertiary butyl, isopropyl, and the like.
  • hydrocarbyl radicals include fluoromethyl, fluoroethyl, difluoroethyl, iodopropyl, bromohexyl, chlorobenzyl, and hydrocarbyl substituted organometalloid radicals including trimethylsilyl, trimethylgermyl, methyldiethylsilyl, and the like; and halocarbyl-substituted organometalloid radicals including tris(trifluoromethyl)silyl, methyl-bis(difluoromethyl)silyl, bromomethyldimethylgermyl, and the like; and disubstituted boron radicals including dimethylboron, for example; and disubstituted pnictogen radicals including dimethylamine, dimethylphosphine, diphenylamine, methylphenylphosphine, chalcogen radicals including methoxy, ethoxy, propoxy, phenoxy, methylsulfide, and ethy
  • Non-hydrogen substituents R* include the atoms carbon, silicon, boron, aluminum, nitrogen, phosphorous, oxygen, tin, sulfur, germanium, and the like, including olefins, such as, but not limited to, olefinically unsaturated substituents including vinyl-terminated ligands, for example, but-3- enyl, prop-2-enyl, hex-5-enyl, and the like. Also, in some embodiments, at least two R* groups, preferably two adjacent R groups, are joined to form a ring structure having from 3 to 30 atoms selected from carbon, nitrogen, oxygen, phosphorous, silicon, germanium, aluminum, boron, or a combination thereof.
  • R* may also be a diradical bonded to L at one end and forming a carbon sigma bond to the metal M.
  • Particularly preferred R* substituent groups include a Q to C30 hydrocarbyl, a heteroatom or heteroatom containing group (preferably methyl, ethyl, propyl (including isopropyl, sec- propyl), butyl (including t-butyl and sec -butyl), neopentyl, cyclopentyl, hexyl, octyl, nonyl, decyl, phenyl, substituted phenyl, benzyl (including substituted benzyl), cyclohexyl, cyclododecyl, norbornyl, and all isomers thereof.
  • the bridging group comprises carbon or silica, such as dialkylsilyl, preferably the bridging group is selected from CH 2 , CH 2 CH 2 , C(CH 3 ) 2 , SiMe 2 , SiPh 2 , SiMePh, silylcyclobutyl (Si(CH 2 ) 3 , (Ph) 2 C, (p-(Et) 3 SiPh) 2 C and silylcyclopentyl (Si(CH 2 ) 4 ).
  • the bridging group is selected from CH 2 , CH 2 CH 2 , C(CH 3 ) 2 , SiMe 2 , SiPh 2 , SiMePh, silylcyclobutyl (Si(CH 2 ) 3 , (Ph) 2 C, (p-(Et) 3 SiPh) 2 C and silylcyclopentyl (Si(CH 2 ) 4 ).
  • Catalyst compounds that are particularly useful in this invention include one or more of:
  • hafniumdimethyl hafniumdimethyl, and dicyclopropylsilylbis(tetramethylcyclopentadienyl)hafniumdimethyl.
  • the "dimethyl" after the transition metal in the list of catalyst compounds above is replaced with a dihalide (such as dichloride or difluoride) or a bisphenoxide, particularly for use with an alumoxane activator.
  • a dihalide such as dichloride or difluoride
  • a bisphenoxide particularly for use with an alumoxane activator.
  • M is hafnium or zirconium, preferably hafnium
  • each X is, independently, selected from the group consisting of a substituted or unsubstituted hydrocarbyl radicals having from 1 to 20 carbon atoms, hydrides, amides, alkoxides, sulfides, phosphides, halides, dienes, amines, phosphines, ethers, and a combination thereof (two X's may form a part of a fused ring or a ring system); preferably each X is independently selected from halides and to hydrocarbyl groups, preferably each X is methyl, ethyl, propyl, butyl, phenyl, benzyl, chloride, bromide, or iodide; each R 8 is, independently, a substituted or unsubstituted C to C Q alkyl group; preferably methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octy
  • each R 10 is hydrogen
  • each R 1 1 , R 12 , and R 13 is, independently, hydrogen or a substituted or unsubstituted hydrocarbyl group, a heteroatom or heteroatom containing group; preferably each
  • R 1 1 , R 12 , and R 13 is hydrogen
  • T is a bridging group represented by the formula R 2 a J where J is C, Si, or Ge, preferably Si; each R a is, independently, hydrogen, halogen or a to C 20 hydrocarbyl, such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, phenyl, benzyl, substituted phenyl, and two R a can form a cyclic structure including aromatic, partially saturated, or saturated cyclic, or fused ring system;
  • any two adjacent R groups may form a fused ring or multicenter fused ring system where the rings may be aromatic, partially saturated or saturated.
  • T may also be a bridging group as defined above;
  • any of adjacent R 1 1 , R 12 , and R 13 groups may form a fused ring or multicenter fused ring system where the rings may be aromatic, partially saturated or saturated.
  • Metallocene compounds that are particularly useful in this invention include one or more of:
  • the "dimethyl" after the transition metal in the list of catalyst compounds above is replaced with a dihalide (such as dichloride or difluoride) or a bisphenoxide, particularly for use with an alumoxane activator.
  • a dihalide such as dichloride or difluoride
  • a bisphenoxide particularly for use with an alumoxane activator.
  • the metallocene compound is rac-dimethylsilylbis(2- methyl,3-propylindenyl)hafniumdimethyl (V-I), rac-dimethylsilylbis(2-methyl,3- propylindenyl)zirconiumdimethyl (V-II), represented by the formulae below:
  • the metallocene may be represented by Formula VI, below.
  • M is hafnium or zirconium
  • each X is, independently, selected from the group consisting of hydrocarbyl radicals having from 1 to 20 carbon atoms, hydrides, amides, alkoxides, sulfides, phosphides, halogens, dienes, amines, phosphines, ethers, or a combination thereof;
  • each R 15 and R 17 are, independently, a to Cg alkyl group; preferably a Q to Cg linear alkyl group, preferably methyl ethyl, propyl, butyl, pentyl, hexyl, heptyl or octyl, R 15 may be the same or different as R 17 , and preferably are both methyl; and
  • each Rl6, Rl8, R 19 ; R 20 ; R 21 ; R 22 ; R 23 ; R 24 ; R 25 ; R 26 ; R 27 ; and R 28 ar ⁇ independently, hydrogen, or a substituted or unsubstituted hydrocarbyl group having from 1 to 8 carbon atoms; preferably 1 to 6 carbon atoms, preferably a substituted or unsubstituted to Cg linear alkyl group, preferably methyl ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, provided however that at least three of R 24 -R 28 groups are not hydrogen (alternately four of R 24_ R 28 groups are not hydrogen, alternately five of R 24 -R 28 groups are not hydrogen).
  • R 24 -R 28 are methyl, and/or four of the R 24 -R 28 groups are not hydrogen and at least one of the R 24 -R 28 groups is a C 2 to Cg substituted or unsubstituted hydrocarbyl (preferably at least two, three, four or five of R 24 -R 28 groups are a C 2 to Cg substituted or unsubstituted hydrocarbyl).
  • R 15 and R 17 are methyl groups
  • R 16 is a hydrogen
  • R 18 -R 23 are all hydrogens
  • R 24 -R 28 are all methyl groups
  • each X is a methyl group.
  • Catalyst compounds that are particularly useful in this invention include:
  • the "dimethyl" (Me 2 ) after the transition metal in the list of catalyst compounds above is replaced with a dihalide (such as dichloride or difluoride) or a bisphenoxide, particularly for use with an alumoxane activator.
  • a dihalide such as dichloride or difluoride
  • a bisphenoxide particularly for use with an alumoxane activator.
  • activator is used herein interchangeably and are defined to be any compound which can activate any one of the catalyst compounds described above by converting the neutral catalyst compound to a catalytically active catalyst compound cation.
  • Non-limiting activators include alumoxanes, aluminum alkyls, ionizing activators, which may be neutral or ionic, and conventional-type cocatalysts.
  • Preferred activators typically include alumoxane compounds, modified alumoxane compounds, and ionizing anion precursor compounds that abstract one reactive, ⁇ -bound, metal ligand making the metal complex cationic and providing a charge-balancing noncoordinating or weakly coordinating anion.
  • the activator is an alumoxane (modified or unmodified)
  • some embodiments select the maximum amount of activator at a 5000-fold molar excess Al/M over the catalyst precursor (per metal catalytic site).
  • the minimum activator-to-catalyst-precursor is a 1 : 1 molar ratio. Alternate preferred ranges include up to 500: 1, alternately up to 200: 1, alternately up to 100: 1 alternately from 1 : 1 to 50: 1. In a preferred embodiment, little or no alumoxane is used in the process to produce the VT-HO polymers.
  • alumoxane is present at zero mol%, alternately the alumoxane is present at a molar ratio of aluminum to transition metal less than 500: 1, preferably less than 300: 1, preferably less than 100: 1, preferably less than 1 : 1.
  • the alumoxane has been treated to remove free alkyl aluminum compounds, particularly trimethyl aluminum.
  • the activator used herein to produce the VT-HO polymers is discrete.
  • Aluminum alkyl or organoaluminum compounds which may be utilized as co- activators (or scavengers) include trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-hexylaluminum, tri-n-octylaluminum, and the like.
  • scavenger is present at zero mol%, alternately the scavenger is present at a molar ratio of scavenger metal to transition metal of less than 100: 1, preferably less than 50: 1, preferably less than 15: 1, preferably less than 10: 1.
  • an ionizing or stoichiometric activator such as tri (n-butyl) ammonium tetrakis (pentafluorophenyl) borate, a tris perfluorophenyl boron metalloid precursor, or a tris perfluoronapthyl boron metalloid precursor, polyhalogenated heteroborane anions (WO 98/43983), boric acid (U.S. Patent No. 5,942,459), or combination thereof.
  • neutral or ionic activators alone or in combination with alumoxane or modified alumoxane activators. Much preferred activators are the ionic ones, not the neutral boranes.
  • Examples of neutral stoichiometric activators include tri-substituted boron, tellurium, aluminum, gallium and indium or mixtures thereof.
  • the three substituent groups are each independently selected from alkyls, alkenyls, halogens, substituted alkyls, aryls, arylhalides, alkoxy, and halides.
  • the three groups are independently selected from halogen, mono or multicyclic (including halosubstituted) aryls, alkyls, and alkenyl compounds, and mixtures thereof, preferred are alkenyl groups having 1 to 20 carbon atoms, alkyl groups having 1 to 20 carbon atoms, alkoxy groups having 1 to 20 carbon atoms, and aryl groups having 3 to 20 carbon atoms (including substituted aryls). More preferably, the three groups are alkyls having 1 to 4 carbon groups, phenyl, napthyl, or mixtures thereof. Even more preferably, the three groups are halogenated, preferably fluorinated, aryl groups. Most preferably, the neutral stoichiometric activator is tris perfluorophenyl boron or tris perfluoronapthyl boron.
  • Ionic stoichiometric activator compounds may contain an active proton, or some other cation associated with, but not coordinated to, or only loosely coordinated to, the remaining ion of the ionizing compound.
  • Ionic catalysts can be preparedly reacting a transition metal compound with some neutral Lewis acids, such as Bf ⁇ F ⁇ , which upon reaction with the hydrolyzable ligand (X) of the transition metal compound forms an anion, such as ([B(C6F5)3(X)] " ), which stabilizes the cationic transition metal species generated by the reaction.
  • the catalysts can be, and preferably are, prepared with activator components which are ionic compounds or compositions.
  • Compounds useful as an activator component in the preparation of the ionic catalyst systems used in the process of this invention comprise a cation, which is preferably a Bronsted acid capable of donating a proton, and a compatible non-coordinating anion which anion is relatively large (bulky), capable of stabilizing the active catalyst species (the Group 4 cation) which is formed when the two compounds are combined and said anion will be sufficiently labile to be displaced by olefinic, diolefinic and acetylenically unsaturated substrates or other neutral Lewis bases, such as ethers, amines, and the like.
  • a cation which is preferably a Bronsted acid capable of donating a proton
  • a compatible non-coordinating anion which anion is relatively large (bulky)
  • the active catalyst species the Group 4 cation
  • the stoichiometric activators include a cation and an anion component, and may be represented by the following formula:
  • L is an neutral Lewis base
  • H is hydrogen
  • (L-H) + is a Bronsted acid
  • a d " is a non- coordinating anion having the charge d-
  • d is 1, 2, or 3.
  • the cation component, (L-H) d + may include Bronsted acids such as protonated Lewis bases capable of protonating a moiety, such as an alkyl or aryl, from the bulky ligand metallocene containing transition metal catalyst precursor, resulting in a cationic transition metal species.
  • the activating cation (L-H) ⁇ "1" may be a Bronsted acid, capable of donating a proton to the transition metal catalytic precursor resulting in a transition metal cation, including ammoniums, oxoniums, phosphoniums, silyliums, and mixtures thereof, preferably ammoniums of methylamine, aniline, dimethylamine, diethylamine, N-methylaniline, diphenylamine, trimethylamine, triethylamine, ⁇ , ⁇ -dimethylaniline, methyldiphenylamine, pyridine, p-bromo ⁇ , ⁇ -dimethylaniline, p-nitro-N,N-dimethylaniline, phosphoniums from triethylphosphine, triphenylphosphine, and diphenylphosphine, oxoniums from ethers, such as dimethyl ether diethyl ether, tetrahydrofuran,
  • each Q is a fluorinated hydrocarbyl group having 1 to 20 carbon atoms, more preferably each Q is a fluorinated aryl group, and most preferably each Q is a pentafluoryl aryl group.
  • suitable A d also include diboron compounds as disclosed in U.S. Patent No. 5,447,895, which is fully incorporated herein by reference.
  • tripropylammonium tetraphenylborate tri(n-butyl)ammonium tetraphenylborate, tri(t- butyl)ammonium tetraphenylborate, ⁇ , ⁇ -dimethylanilinium tetraphenylborate, N,N- diethylanilinium tetraphenylborate, N,N-dimethyl-(2,4,6-trimethylanilinium)
  • tetraphenylborate tropillium tetraphenylborate, triphenylcarbenium tetraphenylborate, triphenylphosphonium tetraphenylborate triethylsilylium tetraphenylborate, benzene(diazonium)tetraphenylborate, trimethylammonium
  • the ionic stoichiometric activator (L-H) ⁇ "1" is, N,N- dimethylanilinium tetrakis(perfluoronaphthyl)borate, N,N-dimethylanilinium tetrakis(perfluorobiphenyl)borate, ⁇ , ⁇ -dimethylanilinium tetrakis(3,5- bis(trifluoromethyl)phenyl)borate, triphenylcarbenium tetrakis(perfluoronaphthyl)borate, triphenylcarbenium tetrakis(perfluorobiphenyl)borate, triphenylcarbenium tetrakis(3,5- bis(trifluoromethyl)phenyl)borate, or triphenylcarbenium tetrakis(perfluorophenyl)borate.
  • an activation method using ionizing ionic compounds not containing an active proton but capable of producing a bulky ligand metallocene catalyst cation and their non-coordinating anion are also contemplated, and are described in EP 0 426 637 A, EP 0 573 403 A, and U.S. Patent No. 5,387,568.
  • non-coordinating anion means an anion which either does not coordinate to said cation or which is only weakly coordinated to said cation thereby remaining sufficiently labile to be displaced by a neutral Lewis base.
  • “Compatible” non- coordinating anions are those which are not degraded to neutrality when the initially formed complex decomposes. Further, the anion will not transfer an anionic substituent or fragment to the cation so as to cause it to form a neutral four coordinate metallocene compound and a neutral by-product from the anion.
  • Non-coordinating anions useful in accordance with this invention are those that are compatible, stabilize the metallocene cation in the sense of balancing its ionic charge at +1, yet retain sufficient lability to permit displacement by an ethylenically or acetylenically unsaturated monomer during polymerization.
  • scavengers are used such as tri-isobutyl aluminum or tri-octyl aluminum.
  • Inventive processes also can employ cocatalyst compounds or activator compounds that are initially neutral Lewis acids but form a cationic metal complex and a noncoordinating anion, or a zwitterionic complex upon reaction with the invention compounds.
  • tris(pentafluorophenyl) boron or aluminum act to abstract a hydrocarbyl or hydride ligand to yield an invention cationic metal complex and stabilizing noncoordinating anion, see EP 0 427 697 A and EP 0 520 732 A for illustrations of analogous Group-4 metallocene compounds.
  • EP 0 495 375 A for formation of zwitterionic complexes using analogous Group 4 compounds.
  • the typical NCA(or any non-alumoxane activator) activator-to-catalyst ratio is a 1 : 1 molar ratio.
  • Alternate preferred ranges include from 0.1 : 1 to 100: 1, alternately from 0.5: 1 to 200: 1, alternately from 1 : 1 to 500: 1 alternately from 1 : 1 to 1000: 1.
  • a particularly useful range is from 0.5: 1 to 10: 1, preferably 1 : 1 to 5: 1.
  • Bulky activator refers to anionic activators represented by the formula:
  • each R 1 is, independently, a halide, preferably a fluoride
  • each R 2 is, independently, a halide, a to C20 substituted aromatic hydrocarbyl group or a siloxy group of the formula -0-Si-R a , where R a is a Q to C20 hydrocarbyl or hydrocarbylsilyl group (preferably R2 is a fluoride or a perfluorinated phenyl group)
  • each R3 is a halide, to C20 substituted aromatic hydrocarbyl group or a siloxy group of the formula -0-Si-R a , where R a is a Q to C20 hydrocarbyl or hydrocarbylsilyl group (preferably R3 is a fluoride or a perfluorinated aromatic hydrocarbyl group); wherein R2 and R3 can form one or more saturated or unsaturated, substituted or unsubstituted rings (preferably R2 and R3 form a perfluorinated
  • L is an neutral Lewis base
  • (L-H) + is a Bronsted acid
  • d is 1, 2, or 3;
  • anion has a molecular weight of greater than 1020 g/mole
  • Aluminum alkyl or organoaluminum compounds which may be utilized as co- activators (or scavengers) include, for example, trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-hexylaluminum, and tri-n-octylaluminum.
  • the catalyst system may comprise an inert support material.
  • the supported material is a porous support material, for example, talc, and inorganic oxides.
  • Other support materials include zeolites, clays, organoclays, or any other organic or inorganic support material and the like, or mixtures thereof.
  • the support material is an inorganic oxide in a finely divided form.
  • Suitable inorganic oxide materials for use in metallocene catalyst systems herein include Groups 2, 4, 13, and 14 metal oxides such as silica, alumina and mixtures thereof.
  • Other inorganic oxides that may be employed either alone or in combination with the silica, or alumina are magnesia, titania, zirconia, and the like.
  • Other suitable support materials can be employed, for example, finely divided functionalized polyolefins such as finely divided polyethylene.
  • Particularly useful supports include magnesia, titania, zirconia, montmorillonite, phyllosilicate, zeolites, talc, clays, and the like. Also, combinations of these support materials may be used, for example, silica-chromium, silica-alumina, silica-titania and the like.
  • Preferred support materials include AI2O3, Zr02, S1O2, and combinations thereof, more preferably S1O2, AI2O3, or S1O2/AI2O3.
  • the support material should be dry, that is, free of absorbed water. Drying of the support material can be effected by heating or calcining at 100°C to 1000°C, preferably at least 600°C.
  • the support material When the support material is silica, it is heated to at least 200°C, preferably 200°C to 850°C, and most preferably at 600°C; and for a time of 1 minute to 100 hours, from 12 hours to 72 hours, or from 24 hours to 60 hours.
  • the calcined support material must have at least some reactive hydroxyl (OH) groups to produce the catalyst system of this invention.
  • the calcined support material is then contacted with at least one polymerization catalyst comprising at least one metallocene compound and an activator.
  • 13 C NMR data was collected at 120°C at a frequency of at least 100 MHz, using a Bruker 400 MHz NMR spectrometer.
  • the spectra were acquired with time averaging to provide a signal to noise level adequate to measure the signals of interest.
  • Samples were dissolved in tetrachloroethane-d2 at concentrations between 10 to 15 wt% prior to being inserted into the spectrometer magnet.
  • !fi NMR data was collected at either room temperature or 120°C (for purposes of the claims, 120°C shall be used) in a 5 mm probe using a Varian spectrometer with a frequency of at least 250 MHz. Data was recorded using a maximum pulse width of 45°C, 8 seconds between pulses and signal averaging 120 transients. Spectral signals were integrated and the number of unsaturation types per 1000 carbons was calculated by multiplying the different groups by 1000 and dividing the result by the total number of carbons. Mn was calculated by dividing the total number of unsaturated species into 14,000, and has units of g/mol.
  • the chemical shift regions for the olefin types are defined to be between the following spectral regions.
  • Viscosity was measured using a Brookfield Digital Viscometer.
  • Triisobutyl aluminum (TIBAL) was obtained from Akzo Chemicals, Inc. (Chicago, IL) and used without further purification.
  • Tri n-octyl aluminum (TNOAL) was obtained from Akzo Chemicals, Inc. and used without further purification.
  • Metallocenes E and F were synthesized as indicated below.
  • Compound 7 (rac-dimethylsilylbis(2-methyl,3-propylindenyl) hafnium dimethyl) was collected as a first crop of crystals (pure rac-7, 0.6 g, 16%) and as a second crop (5% meso-7 and 95% rac-7, 0.7 g, 19%).
  • Compound 7 l H NMR (CD 2 C1 2 , 500 MHz) 8 ppm; 7.4 (d), 7.3 (d), 7.08 (t), 6.75 (t), 2.68 to 2.22 (complex m), 1.87 (s), 1.41 (m), 0.97 (s), 0.81 (t), -1.95 (s).
  • [Li][Benz[e]indene] was generated in ether by the reaction of 3H-Benz[e]indene (12.0 g, 0.072 mol) with 1.1 equivalents of n-BuLi (7.90 mLs of 10 M/hexane, 0.079 mol) which was added slowly. After 2 hours, the [Li][Benz[e]indene] was isolated by removal of the ether under vacuum. The residue was triturated with hexane to give an off-white solid.
  • [00135] Similarly, [Li][methylbenz[e]indene] was generated in ether by the reaction of the isomer mix of 3-methyl-3H-benz[e]indene and l-methyl-lH-benz[e]indene (7.58 g, 0.041 mol) with 1.1 equivalents of n-BuLi (4.45 mLs of 10 M/hexane, 0.045 mol) which was added slowly. After 2 hours, the [Li][methylbenz[e]indene] was isolated by removal of the ether under vacuum. The residue was triturated with hexane to give an off-white solid.
  • [Li][l,3-Dimethylbenz[e]indene] was generated in ether by the reaction of the dimethylbenzindene isomer mixture above (6.63 g, 0.034 mol) with 1.1 equivalents of n-BuLi (3.74 mLs of 10 M/hexane, 0.037 mol) which was added slowly. After 2 hours, the [Li][l,3-Dimethylbenz[e]indene] was isolated by removal of the ether under vacuum. The residue was triturated with hexane to give an off-white solid.
  • Metallocenes A, B, and C were used in the examples below.
  • a 2.0 gram amount of 1-decene was placed in a 125 ml pressurized reaction vessel equipped with a magnetic stir bar and a 5.0 milligram amount of l,3-bis(2,4,6- trimethylphenyl)-4,5-dihydro-2-yliddene[2-(i-propoxy)-5-(N,N- dimethylaminosulfonyl)phenyl]methylene ruthenium(II) dichloride.
  • the solution was put in a bath of liquid nitrogen and placed under vacuum. 13 C labeled ethylene (500 mis, 1 atm) was condensed into the pressurized reaction vessel. The liquid nitrogen bath was removed.
  • the bottle was heated to 50°C with stirring for two hours.
  • the bottle was depressurized, and the solution was filtered through a gram of silica to remove the catalyst residue.
  • the 1-decene was distilled via short path distillation. Separation of the homometathesis product, 9-octadecene, was not obtained, (approximately 30 mol%, by NMR).
  • a NMR of the sample revealed approximately 60% incorporation of 13 C label.
  • a solution of activated catalyst was prepared by combining 15 mgs of Metallocene E with 32 mgs of dimethylaniliniumtetrakis(perfluoronaphthyl)borate in 7.0 grams of toluene.
  • the activated metallocene solution (100 mgs) was added to 10.0 grams of 1-decene in a 20 ml scintillation vial which had been preheated to 85°C and contained two drops of TIBAL. After two hours, unreacted 1-decene was removed under a stream of nitrogen. Yield of poly( 1-decene) was 8.3 grams.
  • the inventors have surprisingly produced vinyl terminated octene/hexene copolymers, in the absence of propylene.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

La présente invention concerne des polymères d'oléfines supérieures à terminaison vinyle ayant un Mn d'au moins 200 g/mol (mesuré par RMN 1H) comprenant un ou plusieurs motifs dérivés d'oléfines supérieures C4 à C40, le polymère d'oléfine supérieure à terminaison vinyle ne comprenant sensiblement aucun motif dérivé du propylène ; et le polymère d'oléfine supérieure ayant au moins 5 % d'extrémité de chaîne allylique et des procédés pour leur production. Ces polymères à terminaison vinyle peuvent facultativement comprendre des motifs dérivés de l'éthylène.
PCT/US2013/060953 2012-09-27 2013-09-20 Polymères à terminaison vinyle et procédé de production associé WO2014052200A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380034581.4A CN104428326A (zh) 2012-09-27 2013-09-20 乙烯基封端聚合物及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/628,296 2012-09-27
US13/628,296 US8841397B2 (en) 2011-03-25 2012-09-27 Vinyl terminated higher olefin polymers and methods to produce thereof

Publications (1)

Publication Number Publication Date
WO2014052200A1 true WO2014052200A1 (fr) 2014-04-03

Family

ID=50388881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/060953 WO2014052200A1 (fr) 2012-09-27 2013-09-20 Polymères à terminaison vinyle et procédé de production associé

Country Status (2)

Country Link
CN (1) CN104428326A (fr)
WO (1) WO2014052200A1 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018067289A1 (fr) * 2016-10-05 2018-04-12 Exxonmobil Chemical Patents Inc. Métallocènes à encombrement stérique, synthèse et utilisation
US10501642B2 (en) 2014-12-04 2019-12-10 Exxonmobil Chemical Patents Inc. Stable star-structured functional polyolefins
WO2020046900A1 (fr) * 2018-08-29 2020-03-05 Exxonmobil Chemical Patents Inc. Composés métallocènes ayant des acides de lewis annexés et polymérisation avec ceux-ci
WO2020060690A1 (fr) * 2018-09-17 2020-03-26 Exxonmobil Chemical Patents Inc. Catalyseurs métallocènes sélectifs de dimères et procédés de production de dimères de poly alpha-oléfines
CN111868106A (zh) * 2018-02-12 2020-10-30 埃克森美孚化学专利公司 用于具有高乙烯叉基含量的聚α-烯烃的催化剂体系及方法
US10882932B2 (en) 2016-10-05 2021-01-05 Exxonmobil Chemical Patents Inc. Sterically hindered metallocenes, synthesis and use
US11021553B2 (en) 2018-02-12 2021-06-01 Exxonmobil Chemical Patents Inc. Metallocene dimer selective catalysts and processes to produce poly alpha-olefin dimers
US11078308B2 (en) 2018-02-12 2021-08-03 Exxonmobil Chemical Patents Inc. Processes to produce poly alpha-olefin trimers
US11186601B2 (en) 2018-08-29 2021-11-30 Exxonmobil Chemical Patents Inc. Metallocene compounds having appended Lewis acids and polymerization therewith

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201901900SA (en) * 2016-10-05 2019-04-29 Exxonmobil Chemical Patents Inc Sterically hindered metallocenes, synthesis and use
EP3810666A1 (fr) * 2018-06-19 2021-04-28 ExxonMobil Chemical Patents Inc. Compositions de polyéthylène et films préparés à partir de celles-ci

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040171750A1 (en) * 2001-06-28 2004-09-02 Hironari Nakabayashi Thermoplastic elastomer composition
US20090318644A1 (en) * 2008-06-20 2009-12-24 Patrick Brant High Vinyl Terminated Propylene Based Oligomers

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2071709T3 (es) * 1989-07-26 1995-07-01 Union Carbide Chem Plastic Composiciones resistentes a caminos conductores.
US5696213A (en) * 1995-04-21 1997-12-09 Exxon Chemical Patents Inc. Ethylene-α-olefin-diolefin elastomers solution polymerization process
BR9806952A (pt) * 1997-02-07 2000-03-21 Exxon Chemical Patents Inc Preparação de macrÈmeros contendo vinila.
CA2343768A1 (fr) * 1998-10-23 2000-05-04 Exxonmobil Chemical Patents Inc. Procede de copolymerisation olefinique avec des hafnocenes pontes
US7795365B2 (en) * 2002-10-02 2010-09-14 Dow Global Technologies Inc. Liquid and gel-like low molecular weight ethylene polymers
CN101326204B (zh) * 2005-12-06 2012-07-04 埃克森美孚化学专利公司 烯烃聚合方法
US8399725B2 (en) * 2008-06-20 2013-03-19 Exxonmobil Chemical Patents Inc. Functionalized high vinyl terminated propylene based oligomers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040171750A1 (en) * 2001-06-28 2004-09-02 Hironari Nakabayashi Thermoplastic elastomer composition
US20090318644A1 (en) * 2008-06-20 2009-12-24 Patrick Brant High Vinyl Terminated Propylene Based Oligomers

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHERIAN, A. E. ET AL.: "Synthesis of Allyl-Terminated Syndiotactic Polypropylene: Macromonomers for the Synthesis of Branched Polyolefins", MACROMOLECULES, vol. 38, 2005, pages 6259 - 6268 *
XU, G. ET AL.: "Ethylene Copolymerization with 1-Octene Using a 2-Methylbenz[e]indenyl-Based ansa-Monocyclopentadienylamido Complex and Methylaluminoxanes Catalyst", MACROMOLECULES, vol. 31, 1998, pages 4724 - 4729 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11053396B2 (en) 2014-12-04 2021-07-06 Exxonmobil Chemical Patents Inc. Stable star-structured functional polyolefins
US10501642B2 (en) 2014-12-04 2019-12-10 Exxonmobil Chemical Patents Inc. Stable star-structured functional polyolefins
US10882932B2 (en) 2016-10-05 2021-01-05 Exxonmobil Chemical Patents Inc. Sterically hindered metallocenes, synthesis and use
WO2018067289A1 (fr) * 2016-10-05 2018-04-12 Exxonmobil Chemical Patents Inc. Métallocènes à encombrement stérique, synthèse et utilisation
CN111868106A (zh) * 2018-02-12 2020-10-30 埃克森美孚化学专利公司 用于具有高乙烯叉基含量的聚α-烯烃的催化剂体系及方法
US11021553B2 (en) 2018-02-12 2021-06-01 Exxonmobil Chemical Patents Inc. Metallocene dimer selective catalysts and processes to produce poly alpha-olefin dimers
US11028197B2 (en) 2018-02-12 2021-06-08 Exxonmobil Chemical Patents Inc. Processes to produce poly alpha-olefin trimer and apparatus therefor
US11078308B2 (en) 2018-02-12 2021-08-03 Exxonmobil Chemical Patents Inc. Processes to produce poly alpha-olefin trimers
US11084894B2 (en) 2018-02-12 2021-08-10 Exxonmobil Chemical Patents Inc. Catalyst systems and processes for poly alpha-olefin having high vinylidene content
CN111868106B (zh) * 2018-02-12 2023-02-17 埃克森美孚化学专利公司 用于具有高乙烯叉基含量的聚α-烯烃的催化剂体系及方法
WO2020046900A1 (fr) * 2018-08-29 2020-03-05 Exxonmobil Chemical Patents Inc. Composés métallocènes ayant des acides de lewis annexés et polymérisation avec ceux-ci
US11186601B2 (en) 2018-08-29 2021-11-30 Exxonmobil Chemical Patents Inc. Metallocene compounds having appended Lewis acids and polymerization therewith
WO2020060690A1 (fr) * 2018-09-17 2020-03-26 Exxonmobil Chemical Patents Inc. Catalyseurs métallocènes sélectifs de dimères et procédés de production de dimères de poly alpha-oléfines
WO2020060691A1 (fr) * 2018-09-17 2020-03-26 Exxonmobil Chemical Patents Inc. Procédé de production de trimères poly alpha-oléfines

Also Published As

Publication number Publication date
CN104428326A (zh) 2015-03-18

Similar Documents

Publication Publication Date Title
US8426659B2 (en) Vinyl terminated higher olefin polymers and methods to produce thereof
US11492425B2 (en) Metallocene catalyst compositions and polymerization process therewith
US8841397B2 (en) Vinyl terminated higher olefin polymers and methods to produce thereof
US8399724B2 (en) Vinyl terminated higher olefin copolymers and methods to produce thereof
US8455597B2 (en) Catalysts and methods of use thereof to produce vinyl terminated polymers
US8981029B2 (en) Branched vinyl terminated polymers and methods for production thereof
US8658556B2 (en) Catalyst systems comprising multiple non-coordinating anion activators and methods for polymerization therewith
US8653209B2 (en) High vinyl terminated propylene based oligomers
US8993702B2 (en) Enhanced catalyst performance for production of vinyl terminated propylene and ethylene/propylene macromers
WO2014052200A1 (fr) Polymères à terminaison vinyle et procédé de production associé
JP5793820B2 (ja) 分枝ビニル末端ポリマー及びその製造方法
WO2012134721A2 (fr) Polymères d'oléfines supérieures à terminaison vinylique et procédés pour les préparer
JP5848815B2 (ja) ビニル末端型ポリマーを製造するための新規な触媒およびその使用方法
EP2718012A2 (fr) Systèmes de catalyseurs comprenant de multiples activateurs anions non coordinants et procédés de polymérisation à l'aide de ces systèmes de catalyseurs
JP5739054B2 (ja) ビニル末端高級オレフィンコポリマーおよびその生成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13841024

Country of ref document: EP

Kind code of ref document: A1