WO2014050902A1 - Organic thin film solar cell - Google Patents

Organic thin film solar cell Download PDF

Info

Publication number
WO2014050902A1
WO2014050902A1 PCT/JP2013/075931 JP2013075931W WO2014050902A1 WO 2014050902 A1 WO2014050902 A1 WO 2014050902A1 JP 2013075931 W JP2013075931 W JP 2013075931W WO 2014050902 A1 WO2014050902 A1 WO 2014050902A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
solar cell
thin film
organic thin
film solar
Prior art date
Application number
PCT/JP2013/075931
Other languages
French (fr)
Japanese (ja)
Inventor
川田 敦志
Original Assignee
新日鉄住金化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金化学株式会社 filed Critical 新日鉄住金化学株式会社
Priority to JP2014538538A priority Critical patent/JPWO2014050902A1/en
Publication of WO2014050902A1 publication Critical patent/WO2014050902A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0008Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain
    • C09B23/005Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain the substituent being a COOH and/or a functional derivative thereof
    • C09B23/0058Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain the substituent being a COOH and/or a functional derivative thereof the substituent being CN
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0075Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain being part of an heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/14Styryl dyes
    • C09B23/148Stilbene dyes containing the moiety -C6H5-CH=CH-C6H5
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to an organic thin film solar cell obtained by using a novel organic thin film solar cell material.
  • a high temperature process and a high vacuum process are indispensable for forming a thin film. Since a high temperature process is required, a thin film of silicon cannot be formed on a plastic substrate or the like, and it has been difficult to impart flexibility and weight reduction to a product incorporating a semiconductor element. In addition, since a high vacuum process is required, it is difficult to increase the area and cost of a product incorporating a semiconductor element.
  • organic semiconductor devices for example, organic electroluminescence (organic EL) elements, organic thin film transistor elements, or organic thin film solar cells
  • organic semiconductor materials can significantly reduce the device manufacturing process temperature compared to inorganic semiconductor materials, they can be formed on a plastic substrate or the like.
  • organic semiconductor material having high solubility in a solvent and good film formability a thin film can be formed using a coating method that does not require a vacuum process, for example, an ink jet device, As a result, it is expected to realize an increase in area and cost, which has been difficult with a semiconductor element using silicon, which is an inorganic semiconductor material.
  • organic semiconductor materials are advantageous in terms of large area, flexibility, weight reduction, cost reduction, and the like compared to inorganic semiconductor materials.
  • Applications such as information tags, large-area sensors such as electronic artificial skin sheets and sheet-type scanners, liquid crystal displays, electronic paper, solar cells, organic EL panels, and other displays are expected.
  • organic thin-film solar cells have been studied with a single-layer film using a merocyanine dye or the like.
  • a merocyanine dye or the like From an n-type semiconductor layer composed of an n-semiconductor material that transports electrons and a p-type semiconductor material that transports holes. Since it has been found that conversion efficiency (photoelectric conversion efficiency) from light input to electrical output is improved by using a multilayer film having a p-type semiconductor layer, multilayer films have become mainstream.
  • the materials used when the multilayer film began to be studied were copper phthalocyanine (CuPc) as the p-type semiconductor material and peryleneimides (PTCBI) as the n-type semiconductor material.
  • CuPc copper phthalocyanine
  • PTCBI peryleneimides
  • the material of each layer has not progressed much since the early days, and phthalocyanine derivatives, peryleneimide derivatives, and C60 derivatives are still used. Therefore, in order to increase the photoelectric conversion efficiency, development of a new material replacing these conventional materials is eagerly desired.
  • p-type and n-type semiconductor materials preferable for organic thin film solar cells are required to have atmospheric stability, high charge transfer characteristics, and high light absorption characteristics in the visible light region. In order to give absorption in the visible light region in an organic compound, it is known that the ⁇ -electron conjugated structure may be enlarged to increase the absorption maximum wavelength.
  • An object of the present invention is to provide an organic thin-film solar cell using an organic thin-film solar cell material that solves the problems of the conventional techniques as described above.
  • the present invention uses an organic thin-film solar cell material represented by the following general formula (1) for the n-type semiconductor layer.
  • the present invention relates to a featured organic thin film solar cell.
  • L represents a divalent linking group selected from the group consisting of a substituted or unsubstituted ethylenediyl group, an acetylenediyl group, and a substituted or unsubstituted aromatic group
  • R 1 has 2 to 12 carbon atoms.
  • An acyl group, a cyano group, or a fluorine-substituted alkyl group having 1 to 12 carbon atoms is represented, and R 2 represents a halogen atom, a cyano group, or an acyl group having 2 to 12 carbon atoms.
  • m and n independently represent an integer of 1 to 5, and when m and n are 2 or more, L and R 1 may be the same or different.
  • L is selected from a substituted or unsubstituted ethylenediyl group, or a group obtained by removing two hydrogens from benzene, naphthalene, anthracene, thiophene, thienothiophene, furan, pyrrole, and thiazole. It is preferably a substituted or unsubstituted aromatic group.
  • R 1 is an acyl group having 2 to 6 carbon atoms, a cyano group, or a fluorine-substituted alkyl group having 1 to 6 carbon atoms
  • R 2 is a cyano group
  • m And n is preferably an integer of 1 to 5.
  • R 1 is preferably a fluorine-substituted alkyl group having 1 to 3 carbon atoms
  • R 2 is preferably a cyano group
  • m and n are integers of 1 to 2.
  • the material used for the n-type semiconductor layer of the organic thin film solar cell of the present invention has a conjugated structure that spreads over the entire molecular structure, its molecular orbitals also spread throughout the molecular structure. Since the three-dimensional structure has a feature of high planarity, packing between molecules becomes dense, and as a result, high charge transfer characteristics are exhibited. Furthermore, since it has the feature of high stability to air and moisture, when this material is used for organic thin film solar cells, it becomes possible to obtain organic thin film solar cells that exhibit high conversion efficiency, and its technology Target value is great.
  • Sectional drawing of one structural example of an organic thin-film solar cell is shown.
  • Sectional drawing of the other structural example of an organic thin film solar cell is shown.
  • the material used for the n-type semiconductor layer of the organic thin film solar cell of the present invention is a compound represented by the general formula (1).
  • L represents a divalent linking group, and is a substituted or unsubstituted ethylenediyl group, acetylenediyl group, or a substituted or unsubstituted aromatic group.
  • An ethylenediyl group and a substituted or unsubstituted aromatic group are preferable.
  • the aromatic group can be an aromatic hydrocarbon group, a condensed aromatic hydrocarbon group, an aromatic heterocyclic group, or a condensed aromatic heterocyclic group.
  • the aromatic group preferably has 3 to 30 carbon atoms, and more preferably 3 to 18 carbon atoms.
  • unsubstituted aromatic group examples include benzene, naphthalene, phenanthrene, anthracene, perylene, pyrene, chrysene, pentacene, phenazine, tetracene, triphenylene, picene, thiophene, furan, pyrrole, pyrazole, imidazole, triazole, oxazole.
  • a divalent group formed by removing two hydrogens from benzene, naphthalene, anthracene, thiophene, thienothiophene, furan, pyrrole, and thiazole can be used.
  • the acetylenediyl group, ethylenediyl group, and aromatic group can have a substituent, and the substituent is not limited as long as the performance of the solar cell material is not impaired, but the total number of substituents is preferably 0 to 4, more preferably 0-2.
  • Preferred substituents for the ethylenediyl group include halogen atoms such as fluorine, chlorine and bromine, alkyl groups having 1 to 12 carbon atoms, fluorine-substituted alkyl groups having 1 to 12 carbon atoms, alkoxycarbonyl groups having 2 to 12 carbon atoms, C2-C12 acyl group, C2-C12 fluorinated acyl group, C1-C12 alkylsulfonyl group, C1-C12 alkyloxysulfonyl group, C1-C12 fluorinated alkyl Examples include a sulfonyl group, an alkylaminocarbonyl group having 2 to 12 carbon atoms, a fluorinated alkylaminocarbonyl group having 2 to 12 carbon atoms, a nitro group, and a cyano group.
  • halogen atoms such as fluorine, chlorine and bromine
  • alkyl groups having 1 to 12 carbon atoms fluor
  • a halogen atom such as fluorine, chlorine or bromine, an alkyl group having 1 to 12 carbon atoms, a fluorine-substituted alkyl group having 1 to 12 carbon atoms, an acyl group having 2 to 12 carbon atoms, or fluorine having 2 to 12 carbon atoms.
  • the acetylenediyl group is represented by —C ⁇ C—.
  • the H of the ethylenediyl group can be substituted with the above substituent.
  • R 1 represents an acyl group having 2 to 12 carbon atoms, a cyano group, or a fluorine-substituted alkyl group having 1 to 12 carbon atoms.
  • the acyl group having 2 to 12 carbon atoms can have fluorine as a substituent.
  • a cyano group, a fluorine-substituted alkyl group having 1 to 6 carbon atoms, or an acyl group having 2 to 6 carbon atoms is preferable, and a fluorine-substituted alkyl group having 1 to 3 carbon atoms is more preferable.
  • R 2 represents a halogen atom, an acyl group having 2 to 12 carbon atoms, or a cyano group.
  • the halogen atom include fluorine, chlorine and bromine.
  • the acyl group having 2 to 12 carbon atoms can have fluorine as a substituent.
  • a cyano group and an acyl group having 2 to 12 carbon atoms are preferred, and a cyano group is more preferred.
  • m and n are integers of 1 to 5.
  • m is an integer from 1 to 4, and n is preferably 1.
  • m and n are 2 or more, m or n L or R 1 may be the same or different from each other.
  • a more preferable organic thin film solar cell material used for the n-type semiconductor layer of the organic thin film solar cell is represented by the general formula (1) in which R 1 is an acyl group having 2 to 6 carbon atoms, a cyano group, or 1 to 6 carbon atoms.
  • R 1 is an acyl group having 2 to 6 carbon atoms, a cyano group, or 1 to 6 carbon atoms.
  • a compound that is a fluorine-substituted alkyl group, R 2 is a cyano group, and m and n are integers of 1 to 5. More preferably, R 1 is a fluorine-substituted alkyl group having 1 to 3 carbon atoms, R 2 is a cyano group, and m and n are integers of 1 to 2.
  • the compound represented by the general formula (1) can be obtained by a Knaevener gel condensation reaction in which an aromatic substituted active methylene compound and a dialdehyde are allowed to act in the presence of a basic catalyst as shown in the following reaction formula.
  • L, R 1 , R 2 , m, and n are the same as those in the general formula (1).
  • the compound represented by the general formula (1) can also be produced by the production method described in Patent Document 6.
  • these compounds are also organic thin-film solar cell materials used for the n-type semiconductor layer of the organic thin-film solar cell of the present invention.
  • FIGS. 1 and 2 are sectional views showing structural examples of a general organic thin film solar cell used in the present invention.
  • 7 is a substrate
  • 8 is a positive electrode
  • 9 is a p-type semiconductor layer
  • 10 is an n-type semiconductor layer
  • 11 is a negative electrode.
  • FIG. 2 7, 8, and 11 are the same as in FIG. 1, and 12 is a mixed layer of a p-type semiconductor layer and an n-type semiconductor layer.
  • the substrate of the organic thin film solar cell is not particularly limited, and for example, a conventionally known substrate can be used. It is preferable to use a glass substrate or a transparent resin film having mechanical and thermal strength and transparency.
  • Transparent resin films include polyethylene, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, polypropylene, polystyrene, polymethyl methacrylate, polyvinyl chloride, polyvinyl alcohol, polyvinyl butyral, nylon, polyether ether ketone.
  • the electrode material it is preferable to use a conductive material having a high work function for one electrode and a conductive material having a low work function for the other electrode.
  • An electrode using a conductive material having a large work function is a positive electrode.
  • Conductive materials with a large work function include metals such as gold, platinum, chromium and nickel, transparent metal oxides such as indium and tin, composite metal oxides (indium tin oxide (ITO), indium Zinc oxide (IZO) or the like is preferably used.
  • the conductive material used for the positive electrode is preferably an ohmic junction with the organic semiconductor layer.
  • a hole transport layer described later it is preferable that the conductive material used for the positive electrode is an ohmic contact with the hole transport layer.
  • An electrode using a conductive material having a small work function serves as a negative electrode.
  • the conductive material having a small work function alkali metal or alkaline earth metal, specifically, lithium, magnesium, or calcium is used. Tin, silver, and aluminum are also preferably used.
  • an electrode made of an alloy made of the above metal or a laminate of the above metal is also preferably used.
  • the conductive material used for the negative electrode is preferably one that is in ohmic contact with the organic semiconductor layer.
  • an electron transport layer described later it is preferable that the conductive material used for the negative electrode is in ohmic contact with the electron transport layer.
  • the n-type semiconductor layer is formed using an organic thin film solar cell material represented by the general formula (1) (also referred to as the organic thin film solar cell material of the present invention).
  • an organic thin film solar cell material represented by the general formula (1) also referred to as the organic thin film solar cell material of the present invention.
  • the n-type semiconductor layer one or more organic thin-film solar cell materials of the general formula (1) can be used.
  • other n-type organic semiconductor materials can be mixed and used.
  • n-type organic semiconductor materials include, for example, 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA), 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA), 3,4 , 9,10-Perylenetetracarboxylic bisbenzimidazole (PTCBI), N, N′-dioctyl-3,4,9,10-naphthyltetracarboxydiimide (PTCDI-C8H), 2- (4-biphenylyl) -5 Oxazole derivatives such as-(4-t-butylphenyl) -1,3,4-oxadiazole (PBD) and 2,5-di (1-naphthyl) -1,3,4-oxadiazole (BND) 3- (4-biphenylyl) -4-phenyl-5- (4-tert-butylphenyl) -1,2,4-triazo Triazole
  • the p-type semiconductor layer uses one or more p-type organic semiconductor materials.
  • examples of known p-type organic semiconductor materials include polythiophene polymers, benzothiadiazole-thiophene derivatives, benzothiadiazole-thiophene copolymers, poly-p-phenylene vinylene polymers, poly-p-phenylene heavy polymers.
  • Conjugated polymers such as polymers, polyfluorene polymers, polypyrrole polymers, polyaniline polymers, polyacetylene polymers, polythienylene vinylene polymers, H2 phthalocyanine (H2Pc), copper phthalocyanine (CuPc), Phthalocyanine derivatives such as zinc phthalocyanine (ZnPc), porphyrin derivatives, N, N′-diphenyl-N, N′-di (3-methylphenyl) -4,4′-diphenyl-1,1′-diamine (TPD), N, N'-dinaphthyl-N, N'-diphenyl-4,4'-dipheni Triarylamine derivatives such as ru-1,1′-diamine (NPD), carbazole derivatives such as 4,4′-di (carbazol-9-yl) biphenyl (CBP), oligothiophene derivatives (terthiophene, quarterthiophene,
  • the other n-type organic semiconductor material or p-type organic semiconductor material may be a known compound or a new compound newly found as an n-type organic semiconductor material or p-type organic semiconductor material.
  • the p-type organic semiconductor material and the n-type organic semiconductor material are phase separated. It is preferable.
  • the domain size of this phase separation structure is not particularly limited, but is usually 1 nm or more and 50 nm or less.
  • the layer having the p-type organic semiconductor material exhibiting p-type semiconductor characteristics is on the positive electrode side, and the n-type organic semiconductor material exhibiting n-type semiconductor characteristics. It is preferable that the layer having a negative electrode side.
  • the organic semiconductor layer preferably has a thickness of 5 nm to 500 nm, more preferably 30 nm to 300 nm.
  • the layer containing the n-type organic material of the present invention preferably has a thickness of 1 nm to 400 nm, more preferably 15 nm to 150 nm among the above thicknesses.
  • a hole transport layer may be provided between the positive electrode and the p-type semiconductor layer.
  • conductive polymers such as polythiophene polymers, poly-p-phenylene vinylene polymers, polyfluorene polymers, phthalocyanine derivatives (H2Pc, CuPc, ZnPc, etc.), Low molecular organic compounds exhibiting p-type semiconductor properties such as porphyrin derivatives are preferably used.
  • PEDOT polyethylenedioxythiophene
  • PEDOT polyethylenedioxythiophene
  • PEDOT polyethylenedioxythiophene
  • an electron transport layer may be provided between the n-type semiconductor layer and the negative electrode.
  • the material for forming the electron transport layer is not particularly limited, but the organic thin film solar cell material represented by the general formula (1) and the above-described n-type organic semiconductor materials (NTCDA, PTCDA, PTCDI-C8H, oxazole) Derivatives, triazole derivatives, phenanthroline derivatives, phosphine oxide derivatives, fullerene compounds, CNT, CN-PPV, and the like are preferably used.
  • the thickness of the electron transport layer is preferably 5 nm to 600 nm, more preferably 30 nm to 200 nm.
  • two or more organic semiconductor layers may be stacked (tandemized) via one or more intermediate electrodes to form a series junction.
  • a stacked structure of substrate / positive electrode / first p-type semiconductor layer / first n-type semiconductor layer / intermediate electrode / second p-type semiconductor layer / second n-type semiconductor layer / negative electrode can be given. .
  • the open circuit voltage can be improved.
  • the above-described hole transport layer may be provided between the positive electrode and the first p-type semiconductor layer, and between the intermediate electrode and the second p-type semiconductor layer, and between the first n-type semiconductor layer and the first p-type semiconductor layer.
  • the above-described electron transport layer may be provided between the electrodes and between the second n-type semiconductor layer and the negative electrode.
  • the material for the intermediate electrode used here a material having high conductivity is preferable.
  • the above-described metals such as gold, platinum, chromium, nickel, lithium, magnesium, calcium, tin, silver, and aluminum, and transparency are used.
  • Metal oxides such as indium and tin, composite metal oxides (indium tin oxide (ITO), indium zinc oxide (IZO), etc.), alloys composed of the above metals and laminates of the above metals, polyethylenedioxy Examples include thiophene (PEDOT) and those obtained by adding polystyrene sulfonate (PSS) to PEDOT.
  • the intermediate electrode preferably has a light transmission property, but even a material such as a metal having a low light transmission property can often ensure a sufficient light transmission property by reducing the film thickness.
  • spin coating For the formation of p-type and n-type semiconductor layers, spin coating, blade coating, slit die coating, screen printing coating, bar coater coating, mold coating, printing transfer method, immersion pulling method, ink jet method, spray method, vacuum Any method such as a vapor deposition method may be used, and a formation method may be selected according to the characteristics of the organic semiconductor layer to be obtained, such as film thickness control and orientation control.
  • the organic thin film solar cell material of the present invention has high charge mobility, solvent solubility, oxidation stability, and good film forming properties, and an organic thin film solar cell using the material exhibits high characteristics.
  • Synthesis example 1 Compound (100) is synthesized according to the following reaction formula.
  • Example 1 The organic thin film solar cell of the structure shown in FIG. 2 was created, and the characteristics of the organic thin film solar cell material of the present invention were evaluated.
  • a glass substrate on which an ITO electrode (100 nm) was patterned was ultrasonically cleaned in isopropyl alcohol and then dried. Further, UV ozone treatment was performed to remove organic contaminants on the surface of the ITO electrode.
  • a PEDOT (3,4-ethylenedioxythiophene) / PSS (polystyrene sulfonic acid) aqueous solution (trade name: BaytronP (standard product)) was applied onto the ITO substrate by spin coating (4000 rpm, 30 seconds). After drying at 120 ° C.
  • P3HT poly (3-hexylthiophene), regioregular, Mw-87000, manufactured by Aldrich
  • Mw-87000 regioregular, Mw-87000, manufactured by Aldrich
  • the solar cell material compound (100) (0.5 wt%) was dissolved in tetrahydrofuran, and this mixed solution was spin-coated (1000 rpm, 30 seconds) to form an organic semiconductor layer.
  • the film thickness of the organic photoelectric conversion layer determined from a stylus film thickness meter was 83 nm.
  • a metal electrode is formed by sequentially vacuum-depositing LiF to a thickness of 6 nm and aluminum to a thickness of 80 nm. A solar cell was obtained.
  • an organic thin film solar cell having an effective area of 0.04 cm 2 was prepared, a solar simulator (Air Mass 1.5G spectrum, irradiation intensity 100 mW / cm 2) as a light source was irradiated with pseudo sunlight generated from the characteristic (Open circuit voltage, short circuit current density, form factor, conversion efficiency) were evaluated.
  • the open circuit voltage is a voltage between the positive and negative electrodes of the solar cell in an unloaded state.
  • the short-circuit current density is a value obtained by dividing the current (short-circuit current) when the positive and negative electrodes of the solar cell are short-circuited by the effective light receiving area.
  • the form factor is a value obtained by dividing the product of the current value and the voltage value at the operating point that gives the maximum output power by the product of the open-circuit voltage value and the short-circuit current.
  • the conversion efficiency is determined by the product of the open circuit voltage, the short circuit current density, and the form factor, and is preferably as large as possible. As a result of the evaluation, an open voltage of 0.68 V, a short-circuit current density of 8.4 mA / cm 2 , a shape factor of 0.62, and a conversion efficiency of 3.5% were obtained.
  • Synthesis example 2 The same operation as in Example 1, except that terephthalaldehyde was used instead of 2,5-difluoro-terephthalaldehyde, gave 3.8 g of a yellow solid compound (500).
  • Synthesis example 3 A yellow solid compound (200) was prepared in the same manner as in Example 1 except that 2,2′-bithiophene-5,5′-dialdehyde was used instead of 2,5-difluoro-terephthalaldehyde. 4.2g was obtained.
  • Synthesis example 4 The same operation as in Example 1, except that 2,6-thienothiophene dialdehyde was used instead of 2,5-difluoro-terephthalaldehyde, yielded 4.5 g of orange solid compound (300). .
  • Synthesis example 5 The same operation as in Example 1, except that 2,5-thiophenedialdehyde was used instead of 2,5-difluoro-terephthalaldehyde, yielded 4.5 g of orange solid compound (201).
  • Synthesis Example 6 The same operation as in Example 1 was carried out except that 4,4′-biphenyldialdehyde was used instead of 2,5-difluoro-terephthalaldehyde, to obtain 4.9 g of a pale white solid compound (501). It was.
  • Example 2 The same procedure as in Example 2 was performed except that the compound (500), (200), (300), (201), or (501) was used instead of the compound (100). The results are shown in Table 1.
  • Comparative Example 1 The same procedure as in Example 2 was performed except that [6,6] -PCBM was used instead of the compound (100), and the obtained organic thin-film solar cell was evaluated. As a result, the open circuit voltage was 0.6 V, the short circuit current density was 5.3 mA / cm 2 , the shape factor was 0.45, and the conversion efficiency was 1.4%.
  • Example 2 As described above, by comparing Example 2 and Comparative Example 1, it was revealed that the structure represented by the general formula (1) has high characteristics as an organic thin film solar cell material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Disclosed are: an organic thin film solar cell material which has high charge mobility, solubility in solvents, oxidation stability, and good film forming properties; and an organic thin film solar cell which uses this organic thin film solar cell material and has high characteristics. This organic thin film solar cell comprises a positive electrode, a p-type semiconductor layer, an n-type semiconductor layer and a negative electrode, and uses an organic thin film solar cell material represented by general formula (1) in the n-type semiconductor layer. In the formula, L represents a divalent linking group that is selected from among an ethylenediyl group, an acetylenediyl group and an aromatic group; and R2 represents a halogen, an acyl group or a cyano group.

Description

有機薄膜太陽電池Organic thin film solar cell
 本発明は、新規な有機薄膜太陽電池材料を使用して得られる有機薄膜太陽電池に関するものである。 The present invention relates to an organic thin film solar cell obtained by using a novel organic thin film solar cell material.
 一般に、無機半導体材料のシリコンを用いる半導体デバイスでは、その薄膜形成において、高温プロセスと高真空プロセスが必須である。高温プロセスを要することから、シリコンをプラスチック基板上等に薄膜形成することができず、半導体素子を組み込んだ製品に対して、可とう性の付与や、軽量化を行うことは困難であった。また、高真空プロセスを要することから、半導体素子を組み込んだ製品の大面積化と低コスト化が困難であった。 Generally, in a semiconductor device using silicon as an inorganic semiconductor material, a high temperature process and a high vacuum process are indispensable for forming a thin film. Since a high temperature process is required, a thin film of silicon cannot be formed on a plastic substrate or the like, and it has been difficult to impart flexibility and weight reduction to a product incorporating a semiconductor element. In addition, since a high vacuum process is required, it is difficult to increase the area and cost of a product incorporating a semiconductor element.
 そこで、近年、有機半導体材料を有機電子部品として利用する有機半導体デバイス(例えば、有機エレクトロルミネッセンス(有機EL)素子、有機薄膜トランジスタ素子または有機薄膜太陽電池など)に関する研究がなされている。これら有機半導体材料は、無機半導体材料に比べて、デバイス作製プロセス温度を著しく低減できるため、プラスチック基板上等に形成することが可能となる。さらに、溶媒への溶解性が大きく、かつ、良好な成膜性を有する有機半導体材料を用いることにより、真空プロセスを要さない塗布法、例えば、インクジェット装置等を用いて薄膜形成が可能となり、結果として、無機半導体材料であるシリコンを用いる半導体素子では困難であった大面積化と低コスト化の実現が期待される。このように、有機半導体材料は、無機半導体材料と比べて、大面積化、可とう性、軽量化、低コスト化等の点で有利であるため、これらの特性を生かした有機半導体製品への応用、例えば、情報タグ、電子人工皮膚シートやシート型スキャナー等の大面積センサー、液晶ディスプレイ、電子ペーパー、太陽電池および有機ELパネル等のディスプレイなどへの応用が期待されている。 Therefore, in recent years, research has been conducted on organic semiconductor devices (for example, organic electroluminescence (organic EL) elements, organic thin film transistor elements, or organic thin film solar cells) that use organic semiconductor materials as organic electronic components. Since these organic semiconductor materials can significantly reduce the device manufacturing process temperature compared to inorganic semiconductor materials, they can be formed on a plastic substrate or the like. Furthermore, by using an organic semiconductor material having high solubility in a solvent and good film formability, a thin film can be formed using a coating method that does not require a vacuum process, for example, an ink jet device, As a result, it is expected to realize an increase in area and cost, which has been difficult with a semiconductor element using silicon, which is an inorganic semiconductor material. As described above, organic semiconductor materials are advantageous in terms of large area, flexibility, weight reduction, cost reduction, and the like compared to inorganic semiconductor materials. Applications such as information tags, large-area sensors such as electronic artificial skin sheets and sheet-type scanners, liquid crystal displays, electronic paper, solar cells, organic EL panels, and other displays are expected.
 一方、太陽電池は、化石燃料の枯渇問題や地球温暖化問題を背景に、その解決策となりえるクリーンエネルギー源として近年大変注目されてきており、研究開発が盛んに行なわれている。太陽電池の駆動原理は、半導体材料を用いることにより光信号を電気信号に変換する事であり、これまでに、無機系半導体材料として、単結晶シリコン、多結晶シリコン、アモルファスシリコンなどを用いるシリコン系太陽電池が実用化されてきた。しかしながら、シリコン系太陽電池が高価なことや、原料のシリコン不足の顕在化により、次世代太陽電池の開発が期待されている。シリコン等の無機系半導体材料を得る為には、高真空かつ高温プロセスが必要であり、これが、シリコン系太陽電池の価格が高くなっている原因であった。そこで、シリコン系半導体の代わりに有機半導体を用いる有機薄膜太陽電池が次世代の太陽電池として注目を集めており、様々な検討が進められている。 On the other hand, solar cells have been attracting much attention in recent years as a clean energy source that can be a solution against the background of the fossil fuel depletion problem and the global warming problem. The driving principle of solar cells is to convert optical signals into electrical signals by using semiconductor materials. So far, silicon-based systems using single crystal silicon, polycrystalline silicon, amorphous silicon, etc. as inorganic semiconductor materials Solar cells have been put into practical use. However, the development of next-generation solar cells is expected due to the high cost of silicon-based solar cells and the realization of a shortage of silicon as a raw material. In order to obtain an inorganic semiconductor material such as silicon, a high vacuum and high temperature process is required, which is the cause of the high price of silicon solar cells. Thus, organic thin-film solar cells using organic semiconductors instead of silicon-based semiconductors are attracting attention as next-generation solar cells, and various studies are being conducted.
 当初、有機薄膜太陽電池は、メロシアニン色素等を用いた単層膜で研究が進められてきたが、電子を輸送するn半導体材料からなるn型半導体層と正孔を輸送するp型半導体材料からなるp型半導体層とを有する多層膜にすることで、光入力から電気出力への変換効率(光電変換効率)が向上することが見出されて以降、多層膜が主流になってきている。多層膜の検討が行なわれ始めた頃に用いられた材料は、p型半導体材料としては銅フタロシアニン(CuPc)、n型半導体材料としてはペリレンイミド類(PTCBI)であった。一方、高分子を用いた有機薄膜太陽電池では、p型半導体材料として導電性高分子を用い、n型半導体材料としてフラーレン(C60)誘導体を用いてそれらを混合し、熱処理することによりミクロ層分離を誘起してヘテロ界面を増やし、光電変換効率を向上させるという、いわゆるバルクヘテロ構造の研究が主に行なわれてきた。ここで用いられてきた材料系は、主に、p型半導体材料としてはポリ-3-ヘキシルチオフェン(P3HT)、n型半導体材料としてはC60誘導体(PCBM)であった。 Initially, organic thin-film solar cells have been studied with a single-layer film using a merocyanine dye or the like. From an n-type semiconductor layer composed of an n-semiconductor material that transports electrons and a p-type semiconductor material that transports holes. Since it has been found that conversion efficiency (photoelectric conversion efficiency) from light input to electrical output is improved by using a multilayer film having a p-type semiconductor layer, multilayer films have become mainstream. The materials used when the multilayer film began to be studied were copper phthalocyanine (CuPc) as the p-type semiconductor material and peryleneimides (PTCBI) as the n-type semiconductor material. On the other hand, in organic thin-film solar cells using polymers, microlayer separation is achieved by using conductive polymers as p-type semiconductor materials, mixing fullerene (C60) derivatives as n-type semiconductor materials, and heat-treating them. Research on so-called bulk heterostructures, in which the heterointerface is increased by increasing the heterointerface and improving the photoelectric conversion efficiency, has been mainly conducted. The material system used here was mainly poly-3-hexylthiophene (P3HT) as the p-type semiconductor material and C60 derivative (PCBM) as the n-type semiconductor material.
  このように、有機薄膜太陽電池では、各層の材料は初期の頃からあまり進展がなく、依然としてフタロシアニン誘導体、ペリレンイミド誘導体、C60誘導体が用いられている。従って、光電変換効率を高めるべく、これら従来の材料に代わる新規な材料の開発が熱望されている。一般に有機薄膜太陽電池に好ましいp型及びn型半導体材料には、大気安定性や高い電荷移動特性、可視光領域での高い光吸収特性が要求されている。有機化合物において可視光領域に吸収を持たせるためには、π電子共役構造を拡大して吸収極大波長を長波長化すればよいことが知られている。ただし、あまりに共役系を拡張して分子量が大きくなり過ぎると、溶媒に対する溶解性が低下して精製が困難になり、且つ昇華温度が上昇して昇華精製できなくなる等の難点がある。そこで、ある程度分子量を抑えながら吸収波長の長波長化による効率向上を目的とした検討が進められてきている。また、半導体材料の最高被占軌道エネルギー準位及び最低空軌道エネルギー準位の制御による大気安定性の向上や電荷移動障壁の改善、半導体材料のπ共役構造の拡張による電荷移動特性向上が検討されてきた。その結果、p型半導体材料としてポリアセン類が開発されてきた(特許文献1~3、非特許文献1~2参照)。一方、n型半導体材料開発では、前述の検討が進められてはいるものの、その結果は、ペリレンイミド誘導体やC60誘導体に限定されており、新規な誘導体開発には至っていなかった。さらに、その結果は、満足な変換効率を与えるものではなかった(特許文献4~5、非特許文献1~2参照)。一方、有機トランジスタ分野での利用を目的としたn型半導体材料の開発もそのほとんどペリレンイミド誘導体やC60誘導体を中心になされていたが、最近、電子吸引性基を有するスチルベン誘導体が高い電荷移動特性を発現することが報告されたものの、この誘導体の有機薄膜太陽電池に対する可能性については未知であった(特許文献6参照)。 As described above, in the organic thin film solar cell, the material of each layer has not progressed much since the early days, and phthalocyanine derivatives, peryleneimide derivatives, and C60 derivatives are still used. Therefore, in order to increase the photoelectric conversion efficiency, development of a new material replacing these conventional materials is eagerly desired. In general, p-type and n-type semiconductor materials preferable for organic thin film solar cells are required to have atmospheric stability, high charge transfer characteristics, and high light absorption characteristics in the visible light region. In order to give absorption in the visible light region in an organic compound, it is known that the π-electron conjugated structure may be enlarged to increase the absorption maximum wavelength. However, if the conjugated system is expanded too much and the molecular weight becomes too large, the solubility in the solvent is lowered and purification becomes difficult, and the sublimation temperature rises and sublimation purification becomes impossible. In view of this, studies have been made for the purpose of improving efficiency by increasing the absorption wavelength while suppressing the molecular weight to some extent. In addition, improvements in atmospheric stability and charge transfer barriers by controlling the highest occupied orbital energy level and lowest unoccupied orbital energy level of semiconductor materials, and improvement in charge transfer characteristics by expanding the π-conjugated structure of semiconductor materials are being studied. I came. As a result, polyacenes have been developed as p-type semiconductor materials (see Patent Documents 1 to 3 and Non-Patent Documents 1 and 2). On the other hand, in the development of n-type semiconductor materials, although the above-described studies have been advanced, the results are limited to perylene imide derivatives and C60 derivatives, and no new derivatives have been developed. Furthermore, the result did not give satisfactory conversion efficiency (see Patent Documents 4 to 5 and Non-Patent Documents 1 and 2). On the other hand, the development of n-type semiconductor materials intended for use in the field of organic transistors has been mostly focused on peryleneimide derivatives and C60 derivatives, but recently, stilbene derivatives having electron-withdrawing groups have high charge transfer characteristics. Although it was reported that it was expressed, the possibility of this derivative for organic thin-film solar cells was unknown (see Patent Document 6).
特開2007-335760号公報JP 2007-335760 A 特開2008-34764号公報JP 2008-34764 A 特開2008-91380号公報JP 2008-91380 A WO2007/093643号公報WO 2007/093643 WO2007/129768号公報WO2007 / 129768 WO2010/101224号公報WO 2010/101224
 本発明は、上記のような従来技術が有する問題点を解決する有機薄膜太陽電池材料を用いる有機薄膜太陽電池を提供することを目的とする。 An object of the present invention is to provide an organic thin-film solar cell using an organic thin-film solar cell material that solves the problems of the conventional techniques as described above.
 本発明者らは、鋭意検討した結果、一般式(1)の化合物を有機薄膜太陽電池のn型半導体層に用いることで、高い変換効率を発現する有機薄膜太陽電池得られることを見出し、本発明に到達した。 As a result of intensive studies, the present inventors have found that an organic thin film solar cell exhibiting high conversion efficiency can be obtained by using the compound of the general formula (1) for the n-type semiconductor layer of the organic thin film solar cell. The invention has been reached.
 本発明は、少なくとも、正極、p型半導体層、n型半導体層、負極を有する有機薄膜太陽電池において、下記一般式(1)で示される有機薄膜太陽電池材料をn型半導体層に用いることを特徴とする有機薄膜太陽電池に関する。
Figure JPOXMLDOC01-appb-I000002
 
In the organic thin film solar cell having at least a positive electrode, a p-type semiconductor layer, an n-type semiconductor layer, and a negative electrode, the present invention uses an organic thin-film solar cell material represented by the following general formula (1) for the n-type semiconductor layer. The present invention relates to a featured organic thin film solar cell.
Figure JPOXMLDOC01-appb-I000002
 式中、Lは置換または未置換のエチレンジイル基、アセチレンジイル基、及び置換または未置換の芳香族基からなる群れから選ばれる2価の連結基を表し、Rは炭素数2~12のアシル基、シアノ基、または炭素数1~12のフッ素置換アルキル基を表し、Rはハロゲン原子、シアノ基、または炭素数2~12のアシル基を表す。m及びnは独立に1~5の整数を示し、m、nが2以上の場合、L、Rは同一でも異なっていても良い。 In the formula, L represents a divalent linking group selected from the group consisting of a substituted or unsubstituted ethylenediyl group, an acetylenediyl group, and a substituted or unsubstituted aromatic group, and R 1 has 2 to 12 carbon atoms. An acyl group, a cyano group, or a fluorine-substituted alkyl group having 1 to 12 carbon atoms is represented, and R 2 represents a halogen atom, a cyano group, or an acyl group having 2 to 12 carbon atoms. m and n independently represent an integer of 1 to 5, and when m and n are 2 or more, L and R 1 may be the same or different.
 前記一般式(1)において、mが1~4であること、nが1であること、またはRがシアノ基であることが好ましい。また、前記一般式(1)において、Lが置換または未置換のエチレンジイル基、またはベンゼン、ナフタレン、アントラセン、チオフェン、チエノチオフェン、フラン、ピロール及びチアゾールから水素2個を除いた基から選択される置換又は未置換の芳香族基であることが好ましい。 In the general formula (1), it is preferable that m is 1 to 4, n is 1, or R 2 is a cyano group. In the general formula (1), L is selected from a substituted or unsubstituted ethylenediyl group, or a group obtained by removing two hydrogens from benzene, naphthalene, anthracene, thiophene, thienothiophene, furan, pyrrole, and thiazole. It is preferably a substituted or unsubstituted aromatic group.
 また、前記一般式(1)において、Rは炭素数2~6のアシル基、シアノ基、または炭素数1~6のフッ素置換アルキル基であること、Rはシアノ基であること、m及びnは1~5の整数であることが好ましい。更に、前記一般式(1)において、Rは炭素数1~3のフッ素置換アルキル基であること、Rはシアノ基であること、m及びnは1~2の整数であることが好ましい。 In the general formula (1), R 1 is an acyl group having 2 to 6 carbon atoms, a cyano group, or a fluorine-substituted alkyl group having 1 to 6 carbon atoms, R 2 is a cyano group, m And n is preferably an integer of 1 to 5. In the general formula (1), R 1 is preferably a fluorine-substituted alkyl group having 1 to 3 carbon atoms, R 2 is preferably a cyano group, and m and n are integers of 1 to 2. .
 本発明の有機薄膜太陽電池のn型半導体層に使用する材料は、分子構造全体に広がった共役構造を有している為、その分子軌道も分子構造全体に広がっている。その立体構造は高い平面性を有するという特徴を有しているため、分子間のパッキングが密となり、その結果、高い電荷移動特性が発現する。さらに、空気や水分への安定性が高いという特徴も有している為、この材料を有機薄膜太陽電池に利用すると、高い変換効率を発現する有機薄膜太陽電池を得ることが可能となり、その技術的価値は大きいものである。 Since the material used for the n-type semiconductor layer of the organic thin film solar cell of the present invention has a conjugated structure that spreads over the entire molecular structure, its molecular orbitals also spread throughout the molecular structure. Since the three-dimensional structure has a feature of high planarity, packing between molecules becomes dense, and as a result, high charge transfer characteristics are exhibited. Furthermore, since it has the feature of high stability to air and moisture, when this material is used for organic thin film solar cells, it becomes possible to obtain organic thin film solar cells that exhibit high conversion efficiency, and its technology Target value is great.
有機薄膜太陽電池の一構造例の断面図を示す。Sectional drawing of one structural example of an organic thin-film solar cell is shown. 有機薄膜太陽電池の他の構造例の断面図を示す。Sectional drawing of the other structural example of an organic thin film solar cell is shown.
 本発明の有機薄膜太陽電池のn型半導体層に用いられる材料は、一般式(1)で示される化合物である。 The material used for the n-type semiconductor layer of the organic thin film solar cell of the present invention is a compound represented by the general formula (1).
 一般式(1)において、Lは2価の連結基を表し、置換または未置換のエチレンジイル基、アセチレンジイル基、または置換または未置換の芳香族基である。好ましくは、エチレンジイル基、置換または未置換の芳香族基である。 In the general formula (1), L represents a divalent linking group, and is a substituted or unsubstituted ethylenediyl group, acetylenediyl group, or a substituted or unsubstituted aromatic group. An ethylenediyl group and a substituted or unsubstituted aromatic group are preferable.
 Lが置換または未置換の芳香族基である場合、芳香族基としては、芳香族炭化水素基、縮合芳香族炭化水素基、芳香族複素環基、縮合芳香族複素環基であることができる。芳香族基は炭素数3~30の範囲であることが好ましく、炭素数3~18の範囲がより好ましい。例えば未置換の芳香族基の具体例としては、ベンゼン、ナフタレン、フェナントレン、アントラセン、ペリレン、ピレン、クリセン、ペンタセン、フェナジン、テトラセン、トリフェニレン、ピセン、チオフェン、フラン、ピロール、ピラゾール、イミダゾール、トリアゾール、オキサゾール、チアゾール、チアジアゾール、ピリジン、ピミリジン、トリアジン、ピラジン、フルオレン、インドール、カルバゾール、ベンゾチオフェン、ベンゾフラン、チエノチオフェン、チアゾロチアゾール、ジベンゾチオフェン、ジベンゾフラン、ジチエノチオフェン、ベンゾイミダゾール、ベンゾオキサゾール、プリン、ベンゾチエノベンゾチオフェン、ジベンゾベンゾジフラン、アクリジン、キノリン等の芳香族化合物から2つの水素を除いて生じる2価の基が挙げられる。好ましくは、ベンゼン、ナフタレン、アントラセン、チオフェン、チエノチオフェン、フラン、ピロール、チアゾールから2つの水素を除いて生じる2価の基が挙げられる。 When L is a substituted or unsubstituted aromatic group, the aromatic group can be an aromatic hydrocarbon group, a condensed aromatic hydrocarbon group, an aromatic heterocyclic group, or a condensed aromatic heterocyclic group. . The aromatic group preferably has 3 to 30 carbon atoms, and more preferably 3 to 18 carbon atoms. For example, specific examples of the unsubstituted aromatic group include benzene, naphthalene, phenanthrene, anthracene, perylene, pyrene, chrysene, pentacene, phenazine, tetracene, triphenylene, picene, thiophene, furan, pyrrole, pyrazole, imidazole, triazole, oxazole. , Thiazole, thiadiazole, pyridine, pimidine, triazine, pyrazine, fluorene, indole, carbazole, benzothiophene, benzofuran, thienothiophene, thiazolothiazole, dibenzothiophene, dibenzofuran, dithienothiophene, benzimidazole, benzoxazole, purine, benzothieno Formed by removing two hydrogens from aromatic compounds such as benzothiophene, dibenzobenzodifuran, acridine, quinoline It includes the value of the group. Preferably, a divalent group formed by removing two hydrogens from benzene, naphthalene, anthracene, thiophene, thienothiophene, furan, pyrrole, and thiazole can be used.
 アセチレンジイル基、エチレンジイル基、芳香族基は置換基を有することができ、その置換基は太陽電池材料の性能を損なわなければ限定されるものではないが、置換基の総数は好ましくは0~4、より好ましくは0~2である。エチレンジイル基の好ましい置換基としては、フッ素、塩素、臭素等のハロゲン原子、炭素数1~12のアルキル基、炭素数1~12のフッ素置換アルキル基、炭素数2~12のアルコキシカルボニル基、炭素数2~12のアシル基、炭素数2~12のフッ素化アシル基、炭素数1~12のアルキルスルホニル基、炭素数1~12のアルキルオキシスルホニル基、炭素数1~12のフッ素化アルキルスルホニル基、炭素数2~12のアルキルアミノカルボニル基、炭素数2~12のフッ素化アルキルアミノカルボニル基、ニトロ基、シアノ基等が例示できる。より好ましくは、フッ素、塩素、臭素等のハロゲン原子、炭素数1~12のアルキル基、炭素数1~12のフッ素置換アルキル基、炭素数2~12のアシル基、炭素数2~12のフッ素化アシル基、炭素数1~12のアルキルスルホニル基、炭素数1~12のフッ素化アルキルスルホニル基、ニトロ基、シアノ基である。 The acetylenediyl group, ethylenediyl group, and aromatic group can have a substituent, and the substituent is not limited as long as the performance of the solar cell material is not impaired, but the total number of substituents is preferably 0 to 4, more preferably 0-2. Preferred substituents for the ethylenediyl group include halogen atoms such as fluorine, chlorine and bromine, alkyl groups having 1 to 12 carbon atoms, fluorine-substituted alkyl groups having 1 to 12 carbon atoms, alkoxycarbonyl groups having 2 to 12 carbon atoms, C2-C12 acyl group, C2-C12 fluorinated acyl group, C1-C12 alkylsulfonyl group, C1-C12 alkyloxysulfonyl group, C1-C12 fluorinated alkyl Examples include a sulfonyl group, an alkylaminocarbonyl group having 2 to 12 carbon atoms, a fluorinated alkylaminocarbonyl group having 2 to 12 carbon atoms, a nitro group, and a cyano group. More preferably, a halogen atom such as fluorine, chlorine or bromine, an alkyl group having 1 to 12 carbon atoms, a fluorine-substituted alkyl group having 1 to 12 carbon atoms, an acyl group having 2 to 12 carbon atoms, or fluorine having 2 to 12 carbon atoms. An acyl group, an alkylsulfonyl group having 1 to 12 carbon atoms, a fluorinated alkylsulfonyl group having 1 to 12 carbon atoms, a nitro group, and a cyano group.
 エチレンジイル基は、-CH=CH-で表わされる。アセチレンジイル基は、-C≡C-で表わされる。エチレンジイル基のHは上記置換基により置換され得る。 The ethylenediyl group is represented by -CH = CH-. The acetylenediyl group is represented by —C≡C—. The H of the ethylenediyl group can be substituted with the above substituent.
 一般式(1)において、Rは炭素数2~12のアシル基、シアノ基、または炭素数1~12のフッ素置換アルキル基を表す。炭素数2~12のアシル基は、フッ素を置換基として有することができる。好ましくは、シアノ基、炭素数1~6のフッ素置換アルキル基、または炭素数2~6のアシル基であり、さらに好ましくは、炭素数1~3のフッ素置換アルキル基である。 In the general formula (1), R 1 represents an acyl group having 2 to 12 carbon atoms, a cyano group, or a fluorine-substituted alkyl group having 1 to 12 carbon atoms. The acyl group having 2 to 12 carbon atoms can have fluorine as a substituent. A cyano group, a fluorine-substituted alkyl group having 1 to 6 carbon atoms, or an acyl group having 2 to 6 carbon atoms is preferable, and a fluorine-substituted alkyl group having 1 to 3 carbon atoms is more preferable.
 一般式(1)において、Rはハロゲン原子、炭素数2~12のアシル基、またはシアノ基を表す。ハロゲン原子としてはフッ素、塩素、臭素が例示できる。炭素数2~12のアシル基は、フッ素を置換基として有することができる。好ましくは、シアノ基、炭素数2~12のアシル基であり、さらに好ましくは、シアノ基である。 In the general formula (1), R 2 represents a halogen atom, an acyl group having 2 to 12 carbon atoms, or a cyano group. Examples of the halogen atom include fluorine, chlorine and bromine. The acyl group having 2 to 12 carbon atoms can have fluorine as a substituent. A cyano group and an acyl group having 2 to 12 carbon atoms are preferred, and a cyano group is more preferred.
 一般式(1)において、m及びnは1~5の整数を示す。好ましくは、mは1~4の整数であり、nは好ましくは1である。m、nが2以上の場合、m個またはn個のLまたはRは相互に同一でも異なっていても良い。 In the general formula (1), m and n are integers of 1 to 5. Preferably, m is an integer from 1 to 4, and n is preferably 1. When m and n are 2 or more, m or n L or R 1 may be the same or different from each other.
 有機薄膜太陽電池のn型半導体層に用いられるより好ましい有機薄膜太陽電池材料は、一般式(1)において、Rが炭素数2~6のアシル基、シアノ基、または炭素数1~6のフッ素置換アルキル基であり、Rがシアノ基であり、m及びnは1~5の整数である化合物である。更に好ましくは、Rが炭素数1~3のフッ素置換アルキル基であり、Rがシアノ基であり、m及びnは1~2の整数である化合物である。 A more preferable organic thin film solar cell material used for the n-type semiconductor layer of the organic thin film solar cell is represented by the general formula (1) in which R 1 is an acyl group having 2 to 6 carbon atoms, a cyano group, or 1 to 6 carbon atoms. A compound that is a fluorine-substituted alkyl group, R 2 is a cyano group, and m and n are integers of 1 to 5. More preferably, R 1 is a fluorine-substituted alkyl group having 1 to 3 carbon atoms, R 2 is a cyano group, and m and n are integers of 1 to 2.
 一般式(1)で表される化合物の具体的な例を以下に示すが、本発明の化合物はこれらに限定されるものではない。 Specific examples of the compound represented by the general formula (1) are shown below, but the compound of the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-I000003
 
Figure JPOXMLDOC01-appb-I000004
 
Figure JPOXMLDOC01-appb-I000003
 
Figure JPOXMLDOC01-appb-I000004
 
 一般式(1)で表わされる化合物は、以下の反応式のように、芳香族置換活性メチレン化合物とジアルデヒドを塩基性触媒存在下で作用させるクネーベナーゲル縮合反応により得ることができる。 The compound represented by the general formula (1) can be obtained by a Knaevener gel condensation reaction in which an aromatic substituted active methylene compound and a dialdehyde are allowed to act in the presence of a basic catalyst as shown in the following reaction formula.
Figure JPOXMLDOC01-appb-I000005
 
 式中、L、R、R、m、nは、一般式(1)と同意である。
Figure JPOXMLDOC01-appb-I000005

In the formula, L, R 1 , R 2 , m, and n are the same as those in the general formula (1).
 また、特許文献6に記載の製造方法によっても、一般式(1)で表わされる化合物を製造することができる。特許文献6に記載の化合物が、一般式(1)で表わされる化合物に含まれる場合、それらの化合物も本発明の有機薄膜太陽電池のn型半導体層に用いられる有機薄膜太陽電池材料となる。 Further, the compound represented by the general formula (1) can also be produced by the production method described in Patent Document 6. When the compound described in Patent Document 6 is contained in the compound represented by the general formula (1), these compounds are also organic thin-film solar cell materials used for the n-type semiconductor layer of the organic thin-film solar cell of the present invention.
 本発明の有機薄膜太陽電池の構造について、図面を参照しながら説明するが、本発明の有機薄膜太陽電池の構造は何ら図示のものに限定されるものではない。 The structure of the organic thin film solar cell of the present invention will be described with reference to the drawings, but the structure of the organic thin film solar cell of the present invention is not limited to the illustrated one.
  図1及び2は本発明に用いられる一般的な有機薄膜太陽電池の構造例を示す断面図である。図1において、7は基板、8は正極、9はp型半導体層、10はn型半導体層、11は負極を各々表わす。また、図2において、7、8、11は図1と同様であり、12はp型半導体層とn型半導体層の混合層である。 FIGS. 1 and 2 are sectional views showing structural examples of a general organic thin film solar cell used in the present invention. In FIG. 1, 7 is a substrate, 8 is a positive electrode, 9 is a p-type semiconductor layer, 10 is an n-type semiconductor layer, and 11 is a negative electrode. In FIG. 2, 7, 8, and 11 are the same as in FIG. 1, and 12 is a mixed layer of a p-type semiconductor layer and an n-type semiconductor layer.
  有機薄膜太陽電池の基板は、特に限定されず、例えば、従来公知のものを用いることができる。機械的、熱的強度を有し、透明性を有するガラス基板や透明性樹脂フィルムを使用することが好ましい。透明性樹脂フィルムとしては、ポリエチレン、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、ポリプロピレン、ポリスチレン、ポリメチルメタアクリレート、ポリ塩化ビニル、ポリビニルアルコール、ポリビニルブチラール、ナイロン、ポリエーテルエーテルケトン、ポリサルホン、ポリエーテルサルフォン、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、ポリビニルフルオライド、テトラフルオロエチレン-エチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、ポリクロロトリフルオロエチレン、ポリビニリデンフルオライド、ポリエステル、ポリカーボネート、ポリウレタン、ポリイミド、ポリエーテルイミド、ポリイミド、ポリプロピレン等が挙げられる。 The substrate of the organic thin film solar cell is not particularly limited, and for example, a conventionally known substrate can be used. It is preferable to use a glass substrate or a transparent resin film having mechanical and thermal strength and transparency. Transparent resin films include polyethylene, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, polypropylene, polystyrene, polymethyl methacrylate, polyvinyl chloride, polyvinyl alcohol, polyvinyl butyral, nylon, polyether ether ketone. , Polysulfone, polyethersulfone, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, polyvinyl fluoride, tetrafluoroethylene-ethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, polychlorotrifluoroethylene, Polyvinylidene fluoride, polyester, polycarbonate, polyurethane, polyimide, polyetherimide, polyimide, polypropylene, etc. It is.
  電極材料としては、一方の電極には仕事関数の大きな導電性素材、もう一方の電極には仕事関数の小さな導電性素材を使用することが好ましい。仕事関数の大きな導電性素材を用いた電極は正極となる。この仕事関数の大きな導電性素材としては金、白金、クロム、ニッケルなどの金属のほか、透明性を有するインジウム、スズなどの金属酸化物、複合金属酸化物(インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)など)が好ましく用いられる。ここで、正極に用いられる導電性素材は、有機半導体層とオーミック接合するものであることが好ましい。さらに、後述する正孔輸送層を用いた場合においては、正極に用いられる導電性素材は正孔輸送層とオーミック接合するものであることが好ましい。 As the electrode material, it is preferable to use a conductive material having a high work function for one electrode and a conductive material having a low work function for the other electrode. An electrode using a conductive material having a large work function is a positive electrode. Conductive materials with a large work function include metals such as gold, platinum, chromium and nickel, transparent metal oxides such as indium and tin, composite metal oxides (indium tin oxide (ITO), indium Zinc oxide (IZO) or the like is preferably used. Here, the conductive material used for the positive electrode is preferably an ohmic junction with the organic semiconductor layer. Furthermore, when a hole transport layer described later is used, it is preferable that the conductive material used for the positive electrode is an ohmic contact with the hole transport layer.
  仕事関数の小さな導電性素材を用いた電極は負極となるが、この仕事関数の小さな導電性素材としては、アルカリ金属やアルカリ土類金属、具体的にはリチウム、マグネシウム、カルシウムが使用される。また、錫や銀、アルミニウムも好ましく用いられる。さらに、上記の金属からなる合金や上記の金属の積層体からなる電極も好ましく用いられる。また、負極と電子輸送層の界面にフッ化リチウムやフッ化セシウムなどの金属フッ化物を導入することで、取り出し電流を向上させることも可能である。ここで、負極に用いられる導電性素材は、有機半導体層とオーミック接合するものであることが好ましい。さらに、後述する電子輸送層を用いた場合においては、負極に用いられる導電性素材は電子輸送層とオーミック接合するものであることが好ましい。 An electrode using a conductive material having a small work function serves as a negative electrode. As the conductive material having a small work function, alkali metal or alkaline earth metal, specifically, lithium, magnesium, or calcium is used. Tin, silver, and aluminum are also preferably used. Furthermore, an electrode made of an alloy made of the above metal or a laminate of the above metal is also preferably used. In addition, it is possible to improve the extraction current by introducing a metal fluoride such as lithium fluoride or cesium fluoride at the interface between the negative electrode and the electron transport layer. Here, the conductive material used for the negative electrode is preferably one that is in ohmic contact with the organic semiconductor layer. Furthermore, when an electron transport layer described later is used, it is preferable that the conductive material used for the negative electrode is in ohmic contact with the electron transport layer.
-n型半導体層-
  n型半導体層は、一般式(1)で表される有機薄膜太陽電池材料(本発明の有機薄膜太陽電池材料ともいう。)を用いて形成される。n型半導体層は、一般式(1)の有機薄膜太陽電池材料の1種または2種以上用いることができる。また、一般式(1)の有機薄膜太陽電池材料の他に、他のn型有機半導体材料を混合して用いることができる。
-N-type semiconductor layer-
The n-type semiconductor layer is formed using an organic thin film solar cell material represented by the general formula (1) (also referred to as the organic thin film solar cell material of the present invention). As the n-type semiconductor layer, one or more organic thin-film solar cell materials of the general formula (1) can be used. In addition to the organic thin film solar cell material of the general formula (1), other n-type organic semiconductor materials can be mixed and used.
 他のn型有機半導体材料としては、例えば1,4,5,8-ナフタレンテトラカルボキシリックジアンハイドライド(NTCDA)、3,4,9,10-ペリレンテトラカルボキシリックジアンハイドライド(PTCDA)、3,4,9,10-ペリレンテトラカルボキシリックビスベンズイミダゾール(PTCBI)、N,N'-ジオクチル-3,4,9,10-ナフチルテトラカルボキシジイミド(PTCDI-C8H)、2-(4-ビフェニリル)-5-(4-t-ブチルフェニル)-1,3,4-オキサジアゾール(PBD)、2,5-ジ(1-ナフチル)-1,3,4-オキサジアゾール(BND)などのオキサゾール誘導体、3-(4-ビフェニリル)-4-フェニル-5-(4-t-ブチルフェニル)-1,2,4-トリアゾール(TAZ)などのトリアゾール誘導体、フェナントロリン誘導体、ホスフィンオキサイド誘導体、フラーレン化合物(C60、C70、C76、C78、C82、C84、C90、C94を始めとする無置換のものと、[6,6]-フェニル C61 ブチリックアシッドメチルエステル([6,6]-PCBM)、[5,6]-フェニル C61 ブチリックアシッドメチルエステル([5,6]-PCBM)、[6,6]-フェニル C61 ブチリックアシッドヘキシルエステル([6,6]-PCBH)、[6,6]-フェニル C61 ブチリックアシッドドデシルエステル([6,6]-PCBD)、フェニル C71 ブチリックアシッドメチルエステル(PC70BM)、フェニル C85 ブチリックアシッドメチルエステル(PC84BM)など)、カーボンナノチューブ(CNT)などが挙げられる。 Other n-type organic semiconductor materials include, for example, 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA), 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA), 3,4 , 9,10-Perylenetetracarboxylic bisbenzimidazole (PTCBI), N, N′-dioctyl-3,4,9,10-naphthyltetracarboxydiimide (PTCDI-C8H), 2- (4-biphenylyl) -5 Oxazole derivatives such as-(4-t-butylphenyl) -1,3,4-oxadiazole (PBD) and 2,5-di (1-naphthyl) -1,3,4-oxadiazole (BND) 3- (4-biphenylyl) -4-phenyl-5- (4-tert-butylphenyl) -1,2,4-triazo Triazole derivatives such as azole (TAZ), phenanthroline derivatives, phosphine oxide derivatives, fullerene compounds (unsubstituted ones including C60, C70, C76, C78, C82, C84, C90, C94, [6, 6] -Phenyl C61 butyric acid methyl ester ([6,6] -PCBM), [5,6] -Phenyl C61 butyric acid methyl ester ([5,6] -PCBM), [6,6] -phenyl C61 buty Rick acid hexyl ester ([6,6] -PCBH), [6,6] -phenyl C61 butyric acid dodecyl ester ([6,6] -PCBD), phenyl C71 butyric acid methyl ester (PC70BM), phenyl C85 Butyric acid methyl ester PC84BM), etc.), and the like of carbon nanotubes (CNT).
-p型半導体層-
  p型半導体層は、p型有機半導体材料を一種また2種以上用いる。例えば公知のp型有機半導体材料の例として、ポリチオフェン系重合体、ベンゾチアジアゾール-チオフェン系誘導体、ベンゾチアジアゾール-チオフェン系共重合体、ポリ-p-フェニレンビニレン系重合体、ポリ-p-フェニレン系重合体、ポリフルオレン系重合体、ポリピロール系重合体、ポリアニリン系重合体、ポリアセチレン系重合体、ポリチエニレンビニレン系重合体などの共役系重合体や、H2フタロシアニン(H2Pc)、銅フタロシアニン(CuPc)、亜鉛フタロシアニン(ZnPc)などのフタロシアニン誘導体、ポルフィリン誘導体、N,N'-ジフェニル-N,N'-ジ(3-メチルフェニル)-4,4'-ジフェニル-1,1'-ジアミン(TPD)、N,N'-ジナフチル-N,N'-ジフェニル-4,4'-ジフェニル-1,1'-ジアミン(NPD)などのトリアリールアミン誘導体、4,4'-ジ(カルバゾール-9-イル)ビフェニル(CBP)などのカルバゾール誘導体、オリゴチオフェン誘導体(ターチオフェン、クウォーターチオフェン、セキシチオフェン、オクチチオフェンなど)などの低分子有機化合物が挙げられる。
-P-type semiconductor layer-
The p-type semiconductor layer uses one or more p-type organic semiconductor materials. For example, examples of known p-type organic semiconductor materials include polythiophene polymers, benzothiadiazole-thiophene derivatives, benzothiadiazole-thiophene copolymers, poly-p-phenylene vinylene polymers, poly-p-phenylene heavy polymers. Conjugated polymers such as polymers, polyfluorene polymers, polypyrrole polymers, polyaniline polymers, polyacetylene polymers, polythienylene vinylene polymers, H2 phthalocyanine (H2Pc), copper phthalocyanine (CuPc), Phthalocyanine derivatives such as zinc phthalocyanine (ZnPc), porphyrin derivatives, N, N′-diphenyl-N, N′-di (3-methylphenyl) -4,4′-diphenyl-1,1′-diamine (TPD), N, N'-dinaphthyl-N, N'-diphenyl-4,4'-dipheni Triarylamine derivatives such as ru-1,1′-diamine (NPD), carbazole derivatives such as 4,4′-di (carbazol-9-yl) biphenyl (CBP), oligothiophene derivatives (terthiophene, quarterthiophene, Low molecular organic compounds such as sexithiophene and octithiophene).
 上記他のn型有機半導体材料またはp型有機半導体材料は、公知の化合物であっても、新たにn型有機半導体材料またはp型有機半導体材料として見出される新規の化合物であってもよい。 The other n-type organic semiconductor material or p-type organic semiconductor material may be a known compound or a new compound newly found as an n-type organic semiconductor material or p-type organic semiconductor material.
 また、本発明の有機薄膜太陽電池材料からなるn型有機半導体材料とp型有機半導体材料を混合して使用することも好ましく、この場合、p型有機半導体材料とn型有機半導体材料が相分離していることが好ましい。この相分離構造のドメインサイズは特に限定されるものではないが通常1nm以上50nm以下のサイズである。また、p型有機半導体材料とn型有機半導体材料が積層されている場合は、p型半導体特性を示すp型有機半導体材料を有する層が正極側、n型半導体特性を示すn型有機半導体材料を有する層が負極側であることが好ましい。有機半導体層は5nm~500nmの厚さが好ましく、より好ましくは30nm~300nmである。積層されている場合は、本発明のn型有機材料を含む層は上記厚さのうち1nm~400nmの厚さを有していることが好ましく、より好ましくは15nm~150nmである。 It is also preferable to use a mixture of an n-type organic semiconductor material and a p-type organic semiconductor material made of the organic thin film solar cell material of the present invention. In this case, the p-type organic semiconductor material and the n-type organic semiconductor material are phase separated. It is preferable. The domain size of this phase separation structure is not particularly limited, but is usually 1 nm or more and 50 nm or less. In addition, when the p-type organic semiconductor material and the n-type organic semiconductor material are stacked, the layer having the p-type organic semiconductor material exhibiting p-type semiconductor characteristics is on the positive electrode side, and the n-type organic semiconductor material exhibiting n-type semiconductor characteristics. It is preferable that the layer having a negative electrode side. The organic semiconductor layer preferably has a thickness of 5 nm to 500 nm, more preferably 30 nm to 300 nm. In the case of being laminated, the layer containing the n-type organic material of the present invention preferably has a thickness of 1 nm to 400 nm, more preferably 15 nm to 150 nm among the above thicknesses.
  本発明の有機薄膜太陽電池では、正極とp型半導体層の間に正孔輸送層を設けてもよい。正孔輸送層を形成する材料としては、ポリチオフェン系重合体、ポリ-p-フェニレンビニレン系重合体、ポリフルオレン系重合体などの導電性高分子や、フタロシアニン誘導体(H2Pc、CuPc、ZnPcなど)、ポルフィリン誘導体などのp型半導体特性を示す低分子有機化合物が好ましく用いられる。特に、ポリチオフェン系重合体であるポリエチレンジオキシチオフェン(PEDOT)やPEDOTにポリスチレンスルホネート(PSS)が添加されたものが好ましく用いられる。正孔輸送層は5nm~600nmの厚さが好ましく、より好ましくは30nm~200nmである。 In the organic thin film solar cell of the present invention, a hole transport layer may be provided between the positive electrode and the p-type semiconductor layer. As the material for forming the hole transport layer, conductive polymers such as polythiophene polymers, poly-p-phenylene vinylene polymers, polyfluorene polymers, phthalocyanine derivatives (H2Pc, CuPc, ZnPc, etc.), Low molecular organic compounds exhibiting p-type semiconductor properties such as porphyrin derivatives are preferably used. In particular, polyethylenedioxythiophene (PEDOT), which is a polythiophene polymer, or PEDOT to which polystyrene sulfonate (PSS) is added is preferably used. The thickness of the hole transport layer is preferably 5 nm to 600 nm, more preferably 30 nm to 200 nm.
  また、本発明の有機薄膜太陽電池は、n型半導体層と負極の間に電子輸送層を設けてもよい。電子輸送層を形成する材料として、特に限定されるものではないが、一般式(1)で示される有機薄膜太陽電池材料や、上述のn型有機半導体材料(NTCDA、PTCDA、PTCDI-C8H、オキサゾール誘導体、トリアゾール誘導体、フェナントロリン誘導体、ホスフィンオキサイド誘導体、フラーレン化合物、CNT、CN-PPVなど)のようにN型半導体特性を示す有機材料が好ましく用いられる。電子輸送層は5nm~600nmの厚さが好ましく、より好ましくは30nm~200nmである。 In the organic thin film solar cell of the present invention, an electron transport layer may be provided between the n-type semiconductor layer and the negative electrode. The material for forming the electron transport layer is not particularly limited, but the organic thin film solar cell material represented by the general formula (1) and the above-described n-type organic semiconductor materials (NTCDA, PTCDA, PTCDI-C8H, oxazole) Derivatives, triazole derivatives, phenanthroline derivatives, phosphine oxide derivatives, fullerene compounds, CNT, CN-PPV, and the like are preferably used. The thickness of the electron transport layer is preferably 5 nm to 600 nm, more preferably 30 nm to 200 nm.
  また、本発明の有機薄膜太陽電池は、1つ以上の中間電極を介して2層以上の有機半導体層を積層(タンデム化)して直列接合を形成してもよい。例えば、基板/正極/第1のp型半導体層/第1のn型半導体層/中間電極/第2のp型半導体層/第2のn型半導体層/負極という積層構成を挙げることができる。このように積層することにより、開放電圧を向上させることができる。なお、正極と第1のp型半導体層の間、および、中間電極と第2のp型半導体層の間に上述の正孔輸送層を設けてもよく、第1のn型半導体層と中間電極の間、および、第2のn型半導体層と負極の間に上述の電子輸送層を設けてもよい。 In addition, in the organic thin film solar cell of the present invention, two or more organic semiconductor layers may be stacked (tandemized) via one or more intermediate electrodes to form a series junction. For example, a stacked structure of substrate / positive electrode / first p-type semiconductor layer / first n-type semiconductor layer / intermediate electrode / second p-type semiconductor layer / second n-type semiconductor layer / negative electrode can be given. . By laminating in this way, the open circuit voltage can be improved. Note that the above-described hole transport layer may be provided between the positive electrode and the first p-type semiconductor layer, and between the intermediate electrode and the second p-type semiconductor layer, and between the first n-type semiconductor layer and the first p-type semiconductor layer. The above-described electron transport layer may be provided between the electrodes and between the second n-type semiconductor layer and the negative electrode.
  ここで用いられる中間電極用の素材としては高い導電性を有するものが好ましく、例えば上述の金、白金、クロム、ニッケル、リチウム、マグネシウム、カルシウム、錫、銀、アルミニウムなどの金属や、透明性を有するインジウム、スズなどの金属酸化物、複合金属酸化物(インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)など)、上記の金属からなる合金や上記の金属の積層体、ポリエチレンジオキシチオフェン(PEDOT)やPEDOTにポリスチレンスルホネート(PSS)が添加されたもの、などが挙げられる。中間電極は光透過性を有することが好ましいが、光透過性が低い金属のような素材でも膜厚を薄くすることで充分な光透過性を確保できる場合が多い。 As the material for the intermediate electrode used here, a material having high conductivity is preferable. For example, the above-described metals such as gold, platinum, chromium, nickel, lithium, magnesium, calcium, tin, silver, and aluminum, and transparency are used. Metal oxides such as indium and tin, composite metal oxides (indium tin oxide (ITO), indium zinc oxide (IZO), etc.), alloys composed of the above metals and laminates of the above metals, polyethylenedioxy Examples include thiophene (PEDOT) and those obtained by adding polystyrene sulfonate (PSS) to PEDOT. The intermediate electrode preferably has a light transmission property, but even a material such as a metal having a low light transmission property can often ensure a sufficient light transmission property by reducing the film thickness.
  p型及びn型半導体層の形成には、スピンコート塗布、ブレードコート塗布、スリットダイコート塗布、スクリーン印刷塗布、バーコーター塗布、鋳型塗布、印刷転写法、浸漬引き上げ法、インクジェット法、スプレー法、真空蒸着法など何れの方法を用いてもよく、膜厚制御や配向制御など、得ようとする有機半導体層特性に応じて形成方法を選択すればよい。 For the formation of p-type and n-type semiconductor layers, spin coating, blade coating, slit die coating, screen printing coating, bar coater coating, mold coating, printing transfer method, immersion pulling method, ink jet method, spray method, vacuum Any method such as a vapor deposition method may be used, and a formation method may be selected according to the characteristics of the organic semiconductor layer to be obtained, such as film thickness control and orientation control.
 本発明の有機薄膜太陽電池材料は、高電荷移動度,溶媒可溶性、酸化安定性、良好な製膜性を有しており、これを使用した有機薄膜太陽電池も高い特性を発揮する。 The organic thin film solar cell material of the present invention has high charge mobility, solvent solubility, oxidation stability, and good film forming properties, and an organic thin film solar cell using the material exhibits high characteristics.
 以下、本発明につき、実施例によって更に詳しく説明するが、本発明は勿論、これらの実施例に限定されるものではなく、その要旨を越えない限りにおいて、種々の形態で実施することが可能である。なお、化合物番号は上記化学式に付した番号に対応する。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is of course not limited to these examples, and can be implemented in various forms as long as the gist thereof is not exceeded. is there. The compound number corresponds to the number given to the above chemical formula.
合成例1
 下記反応式に従い化合物(100)を合成する。
Figure JPOXMLDOC01-appb-I000006
 
Synthesis example 1
Compound (100) is synthesized according to the following reaction formula.
Figure JPOXMLDOC01-appb-I000006
 窒素雰囲気下の500ml三口フラスコに2,5-ジフルオロ-テレフタルアルデヒド1.7g (10mmol)、4-トリフルオロメチルフェニルアセトニトリル3.7g(20mmol)、エタノール(100ml)を加え、室温で撹拌した。そこにナトリウムエトキシド68mg(1mmol)をエタノール10mlに溶かした溶液を、5分間で滴下した。滴下後、さらに2時間撹拝を行ったのち、反応溶液を氷冷した。1時間後、反応溶液をろ別した。得られた結晶をメタノール10mlで洗浄した後、50℃で減圧乾燥(18時間)することにより、黄色固体の化合物(100)4.8gを得た。 To a 500 ml three-neck flask under a nitrogen atmosphere, 1.7 g (10 mmol) of 2,5-difluoro-terephthalaldehyde, 3.7 g (20 mmol) of 4-trifluoromethylphenylacetonitrile and ethanol (100 ml) were added and stirred at room temperature. A solution obtained by dissolving 68 mg (1 mmol) of sodium ethoxide in 10 ml of ethanol was added dropwise over 5 minutes. After the dropwise addition, the mixture was further stirred for 2 hours, and then the reaction solution was ice-cooled. After 1 hour, the reaction solution was filtered off. The obtained crystals were washed with 10 ml of methanol and then dried under reduced pressure (50 hours) at 50 ° C. to obtain 4.8 g of a yellow solid compound (100).
実施例1
  図2に示す構成の有機薄膜太陽電池を作成し、本発明の有機薄膜太陽電池材料の特性を、評価した。まず、ITO電極(100nm)がパターニングされたガラス基板を、イソプロピルアルコール中で超音波洗浄した後、乾燥した。さらに、ITO 電極表面の有機汚染物質を除去するためにUVオゾン処理を行なった。次に、ITO基板上にPEDOT(3,4-エチレンジオキシチオフェン)/PSS(ポリスチレンスルホン酸)水溶液(商品名:BaytronP(標準品))をスピンコート(4000rpm、30秒間)により塗布した。120℃ で1時間乾燥した後、p型材料としてP3HT(ポリ(3-ヘキシルチオフェン)、レジオレギュラー、Mw~87000、Aldrich製)(0.5重量%)、n型材料として本発明の有機薄膜太陽電池材料化合物(100)(0.5重量%)をテトラヒドロフランに溶解し、この混合溶液をスピンコート(1000rpm、30秒間)することにより有機半導体層を形成した。触針式膜厚計より求めた有機光電変換層の膜厚は、83nmであった。こうして得られたp型材料とn型材料が混合された有機半導体層の上に、LiFを6nm、アルミニウムを80nm の厚さになるように順次真空蒸着することにより金属電極を形成し、有機薄膜太陽電池とした。
Example 1
The organic thin film solar cell of the structure shown in FIG. 2 was created, and the characteristics of the organic thin film solar cell material of the present invention were evaluated. First, a glass substrate on which an ITO electrode (100 nm) was patterned was ultrasonically cleaned in isopropyl alcohol and then dried. Further, UV ozone treatment was performed to remove organic contaminants on the surface of the ITO electrode. Next, a PEDOT (3,4-ethylenedioxythiophene) / PSS (polystyrene sulfonic acid) aqueous solution (trade name: BaytronP (standard product)) was applied onto the ITO substrate by spin coating (4000 rpm, 30 seconds). After drying at 120 ° C. for 1 hour, P3HT (poly (3-hexylthiophene), regioregular, Mw-87000, manufactured by Aldrich) (0.5 wt%) as a p-type material, and the organic thin film of the present invention as an n-type material The solar cell material compound (100) (0.5 wt%) was dissolved in tetrahydrofuran, and this mixed solution was spin-coated (1000 rpm, 30 seconds) to form an organic semiconductor layer. The film thickness of the organic photoelectric conversion layer determined from a stylus film thickness meter was 83 nm. On the organic semiconductor layer obtained by mixing the p-type material and the n-type material thus obtained, a metal electrode is formed by sequentially vacuum-depositing LiF to a thickness of 6 nm and aluminum to a thickness of 80 nm. A solar cell was obtained.
 このようにして作成した有効面積0.04cmの有機薄膜太陽電池を、光源としてのソーラシミュレーター(エアマス1.5Gスペクトル、照射強度100mW/cm)から発生した疑似太陽光を照射してその特性(開放電圧、短絡電流密度、形状因子、変換効率)を評価した。ここで、開放電圧とは無負荷状態での太陽電池の正負極間の電圧である。短絡電流密度とは太陽電池の正負極間を短絡した時の電流(短絡電流)を有効受光面積で除した値である。形状因子とは、最大の出力電力を与える動作点での電流値と電圧値の積を、開放電圧値と短絡電流の積で除した値であり1に近いほど好ましい。変換効率とは、開放電圧と短絡電流密度、形状因子の積により求められ、大きいほど好ましい。
 評価の結果、開放電圧0.68V、短絡電流密度8.4mA/cm、形状因子0.62、変換効率3.5%と良好な値が得られた。
Thus an organic thin film solar cell having an effective area of 0.04 cm 2 was prepared, a solar simulator (Air Mass 1.5G spectrum, irradiation intensity 100 mW / cm 2) as a light source was irradiated with pseudo sunlight generated from the characteristic (Open circuit voltage, short circuit current density, form factor, conversion efficiency) were evaluated. Here, the open circuit voltage is a voltage between the positive and negative electrodes of the solar cell in an unloaded state. The short-circuit current density is a value obtained by dividing the current (short-circuit current) when the positive and negative electrodes of the solar cell are short-circuited by the effective light receiving area. The form factor is a value obtained by dividing the product of the current value and the voltage value at the operating point that gives the maximum output power by the product of the open-circuit voltage value and the short-circuit current. The conversion efficiency is determined by the product of the open circuit voltage, the short circuit current density, and the form factor, and is preferably as large as possible.
As a result of the evaluation, an open voltage of 0.68 V, a short-circuit current density of 8.4 mA / cm 2 , a shape factor of 0.62, and a conversion efficiency of 3.5% were obtained.
合成例2
 実施例1において、2,5-ジフルオロ-テレフタルアルデヒドの代わりにテレフタルアルデヒドを用いた他は同様に操作を行うことにより、黄色固体の化合物(500)を3.8g得た。
Synthesis example 2
The same operation as in Example 1, except that terephthalaldehyde was used instead of 2,5-difluoro-terephthalaldehyde, gave 3.8 g of a yellow solid compound (500).
合成例3
 実施例1において、2,5-ジフルオロ-テレフタルアルデヒドの代わりに2,2’-ビチオフェン-5,5’-ジアルデヒドを用いた他は同様に操作を行うことにより、黄色固体の化合物(200)を4.2g得た。
Synthesis example 3
A yellow solid compound (200) was prepared in the same manner as in Example 1 except that 2,2′-bithiophene-5,5′-dialdehyde was used instead of 2,5-difluoro-terephthalaldehyde. 4.2g was obtained.
合成例4
 実施例1において、2,5-ジフルオロ-テレフタルアルデヒドの代わりに2,6-チエノチオフェンジアルデヒドを用いた他は同様に操作を行うことにより、橙色固体の化合物(300)を4.5g得た。
Synthesis example 4
The same operation as in Example 1, except that 2,6-thienothiophene dialdehyde was used instead of 2,5-difluoro-terephthalaldehyde, yielded 4.5 g of orange solid compound (300). .
合成例5
 実施例1において、2,5-ジフルオロ-テレフタルアルデヒドの代わりに2,5-チオフェンジアルデヒドを用いた他は同様に操作を行うことにより、橙色固体の化合物(201)を4.5g得た。
Synthesis example 5
The same operation as in Example 1, except that 2,5-thiophenedialdehyde was used instead of 2,5-difluoro-terephthalaldehyde, yielded 4.5 g of orange solid compound (201).
合成例6
 実施例1において、2,5-ジフルオロ-テレフタルアルデヒドの代わりに4,4’-ビフェニルジアルデヒドを用いた他は同様に操作を行うことにより、青白色固体の化合物(501)を4.9g得た。
Synthesis Example 6
The same operation as in Example 1 was carried out except that 4,4′-biphenyldialdehyde was used instead of 2,5-difluoro-terephthalaldehyde, to obtain 4.9 g of a pale white solid compound (501). It was.
実施例2~6
 実施例2において化合物(100)の代わりに化合物(500)、(200)、(300)、(201)、または(501)を用いた他は同様に行った。結果を表1に示す。
Examples 2 to 6
The same procedure as in Example 2 was performed except that the compound (500), (200), (300), (201), or (501) was used instead of the compound (100). The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000007
 
比較例1
 実施例2において化合物(100)の代わりに[6,6]-PCBMを用いたほかは同様に操作を行い、得られた有機薄膜太陽電池の評価を行った。その結果、開放電圧0.6V、短絡電流密度5.3mA/cm、形状因子0.45、変換効率1.4%であった。
Comparative Example 1
The same procedure as in Example 2 was performed except that [6,6] -PCBM was used instead of the compound (100), and the obtained organic thin-film solar cell was evaluated. As a result, the open circuit voltage was 0.6 V, the short circuit current density was 5.3 mA / cm 2 , the shape factor was 0.45, and the conversion efficiency was 1.4%.
  以上のように、実施例2と比較例1を比較することにより、一般式(1)で示される構造が有機薄膜太陽電池材料として高い特性を有していることが明らかとなった。 As described above, by comparing Example 2 and Comparative Example 1, it was revealed that the structure represented by the general formula (1) has high characteristics as an organic thin film solar cell material.

Claims (7)

  1.  少なくとも、正極、p型半導体層、n型半導体層、及び負極を有する有機薄膜太陽電池において、下記一般式(1)で示される有機薄膜太陽電池材料をn型半導体層に用いることを特徴とする有機薄膜太陽電池。
    Figure JPOXMLDOC01-appb-I000001
     ここで、Lは置換または未置換のエチレンジイル基、アセチレンジイル基、及び置換または未置換の芳香族基からなる群れから選ばれる2価の連結基を表し、Rは炭素数2~12のアシル基、シアノ基、または炭素数1~12のフッ素置換アルキル基を表し、Rはハロゲン原子、シアノ基、または炭素数2~12のアシル基を表し、m及びnは独立に1~5の整数を示し、m、nが2以上の場合、L、Rは同一でも異なっていても良い。
    In an organic thin film solar cell having at least a positive electrode, a p-type semiconductor layer, an n-type semiconductor layer, and a negative electrode, an organic thin film solar cell material represented by the following general formula (1) is used for the n-type semiconductor layer. Organic thin film solar cell.
    Figure JPOXMLDOC01-appb-I000001
    Here, L represents a divalent linking group selected from the group consisting of a substituted or unsubstituted ethylenediyl group, an acetylenediyl group, and a substituted or unsubstituted aromatic group, and R 1 has 2 to 12 carbon atoms. Represents an acyl group, a cyano group, or a fluorine-substituted alkyl group having 1 to 12 carbon atoms, R 2 represents a halogen atom, a cyano group, or an acyl group having 2 to 12 carbon atoms, and m and n are independently 1 to 5 When m and n are 2 or more, L and R 1 may be the same or different.
  2.  mが1~4の整数である請求項1に記載の有機薄膜太陽電池。 2. The organic thin film solar cell according to claim 1, wherein m is an integer of 1 to 4.
  3.  nが1である請求項1に記載の有機薄膜太陽電池。 2. The organic thin film solar cell according to claim 1, wherein n is 1.
  4.  Rがシアノ基である請求項1に記載の有機薄膜太陽電池。 The organic thin film solar cell according to claim 1, wherein R 2 is a cyano group.
  5.  Lが置換または未置換のエチレンジイル基、またはベンゼン、ナフタレン、アントラセン、チオフェン、チエノチオフェン、フラン、ピロール、若しくはチアゾールから水素2個を除いた置換または未置換の芳香族基である請求項1に記載の有機薄膜太陽電池。 2. L is a substituted or unsubstituted ethylenediyl group, or a substituted or unsubstituted aromatic group obtained by removing two hydrogens from benzene, naphthalene, anthracene, thiophene, thienothiophene, furan, pyrrole, or thiazole. The organic thin film solar cell described.
  6.  Rが炭素数2~6のアシル基、シアノ基、または炭素数1~6のフッ素置換アルキル基であり、Rはシアノ基であり、m及びnは1~5の整数である請求項1に記載の有機薄膜太陽電池。 R 1 is an acyl group having 2 to 6 carbon atoms, a cyano group, or a fluorine-substituted alkyl group having 1 to 6 carbon atoms, R 2 is a cyano group, and m and n are integers of 1 to 5. 1. The organic thin film solar cell according to 1.
  7.  Rは炭素数1~3のフッ素置換アルキル基であり、m及びnは1~2の整数である請求項6に記載の有機薄膜太陽電池。 7. The organic thin film solar cell according to claim 6, wherein R 1 is a fluorine-substituted alkyl group having 1 to 3 carbon atoms, and m and n are integers of 1 to 2.
PCT/JP2013/075931 2012-09-28 2013-09-25 Organic thin film solar cell WO2014050902A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014538538A JPWO2014050902A1 (en) 2012-09-28 2013-09-25 Organic thin film solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012216083 2012-09-28
JP2012-216083 2012-09-28

Publications (1)

Publication Number Publication Date
WO2014050902A1 true WO2014050902A1 (en) 2014-04-03

Family

ID=50388297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075931 WO2014050902A1 (en) 2012-09-28 2013-09-25 Organic thin film solar cell

Country Status (3)

Country Link
JP (1) JPWO2014050902A1 (en)
TW (1) TW201429025A (en)
WO (1) WO2014050902A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022114063A1 (en) * 2020-11-27 2022-06-02 日鉄ケミカル&マテリアル株式会社 Material for photoelectric conversion element for imaging

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010101224A1 (en) * 2009-03-06 2010-09-10 国立大学法人九州工業大学 Organic semiconductor material and organic thin film transistor
JP2011057638A (en) * 2009-09-11 2011-03-24 Tokyo Institute Of Technology Phenylenevinylene compound, and field-effect transistor containing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2881745A1 (en) * 2005-02-08 2006-08-11 Univ Aix Marseille Ii OLIGOTHIOPHENE DERIVATIVES AND THEIR APPLICATION IN ORGANIC ELECTRONICS

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010101224A1 (en) * 2009-03-06 2010-09-10 国立大学法人九州工業大学 Organic semiconductor material and organic thin film transistor
JP2011057638A (en) * 2009-09-11 2011-03-24 Tokyo Institute Of Technology Phenylenevinylene compound, and field-effect transistor containing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOHN A. MIKROYANNIDIS ET AL.: "Alternating Phenylenevinylene Copolymers with Dithienbenzothiadiazole Moieties: Synthesis, Photophysical, and Photovoltaic Properties", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 114, no. ISSUE, 1 December 2009 (2009-12-01), pages 2740 - 2750 *
SHUICHI NAGAMATSU ET AL.: "A Steady Operation of n-Type Organic Thin-Film Transistors with Cyano-Substituted Distyrylbenzene Derivative", APPLIED PHYSICS EXPRESS, vol. 2, no. 10, 16 October 2009 (2009-10-16), pages 101502 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022114063A1 (en) * 2020-11-27 2022-06-02 日鉄ケミカル&マテリアル株式会社 Material for photoelectric conversion element for imaging

Also Published As

Publication number Publication date
JPWO2014050902A1 (en) 2016-08-22
TW201429025A (en) 2014-07-16

Similar Documents

Publication Publication Date Title
Ahmed et al. Design of new electron acceptor materials for organic photovoltaics: synthesis, electron transport, photophysics, and photovoltaic properties of oligothiophene-functionalized naphthalene diimides
Wu et al. Novel star-shaped helical perylene diimide electron acceptors for efficient additive-free nonfullerene organic solar cells
JP5359173B2 (en) Electron donating organic material for photovoltaic element, photovoltaic element material and photovoltaic element
JP5482973B1 (en) Conjugated polymer, electron donating organic material, photovoltaic device material and photovoltaic device using the same
JP6073806B2 (en) Nitrogen-containing aromatic compounds, organic semiconductor materials, and organic electronic devices
JP2008109097A (en) Material for photovolatic element and the photovolatic element
JP5664200B2 (en) Conjugated polymer, electron donating organic material, photovoltaic device material and photovoltaic device using the same
KR20110117093A (en) Material for photovoltaic element, and photovoltaic element
WO2014042091A1 (en) Conjugated polymer, and electron-donating organic material, photovoltaic element material and photovoltaic element comprising same
WO2014157497A1 (en) Organic photoelectric conversion element, organic thin film solar cell, composition used in same, coating film, compound useful for same, and method for producing compound
JPWO2016059972A1 (en) Organic semiconductor composition, photovoltaic device, photoelectric conversion device, and method for producing photovoltaic device
JP5658633B2 (en) Composition for organic semiconductor and photoelectric conversion element using the same
JP4983524B2 (en) Composition suitable for photovoltaic device and photovoltaic device
JP5978228B2 (en) Organic semiconductor materials and organic electronic devices
WO2014156771A1 (en) Organic thin-film solar cell
JP2008166339A (en) Material for photovoltaic element, and the photovoltaic element
JP2012039097A (en) Photovoltaic device
JP2021057579A (en) Organic semiconductor composition, photovoltaic cell, photoelectric conversion device, and manufacturing method of photovoltaic cell
WO2013176156A1 (en) Electron-donating organic material, material for photovoltaic power element using same, and photovoltaic power element using same
WO2014050902A1 (en) Organic thin film solar cell
US9257652B2 (en) Photoelectric conversion material, method for producing the same, and organic photovoltaic cell containing the same
JP2012241099A (en) Conjugated polymer, electron-releasing organic material employing the same, material for photovoltaic element and photovoltaic element
JP2014229799A (en) Organic photoelectric conversion element, organic thin film solar battery, composition used therefor, coating film, compound useful therefor, and manufacturing method of such compound
JP2013191794A (en) Photovoltaic element
JP2009267092A (en) Material for photovoltaic device, and photovoltaic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842103

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014538538

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13842103

Country of ref document: EP

Kind code of ref document: A1