WO2014050588A1 - Organic electroluminescent element material and organic electroluminescent element using same - Google Patents

Organic electroluminescent element material and organic electroluminescent element using same Download PDF

Info

Publication number
WO2014050588A1
WO2014050588A1 PCT/JP2013/074657 JP2013074657W WO2014050588A1 WO 2014050588 A1 WO2014050588 A1 WO 2014050588A1 JP 2013074657 W JP2013074657 W JP 2013074657W WO 2014050588 A1 WO2014050588 A1 WO 2014050588A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic
carbon atoms
substituted
derivatives
Prior art date
Application number
PCT/JP2013/074657
Other languages
French (fr)
Japanese (ja)
Inventor
淳也 小川
孝弘 甲斐
正樹 古森
山本 敏浩
Original Assignee
新日鉄住金化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金化学株式会社 filed Critical 新日鉄住金化学株式会社
Priority to JP2014538382A priority Critical patent/JP6310850B2/en
Publication of WO2014050588A1 publication Critical patent/WO2014050588A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • C07F7/0814Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring said ring is substituted at a C ring atom by Si
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/008Dyes containing a substituent, which contains a silicium atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/791Starburst compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1096Heterocyclic compounds characterised by ligands containing other heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to an organic electroluminescent element containing an indolocarbazole compound, and more particularly to a thin film device that emits light by applying an electric field to a light emitting layer made of an organic compound.
  • an organic electroluminescent element (hereinafter referred to as an organic EL element) is composed of a light emitting layer and a pair of counter electrodes sandwiching the layer as the simplest structure. That is, in an organic EL element, when an electric field is applied between both electrodes, electrons are injected from the cathode, holes are injected from the anode, and these are recombined in the light emitting layer to emit light. .
  • CBP 4,4′-bis (9-carbazolyl) biphenyl
  • Ir (ppy) 3 2,4′-bis (9-carbazolyl) biphenyl
  • a host material having high triplet excitation energy and balanced in both charge (hole / electron) injection and transport characteristics is required. Further, a compound that is electrochemically stable and has high heat resistance and excellent amorphous stability is desired, and further improvement is required.
  • Patent Document 3 discloses indolocarbazole compounds as shown below.
  • the above compound is a compound in which a silyl group is directly bonded to the indolocarbazole skeleton, and a compound in which a silyl group is bonded to the nitrogen atom of the indolocarbazole skeleton through a nitrogen-containing aromatic heterocyclic group is not disclosed. Absent.
  • Patent Document 4 discloses an indolocarbazole compound as shown below.
  • a silyl group is bonded to the nitrogen atom of the indolocarbazole skeleton via two aromatic ring groups (or aromatic heterocyclic groups), and the nitrogen atom is contained on the nitrogen atom of the indolocarbazole skeleton. It does not disclose a compound in which a silyl group is bonded via one aromatic heterocyclic group.
  • Patent Document 5 discloses an indolocarbazole compound as shown below.
  • a silyl group is bonded to the nitrogen atom of the indolocarbazole skeleton via an aromatic hydrocarbon group, and the silyl group is bonded to the nitrogen atom of the indolocarbazole skeleton via a nitrogen-containing aromatic heterocyclic group. It does not disclose compounds in which is bound.
  • An object of this invention is to provide a practically useful organic electroluminescent element which has high efficiency and high brightness stability at the time of a drive, and a compound suitable for it in view of the said present condition.
  • an indolocarbazole compound in which a silyl group is linked by a nitrogen-containing aromatic heterocycle exhibits excellent characteristics by using it as an organic EL device, and completes the present invention. It came to.
  • the present invention relates to an organic electroluminescent element material comprising an indolocarbazole compound represented by the general formula (1).
  • ring A represents an aromatic ring represented by formula (1a) that is condensed at an arbitrary position of the adjacent ring
  • ring B is a formula (1b) that is condensed at an arbitrary position of the adjacent ring.
  • L 1 represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, a substituted or unsubstituted aromatic heterocyclic ring having 3 to 30 carbon atoms.
  • X 1 and X 2 represent methine or nitrogen
  • R 1 , R 2 and R 3 represent hydrogen, an aliphatic hydrocarbon group having 1 to 12 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon having 6 to 18 carbon atoms A group or a substituted or unsubstituted aromatic heterocyclic group having 3 to 17 carbon atoms, wherein R 4 , R 5 and R 6 are an aliphatic hydrocarbon group having 1 to 12 carbon atoms, a substituted or unsubstituted carbon group having 6 carbon atoms; Or a substituted or unsubstituted aromatic heterocyclic group having 3 to 17 carbon atoms.
  • p and q are integers of 1 to 4, r is 1 to 2, and s is an integer of 1 to 4. Hydrogen in the general formulas (1), (1a), and (1b) may be replaced with deuterium.
  • indolocarbazole compounds represented by the general formula (1) indolocarbazole compounds represented by any one of the following general formulas (2) to (6) are preferable compounds.
  • L 1 , L 2 , R 1 to R 6 , and p to s are the same as those in the general formula (1).
  • the present invention also relates to an organic electroluminescent device comprising an anode, an organic layer, and a cathode laminated on a substrate, the organic electroluminescent device having an organic layer containing the above-mentioned organic electroluminescent device material.
  • the organic layer containing the material for an organic electroluminescent element contains a phosphorescent dopant.
  • the indolocarbazole skeleton to which a nitrogen-containing aromatic heterocycle is bonded has high charge injection / transport capability, but it is necessary to optimize charge injection / transport properties to further improve device characteristics.
  • the light emitting element material when included in the light emitting layer of the phosphorescent light emitting element, the charge balance is improved, so that the recombination probability is improved.
  • this light-emitting device material has the lowest excited triplet state energy high enough to confine the dopant's lowest excited triplet state energy, thus reducing the triplet excitation energy transfer from the dopant to the host molecule. It can be effectively suppressed. From the above points, high luminous efficiency can be achieved.
  • this indolocarbazole compound is distributed on each substituent due to the effect of dividing the expansion of molecular orbitals by connecting the indolocarbazole skeleton and the silyl group via a nitrogen-containing aromatic heterocycle. Control the spread of molecular orbitals. Electrochemical stability (anti-oxidation and anti-reduction stability) is closely related to the molecular orbitals that contribute to them (highest occupied orbitals (HOMO) for oxidation, lowest orbitals (LUMO) for reduction). In order to improve the stability against both charges, it is essential to design a molecule so that HOMO is distributed at sites with high oxidation resistance and LUMO is distributed at sites with high reduction resistance.
  • This indolocarbazole compound is considered to be able to distribute molecular orbitals to sites with high oxidation / reduction stability by controlling the spread of molecular orbitals as described above, and to have good charge stability.
  • the phosphorescent light emitting element material exhibits good amorphous characteristics and high thermal stability, it is possible to realize a highly durable organic EL element with a low driving voltage.
  • the organic electroluminescent element material of the present invention is an indolocarbazole compound represented by the general formula (1).
  • an indolocarbazole compound represented by the general formula (1) By having one of the two nitrogens of the indolocarbazole compound substituted with a nitrogen-containing aromatic heterocycle to which a silicon group is bonded, it is considered that the excellent effects as described above are brought about.
  • the indolocarbazole compound for organic electroluminescent elements of this invention is used suitably as a material for phosphorescent light emitting elements, it is also called a material for phosphorescent light emitting elements.
  • ring A represents an aromatic ring represented by formula (1a) that is condensed at an arbitrary position of the adjacent ring
  • ring B is a formula (1b) that is condensed at an arbitrary position of the adjacent ring.
  • X 1 and X 2 independently represent methine or nitrogen. When both are methine, they are aromatic hydrocarbon rings, and when one or both are nitrogen, aromatic heteroelements It is a ring.
  • the aromatic ring may have a substituent represented by R 3 .
  • the heterocyclic ring has a substituent represented by -L 2- (SiR 4 R 5 R 6 ) s .
  • L 1 represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 3 to 30 carbon atoms, the substituted or unsubstituted It represents a group constituted by connecting 2 to 6 aromatic hydrocarbons or substituted or unsubstituted aromatic heterocycles.
  • the substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms, the substituted or unsubstituted aromatic heterocyclic group having 3 to 17 carbon atoms, the substituted or unsubstituted aromatic hydrocarbon group, or the substituted or unsubstituted is a group constituted by connecting 2 to 5 substituted aromatic heterocycles.
  • unsubstituted aromatic hydrocarbon group examples include groups generated by removing one hydrogen from an aromatic hydrocarbon compound such as benzene, naphthalene, fluorene, anthracene, phenanthrene, fluoranthene, pyrene, chrysene.
  • an aromatic hydrocarbon compound such as benzene, naphthalene, fluorene, anthracene, phenanthrene, fluoranthene, pyrene, chrysene.
  • Preferable examples include groups generated by removing one hydrogen from benzene, naphthalene, anthracene, and phenanthrene.
  • unsubstituted aromatic heterocyclic group examples include pyridine, pyrimidine, triazine, quinoline, isoquinoline, quinoxaline, naphthyridine, carbazole, dibenzofuran, dibenzothiophene, acridine, azepine, tribenzoazepine, phenazine, phenoxazine, phenothiazine, And a group formed by removing one hydrogen from an aromatic heterocyclic compound such as dibenzophosphole or dibenzoborol.
  • Preferable examples include groups formed by removing one hydrogen from pyridine, pyrimidine, triazine, carbazole, dibenzofuran, and dibenzothiophene.
  • the connected aromatic compounds may be the same or different. Also good.
  • the number to be linked is preferably 2 to 5, more preferably 2 or 3.
  • Specific examples of the group constituted by connecting 2 to 6 unsubstituted aromatic compounds include biphenyl, terphenyl, phenylnaphthalene, diphenylnaphthalene, phenylanthracene, diphenylfluorene, bipyridine, bipyrimidine, vitriazine, Biscarbazole, bisdibenzofuran, bisdibenzothiophene, phenylpyridine, phenylpyrimidine, phenyltriazine, phenylcarbazole, phenyldibenzofuran, phenyldibenzothiophene, diphenylpyridine, diphenyltriazine, biscarbazolylbenzene, bisdibenzofuranylbenzene, bisdibenzothio And a group formed by removing one hydrogen from phenylbenzene or the like.
  • aromatic hydrocarbon group, the aromatic heterocyclic group, and the group constituted by connecting two to six aromatic hydrocarbons or aromatic heterocyclic rings may have a substituent.
  • a preferable substituent is an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, or an acetyl group. More preferably, it is an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 2 carbon atoms, or an acetyl group.
  • silicon-containing groups do not become substituents.
  • a group constituted by connecting 2 to 6 aromatic hydrocarbons or aromatic heterocycles is represented by the following formula, for example, linear or branched It may be connected.
  • Ar 1 to Ar 6 are unsubstituted aromatic hydrocarbons or aromatic heterocyclic rings.
  • L 2 represents a substituted or unsubstituted s + 1 valent nitrogen-containing aromatic heterocyclic group having 3 to 12 carbon atoms.
  • Preferred is a substituted or unsubstituted nitrogen-containing aromatic heterocyclic group having 3 to 10 carbon atoms.
  • the unsubstituted nitrogen-containing aromatic heterocyclic group examples include pyridine, pyrimidine, triazine, quinoline, isoquinoline, quinolidine, phthalazine, quinazoline, quinoxaline, naphthyridine, carbazole, acridine, azepine, tribenzazepine, phenazine, phenoxazine, S + 1 groups generated by removing S + 1 hydrogen from a nitrogen-containing aromatic heterocyclic compound such as phenothiazine.
  • an S + 1 valent group derived from pyridine, pyrimidine, or triazine is used.
  • the nitrogen-containing aromatic heterocyclic compound preferably has a monocyclic structure or a structure in which 2 to 3 rings are condensed.
  • the nitrogen-containing aromatic heterocyclic ring may have a substituent, and when it has a substituent, preferred substituents include an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, and a carbon number.
  • it is an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 2 carbon atoms, an acetyl group, an aromatic hydrocarbon group having 6 to 12 carbon atoms, or an aromatic heterocyclic group having 3 to 12 carbon atoms.
  • silicon-containing groups do not become substituents.
  • substituents include methyl group, ethyl group, propyl group, isopropyl group, butyl group, pentyl group, hexyl group, octyl group, cyclopentyl group, cyclohexyl group, methoxy group, ethoxy group, propoxy group, butoxy group, Acetyl group, phenyl group, pyridyl group, pyrimidyl group, triazyl group, naphthyl group, quinolyl group, isoquinolyl group, quinazolyl group, phthalazyl group, fluorenyl group, carbazolyl group, dibenzofuranyl group, dibenzothiophenyl group, and more Preferable examples include phenyl group, pyridyl group, pyrimidyl group, triazyl group, naphthyl group, quinolyl group, isoquinolyl group, fluorenyl group, and carb
  • substituents may further have a substituent, preferably an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 2 carbon atoms, an acetyl group, an aromatic hydrocarbon group having 6 to 12 carbon atoms, carbon
  • a substituent preferably an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 2 carbon atoms, an acetyl group, an aromatic hydrocarbon group having 6 to 12 carbon atoms, carbon
  • aromatic heterocyclic group of formula 3 to 12 include methyl group, ethyl group, isopropyl group, butyl group, methoxy group, ethoxy group, acetyl group, phenyl group, pyridyl group, pyrimidyl group, triazyl group.
  • silicon-containing groups do not become this substituent.
  • p is an integer of 1 to 4, preferably an integer of 1 to 2.
  • q is an integer of 1 to 4, preferably an integer of 1 to 2.
  • r represents an integer of 1 to 2.
  • s is an integer of 1 to 4, preferably an integer of 1 to 2.
  • R 1 to R 3 are each independently hydrogen, an aliphatic hydrocarbon group having 1 to 12 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms, An unsubstituted aromatic heterocyclic group having 3 to 17 carbon atoms is shown.
  • R 1 to R 3 are each independently hydrogen, an aliphatic hydrocarbon group having 1 to 12 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms, An unsubstituted aromatic heterocyclic group having 3 to 17 carbon atoms.
  • an alkyl group having 1 to 4 carbon atoms a cycloalkyl group having 3 to 6 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 12 carbon atoms, or a substituted or unsubstituted carbon group having 3 to 12 carbon atoms.
  • An aromatic heterocyclic group is an alkyl group having 1 to 4 carbon atoms, a
  • R 1 to R 3 include hydrogen, methyl group, ethyl group, propyl group, isopropyl group, butyl group, pentyl group, hexyl group, octyl group, cyclopentyl group, cyclohexyl group, methoxy group, ethoxy group, propoxy Group, butoxy group, acetyl group, phenyl group, pyridyl group, pyrimidyl group, triazyl group, naphthyl group, quinolyl group, isoquinolyl group, quinazolyl group, phthalazyl group, fluorenyl group, carbazolyl group, dibenzofuranyl group, dibenzothiophenyl group More preferred are hydrogen, phenyl group, pyridyl group, pyrimidyl group, triazyl group, naphthyl group, quinolyl group, isoquinolyl group, fluorenyl group, fluor
  • These may further have a substituent, preferably an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 2 carbon atoms, an acetyl group, an aromatic hydrocarbon group having 6 to 12 carbon atoms, or a carbon number of 3 -12 aromatic heterocyclic groups, and specific examples include methyl, ethyl, isopropyl, butyl, methoxy, ethoxy, acetyl, phenyl, pyridyl, pyrimidyl, triazyl, naphthyl Group, quinolyl group, isoquinolyl group, fluorenyl group, carbazolyl group, dibenzofuranyl group, or dibenzothiophenyl group.
  • silicon-containing groups do not become this substituent.
  • R 4 to R 6 are each independently an aliphatic hydrocarbon group having 1 to 12 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms, or a substituted or unsubstituted group. And an aromatic heterocyclic group having 3 to 17 carbon atoms. These aliphatic hydrocarbon group, aromatic hydrocarbon group or aromatic heterocyclic group are the same as described for R 1 to R 3 .
  • the indolocarbazole compounds represented by the general formula (1) may be mentioned as preferred compounds, and the above general formulas (2), (4 ), (5) or indolocarbazole compounds represented by (6) are more preferred compounds.
  • the total number of carbon atoms of the indolocarbazole compounds represented by the general formulas (1) to (6) is preferably 150 or less, more preferably 100 or less.
  • the indolocarbazole compounds represented by the general formulas (1) to (6) can be synthesized by selecting a raw material according to the structure of the target compound and using a known method.
  • skeleton (A-1) can be synthesized by the following reaction formula with reference to the synthesis example shown in p42-48.
  • the skeleton (A-2) can be synthesized by the following reaction formula with reference to the synthesis example shown in Journal of Heterocyclic Chemistry, 1992, 29, p1237.
  • the skeleton (A-3) can be synthesized by the following reaction formula.
  • the skeleton (A-4) can be synthesized by the following reaction formula with reference to synthesis examples shown in The Journal of Organic Chemistry, 2007, 72 (15) 5886 and Tetrahedron, 1999, 55, p2371.
  • the skeleton (A-5) can be synthesized by the following reaction formula with reference to the synthesis example shown in Archiv der Pharmazie (Weinheim, Germany), 1987, 320 (3), p280-2.
  • Indolocarbazole compounds represented by the general formulas (1) to (6) are obtained by substituting hydrogen on nitrogen of each indolocarbazole skeleton obtained by the above reaction formula with a corresponding aromatic group according to a conventional method. Groups can be synthesized.
  • indolocarbazole compounds represented by the general formulas (1) to (6) are shown below, but the organic electroluminescent element material of the present invention is not limited thereto.
  • the organic electroluminescent element material of the present invention contains an excellent organic electroluminescent element by containing it in at least one organic layer of an organic EL element in which an anode, a plurality of organic layers and a cathode are laminated on a substrate.
  • a light emitting layer As the organic layer to be contained, a light emitting layer, an electron transport layer or a hole blocking layer is suitable.
  • it when used in a light emitting layer, it can be used as a host material of a light emitting layer containing a fluorescent, delayed fluorescent or phosphorescent dopant, and the compound of the present invention emits fluorescence and delayed fluorescence. It can be used as an organic light emitting material.
  • the compound of the present invention is particularly preferably contained as a host material for a light emitting layer containing a phosphorescent dopant.
  • the organic EL device of the present invention has an organic layer having at least one light emitting layer between an anode and a cathode laminated on a substrate, and the at least one organic layer is for the organic electroluminescent device of the present invention.
  • the organic electroluminescent device material of the present invention is included in the light emitting layer together with a phosphorescent dopant.
  • the structure of the organic EL element of the present invention will be described with reference to the drawings.
  • the structure of the organic EL element of the present invention is not limited to the illustrated one.
  • FIG. 1 is a cross-sectional view showing a structural example of a general organic EL device used in the present invention, wherein 1 is a substrate, 2 is an anode, 3 is a hole injection layer, 4 is a hole transport layer, and 5 is a light emitting layer. , 6 represents an electron transport layer, and 7 represents a cathode.
  • the organic EL device of the present invention may have an exciton blocking layer adjacent to the light emitting layer, and may have an electron blocking layer between the light emitting layer and the hole injection layer.
  • the exciton blocking layer can be inserted on either the anode side or the cathode side of the light emitting layer, or both can be inserted simultaneously.
  • the organic EL device of the present invention has a substrate, an anode, a light emitting layer and a cathode as essential layers, but it is preferable to have a hole injecting and transporting layer and an electron injecting and transporting layer in layers other than the essential layers, and further emitting It is preferable to have a hole blocking layer between the layer and the electron injecting and transporting layer.
  • the hole injection / transport layer means either or both of a hole injection layer and a hole transport layer
  • the electron injection / transport layer means either or both of an electron injection layer and an electron transport layer.
  • the organic EL element of the present invention is preferably supported on a substrate.
  • the substrate is not particularly limited as long as it is conventionally used for an organic EL element.
  • a substrate made of glass, transparent plastic, quartz, or the like can be used.
  • an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • an electrode substance include conductive transparent materials such as metals such as Au, CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as metals such as Au, CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when the pattern accuracy is not required (about 100 ⁇ m or more) ), A pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered. Or when using the substance which can be apply
  • the cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • an electron injecting metal a material having a low work function (4 eV or less) metal
  • an alloy a material having a low work function (4 eV or less) metal
  • an alloy a material having a low work function (4 eV or less) metal
  • an alloy referred to as an electron injecting metal
  • an alloy referred to as an electron injecting metal
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the light emission luminance is improved, which is convenient.
  • a transparent or semi-transparent cathode can be produced by producing the conductive transparent material mentioned in the description of the anode on the cathode after producing the metal with a thickness of 1 to 20 nm on the cathode.
  • an element in which both the anode and the cathode are transmissive can be manufactured.
  • the light emitting layer is a layer that emits light after excitons are generated by recombination of holes and electrons injected from the anode and the cathode, respectively.
  • the light emitting layer includes an organic light emitting material and a host material.
  • a fluorescent light emitting material can be used alone for the light emitting layer, but it is preferable to use a fluorescent light emitting material as a fluorescent light emitting dopant and to mix a host material.
  • an indolocarbazole compound represented by the general formula (1) can be used as the fluorescent light emitting material in the light emitting layer.
  • it can be selected from them.
  • Polyphenylene, polyphenylene vinylene polymer compounds such as, organic silane derivatives, and the like.
  • Preferred examples include condensed aromatic compounds, styryl compounds, diketopyrrolopyrrole compounds, oxazine compounds, pyromethene metal complexes, transition metal complexes, and lanthanoid complexes, more preferably naphthacene, pyrene, chrysene, triphenylene, benzo [c] phenanthrene, Benzo [a] anthracene, pentacene, perylene, fluoranthene, acenaphthofluoranthene, dibenzo [a, j] anthracene, dibenzo [a, h] anthracene, benzo [a] naphthacene, hexacene, anthanthrene, naphtho [2,1 -f] isoquinoline, ⁇ -naphtha
  • an indolocarbazole compound represented by the general formula (1) can be used, but since it is known from a large number of patent documents, it can be selected from them.
  • a compound having a condensed aryl ring such as naphthalene, anthracene, phenanthrene, pyrene, chrysene, naphthacene, triphenylene, perylene, fluoranthene, fluorene, indene or a derivative thereof, N, N′-dinaphthyl-N, N′-diphenyl-4
  • Aromatic amine derivatives such as 4,4'-diphenyl-1,1'-diamine
  • metal chelated oxinoid compounds such as tris (8-quinolinato) aluminum (III)
  • bisstyryl derivatives such as distyrylbenzene derivatives, tetraphenyl Butadiene derivatives, indene derivatives, coumarin derivatives,
  • the amount of the fluorescent light emitting dopant contained in the light emitting layer is 0.01 to 20% by weight, preferably 0.1 to 10% by weight. It should be in range.
  • an organic EL element injects electric charges into a luminescent material from both an anode and a cathode, generates an excited luminescent material, and emits light.
  • a charge injection type organic EL device it is said that 25% of the generated excitons are excited to a singlet excited state and the remaining 75% are excited to a triplet excited state.
  • certain fluorescent materials emit triplet-triplet annihilation or heat after energy transition to triplet excited state due to intersystem crossing etc. It is known that, due to the absorption of energy, the singlet excited state is crossed back to back and emits fluorescence, thereby expressing thermally activated delayed fluorescence.
  • the organic EL device of the present invention can also exhibit delayed fluorescence. In this case, both fluorescence emission and delayed fluorescence emission can be included. However, light emission from the host material may be partly or partly emitted.
  • a delayed light emitting material can be used alone in the light emitting layer, but it is preferable to use a delayed fluorescent material as a delayed fluorescent light emitting dopant and mix a host material.
  • an indolocarbazole compound represented by the general formula (1) can be used, but it can also be selected from known delayed fluorescent light emitting materials.
  • a tin complex, an indolocarbazole derivative, a copper complex, a carbazole derivative, and the like can be given. Specific examples include compounds described in the following non-patent documents and patent publications, but are not limited to these compounds.
  • delayed luminescent materials are shown, but are not limited to the following compounds.
  • the amount of the delayed fluorescent material contained in the light emitting layer is 0.01 to 50% by weight, preferably 0.1 to 20%. It is good to be in the range of wt%, more preferably 0.01 to 10%.
  • an indolocarbazole compound represented by the general formula (1) can be used, but it can also be selected from compounds other than indolocarbazole.
  • a compound having a condensed aryl ring such as naphthalene, anthracene, phenanthrene, pyrene, chrysene, naphthacene, triphenylene, perylene, fluoranthene, fluorene, indene or a derivative thereof, N, N′-dinaphthyl-N, N′-diphenyl-4
  • Aromatic amine derivatives such as 4,4'-diphenyl-1,1'-diamine
  • metal chelated oxinoid compounds such as tris (8-quinolinato) aluminum (III)
  • bisstyryl derivatives such as distyrylbenzene derivatives, tetraphenyl Butadiene derivatives, indene derivatives, coumarin derivatives, ox
  • the light emitting layer When the light emitting layer is a phosphorescent light emitting layer, the light emitting layer contains a phosphorescent light emitting dopant and a host material.
  • the phosphorescent dopant material preferably contains an organometallic complex containing at least one metal selected from ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum and gold. Specific examples include compounds described in the following patent publications, but are not limited to these compounds.
  • Preferable phosphorescent dopants include complexes such as Ir (ppy) 3 having a noble metal element such as Ir as a central metal, complexes such as Ir (bt) 2 ⁇ acac3, and complexes such as PtOEt3. Specific examples of these complexes are shown below, but are not limited to the following compounds.
  • the amount of the phosphorescent dopant contained in the light emitting layer is 2 to 40% by weight, preferably 5 to 30% by weight.
  • the emissive layer is a phosphorescent light-emitting layer
  • an indolocarbazole compound represented by the general formula (1) as a host material in the light-emitting layer.
  • the material used for the light emitting layer may be a host material other than the indolocarbazole compound.
  • An indolocarbazole compound and another host material may be used in combination.
  • a plurality of known host materials may be used in combination.
  • a known host compound that can be used is preferably a compound that has a hole transporting ability and an electron transporting ability, prevents a long wavelength of light emission, and has a high glass transition temperature.
  • host materials are known from a large number of patent documents and can be selected from them.
  • Specific examples of the host material are not particularly limited, but include indole derivatives, carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine.
  • arylamine derivatives amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidene compounds, porphyrin compounds, anthraquino Heterocyclic tetracarboxylic acid anhydrides such as dimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, naphthalene perylene,
  • the light emitting layer may be any one of a fluorescent light emitting layer, a delayed fluorescent light emitting layer and a phosphorescent light emitting layer, but is preferably a phosphorescent light emitting layer.
  • the hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking.
  • the indolocarbazole compound represented by the general formula (1) according to the present invention for the hole blocking layer.
  • the indolocarbazole compound represented by the general formula (1) according to the present invention for the hole blocking layer.
  • a hole blocking layer material may be used.
  • the material of the electron carrying layer mentioned later can be used as needed.
  • the electron blocking layer is made of a material that has a function of transporting holes and has a very small ability to transport electrons.
  • the electron blocking layer blocks the electrons while transporting holes, and the probability of recombination of electrons and holes. Can be improved.
  • the material for the electron blocking layer As the material for the electron blocking layer, the material for the hole transport layer described later can be used as necessary.
  • the thickness of the electron blocking layer is preferably 3 to 100 nm, more preferably 5 to 30 nm.
  • the exciton blocking layer is a layer for preventing excitons generated by recombination of holes and electrons in the light emitting layer from diffusing into the charge transport layer. It becomes possible to efficiently confine in the light emitting layer, and the light emission efficiency of the device can be improved.
  • the exciton blocking layer can be inserted on either the anode side or the cathode side adjacent to the light emitting layer, or both can be inserted simultaneously.
  • an indolocarbazole compound represented by the general formula (1) can be used as the material for the exciton blocking layer.
  • other materials for example, 1,3-dicarbazolylbenzene (mCP), Bis (2-methyl-8-quinolinolato) -4-phenylphenolato aluminum (III) (BAlq).
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic.
  • an indolocarbazole compound represented by the general formula (1) is preferably used, but any conventionally known compound can be selected and used.
  • Known hole transporting materials that can be used include, for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives.
  • Styrylanthracene derivatives Styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers, particularly thiophene oligomers, etc., but porphyrin compounds, aromatic tertiary amine compounds and It is preferable to use a styrylamine compound, and it is more preferable to use an aromatic tertiary amine compound.
  • the electron transport layer is made of a material having a function of transporting electrons, and the electron transport layer can be provided as a single layer or a plurality of layers.
  • an electron transport material which may also serve as a hole blocking material
  • an indolocarbazole derivative represented by the general formula (1) according to the present invention it is preferable to use an indolocarbazole derivative represented by the general formula (1) according to the present invention, and any one of conventionally known compounds can be selected and used. Examples thereof include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, and oxadiazole derivatives.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • the aqueous layer was washed twice with 100 ml of ethyl acetate, and the organic layer obtained in the first fraction and the ethyl acetate layer from which the aqueous layer was washed were combined.
  • the organic layer was washed again with 100 ml of a saturated sodium bicarbonate solution and washed twice with 100 ml of water.
  • the obtained organic layer was dehydrated with magnesium sulfate, and magnesium sulfate was filtered off. Then, the solvent was distilled off under reduced pressure to obtain a viscous liquid. Thereafter, 2.5 g of palladium carbon and 150 ml of toluene were added and refluxed for 3 hours.
  • intermediate B 7.40 g (0.0289 mol), intermediate C 10.0 g (0.0241 mol), copper iodide 0.46 g (2.41 mol), tripotassium phosphate 20.5 g (0.0964 mol), trans-1,2 -Cyclohexanediamine 3.47 ml (0.0289 mol) and 1,4-dioxane 241 ml were added and stirred at 120 ° C overnight. After the reaction solution was cooled to room temperature, the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography to obtain 4.0 g6.7 (6.77 mmol, yield 28.1%) of intermediate D as a white solid.
  • Example 1 Each thin film was laminated at a vacuum degree of 2.0 ⁇ 10 ⁇ 5 Pa by a vacuum deposition method on a glass substrate on which an anode made of an ITO substrate having a thickness of 110 nm was formed.
  • copper phthalocyanine (CuPC) was formed to a thickness of 25 nm on ITO as a hole injection layer.
  • NPB was formed to a thickness of 40 nm as a hole transport layer.
  • Compound 1 as a host material and Ir (ppy) 3 as a dopant were co-deposited from different vapor deposition sources on the hole transport layer to form a light emitting layer having a thickness of 40 nm. At this time, the concentration of Ir (ppy) 3 was 10 wt%.
  • Alq3 was formed to a thickness of 20 nm as an electron transport layer. Further, on the electron transport layer, lithium fluoride (LiF) was formed to a thickness of 1 nm as an electron injection layer. Finally, on the electron injection layer, aluminum (Al) was formed as an electrode to a thickness of 70 nm to produce an organic EL element.
  • LiF lithium fluoride
  • Al aluminum
  • the organic EL element had the light emission characteristics as shown in Table 3.
  • the luminance, voltage, and luminous efficiency show values at the time of driving at 20 mA / cm 2 .
  • the maximum wavelength of the device emission spectrum was 530 nm, and it was found that light emission from Ir (ppy) 3 was obtained.
  • Examples 2 to 10 An organic EL device in the same manner as in Example 1 except that Compound 3, 4, 5, 6, 13, 14, 16, 23, or 35 was used in place of Compound 1 as the host material of the light emitting layer in Example 1. It was created.
  • Comparative Example 1 An organic EL device was produced in the same manner as in Example 1 except that CBP was used as the host material of the light emitting layer in Example 1.
  • Comparative Example 2 An organic EL device was produced in the same manner as in Example 1 except that Compound H-1 was used as the host material for the light emitting layer in Example 1.
  • Comparative Example 3 An organic EL device was produced in the same manner as in Example 1 except that Compound H-2 was used as the host material for the light emitting layer in Example 1.
  • Comparative Example 4 An organic EL device was produced in the same manner as in Example 1 except that Compound H-3 was used as the host material for the light emitting layer in Example 1.
  • the organic EL device according to the present invention has practically satisfactory levels of light emission characteristics, driving voltage and durability, and is a flat panel display (mobile phone display device, vehicle-mounted display device, OA computer display device, television, etc.), surface light emission. Its technical value is great in applications to light sources (lighting, light sources for copying machines, backlight light sources for liquid crystal displays and instruments), display boards, and sign lamps that make use of the characteristics of the body.

Abstract

Disclosed is an organic EL element that improves element luminous efficiency, sufficiently secures drive stability, and has a simple constitution; and an organic EL element material that is used in the organic EL element. This organic EL element has a light-emitting layer between a positive electrode and a negative electrode stacked on a substrate, and the light-emitting layer contains, as a host material, an organic EL element material comprising an indolocarbazole compound that has a phosphorescent dopant and a silyl group. The organic EL element material is an indolocarbazole compound having a structure in which the silyl group is replaced by a nitrogen atom of an indolocarbazole ring with a nitrogen-containing aromatic heterocyclic compound interposed therebetween.

Description

有機電界発光素子用材料及びこれを用いた有機電界発光素子Material for organic electroluminescence device and organic electroluminescence device using the same
 本発明はインドロカルバゾール化合物を含有する有機電界発光素子に関するものであり、詳しくは、有機化合物からなる発光層に電界をかけて光を放出する薄膜型デバイスに関するものである。 The present invention relates to an organic electroluminescent element containing an indolocarbazole compound, and more particularly to a thin film device that emits light by applying an electric field to a light emitting layer made of an organic compound.
 一般に、有機電界発光素子(以下、有機EL素子という)は、その最も簡単な構造としては発光層及び該層を挟んだ一対の対向電極から構成されている。すなわち、有機EL素子では、両電極間に電界が印加されると、陰極から電子が注入され、陽極から正孔が注入され、これらが発光層において再結合し、光を放出する現象を利用する。 In general, an organic electroluminescent element (hereinafter referred to as an organic EL element) is composed of a light emitting layer and a pair of counter electrodes sandwiching the layer as the simplest structure. That is, in an organic EL element, when an electric field is applied between both electrodes, electrons are injected from the cathode, holes are injected from the anode, and these are recombined in the light emitting layer to emit light. .
 近年、有機薄膜を用いた有機EL素子の開発が行われるようになった。特に、発光効率を高めるため、電極からキャリアー注入の効率向上を目的として電極の種類の最適化を行い、芳香族ジアミンからなる正孔輸送層と8-ヒドロキシキノリンアルミニウム錯体(以下、Alq3という)からなる発光層とを電極間に薄膜として設けた素子の開発により、従来のアントラセン等の単結晶を用いた素子と比較して大幅な発光効率の改善がなされたことから、自発光・高速応答性といった特徴を持つ高性能フラットパネルへの実用化を目指して進められてきた。 In recent years, organic EL elements using organic thin films have been developed. In particular, in order to increase luminous efficiency, the type of electrode was optimized for the purpose of improving the efficiency of carrier injection from the electrode. From the hole transport layer made of aromatic diamine and 8-hydroxyquinoline aluminum complex (hereinafter referred to as Alq3) As a result of the development of a device with a light emitting layer as a thin film between the electrodes, the luminous efficiency has been greatly improved compared to conventional devices using single crystals such as anthracene. It has been promoted with the aim of putting it into practical use for high-performance flat panels with these characteristics.
 また、素子の発光効率を上げる試みとして、蛍光ではなく燐光を用いることも検討されている。上記の芳香族ジアミンからなる正孔輸送層とAlq3からなる発光層とを設けた素子をはじめとした多くの素子が蛍光発光を利用したものであったが、燐光発光を用いる、すなわち、三重項励起状態からの発光を利用することにより、従来の蛍光(一重項)を用いた素子と比べて、3~4倍程度の効率向上が期待される。この目的のためにクマリン誘導体やベンゾフェノン誘導体を発光層とすることが検討されてきたが、極めて低い輝度しか得られなかった。また、三重項状態を利用する試みとして、ユーロピウム錯体を用いることが検討されてきたが、これも高効率の発光には至らなかった。近年では、特許文献1に挙げられるように発光の高効率化や長寿命化を目的にイリジウム錯体等の有機金属錯体を中心に研究が多数行われている。 In addition, as an attempt to increase the luminous efficiency of the device, it has been studied to use phosphorescence instead of fluorescence. Many devices, including those provided with the hole transport layer composed of the above aromatic diamine and the light emitting layer composed of Alq3, used fluorescence emission, but use phosphorescence emission, that is, triplet. By using the light emitted from the excited state, the efficiency is expected to be improved by about 3 to 4 times compared to the conventional device using fluorescence (singlet). For this purpose, it has been studied to use a coumarin derivative or a benzophenone derivative as a light emitting layer, but only an extremely low luminance was obtained. Further, as an attempt to use the triplet state, use of a europium complex has been studied, but this has not led to highly efficient light emission. In recent years, as described in Patent Document 1, many studies have been conducted focusing on organometallic complexes such as iridium complexes for the purpose of increasing the efficiency of light emission and extending the lifetime.
WO2001/041512 AWO2001 / 041512 A 特開2001-313178号公報JP 2001-313178 A WO2011/125020 AWO2011 / 125020 A WO2010/126234AWO2010 / 126234A WO2011/025018AWO2011 / 025018A
 高い発光効率を得るには、前記ドーパント材料と同時に、使用するホスト材料が重要になる。ホスト材料として提案されている代表的なものとして、特許文献2で紹介されているカルバゾール化合物の4,4'-ビス(9-カルバゾリル)ビフェニル(以下、CBPという)が挙げられる。CBPはトリス(2-フェニルピリジン)イリジウム錯体(以下、Ir(ppy)3という)に代表される緑色燐光発光材料のホスト材料として使用した場合、CBPは正孔を流し易く電子を流しにくい特性上、電荷注入バランスが崩れ、過剰の正孔は電子輸送層側に流出し、結果としてIr(ppy)3からの発光効率が低下する。 In order to obtain high luminous efficiency, the host material to be used is important simultaneously with the dopant material. A representative example of a host material proposed is 4,4′-bis (9-carbazolyl) biphenyl (hereinafter referred to as CBP), which is a carbazole compound introduced in Patent Document 2. When CBP is used as a host material for a green phosphorescent material typified by tris (2-phenylpyridine) iridium complex (hereinafter referred to as Ir (ppy) 3), CBP is easy to flow holes and not easily flow electrons. The charge injection balance is lost, and excess holes flow out to the electron transport layer side. As a result, the light emission efficiency from Ir (ppy) 3 decreases.
 前述のように、有機EL素子で高い発光効率を得るには、高い三重項励起エネルギーを有し、かつ両電荷(正孔・電子)注入輸送特性においてバランスがとれたホスト材料が必要である。更に、電気化学的に安定であり、高い耐熱性と共に優れたアモルファス安定性を備える化合物が望まれており、更なる改良が求められている。 As described above, in order to obtain high luminous efficiency in an organic EL element, a host material having high triplet excitation energy and balanced in both charge (hole / electron) injection and transport characteristics is required. Further, a compound that is electrochemically stable and has high heat resistance and excellent amorphous stability is desired, and further improvement is required.
 特許文献3においては、以下に示すようなインドロカルバゾール化合物が開示されている。 Patent Document 3 discloses indolocarbazole compounds as shown below.
Figure JPOXMLDOC01-appb-I000003
 
Figure JPOXMLDOC01-appb-I000003
 
 しかしながら、上記化合物はインドロカルバゾール骨格上に直接シリル基が結合したものであり、インドロカルバゾール骨格の窒素原子に含窒素芳香族複素環基を介してシリル基が結合した化合物を開示するものではない。 However, the above compound is a compound in which a silyl group is directly bonded to the indolocarbazole skeleton, and a compound in which a silyl group is bonded to the nitrogen atom of the indolocarbazole skeleton through a nitrogen-containing aromatic heterocyclic group is not disclosed. Absent.
 また、特許文献4には以下に示すようなインドロカルバゾール化合物が開示されている。
Figure JPOXMLDOC01-appb-I000004
 
Patent Document 4 discloses an indolocarbazole compound as shown below.
Figure JPOXMLDOC01-appb-I000004
 しかしながら、上記化合物はインドロカルバゾール骨格の窒素原子に二つの芳香族環基(あるいは芳香族複素環基)を介してシリル基が結合したものであり、インドロカルバゾール骨格の窒素原子上に含窒素芳香族複素環基一つを介してシリル基が結合した化合物を開示するものではない。 However, in the above compound, a silyl group is bonded to the nitrogen atom of the indolocarbazole skeleton via two aromatic ring groups (or aromatic heterocyclic groups), and the nitrogen atom is contained on the nitrogen atom of the indolocarbazole skeleton. It does not disclose a compound in which a silyl group is bonded via one aromatic heterocyclic group.
 また、特許文献5には以下に示すようなインドロカルバゾール化合物が開示されている。
Figure JPOXMLDOC01-appb-I000005
 
Patent Document 5 discloses an indolocarbazole compound as shown below.
Figure JPOXMLDOC01-appb-I000005
 しかしながら、上記化合物はインドロカルバゾール骨格の窒素原子に芳香族炭化水素基を介してシリル基が結合したものであり、インドロカルバゾール骨格の窒素原子に含窒素芳香族複素環基を介してシリル基が結合した化合物を開示するものではない。 However, in the above compound, a silyl group is bonded to the nitrogen atom of the indolocarbazole skeleton via an aromatic hydrocarbon group, and the silyl group is bonded to the nitrogen atom of the indolocarbazole skeleton via a nitrogen-containing aromatic heterocyclic group. It does not disclose compounds in which is bound.
 有機EL素子をフラットパネルディスプレイ等の表示素子に応用するためには、素子の発光効率を改善すると同時に低駆動電圧等による駆動時の安定性を十分に確保する必要がある。本発明は、上記現状に鑑み、高効率かつ駆動時の高い輝度安定性を有した実用上有用な有機EL素子及びそれに適する化合物を提供することを目的とする。 In order to apply an organic EL element to a display element such as a flat panel display, it is necessary to improve the light emission efficiency of the element and at the same time sufficiently ensure stability during driving with a low driving voltage. An object of this invention is to provide a practically useful organic electroluminescent element which has high efficiency and high brightness stability at the time of a drive, and a compound suitable for it in view of the said present condition.
 本発明者らは、鋭意検討した結果、シリル基が含窒素芳香族複素環で連結されたインドロカルバゾール化合物を有機EL素子として用いることで優れた特性を示すことを見出し、本発明を完成するに至った。 As a result of intensive studies, the present inventors have found that an indolocarbazole compound in which a silyl group is linked by a nitrogen-containing aromatic heterocycle exhibits excellent characteristics by using it as an organic EL device, and completes the present invention. It came to.
 本発明は、一般式(1)で表されるインドロカルバゾール化合物からなる有機電界発光素子用材料に関する。
Figure JPOXMLDOC01-appb-I000006
 
The present invention relates to an organic electroluminescent element material comprising an indolocarbazole compound represented by the general formula (1).
Figure JPOXMLDOC01-appb-I000006
 一般式(1)中、環Aは隣接環の任意の位置で縮合する式(1a)で表される芳香族環を示し、環Bは隣接環の任意の位置で縮合する式(1b)で表される複素環を表す。一般式(1)、(1a)及び(1b)中、Lは置換若しくは未置換の炭素数6~30の芳香族炭化水素基、置換若しくは未置換の炭素数3~30の芳香族複素環基、該置換若しくは未置換の芳香族炭化水素又は置換若しくは未置換の芳香族複素環が2~6つ連結して構成される基を表し、Lは置換若しくは未置換のS+1価の炭素数3~12の含窒素芳香族複素環基を表す。X、X 2はメチン又は窒素を表し、R、R、Rは水素、炭素数1~12の脂肪族炭化水素基、置換若しくは未置換の炭素数6~18の芳香族炭化水素基又は置換若しくは未置換の炭素数3~17の芳香族複素環基を示し、R、R、Rは炭素数1~12の脂肪族炭化水素基、置換若しくは未置換の炭素数6~18の芳香族炭化水素基又は置換若しくは未置換の炭素数3~17の芳香族複素環基を示す。p、qは1~4、rは1~2、sは1~4の整数を表す。一般式(1)、(1a)、(1b)中の水素は重水素に置き換えても良い。 In general formula (1), ring A represents an aromatic ring represented by formula (1a) that is condensed at an arbitrary position of the adjacent ring, and ring B is a formula (1b) that is condensed at an arbitrary position of the adjacent ring. Represents the represented heterocycle. In the general formulas (1), (1a) and (1b), L 1 represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, a substituted or unsubstituted aromatic heterocyclic ring having 3 to 30 carbon atoms. Represents a group constituted by connecting 2 to 6 substituted or unsubstituted aromatic hydrocarbons or substituted or unsubstituted aromatic heterocycles, and L 2 represents a substituted or unsubstituted S + 1 valent carbon number. 3 to 12 nitrogen-containing aromatic heterocyclic groups are represented. X 1 and X 2 represent methine or nitrogen, R 1 , R 2 and R 3 represent hydrogen, an aliphatic hydrocarbon group having 1 to 12 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon having 6 to 18 carbon atoms A group or a substituted or unsubstituted aromatic heterocyclic group having 3 to 17 carbon atoms, wherein R 4 , R 5 and R 6 are an aliphatic hydrocarbon group having 1 to 12 carbon atoms, a substituted or unsubstituted carbon group having 6 carbon atoms; Or a substituted or unsubstituted aromatic heterocyclic group having 3 to 17 carbon atoms. p and q are integers of 1 to 4, r is 1 to 2, and s is an integer of 1 to 4. Hydrogen in the general formulas (1), (1a), and (1b) may be replaced with deuterium.
 一般式(1)で表されるインドロカルバゾール化合物の中でも、下記一般式(2)~(6)のいずれかで表されるインドロカルバゾール化合物が好ましい化合物として挙げられる。 Among the indolocarbazole compounds represented by the general formula (1), indolocarbazole compounds represented by any one of the following general formulas (2) to (6) are preferable compounds.
Figure JPOXMLDOC01-appb-I000007
 
Figure JPOXMLDOC01-appb-I000007
 
 一般式(2)~(6)中、L、L、R~R、p~sは一般式(1)のそれらと同意である。 In the general formulas (2) to (6), L 1 , L 2 , R 1 to R 6 , and p to s are the same as those in the general formula (1).
 また、本発明は、基板上に、陽極、有機層及び陰極が積層されてなる有機電界発光素子において、上記の有機電界発光素子用材料を含む有機層を有する有機電界発光素子に関する。 The present invention also relates to an organic electroluminescent device comprising an anode, an organic layer, and a cathode laminated on a substrate, the organic electroluminescent device having an organic layer containing the above-mentioned organic electroluminescent device material.
 更に、上記有機電界発光素子用材料を含む有機層が、燐光発光ドーパントを含有することが好ましい。 Furthermore, it is preferable that the organic layer containing the material for an organic electroluminescent element contains a phosphorescent dopant.
 含窒素芳香族複素環が結合したインドロカルバゾール骨格は、両電荷注入輸送能が高いが、更なる素子特性の改善には電荷注入輸送性の適正化が必要である。しかし、含窒素芳香族複素環上に単に他の置換基を導入するだけでは、電荷注入輸送性と関わりの深い分子軌道の分布制御が困難である。そこで、分子軌道の広がりを分断できるケイ素原子をスペーサーとして介して置換基を導入することで、両電荷の注入輸送性をより好ましい範囲に制御することができる。以上の効果により、これを有機EL素子に使用することで、素子駆動電圧が低減する。また、燐光発光素子の発光層中にこの発光素子用材料を含む場合、電荷のバランスが良好になることから、再結合確率が向上する。更にこの発光素子用材料はドーパントの最低励起三重項状態のエネルギーを閉じ込めるのに十分高い最低励起三重項状態のエネルギーを有しているために、ドーパントからホスト分子への三重項励起エネルギーの移動を効果的に抑えることができる。以上の点から、高い発光効率の達成を可能とした。 The indolocarbazole skeleton to which a nitrogen-containing aromatic heterocycle is bonded has high charge injection / transport capability, but it is necessary to optimize charge injection / transport properties to further improve device characteristics. However, it is difficult to control the distribution of molecular orbitals that are deeply related to charge injection / transport properties by simply introducing other substituents onto the nitrogen-containing aromatic heterocycle. Therefore, by introducing a substituent through a silicon atom as a spacer that can break the spread of molecular orbitals, the injection and transport properties of both charges can be controlled in a more preferable range. Due to the above effects, the element driving voltage is reduced by using this for the organic EL element. In addition, when the light emitting element material is included in the light emitting layer of the phosphorescent light emitting element, the charge balance is improved, so that the recombination probability is improved. In addition, this light-emitting device material has the lowest excited triplet state energy high enough to confine the dopant's lowest excited triplet state energy, thus reducing the triplet excitation energy transfer from the dopant to the host molecule. It can be effectively suppressed. From the above points, high luminous efficiency can be achieved.
 更に、このインドロカルバゾール化合物は、インドロカルバゾール骨格とシリル基が含窒素芳香族複素環を介して連結することで、ケイ素原子が分子軌道の広がりを分断する効果から各置換基上に分布する分子軌道の広がりを制御できる。電気化学的な安定性(対酸化・対還元安定性)は、それらに寄与する分子軌道(酸化では最高被占軌道(HOMO)、還元では最低空軌道(LUMO))が深く関わっており、分子自体の両電荷に対する安定性を向上させるためには、耐酸化安定性の高い部位にHOMO、耐還元安定性の高い部位にLUMOが分布するような分子設計が必要不可欠である。このインドロカルバゾール化合物は、上述の分子軌道の広がり制御により、分子軌道を耐酸化・還元安定性の高い部位に分布させることができ、良好な耐電荷安定性を有することができると考えられる。加えて、該燐光発光素子用材料は良好なアモルファス特性と高い熱安定性を示すことから、低駆動電圧で、耐久性の高い有機EL素子の実現を可能とした。 Furthermore, this indolocarbazole compound is distributed on each substituent due to the effect of dividing the expansion of molecular orbitals by connecting the indolocarbazole skeleton and the silyl group via a nitrogen-containing aromatic heterocycle. Control the spread of molecular orbitals. Electrochemical stability (anti-oxidation and anti-reduction stability) is closely related to the molecular orbitals that contribute to them (highest occupied orbitals (HOMO) for oxidation, lowest orbitals (LUMO) for reduction). In order to improve the stability against both charges, it is essential to design a molecule so that HOMO is distributed at sites with high oxidation resistance and LUMO is distributed at sites with high reduction resistance. This indolocarbazole compound is considered to be able to distribute molecular orbitals to sites with high oxidation / reduction stability by controlling the spread of molecular orbitals as described above, and to have good charge stability. In addition, since the phosphorescent light emitting element material exhibits good amorphous characteristics and high thermal stability, it is possible to realize a highly durable organic EL element with a low driving voltage.
有機EL素子の一構造例を示す断面図である。It is sectional drawing which shows one structural example of an organic EL element. 本発明のインドロカルバゾール化合物6のNMRチャートを示す。2 shows an NMR chart of indolocarbazole compound 6 of the present invention.
 本発明の有機電界発光素子用材料は、前記一般式(1)で表されるインドロカルバゾール化合物である。このインドロカルバゾール化合物の2つの窒素のうちの1つがケイ素基の結合した含窒素芳香族複素環で置換された構造を有することにより、上記のような優れた効果をもたらすと考えられる。また、本発明の有機電界発光素子用のインドロカルバゾール化合物は、燐光発光素子用材料として好適に使用されるので、燐光発光素子用材料ともいう。 The organic electroluminescent element material of the present invention is an indolocarbazole compound represented by the general formula (1). By having one of the two nitrogens of the indolocarbazole compound substituted with a nitrogen-containing aromatic heterocycle to which a silicon group is bonded, it is considered that the excellent effects as described above are brought about. Moreover, since the indolocarbazole compound for organic electroluminescent elements of this invention is used suitably as a material for phosphorescent light emitting elements, it is also called a material for phosphorescent light emitting elements.
 一般式(1)において、環Aは隣接環の任意の位置で縮合する式(1a)で表される芳香族環を示し、環Bは隣接環の任意の位置で縮合する式(1b)で表される複素環を表す。式(1a)において、X、X2は独立にメチン又は窒素を表し、両者がメチンである場合は、芳香族炭化水素環であり、一方又は両者が窒素である場合は、芳香族複素素環である。上記芳香族環は、R3で表される置換基を有し得る。上記複素環は、-L2-(SiR4R5R6)sで表される置換基を有する。 In general formula (1), ring A represents an aromatic ring represented by formula (1a) that is condensed at an arbitrary position of the adjacent ring, and ring B is a formula (1b) that is condensed at an arbitrary position of the adjacent ring. Represents the represented heterocycle. In the formula (1a), X 1 and X 2 independently represent methine or nitrogen. When both are methine, they are aromatic hydrocarbon rings, and when one or both are nitrogen, aromatic heteroelements It is a ring. The aromatic ring may have a substituent represented by R 3 . The heterocyclic ring has a substituent represented by -L 2- (SiR 4 R 5 R 6 ) s .
 一般式(1)において、Lは置換若しくは未置換の炭素数6~30の芳香族炭化水素基、置換若しくは未置換の炭素数3~30の芳香族複素環基、該置換若しくは未置換の芳香族炭化水素又は置換若しくは未置換の芳香族複素環が2~6つ連結して構成される基を表す。好ましくは置換若しくは未置換の炭素数6~18の芳香族炭化水素基、置換若しくは未置換の炭素数3~17の芳香族複素環基、該置換若しくは未置換の芳香族炭化水素又は置換若しくは未置換の芳香族複素環が2~5つ連結して構成される基である。 In the general formula (1), L 1 represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 3 to 30 carbon atoms, the substituted or unsubstituted It represents a group constituted by connecting 2 to 6 aromatic hydrocarbons or substituted or unsubstituted aromatic heterocycles. Preferably, the substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms, the substituted or unsubstituted aromatic heterocyclic group having 3 to 17 carbon atoms, the substituted or unsubstituted aromatic hydrocarbon group, or the substituted or unsubstituted This is a group constituted by connecting 2 to 5 substituted aromatic heterocycles.
 未置換の芳香族炭化水素基の具体例としては、ベンゼン、ナフタレン、フルオレン、アントラセン、フェナントレン、フルオランテン、ピレン、クリセン等の芳香族炭化水素化合物から水素を1つ除いて生じる基が挙げられる。好ましくはベンゼン、ナフタレン、アントラセン、フェナントレンから水素を1つ除いて生じる基が挙げられる。 Specific examples of the unsubstituted aromatic hydrocarbon group include groups generated by removing one hydrogen from an aromatic hydrocarbon compound such as benzene, naphthalene, fluorene, anthracene, phenanthrene, fluoranthene, pyrene, chrysene. Preferable examples include groups generated by removing one hydrogen from benzene, naphthalene, anthracene, and phenanthrene.
 未置換の芳香族複素環基の具体例としては、ピリジン、ピリミジン、トリアジン、キノリン、イソキノリン、キノキサリン、ナフチリジン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、アクリジン、アゼピン、トリベンゾアゼピン、フェナジン、フェノキサジン、フェノチアジン、ジベンゾホスホール、ジベンゾボロール等の芳香族複素環化合物から水素を1つ除いて生じる基が挙げられる。好ましくはピリジン、ピリミジン、トリアジン、カルバゾール、ジベンゾフラン、ジベンゾチオフェンから水素を1つ除いて生じる基が挙げられる。 Specific examples of the unsubstituted aromatic heterocyclic group include pyridine, pyrimidine, triazine, quinoline, isoquinoline, quinoxaline, naphthyridine, carbazole, dibenzofuran, dibenzothiophene, acridine, azepine, tribenzoazepine, phenazine, phenoxazine, phenothiazine, And a group formed by removing one hydrogen from an aromatic heterocyclic compound such as dibenzophosphole or dibenzoborol. Preferable examples include groups formed by removing one hydrogen from pyridine, pyrimidine, triazine, carbazole, dibenzofuran, and dibenzothiophene.
 また、置換若しくは未置換の芳香族炭化水素化合物又は置換若しくは未置換の芳香族複素環化合物が2~6つ連結されて構成される基の場合、連結される芳香族化合物は同一でも異なっていてもよい。連結される数は2~5が好ましく、より好ましくは2又は3である。 In the case of a group constituted by connecting 2 to 6 substituted or unsubstituted aromatic hydrocarbon compounds or substituted or unsubstituted aromatic heterocyclic compounds, the connected aromatic compounds may be the same or different. Also good. The number to be linked is preferably 2 to 5, more preferably 2 or 3.
 未置換の芳香族化合物が2~6つ連結されて構成される基の具体例としては、ビフェニル、ターフェニル、フェニルナフタレン、ジフェニルナフタレン、フェニルアントラセン、ジフェニルアントラセン、ジフェニルフルオレン、ビピリジン、ビピリミジン、ビトリアジン、ビスカルバゾール、ビスジベンゾフラン、ビスジベンゾチオフェン、フェニルピリジン、フェニルピリミジン、フェニルトリアジン、フェニルカルバゾール、フェニルジベンゾフラン、フェニルジベンゾチオフェン、ジフェニルピリジン、ジフェニルトリアジン、ビスカルバゾリルベンゼン、ビスジベンゾフラニルベンゼン、ビスジベンゾチオフェニルベンゼン等から水素を1つ除いて生じる基が挙げられる。 Specific examples of the group constituted by connecting 2 to 6 unsubstituted aromatic compounds include biphenyl, terphenyl, phenylnaphthalene, diphenylnaphthalene, phenylanthracene, diphenylfluorene, bipyridine, bipyrimidine, vitriazine, Biscarbazole, bisdibenzofuran, bisdibenzothiophene, phenylpyridine, phenylpyrimidine, phenyltriazine, phenylcarbazole, phenyldibenzofuran, phenyldibenzothiophene, diphenylpyridine, diphenyltriazine, biscarbazolylbenzene, bisdibenzofuranylbenzene, bisdibenzothio And a group formed by removing one hydrogen from phenylbenzene or the like.
 なお、上記芳香族炭化水素基、芳香族複素環基及び該芳香族炭化水素又は芳香族複素環が2~6つ連結して構成される基は置換基を有しても良く、置換基を有する場合、好ましい置換基としては、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、又はアセチル基である。より好ましくは、炭素数1~4のアルキル基、炭素数1~2のアルコキシ基、又はアセチル基である。しかし、ケイ素含有基が置換基となることはない。 Note that the aromatic hydrocarbon group, the aromatic heterocyclic group, and the group constituted by connecting two to six aromatic hydrocarbons or aromatic heterocyclic rings may have a substituent. When it has, a preferable substituent is an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, or an acetyl group. More preferably, it is an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 2 carbon atoms, or an acetyl group. However, silicon-containing groups do not become substituents.
 ここで、未置換の場合の例として、芳香族炭化水素又は芳香族複素環が2~6つ連結して構成される基は、例えば、下記式で表わされ、直鎖状、分岐状で連結されても構わない。
Figure JPOXMLDOC01-appb-I000008
 
(Ar1~Arは未置換の芳香族炭化水素又は芳香族複素環である。)
Here, as an example in the case of unsubstituted, a group constituted by connecting 2 to 6 aromatic hydrocarbons or aromatic heterocycles is represented by the following formula, for example, linear or branched It may be connected.
Figure JPOXMLDOC01-appb-I000008

(Ar 1 to Ar 6 are unsubstituted aromatic hydrocarbons or aromatic heterocyclic rings.)
 一般式(1)において、Lは置換若しくは未置換のs+1価の炭素数3~12の含窒素芳香族複素環基を表す。好ましくは置換若しくは未置換の炭素数3~10の含窒素芳香族複素環基である。
 未置換の含窒素芳香族複素環基の具体例としてはピリジン、ピリミジン、トリアジン、キノリン、イソキノリン、キノリジン、フタラジン、キナゾリン、キノキサリン、ナフチリジン、カルバゾール、アクリジン、アゼピン、トリベンゾアゼピン、フェナジン、フェノキサジン、フェノチアジン等の含窒素芳香族複素環化合物からS+1個の水素を除いて生じるS+1個の基が挙げられる。好ましくはピリジン、ピリミジン、又はトリアジンから生じるS+1価の基が挙げられる。上記含窒素芳香族複素環化合物は、単環又は2~3環が縮合した構造であることが好ましい。
In the general formula (1), L 2 represents a substituted or unsubstituted s + 1 valent nitrogen-containing aromatic heterocyclic group having 3 to 12 carbon atoms. Preferred is a substituted or unsubstituted nitrogen-containing aromatic heterocyclic group having 3 to 10 carbon atoms.
Specific examples of the unsubstituted nitrogen-containing aromatic heterocyclic group include pyridine, pyrimidine, triazine, quinoline, isoquinoline, quinolidine, phthalazine, quinazoline, quinoxaline, naphthyridine, carbazole, acridine, azepine, tribenzazepine, phenazine, phenoxazine, S + 1 groups generated by removing S + 1 hydrogen from a nitrogen-containing aromatic heterocyclic compound such as phenothiazine. Preferably, an S + 1 valent group derived from pyridine, pyrimidine, or triazine is used. The nitrogen-containing aromatic heterocyclic compound preferably has a monocyclic structure or a structure in which 2 to 3 rings are condensed.
 上記含窒素芳香族複素環は置換基を有しても良く、置換基を有する場合、好ましい置換基としては、炭素数1~12のアルキル基、炭素数3~12のシクロアルキル基、炭素数1~12のアルコキシ基、アセチル基、炭素数6~18の芳香族炭化水素基又は炭素数3~17の芳香族複素環基である。より好ましくは、炭素数1~4のアルキル基、炭素数1~2のアルコキシ基、アセチル基、炭素数6~12の芳香族炭化水素基又は炭素数3~12の芳香族複素環基である。しかし、ケイ素含有基が置換基となることはない。 The nitrogen-containing aromatic heterocyclic ring may have a substituent, and when it has a substituent, preferred substituents include an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, and a carbon number. An alkoxy group having 1 to 12 carbon atoms, an acetyl group, an aromatic hydrocarbon group having 6 to 18 carbon atoms, or an aromatic heterocyclic group having 3 to 17 carbon atoms. More preferably, it is an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 2 carbon atoms, an acetyl group, an aromatic hydrocarbon group having 6 to 12 carbon atoms, or an aromatic heterocyclic group having 3 to 12 carbon atoms. . However, silicon-containing groups do not become substituents.
 置換基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、シクロペンチル基、シクロヘキシル基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、アセチル基、フェニル基、ピリジル基、ピリミジル基、トリアジル基、ナフチル基、キノリル基、イソキノリル基、キナゾリル基、フタラジル基、フルオレニル基、カルバゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基が挙げられ、より好ましくは、フェニル基、ピリジル基、ピリミジル基、トリアジル基、ナフチル基、キノリル基、イソキノリル基、フルオレニル基、カルバゾリル基が挙げられる。 Specific examples of the substituent include methyl group, ethyl group, propyl group, isopropyl group, butyl group, pentyl group, hexyl group, octyl group, cyclopentyl group, cyclohexyl group, methoxy group, ethoxy group, propoxy group, butoxy group, Acetyl group, phenyl group, pyridyl group, pyrimidyl group, triazyl group, naphthyl group, quinolyl group, isoquinolyl group, quinazolyl group, phthalazyl group, fluorenyl group, carbazolyl group, dibenzofuranyl group, dibenzothiophenyl group, and more Preferable examples include phenyl group, pyridyl group, pyrimidyl group, triazyl group, naphthyl group, quinolyl group, isoquinolyl group, fluorenyl group, and carbazolyl group.
 これら置換基は更に置換基を有しても良く、好ましくは炭素数1~4のアルキル基、炭素数1~2のアルコキシ基、アセチル基、炭素数6~12の芳香族炭化水素基、炭素数3~12の芳香族複素環基であり、具体例としては、メチル基、エチル基、イソプロピル基、ブチル基、メトキシ基、エトキシ基、アセチル基、フェニル基、ピリジル基、ピリミジル基、トリアジル基、ナフチル基、キノリル基、イソキノリル基、フルオレニル基、カルバゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基が挙げられる。しかし、ケイ素含有基がこの置換基となることはない。 These substituents may further have a substituent, preferably an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 2 carbon atoms, an acetyl group, an aromatic hydrocarbon group having 6 to 12 carbon atoms, carbon Examples of the aromatic heterocyclic group of formula 3 to 12 include methyl group, ethyl group, isopropyl group, butyl group, methoxy group, ethoxy group, acetyl group, phenyl group, pyridyl group, pyrimidyl group, triazyl group. Naphthyl group, quinolyl group, isoquinolyl group, fluorenyl group, carbazolyl group, dibenzofuranyl group, dibenzothiophenyl group. However, silicon-containing groups do not become this substituent.
 一般式(1)において、pは1~4の整数、好ましくは1~2の整数である。qは1~4の整数、好ましくは1~2の整数である。rは1~2の整数を表す。sは1~4の整数、好ましくは1~2の整数である。 In the general formula (1), p is an integer of 1 to 4, preferably an integer of 1 to 2. q is an integer of 1 to 4, preferably an integer of 1 to 2. r represents an integer of 1 to 2. s is an integer of 1 to 4, preferably an integer of 1 to 2.
 一般式(1)において、R~Rはそれぞれ独立して水素、炭素数1~12の脂肪族炭化水素基、置換若しくは未置換の炭素数6~18の芳香族炭化水素基又は置換若しくは未置換の炭素数3~17の芳香族複素環基を示す。好ましくは水素、炭素数1~4のアルキル基、炭素数3~6のシクロアルキル基、置換若しくは未置換の炭素数6~12の芳香族炭化水素基又は置換若しくは未置換の炭素数3~12の芳香族複素環基である。 In the general formula (1), R 1 to R 3 are each independently hydrogen, an aliphatic hydrocarbon group having 1 to 12 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms, An unsubstituted aromatic heterocyclic group having 3 to 17 carbon atoms is shown. Preferably, hydrogen, an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 12 carbon atoms, or a substituted or unsubstituted carbon group having 3 to 12 carbon atoms. An aromatic heterocyclic group.
 R~Rの具体例としては、水素、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、シクロペンチル基、シクロヘキシル基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、アセチル基、フェニル基、ピリジル基、ピリミジル基、トリアジル基、ナフチル基、キノリル基、イソキノリル基、キナゾリル基、フタラジル基、フルオレニル基、カルバゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基が挙げられ、より好ましくは、水素、フェニル基、ピリジル基、ピリミジル基、トリアジル基、ナフチル基、キノリル基、イソキノリル基、フルオレニル基、又はカルバゾリル基が挙げられる。 Specific examples of R 1 to R 3 include hydrogen, methyl group, ethyl group, propyl group, isopropyl group, butyl group, pentyl group, hexyl group, octyl group, cyclopentyl group, cyclohexyl group, methoxy group, ethoxy group, propoxy Group, butoxy group, acetyl group, phenyl group, pyridyl group, pyrimidyl group, triazyl group, naphthyl group, quinolyl group, isoquinolyl group, quinazolyl group, phthalazyl group, fluorenyl group, carbazolyl group, dibenzofuranyl group, dibenzothiophenyl group More preferred are hydrogen, phenyl group, pyridyl group, pyrimidyl group, triazyl group, naphthyl group, quinolyl group, isoquinolyl group, fluorenyl group, and carbazolyl group.
 これらは更に置換基を有しても良く、好ましくは炭素数1~4のアルキル基、炭素数1~2のアルコキシ基、アセチル基、炭素数6~12の芳香族炭化水素基、炭素数3~12の芳香族複素環基であり、具体例としては、メチル基、エチル基、イソプロピル基、ブチル基、メトキシ基、エトキシ基、アセチル基、フェニル基、ピリジル基、ピリミジル基、トリアジル基、ナフチル基、キノリル基、イソキノリル基、フルオレニル基、カルバゾリル基、ジベンゾフラニル基、又はジベンゾチオフェニル基が挙げられる。しかし、ケイ素含有基がこの置換基となることはない。 These may further have a substituent, preferably an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 2 carbon atoms, an acetyl group, an aromatic hydrocarbon group having 6 to 12 carbon atoms, or a carbon number of 3 -12 aromatic heterocyclic groups, and specific examples include methyl, ethyl, isopropyl, butyl, methoxy, ethoxy, acetyl, phenyl, pyridyl, pyrimidyl, triazyl, naphthyl Group, quinolyl group, isoquinolyl group, fluorenyl group, carbazolyl group, dibenzofuranyl group, or dibenzothiophenyl group. However, silicon-containing groups do not become this substituent.
 一般式(1)において、R~Rはそれぞれ独立して炭素数1~12の脂肪族炭化水素基、置換若しくは未置換の炭素数6~18の芳香族炭化水素基又は置換若しくは未置換の炭素数3~17の芳香族複素環基を示す。これらの脂肪族炭化水素基、芳香族炭化水素基又は芳香族複素環基は、R~Rで説明したと同様である。 In the general formula (1), R 4 to R 6 are each independently an aliphatic hydrocarbon group having 1 to 12 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms, or a substituted or unsubstituted group. And an aromatic heterocyclic group having 3 to 17 carbon atoms. These aliphatic hydrocarbon group, aromatic hydrocarbon group or aromatic heterocyclic group are the same as described for R 1 to R 3 .
 一般式(1)で表されるインドロカルバゾール化合物の中でも、上記一般式(2)~(6)で表されるインドロカルバゾール化合物が好ましい化合物として挙げられ、上記一般式(2)、(4)、(5)、又は(6)で表されるインドロカルバゾール化合物がより好ましい化合物として挙げられる。 Among the indolocarbazole compounds represented by the general formula (1), the indolocarbazole compounds represented by the above general formulas (2) to (6) may be mentioned as preferred compounds, and the above general formulas (2), (4 ), (5) or indolocarbazole compounds represented by (6) are more preferred compounds.
 一般式(1)~(6)において、それぞれ同一の記号及び式は特に断らない限り同一の意味を有すると解される。 In general formulas (1) to (6), the same symbols and formulas are understood to have the same meaning unless otherwise specified.
 一般式(1)~(6)で表されるインドロカルバゾール化合物の総炭素数は150以下であることが好ましく、より好ましくは100以下である。 The total number of carbon atoms of the indolocarbazole compounds represented by the general formulas (1) to (6) is preferably 150 or less, more preferably 100 or less.
 一般式(1)~(6)で表されるインドロカルバゾール化合物は、目的とする化合物の構造に応じて原料を選択し、公知の手法を用いて合成することができる。 The indolocarbazole compounds represented by the general formulas (1) to (6) can be synthesized by selecting a raw material according to the structure of the target compound and using a known method.
 例えば、インドロカルバゾールの母骨格は、Synlett,2005,No.1,p42-48に示される合成例を参考にして以下の反応式により骨格(A-1)を合成することができる。
Figure JPOXMLDOC01-appb-I000009
 
For example, the parent skeleton of indolocarbazole is Synlett, 2005, No. 1; 1, skeleton (A-1) can be synthesized by the following reaction formula with reference to the synthesis example shown in p42-48.
Figure JPOXMLDOC01-appb-I000009
 Journal of Heterocyclic Chemistry, 1992, 29,p1237に示される合成例を参考にして以下の反応式により骨格(A-2)を合成することができる。 
Figure JPOXMLDOC01-appb-I000010
 
The skeleton (A-2) can be synthesized by the following reaction formula with reference to the synthesis example shown in Journal of Heterocyclic Chemistry, 1992, 29, p1237.
Figure JPOXMLDOC01-appb-I000010
 Tetrahedron,2000,56,p1911に示される合成例を参考にして以下の反応式により骨格(A-3)を合成することができる。
Figure JPOXMLDOC01-appb-I000011
 
With reference to the synthesis example shown in Tetrahedron, 2000, 56, p1911, the skeleton (A-3) can be synthesized by the following reaction formula.
Figure JPOXMLDOC01-appb-I000011
 The Journal of Organic Chemistry,2007,72(15)5886 ならびに、Tetrahedron,1999,55,p2371に示される合成例を参考にして以下の反応式により骨格(A-4)を合成することができる。
Figure JPOXMLDOC01-appb-I000012
 
The skeleton (A-4) can be synthesized by the following reaction formula with reference to synthesis examples shown in The Journal of Organic Chemistry, 2007, 72 (15) 5886 and Tetrahedron, 1999, 55, p2371.
Figure JPOXMLDOC01-appb-I000012

 Archiv der Pharmazie (Weinheim, Germany),1987,320(3),p280-2に示される合成例を参考にして以下の反応式により骨格(A-5)を合成することができる。

Figure JPOXMLDOC01-appb-I000013
 
The skeleton (A-5) can be synthesized by the following reaction formula with reference to the synthesis example shown in Archiv der Pharmazie (Weinheim, Germany), 1987, 320 (3), p280-2.

Figure JPOXMLDOC01-appb-I000013
 前述の反応式で得られる各インドロカルバゾール骨格の窒素上の水素を、定法に従い、対応する芳香族基に置換させることで、一般式(1)~(6)で表されるインドロカルバゾール化合物群を合成することができる。 Indolocarbazole compounds represented by the general formulas (1) to (6) are obtained by substituting hydrogen on nitrogen of each indolocarbazole skeleton obtained by the above reaction formula with a corresponding aromatic group according to a conventional method. Groups can be synthesized.
 一般式(1)~(6)で表されるインドロカルバゾール化合物の具体例を以下に示すが、本発明の有機電界発光素子用材料はこれらに限定されない。 Specific examples of the indolocarbazole compounds represented by the general formulas (1) to (6) are shown below, but the organic electroluminescent element material of the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-I000014
 

Figure JPOXMLDOC01-appb-I000015
 

Figure JPOXMLDOC01-appb-I000016
 
Figure JPOXMLDOC01-appb-I000014
 

Figure JPOXMLDOC01-appb-I000015
 

Figure JPOXMLDOC01-appb-I000016
 
Figure JPOXMLDOC01-appb-I000017
 
Figure JPOXMLDOC01-appb-I000018
 
Figure JPOXMLDOC01-appb-I000019
 
Figure JPOXMLDOC01-appb-I000020
 
Figure JPOXMLDOC01-appb-I000017
 
Figure JPOXMLDOC01-appb-I000018
 
Figure JPOXMLDOC01-appb-I000019
 
Figure JPOXMLDOC01-appb-I000020
 
 本発明の有機電界発光素子用材料は、基板上に、陽極、複数の有機層及び陰極が積層されてなる有機EL素子の少なくとも1つの有機層に含有させることにより、優れた有機電界発光素子を与える。含有させる有機層としては、発光層、電子輸送層又は正孔阻止層が適する。ここで、発光層に使用する場合は、蛍光発光、遅延蛍光発光又は燐光発光性のドーパントを含有する発光層のホスト材料として使用することができるほか、本発明の化合物を蛍光及び遅延蛍光を放射する有機発光材料として使用することができる。本発明の化合物は、燐光発光ドーパントを含有する発光層のホスト材料として含有させることが特に好ましい。 The organic electroluminescent element material of the present invention contains an excellent organic electroluminescent element by containing it in at least one organic layer of an organic EL element in which an anode, a plurality of organic layers and a cathode are laminated on a substrate. give. As the organic layer to be contained, a light emitting layer, an electron transport layer or a hole blocking layer is suitable. Here, when used in a light emitting layer, it can be used as a host material of a light emitting layer containing a fluorescent, delayed fluorescent or phosphorescent dopant, and the compound of the present invention emits fluorescence and delayed fluorescence. It can be used as an organic light emitting material. The compound of the present invention is particularly preferably contained as a host material for a light emitting layer containing a phosphorescent dopant.
 次に、本発明の有機電界発光素子用材料を用いた有機EL素子について説明する。 Next, an organic EL element using the organic electroluminescent element material of the present invention will be described.
 本発明の有機EL素子は、基板上に積層された陽極と陰極の間に、少なくとも一つの発光層を有する有機層を有し、且つ少なくとも一つの有機層は、本発明の有機電界発光素子用材料を含む。有利には、燐光発光ドーパントと共に本発明の有機電界発光素子用材料を発光層中に含む。 The organic EL device of the present invention has an organic layer having at least one light emitting layer between an anode and a cathode laminated on a substrate, and the at least one organic layer is for the organic electroluminescent device of the present invention. Contains materials. Advantageously, the organic electroluminescent device material of the present invention is included in the light emitting layer together with a phosphorescent dopant.
 次に、本発明の有機EL素子の構造について、図面を参照しながら説明するが、本発明の有機EL素子の構造は何ら図示のものに限定されるものではない。 Next, the structure of the organic EL element of the present invention will be described with reference to the drawings. However, the structure of the organic EL element of the present invention is not limited to the illustrated one.
 図1は本発明に用いられる一般的な有機EL素子の構造例を示す断面図であり、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は電子輸送層、7は陰極を各々表わす。本発明の有機EL素子では発光層と隣接して励起子阻止層を有してもよく、また、発光層と正孔注入層との間に電子阻止層を有しても良い。励起子阻止層は発光層の陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。本発明の有機EL素子では、基板、陽極、発光層及び陰極を必須の層として有するが、必須の層以外の層に、正孔注入輸送層、電子注入輸送層を有することがよく、更に発光層と電子注入輸送層の間に正孔阻止層を有することがよい。なお、正孔注入輸送層は、正孔注入層と正孔輸送層のいずれか又は両者を意味し、電子注入輸送層は、電子注入層と電子輸送層のいずれか又は両者を意味する。 FIG. 1 is a cross-sectional view showing a structural example of a general organic EL device used in the present invention, wherein 1 is a substrate, 2 is an anode, 3 is a hole injection layer, 4 is a hole transport layer, and 5 is a light emitting layer. , 6 represents an electron transport layer, and 7 represents a cathode. The organic EL device of the present invention may have an exciton blocking layer adjacent to the light emitting layer, and may have an electron blocking layer between the light emitting layer and the hole injection layer. The exciton blocking layer can be inserted on either the anode side or the cathode side of the light emitting layer, or both can be inserted simultaneously. The organic EL device of the present invention has a substrate, an anode, a light emitting layer and a cathode as essential layers, but it is preferable to have a hole injecting and transporting layer and an electron injecting and transporting layer in layers other than the essential layers, and further emitting It is preferable to have a hole blocking layer between the layer and the electron injecting and transporting layer. The hole injection / transport layer means either or both of a hole injection layer and a hole transport layer, and the electron injection / transport layer means either or both of an electron injection layer and an electron transport layer.
 なお、図1とは逆の構造、すなわち、基板1上に陰極7、電子輸送層6、発光層5、正孔輸送層4、陽極2の順に積層することも可能であり、この場合も、必要により層を追加したり、省略したりすることが可能である。 In addition, it is also possible to laminate | stack the cathode 7, the electron carrying layer 6, the light emitting layer 5, the positive hole transport layer 4, and the anode 2 in order on the board | substrate 1 in the reverse structure, FIG. Layers can be added or omitted as necessary.
-基板-
 本発明の有機EL素子は、基板に支持されていることが好ましい。この基板については、特に制限はなく、従来から有機EL素子に慣用されているものであればよく、例えば、ガラス、透明プラスチック、石英などからなるものを用いることができる。
-substrate-
The organic EL element of the present invention is preferably supported on a substrate. The substrate is not particularly limited as long as it is conventionally used for an organic EL element. For example, a substrate made of glass, transparent plastic, quartz, or the like can be used.
-陽極-
 有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。
-anode-
As the anode in the organic EL element, an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such an electrode substance include conductive transparent materials such as metals such as Au, CuI, indium tin oxide (ITO), SnO 2 , and ZnO. Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used. For the anode, these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when the pattern accuracy is not required (about 100 μm or more) ), A pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered. Or when using the substance which can be apply | coated like an organic electroconductivity compound, wet film-forming methods, such as a printing system and a coating system, can also be used. When light emission is extracted from the anode, it is desirable that the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred Ω / □ or less. Further, although the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
-陰極-
 一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が、透明又は半透明であれば発光輝度が向上し好都合である。
-cathode-
On the other hand, as the cathode, a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like. Among these, from the point of durability against electron injection and oxidation, etc., a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this, for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred. The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 to 200 nm. In order to transmit the emitted light, if either one of the anode or the cathode of the organic EL element is transparent or translucent, the light emission luminance is improved, which is convenient.
  また、陰極に上記金属を1~20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。 In addition, a transparent or semi-transparent cathode can be produced by producing the conductive transparent material mentioned in the description of the anode on the cathode after producing the metal with a thickness of 1 to 20 nm on the cathode. By applying this, an element in which both the anode and the cathode are transmissive can be manufactured.
-発光層-
 発光層は、陽極及び陰極のそれぞれから注入された正孔及び電子が再結合することにより励起子が生成した後、発光する層であり、発光層には有機発光材料とホスト材料を含む。
-Light emitting layer-
The light emitting layer is a layer that emits light after excitons are generated by recombination of holes and electrons injected from the anode and the cathode, respectively. The light emitting layer includes an organic light emitting material and a host material.
 発光層が蛍光発光層である場合、発光層には蛍光発光材料を単独で使用することもできるが、蛍光発光材料を蛍光発光ドーパントとして使用し、ホスト材料を混合することが好ましい。 When the light emitting layer is a fluorescent light emitting layer, a fluorescent light emitting material can be used alone for the light emitting layer, but it is preferable to use a fluorescent light emitting material as a fluorescent light emitting dopant and to mix a host material.
 発光層における蛍光発光材料としては、一般式(1)で表されるインドロカルバゾール化合物を用いることができるが、多数の特許文献等により知られているので、それらから選択することもできる。例えば、ベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、ベンゾイミダゾール誘導体、スチリルベンゼン誘導体、ポリフェニル誘導体、ジフェニルブタジエン誘導体、テトラフェニルブタジエン誘導体、ナフタルイミド誘導体、クマリン誘導体、縮合芳香族化合物、ペリノン誘導体、オキサジアゾール誘導体、オキサジン誘導体、アルダジン誘導体、ピラリジン誘導体、シクロペンタジエン誘導体、ビススチリルアントラセン誘導体、キナクリドン誘導体、ピロロピリジン誘導体、チアジアゾロピリジン誘導体、スチリルアミン誘導体、ジケトピロロピロール誘導体、芳香族ジメチリジン化合物、8-キノリノール誘導体の金属錯体やピロメテン誘導体の金属錯体、希土類錯体、遷移金属錯体に代表される各種金属錯体等、ポリチオフェン、ポリフェニレン、ポリフェニレンビニレン等のポリマー化合物、有機シラン誘導体等が挙げられる。好ましくは縮合芳香族化合物、スチリル化合物、ジケトピロロピロール化合物、オキサジン化合物、ピロメテン金属錯体、遷移金属錯体、ランタノイド錯体が挙げられ、より好ましくはナフタセン、ピレン、クリセン、トリフェニレン、ベンゾ[c]フェナントレン、ベンゾ[a]アントラセン、ペンタセン、ペリレン、フルオランテン、アセナフソフルオランテン、ジベンゾ[a,j]アントラセン、ジベンゾ[a,h]アントラセン、ベンゾ[a]ナフタセン、ヘキサセン、アンタントレン、ナフト[2,1-f]イソキノリン、α-ナフタフェナントリジン、フェナントロオキサゾール、キノリノ[6,5-f]キノリン、ベンゾチオファントレン等が挙げられる。これらは置換基としてアルキル基、アリール基、芳香族複素環基、ジアリールアミノ基を有していてもよい。 As the fluorescent light emitting material in the light emitting layer, an indolocarbazole compound represented by the general formula (1) can be used. However, since it is known from many patent documents, it can be selected from them. For example, benzoxazole derivatives, benzothiazole derivatives, benzimidazole derivatives, styrylbenzene derivatives, polyphenyl derivatives, diphenylbutadiene derivatives, tetraphenylbutadiene derivatives, naphthalimide derivatives, coumarin derivatives, condensed aromatic compounds, perinone derivatives, oxadiazole derivatives , Oxazine derivatives, aldazine derivatives, pyralidine derivatives, cyclopentadiene derivatives, bisstyrylanthracene derivatives, quinacridone derivatives, pyrrolopyridine derivatives, thiadiazolopyridine derivatives, styrylamine derivatives, diketopyrrolopyrrole derivatives, aromatic dimethylolidine compounds, 8-quinolinol Polythiophene such as metal complexes of derivatives, metal complexes of pyromethene derivatives, various metal complexes represented by rare earth complexes, transition metal complexes, etc. , Polyphenylene, polyphenylene vinylene polymer compounds such as, organic silane derivatives, and the like. Preferred examples include condensed aromatic compounds, styryl compounds, diketopyrrolopyrrole compounds, oxazine compounds, pyromethene metal complexes, transition metal complexes, and lanthanoid complexes, more preferably naphthacene, pyrene, chrysene, triphenylene, benzo [c] phenanthrene, Benzo [a] anthracene, pentacene, perylene, fluoranthene, acenaphthofluoranthene, dibenzo [a, j] anthracene, dibenzo [a, h] anthracene, benzo [a] naphthacene, hexacene, anthanthrene, naphtho [2,1 -f] isoquinoline, α-naphthaphenanthridine, phenanthrooxazole, quinolino [6,5-f] quinoline, benzothiophanthrene and the like. These may have an alkyl group, an aryl group, an aromatic heterocyclic group, or a diarylamino group as a substituent.
 発光層における蛍光ホスト材料としては、一般式(1)で表されるインドロカルバゾール化合物を用いることができるが、多数の特許文献等により知られているので、それらから選択することもできる。例えば、ナフタレン、アントラセン、フェナンスレン、ピレン、クリセン、ナフタセン、トリフェニレン、ペリレン、フルオランテン、フルオレン、インデンなどの縮合アリール環を有する化合物やその誘導体、N,N’-ジナフチル-N,N’-ジフェニル-4,4’-ジフェニル-1,1’-ジアミンなどの芳香族アミン誘導体、トリス(8-キノリナート)アルミニウム(III)をはじめとする金属キレート化オキシノイド化合物、ジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、インデン誘導体、クマリン誘導体、オキサジアゾール誘導体、ピロロピリジン誘導体、ペリノン誘導体、シクロペンタジエン誘導体、ピロロピロール誘導体、チアジアゾロピリジン誘導体、ジベンゾフラン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、トリアジン誘導体、ポリマー系では、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、ポリチオフェン誘導体等が使用できるが、特に限定されるものではない。 As the fluorescent host material in the light emitting layer, an indolocarbazole compound represented by the general formula (1) can be used, but since it is known from a large number of patent documents, it can be selected from them. For example, a compound having a condensed aryl ring such as naphthalene, anthracene, phenanthrene, pyrene, chrysene, naphthacene, triphenylene, perylene, fluoranthene, fluorene, indene or a derivative thereof, N, N′-dinaphthyl-N, N′-diphenyl-4 Aromatic amine derivatives such as 4,4'-diphenyl-1,1'-diamine, metal chelated oxinoid compounds such as tris (8-quinolinato) aluminum (III), bisstyryl derivatives such as distyrylbenzene derivatives, tetraphenyl Butadiene derivatives, indene derivatives, coumarin derivatives, oxadiazole derivatives, pyrrolopyridine derivatives, perinone derivatives, cyclopentadiene derivatives, pyrrolopyrrole derivatives, thiadiazolopyridine derivatives, dibenzofuran derivatives, Carbazole derivatives, indolocarbazole derivatives, triazine derivatives, in polymer systems, a polyphenylene vinylene derivative, polyparaphenylene derivatives, polyfluorene derivatives, polyvinylcarbazole derivatives, polythiophene derivatives can be used, but is not particularly limited.
 前記蛍光発光材料を蛍光発光ドーパントとして使用し、ホスト材料を含む場合、蛍光発光ドーパントが発光層中に含有される量は、0.01~20重量%、好ましくは0.1~10重量%の範囲にあることが良い。 When the fluorescent light emitting material is used as a fluorescent light emitting dopant and a host material is included, the amount of the fluorescent light emitting dopant contained in the light emitting layer is 0.01 to 20% by weight, preferably 0.1 to 10% by weight. It should be in range.
 通常、有機EL素子は、陽極、陰極の両電極より発光物質に電荷を注入し、励起状態の発光物質を生成し、発光させる。電荷注入型の有機EL素子の場合、生成した励起子のうち、一重項励起状態に励起されるのは25%であり、残り75%は三重項励起状態に励起されると言われている。Advanced Materials 2009, 21, 4802-4806.に示されているように、特定の蛍光発光物質は、項間交差等により三重項励起状態へとエネルギーが遷移した後、三重項-三重項消滅あるいは熱エネルギーの吸収により、一重項励起状態に逆項間交差され蛍光を放射し、熱活性化遅延蛍光を発現することが知られている。本発明の有機EL素子でも遅延蛍光を発現することができる。この場合、蛍光発光及び遅延蛍光発光の両方を含むこともできる。但し、発光の一部又は部分的にホスト材料からの発光があってもよい。 Usually, an organic EL element injects electric charges into a luminescent material from both an anode and a cathode, generates an excited luminescent material, and emits light. In the case of a charge injection type organic EL device, it is said that 25% of the generated excitons are excited to a singlet excited state and the remaining 75% are excited to a triplet excited state. As shown in Advanced Materials 2009, 21, 4802-4806, certain fluorescent materials emit triplet-triplet annihilation or heat after energy transition to triplet excited state due to intersystem crossing etc. It is known that, due to the absorption of energy, the singlet excited state is crossed back to back and emits fluorescence, thereby expressing thermally activated delayed fluorescence. The organic EL device of the present invention can also exhibit delayed fluorescence. In this case, both fluorescence emission and delayed fluorescence emission can be included. However, light emission from the host material may be partly or partly emitted.
 発光層が遅延蛍光発光層である場合、発光層には遅延発光材料を単独で使用することもできるが、遅延蛍光材料を遅延蛍光発光ドーパントとして使用し、ホスト材料を混合することが好ましい。 When the light emitting layer is a delayed fluorescent light emitting layer, a delayed light emitting material can be used alone in the light emitting layer, but it is preferable to use a delayed fluorescent material as a delayed fluorescent light emitting dopant and mix a host material.
 発光層における遅延蛍光発光材料としては、一般式(1)で表されるインドロカルバゾール化合物を用いることができるが、公知の遅延蛍光発光材料から選択することもできる。例えば、スズ錯体、インドロカルバゾール誘導体、銅錯体、カルバゾール誘導体等が挙げられる。具体的には、以下の非特許文献、特許公報に記載されている化合物が挙げられるが、これらの化合物に限定されるものではない。 As the delayed fluorescent light emitting material in the light emitting layer, an indolocarbazole compound represented by the general formula (1) can be used, but it can also be selected from known delayed fluorescent light emitting materials. For example, a tin complex, an indolocarbazole derivative, a copper complex, a carbazole derivative, and the like can be given. Specific examples include compounds described in the following non-patent documents and patent publications, but are not limited to these compounds.
 Adv. Mater. 2009, 21, 4802-4806、Appl. Phys. Lett. 98, 083302 (2011)、特開2011-213643号公報、及びJ. Am. Chem. Soc. 2012, 134, 14706-14709。 DvAdv. Mater. 2009, 21,24802-4806, Appl. Phys. Lett. 98, 083302 (2011), JP2011-213643, and J. Am. Chem. Soc. 2012, 134, 14706-14709.
 遅延発光材料の具体的な例を示すが、下記の化合物に限定されるものではない。 Specific examples of delayed luminescent materials are shown, but are not limited to the following compounds.
Figure JPOXMLDOC01-appb-I000021
 
Figure JPOXMLDOC01-appb-I000021
 
 前記遅延蛍光発光材料を遅延蛍光発光ドーパントとして使用し、ホスト材料を含む場合、遅延蛍光発光ドーパントが発光層中に含有される量は、0.01~50重量%、好ましくは0.1~20重量%、より好ましくは0.01~10%の範囲にあることが良い。 When the delayed fluorescent material is used as a delayed fluorescent material and includes a host material, the amount of the delayed fluorescent material contained in the light emitting layer is 0.01 to 50% by weight, preferably 0.1 to 20%. It is good to be in the range of wt%, more preferably 0.01 to 10%.
 発光層における遅延蛍光ホスト材料としては、一般式(1)で表されるインドロカルバゾール化合物を用いることができるが、インドロカルバゾール以外の化合物から選択することもできる。例えば、ナフタレン、アントラセン、フェナンスレン、ピレン、クリセン、ナフタセン、トリフェニレン、ペリレン、フルオランテン、フルオレン、インデンなどの縮合アリール環を有する化合物やその誘導体、N,N’-ジナフチル-N,N’-ジフェニル-4,4’-ジフェニル-1,1’-ジアミンなどの芳香族アミン誘導体、トリス(8-キノリナート)アルミニウム(III)をはじめとする金属キレート化オキシノイド化合物、ジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、インデン誘導体、クマリン誘導体、オキサジアゾール誘導体、ピロロピリジン誘導体、ペリノン誘導体、シクロペンタジエン誘導体、ピロロピロール誘導体、チアジアゾロピリジン誘導体、ジベンゾフラン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、トリアジン誘導体、ポリマー系では、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、ポリチオフェン誘導体、アリールシラン誘導体等が使用できるが特に限定されるものではない。 As the delayed fluorescent host material in the light emitting layer, an indolocarbazole compound represented by the general formula (1) can be used, but it can also be selected from compounds other than indolocarbazole. For example, a compound having a condensed aryl ring such as naphthalene, anthracene, phenanthrene, pyrene, chrysene, naphthacene, triphenylene, perylene, fluoranthene, fluorene, indene or a derivative thereof, N, N′-dinaphthyl-N, N′-diphenyl-4 Aromatic amine derivatives such as 4,4'-diphenyl-1,1'-diamine, metal chelated oxinoid compounds such as tris (8-quinolinato) aluminum (III), bisstyryl derivatives such as distyrylbenzene derivatives, tetraphenyl Butadiene derivatives, indene derivatives, coumarin derivatives, oxadiazole derivatives, pyrrolopyridine derivatives, perinone derivatives, cyclopentadiene derivatives, pyrrolopyrrole derivatives, thiadiazolopyridine derivatives, dibenzofuran derivatives, In the rubazole derivative, indolocarbazole derivative, triazine derivative, and polymer system, polyphenylene vinylene derivative, polyparaphenylene derivative, polyfluorene derivative, polyvinylcarbazole derivative, polythiophene derivative, arylsilane derivative, and the like can be used, but are not particularly limited. .
 発光層が燐光発光層である場合、発光層は燐光発光ドーパントとホスト材料を含む。燐光発光ドーパント材料としては、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金及び金から選ばれる少なくとも一つの金属を含む有機金属錯体を含有するものがよい。具体的には以下の特許公報に記載されている化合物が挙げられるが、これらの化合物に限定されない。 When the light emitting layer is a phosphorescent light emitting layer, the light emitting layer contains a phosphorescent light emitting dopant and a host material. The phosphorescent dopant material preferably contains an organometallic complex containing at least one metal selected from ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum and gold. Specific examples include compounds described in the following patent publications, but are not limited to these compounds.
 WO2009/073245号公報、WO2009/046266号公報、WO2007/095118号公報、WO2008/156879号公報、WO2008/140657号公報、US2008/261076号公報、特表2008-542203号公報、WO2008/054584号公報、特表2008-505925号公報、特表2007-522126号公報、特表2004-506305号公報、特表2006-513278号公報、特表2006-50596号公報、WO2006/046980号公報、WO2005/113704号公報、US2005/260449号公報、US2005/2260448号公報、US2005/214576号公報、WO2005/076380号公報、US2005/119485号公報、WO2004/045001号公報、WO2004/045000号公報、WO2006/100888号公報、WO2007/004380号公報、WO2007/023659号公報、WO2008/035664号公報、特開2003-272861号公報、特開2004-111193号公報、特開2004-319438号公報、特開2007-2080号公報、特開2007-9009号公報、特開2007-227948号公報、特開2008-91906号公報、特開2008-311607号公報、特開2009-19121号公報、特開2009-46601号公報、特開2009-114369号公報、特開2003-253128号公報、特開2003-253129号公報、特開2003-253145号公報、特開2005-38847号公報、特開2005-82598号公報、特開2005-139185号公報、特開2005-187473号公報、特開2005/220136号公報、特開2006-63080号公報、特開2006-104201号公報、特開2006-111623号公報、特開2006-213720号公報、特開2006-290891号公報、特開2006-298899号公報、特開2006-298900号公報、WO2007/018067号公報、WO2007/058080号公報、WO2007/058104号公報、特開2006-131561号公報、特開2008-239565号公報、特開2008-266163号公報、特開2009-57367号公報、特開2002-117978号公報、特開2003-123982号公報、特開2003-133074号公報、特開2006-93542号公報、特開2006-131524号公報、特開2006-261623号公報、特開2006-303383号公報、特開2006-303394号公報、特開2006-310479号公報、特開2007-88105号公報、特開2007-258550号公報、特開2007-324309号公報、特開2008-270737号公報、特開2009-96800号公報、特開2009-161524号公報、WO2008/050733号公報、特開2003-73387号公報、特開2004-59433号公報、特開2004-155709号公報、特開2006-104132号公報、特開2008-37848号公報、特開2008-133212号公報、特開2009-57304号公報、特開2009-286716号公報、特開2010-83852号公報、特表2009-532546号公報、特表2009-536681号公報、特表2009-542026号公報等。 WO2009 / 073245 Publication, WO2009 / 046266 Publication, WO2007 / 095118 Publication, WO2008 / 156879 Publication, WO2008 / 140657 Publication, US2008 / 261076 Publication, Special Table 2008-542203 Publication, WO2008 / 054584 Publication, Special Table 2008-505925, Special Table 2007-522126, Special Table 2004-506305, Special Table 2006-513278, Special 2006-50596, WO2006 / 046980, WO2005 / 113704 Publication, US2005 / 260449 publication, US2005 / 2260448 publication, US2005 / 214576 publication, WO2005 / 076380 publication, US2005 / 119485 publication, WO2004 / 045001 publication, WO2004 / 045000 publication, WO2006 / 100888 publication, WO2007 / 004380, WO2007 / 023659, WO2008 / 035664, JP2003-272861, JP2004-111193, JP2004-319438, JP2007-2080, JP 2007-9009, JP 2007-227948, JP 2008-91906, JP 2008-311607, JP 2009-19121, JP 2009-46601, JP No. 2009-114369, JP 2003- JP 253128, JP 2003-253129, JP 2003-253145, JP 2005-38847, JP 2005-82598, JP 2005-139185, JP 2005-187473 JP, JP 2005/220136, JP 2006-63080, JP 2006-104201, JP 2006-111623, JP 2006-213720, JP 2006-290891, JP 2006-298899, JP 2006-298900, WO 2007/018067, WO 2007/058080, WO 2007/058104, JP 2006-131561, JP 2008-239565, JP 2008-266163, JP 2009-57367, JP 2002-117978, JP 2003-123982, JP 2003-133074, JP 2006-93542, JP JP 2006-131524, JP 2006-261623, JP 2006-303383, JP 2006-303394, JP 2006-310479, JP 2007-88105, JP 2007- JP 258550, JP 2007-324309, JP 2008-270737, JP 2009-968 00, JP 2009-161524, WO 2008/050733, JP 2003-73387, JP 2004-59433, JP 2004-155709, JP 2006-104132, JP 2008-37848, JP 2008-133212, JP 2009-57304, JP 2009-286716, JP 2010-83852, Special 2009-532546, Special No. 2009-536681, No. 2009-542026, etc.
  好ましい燐光発光ドーパントとしては、Ir等の貴金属元素を中心金属として有するIr(ppy)3等の錯体類、Ir(bt)2・acac3等の錯体類、PtOEt3等の錯体類が挙げられる。これらの錯体類の具体例を以下に示すが、下記の化合物に限定されない。 Preferable phosphorescent dopants include complexes such as Ir (ppy) 3 having a noble metal element such as Ir as a central metal, complexes such as Ir (bt) 2 · acac3, and complexes such as PtOEt3. Specific examples of these complexes are shown below, but are not limited to the following compounds.
Figure JPOXMLDOC01-appb-I000022
 
Figure JPOXMLDOC01-appb-I000023
 
Figure JPOXMLDOC01-appb-I000022
 
Figure JPOXMLDOC01-appb-I000023
 
  前記燐光発光ドーパントが発光層中に含有される量は、2~40重量%、好ましくは5~30重量%の範囲にあることがよい。 The amount of the phosphorescent dopant contained in the light emitting layer is 2 to 40% by weight, preferably 5 to 30% by weight.
  発光層が燐光発光層である場合、発光層におけるホスト材料としては、前記一般式(1)で表されるインドロカルバゾール化合物を用いることが好ましい。しかし、該インドロカルバゾール化合物を発光層以外の他の何れかの有機層に使用する場合は、発光層に使用する材料はインドロカルバゾール化合物以外の他のホスト材料であってもよい。また、インドロカルバゾール化合物と他のホスト材料を併用してもよい。更に、公知のホスト材料を複数種類併用して用いてもよい。 When the emissive layer is a phosphorescent light-emitting layer, it is preferable to use an indolocarbazole compound represented by the general formula (1) as a host material in the light-emitting layer. However, when the indolocarbazole compound is used in any organic layer other than the light emitting layer, the material used for the light emitting layer may be a host material other than the indolocarbazole compound. An indolocarbazole compound and another host material may be used in combination. Furthermore, a plurality of known host materials may be used in combination.
  使用できる公知のホスト化合物としては、正孔輸送能、電子輸送能を有し、かつ発光の長波長化を防ぎ、なおかつ高いガラス転移温度を有する化合物であることが好ましい。 A known host compound that can be used is preferably a compound that has a hole transporting ability and an electron transporting ability, prevents a long wavelength of light emission, and has a high glass transition temperature.
  このような他のホスト材料は、多数の特許文献等により知られているので、それらから選択することができる。ホスト材料の具体例としては、特に限定されるものではないが、インドール誘導体、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三アミン化合物、スチリルアミン化合物、芳香族ジメチリデン系化合物、ポルフィリン系化合物、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン誘導体、8―キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾール誘導体の金属錯体に代表される各種金属錯体、ポリシラン系化合物、ポリ(N-ビニルカルバゾール)誘導体、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、ポリフルオレン誘導体等の高分子化合物等が挙げられる。 Such other host materials are known from a large number of patent documents and can be selected from them. Specific examples of the host material are not particularly limited, but include indole derivatives, carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine. Derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidene compounds, porphyrin compounds, anthraquino Heterocyclic tetracarboxylic acid anhydrides such as dimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, naphthalene perylene, Various metal complexes represented by metal complexes of Russianin derivatives, 8-quinolinol derivatives, metal phthalocyanines, metal complexes of benzoxazole and benzothiazole derivatives, polysilane compounds, poly (N-vinylcarbazole) derivatives, aniline copolymers, Examples thereof include polymer compounds such as thiophene oligomers, polythiophene derivatives, polyphenylene derivatives, polyphenylene vinylene derivatives, polyfluorene derivatives, and the like.
 発光層は蛍光発光層、遅延蛍光発光層あるいは燐光発光層のいずれでもよいが、燐光発光層であることが好ましい。 The light emitting layer may be any one of a fluorescent light emitting layer, a delayed fluorescent light emitting layer and a phosphorescent light emitting layer, but is preferably a phosphorescent light emitting layer.
-正孔阻止層-
 正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。
-Hole blocking layer-
The hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking.
 正孔阻止層には本発明に係る一般式(1)で表されるインドロカルバゾール化合物を用いることが好ましいが、インドロカルバゾール化合物を他の何れかの有機層に使用する場合は、公知の正孔阻止層材料を用いてもよい。また、正孔阻止層材料としては、後述する電子輸送層の材料を必要に応じて用いることができる。 It is preferable to use the indolocarbazole compound represented by the general formula (1) according to the present invention for the hole blocking layer. However, when the indolocarbazole compound is used in any other organic layer, it is known. A hole blocking layer material may be used. Moreover, as a hole-blocking layer material, the material of the electron carrying layer mentioned later can be used as needed.
-電子阻止層-
 電子阻止層とは、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料から成り、正孔を輸送しつつ電子を阻止することで電子と正孔が再結合する確率を向上させることができる。
-Electron blocking layer-
The electron blocking layer is made of a material that has a function of transporting holes and has a very small ability to transport electrons. The electron blocking layer blocks the electrons while transporting holes, and the probability of recombination of electrons and holes. Can be improved.
 電子阻止層の材料としては、後述する正孔輸送層の材料を必要に応じて用いることができる。電子阻止層の膜厚は好ましくは3~100nmであり、より好ましくは5~30nmである。 As the material for the electron blocking layer, the material for the hole transport layer described later can be used as necessary. The thickness of the electron blocking layer is preferably 3 to 100 nm, more preferably 5 to 30 nm.
-励起子阻止層-
 励起子阻止層とは、発光層内で正孔と電子が再結合することにより生じた励起子が電荷輸送層に拡散することを阻止するための層であり、本層の挿入により励起子を効率的に発光層内に閉じ込めることが可能となり、素子の発光効率を向上させることができる。励起子阻止層は発光層に隣接して陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。
-Exciton blocking layer-
The exciton blocking layer is a layer for preventing excitons generated by recombination of holes and electrons in the light emitting layer from diffusing into the charge transport layer. It becomes possible to efficiently confine in the light emitting layer, and the light emission efficiency of the device can be improved. The exciton blocking layer can be inserted on either the anode side or the cathode side adjacent to the light emitting layer, or both can be inserted simultaneously.
 励起子阻止層の材料としては、一般式(1)で表されるインドロカルバゾール化合物を用いることができるが、他の材料として、例えば、1,3-ジカルバゾリルベンゼン(mCP)や、ビス(2-メチル-8-キノリノラト)-4-フェニルフェノラトアルミニウム(III)(BAlq)が挙げられる。 As the material for the exciton blocking layer, an indolocarbazole compound represented by the general formula (1) can be used. As other materials, for example, 1,3-dicarbazolylbenzene (mCP), Bis (2-methyl-8-quinolinolato) -4-phenylphenolato aluminum (III) (BAlq).
-正孔輸送層-
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、正孔輸送層は単層又は複数層設けることができる。
-Hole transport layer-
The hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer can be provided as a single layer or a plurality of layers.
  正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。使用できる公知の正孔輸送材料としては一般式(1)で表されるインドロカルバゾール化合物を用いることが好ましいが、従来公知の化合物の中から任意のものを選択して用いることができる。使用できる公知の正孔輸送材料としては、例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物を用いることが好ましく、芳香族第3級アミン化合物を用いることがより好ましい。 The hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic. As the known hole transporting material that can be used, an indolocarbazole compound represented by the general formula (1) is preferably used, but any conventionally known compound can be selected and used. Known hole transporting materials that can be used include, for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives. , Styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers, particularly thiophene oligomers, etc., but porphyrin compounds, aromatic tertiary amine compounds and It is preferable to use a styrylamine compound, and it is more preferable to use an aromatic tertiary amine compound.
-電子輸送層-
 電子輸送層とは電子を輸送する機能を有する材料からなり、電子輸送層は単層又は複数層設けることができる。
-Electron transport layer-
The electron transport layer is made of a material having a function of transporting electrons, and the electron transport layer can be provided as a single layer or a plurality of layers.
  電子輸送材料(正孔阻止材料を兼ねる場合もある)としては、陰極より注入された電子を発光層に伝達する機能を有していればよい。電子輸送層には本発明に係る一般式(1)で表されるインドロカルバゾール誘導体を用いることが好ましいが、従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。 As an electron transport material (which may also serve as a hole blocking material), it is sufficient if it has a function of transmitting electrons injected from the cathode to the light emitting layer. For the electron transport layer, it is preferable to use an indolocarbazole derivative represented by the general formula (1) according to the present invention, and any one of conventionally known compounds can be selected and used. Examples thereof include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, and oxadiazole derivatives. Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
 以下、本発明を実施例によって更に詳しく説明するが、本発明は勿論、これらの実施例に限定されるものではなく、その要旨を越えない限りにおいて、種々の形態で実施することが可能である。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is of course not limited to these examples, and can be implemented in various forms as long as the gist thereof is not exceeded. .
 以下に示すルートにより有機電界発光素子用材料となるインドロカルバゾール化合物を合成した。尚、化合物番号は、上記化学式に付した番号に対応する。 An indolocarbazole compound as a material for an organic electroluminescent element was synthesized by the route shown below. The compound number corresponds to the number assigned to the above chemical formula.
合成例1
化合物6の合成
 反応式を次に示す。
Figure JPOXMLDOC01-appb-I000024
 
Synthesis example 1
Synthesis of Compound 6 The reaction formula is shown below.
Figure JPOXMLDOC01-appb-I000024
 窒素置換した2000ml三口フラスコにインドール20.0g(0.171mol)、脱水ジエチルエーテル300mlを加え、溶解させた後、液中に塩化水素ガスを吹き込んだ。その後、室温にて15時間攪拌し、次いで酢酸エチル121.0gを滴下した後、炭酸水素ナトリウム飽和溶液303.2gを滴下した。全体を分液ロートへ移し、有機層と水層に分画した。水層を100mlの酢酸エチルで二回洗浄し、最初の分画で得られた有機層と水層を洗浄した酢酸エチル層を合わせた。再度、炭酸水素ナトリウム飽和溶液100mlにて有機層を洗浄し、水100mlで二回洗浄した。得られた有機層を硫酸マグネシウムで脱水を行い、硫酸マグネシウムを濾別した後、溶媒を減圧留去し、粘性のある液体を得た。その後、パラジウムカーボン2.5g、トルエン150mlを加え、3時間還流させた。室温まで冷却した後、パラジウムカーボンを濾別し、濾液を減圧濃縮した。その後、リスラリー精製を行い、減圧乾燥して白色粉末の中間体A 14.7g(57.35mmol、収率37.0mol%)を得た。 20.0 g (0.171 mol) of indole and 300 ml of dehydrated diethyl ether were added to a nitrogen-substituted 2000 ml three-necked flask and dissolved, and hydrogen chloride gas was blown into the liquid. Thereafter, the mixture was stirred at room temperature for 15 hours, and then 121.0 g of ethyl acetate was added dropwise, followed by 303.2 g of a saturated sodium hydrogen carbonate solution. The whole was transferred to a separatory funnel and separated into an organic layer and an aqueous layer. The aqueous layer was washed twice with 100 ml of ethyl acetate, and the organic layer obtained in the first fraction and the ethyl acetate layer from which the aqueous layer was washed were combined. The organic layer was washed again with 100 ml of a saturated sodium bicarbonate solution and washed twice with 100 ml of water. The obtained organic layer was dehydrated with magnesium sulfate, and magnesium sulfate was filtered off. Then, the solvent was distilled off under reduced pressure to obtain a viscous liquid. Thereafter, 2.5 g of palladium carbon and 150 ml of toluene were added and refluxed for 3 hours. After cooling to room temperature, palladium carbon was filtered off, and the filtrate was concentrated under reduced pressure. Thereafter, reslurry purification was carried out, followed by drying under reduced pressure to obtain 14.7 g (57.35 mmol, yield 37.0 mol%) of Intermediate A in the form of white powder.
 脱気窒素置換した200ml三口フラスコに中間体I 14.1g(61.0mmol)、N,N-ジメチルアセトアルデヒドジエチルアセタール11.4g(71.0mmol)、酢酸110.0gを加えて攪拌させた。加熱を開始し、還流下で8時間攪拌した。室温まで冷却した後、生じた白色結晶を濾取した後、濾取した結晶を酢酸30mlでリンス洗浄をおこなった。これを、リスラリー精製し、白色粉末の中間体B 10.4g(40.6mmol、収率66.6%)を得た。 In a 200 ml three-necked flask purged with degassed nitrogen, 14.1 g (61.0 mmol) of Intermediate I, 11.4 g (71.0 mmol) of N, N-dimethylacetaldehyde diethyl acetal and 110.0 g of acetic acid were added and stirred. Heating was started and stirred for 8 hours under reflux. After cooling to room temperature, the resulting white crystals were collected by filtration and rinsed with 30 ml of acetic acid. This was purified by reslurry to obtain 10.4 g (40.6 mmol, yield 66.6%) of intermediate powder B of white powder.
  窒素雰囲気下、2,6-ジブロモピリジン28.4 g (0.120 mol)、テトラヒドロフラン(THF)を500 mL加え、-50℃まで冷却した。その後、1.65 Mのノルマルブチルヘキサン溶液を72.7 mL滴下し、-50℃で3時間撹拌した。得られた黒色溶液にTHF 113 mLとジエチルエーテル70 mLに溶かしたトリフェニルクロロシラン 36.8 g(0.125 mol)を滴下した。その後、徐々に室温まで昇温させながら一晩撹拌し、得られた反応液に酢酸エチル(1000 mL)、1N塩酸(500 mL)を撹拌しながら加え、有機層を蒸留水(3 × 500 mL)で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後に、硫酸マグネシウムをろ別し、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製を行い、白色固体として中間体Cを10.1 g (24.3 mmol、収率20.3%)を得た。 In a nitrogen atmosphere, 28.4 g (0.120 mol) of 2,6-dibromopyridine and 500 mL of tetrahydrofuran (THF) were added and cooled to -50 ° C. Thereafter, 72.7 mL of a 1.65 μM normal butyl hexane solution was dropped, and the mixture was stirred at −50 ° C. for 3 hours. To the obtained black solution, 36.8 g (0.125 mol) of triphenylchlorosilane dissolved in 113 mL of THF and 70 mL of diethyl ether was added dropwise. Then, the mixture was stirred overnight while gradually warming to room temperature. Ethyl acetate (1000 mL) and 1N hydrochloric acid (500 mL) were added to the resulting reaction mixture with stirring, and the organic layer was distilled water (3 mL x 500 mL). ). After the organic layer was dried over anhydrous magnesium sulfate, magnesium sulfate was filtered off and the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography to obtain 10.1 g (24.3 mmol, yield 20.3%) of Intermediate C as a white solid.
 窒素雰囲気下、中間体B 7.40 g (0.0289 mol)、中間体C 10.0 g (0.0241 mol)、ヨウ化銅0.46 g(2.41 mmol)、リン酸三カリウム20.5 g (0.0964 mol)、trans-1,2-シクロヘキサンジアミン3.47 ml (0.0289 mol)、1,4-ジオキサンを241 ml加え、120℃で一晩撹拌した。反応溶液を室温まで冷却した後に、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製を行い、白色固体として中間体Dを4.0 g (6.77 mmol、収率28.1%)を得た。 In a nitrogen atmosphere, intermediate B 7.40 g (0.0289 mol), intermediate C 10.0 g (0.0241 mol), copper iodide 0.46 g (2.41 mol), tripotassium phosphate 20.5 g (0.0964 mol), trans-1,2 -Cyclohexanediamine 3.47 ml (0.0289 mol) and 1,4-dioxane 241 ml were added and stirred at 120 ° C overnight. After the reaction solution was cooled to room temperature, the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography to obtain 4.0 g6.7 (6.77 mmol, yield 28.1%) of intermediate D as a white solid.
 窒素雰囲気下、中間体D 4.0 g (0.00677 mol)、ヨードベンゼン 165 g (0.812 mol)、銅粉2.80 g(0.0440 mol)、炭酸カリウム10.3 g (0.0745 mol)加え、190℃で一晩撹拌した。反応溶液を室温まで冷却した後に、溶媒を減圧留去した。得られた残渣を晶析、シリカゲルカラムクロマトグラフィーで精製を行い、白色固体として化合物6を1.40g(2.10 mmol、収率31.0%)得た。FD/MS, m/z = 667 、1H-NMR測定結果(測定溶媒:CDCl3)を図2に示す。 Under a nitrogen atmosphere, Intermediate D 4.0 g (0.00677 mol), iodobenzene 165 g (0.812 mol), copper powder 2.80 g (0.0440 mol), potassium carbonate 10.3 g (0.0745 mol) were added, and the mixture was stirred at 190 ° C. overnight. After the reaction solution was cooled to room temperature, the solvent was distilled off under reduced pressure. The obtained residue was crystallized and purified by silica gel column chromatography to obtain 1.40 g (2.10 mmol, yield 31.0%) of compound 6 as a white solid. FD / MS, m / z = 667, 1 H-NMR measurement results (measuring solvent: CDCl 3 ) are shown in FIG.
 また、上記合成例及び明細書中に記載の合成方法に準じて、化合物1、3、4、5、13、14、16、23及び35を合成し、有機EL素子の作製に供した。 Further, according to the synthesis examples and the synthesis methods described in the specification, compounds 1, 3, 4, 5, 13, 14, 16, 23, and 35 were synthesized and used for production of an organic EL device.
実施例1
  膜厚110nmのITO基板からなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度2.0×10-5 Paで積層させた。まず、ITO上に正孔注入層として、銅フタロシアニン(CuPC)を 25 nm の厚さに形成した。次に、正孔輸送層としてNPBを40 nmの厚さに形成した。次に、正孔輸送層上に、ホスト材料としての化合物1とドーパントとしてのIr(ppy)3とを異なる蒸着源から、共蒸着し、40nmの厚さに発光層を形成した。この時、Ir(ppy)3の濃度は10 wt%であった。次に、電子輸送層としてAlq3を20nmの厚さに形成した。更に、電子輸送層上に、電子注入層としてフッ化リチウム(LiF)を1nmの厚さに形成した。最後に、電子注入層上に、電極としてアルミニウム(Al)を70nmの厚さに形成し、有機EL素子を作製した。
Example 1
Each thin film was laminated at a vacuum degree of 2.0 × 10 −5 Pa by a vacuum deposition method on a glass substrate on which an anode made of an ITO substrate having a thickness of 110 nm was formed. First, copper phthalocyanine (CuPC) was formed to a thickness of 25 nm on ITO as a hole injection layer. Next, NPB was formed to a thickness of 40 nm as a hole transport layer. Next, Compound 1 as a host material and Ir (ppy) 3 as a dopant were co-deposited from different vapor deposition sources on the hole transport layer to form a light emitting layer having a thickness of 40 nm. At this time, the concentration of Ir (ppy) 3 was 10 wt%. Next, Alq3 was formed to a thickness of 20 nm as an electron transport layer. Further, on the electron transport layer, lithium fluoride (LiF) was formed to a thickness of 1 nm as an electron injection layer. Finally, on the electron injection layer, aluminum (Al) was formed as an electrode to a thickness of 70 nm to produce an organic EL element.
  得られた有機EL素子に外部電源を接続し直流電圧を印加したところ、表3のような発光特性を有することが確認された。表3において、輝度、電圧及び発光効率は、20 mA/cm2での駆動時の値を示す。素子発光スペクトルの極大波長は530 nmであり、Ir(ppy)3からの発光が得られていることがわかった。 When an external power source was connected to the obtained organic EL element and a DC voltage was applied, it was confirmed that the organic EL element had the light emission characteristics as shown in Table 3. In Table 3, the luminance, voltage, and luminous efficiency show values at the time of driving at 20 mA / cm 2 . The maximum wavelength of the device emission spectrum was 530 nm, and it was found that light emission from Ir (ppy) 3 was obtained.
実施例2~10
  実施例1における発光層のホスト材料として、化合物1に代えて、化合物3、4、5、6、13、14、16、23又は35を用いた以外は実施例1と同様にして有機EL素子を作成した。
Examples 2 to 10
An organic EL device in the same manner as in Example 1 except that Compound 3, 4, 5, 6, 13, 14, 16, 23, or 35 was used in place of Compound 1 as the host material of the light emitting layer in Example 1. It was created.
比較例1
  実施例1における発光層のホスト材料としてCBPを用いた以外は実施例1と同様にして有機EL素子を作成した。
Comparative Example 1
An organic EL device was produced in the same manner as in Example 1 except that CBP was used as the host material of the light emitting layer in Example 1.
比較例2
  実施例1における発光層のホスト材料として化合物H-1を用いた以外は実施例1と同様にして有機EL素子を作成した。
Figure JPOXMLDOC01-appb-I000025
 
Comparative Example 2
An organic EL device was produced in the same manner as in Example 1 except that Compound H-1 was used as the host material for the light emitting layer in Example 1.
Figure JPOXMLDOC01-appb-I000025
比較例3
  実施例1における発光層のホスト材料として化合物H-2を用いた以外は実施例1と同様にして有機EL素子を作成した。
Figure JPOXMLDOC01-appb-I000026
 
Comparative Example 3
An organic EL device was produced in the same manner as in Example 1 except that Compound H-2 was used as the host material for the light emitting layer in Example 1.
Figure JPOXMLDOC01-appb-I000026
比較例4
  実施例1における発光層のホスト材料として化合物H-3を用いた以外は実施例1と同様にして有機EL素子を作成した。
Figure JPOXMLDOC01-appb-I000027
 
Comparative Example 4
An organic EL device was produced in the same manner as in Example 1 except that Compound H-3 was used as the host material for the light emitting layer in Example 1.
Figure JPOXMLDOC01-appb-I000027
 実施例2~10及び比較例1~4で得られた有機EL素子について、実施例1と同様にして評価したところ、表3のような発光特性(初期特性;@2.5mA/cm2)を有することが確認された。なお、実施例2~10及び比較例1~4で得られた有機EL素子の発光スペクトルの極大波長は530 nmであり、Ir(ppy)3からの発光が得られていると同定された。 When the organic EL devices obtained in Examples 2 to 10 and Comparative Examples 1 to 4 were evaluated in the same manner as in Example 1, the light emission characteristics (initial characteristics; @ 2.5 mA / cm 2 ) as shown in Table 3 were obtained. It was confirmed to have. The maximum wavelength of the emission spectra of the organic EL devices obtained in Examples 2 to 10 and Comparative Examples 1 to 4 was 530 nm, and it was identified that light emission from Ir (ppy) 3 was obtained.
Figure JPOXMLDOC01-appb-T000028
 
Figure JPOXMLDOC01-appb-T000028
 
  表3より、実施例1~10において、本発明のインドロカルバゾール化合物を発光層に用いた場合は、それ以外の場合(比較例1、2及び4)に比べ、低電圧駆動であることが判る。これは、インドロカルバゾールの窒素原子上に含窒素6員環を結合させた効果であり、同様の理由で比較例3も低電圧駆動を示している。しかし、発光効率特性は比較例1、2、3及び4に比べ、本発明のインドロカルバゾール化合物が良好な特性を示している。これは、インドロカルバゾールの窒素原子上に含窒素6員環を結合させ、更にその先にケイ素原子をスペーサーとして芳香族置換基を導入することで、分子軌道の広がりを制御し、電荷バランスを最適化できた効果であり、本発明のインドロカルバゾール誘導体の優位性が判る。これらの結果より、上記インドロカルバゾール化合物を発光層に用いることにより、高効率な有機EL燐光素子を実現することが明らかである。 From Table 3, in Examples 1 to 10, when the indolocarbazole compound of the present invention was used for the light emitting layer, it was driven at a lower voltage than the other cases (Comparative Examples 1, 2 and 4). I understand. This is an effect of bonding a nitrogen-containing 6-membered ring on the nitrogen atom of indolocarbazole. For the same reason, Comparative Example 3 also shows low voltage driving. However, the luminous efficiency characteristics of the indolocarbazole compound of the present invention are better than those of Comparative Examples 1, 2, 3 and 4. This is achieved by binding a nitrogen-containing 6-membered ring on the nitrogen atom of indolocarbazole and then introducing an aromatic substituent with a silicon atom as a spacer to control the spread of molecular orbitals and balance the charge. This is an optimized effect and shows the superiority of the indolocarbazole derivative of the present invention. From these results, it is clear that a high-efficiency organic EL phosphorescent device is realized by using the indolocarbazole compound in the light emitting layer.
産業上の利用の可能性Industrial applicability
 本発明による有機EL素子は、発光特性、駆動電圧ならびに耐久性において、実用上満足できるレベルにあり、フラットパネルディスプレイ(携帯電話表示素子、車載表示素子、OAコンピュータ表示素子やテレビ等)、面発光体としての特徴を生かした光源(照明、複写機の光源、液晶ディスプレイや計器類のバックライト光源)、表示板や標識灯等への応用において、その技術的価値は大きいものである。 The organic EL device according to the present invention has practically satisfactory levels of light emission characteristics, driving voltage and durability, and is a flat panel display (mobile phone display device, vehicle-mounted display device, OA computer display device, television, etc.), surface light emission. Its technical value is great in applications to light sources (lighting, light sources for copying machines, backlight light sources for liquid crystal displays and instruments), display boards, and sign lamps that make use of the characteristics of the body.

Claims (6)

  1.  一般式(1)で表されるインドロカルバゾール化合物からなる有機電界発光素子用材料。
    Figure JPOXMLDOC01-appb-I000001
     
     ここで、環Aは隣接環の任意の位置で縮合する式(1a)で表される芳香族環を示し、環Bは隣接環の任意の位置で縮合する式(1b)で表される複素環を表し、
    は置換若しくは未置換の炭素数6~30の芳香族炭化水素基、置換若しくは未置換の炭素数3~30の芳香族複素環基、該置換若しくは未置換の芳香族炭化水素又は置換若しくは未置換の芳香族複素環が2~6つ連結して構成される基を表し、
    は置換若しくは未置換のs+1価の炭素数3~12の含窒素芳香族複素環基を表し、X、X 2はメチン又は窒素を表し、
    、R、Rは水素、炭素数1~12の脂肪族炭化水素基、置換若しくは未置換の炭素数6~18の芳香族炭化水素基又は置換若しくは未置換の炭素数3~17の芳香族複素環基を示し、
    、R、Rは炭素数1~12の脂肪族炭化水素基、置換若しくは未置換の炭素数6~18の芳香族炭化水素基又は置換若しくは未置換の炭素数3~17の芳香族複素環基を示し、
    p、qは1~4、rは1~2、sは1~4の整数を表す。
    A material for an organic electroluminescence device comprising an indolocarbazole compound represented by the general formula (1).
    Figure JPOXMLDOC01-appb-I000001

    Here, ring A represents an aromatic ring represented by the formula (1a) fused at an arbitrary position of the adjacent ring, and ring B represents a complex represented by formula (1b) fused at an arbitrary position of the adjacent ring. Represents a ring,
    L 1 represents a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 3 to 30 carbon atoms, the substituted or unsubstituted aromatic hydrocarbon, or substituted or unsubstituted Represents a group composed of 2 to 6 unsubstituted aromatic heterocycles linked together,
    L 2 represents a substituted or unsubstituted s + 1-valent nitrogen-containing aromatic heterocyclic group having 3 to 12 carbon atoms, X 1 and X 2 represent methine or nitrogen,
    R 1 , R 2 and R 3 are hydrogen, an aliphatic hydrocarbon group having 1 to 12 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms, or a substituted or unsubstituted carbon group having 3 to 17 carbon atoms. An aromatic heterocyclic group of
    R 4 , R 5 and R 6 are each an aliphatic hydrocarbon group having 1 to 12 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 carbon atoms, or a substituted or unsubstituted aromatic group having 3 to 17 carbon atoms. A group heterocyclic group,
    p and q are integers of 1 to 4, r is 1 to 2, and s is an integer of 1 to 4.
  2.  一般式(1)で表されるインドロカルバゾール化合物が、一般式(2)~(6)のいずれかである請求項1に記載の有機電界発光素子用材料。
    Figure JPOXMLDOC01-appb-I000002
     
    (一般式(2)~(6)中、L、L、R~R、p~sは一般式(1)のそれらと同意である。)
    The material for an organic electroluminescence device according to claim 1, wherein the indolocarbazole compound represented by the general formula (1) is any one of the general formulas (2) to (6).
    Figure JPOXMLDOC01-appb-I000002

    (In the general formulas (2) to (6), L 1 , L 2 , R 1 to R 6 , and p to s are the same as those in the general formula (1).)
  3.  一般式(1)で表されるインドロカルバゾール化合物中の水素の一部又は全部が、重水素に置換された請求項1に記載の有機電界発光素子用材料。 The organic electroluminescent element material according to claim 1, wherein part or all of hydrogen in the indolocarbazole compound represented by the general formula (1) is substituted with deuterium.
  4.  基板上に、陽極、有機層及び陰極が積層されてなる有機電界発光素子において、請求項1~3のいずれかに記載の有機電界発光素子用材料を含む有機層を有することを特徴とする有機電界発光素子。 An organic electroluminescent device comprising an anode, an organic layer and a cathode laminated on a substrate, wherein the organic electroluminescent device comprises the organic electroluminescent device material according to any one of claims 1 to 3. Electroluminescent device.
  5.  有機電界発光素子用材料を含む有機層が、発光層、電子輸送層、および正孔阻止層からなる群れから選ばれる少なくとも一つの層である請求項4に記載の有機電界発光素子。 The organic electroluminescent element according to claim 4, wherein the organic layer containing the material for an organic electroluminescent element is at least one layer selected from the group consisting of a light emitting layer, an electron transport layer, and a hole blocking layer.
  6.  有機電界発光素子用材料を含む有機層が、燐光発光ドーパントを含有する発光層である請求項4に記載の有機電界発光素子。 The organic electroluminescent device according to claim 4, wherein the organic layer containing the material for an organic electroluminescent device is a luminescent layer containing a phosphorescent dopant.
PCT/JP2013/074657 2012-09-28 2013-09-12 Organic electroluminescent element material and organic electroluminescent element using same WO2014050588A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014538382A JP6310850B2 (en) 2012-09-28 2013-09-12 Material for organic electroluminescence device and organic electroluminescence device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-216554 2012-09-28
JP2012216554 2012-09-28

Publications (1)

Publication Number Publication Date
WO2014050588A1 true WO2014050588A1 (en) 2014-04-03

Family

ID=50387995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074657 WO2014050588A1 (en) 2012-09-28 2013-09-12 Organic electroluminescent element material and organic electroluminescent element using same

Country Status (3)

Country Link
JP (1) JP6310850B2 (en)
TW (1) TW201412764A (en)
WO (1) WO2014050588A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2977378A1 (en) * 2014-07-23 2016-01-27 Samsung Electronics Co., Ltd Condensed cyclic compound and organic light-emitting device including the same
WO2016116518A1 (en) * 2015-01-20 2016-07-28 Cynora Gmbh Organic molecules, in particular for use in optoelectronic components
JP2018508784A (en) * 2015-03-06 2018-03-29 ザ ヨーロピアン ユニオン、リプレゼンテッド バイ ザ ヨーロピアン コミッションThe European Union,represented by the European Commission Detection method and kit
WO2018061446A1 (en) * 2016-09-30 2018-04-05 新日鉄住金化学株式会社 Organic electroluminescent element
US10199584B2 (en) * 2016-08-10 2019-02-05 Samsung Electronics Co., Ltd. Organometallic compound and organic light-emitting device including the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010126234A1 (en) * 2009-04-29 2010-11-04 Dow Advanced Display Materials,Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2011025018A1 (en) * 2009-08-31 2011-03-03 富士フイルム株式会社 Organic electroluminescent element
WO2011125020A1 (en) * 2010-04-06 2011-10-13 Basf Se Substituted carbazole derivatives and use thereof in organic electronics
JP2012513688A (en) * 2008-12-22 2012-06-14 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Long-life electronic devices
WO2012169821A1 (en) * 2011-06-09 2012-12-13 Rohm And Haas Electronic Materials Korea Ltd. Novel compounds for organic electronic material and organic electroluminescent device using the same
WO2013012297A1 (en) * 2011-07-21 2013-01-24 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescence compounds and organic electroluminescence device using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012513688A (en) * 2008-12-22 2012-06-14 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Long-life electronic devices
WO2010126234A1 (en) * 2009-04-29 2010-11-04 Dow Advanced Display Materials,Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2011025018A1 (en) * 2009-08-31 2011-03-03 富士フイルム株式会社 Organic electroluminescent element
WO2011125020A1 (en) * 2010-04-06 2011-10-13 Basf Se Substituted carbazole derivatives and use thereof in organic electronics
WO2012169821A1 (en) * 2011-06-09 2012-12-13 Rohm And Haas Electronic Materials Korea Ltd. Novel compounds for organic electronic material and organic electroluminescent device using the same
WO2013012297A1 (en) * 2011-07-21 2013-01-24 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescence compounds and organic electroluminescence device using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2977378A1 (en) * 2014-07-23 2016-01-27 Samsung Electronics Co., Ltd Condensed cyclic compound and organic light-emitting device including the same
JP2016023185A (en) * 2014-07-23 2016-02-08 三星電子株式会社Samsung Electronics Co.,Ltd. Condensed cyclic compound and organic light-emitting device including the same
WO2016116518A1 (en) * 2015-01-20 2016-07-28 Cynora Gmbh Organic molecules, in particular for use in optoelectronic components
JP2018508784A (en) * 2015-03-06 2018-03-29 ザ ヨーロピアン ユニオン、リプレゼンテッド バイ ザ ヨーロピアン コミッションThe European Union,represented by the European Commission Detection method and kit
US10199584B2 (en) * 2016-08-10 2019-02-05 Samsung Electronics Co., Ltd. Organometallic compound and organic light-emitting device including the same
WO2018061446A1 (en) * 2016-09-30 2018-04-05 新日鉄住金化学株式会社 Organic electroluminescent element
KR20190055122A (en) * 2016-09-30 2019-05-22 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Organic electroluminescent device
JPWO2018061446A1 (en) * 2016-09-30 2019-07-11 日鉄ケミカル&マテリアル株式会社 Organic electroluminescent device
US11171295B2 (en) 2016-09-30 2021-11-09 Nippon Steel Chemical & Material Co., Ltd. Organic electroluminescent element
KR102356995B1 (en) * 2016-09-30 2022-01-28 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 organic electroluminescent device

Also Published As

Publication number Publication date
JPWO2014050588A1 (en) 2016-08-22
TW201412764A (en) 2014-04-01
JP6310850B2 (en) 2018-04-11

Similar Documents

Publication Publication Date Title
JP6006732B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP6334404B2 (en) Compound for organic electroluminescence device and organic electroluminescence device
JP6360796B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP6360797B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP6375302B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP6310928B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP5778756B2 (en) Nitrogen-containing aromatic compound and organic electroluminescence device
JP6647283B2 (en) Organic electroluminescent device material and organic electroluminescent device using the same
WO2015098297A1 (en) Material for organic electroluminescent elements, and organic electroluminescent element using same
JP6169078B2 (en) Organic electroluminescence device
WO2015146417A1 (en) Organic-electroluminescent-element material and organic electroluminescent elements using same
JP6310850B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
WO2015146455A1 (en) Organic-electroluminescent-element material and organic electroluminescent element using same
JP6402177B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
WO2015098359A1 (en) Material for organic electroluminescent elements, and organic electroluminescent element using same
WO2016158246A1 (en) Material for organic electroluminescent element and organic electroluminescent element in which same is used
JPWO2016051977A1 (en) Material for organic electroluminescence device and organic electroluminescence device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841163

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014538382

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13841163

Country of ref document: EP

Kind code of ref document: A1