WO2014049961A1 - Actuator unit for driving imaging lens, and imaging device - Google Patents

Actuator unit for driving imaging lens, and imaging device Download PDF

Info

Publication number
WO2014049961A1
WO2014049961A1 PCT/JP2013/005092 JP2013005092W WO2014049961A1 WO 2014049961 A1 WO2014049961 A1 WO 2014049961A1 JP 2013005092 W JP2013005092 W JP 2013005092W WO 2014049961 A1 WO2014049961 A1 WO 2014049961A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging lens
actuator
moving body
imaging
unit
Prior art date
Application number
PCT/JP2013/005092
Other languages
French (fr)
Japanese (ja)
Inventor
松尾 隆
豊年 川崎
拓真 森川
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014509548A priority Critical patent/JP5556976B1/en
Publication of WO2014049961A1 publication Critical patent/WO2014049961A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/021Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors using intermittent driving, e.g. step motors, piezoleg motors
    • H02N2/025Inertial sliding motors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions

Definitions

  • the present invention relates to an imaging lens driving actuator unit that is suitably used for an imaging device of a mobile phone, for example, and drives an imaging lens, and an imaging device using the same.
  • Patent Document 1 discloses an actuator unit that drives an imaging lens.
  • the actuator unit includes an actuator 201 and a housing (unit main body) 202, and the image pickup device 203 is disposed on the back side of the unit 200 (the right side in FIG. 11).
  • the imaging lens 204 is moved along the optical axis O.
  • the actuator 201 includes an actuator main body 205 and a moving body 230, and the actuator main body 205 includes a drive friction member (drive shaft) 210 and an electromechanical conversion element (piezoelectric element) 211.
  • the drive friction member 210 is a cylindrical shaft member that extends in the optical axis direction (the left-right direction in FIG. 11).
  • the electromechanical transducer 211 repeatedly expands and contracts in the optical axis direction (that is, vibrates in the optical axis direction) when electric power having a predetermined waveform is supplied.
  • a driving friction member 210 is connected to one end (left end in FIG. 11) 213 of the electromechanical conversion element 211 in the optical axis direction so that the central axis coincides with the optical axis direction.
  • the housing 202 has an internal space for housing the actuator body 205.
  • the casing 202 When the electromechanical conversion element 211 expands and contracts, the casing 202 is located inside the casing 202 at the other end (the end opposite to the one end connected to the driving friction member 210: the right end on the paper in FIG. 11) 214.
  • the electromechanical conversion element 211 is held inside so that the position of is not changed.
  • the housing 202 supports the tip of the actuator body 205 (tip of the driving friction member 210) 215 so as to be able to reciprocate in the optical axis direction. More specifically, the tip 215 of the drive friction member 210 is inserted into a hole 221 provided in the front wall 220 of the housing 202 so as to reciprocate in the optical axis direction.
  • the drive friction member 210 is supported by the inner peripheral surface defining the hole 221.
  • the moving body 230 includes a moving body main body 231 that holds the imaging lens (driven member) 204, and an engaging portion 232 that extends from the moving body main body 231 in a direction orthogonal to the optical axis direction (upward in FIG. 11). .
  • the engaging portion 232 is inserted into an opening 222 provided in the housing 202, and moves relative to the housing 202 in the optical axis direction.
  • the engaging portion 232 sandwiches a part of the actuator main body 205 (the driving friction member 210) with a predetermined force.
  • the moving body 230 is engaged with the drive friction member 210 by a predetermined frictional force (that is, the moving body 230 and the actuator main body 205 are frictionally engaged).
  • the electromechanical conversion element 211 vibrates in the optical axis direction (repetitively expands and contracts) when electric power having a predetermined waveform is supplied, the driving friction connected to the electromechanical conversion element 211.
  • the member 210 vibrates (reciprocates) in the optical axis direction.
  • the movable body 230 moves in the optical axis direction by the engagement portion 232 of the movable body 230 being engaged with the drive friction member 210 with a predetermined frictional force.
  • the imaging lens 204 held by the moving body 230 is moved (driven) in the optical axis direction, and the distance between the imaging lens 204 and the imaging element 203 is adjusted (that is, the focus is adjusted).
  • the drive friction member 210 has a length dimension (length dimension in the optical axis direction) larger than the moving range (stroke) in the optical axis direction of the moving body 230 (imaging lens 204). Therefore, the contact area of the engaging portion 232 with the drive friction member 210 is constant regardless of the position of the moving body 230 within the stroke. Thereby, the posture of the moving body 230 with respect to the drive friction member 210 (the casing 202 to which the actuator main body 205 is fixed) at each position in the stroke is stabilized, and the moving body 230 (moving body) when moving in the optical axis direction. Defocusing caused by the inclination of the imaging lens 204) held by 230 is suppressed.
  • the actuator unit 200 it is necessary to secure a space in which the actuator 201 (at least the actuator main body 205 having the driving friction member 210) for driving the moving body 230 (imaging lens 204) is disposed. That is, the actuator 201 includes a drive friction member 210 having a length dimension (length dimension in the optical axis direction) larger than the moving range (stroke) in the optical axis direction of the moving body 203 (imaging lens 204).
  • the unit 200 has a length dimension in the optical axis direction in which a space for arranging the actuator 201 can be secured.
  • the actuator unit 200 including such an actuator 201 has been required to have a low profile (smaller length in the optical axis direction).
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an imaging lens driving actuator unit capable of reducing the height and an imaging apparatus using the imaging lens driving actuator unit.
  • the actuator fixed to the unit body includes an electromechanical conversion element that converts electrical energy into mechanical energy that expands and contracts, and one end in the expansion and contraction direction of the electromechanical conversion element.
  • FIG. 3 is an exploded perspective view of the imaging lens driving actuator unit. It is a perspective view of the unit main body of the imaging lens driving actuator. It is a top view of the said unit main body of the state which has arrange
  • FIG. 1 is a perspective view of an imaging lens driving actuator unit according to the present embodiment
  • FIG. 2 is an exploded perspective view of the imaging lens driving actuator unit.
  • 3 is a perspective view of the unit main body of the imaging lens driving actuator
  • FIG. 4 is a plan view of the unit main body in a state where the actuator main body is disposed
  • FIG. 5 is a unit main body in a state where the actuator is disposed.
  • FIG. 6 is an enlarged perspective view of the actuator body.
  • the X direction in FIGS. 1, 2, and 6 to 10 will be described as the upper side, and the Y direction will be described as the lower side.
  • the actuator unit according to the present embodiment is used in an imaging apparatus.
  • the upper side is the object side
  • the lower side is the image side.
  • the imaging lens driving actuator unit (hereinafter also simply referred to as “actuator unit”) according to the present embodiment is used in a camera module (imaging device) that can be mounted on, for example, a mobile phone. It moves (drives) an imaging lens used for focusing and zooming.
  • the actuator unit 1 includes a unit main body 2, an actuator 3, and a cover 8.
  • the unit main body 2 is a base member that holds and supports the actuator 3, and includes, for example, a base 20 and a plurality of (four in the example of the present embodiment) struts (first to fourth struts 120a and 120b). 120c, 120d).
  • the unit body 2 is formed of a resin material such as LCP (liquid crystal polymer), for example.
  • LCP liquid crystal polymer
  • the base portion 20 has a rectangular outline in a plan view and a circular through hole 21 penetrating in the vertical direction in the center portion.
  • the through hole 21 serves as an optical path, and in the following description, an axis that vertically penetrates the center of the through hole 21 is a central axis (optical axis) C.
  • the base 20 has four corners (first to fourth corners 20a, 20b, 20c, 20d).
  • a specific corner (the lower left corner in FIG. 3) is the first corner 20a, and the second corner 20b and the third corner are counterclockwise in FIG.
  • a portion 20c and a fourth corner 20d are assumed.
  • the first to fourth corner portions 20a, 20b, 20c, 20d of the base 20 are provided with first to fourth support columns 120a, 120b, 120c, 120d.
  • the first column 120a extends upward from the first corner 20a
  • the second column 120b extends upward from the second corner 20b
  • the third A third column 120c extends upward from the corner 20c
  • a fourth column 120d extends upward from the fourth corner 20d.
  • a mounting table 120e that abuts against the inner side surface (back surface) of the top wall 81 of the cover 8 protrudes. .
  • the second support column 120 b is configured such that the entire upper end surface is in contact with the inner surface of the top wall 81 of the cover 8.
  • the respective struts 120a, 120b, 120c, and 120d are in contact with the corresponding inner side surfaces of the corners of the cover 8 so that the rigidity (strength) of the casing constituted by the unit main body 2 and the cover 8 is improved. .
  • the first support column 120a is in contact with the actuator 3 (specifically, the actuator body 30).
  • the first support column 120a includes an outer surface 121a and an inner surface 122a on the surface thereof.
  • the outer surface 121a is flush with the outer surface of the first corner 20a of the base 20, and the inner surface 122a is curved along the outer peripheral surface of the actuator body 30 (specifically, the drive shaft 33).
  • the actuator body 30 (specifically, the drive shaft 33) comes into contact.
  • the outer surface 121a has a shallow groove 123a extending vertically as shown in FIG.
  • the shallow groove 123a is coated with an adhesive when a gap occurs between the outer side surface 121a of the first support column 120a and the peripheral wall 83 (side wall 83a) facing the outer side surface 121a due to a manufacturing error or the like. And used when filling the gap.
  • the inner side surface 122a is in contact with the actuator main body 30 (drive shaft 33) at a plurality of locations (two locations in the example of the present embodiment). That is, the inner side surface 122a of the present embodiment includes a first column side sliding surface 125a and a second column side sliding surface 126a. In this way, the inner surface 122a contacts the outer peripheral surface of the drive shaft 33 at a plurality of positions at intervals in the circumferential direction, so that the actuator unit moves between the drive shaft 33 and the inner surface 122a when reciprocating (vibrating). It is possible to effectively receive a part of the force applied to the drive shaft 33 and the stress generated in the actuator main body 30 while suppressing the friction between them.
  • the driving is performed in comparison with the case where the entire inner side surface 122a facing the driving shaft 33 is in contact with the driving shaft 33. Friction when the shaft 33 reciprocates (vibrates) is suppressed.
  • the inner surface 122a and the outer peripheral surface of the drive shaft 33 are in contact with each other at a plurality of intervals in the circumferential direction, thereby improving impact resistance against forces applied to the drive shaft 33 from various directions in the circumferential direction. To do.
  • the first column side sliding surface 125a is provided at a position substantially opposite to the first moving body side sliding surface 55 of the moving body 4 with the drive shaft 33 interposed therebetween. Further, the second column side sliding surface 126a is provided at a position substantially opposite to the second moving body side sliding surface 62a of the moving body 4 with the drive shaft 33 interposed therebetween. As described above, the column-side sliding surfaces 125a and 126a are provided at positions substantially opposite to the contact portion between the moving body 4 and the drive shaft 33 with the drive shaft 33 interposed therebetween, so that the drive shaft 33 is connected to the contact portion. When a force is applied from the movable body 4 through the column-side sliding surfaces 125a, 126a on the substantially opposite side of the drive shaft 33 can effectively receive the applied force, impact resistance is improved.
  • the second support column 120b is provided on the inner side of the outer surface of the second corner of the base. Specifically, the second column b 120 b is provided between the moving body 5 of the moving body 4 and the guide spring 6.
  • the third support column 120c is formed with a restriction portion groove 29 into which a part of the movable body 4 (specifically, the rotation restriction portion 61a) is fitted so as to be movable up and down.
  • the restriction portion groove 29 is provided on the inner side surface (side surface of the central axis C) 122c of the third support column portion 120c and extends in the vertical direction.
  • the outer surface 121c of the third support column 120c is flush with the outer surface of the third corner portion 20c of the base 20 in plan view.
  • the fourth support column 120d is configured such that the outer surface 121d is flush with the outer surface of the fourth corner 20d of the base 20 and the inner surface 122d is curved along the moving body 4 in plan view. ing.
  • the side surface of the base 20 has a locking projection 20f for locking the cover 8 to the base 20 (unit main body 2).
  • the locking projections 20f of the present embodiment are provided on a pair of opposing side surfaces of the base portion 20, respectively.
  • the base portion 20 includes an actuator holding portion 25 that holds the actuator 3 (actuator body 30) on the inner side (center axis C side) of the first support column portion 120a in the first corner portion 20a.
  • the actuator holding portion 25 is recessed in a cylindrical shape so as to have a predetermined depth from the upper surface 20 e of the base portion 20.
  • the base 20 has the first electrode terminal 22 and the second electrode terminal 23 described above at the first corner 20a.
  • the intermediate portions of the first electrode terminal 22 and the second electrode terminal 23 are embedded in the base 20 (unit body 2).
  • the distal ends 22a, 23a of the first electrode terminal 22 and the second electrode terminal 23 protrude (expose) with the side surfaces facing each other from both sides of the actuator holding portion 25 on the upper surface 20e, and the base end side is the base portion 20
  • the external connection terminals 22b and 23b are configured to protrude (expose) from the outer surface of the external connection terminal.
  • These external connection terminals 22b and 23b are connected to a circuit board, a connector, and the like of the cellular phone when the actuator unit 1 is mounted on, for example, a cellular phone (not shown).
  • the external connection terminals 22b and 23b of the present embodiment are bent through stepped portions so that the lower surfaces of the external connection terminals 22b and 22b are located on the same plane.
  • the actuator 3 includes an actuator body 30 and a moving body 4.
  • the actuator body 30 includes, in order from the bottom, a weight 31, a piezoelectric element (electromechanical conversion element) 32 that can be expanded and contracted (vibrated) in the central axis C direction, and expansion and contraction (vibration) of the piezoelectric element 32. ), And a drive shaft (drive friction member) 33 that reciprocates (vibrates) in the direction of the central axis C.
  • the actuator main body 30 is fixed to the unit main body 2 so that a part (drive shaft 33) of the actuator main body 30 is in contact with the moving body 4 and the first support column 120a (101 and 102 in FIG. 5 and 103 in FIG. 4). , 104).
  • the weight 31 By increasing the inertial mass on one end side (the lower end side in the present embodiment) of the piezoelectric element 32, the weight 31 preferentially displaces the piezoelectric element 32 due to expansion and contraction on the other end side (the upper end side in the present embodiment). Preferably, it is generated only on the other end side.
  • the weight 31 of the present embodiment is formed of a material having a high specific gravity, such as tungsten or a tungsten alloy.
  • the weight 31 has a disk shape or a columnar shape that protrudes radially outward from the outer periphery of the piezoelectric element 32. Note that the weight 31 is omitted when the other end (lower end) of the piezoelectric element 32 is attached to a device that exhibits a function similar to the function of the weight 31 (for example, the unit main body 2 (base 20)). Also good.
  • the piezoelectric element 32 is an example of an electromechanical conversion element, and repeats expansion and contraction (vibrates) in the direction of the central axis C when electric power having a predetermined waveform is supplied.
  • the piezoelectric element 32 of the present embodiment is configured by a quadrangular columnar stacked piezoelectric element in which rectangular layers obtained by thinly extending a piezoelectric material are stacked in the direction of the central axis C so that an internal electrode is sandwiched between the layers.
  • piezoelectric material examples include lead zirconate titanate (so-called PZT), crystal, lithium niobate (LiNbO 3 ), potassium tantalate niobate (K (Ta, Nb) O 3 ), barium titanate (BaTiO 3 ), Inorganic piezoelectric materials such as lithium tantalate (LiTaO 3 ) and strontium titanate (SrTiO 3 ).
  • PZT lead zirconate titanate
  • crystal lithium niobate
  • LiNbO 3 lithium niobate
  • BaTiO 3 barium titanate
  • Inorganic piezoelectric materials such as lithium tantalate (LiTaO 3 ) and strontium titanate (SrTiO 3 ).
  • the plurality of internal electrodes include a plurality of anode layers of the plurality of internal electrodes on one side of the outer peripheral side surface of the multilayer piezoelectric element, and a plurality of cathode layers on the other side of the outer peripheral side surface of the multilayer piezoelectric element.
  • Each of the layers is configured to extend to reach the outside with a pair of outer peripheral side surfaces facing each other.
  • a pair of external electrodes 32a and 32a supply the electric energy to the laminated body, and are formed on the pair of outer peripheral side surfaces of the laminated piezoelectric element by a sputtering method such as silver along the laminating direction.
  • the plurality of internal electrodes between the piezoelectric layers are sequentially and alternately connected to the plurality of internal electrodes so as to be connected in parallel.
  • the lower end surface of the piezoelectric element 32 is bonded to the upper end surface of the weight 31 with an adhesive such as an epoxy adhesive.
  • an adhesive such as an epoxy adhesive.
  • resinous beads having a diameter of about 5 ⁇ m are mixed in order to prevent a short circuit with the weight 31 and stabilize the thickness of the adhesive layer.
  • the drive shaft 33 is a columnar member extending in the direction of the central axis C.
  • the drive shaft 33 is disposed such that a part of the outer peripheral surface thereof is in contact with the moving body 4 and the first support column 120a (see 101 and 102 in FIG. 5 and 103 and 104 in FIG. 4). That is, the outer peripheral surface of the drive shaft 33 includes a contact surface (contact portion) with the moving body 4 and a contact surface (contact portion) with the first support column 120a.
  • the drive shaft 33 of the present embodiment is made of, for example, carbon fiber reinforced plastic (CFRP, carbon-fiber-reinforced plastic) formed in a columnar shape so that carbon fibers are arranged in the direction of the central axis C.
  • CFRP carbon fiber reinforced plastic
  • the drive shaft 33 is formed so as to protrude radially outward from the outer periphery of the piezoelectric element 32. That is, when viewed in the direction of the central axis C, the contour of the piezoelectric element 32 is included in the region surrounded by the contour of the drive shaft 33.
  • the lower end surface of the drive shaft 33 is bonded to the upper end surface of the piezoelectric element 32 with an adhesive.
  • This adhesive is the same as the adhesive that bonds the weight 31 and the piezoelectric element 32.
  • the fillet 35 (see FIG. 6) formed by the adhesive protruding from the joint surface between the drive shaft 33 and the piezoelectric element 32 is used. Is formed on the piezoelectric element 32 side because it has a shape that protrudes radially outward from the outer periphery to the entire periphery. That is, the fillet 35 is not formed on the outer peripheral surface of the drive shaft 33.
  • the entire area of the outer peripheral surface of the drive shaft 33 in the direction of the central axis C can be used for sliding with the movable body 4, and a large stroke (movement range of the movable body 4 in the direction of the central axis C) is achieved by the short drive shaft 33. Can be realized.
  • the actuator body 30 configured as described above is inserted into the actuator holding portion 25 of the unit body 2 (base portion 20) from the weight 31 side. Then, the bottom surface of the actuator holding portion 25 and the weight 31 are bonded with an adhesive, whereby the actuator main body 30 is fixed to the unit main body 2. At this time, the central axis of the drive shaft 33 of the actuator main body 30 and the central axis C of the unit main body 2 are parallel to each other.
  • the actuator body 30 is connected to the first electrode terminal 22 and the second electrode terminal 23 by a first electrode coupling spring 26a and a second electrode coupling spring 26b so as to be energized. More specifically, one external electrode 32a of the piezoelectric element 32 and the tip 22a of the first electrode terminal 22 are connected via a first electrode coupling spring 26a so that energization is possible, and the other external electrode 32a of the piezoelectric element 32 is connected. And the tip 23a of the second electrode terminal 23 are connected to each other through a second electrode coupling spring 26b so as to be energized.
  • the first electrode connection spring 26a and the second electrode connection spring 26b are torsion coil springs plated with gold or platinum.
  • FIG. 7 is a perspective view of the moving body
  • FIG. 8 is an exploded perspective view of the moving body.
  • FIG. 9 is a schematic diagram for explaining the imaging lens driving actuator unit in a state where the lens barrel is held.
  • the moving body 4 can hold a lens barrel (driven member) 7 (see FIG. 9) and can move relative to the unit body 2 in the direction of the central axis C. More specifically, the moving body 4 includes a metal cylindrical moving body main body (holding portion) 5 and a guide spring 6.
  • the movable body 5 includes a lens holding portion 54 on the inner peripheral side, and the lens barrel 7 is held by the lens holding portion 54.
  • the lens barrel 7 is a driven member of the actuator unit 1 and holds one or a plurality of lens (imaging lens) groups 71.
  • the movable body 5 includes a cylindrical portion 51, a first flange 52, and a second flange 53.
  • the mobile body 5 of the present embodiment is formed of a stainless material having a thickness of 0.05 mm to 0.3 mm, for example.
  • Stainless steel is a material that is inexpensive, has good formability, has good durability, and has good driving performance among metal materials.
  • the movable body 5 is formed by, for example, drawing.
  • the cylindrical moving body main body 5 is made of metal, it has high strength and durability against wear. As a result, the cylindrical moving body main body 5 is thinned and held by the moving body main body 5. It is possible to increase the diameter of the lens group 71 (which is held in detail via the lens barrel 7). Furthermore, since the drive shaft 33 directly drives the movable body 5 that holds the lens group 71, the lens group 71 is compared with a configuration in which a portion that is frictionally engaged with the drive shaft 33 is provided separately from a portion that holds the lens group 71. The diameter can be increased.
  • a part of the outer peripheral surface constitutes a first moving body side sliding surface 55 in sliding contact with the drive shaft 33. That is, the cylindrical part 51 (movable body main body 5) includes the first movable body side sliding surface 55 on the outer peripheral surface thereof.
  • the first moving body-side sliding surface 55 of the present embodiment has a part of the moving body main body 5 (more specifically, a predetermined width in the circumferential direction and the center axis C direction) when the moving body main body 5 is molded. It is a plane formed by making it flat.
  • the first flange 52 protrudes radially inward from the lower end of the cylindrical portion 51.
  • the upper surface of the first flange 52 constitutes a lens barrel mounting portion 52a.
  • the lens barrel 7 is mounted when the lens holding portion 54 holds the lens barrel 7 (see FIG. 9).
  • the central axis of the movable body 5 and the optical axis of the lens group 71 of the lens barrel 7 are aligned without tilting each other.
  • the second flange 53 protrudes radially outward from the upper end of the tubular portion 51. The strength of the movable body 5 is ensured by the first flange 52 and the second flange 53.
  • the guide spring 6 includes an arc portion 61, a guide portion 62 formed on one end side of the arc portion 61, and a pressing piece 63 formed on the other end side of the arc portion 61.
  • the guide spring 6 of the present embodiment is made of, for example, a stainless material having a thickness of 0.1 mm to 0.3 mm.
  • the arc portion 61 includes a rotation restricting portion 61a at a position separated from the guide portion 62 by approximately 180 ° in the circumferential direction.
  • the rotation restricting portion 61a is a portion for restricting the rotation of the moving body 4 with the drive shaft 33 as the center of rotation.
  • the rotation restricting portion 61a includes a restricting frame portion 61b and a hemispherical protrusion 61c formed on the restricting frame portion 61b.
  • the regulation frame portion 61b is formed by projecting a part of the arc portion 61 radially outward in a rectangular shape. Further, the protrusion 61c is formed so as to protrude outward from each of both outer side surfaces of the restriction frame portion 61b.
  • the outer width W1 (see FIG. 5) between these protrusions 61c is such that the inner width W2 of the restriction portion groove 29 is such that the restriction frame portion 61b fits within the restriction portion groove 29 provided in the third support column portion 120c. It is set slightly narrower than (see FIG. 5).
  • the guide part 62 extends radially outward from one end of the arc part 61.
  • One surface (second sliding surface) 62 a of the guide part 62 is approximately 90 ° with respect to the first moving body side sliding surface 55 of the moving body 5 with the guide spring 6 attached to the moving body 5. It has become.
  • the pressing piece 63 extends linearly from the other end of the arc portion 61.
  • the pressing piece 63 extends linearly from the second support column 120b toward the first support column 120a in a state of being incorporated in the actuator unit 1.
  • the pressing piece 63 includes a pressing portion 63 a that presses the drive shaft 33 at the tip.
  • the guide spring 6 and the movable body 5 configured as described above are connected by welding. More specifically, the guide spring 6 of the movable body main body 5 is arranged such that the first movable body side sliding surface 55 of the movable body main body 5 and the second movable body side sliding surface 62a of the guide spring 6 are adjacent to each other. It is arranged along the outer periphery. In this state, the guide spring 6 and the movable body 5 are connected by welding a plurality of locations (for example, resistance welding (spot welding), laser welding, etc.).
  • a plurality of locations for example, resistance welding (spot welding), laser welding, etc.
  • the movable body 5 and the guide spring 6 are made of metal and joined together by welding, so that they can be firmly fixed to each other and can be fixed instantaneously unlike adhesion, etc. Tact time can be greatly reduced.
  • the movable body 4 to which the movable body main body 5 and the guide spring 6 are coupled has the rotation restricting portion 61a fitted in the restriction portion groove 29 of the unit main body 2 (third support column portion 120c), and the first The movable body side sliding surface 55, the second movable body side sliding surface 62a, and the pressing portion 63a are disposed so as to surround the drive shaft 33.
  • the pressing piece 63 passes through the outside of the second support column 120b of the unit body 2 and extends to the first support column 120a of the first corner portion 20a.
  • the pressing portion 63a of the pressing piece 63 is in the initial position (the first moving body side sliding surface 55, the second moving body side sliding surface 62a, and the pressing portion 63a do not surround the drive shaft 33).
  • the drive shaft 33 is elastically deformed in a direction away from the outer peripheral surface of the movable body 5 with respect to the position), so that the drive shaft 33 is moved to the first movable body side sliding surface 55 and the second movement by the elastic return force (elastic force). It is in a state of being pressed against the body-side sliding surface 62a. That is, the driving shaft 33 is pressed against the first moving body side sliding surface 55 and the second moving body side sliding surface 62a by the elastic force of the pressing piece 63, and the moving body 4 and the driving shaft 33 are frictionally engaged. ing.
  • a lubricant such as oil, grease, or oil mixed with Teflon (registered trademark) flakes is applied to the contact portion.
  • the cover 8 is a member surrounding the moving body 4 in cooperation with the unit main body 2.
  • the cover 8 includes a top wall 81 and a peripheral wall 83 that hangs down from the periphery of the top wall 81.
  • the top wall 81 has a rectangular outline in a plan view, and has a through hole 82 penetrating in the central axis C direction at the center thereof.
  • the through hole 82 becomes an optical path.
  • the cover 8 of the present embodiment is formed by drawing, pressing, or the like, for example, a stainless steel thin plate of 0.1 mm to 0.2 mm.
  • the peripheral wall 83 is constituted by four side walls 83 a corresponding to each piece of the top wall 81.
  • Each side wall 83a includes a locking hole 84 that is locked to a locking projection 20f provided on the side surface of the unit main body 2 (base portion 20). Note that the number of the locking projections 20f in the present embodiment is two, and the locking projections 20f are locked in the locking holes 84 of the opposing side wall 83a.
  • the first column 120a, the third column 120c, and the fourth column 120d of the unit main body 2 are mounted on the upper ends of the column 120e, the upper column of the second column 120b, and the cover 8
  • the cover 8 is locked to the unit main body 2 by the locking hole 84 being locked to the locking projection 20f in a state where the inner surface of the top wall 81 is in contact.
  • the upper end surfaces of the mounting tables 120e and the second support columns 120b and the inner surface of the top wall 81 of the cover 8 are bonded (bonded) with an adhesive.
  • the actuator unit 1 configured as described above may be used in a camera module (imaging device).
  • a camera module includes the above-described actuator unit 1, an imaging device (imaging sensor) that converts an optical image into an electrical signal, and one or a plurality of imaging lenses.
  • An imaging optical system that forms an image on the light receiving surface, and the imaging lens that moves along the optical axis direction of the one or more imaging lenses in the imaging optical system is attached to the moving body 4 of the actuator unit 1 It is done.
  • a sensor substrate that holds the lens barrel 7 by the lens holding portion 54 of the moving body 4 and has an IR cut filter 102 and an image sensor (image sensor) 103 on the lower surface side of the unit body 2.
  • 104 is arranged. More specifically, the lens barrel 7 is bonded and fixed to the lens holding portion 54 by the adhesive 73 filled in the bonding groove 72 provided in the lens barrel 7.
  • a camera module imaging device
  • the camera module is carried in such a manner that the external connection terminal 22b of the first electrode terminal 22 and the external connection terminal 23b (see FIG. 1 etc.) of the second electrode terminal 23 are placed on the circuit board of the mobile phone. Installed in the phone casing.
  • the piezoelectric element 32 of the actuator body 30 moves in the direction of the central axis C. Vibrate (repeat expansion and contraction).
  • the drive shaft 33 reciprocates due to the vibration of the piezoelectric element 32, and the movable body 4 moves in the axial direction (center axis C direction) of the drive shaft 33 due to the reciprocation. More details are as follows.
  • FIG. 10 is a diagram for explaining the shooting position of the moving body 4
  • FIG. 10A is a diagram for explaining the short-distance shooting position of the moving body 4
  • FIG. 10B is an infinite shooting of the moving body 4. It is a figure for demonstrating a position.
  • the short-distance shooting position is a position (object side end position) farthest from the base 20 (imaging sensor 103) in the movement range in the central axis C direction of the moving body 4, as shown in FIG. 10A.
  • the infinite photographing position is a position (image side end position) that is closest to the base 20 (imaging sensor 103) in the moving range.
  • the contact surface of the movable body 4 that is in contact with the drive shaft 33 (the first movable body-side sliding surface 55 and the second movable surface 50).
  • the lower end of the moving body side sliding surface 62a) protrudes (protrudes) from the drive shaft 33 toward the unit main body. That is, the lower end of the moving body 4 protrudes below the lower end of the outer peripheral surface of the drive shaft 33 (the surface in sliding contact with the first moving body side sliding surface 55 and the second moving body side sliding surface 62a).
  • the length dimension of the drive shaft 33 in the central axis C direction is suppressed (reduced), and the unit 1 is reduced in height (the length dimension in the central axis C direction). This is because the size is reduced. More specifically, when the moving body 4 is moved to the infinite photographing position, more specifically, the lower part of the moving body 4 (more specifically, the first moving body side sliding surface 55 and the second moving body side sliding surface 62a) ( By adopting a configuration in which a part) is protruded from the lower end of the drive shaft 33 toward the unit main body 2, the contact surface (the first moving body side sliding surface 55) regardless of the position of the moving body 4 in the central axis C direction.
  • the lower portion of each sliding surface 55, 62a is driven to the unit body 2 side.
  • the length dimension of the shaft 33 in the direction of the central axis C can be reduced.
  • the length dimension in the central axis C direction of the actuator 3 including the drive shaft 33 can be reduced, and as a result, the length in the central axis C direction of the unit (actuator unit) 1 in which the actuator 3 is arranged. It becomes possible to reduce the size (lower profile).
  • the moving body 4 is slightly inclined (that is, the optical axis of the lens group 71 held by the moving body 4 is slightly inclined with respect to the unit body 2 to which the actuator body 30 including the drive shaft 33 is fixed). Since the moving body 4 (lens group 71) appears to be deeply focused at the infinite photographing position, the imaging sensor 103 is used even when the length of the contact portion at the infinite position is shortened. The deterioration of the image quality of the image obtained by the above can be suppressed.
  • the moving body 4 (lens group 71) is at a short-distance shooting position where the depth of field is shallow, the length of the contact portion in the direction of the central axis C is sufficiently secured. 4 (that is, the inclination of the optical axis of the lens group 71 with respect to the unit main body 2) is suppressed, and the image quality of the image obtained by the imaging sensor 103 is ensured.
  • the outer periphery of the drive shaft 33 protrudes radially outward from the outer periphery of the piezoelectric element 32, it moves when the moving body 4 moves from the short-distance shooting position toward the infinite shooting position. Even if the lower part of the first moving body side sliding surface 55 and the second moving body side sliding surface 62a of the body 4 (the lower part of the cylindrical moving body 4) protrudes from the drive shaft 33 toward the unit body 2 side, the piezoelectric element 32. Do not contact with. That is, the piezoelectric element 32 does not disturb the movement of the moving body 4 in the direction of the central axis C.
  • the drive shaft 33 is slowly moved upward by the extension of the piezoelectric element 32, thereby moving the moving body 4 frictionally engaged with the drive shaft 33 upward.
  • the drive shaft 33 is moved downward by the instantaneous contraction of the piezoelectric element 32 so as to exceed the frictionally engaged frictional force, so that the moving body 4 is left at that position (the position after the upward movement).
  • the moving body 4 moves upward.
  • imaging lens driving actuator unit of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention.
  • the lens barrel 7 that holds the lens group 71 is held by the moving body 4 that is driven by the actuator body 30 (drive shaft 33). It is not limited.
  • the movable body itself may hold one or a plurality of imaging lenses, and the actuator main body 30 (drive shaft 33) may drive the movable body that directly holds the imaging lenses.
  • the drive shaft 33 is slid on the first moving body side sliding surface 55 and the second moving body side sliding surface by the elastic restoring force (elastic force) of the pressing piece 63 of the guide spring 6.
  • the movable body 4 and the drive shaft 33 are frictionally engaged by being pressed against the surface 62a, it is not limited to this configuration.
  • the drive shaft may be configured by a magnet
  • the moving body specifically, the first sliding surface 55 and the second sliding surface 62a
  • the moving body may be configured by metal.
  • the force that presses the outer peripheral surface of the drive shaft against the first sliding surface 55 and the second sliding surface 62a so as to generate a predetermined frictional force is not limited to an urging force such as an elastic force but is a magnetic force or the like. Also good.
  • An imaging lens driving actuator unit is an imaging lens driving actuator unit that moves an imaging lens with respect to an imaging element, and extends and contracts with a unit main body that is disposed closer to the imaging element than the imaging lens.
  • An electromechanical transducer that converts electrical energy into mechanical energy, a drive friction member that is fixed to one end of the electromechanical transducer in the direction of expansion and contraction and that transmits the mechanical energy, and a predetermined friction force applied to the drive friction member
  • the actuator is relatively movable in the axial direction, and the actuator is fixed to the unit main body, Compared with the length dimension in the optical axis direction of the contact portion between the drive friction member and the contact surface when the moving body is moved to the short-distance photographing position farthest from the unit main body, the movable body is photographed in the short-
  • the length dimension of the drive friction member in the optical axis direction can be made smaller than the configuration in which the entire optical axis direction of the contact surface contacts the drive friction member regardless of the position of the body in the optical axis direction.
  • the length dimension in the optical axis direction of the actuator provided with the drive friction member can be reduced, and as a result, the length dimension in the optical axis direction in the imaging lens driving actuator unit in which the actuator is arranged is reduced. (Shortness and height reduction) can be achieved.
  • the moving body when the length dimension in the optical axis direction of the contact portion is reduced, the moving body is slightly inclined with respect to the driving friction member (that is, the moving body is held by the moving body with respect to the unit main body to which the actuator is fixed).
  • the optical axis of the imaging lens is slightly inclined), but the moving object (imaging lens) appears to be in focus at a depth of field at the infinite shooting position, so contact at the infinite position as in the above configuration. Even if the length dimension of the part is shortened, it is possible to suppress the deterioration of the image quality of the image obtained by the image sensor.
  • the moving body imaging lens
  • a sufficient length dimension in the optical axis direction at the contact portion is ensured.
  • the inclination of the moving body that is, the inclination of the optical axis of the imaging lens with respect to the unit main body to which the actuator is attached
  • the image quality of the image obtained by the imaging element is ensured.
  • the electromechanical conversion element is connected to a unit body side end of the driving friction member, and the driving friction member is at least the contact surface.
  • the part which contacts with may have the shape which protruded in the said mobile body side from the said electromechanical conversion element.
  • the moving body includes a metal cylindrical holding portion that surrounds the imaging lens from the outside in the radial direction, and the holding portion May include the contact surface on its outer peripheral surface.
  • the cylindrical holding portion is made of metal, it has high durability and durability against wear, so that the cylindrical holding portion is thinned and held by the holding portion. Therefore, it is possible to increase the diameter of the imaging lens. Furthermore, since the drive friction member directly drives the holding unit that holds the imaging lens, the diameter of the imaging lens is increased compared to a configuration in which a portion that is frictionally engaged with the drive friction member is provided separately from the portion that holds the imaging lens. Can be achieved.
  • An imaging apparatus includes any of the above-described imaging lens driving actuator units, an imaging element that converts an optical image into an electrical signal, and one or a plurality of imaging lenses.
  • An imaging optical system that forms an optical image on the light receiving surface of the imaging device, and the imaging lens that moves along the optical axis direction of the one or the plurality of imaging lenses in the imaging optical system, It is attached to the moving body of the actuator unit for driving the imaging lens.
  • imaging apparatus includes any one of the above-described imaging lens driving actuator units, it is possible to achieve a reduction in height and size.
  • an actuator unit for driving an imaging lens and an imaging device can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

In this actuator unit for driving an imaging lens, and imaging device, an actuator, which is fixed to a unit body, is configured in such a manner as to have: an electro-mechanical conversion element, which converts electrical energy into mechanical energy that expands and contracts; a drive friction member that is fixed to one end of the electro-mechanical conversion element in the expansion/contraction direction, and through which the mechanical energy is transmitted; and a moving body that engages with the drive friction member at a contact surface at a prescribed friction force. The actuator is further configured in such a manner that when the moving body has been moved to an infinite imaging position on an image unit side, the length dimension becomes smaller in the optical axis direction due to part of the aforementioned contact surface being made to protrude on the unit body side more than the drive friction member.

Description

撮像レンズ駆動用アクチュエータユニットおよび撮像装置Imaging lens driving actuator unit and imaging apparatus
 本発明は、例えば携帯電話の撮像装置等に好適に用いられ、撮像レンズを駆動する撮像レンズ駆動用アクチュエータユニットおよびこれを用いた撮像装置に関する。 The present invention relates to an imaging lens driving actuator unit that is suitably used for an imaging device of a mobile phone, for example, and drives an imaging lens, and an imaging device using the same.
 従来から、特許文献1に、撮像レンズを駆動するアクチュエータユニットが開示されている。 Conventionally, Patent Document 1 discloses an actuator unit that drives an imaging lens.
 このアクチュエータユニットは、図11に示すように、アクチュエータ201と、筐体(ユニット本体)202とを備え、当該ユニット200の背面側(図11における紙面右側)に配置される撮像素子203に対して撮像レンズ204を光軸Oに沿って移動させる。 As shown in FIG. 11, the actuator unit includes an actuator 201 and a housing (unit main body) 202, and the image pickup device 203 is disposed on the back side of the unit 200 (the right side in FIG. 11). The imaging lens 204 is moved along the optical axis O.
 アクチュエータ201は、アクチュエータ本体205と移動体230とを備え、このアクチュエータ本体205は、駆動摩擦部材(駆動軸)210と電気機械変換素子(圧電素子)211とを備える。駆動摩擦部材210は、光軸方向(図11における紙面左右方向)に延びる円柱状の軸部材である。電気機械変換素子211は、所定の波形の電力が供給されることにより、光軸方向に伸縮を繰り返す(すなわち、光軸方向に振動する)。この電気機械変換素子211の光軸方向の一端(図11における左端)213に、その中心軸と光軸方向とが一致するように駆動摩擦部材210が接続されている。 The actuator 201 includes an actuator main body 205 and a moving body 230, and the actuator main body 205 includes a drive friction member (drive shaft) 210 and an electromechanical conversion element (piezoelectric element) 211. The drive friction member 210 is a cylindrical shaft member that extends in the optical axis direction (the left-right direction in FIG. 11). The electromechanical transducer 211 repeatedly expands and contracts in the optical axis direction (that is, vibrates in the optical axis direction) when electric power having a predetermined waveform is supplied. A driving friction member 210 is connected to one end (left end in FIG. 11) 213 of the electromechanical conversion element 211 in the optical axis direction so that the central axis coincides with the optical axis direction.
 筐体202は、アクチュエータ本体205を収納する内部空間を有する。この筐体202は、電気機械変換素子211が伸縮した場合にその他端(駆動摩擦部材210と接続される一方端部と反対側の端部:図11における紙面右端)214における筐体202内での位置が変わらないように電気機械変換素子211をその内部で保持する。また、筐体202は、アクチュエータ本体205の先端(駆動摩擦部材210の先端)215を光軸方向に往復動可能に支持している。より詳しくは、筐体202の前壁220に設けられた穴221に駆動摩擦部材210の先端215が光軸方向に往復動できるように挿入されている。これにより、駆動摩擦部材210の先端215側に対して径方向(光軸方向と直交する方向)に力が加わっても、穴221を規定する内周面によって駆動摩擦部材210が支持される。 The housing 202 has an internal space for housing the actuator body 205. When the electromechanical conversion element 211 expands and contracts, the casing 202 is located inside the casing 202 at the other end (the end opposite to the one end connected to the driving friction member 210: the right end on the paper in FIG. 11) 214. The electromechanical conversion element 211 is held inside so that the position of is not changed. In addition, the housing 202 supports the tip of the actuator body 205 (tip of the driving friction member 210) 215 so as to be able to reciprocate in the optical axis direction. More specifically, the tip 215 of the drive friction member 210 is inserted into a hole 221 provided in the front wall 220 of the housing 202 so as to reciprocate in the optical axis direction. As a result, even if a force is applied in the radial direction (the direction orthogonal to the optical axis direction) to the tip 215 side of the drive friction member 210, the drive friction member 210 is supported by the inner peripheral surface defining the hole 221.
 移動体230は、撮像レンズ(被駆動部材)204を保持する移動体本体231と、移動体本体231から光軸方向と直交する方向(図11における上方)に延びる係合部232と、を有する。この移動体230は、係合部232が筐体202に設けられた開口222からその内部に差し込まれ、筐体202に対して光軸方向に相対移動する。係合部232は、アクチュエータ本体205の一部(駆動摩擦部材210)を所定の力で挟み込む。これにより、移動体230は、駆動摩擦部材210と所定の摩擦力によって係合する(すなわち、移動体230とアクチュエータ本体205とが摩擦係合する)。 The moving body 230 includes a moving body main body 231 that holds the imaging lens (driven member) 204, and an engaging portion 232 that extends from the moving body main body 231 in a direction orthogonal to the optical axis direction (upward in FIG. 11). . In the moving body 230, the engaging portion 232 is inserted into an opening 222 provided in the housing 202, and moves relative to the housing 202 in the optical axis direction. The engaging portion 232 sandwiches a part of the actuator main body 205 (the driving friction member 210) with a predetermined force. Thereby, the moving body 230 is engaged with the drive friction member 210 by a predetermined frictional force (that is, the moving body 230 and the actuator main body 205 are frictionally engaged).
 このようなアクチュエータユニット200では、所定の波形の電力が供給されることで電気機械変換素子211が光軸方向に振動する(伸縮を繰り返す)と、この電気機械変換素子211に接続された駆動摩擦部材210が光軸方向に振動(往復動)する。この場合において、移動体230の係合部232が駆動摩擦部材210と所定の摩擦力で係合していることによって移動体230が光軸方向に移動する。これにより、移動体230に保持された撮像レンズ204が光軸方向に移動して(駆動されて)当該撮像レンズ204と撮像素子203との距離が調整(すなわち、ピントが調整)される。 In such an actuator unit 200, when the electromechanical conversion element 211 vibrates in the optical axis direction (repetitively expands and contracts) when electric power having a predetermined waveform is supplied, the driving friction connected to the electromechanical conversion element 211. The member 210 vibrates (reciprocates) in the optical axis direction. In this case, the movable body 230 moves in the optical axis direction by the engagement portion 232 of the movable body 230 being engaged with the drive friction member 210 with a predetermined frictional force. Thereby, the imaging lens 204 held by the moving body 230 is moved (driven) in the optical axis direction, and the distance between the imaging lens 204 and the imaging element 203 is adjusted (that is, the focus is adjusted).
 この移動の際に、係合部232と駆動摩擦部材210との接触部位の面積は、変わらない。すなわち、このアクチュエータユニット200では、駆動摩擦部材210が移動体230(撮像レンズ204)の光軸方向の移動範囲(ストローク)より大きな長さ寸法(光軸方向の長さ寸法)を有しているため、移動体230が前記ストローク内のいずれの位置に移動しても、係合部232における駆動摩擦部材210との接触面積は、一定である。これにより、前記ストローク内の各位置における駆動摩擦部材210(アクチュエータ本体205が固定された筐体202)に対する移動体230の姿勢が安定し、光軸方向に移動した場合における移動体230(移動体230に保持される撮像レンズ204)の傾きに起因するピントのぼけが抑えられる。 During this movement, the area of the contact portion between the engaging portion 232 and the drive friction member 210 does not change. That is, in this actuator unit 200, the drive friction member 210 has a length dimension (length dimension in the optical axis direction) larger than the moving range (stroke) in the optical axis direction of the moving body 230 (imaging lens 204). Therefore, the contact area of the engaging portion 232 with the drive friction member 210 is constant regardless of the position of the moving body 230 within the stroke. Thereby, the posture of the moving body 230 with respect to the drive friction member 210 (the casing 202 to which the actuator main body 205 is fixed) at each position in the stroke is stabilized, and the moving body 230 (moving body) when moving in the optical axis direction. Defocusing caused by the inclination of the imaging lens 204) held by 230 is suppressed.
 上記アクチュエータユニット200では、移動体230(撮像レンズ204)を駆動するアクチュエータ201(少なくとも駆動摩擦部材210を有するアクチュエータ本体205)を配置するスペースをその内部に確保する必要がある。すなわち、アクチュエータ201は、移動体203(撮像レンズ204)の光軸方向の移動範囲(ストローク)より大きな長さ寸法(光軸方向の長さ寸法)を有する駆動摩擦部材210を備えており、アクチュエータユニット200は、このアクチュエータ201を配置するためのスペースをその内部に確保できる光軸方向の長さ寸法を有する。 In the actuator unit 200, it is necessary to secure a space in which the actuator 201 (at least the actuator main body 205 having the driving friction member 210) for driving the moving body 230 (imaging lens 204) is disposed. That is, the actuator 201 includes a drive friction member 210 having a length dimension (length dimension in the optical axis direction) larger than the moving range (stroke) in the optical axis direction of the moving body 203 (imaging lens 204). The unit 200 has a length dimension in the optical axis direction in which a space for arranging the actuator 201 can be secured.
 近年、このようなアクチュエータ201を備えたアクチュエータユニット200において低背化(光軸方向の長さ寸法の小型化)が求められている。 In recent years, the actuator unit 200 including such an actuator 201 has been required to have a low profile (smaller length in the optical axis direction).
特開2007―274777号公報JP 2007-274777 A
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、低背化を図ることが可能な撮像レンズ駆動用アクチュエータユニットおよびこれを用いた撮像装置を提供することである。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an imaging lens driving actuator unit capable of reducing the height and an imaging apparatus using the imaging lens driving actuator unit.
 本発明にかかる撮像レンズ駆動用アクチュエータユニットおよび撮像装置では、ユニット本体に固定されたアクチュエータは、伸縮する機械エネルギーに電気エネルギーを変換する電気機械変換素子、前記電気機械変換素子における伸縮方向の一方端に固定されて前記機械エネルギーが伝達される駆動摩擦部材および前記駆動摩擦部材に接触面で所定の摩擦力で係合される移動体を有し、前記移動体を前記ユニット本体側の無限撮影位置に移動させた場合に前記接触面の一部を前記駆動摩擦部材より前記ユニット本体側に突出させることによって光軸方向の長さ寸法が小さくなるように構成される。 In the imaging lens driving actuator unit and the imaging apparatus according to the present invention, the actuator fixed to the unit body includes an electromechanical conversion element that converts electrical energy into mechanical energy that expands and contracts, and one end in the expansion and contraction direction of the electromechanical conversion element. A driving friction member that is fixed to the driving friction member, and a moving body that is engaged with the driving friction member at a contact surface with a predetermined frictional force. When moved to a position, the length of the optical axis direction is reduced by projecting a part of the contact surface from the drive friction member toward the unit main body.
 上記並びにその他の本発明の目的、特徴および利点は、以下の詳細な記載と添付図面から明らかになるであろう。 The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.
本実施形態にかかる撮像レンズ駆動用アクチュエータユニットの斜視図である。It is a perspective view of the actuator unit for image pick-up lens drive concerning this embodiment. 前記撮像レンズ駆動用アクチュエータユニットの分解斜視図である。FIG. 3 is an exploded perspective view of the imaging lens driving actuator unit. 前記撮像レンズ駆動用アクチュエータのユニット本体の斜視図である。It is a perspective view of the unit main body of the imaging lens driving actuator. アクチュエータ本体を配置した状態の前記ユニット本体の平面図である。It is a top view of the said unit main body of the state which has arrange | positioned the actuator main body. アクチュエータを配置した状態の前記ユニット本体の平面図である。It is a top view of the said unit main body of the state which has arrange | positioned the actuator. 前記アクチュエータ本体の拡大斜視図である。It is an expansion perspective view of the actuator body. 移動体の斜視図である。It is a perspective view of a moving body. 前記移動体の分解斜視図である。It is a disassembled perspective view of the said mobile body. レンズバレルが保持された状態の前記撮像レンズ駆動用アクチュエータユニットを説明するための模式図である。It is a schematic diagram for demonstrating the said imaging lens drive actuator unit of the state in which the lens barrel was hold | maintained. 前記移動体の離撮影位置を説明するための図である。It is a figure for demonstrating the remote shooting position of the said mobile body. 従来のアクチュエータユニットの断面図である。It is sectional drawing of the conventional actuator unit.
 以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。図1は、本実施形態にかかる撮像レンズ駆動用アクチュエータユニットの斜視図であり、図2は、前記撮像レンズ駆動用アクチュエータユニットの分解斜視図である。図3は、前記撮像レンズ駆動用アクチュエータのユニット本体の斜視図であり、図4は、アクチュエータ本体を配置した状態のユニット本体の平面図であり、図5は、アクチュエータを配置した状態のユニット本体の平面図である。図6は、アクチュエータ本体の拡大斜視図である。 Hereinafter, an embodiment according to the present invention will be described with reference to the drawings. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted suitably. In this specification, when referring generically, it shows with the reference symbol which abbreviate | omitted the suffix, and when referring to an individual structure, it shows with the reference symbol which attached the suffix. FIG. 1 is a perspective view of an imaging lens driving actuator unit according to the present embodiment, and FIG. 2 is an exploded perspective view of the imaging lens driving actuator unit. 3 is a perspective view of the unit main body of the imaging lens driving actuator, FIG. 4 is a plan view of the unit main body in a state where the actuator main body is disposed, and FIG. 5 is a unit main body in a state where the actuator is disposed. FIG. FIG. 6 is an enlarged perspective view of the actuator body.
 なお、以下の説明において、図1、図2、図6~図10におけるX方向を上側とし、Y方向を下側として説明する。本実施形態のアクチュエータユニットは、撮像装置に用いられており、この場合、上側は、物体側であり、下側は、像側になる。 In the following description, the X direction in FIGS. 1, 2, and 6 to 10 will be described as the upper side, and the Y direction will be described as the lower side. The actuator unit according to the present embodiment is used in an imaging apparatus. In this case, the upper side is the object side, and the lower side is the image side.
 本実施形態にかかる撮像レンズ駆動用アクチュエータユニット(以下、単に「アクチュエータユニット」とも称する。)は、例えば携帯電話などに搭載可能なカメラモジュール(撮像装置)に用いられ、撮像素子に対して、例えば合焦や変倍等のために用いられる撮像レンズを移動させる(駆動する)ものである。図1および図2に示すように、このアクチュエータユニット1は、ユニット本体2と、アクチュエータ3と、カバー8とを備える。 The imaging lens driving actuator unit (hereinafter also simply referred to as “actuator unit”) according to the present embodiment is used in a camera module (imaging device) that can be mounted on, for example, a mobile phone. It moves (drives) an imaging lens used for focusing and zooming. As shown in FIGS. 1 and 2, the actuator unit 1 includes a unit main body 2, an actuator 3, and a cover 8.
 ユニット本体2は、アクチュエータ3を保持して支持するベース部材であり、例えば、基部20と、複数(本実施形態の例では4つ)の支柱部(第1~第4の支柱部120a、120b、120c、120d)とを有する。このユニット本体2は、例えば、LCP(液晶ポリマー)等の樹脂材料によって形成されている。本実施形態のユニット本体2は、電極端子(第1電極端子22および第2電極端子23)をインサートした形で射出成形によって形成されている。 The unit main body 2 is a base member that holds and supports the actuator 3, and includes, for example, a base 20 and a plurality of (four in the example of the present embodiment) struts (first to fourth struts 120a and 120b). 120c, 120d). The unit body 2 is formed of a resin material such as LCP (liquid crystal polymer), for example. The unit main body 2 of the present embodiment is formed by injection molding in a form in which electrode terminals (the first electrode terminal 22 and the second electrode terminal 23) are inserted.
 基部20は、図3~図5に示すように、平面視において矩形状の輪郭を有すると共に、中心部に上下方向に貫通する円形状の貫通孔21を有する。この貫通孔21は、光路となり、以下の説明では、貫通孔21の中心を上下に貫通する軸が中心軸(光軸)Cとされる。 As shown in FIGS. 3 to 5, the base portion 20 has a rectangular outline in a plan view and a circular through hole 21 penetrating in the vertical direction in the center portion. The through hole 21 serves as an optical path, and in the following description, an axis that vertically penetrates the center of the through hole 21 is a central axis (optical axis) C.
 この基部20は、4つの角隅部(第1~第4の角隅部20a、20b、20c、20d)を有する。本実施形態では、特定の角隅部(図3における左下の角隅部)を第1の角隅部20aとし、図3において反時計回りに第2の角隅部20b、第3の角隅部20c、第4の角隅部20dとする。 The base 20 has four corners (first to fourth corners 20a, 20b, 20c, 20d). In the present embodiment, a specific corner (the lower left corner in FIG. 3) is the first corner 20a, and the second corner 20b and the third corner are counterclockwise in FIG. A portion 20c and a fourth corner 20d are assumed.
 基部20の第1~第4の角隅部20a、20b、20c、20dには、第1~第4の支柱部120a、120b、120c、120dが設けられている。具体的には、第1の角隅部20aから上方に向かって第1の支柱部120aが延び、第2の角隅部20bから上方に向かって第2の支柱部120bが延び、第3の角隅部20cから上方に向かって第3の支柱部120cが延び、第4の角隅部20dから上方に向かって第4の支柱部120dが延びている。第1の支柱部120a、第3の支柱部120cおよび第4の支柱部120dの各上端には、カバー8の天壁81の内側面(裏面)と当接する載置台120eが突設されている。第2の支柱部120bは、上端面全体がカバー8の天壁81の内側面と当接するように構成されている。これら各支柱部120a、120b、120c、120dと、カバー8の対応する各角部内側面とがそれぞれ接することにより、ユニット本体2とカバー8とで構成される筐体における剛性(強度)が向上する。 The first to fourth corner portions 20a, 20b, 20c, 20d of the base 20 are provided with first to fourth support columns 120a, 120b, 120c, 120d. Specifically, the first column 120a extends upward from the first corner 20a, the second column 120b extends upward from the second corner 20b, and the third A third column 120c extends upward from the corner 20c, and a fourth column 120d extends upward from the fourth corner 20d. On each upper end of the first support column 120a, the third support column 120c, and the fourth support column 120d, a mounting table 120e that abuts against the inner side surface (back surface) of the top wall 81 of the cover 8 protrudes. . The second support column 120 b is configured such that the entire upper end surface is in contact with the inner surface of the top wall 81 of the cover 8. The respective struts 120a, 120b, 120c, and 120d are in contact with the corresponding inner side surfaces of the corners of the cover 8 so that the rigidity (strength) of the casing constituted by the unit main body 2 and the cover 8 is improved. .
 第1の支柱部120aは、アクチュエータ3(詳しくはアクチュエータ本体30)と接している。この第1の支柱部120aは、その表面に外側面121aと内側面122aとを含む。平面視において、外側面121aは基部20の第1の角隅部20aの外側面と面一であり、内側面122aは、アクチュエータ本体30(詳しくは駆動軸33)の外周面に沿って湾曲し、当該アクチュエータ本体30(詳しくは駆動軸33)と接触する。 The first support column 120a is in contact with the actuator 3 (specifically, the actuator body 30). The first support column 120a includes an outer surface 121a and an inner surface 122a on the surface thereof. In plan view, the outer surface 121a is flush with the outer surface of the first corner 20a of the base 20, and the inner surface 122a is curved along the outer peripheral surface of the actuator body 30 (specifically, the drive shaft 33). The actuator body 30 (specifically, the drive shaft 33) comes into contact.
 外側面121aは、図5に示すように、上下に延びる浅溝123aを有する。この浅溝123aは、第1の支柱部120aの外側面121aと、この外側面121aに対向する周壁83(側壁83a)との間に製造誤差等によって隙間が生じた場合に、接着剤が塗布されて前記隙間を埋めるときに用いられる。 The outer surface 121a has a shallow groove 123a extending vertically as shown in FIG. The shallow groove 123a is coated with an adhesive when a gap occurs between the outer side surface 121a of the first support column 120a and the peripheral wall 83 (side wall 83a) facing the outer side surface 121a due to a manufacturing error or the like. And used when filling the gap.
 内側面122aは、アクチュエータ本体30(駆動軸33)と複数個所(本実施形態の例では2ヶ所)で接する。すなわち、本実施形態の内側面122aは、第1の柱側摺動面125aと、第2の柱側摺動面126aとを含む。このように、周方向に間隔を空けて複数箇所で内側面122aが駆動軸33の外周面と接触することによって、アクチュエータユニットは、往復動(振動)したときの駆動軸33と内側面122aとの間の摩擦を抑えつつ、駆動軸33に加わった力やアクチュエータ本体30に生じた応力の一部を効果的に受け止めることができる。すなわち、駆動軸33と対向する内側面122a全体が駆動軸33と接触する場合に比べ、周方向に間隔を空けて複数箇所で内側面122aと駆動軸33とが接触する場合の方が、駆動軸33が往復動(振動)したときの摩擦が抑えられる。また、周方向に間隔を空けて複数箇所で内側面122aと駆動軸33の外周面とが接触することで、前記周方向の色々な方向から駆動軸33に加わる力に対する耐衝撃性等が向上する。 The inner side surface 122a is in contact with the actuator main body 30 (drive shaft 33) at a plurality of locations (two locations in the example of the present embodiment). That is, the inner side surface 122a of the present embodiment includes a first column side sliding surface 125a and a second column side sliding surface 126a. In this way, the inner surface 122a contacts the outer peripheral surface of the drive shaft 33 at a plurality of positions at intervals in the circumferential direction, so that the actuator unit moves between the drive shaft 33 and the inner surface 122a when reciprocating (vibrating). It is possible to effectively receive a part of the force applied to the drive shaft 33 and the stress generated in the actuator main body 30 while suppressing the friction between them. That is, when the inner side surface 122a and the driving shaft 33 are in contact with each other at a plurality of positions at intervals in the circumferential direction, the driving is performed in comparison with the case where the entire inner side surface 122a facing the driving shaft 33 is in contact with the driving shaft 33. Friction when the shaft 33 reciprocates (vibrates) is suppressed. In addition, the inner surface 122a and the outer peripheral surface of the drive shaft 33 are in contact with each other at a plurality of intervals in the circumferential direction, thereby improving impact resistance against forces applied to the drive shaft 33 from various directions in the circumferential direction. To do.
 第1の柱側摺動面125aは、駆動軸33を挟んで移動体4の第1の移動体側摺動面55と略対向する位置に設けられている。また、第2の柱側摺動面126aは、駆動軸33を挟んで移動体4の第2の移動体側摺動面62aと略対向する位置に設けられている。このように、各柱側摺動面125a、126aが、移動体4と駆動軸33との接触部位と駆動軸33を挟んで略対向する位置に設けられることにより、駆動軸33が前記接触部位を通じて移動体4から力が加わったときに、駆動軸33の略反対側の柱側摺動面125a、126aが前記加わった力を効果的に受け止めることができるため、耐衝撃性が向上する。 The first column side sliding surface 125a is provided at a position substantially opposite to the first moving body side sliding surface 55 of the moving body 4 with the drive shaft 33 interposed therebetween. Further, the second column side sliding surface 126a is provided at a position substantially opposite to the second moving body side sliding surface 62a of the moving body 4 with the drive shaft 33 interposed therebetween. As described above, the column- side sliding surfaces 125a and 126a are provided at positions substantially opposite to the contact portion between the moving body 4 and the drive shaft 33 with the drive shaft 33 interposed therebetween, so that the drive shaft 33 is connected to the contact portion. When a force is applied from the movable body 4 through the column- side sliding surfaces 125a, 126a on the substantially opposite side of the drive shaft 33 can effectively receive the applied force, impact resistance is improved.
 第2の支柱部120bは、基部の第2の角隅部の外側面よりも内側に設けられている。具体的には、第2の支柱b120bは、移動体4の移動体本体5とガイドスプリング6との間に設けられている。第3の支柱部120cは、移動体4の一部(具体的には、回転規制部61a)が上下動可能に嵌め込まれる規制部用溝29が形成されている。この規制部用溝29は、第3の支柱部120cの内側面(中心軸C側面)122cに設けられ、上下方向に延びている。また、第3の支柱部120cの外側面121cは、平面視において、基部20の第3の角隅部20cの外側面と面一となっている。第4の支柱部120dは、平面視において、外側面121dが基部20の第4の角隅部20dの外側面と面一となり、内側面122dが移動体4に沿って湾曲するように構成されている。 The second support column 120b is provided on the inner side of the outer surface of the second corner of the base. Specifically, the second column b 120 b is provided between the moving body 5 of the moving body 4 and the guide spring 6. The third support column 120c is formed with a restriction portion groove 29 into which a part of the movable body 4 (specifically, the rotation restriction portion 61a) is fitted so as to be movable up and down. The restriction portion groove 29 is provided on the inner side surface (side surface of the central axis C) 122c of the third support column portion 120c and extends in the vertical direction. Further, the outer surface 121c of the third support column 120c is flush with the outer surface of the third corner portion 20c of the base 20 in plan view. The fourth support column 120d is configured such that the outer surface 121d is flush with the outer surface of the fourth corner 20d of the base 20 and the inner surface 122d is curved along the moving body 4 in plan view. ing.
 基部20の側面は、基部20(ユニット本体2)にカバー8を係止するための係止用突起20fを有する。本実施形態の係止用突起20fは、基部20における一対の対向する側面にそれぞれ設けられている。 The side surface of the base 20 has a locking projection 20f for locking the cover 8 to the base 20 (unit main body 2). The locking projections 20f of the present embodiment are provided on a pair of opposing side surfaces of the base portion 20, respectively.
 基部20は、第1の角隅部20aにおける第1の支柱部120aの内側(中心軸C側)に、アクチュエータ3(アクチュエータ本体30)を保持するアクチュエータ保持部25を備える。このアクチュエータ保持部25は、基部20の上面20eから所定の深さとなるように円柱状に窪んでいる。 The base portion 20 includes an actuator holding portion 25 that holds the actuator 3 (actuator body 30) on the inner side (center axis C side) of the first support column portion 120a in the first corner portion 20a. The actuator holding portion 25 is recessed in a cylindrical shape so as to have a predetermined depth from the upper surface 20 e of the base portion 20.
 また、基部20は、第1の角隅部20aに、上述の第1電極端子22と第2電極端子23とを有する。これら第1電極端子22および第2電極端子23は、それぞれ、その中間部が基部20(ユニット本体2)に埋設されている。そして、第1電極端子22および第2電極端子23の先端22a、23aが上面20eのアクチュエータ保持部25を挟んでその両側から各側面を互いに向かい合わせて突出(露出)し、基端側が基部20の外側面から突出(露出)して外部接続端子22b、23bを構成している。これら外部接続端子22b、23bは、当該アクチュエータユニット1が例えば携帯電話(図示省略)に搭載されたときに、この携帯電話の回路基板やコネクタ等と接続される。本実施形態の外部接続端子22b、23bは、各外部接続端子22b、22bの下面同士が同一平面上に位置するように、段部を介して折り曲げ成形されている。 Further, the base 20 has the first electrode terminal 22 and the second electrode terminal 23 described above at the first corner 20a. The intermediate portions of the first electrode terminal 22 and the second electrode terminal 23 are embedded in the base 20 (unit body 2). Then, the distal ends 22a, 23a of the first electrode terminal 22 and the second electrode terminal 23 protrude (expose) with the side surfaces facing each other from both sides of the actuator holding portion 25 on the upper surface 20e, and the base end side is the base portion 20 The external connection terminals 22b and 23b are configured to protrude (expose) from the outer surface of the external connection terminal. These external connection terminals 22b and 23b are connected to a circuit board, a connector, and the like of the cellular phone when the actuator unit 1 is mounted on, for example, a cellular phone (not shown). The external connection terminals 22b and 23b of the present embodiment are bent through stepped portions so that the lower surfaces of the external connection terminals 22b and 22b are located on the same plane.
 アクチュエータ3は、アクチュエータ本体30と、移動体4と、を備える。このアクチュエータ本体30は、図6に示すように、下方から順に、錘31と、中心軸C方向に伸縮(振動)可能な圧電素子(電気機械変換素子)32と、圧電素子32の伸縮(振動)によって中心軸C方向に往復動(振動)する駆動軸(駆動摩擦部材)33と、を備える。このアクチュエータ本体30は、その一部(駆動軸33)が移動体4と第1の支柱部120aとに接触するようにユニット本体2に固定される(図5の101、102と図4の103、104とを参照)。 The actuator 3 includes an actuator body 30 and a moving body 4. As shown in FIG. 6, the actuator body 30 includes, in order from the bottom, a weight 31, a piezoelectric element (electromechanical conversion element) 32 that can be expanded and contracted (vibrated) in the central axis C direction, and expansion and contraction (vibration) of the piezoelectric element 32. ), And a drive shaft (drive friction member) 33 that reciprocates (vibrates) in the direction of the central axis C. The actuator main body 30 is fixed to the unit main body 2 so that a part (drive shaft 33) of the actuator main body 30 is in contact with the moving body 4 and the first support column 120a (101 and 102 in FIG. 5 and 103 in FIG. 4). , 104).
 錘31は、圧電素子32の一端側(本実施形態では下端側)の慣性質量を大きくすることによって、圧電素子32の伸縮による変位を他端側(本実施形態では上端側)に優位に、好ましくは他端側にのみに、発生させる。本実施形態の錘31は、例えば、タングステン、タングステン合金等の比重の高い材料によって形成されている。この錘31は、圧電素子32の外周から全周に亘って径方向外側に突出する円板形状または円柱形状を有している。なお、錘31は、圧電素子32の他端(下端)が錘31の機能と同様の機能を発揮するもの(例えば、ユニット本体2(基部20)等)に取り付けられる場合には、省略されてもよい。 By increasing the inertial mass on one end side (the lower end side in the present embodiment) of the piezoelectric element 32, the weight 31 preferentially displaces the piezoelectric element 32 due to expansion and contraction on the other end side (the upper end side in the present embodiment). Preferably, it is generated only on the other end side. The weight 31 of the present embodiment is formed of a material having a high specific gravity, such as tungsten or a tungsten alloy. The weight 31 has a disk shape or a columnar shape that protrudes radially outward from the outer periphery of the piezoelectric element 32. Note that the weight 31 is omitted when the other end (lower end) of the piezoelectric element 32 is attached to a device that exhibits a function similar to the function of the weight 31 (for example, the unit main body 2 (base 20)). Also good.
 圧電素子32は、電気機械変換素子の一例であり、所定の波形の電力が供給されることによって、中心軸C方向に伸縮を繰り返す(振動する)。本実施形態の圧電素子32は、圧電材料を薄く伸ばした矩形状の層が層間に内部電極を挟むようにして中心軸C方向に積層された四角柱状の積層型圧電素子によって構成されている。圧電材料は、例えば、チタン酸ジルコン酸鉛(いわゆるPZT)、水晶、ニオブ酸リチウム(LiNbO)、ニオブ酸タンタル酸カリウム(K(Ta,Nb)O)、チタン酸バリウム(BaTiO)、タンタル酸リチウム(LiTaO)およびチタン酸ストロンチウム(SrTiO)等の無機圧電材料である。 The piezoelectric element 32 is an example of an electromechanical conversion element, and repeats expansion and contraction (vibrates) in the direction of the central axis C when electric power having a predetermined waveform is supplied. The piezoelectric element 32 of the present embodiment is configured by a quadrangular columnar stacked piezoelectric element in which rectangular layers obtained by thinly extending a piezoelectric material are stacked in the direction of the central axis C so that an internal electrode is sandwiched between the layers. Examples of the piezoelectric material include lead zirconate titanate (so-called PZT), crystal, lithium niobate (LiNbO 3 ), potassium tantalate niobate (K (Ta, Nb) O 3 ), barium titanate (BaTiO 3 ), Inorganic piezoelectric materials such as lithium tantalate (LiTaO 3 ) and strontium titanate (SrTiO 3 ).
 複数の内部電極は、これら複数の内部電極のうちの複数の陽極層が積層型圧電素子における外周側面の一方側に、そして、これら複数の陰極層が積層型圧電素子における外周側面の他方側に、達するまでそれぞれ延設されることによって、それら各層の先端が互いに対向する一対の外周側面で外部に臨むように、それぞれ構成される。一対の外部電極32a、32aは、前記電気エネルギーを積層体に供給するものであり、積層型圧電素子における前記一対の外周側面上に積層方向に沿って例えば銀等のスパッタ法によって形成され、各圧電層間の前記複数の内部電極を並列に接続するように、前記複数の内部電極と順次交互に接続される。 The plurality of internal electrodes include a plurality of anode layers of the plurality of internal electrodes on one side of the outer peripheral side surface of the multilayer piezoelectric element, and a plurality of cathode layers on the other side of the outer peripheral side surface of the multilayer piezoelectric element. Each of the layers is configured to extend to reach the outside with a pair of outer peripheral side surfaces facing each other. A pair of external electrodes 32a and 32a supply the electric energy to the laminated body, and are formed on the pair of outer peripheral side surfaces of the laminated piezoelectric element by a sputtering method such as silver along the laminating direction. The plurality of internal electrodes between the piezoelectric layers are sequentially and alternately connected to the plurality of internal electrodes so as to be connected in parallel.
 この圧電素子32の下端面が錘31の上端面とエポキシ接着剤等の接着剤によって接着されている。本実施形態のエポキシ接着剤では、錘31との短絡防止および接着層厚の安定化のために、直径5um程度の樹脂性のビーズが混入されている。 The lower end surface of the piezoelectric element 32 is bonded to the upper end surface of the weight 31 with an adhesive such as an epoxy adhesive. In the epoxy adhesive of this embodiment, resinous beads having a diameter of about 5 μm are mixed in order to prevent a short circuit with the weight 31 and stabilize the thickness of the adhesive layer.
 駆動軸33は、中心軸C方向に延びる円柱状の部材である。この駆動軸33は、その外周面の一部が移動体4と第1の支柱部120aとに接触するよう配置される(図5の101、102と図4の103、104とを参照)。すなわち、駆動軸33の外周面は、移動体4との接触面(接触部位)と第1の支柱部120aとの接触面(接触部位)とを含む。本実施形態の駆動軸33は、例えば、中心軸C方向にカーボン繊維が配列するように円柱状に成形された炭素繊維強化プラスチック(CFRP、carbon-fiber-reinforced plastic)によって構成されている。このようにカーボン繊維が配列することにより、駆動軸33が移動体4や第1の支柱部120aと摺接状態で中心軸C方向に往復動(振動)したときに、滑らかに摺動すると共に駆動軸33表面(摺接部位)におけるカーボン繊維の毛羽立ち等を抑えることができる。 The drive shaft 33 is a columnar member extending in the direction of the central axis C. The drive shaft 33 is disposed such that a part of the outer peripheral surface thereof is in contact with the moving body 4 and the first support column 120a (see 101 and 102 in FIG. 5 and 103 and 104 in FIG. 4). That is, the outer peripheral surface of the drive shaft 33 includes a contact surface (contact portion) with the moving body 4 and a contact surface (contact portion) with the first support column 120a. The drive shaft 33 of the present embodiment is made of, for example, carbon fiber reinforced plastic (CFRP, carbon-fiber-reinforced plastic) formed in a columnar shape so that carbon fibers are arranged in the direction of the central axis C. By arranging the carbon fibers in this way, when the drive shaft 33 reciprocates (vibrates) in the direction of the central axis C in sliding contact with the moving body 4 and the first support column 120a, it slides smoothly. The fluffing of the carbon fiber on the surface of the drive shaft 33 (sliding contact portion) can be suppressed.
 この駆動軸33は、圧電素子32の外周から全周に亘って径方向外側に突出するように形成されている。すなわち、中心軸C方向視において、駆動軸33の輪郭で囲まれた領域の内部に圧電素子32の輪郭が含まれた状態となっている。 The drive shaft 33 is formed so as to protrude radially outward from the outer periphery of the piezoelectric element 32. That is, when viewed in the direction of the central axis C, the contour of the piezoelectric element 32 is included in the region surrounded by the contour of the drive shaft 33.
 駆動軸33の下端面が圧電素子32の上端面と接着剤によって接着されている。この接着剤は、錘31と圧電素子32とを接着した接着剤と同じである。 The lower end surface of the drive shaft 33 is bonded to the upper end surface of the piezoelectric element 32 with an adhesive. This adhesive is the same as the adhesive that bonds the weight 31 and the piezoelectric element 32.
 この駆動軸33と圧電素子32とを接着した場合にこれら駆動軸33と圧電素子32と接合面からはみ出た接着剤によって形成されるフィレット35(図6参照)は、駆動軸33が圧電素子32の外周から全周に亘って径方向外側に突出する形状を有しているため、圧電素子32側に形成される。すなわち、フィレット35は、駆動軸33の外周面には形成されない。これにより、駆動軸33の外周面の中心軸C方向全域を移動体4との摺動に使うことが可能となり、短い駆動軸33によって大きなストローク(移動体4の中心軸C方向の移動範囲)を実現できる。 When the drive shaft 33 and the piezoelectric element 32 are bonded to each other, the fillet 35 (see FIG. 6) formed by the adhesive protruding from the joint surface between the drive shaft 33 and the piezoelectric element 32 is used. Is formed on the piezoelectric element 32 side because it has a shape that protrudes radially outward from the outer periphery to the entire periphery. That is, the fillet 35 is not formed on the outer peripheral surface of the drive shaft 33. As a result, the entire area of the outer peripheral surface of the drive shaft 33 in the direction of the central axis C can be used for sliding with the movable body 4, and a large stroke (movement range of the movable body 4 in the direction of the central axis C) is achieved by the short drive shaft 33. Can be realized.
 以上のように構成されるアクチュエータ本体30は、ユニット本体2(基部20)のアクチュエータ保持部25に錘31側から嵌挿される。そして、アクチュエータ保持部25の底面と錘31とが接着剤によって接着され、これにより、アクチュエータ本体30がユニット本体2に固定される。このとき、アクチュエータ本体30の駆動軸33の中心軸と、ユニット本体2の中心軸Cとが平行になっている。 The actuator body 30 configured as described above is inserted into the actuator holding portion 25 of the unit body 2 (base portion 20) from the weight 31 side. Then, the bottom surface of the actuator holding portion 25 and the weight 31 are bonded with an adhesive, whereby the actuator main body 30 is fixed to the unit main body 2. At this time, the central axis of the drive shaft 33 of the actuator main body 30 and the central axis C of the unit main body 2 are parallel to each other.
 アクチュエータ本体30は、第1電極連結バネ26aと第2電極連結バネ26bとによって、第1電極端子22および第2電極端子23に通電可能に接続されている。より具体的には、圧電素子32の一方の外部電極32aと第1電極端子22の先端22aとが第1電極連結バネ26aを介して通電可能に接続され、圧電素子32の他方の外部電極32aと第2電極端子23の先端23aとが第2電極連結バネ26bを介して通電可能に接続されている。これら第1電極連結バネ26aと第2電極連結バネ26bとは、金や白金などでメッキが施されたねじりコイルバネである。 The actuator body 30 is connected to the first electrode terminal 22 and the second electrode terminal 23 by a first electrode coupling spring 26a and a second electrode coupling spring 26b so as to be energized. More specifically, one external electrode 32a of the piezoelectric element 32 and the tip 22a of the first electrode terminal 22 are connected via a first electrode coupling spring 26a so that energization is possible, and the other external electrode 32a of the piezoelectric element 32 is connected. And the tip 23a of the second electrode terminal 23 are connected to each other through a second electrode coupling spring 26b so as to be energized. The first electrode connection spring 26a and the second electrode connection spring 26b are torsion coil springs plated with gold or platinum.
 次に、移動体4について、図7~図9も参照しつつ説明する。図7は、移動体の斜視図であり、図8は、移動体の分解斜視図である。図9は、レンズバレルが保持された状態の撮像レンズ駆動用アクチュエータユニットを説明するための模式図である。 Next, the moving body 4 will be described with reference to FIGS. FIG. 7 is a perspective view of the moving body, and FIG. 8 is an exploded perspective view of the moving body. FIG. 9 is a schematic diagram for explaining the imaging lens driving actuator unit in a state where the lens barrel is held.
 移動体4は、レンズバレル(被駆動部材)7(図9参照)を保持可能で且つユニット本体2に対して中心軸C方向に相対移動可能である。より具体的に、移動体4は、金属製の円筒状の移動体本体(保持部)5と、ガイドスプリング6とを備える。 The moving body 4 can hold a lens barrel (driven member) 7 (see FIG. 9) and can move relative to the unit body 2 in the direction of the central axis C. More specifically, the moving body 4 includes a metal cylindrical moving body main body (holding portion) 5 and a guide spring 6.
 移動体本体5は、内周側にレンズ保持部54を備え、このレンズ保持部54によってレンズバレル7を保持する。このレンズバレル7は、当該アクチュエータユニット1の被駆動部材であり、1または複数のレンズ(撮像レンズ)群71を保持する。 The movable body 5 includes a lens holding portion 54 on the inner peripheral side, and the lens barrel 7 is held by the lens holding portion 54. The lens barrel 7 is a driven member of the actuator unit 1 and holds one or a plurality of lens (imaging lens) groups 71.
 移動体本体5は、筒状部51と、第1フランジ52と、第2フランジ53と、を備える。本実施形態の移動体本体5は、例えば、0.05mm~0.3mmの厚さのステンレス材によって形成されている。ステンレス材は、金属材料の中でも、安価で成形性がよく、また耐久性もよく、駆動性能も良好な材料である。この移動体本体5は、例えば、絞り加工によって形成されている。 The movable body 5 includes a cylindrical portion 51, a first flange 52, and a second flange 53. The mobile body 5 of the present embodiment is formed of a stainless material having a thickness of 0.05 mm to 0.3 mm, for example. Stainless steel is a material that is inexpensive, has good formability, has good durability, and has good driving performance among metal materials. The movable body 5 is formed by, for example, drawing.
 このように、筒状の移動体本体5が金属製であるため強度や摩耗に対する耐久性が高く、これにより、筒状の移動体本体5の薄肉化を図って当該移動体本体5に保持される(詳しくは、レンズバレル7を介して保持される)レンズ群71の大口径化を図ることが可能となる。さらに、駆動軸33がレンズ群71を保持する移動体本体5を直接駆動するため、駆動軸33と摩擦係合する部位を、レンズ群71を保持する部位と別に設ける構成に比べ、レンズ群71の大口径化を図ることができる。 Thus, since the cylindrical moving body main body 5 is made of metal, it has high strength and durability against wear. As a result, the cylindrical moving body main body 5 is thinned and held by the moving body main body 5. It is possible to increase the diameter of the lens group 71 (which is held in detail via the lens barrel 7). Furthermore, since the drive shaft 33 directly drives the movable body 5 that holds the lens group 71, the lens group 71 is compared with a configuration in which a portion that is frictionally engaged with the drive shaft 33 is provided separately from a portion that holds the lens group 71. The diameter can be increased.
 筒状部51では、外周面の一部が駆動軸33と摺接する第1の移動体側摺動面55を構成する。すなわち、筒状部51(移動体本体5)は、その外周面に第1の移動体側摺動面55を含んでいる。本実施形態の第1の移動体側摺動面55は、移動体本体5の成形加工に際し、移動体本体5の一部を(より詳しくは、周方向に所定の幅で且つ中心軸C方向の全体に亘って)平板状にすることによって形成される平面である。 In the cylindrical part 51, a part of the outer peripheral surface constitutes a first moving body side sliding surface 55 in sliding contact with the drive shaft 33. That is, the cylindrical part 51 (movable body main body 5) includes the first movable body side sliding surface 55 on the outer peripheral surface thereof. The first moving body-side sliding surface 55 of the present embodiment has a part of the moving body main body 5 (more specifically, a predetermined width in the circumferential direction and the center axis C direction) when the moving body main body 5 is molded. It is a plane formed by making it flat.
 第1フランジ52は、筒状部51の下端から径方向内側に突出している。この第1フランジ52の上面は、レンズバレル載置部52aを構成する。このレンズバレル載置部52aは、レンズ保持部54にレンズバレル7を保持させる際にレンズバレル7が載置される(図9参照)。これにより、移動体本体5の中心軸とレンズバレル7のレンズ群71の光軸とが互いに傾くことなく揃うようになっている。また、第2フランジ53は、筒状部51の上端から径方向外側に突出している。これら第1フランジ52および第2フランジ53によって移動体本体5の強度が確保される。 The first flange 52 protrudes radially inward from the lower end of the cylindrical portion 51. The upper surface of the first flange 52 constitutes a lens barrel mounting portion 52a. In the lens barrel mounting portion 52a, the lens barrel 7 is mounted when the lens holding portion 54 holds the lens barrel 7 (see FIG. 9). As a result, the central axis of the movable body 5 and the optical axis of the lens group 71 of the lens barrel 7 are aligned without tilting each other. Further, the second flange 53 protrudes radially outward from the upper end of the tubular portion 51. The strength of the movable body 5 is ensured by the first flange 52 and the second flange 53.
 ガイドスプリング6は、円弧部61と、円弧部61の一端側に形成されたガイド部62と、円弧部61の他端側に形成された押圧片63とを備える。本実施形態のガイドスプリング6は、例えば、0.1mm~0.3mmの厚さのステンレス材によって形成されている。 The guide spring 6 includes an arc portion 61, a guide portion 62 formed on one end side of the arc portion 61, and a pressing piece 63 formed on the other end side of the arc portion 61. The guide spring 6 of the present embodiment is made of, for example, a stainless material having a thickness of 0.1 mm to 0.3 mm.
 円弧部61は、ガイド部62から周方向に略180°隔てた位置に、回転規制部61aを備える。この回転規制部61aは、駆動軸33を回転中心にした移動体4の回転を規制するための部位である。この回転規制部61aは、規制枠部61bと、規制枠部61bに形成された半球状の突起61cとを備える。 The arc portion 61 includes a rotation restricting portion 61a at a position separated from the guide portion 62 by approximately 180 ° in the circumferential direction. The rotation restricting portion 61a is a portion for restricting the rotation of the moving body 4 with the drive shaft 33 as the center of rotation. The rotation restricting portion 61a includes a restricting frame portion 61b and a hemispherical protrusion 61c formed on the restricting frame portion 61b.
 規制枠部61bは、円弧部61の一部を径方向外側に矩形状に突出させることにより形成されている。また、突起61cは、規制枠部61bの両外側面のそれぞれから外側に向かって突出するように形成されている。これら突起61c同士の外幅W1(図5参照)は、規制枠部61bが第3の支柱部120cに設けられた規制部用溝29内に嵌るように、規制部用溝29の内幅W2(図5参照)よりも若干狭く設定されている。 The regulation frame portion 61b is formed by projecting a part of the arc portion 61 radially outward in a rectangular shape. Further, the protrusion 61c is formed so as to protrude outward from each of both outer side surfaces of the restriction frame portion 61b. The outer width W1 (see FIG. 5) between these protrusions 61c is such that the inner width W2 of the restriction portion groove 29 is such that the restriction frame portion 61b fits within the restriction portion groove 29 provided in the third support column portion 120c. It is set slightly narrower than (see FIG. 5).
 ガイド部62は、円弧部61の一端から径方向外側に延びている。ガイド部62の一方面(第2摺動面)62aは、ガイドスプリング6が移動体本体5に取り付けられた状態で移動体本体5の第1の移動体側摺動面55に対して略90°となっている。 The guide part 62 extends radially outward from one end of the arc part 61. One surface (second sliding surface) 62 a of the guide part 62 is approximately 90 ° with respect to the first moving body side sliding surface 55 of the moving body 5 with the guide spring 6 attached to the moving body 5. It has become.
 押圧片63は、円弧部61の他端から直線状に延設されている。この押圧片63は、アクチュエータユニット1に組み込まれた状態で第2の支柱部120bから第1の支柱部120aに向かって直線状に延びている。押圧片63は、その先端部に、駆動軸33を押圧する押圧部63aを備える。 The pressing piece 63 extends linearly from the other end of the arc portion 61. The pressing piece 63 extends linearly from the second support column 120b toward the first support column 120a in a state of being incorporated in the actuator unit 1. The pressing piece 63 includes a pressing portion 63 a that presses the drive shaft 33 at the tip.
 以上のように構成されるガイドスプリング6と移動体本体5とは、溶接によって連結されている。より具体的には、移動体本体5の第1の移動体側摺動面55とガイドスプリング6の第2の移動体側摺動面62aとが隣接するように、ガイドスプリング6が移動体本体5の外周に沿って配設される。この状態で、複数個所が溶接(例えば、抵抗溶接(スポット溶接)、レーザ溶接等)されることにより、ガイドスプリング6と移動体本体5とが連結される。 The guide spring 6 and the movable body 5 configured as described above are connected by welding. More specifically, the guide spring 6 of the movable body main body 5 is arranged such that the first movable body side sliding surface 55 of the movable body main body 5 and the second movable body side sliding surface 62a of the guide spring 6 are adjacent to each other. It is arranged along the outer periphery. In this state, the guide spring 6 and the movable body 5 are connected by welding a plurality of locations (for example, resistance welding (spot welding), laser welding, etc.).
 このようにして移動体本体5とガイドスプリング6とを金属によって構成し、溶接によって結合することにより、互いを強固に固定することができると共に、接着などと異なって瞬時に固定できるために製造上のタクトタイムを大幅に短縮することができる。 In this way, the movable body 5 and the guide spring 6 are made of metal and joined together by welding, so that they can be firmly fixed to each other and can be fixed instantaneously unlike adhesion, etc. Tact time can be greatly reduced.
 そして、移動体本体5とガイドスプリング6とが連結された移動体4は、回転規制部61aをユニット本体2(第3の支柱部120c)の規制部用溝29内に嵌め込むと共に、第1の移動体側摺動面55と第2の移動体側摺動面62aと押圧部63aとによって駆動軸33を囲むように配置される。この状態で、押圧片63は、ユニット本体2の第2の支柱部120bの外側を通って第1の角隅部20aの第1の支柱部120aまで延びた状態になっている。このとき、押圧片63の押圧部63aは、初期位置(第1の移動体側摺動面55と第2の移動体側摺動面62aと押圧部63aとによって駆動軸33を囲んでいない状態での位置)に対して移動体本体5の外周面から離れる方向に弾性変形しているため、その弾性復帰力(弾性力)によって駆動軸33が第1の移動体側摺動面55および第2の移動体側摺動面62aに押し付けられた状態となっている。すなわち、押圧片63の弾性力によって駆動軸33が第1の移動体側摺動面55と第2の移動体側摺動面62aとに押し付けられて移動体4と駆動軸33とが摩擦係合している。 The movable body 4 to which the movable body main body 5 and the guide spring 6 are coupled has the rotation restricting portion 61a fitted in the restriction portion groove 29 of the unit main body 2 (third support column portion 120c), and the first The movable body side sliding surface 55, the second movable body side sliding surface 62a, and the pressing portion 63a are disposed so as to surround the drive shaft 33. In this state, the pressing piece 63 passes through the outside of the second support column 120b of the unit body 2 and extends to the first support column 120a of the first corner portion 20a. At this time, the pressing portion 63a of the pressing piece 63 is in the initial position (the first moving body side sliding surface 55, the second moving body side sliding surface 62a, and the pressing portion 63a do not surround the drive shaft 33). The drive shaft 33 is elastically deformed in a direction away from the outer peripheral surface of the movable body 5 with respect to the position), so that the drive shaft 33 is moved to the first movable body side sliding surface 55 and the second movement by the elastic return force (elastic force). It is in a state of being pressed against the body-side sliding surface 62a. That is, the driving shaft 33 is pressed against the first moving body side sliding surface 55 and the second moving body side sliding surface 62a by the elastic force of the pressing piece 63, and the moving body 4 and the driving shaft 33 are frictionally engaged. ing.
 また、駆動軸33と移動体4の第1の移動体側摺動面55および第2の移動体側摺動面62aとの接触部分、並びに、移動体4の回転規制部61aと規制部用溝29との接触部分には、オイルやグリース、テフロン(登録商標)フレークを混入させたオイル等の潤滑剤が塗布される。これにより、摺動部の耐久性向上や放置時の固着に対する信頼性を確保することができる。 Further, the contact portion between the drive shaft 33 and the first moving body side sliding surface 55 and the second moving body side sliding surface 62 a of the moving body 4, and the rotation restricting portion 61 a and the restricting portion groove 29 of the moving body 4. A lubricant such as oil, grease, or oil mixed with Teflon (registered trademark) flakes is applied to the contact portion. Thereby, the durability improvement of a sliding part and the reliability with respect to adhering at the time of leaving are securable.
 次に、図1および図2に戻ってカバー8について説明する。 Next, returning to FIGS. 1 and 2, the cover 8 will be described.
 カバー8は、ユニット本体2と共同して移動体4を囲む部材である。このカバー8は、天壁81と、天壁81の周縁から垂下する周壁83とを備える。 The cover 8 is a member surrounding the moving body 4 in cooperation with the unit main body 2. The cover 8 includes a top wall 81 and a peripheral wall 83 that hangs down from the periphery of the top wall 81.
 天壁81は、平面視において矩形状の輪郭を有すると共に、その中央部に中心軸C方向に貫通する貫通孔82を有する。この貫通孔82は、光路となる。本実施形態のカバー8は、例えば、0.1mm~0.2mmのステンレス製の薄板を絞り加工、プレス加工等によって形成されている。 The top wall 81 has a rectangular outline in a plan view, and has a through hole 82 penetrating in the central axis C direction at the center thereof. The through hole 82 becomes an optical path. The cover 8 of the present embodiment is formed by drawing, pressing, or the like, for example, a stainless steel thin plate of 0.1 mm to 0.2 mm.
 周壁83は、天壁81の各片に対応する4つの側壁83aによって構成されている。各側壁83aは、ユニット本体2(基部20)の側面に設けられた係止用突起20fに係止される係止用孔84を備えている。なお、本実施形態の係止用突起20fは、2個であり、対向する側壁83aの各係止用孔84に係止されるようになっている。 The peripheral wall 83 is constituted by four side walls 83 a corresponding to each piece of the top wall 81. Each side wall 83a includes a locking hole 84 that is locked to a locking projection 20f provided on the side surface of the unit main body 2 (base portion 20). Note that the number of the locking projections 20f in the present embodiment is two, and the locking projections 20f are locked in the locking holes 84 of the opposing side wall 83a.
 ユニット本体2の第1の支柱部120a、第3の支柱部120cおよび第4の支柱部120dの上端に設けられた載置台120e、並びに、第2の支柱部120bの上端面と、カバー8の天壁81の内側面とが当接した状態で、係止用孔84が係止用突起20fに係止されることにより、ユニット本体2にカバー8が係止される。このとき、各載置台120eおよび第2の支柱部120bの上端面と、カバー8の天壁81の内側面とが接着剤によって接着(結合)されている。 The first column 120a, the third column 120c, and the fourth column 120d of the unit main body 2 are mounted on the upper ends of the column 120e, the upper column of the second column 120b, and the cover 8 The cover 8 is locked to the unit main body 2 by the locking hole 84 being locked to the locking projection 20f in a state where the inner surface of the top wall 81 is in contact. At this time, the upper end surfaces of the mounting tables 120e and the second support columns 120b and the inner surface of the top wall 81 of the cover 8 are bonded (bonded) with an adhesive.
 以上のように構成されたアクチュエータユニット1は、カメラモジュール(撮像装置)に用いられてよい。このようなカメラモジュールは、上述のアクチュエータユニット1と、光学像を電気的な信号に変換する撮像素子(撮像センサ)と、1または複数の撮像レンズを備え、物体の光学像を前記撮像素子の受光面上に結像する撮像光学系とを備え、前記撮像光学系における前記1または複数の撮像レンズのうちの光軸方向に沿って移動する撮像レンズは、アクチュエータユニット1の移動体4に取り付けられる。例えば、図9に示すように、移動体4のレンズ保持部54によってレンズバレル7を保持すると共に、ユニット本体2の下面側に、IRカットフィルタ102および撮像センサ(撮像素子)103を有するセンサ基板104が配置される。より具体的には、レンズバレル7に設けられた接着溝72に充填された接着剤73によってレンズバレル7がレンズ保持部54に接着固定される。これにより、カメラモジュール(撮像装置)が構成される。 The actuator unit 1 configured as described above may be used in a camera module (imaging device). Such a camera module includes the above-described actuator unit 1, an imaging device (imaging sensor) that converts an optical image into an electrical signal, and one or a plurality of imaging lenses. An imaging optical system that forms an image on the light receiving surface, and the imaging lens that moves along the optical axis direction of the one or more imaging lenses in the imaging optical system is attached to the moving body 4 of the actuator unit 1 It is done. For example, as shown in FIG. 9, a sensor substrate that holds the lens barrel 7 by the lens holding portion 54 of the moving body 4 and has an IR cut filter 102 and an image sensor (image sensor) 103 on the lower surface side of the unit body 2. 104 is arranged. More specifically, the lens barrel 7 is bonded and fixed to the lens holding portion 54 by the adhesive 73 filled in the bonding groove 72 provided in the lens barrel 7. Thereby, a camera module (imaging device) is configured.
 そして、例えば、携帯電話機の回路基板に、第1電極端子22の外部接続端子22bおよび第2電極端子23の外部接続端子23b(図1等参照)が置かれるようにして、前記カメラモジュールが携帯電話機の筐体内に設置される。 Then, for example, the camera module is carried in such a manner that the external connection terminal 22b of the first electrode terminal 22 and the external connection terminal 23b (see FIG. 1 etc.) of the second electrode terminal 23 are placed on the circuit board of the mobile phone. Installed in the phone casing.
 そして、駆動回路から第1電極端子22の外部接続端子22bおよび第2電極端子23の外部接続端子23bに所定の波形の電力が供給されると、アクチュエータ本体30の圧電素子32が中心軸C方向に振動する(伸縮を繰り返す)。この圧電素子32の振動によって駆動軸33が往復動し、その往復動によって移動体4が駆動軸33の軸方向(中心軸C方向)に移動する。より詳しくは、以下の通りである。 When electric power having a predetermined waveform is supplied from the drive circuit to the external connection terminal 22b of the first electrode terminal 22 and the external connection terminal 23b of the second electrode terminal 23, the piezoelectric element 32 of the actuator body 30 moves in the direction of the central axis C. Vibrate (repeat expansion and contraction). The drive shaft 33 reciprocates due to the vibration of the piezoelectric element 32, and the movable body 4 moves in the axial direction (center axis C direction) of the drive shaft 33 due to the reciprocation. More details are as follows.
 圧電素子32に所定のデューティ比の矩形波が付与されることによって圧電素子32の変位が三角波状となり、その矩形波のデューティ比を変えることによって振幅の上昇時と下降時とで傾き(速さ)の異なる三角波が発生する。アクチュエータ3の駆動メカニズムは、これを利用するものである。 When a rectangular wave having a predetermined duty ratio is applied to the piezoelectric element 32, the displacement of the piezoelectric element 32 becomes a triangular wave. By changing the duty ratio of the rectangular wave, the slope (speed) is increased and decreased when the amplitude is increased. ) Different triangular waves are generated. The drive mechanism of the actuator 3 utilizes this.
 より具体的には、移動体4が、近距離撮影位置から無限撮影位置に向かう場合について説明する。図10は、移動体4の撮影位置を説明するための図であり、図10Aは、移動体4の近距離撮影位置を説明するための図であり、図10Bは、移動体4の無限撮影位置を説明するための図である。ここで、近距離撮影位置とは、図10Aに示されるように、移動体4の中心軸C方向の移動範囲において基部20(撮像センサ103)から最も遠い位置(物体側端位置)であり、無限撮影位置とは、図10Bに示されるように、前記移動範囲において基部20(撮像センサ103)から最も近い位置(像側端位置)である。 More specifically, a case will be described in which the moving body 4 moves from the short-distance shooting position to the infinite shooting position. FIG. 10 is a diagram for explaining the shooting position of the moving body 4, FIG. 10A is a diagram for explaining the short-distance shooting position of the moving body 4, and FIG. 10B is an infinite shooting of the moving body 4. It is a figure for demonstrating a position. Here, the short-distance shooting position is a position (object side end position) farthest from the base 20 (imaging sensor 103) in the movement range in the central axis C direction of the moving body 4, as shown in FIG. 10A. As shown in FIG. 10B, the infinite photographing position is a position (image side end position) that is closest to the base 20 (imaging sensor 103) in the moving range.
 まず、圧電素子32の収縮によって駆動軸33をゆっくりと下方に移動させると、この駆動軸33に摩擦係合している移動体4も駆動軸33の下方への移動に伴って同方向(下方)に移動する。そして、摩擦係合した摩擦力を超える程の瞬時の圧電素子32の伸長によって駆動軸33を上方に移動させると、移動体4がその位置(前記の下方への移動後の位置)に取り残される。このような駆動軸33の中心軸C方向の往復動を繰返すことにより、移動体4が下方に移動する。 First, when the drive shaft 33 is slowly moved downward by the contraction of the piezoelectric element 32, the moving body 4 frictionally engaged with the drive shaft 33 also moves in the same direction (downward as the drive shaft 33 moves downward). ) Then, when the drive shaft 33 is moved upward by the instantaneous extension of the piezoelectric element 32 so as to exceed the frictional friction force, the movable body 4 is left at that position (the position after the downward movement). . By repeating such reciprocation of the drive shaft 33 in the direction of the central axis C, the moving body 4 moves downward.
 上記の駆動軸33の往復動が繰り返され移動体4が下方に移動し続けると、駆動軸33と接触している移動体4の接触面(第1の移動体側摺動面55および第2の移動体側摺動面62a)の下端部が駆動軸33からユニット本体側に突出する(はみ出す)。すなわち、駆動軸33の外周面(第1の移動体側摺動面55および第2の移動体側摺動面62aに摺接する面)の下端より下方側に移動体4の下端がはみ出す。 When the reciprocating motion of the drive shaft 33 is repeated and the movable body 4 continues to move downward, the contact surface of the movable body 4 that is in contact with the drive shaft 33 (the first movable body-side sliding surface 55 and the second movable surface 50). The lower end of the moving body side sliding surface 62a) protrudes (protrudes) from the drive shaft 33 toward the unit main body. That is, the lower end of the moving body 4 protrudes below the lower end of the outer peripheral surface of the drive shaft 33 (the surface in sliding contact with the first moving body side sliding surface 55 and the second moving body side sliding surface 62a).
 これは、本実施形態のアクチュエータユニット1では、駆動軸33の中心軸C方向の長さ寸法を抑えて(小さくして)、当該ユニット1の低背化(中心軸C方向の長さ寸法の小型化)を図っているためである。より具体的には、移動体4を無限撮影位置に移動させたときに移動体4(より詳しくは、第1の移動体側摺動面55および第2の移動体側摺動面62a)の下部(一部)を駆動軸33の下端からユニット本体2側に突出させるような構成とすることで、移動体4の中心軸C方向の位置に関わらず接触面(第1の移動体側摺動面55および第2の移動体側摺動面62a)の中心軸C方向全体が駆動軸33に接触する構成に比べ、前記各摺動面55、62aの下部をユニット本体2側に突出させた分の駆動軸33の中心軸C方向の長さ寸法を小さくすることができる。これにより、駆動軸33を備えるアクチュエータ3の中心軸C方向の長さ寸法を小さくすることができ、その結果、当該アクチュエータ3が配置されるユニット(アクチュエータユニット)1の中心軸C方向の長さ寸法の小型化(低背化)を図ることが可能となる。 In the actuator unit 1 of the present embodiment, the length dimension of the drive shaft 33 in the central axis C direction is suppressed (reduced), and the unit 1 is reduced in height (the length dimension in the central axis C direction). This is because the size is reduced. More specifically, when the moving body 4 is moved to the infinite photographing position, more specifically, the lower part of the moving body 4 (more specifically, the first moving body side sliding surface 55 and the second moving body side sliding surface 62a) ( By adopting a configuration in which a part) is protruded from the lower end of the drive shaft 33 toward the unit main body 2, the contact surface (the first moving body side sliding surface 55) regardless of the position of the moving body 4 in the central axis C direction. Compared with the configuration in which the entire center axis C direction of the second moving body side sliding surface 62a) is in contact with the drive shaft 33, the lower portion of each sliding surface 55, 62a is driven to the unit body 2 side. The length dimension of the shaft 33 in the direction of the central axis C can be reduced. Thereby, the length dimension in the central axis C direction of the actuator 3 including the drive shaft 33 can be reduced, and as a result, the length in the central axis C direction of the unit (actuator unit) 1 in which the actuator 3 is arranged. It becomes possible to reduce the size (lower profile).
 この場合、駆動軸33と各移動体側摺動面55、62aとの接触部位の中心軸C方向の長さ寸法(図10Aおよび図10Bのα1、α2参照)が小さくなると、駆動軸33に対して移動体4が若干傾き易くなる(すなわち、駆動軸33を含むアクチュエータ本体30が固定されたユニット本体2に対し、移動体4に保持されるレンズ群71の光軸が若干傾き易くなる)が、移動体4(レンズ群71)が無限撮影位置では被写界深度が深く合焦しているように見えるため、無限位置での前記接触部位の長さ寸法が短くなっても、撮像センサ103によって得られる画像の画質の低下を抑えることができる。一方、移動体4(レンズ群71)が被写界深度の浅くなる近距離撮影位置のときには前記接触部位の中心軸C方向の長さ寸法が十分に確保されるため、駆動軸33に対する移動体4の傾き(すなわち、ユニット本体2に対するレンズ群71の光軸の傾き)が抑えられ、撮像センサ103によって得られる画像の画質が確保される。 In this case, when the length dimension (refer to α1 and α2 in FIGS. 10A and 10B) of the contact portion between the drive shaft 33 and the moving body side sliding surfaces 55 and 62a in the central axis C direction is small, The moving body 4 is slightly inclined (that is, the optical axis of the lens group 71 held by the moving body 4 is slightly inclined with respect to the unit body 2 to which the actuator body 30 including the drive shaft 33 is fixed). Since the moving body 4 (lens group 71) appears to be deeply focused at the infinite photographing position, the imaging sensor 103 is used even when the length of the contact portion at the infinite position is shortened. The deterioration of the image quality of the image obtained by the above can be suppressed. On the other hand, when the moving body 4 (lens group 71) is at a short-distance shooting position where the depth of field is shallow, the length of the contact portion in the direction of the central axis C is sufficiently secured. 4 (that is, the inclination of the optical axis of the lens group 71 with respect to the unit main body 2) is suppressed, and the image quality of the image obtained by the imaging sensor 103 is ensured.
 また、駆動軸33の外周が、圧電素子32の外周から全周に亘って径方向外側に突出しているため、移動体4が近距離撮影位置から無限撮影位置に向けて移動した場合に、移動体4の第1の移動体側摺動面55および第2の移動体側摺動面62aの下部(筒状の移動体4の下部)が駆動軸33よりユニット本体2側に突出しても圧電素子32と接触しない。すなわち、圧電素子32が移動体4の中心軸C方向の移動を邪魔しない。 In addition, since the outer periphery of the drive shaft 33 protrudes radially outward from the outer periphery of the piezoelectric element 32, it moves when the moving body 4 moves from the short-distance shooting position toward the infinite shooting position. Even if the lower part of the first moving body side sliding surface 55 and the second moving body side sliding surface 62a of the body 4 (the lower part of the cylindrical moving body 4) protrudes from the drive shaft 33 toward the unit body 2 side, the piezoelectric element 32. Do not contact with. That is, the piezoelectric element 32 does not disturb the movement of the moving body 4 in the direction of the central axis C.
 次に、移動体4が、無限撮影位置から近距離撮影位置に向かう場合について説明する。この場合、上記の移動体4が下方に移動する動作と逆の動作が行なわれる。 Next, the case where the moving body 4 moves from the infinite shooting position to the short distance shooting position will be described. In this case, an operation opposite to the operation in which the moving body 4 moves downward is performed.
 より具体的には、圧電素子32の伸長によって駆動軸33をゆっくりと上方に移動させ、これにより駆動軸33に摩擦係合している移動体4を上方へ移動させる。そして、摩擦係合した摩擦力を超える程の瞬時の圧電素子32の収縮によって駆動軸33を下方に移動させ、移動体4がその位置(前記の上方への移動後の位置)に取り残されるようにする。このような駆動軸33の中心軸C方向の往復動を繰返すことで、移動体4が上方に移動する。 More specifically, the drive shaft 33 is slowly moved upward by the extension of the piezoelectric element 32, thereby moving the moving body 4 frictionally engaged with the drive shaft 33 upward. The drive shaft 33 is moved downward by the instantaneous contraction of the piezoelectric element 32 so as to exceed the frictionally engaged frictional force, so that the moving body 4 is left at that position (the position after the upward movement). To. By repeating such reciprocation of the drive shaft 33 in the direction of the central axis C, the moving body 4 moves upward.
 なお、本発明の撮像レンズ駆動用アクチュエータユニットは、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 It should be noted that the imaging lens driving actuator unit of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention.
 上記実施形態の撮像レンズ駆動用アクチュエータユニット1では、レンズ群71を保持するレンズバレル7を、アクチュエータ本体30(駆動軸33)によって駆動される移動体4が保持する構成であるが、この構成に限定されない。例えば、移動体自体が1または複数の撮像レンズを保持し、この撮像レンズを直接保持する移動体をアクチュエータ本体30(駆動軸33)が駆動する構成でもよい。 In the imaging lens driving actuator unit 1 of the above embodiment, the lens barrel 7 that holds the lens group 71 is held by the moving body 4 that is driven by the actuator body 30 (drive shaft 33). It is not limited. For example, the movable body itself may hold one or a plurality of imaging lenses, and the actuator main body 30 (drive shaft 33) may drive the movable body that directly holds the imaging lenses.
 上記実施形態の撮像レンズ駆動用アクチュエータユニット1では、ガイドスプリング6の押圧片63の弾性復帰力(弾性力)によって駆動軸33を第1の移動体側摺動面55および第2の移動体側摺動面62aに押し付けることにより、移動体4と駆動軸33とを摩擦係合させているが、この構成に限定されない。例えば、駆動軸が磁石によって構成され、移動体(具体的には第1摺動面55および第2摺動面62a)が金属によって構成されていてもよい。すなわち、所定の摩擦力が生じるように駆動軸の外周面を第1摺動面55および第2摺動面62aに押し付ける力は、弾性力等の付勢力に限定されず、磁力等であってもよい。 In the imaging lens driving actuator unit 1 of the above embodiment, the drive shaft 33 is slid on the first moving body side sliding surface 55 and the second moving body side sliding surface by the elastic restoring force (elastic force) of the pressing piece 63 of the guide spring 6. Although the movable body 4 and the drive shaft 33 are frictionally engaged by being pressed against the surface 62a, it is not limited to this configuration. For example, the drive shaft may be configured by a magnet, and the moving body (specifically, the first sliding surface 55 and the second sliding surface 62a) may be configured by metal. That is, the force that presses the outer peripheral surface of the drive shaft against the first sliding surface 55 and the second sliding surface 62a so as to generate a predetermined frictional force is not limited to an urging force such as an elastic force but is a magnetic force or the like. Also good.
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 一態様にかかる撮像レンズ駆動用アクチュエータユニットは、撮像素子に対して撮像レンズを移動させる撮像レンズ駆動用アクチュエータユニットであって、前記撮像レンズより前記撮像素子側に配置されるユニット本体と、伸縮する機械エネルギーに電気エネルギーを変換する電気機械変換素子、前記電気機械変換素子における伸縮方向の一方端に固定されて前記機械エネルギーが伝達される駆動摩擦部材、および前記駆動摩擦部材に所定の摩擦力で係合される移動体を有するアクチュエータと、を備え、前記移動体は、前記駆動摩擦部材が接触する接触面を含み、前記撮像レンズを保持可能で且つ前記ユニット本体に対して前記撮像レンズの光軸方向に相対移動可能であり、前記アクチュエータは、前記ユニット本体に固定され、前記移動体を前記ユニット本体から最も遠い近距離撮影位置に移動させた場合における前記駆動摩擦部材と前記接触面との接触部位の前記光軸方向の長さ寸法に比べ、前記移動体を前記近距離撮影位置よりも前記ユニット本体側の無限撮影位置に移動させた場合に前記接触面の一部を前記駆動摩擦部材よりユニット本体側に突出させることによって前記接触部位の前記光軸方向の長さ寸法が小さくなるように構成される。 An imaging lens driving actuator unit according to an aspect is an imaging lens driving actuator unit that moves an imaging lens with respect to an imaging element, and extends and contracts with a unit main body that is disposed closer to the imaging element than the imaging lens. An electromechanical transducer that converts electrical energy into mechanical energy, a drive friction member that is fixed to one end of the electromechanical transducer in the direction of expansion and contraction and that transmits the mechanical energy, and a predetermined friction force applied to the drive friction member An actuator having a movable body to be engaged, and the movable body includes a contact surface with which the drive friction member comes into contact, can hold the imaging lens, and light of the imaging lens with respect to the unit body The actuator is relatively movable in the axial direction, and the actuator is fixed to the unit main body, Compared with the length dimension in the optical axis direction of the contact portion between the drive friction member and the contact surface when the moving body is moved to the short-distance photographing position farthest from the unit main body, the movable body is photographed in the short-distance photographing. When the position is moved to an infinite photographing position on the unit main body side relative to the position, a part of the contact surface protrudes from the driving friction member to the unit main body side, whereby the length dimension in the optical axis direction of the contact portion is increased. Configured to be smaller.
 このような撮像レンズ駆動用アクチュエータユニットでは、移動体を無限撮影位置に移動させた場合に移動体(接触面)の一部を駆動摩擦部材よりユニット本体側に突出させる構成とすることによって、移動体の光軸方向の位置に関わらず前記接触面の光軸方向全体が駆動摩擦部材に接触する構成に比べ、駆動摩擦部材の光軸方向の長さ寸法を小さくすることが可能となる。これにより、駆動摩擦部材を備えるアクチュエータの光軸方向の長さ寸法を小さくすることができ、その結果、当該アクチュエータが配置される撮像レンズ駆動用アクチュエータユニットにおける光軸方向の長さ寸法の小型化(短小化、低背化)を図ることが可能となる。 In such an imaging lens driving actuator unit, when the moving body is moved to the infinite photographing position, a part of the moving body (contact surface) protrudes from the driving friction member toward the unit main body, thereby moving the moving body. The length dimension of the drive friction member in the optical axis direction can be made smaller than the configuration in which the entire optical axis direction of the contact surface contacts the drive friction member regardless of the position of the body in the optical axis direction. Thereby, the length dimension in the optical axis direction of the actuator provided with the drive friction member can be reduced, and as a result, the length dimension in the optical axis direction in the imaging lens driving actuator unit in which the actuator is arranged is reduced. (Shortness and height reduction) can be achieved.
 この場合、前記接触部位の光軸方向の長さ寸法が小さくなると、駆動摩擦部材に対して移動体が若干傾き易くなる(すなわち、アクチュエータが固定されたユニット本体に対し、移動体に保持される撮像レンズの光軸が若干傾き易くなる)が、移動体(撮像レンズ)が無限撮影位置では被写界深度が深く合焦しているように見えるため、上記構成のように無限位置での接触部位の長さ寸法が短くなっても、撮像素子によって得られる画像の画質の低下を抑えることができる。一方、上記構成では、移動体(撮像レンズ)が被写界深度の浅くなる近距離撮影位置の場合には接触部位における光軸方向の長さ寸法が十分に確保されるため、駆動摩擦部材に対する移動体の傾き(すなわち、当該アクチュエータが取り付けられたユニット本体に対する撮像レンズの光軸の傾き)が抑えられ、撮像素子によって得られる画像の画質が確保される。 In this case, when the length dimension in the optical axis direction of the contact portion is reduced, the moving body is slightly inclined with respect to the driving friction member (that is, the moving body is held by the moving body with respect to the unit main body to which the actuator is fixed). The optical axis of the imaging lens is slightly inclined), but the moving object (imaging lens) appears to be in focus at a depth of field at the infinite shooting position, so contact at the infinite position as in the above configuration. Even if the length dimension of the part is shortened, it is possible to suppress the deterioration of the image quality of the image obtained by the image sensor. On the other hand, in the above configuration, when the moving body (imaging lens) is at a short-distance shooting position where the depth of field is shallow, a sufficient length dimension in the optical axis direction at the contact portion is ensured. The inclination of the moving body (that is, the inclination of the optical axis of the imaging lens with respect to the unit main body to which the actuator is attached) is suppressed, and the image quality of the image obtained by the imaging element is ensured.
 他の一態様では、上述の撮像レンズ駆動用アクチュエータユニットにおいて、好ましくは、前記電気機械変換素子は、前記駆動摩擦部材のユニット本体側端部に接続され、前記駆動摩擦部材は、少なくとも前記接触面と接触する部位が前記電気機械変換素子より前記移動体側に突出した形状を有してもよい。 In another aspect, in the above-described imaging lens driving actuator unit, preferably, the electromechanical conversion element is connected to a unit body side end of the driving friction member, and the driving friction member is at least the contact surface. The part which contacts with may have the shape which protruded in the said mobile body side from the said electromechanical conversion element.
 このような撮像レンズ駆動用アクチュエータユニットでは、駆動摩擦部材において少なくとも移動体の接触面と接触する部位が電気機械変換素子より移動体側に突出しているため、移動体が無限撮影位置に向けて移動した場合に、接触面の一部が駆動摩擦部材からユニット本体側に突出しても電気機械変換と接触しない。すなわち、電気機械変換素子が移動体の光軸方向の移動を邪魔しない。 In such an imaging lens driving actuator unit, at least a portion of the driving friction member that contacts the contact surface of the moving body protrudes toward the moving body from the electromechanical conversion element, so the moving body has moved toward the infinite photographing position. In this case, even if a part of the contact surface protrudes from the drive friction member toward the unit main body, it does not come into contact with the electromechanical conversion. That is, the electromechanical transducer does not interfere with the movement of the moving body in the optical axis direction.
 他の一態様では、上述の撮像レンズ駆動用アクチュエータユニットにおいて、好ましくは、前記移動体は、前記撮像レンズをその径方向の外側から囲む金属製の筒状の保持部を有し、前記保持部は、前記接触面をその外周面に含んでいてもよい。 In another aspect, in the above-described imaging lens driving actuator unit, preferably, the moving body includes a metal cylindrical holding portion that surrounds the imaging lens from the outside in the radial direction, and the holding portion May include the contact surface on its outer peripheral surface.
 このような撮像レンズ駆動用アクチュエータユニットでは、筒状の保持部が金属製であるため強度や摩耗に対する耐久性が高く、これにより、筒状の保持部の薄肉化を図って当該保持部に保持される撮像レンズの大口径化を図ることが可能となる。さらに、駆動摩擦部材が、撮像レンズを保持する保持部を直接駆動するため、駆動摩擦部材と摩擦係合する部位を、撮像レンズを保持する部位と別に設ける構成に比べ、撮像レンズの大口径化を図ることができる。 In such an imaging lens driving actuator unit, since the cylindrical holding portion is made of metal, it has high durability and durability against wear, so that the cylindrical holding portion is thinned and held by the holding portion. Therefore, it is possible to increase the diameter of the imaging lens. Furthermore, since the drive friction member directly drives the holding unit that holds the imaging lens, the diameter of the imaging lens is increased compared to a configuration in which a portion that is frictionally engaged with the drive friction member is provided separately from the portion that holds the imaging lens. Can be achieved.
 そして、他の一態様にかかる撮像装置は、これら上述のいずれかの撮像レンズ駆動用アクチュエータユニットと、光学像を電気的な信号に変換する撮像素子と、1または複数の撮像レンズを備え、物体の光学像を前記撮像素子の受光面上に結像する撮像光学系とを備え、前記撮像光学系における前記1または複数の撮像レンズのうちの光軸方向に沿って移動する撮像レンズは、前記撮像レンズ駆動用アクチュエータユニットの前記移動体に取り付けられている。 An imaging apparatus according to another aspect includes any of the above-described imaging lens driving actuator units, an imaging element that converts an optical image into an electrical signal, and one or a plurality of imaging lenses. An imaging optical system that forms an optical image on the light receiving surface of the imaging device, and the imaging lens that moves along the optical axis direction of the one or the plurality of imaging lenses in the imaging optical system, It is attached to the moving body of the actuator unit for driving the imaging lens.
 このような撮像装置は、これら上述のいずれかの撮像レンズ駆動用アクチュエータユニットを備えるので、低背化、小型化を図ることが可能となる。 Since such an imaging apparatus includes any one of the above-described imaging lens driving actuator units, it is possible to achieve a reduction in height and size.
 この出願は、2012年9月28日に出願された日本国特許出願特願2012-215679を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2012-215679 filed on September 28, 2012, the contents of which are included in the present application.
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been properly and fully described through the embodiments with reference to the drawings. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not covered by the claims. To be construed as inclusive.
 本発明によれば、撮像レンズ駆動用アクチュエータユニットおよび撮像装置を提供することができる。 According to the present invention, an actuator unit for driving an imaging lens and an imaging device can be provided.

Claims (4)

  1.  撮像素子に対して撮像レンズを移動させる撮像レンズ駆動用アクチュエータユニットであって、
     前記撮像レンズより前記撮像素子側に配置されるユニット本体と、
     電気エネルギーを、伸縮する機械エネルギーに変換する電気機械変換素子、前記電気機械変換素子における伸縮方向の一方端に固定されて前記機械エネルギーが伝達される駆動摩擦部材、および前記駆動摩擦部材に所定の摩擦力で係合される移動体を有するアクチュエータと、を備え、
     前記移動体は、前記駆動摩擦部材が接触する接触面を含み、前記撮像レンズを保持可能で且つ前記ユニット本体に対して前記撮像レンズの光軸方向に相対移動可能であり、
     前記アクチュエータは、前記ユニット本体に固定され、前記移動体を前記ユニット本体から最も遠い近距離撮影位置に移動させた場合における前記駆動摩擦部材と前記接触面との接触部位の前記光軸方向の長さ寸法に比べ、前記移動体を前記近距離撮影位置よりも前記ユニット本体側の無限撮影位置に移動させた場合に前記接触面の一部を前記駆動摩擦部材よりユニット本体側に突出させることによって前記接触部位の前記光軸方向の長さ寸法が小さくなるように構成される、
     撮像レンズ駆動用アクチュエータユニット。
    An imaging lens driving actuator unit for moving an imaging lens with respect to an imaging element,
    A unit body disposed on the image sensor side from the imaging lens;
    An electromechanical conversion element that converts electrical energy into expanding and contracting mechanical energy, a driving friction member that is fixed to one end in the expansion and contraction direction of the electromechanical conversion element and that transmits the mechanical energy, and a predetermined amount applied to the driving friction member An actuator having a moving body engaged by a frictional force,
    The moving body includes a contact surface with which the driving friction member comes into contact, can hold the imaging lens, and can move relative to the unit body in the optical axis direction of the imaging lens,
    The actuator is fixed to the unit main body, and a length of the contact portion between the drive friction member and the contact surface in the optical axis direction when the movable body is moved to a short-distance photographing position farthest from the unit main body. When the moving body is moved to the infinite photographing position on the unit main body side rather than the short-distance photographing position, a part of the contact surface is protruded from the driving friction member to the unit main body side as compared with the length dimension. The length of the contact portion in the optical axis direction is configured to be small.
    An imaging lens drive actuator unit.
  2.  前記電気機械変換素子は、前記駆動摩擦部材のユニット本体側端部に接続され、
     前記駆動摩擦部材は、少なくとも前記接触面と接触する部位が前記電気機械変換素子より前記移動体側に突出した形状を有する、
     請求項1に記載の撮像レンズ駆動用アクチュエータユニット。
    The electromechanical conversion element is connected to a unit main body side end of the drive friction member,
    The drive friction member has a shape in which at least a portion in contact with the contact surface protrudes toward the movable body from the electromechanical conversion element.
    The actuator unit for driving an imaging lens according to claim 1.
  3.  前記移動体は、前記撮像レンズをその径方向の外側から囲む金属製の筒状の保持部を有し、
     前記保持部は前記接触面をその外周面に含んでいる、
     請求項1または請求項2に記載の撮像レンズ駆動用アクチュエータユニット。
    The moving body has a metal cylindrical holding portion that surrounds the imaging lens from the outside in the radial direction,
    The holding portion includes the contact surface on an outer peripheral surface thereof,
    The actuator unit for driving an imaging lens according to claim 1 or 2.
  4.  請求項1ないし請求項3のいずれか1項に記載の撮像レンズ駆動用アクチュエータユニットと、
     光学像を電気的な信号に変換する撮像素子と、
     1または複数の撮像レンズを備え、物体の光学像を前記撮像素子の受光面上に結像する撮像光学系とを備え、
     前記撮像光学系における前記1または複数の撮像レンズのうちの光軸方向に沿って移動する撮像レンズは、前記撮像レンズ駆動用アクチュエータユニットの前記移動体に取り付けられている、
     撮像装置。
    The imaging lens driving actuator unit according to any one of claims 1 to 3,
    An image sensor that converts an optical image into an electrical signal;
    An imaging optical system that includes one or a plurality of imaging lenses, and that forms an optical image of an object on a light receiving surface of the imaging element;
    The imaging lens that moves along the optical axis direction among the one or more imaging lenses in the imaging optical system is attached to the moving body of the imaging lens driving actuator unit.
    Imaging device.
PCT/JP2013/005092 2012-09-28 2013-08-28 Actuator unit for driving imaging lens, and imaging device WO2014049961A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014509548A JP5556976B1 (en) 2012-09-28 2013-08-28 Imaging lens driving actuator unit and imaging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-215679 2012-09-28
JP2012215679 2012-09-28

Publications (1)

Publication Number Publication Date
WO2014049961A1 true WO2014049961A1 (en) 2014-04-03

Family

ID=50387410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005092 WO2014049961A1 (en) 2012-09-28 2013-08-28 Actuator unit for driving imaging lens, and imaging device

Country Status (2)

Country Link
JP (1) JP5556976B1 (en)
WO (1) WO2014049961A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006141133A (en) * 2004-11-12 2006-06-01 Konica Minolta Opto Inc Drive device
JP2008289349A (en) * 2007-04-19 2008-11-27 Mitsumi Electric Co Ltd Drive device
JP2010091678A (en) * 2008-10-06 2010-04-22 Mitsumi Electric Co Ltd Driving device
JP2010113106A (en) * 2008-11-06 2010-05-20 Mitsumi Electric Co Ltd Drive device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100799867B1 (en) * 2006-02-20 2008-01-31 삼성전기주식회사 Device for Lens Transfer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006141133A (en) * 2004-11-12 2006-06-01 Konica Minolta Opto Inc Drive device
JP2008289349A (en) * 2007-04-19 2008-11-27 Mitsumi Electric Co Ltd Drive device
JP2010091678A (en) * 2008-10-06 2010-04-22 Mitsumi Electric Co Ltd Driving device
JP2010113106A (en) * 2008-11-06 2010-05-20 Mitsumi Electric Co Ltd Drive device

Also Published As

Publication number Publication date
JP5556976B1 (en) 2014-07-23
JPWO2014049961A1 (en) 2016-08-22

Similar Documents

Publication Publication Date Title
US7129621B2 (en) Vibration wave linear motor and lens implement using vibration wave linear motor
US7129620B2 (en) Vibration wave linear motor and lens implement using vibration wave linear motor
KR20130088063A (en) Ultrasonic motor
JP2014239575A (en) Driving member, linear drive unit, camera device and electronic apparatus
US20160127623A1 (en) Vibration-type actuator, interchangeable lens, image pickup apparatus, and automatic stage
KR100949918B1 (en) Linear motor and actuator having the same
JPWO2011077660A1 (en) Electromechanical transducer and drive device
JP6981376B2 (en) Lens drive device
JP5565543B1 (en) Driving device and imaging device
US9209714B2 (en) Vibrating actuator assembly and digital image processing apparatus including the same
JP5565540B1 (en) Actuator unit and imaging device
US9455394B2 (en) Displacement member, driving member, actuator, and driving device
CN112334810B (en) Lens driving device
JP7073957B2 (en) Lens drive device
JP5556976B1 (en) Imaging lens driving actuator unit and imaging apparatus
JP5618028B2 (en) Driving device and imaging device
JP2015089183A (en) Drive device, lens unit, and imaging device
WO2014185297A1 (en) Drive device and imaging device
JP5569665B1 (en) DRIVE DEVICE AND IMAGING DEVICE USING THE SAME
JP6852715B2 (en) Lens drive device
JP2016208576A (en) Vibration wave motor
JP5903964B2 (en) Lens drive device
WO2014049963A1 (en) Drive device production method
JP6525640B2 (en) Vibration type actuator, ultrasonic motor and lens barrel
WO2014188866A1 (en) Method for manufacturing actuator unit, moving body for actuator unit, and actuator unit having same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014509548

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13841212

Country of ref document: EP

Kind code of ref document: A1