WO2014188866A1 - Method for manufacturing actuator unit, moving body for actuator unit, and actuator unit having same - Google Patents

Method for manufacturing actuator unit, moving body for actuator unit, and actuator unit having same Download PDF

Info

Publication number
WO2014188866A1
WO2014188866A1 PCT/JP2014/062174 JP2014062174W WO2014188866A1 WO 2014188866 A1 WO2014188866 A1 WO 2014188866A1 JP 2014062174 W JP2014062174 W JP 2014062174W WO 2014188866 A1 WO2014188866 A1 WO 2014188866A1
Authority
WO
WIPO (PCT)
Prior art keywords
posture
actuator unit
moving body
movable body
contact surface
Prior art date
Application number
PCT/JP2014/062174
Other languages
French (fr)
Japanese (ja)
Inventor
訓弘 阿川
豊年 川崎
弘道 後藤
紘一郎 山本
Original Assignee
コニカミノルタ株式会社
豊橋精密工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社, 豊橋精密工業株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2014188866A1 publication Critical patent/WO2014188866A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/101Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using intermittent driving, e.g. step motors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/035DC motors; Unipolar motors
    • H02K41/0352Unipolar motors
    • H02K41/0354Lorentz force motors, e.g. voice coil motors
    • H02K41/0356Lorentz force motors, e.g. voice coil motors moving along a straight path
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies

Definitions

  • the present invention relates to a method of manufacturing an actuator unit that drives an optical component such as an imaging lens in an imaging device of a mobile phone, for example, a moving body of an actuator unit manufactured by this manufacturing method, and an actuator unit having the same.
  • a drive device (actuator unit) described in Patent Document 1 is known as a drive device (actuator unit) for driving an optical component such as an imaging lens by an actuator using an electromechanical transducer.
  • this drive device includes an actuator body 201, a moving body 220 that holds an imaging lens (optical component) 202, and a housing 203.
  • the actuator body 201 includes a drive member (drive shaft) 210 and a piezoelectric element (electromechanical conversion element) 211.
  • the drive member 210 is a columnar shaft member that extends in the optical axis direction (left-right direction in FIG. 18).
  • the piezoelectric element 211 vibrates by being repeatedly expanded and contracted in the optical axis direction when electric power having a predetermined waveform is supplied.
  • a driving member 210 is connected to one end (left end in FIG.
  • the moving body 220 includes a lens frame 221 that holds the imaging lens 202 and a friction member 222 that engages the lens frame 221 with the actuator main body 201 so as to be movable.
  • the friction member 222 has a through hole in the optical axis direction through which the drive member 210 is inserted. In the friction member 222, the inner diameter of the through hole is set so as to be engaged with the driving member 210 by a predetermined frictional force.
  • the housing 203 has an accommodation space inside, and the actuator main body 201 is accommodated in the accommodation space.
  • Such a driving device 200 is disposed in an imaging device or the like of a camera or a mobile phone, and is used for zooming or focusing of the imaging lens 202.
  • the driving device 200 when electric power having a predetermined waveform is supplied and the piezoelectric element 211 vibrates in the optical axis direction, the driving member 210 connected to the piezoelectric element 211 also vibrates in the optical axis direction (axial direction of the driving member). To do.
  • the friction member 222 of the moving body 220 is engaged with the driving member 210 with a predetermined frictional force, the moving body 220 moves in the optical axis direction.
  • the imaging lens 202 held by the moving body 220 moves in the optical axis direction, and zooming and focusing are performed.
  • the optical axis direction of an optical component with respect to the image sensor 205 is adjusted with high accuracy in an imaging device or the like of a camera or a mobile phone (hereinafter also simply referred to as “imaging device or the like”) due to a demand for higher accuracy of the camera function. It is demanded.
  • the optical axis direction of the optical component such as the imaging lens 202 may be inclined with respect to the central axis of the driving member 210 due to a manufacturing error of each component constituting the driving device 200 or the like.
  • the accuracy of the optical component in the optical axis direction of the optical component with respect to the imaging element 205 may not be ensured in the imaging device or the like simply by incorporating the driving device 200 into the imaging device or the like.
  • the positioning device 240 is used to adjust the arrangement position and orientation of the drive device and then fixed by the support member 206 as shown in FIG.
  • the accuracy in the optical axis direction of the optical component in the imaging apparatus or the like is ensured.
  • the assembling work takes time compared to the case where the driving device 200 is simply incorporated, and the automatic operation is performed automatically.
  • Production efficiency in production mass production decreases.
  • high machining accuracy is required, and the manufacturing cost of the component is increased.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an actuator capable of sufficiently obtaining accuracy in the direction of the optical axis only by being incorporated in an imaging device or the like by securing component accuracy while suppressing cost. It is an object to provide a method of manufacturing a unit, a moving body of an actuator unit manufactured by the manufacturing method, and an actuator unit having the same.
  • a method for manufacturing an actuator unit according to the present invention is a method for manufacturing an actuator unit that incorporates an actuator that drives a moving body including optical components in the axial direction of a drive shaft, and is included in the surface of the moving body and contacts the drive shaft.
  • the contact surface that determines the posture of the moving body with respect to the drive shaft by contact is included in the surface of the moving body excluding the contact surface, and has a predetermined posture with respect to the posture defining surface that determines the posture of the optical component in the moving body. In this way, at least a part of the moving body is pressed, and the portion where the stress is generated by the pressing is melted and then solidified.
  • the moving body of the actuator unit concerning this invention is manufactured by this manufacturing method, and the actuator unit concerning this invention has this moving body.
  • a method for manufacturing an actuator unit in which accuracy in the optical axis direction can be sufficiently obtained simply by being incorporated in an imaging device or the like by securing component accuracy while suppressing cost, and an actuator unit manufactured by this manufacturing method can be provided.
  • FIG. A is a diagram for illustrating a melting portion in the case where the moving body main body is melted over the entire width in the optical axis direction
  • FIG. B includes an end portion in the optical axis direction of the moving body main body and the optical axis. It is a figure which shows the fusion
  • regulation surface It is a figure for demonstrating the correction process of the attitude
  • FIG. A is a view for illustrating a melting portion when the guide spring is melted over the entire width in the optical axis direction
  • FIG. B includes an end portion of the guide spring in the optical axis direction and in the optical axis direction. It is a figure which shows the fusion
  • an actuator unit will be described, and then a method for manufacturing the actuator unit will be described.
  • symbol in each figure shows that it is the same structure, The description is abbreviate
  • the X direction in FIGS. 1, 2, and 6 to 9 will be described as the upper side, and the Y direction will be described as the lower side.
  • the actuator unit according to the present embodiment is used in an imaging apparatus. In this case, the upper side is the object side, and the lower side is the image side.
  • the actuator unit according to the present embodiment is used in, for example, a camera module (imaging device) that can be mounted on a mobile phone or the like, and moves (drives) an imaging lens (optical component) with respect to the imaging element.
  • the actuator unit 1 includes a unit main body 2, an actuator 3, and a cover 8.
  • the unit main body 2 has a base 20 and a plurality of (four in the example of the present embodiment) struts (first to fourth struts 120a, 120b, 120c, 120d).
  • the unit body 2 is formed of a resin material such as LCP (liquid crystal polymer), for example.
  • the base portion 20 has a rectangular outline in a plan view and has a circular through hole 21 penetrating in the vertical direction in the center portion.
  • the through hole 21 serves as an optical path.
  • an axis passing through the center of the through hole 21 in the vertical direction is a central axis (or optical axis) C.
  • the base 20 has four corners (first to fourth corners 20a, 20b, 20c, 20d).
  • a specific corner (the lower left corner in FIG. 4) is the first corner 20a, and the second corner 20b and the third corner are counterclockwise in FIG.
  • a portion 20c and a fourth corner 20d are assumed.
  • the first to fourth corner portions 20a, 20b, 20c, 20d of the base 20 are provided with first to fourth support columns 120a, 120b, 120c, 120d.
  • the first support column 120a is in contact with the actuator 3 (specifically, the actuator body 30).
  • the first support column 120a includes an outer surface 121a and an inner surface 122a on the surface thereof.
  • the outer surface 121a is flush with the outer surface of the first corner 20a of the base 20, and the inner surface 122a is curved along the outer peripheral surface of the actuator body 30 (specifically, the drive shaft 33).
  • the actuator body 30 (specifically, the drive shaft 33) comes into contact.
  • the second support column 120b is provided on the inner side of the outer surface of the second corner of the base. More specifically, the second column b 120 b is provided between the moving body 5 of the moving body 4 and the guide spring 6.
  • the third support column 120c is formed with a restriction portion groove 29 into which a part of the movable body 4 (specifically, the rotation restriction portion 61a) is fitted so as to be movable up and down.
  • the restriction portion groove 29 is provided on the inner side surface (side surface of the central axis C) 122c of the third support column portion 120c and extends in the vertical direction.
  • the outer surface 121c of the third support column 120c is flush with the outer surface of the third corner portion 20c of the base 20 in plan view.
  • the fourth support column 120d is configured such that the outer surface 121d is flush with the outer surface of the fourth corner 20d of the base 20 and the inner surface 122d is curved along the moving body 4 in plan view. ing.
  • the base portion 20 includes an actuator holding portion 25 that holds the actuator 3 (actuator body 30) on the inner side (center axis C side) of the first support column portion 120a in the first corner portion 20a.
  • the actuator holding portion 25 is recessed in a cylindrical shape so as to have a predetermined depth from the upper surface 20 e of the base portion 20.
  • the base 20 includes the first electrode terminal 22 and the second electrode terminal 23 described above at the first corner 20a.
  • the intermediate portions of the first electrode terminal 22 and the second electrode terminal 23 are embedded in the base 20 (unit body 2).
  • tips 22a and 23a of the 1st electrode terminal 22 and the 2nd electrode terminal 23 protrude (exposure) from the both sides of the actuator holding
  • the external connection terminals 22b and 23b are configured. These external connection terminals 22b and 23b are connected to a circuit board, a connector, and the like of the cellular phone when the actuator unit 1 is mounted on, for example, a cellular phone (not shown).
  • the actuator 3 includes an actuator body 30 and a moving body 4.
  • the actuator body 30 includes, in order from the bottom, a weight 31, a piezoelectric element (electromechanical conversion element) 32 that can be expanded and contracted (vibrated) in the central axis C direction, and expansion and contraction of the piezoelectric element 32.
  • a drive shaft (drive friction member) 33 that reciprocates (vibrates) in the direction of the central axis C by (vibration).
  • This actuator main body 30 is fixed to the unit main body 2 so that a part (drive shaft 33) of the actuator main body 30 contacts the moving body 4 (see 110 and 111 in FIG. 5).
  • the weight 31 increases the inertial mass on one end side (the lower end side in the present embodiment) of the piezoelectric element 32 so that the displacement due to the expansion and contraction of the piezoelectric element 32 is generated only on the other end side (the upper end side in the present embodiment).
  • the weight 31 of this embodiment is made of a material having a high specific gravity such as tungsten or a tungsten alloy. Note that the weight 31 is omitted when the other end (lower end) of the piezoelectric element 32 is attached to a device that exhibits a function similar to the function of the weight 31 (for example, the unit main body 2 (base 20)). Also good.
  • the piezoelectric element 32 vibrates by repeatedly expanding and contracting in the direction of the central axis C when electric power having a predetermined waveform is supplied.
  • the piezoelectric element 32 according to the present embodiment is a quadrangular columnar laminated piezoelectric element in which a rectangular layer obtained by thinly extending a material such as PZT (lead zirconate titanate) is laminated in the direction of the central axis C so that an internal electrode is sandwiched between the layers. It is comprised by the element.
  • the piezoelectric element 32 has external electrodes 32a on two opposing side surfaces. These external electrodes 32a are formed by sputtering silver or the like on the two side surfaces, and electrodes sandwiched between the layers of the piezoelectric element 32 are connected in parallel.
  • the drive shaft 33 is a columnar member extending in the direction of the central axis C. A part of the outer peripheral surface of the drive shaft 33 contacts the moving body 4 (see 110 and 111 in FIG. 5). In the present embodiment, the drive shaft 33 is in contact with the moving body 4 at two locations in the circumferential direction. At each contact location, the drive shaft 33 is in contact with the moving body 4 in a straight line extending in the direction of the optical axis C.
  • the drive shaft 33 of the present embodiment is made of, for example, CFRP (carbon fiber reinforced plastic) molded in a columnar shape so that carbon fibers are arranged in the direction of the central axis C.
  • the drive shaft 33 is formed so as to protrude radially outward from the outer periphery of the piezoelectric element 32.
  • the actuator body 30 is connected to the first electrode terminal 22 and the second electrode terminal 23 by a first electrode coupling spring 26a and a second electrode coupling spring 26b so as to be energized.
  • the first and second electrode coupling springs 26a and 26b of the present embodiment are torsion coil springs made of phosphor bronze having high electrical conductivity, but may be made of stainless steel, piano wire, or the like.
  • the surfaces of the first and second electrode coupling springs 26a and 26b are plated with gold or platinum.
  • the moving body 4 has a short cylindrical shape, is configured to be able to hold the lens barrel 7 shown in FIG. 9 and to be relatively movable in the direction of the central axis C with respect to the unit body 2.
  • the moving body 4 includes a metal cylindrical moving body main body 5 and a guide spring (pressing member) 6.
  • the movable body 5 includes a lens holding surface (attitude defining surface) 54 on the inner peripheral side, and holds the lens barrel 7 by the lens holding surface 54.
  • the lens barrel 7 holds one or a plurality of lens (imaging lens) groups 71.
  • the movable body 5 includes a cylindrical portion 51, a first flange 52, and a second flange 53.
  • the movable body main body 5 of the present embodiment is formed of a stainless material having a thickness of 0.1 mm to 0.2 mm, for example.
  • a part of the outer peripheral surface constitutes a first sliding surface (first contact surface) 55 that is in sliding contact with the drive shaft 33. That is, the cylindrical part 51 (movable body main body 5) includes the first sliding surface 55 on the outer peripheral surface thereof.
  • the first sliding surface 55 of the present embodiment has a part of the movable body main body 5 (specifically, a predetermined width in the circumferential direction and the entire center axis C direction) when the movable body main body 5 is molded. ) A flat surface formed by flat plate.
  • the first flange 52 protrudes radially inward from the lower end of the cylindrical portion 51.
  • the upper surface of the first flange 52 is included in the lens holding surface 54 and constitutes a lens barrel mounting portion 52a.
  • the lens barrel placement portion 52a is a portion where the lens barrel 7 is placed when the lens barrel 7 is held on the lens holding surface 54 (see FIG. 9). In this way, the lens barrel 7 is held on the lens holding surface 54 in a state of being placed on the lens barrel placement portion 52a, so that the central axis of the movable body 5 and the optical axis of the lens group 71 of the lens barrel 7 are obtained. Are aligned without tilting each other.
  • the second flange 53 protrudes radially outward from the upper end of the cylindrical portion 51. The strength of the movable body 5 is ensured by the first flange 52 and the second flange 53.
  • the moving body main body 5 is made of metal, and the first flange 52 and the second flange 53 are provided, so that the strength of the moving body main body 5 is sufficiently secured. It is possible to reduce the wall thickness. As a result, it is possible to increase the diameter of the lens 71 held by the movable body 5 (specifically, held via the lens barrel 7). Moreover, since the weight of the moving body 4 can be suppressed by reducing the thickness, the load at the time of applying an impact such as dropping can be reduced.
  • the guide spring 6 includes an arc portion 61, a guide portion 62 formed at one end of the arc portion 61, and a pressing piece 63 formed at the other end of the arc portion 61.
  • the guide spring 6 of the present embodiment is formed of a stainless material having a thickness of 0.1 mm to 0.2 mm, for example.
  • the arc portion 61 includes a rotation restricting portion 61a at a position separated from the guide portion 62 by approximately 180 ° in the circumferential direction.
  • the rotation restricting portion 61a is a portion for restricting the rotation of the moving body 4 with the drive shaft 33 as the center of rotation.
  • the rotation restricting portion 61a includes a restricting frame portion 61b and a hemispherical protrusion 61c formed on the restricting frame portion 61b.
  • the regulation frame portion 61b is formed by projecting a part of the arc portion 61 radially outward in a rectangular shape.
  • the protrusion 61c is formed so as to protrude outward from each of the outer side surfaces of the restriction frame portion 61b.
  • the outer width of the protrusions 61c (the distance between the tips of the protrusions 61c) is such that the restriction frame portion 61b fits into the restriction portion groove 29 provided in the third support column 120c. It is set slightly narrower than the inner width of.
  • the guide part 62 extends radially outward from one end of the arc part 61.
  • a second sliding surface (second abutting surface) 62 a that is one surface of the guide portion 62 is in relation to the first sliding surface 55 of the movable body 5 with the guide spring 6 attached to the movable body 5. Is approximately 90 °.
  • the first and second sliding surfaces 55 and 62a are arranged in a V shape when viewed in the optical axis direction. For this reason, in this embodiment, these two sliding surfaces 55 and 62a may be called a V guide.
  • the pressing piece 63 extends linearly from the other end of the arc portion 61.
  • the pressing piece 63 includes a pressing portion 63 a that presses the drive shaft 33 at the tip.
  • the pressing part 63 a is thinner than other parts of the pressing piece 63.
  • the width of the pressing portion 63a in the optical axis C direction is smaller than the width of the first and second sliding surfaces 55 and 62a in the optical axis C direction.
  • the pressing piece 63 is slightly twisted. Even in this case, the V guide (first and second sliding surfaces 55, 62a) and the outer peripheral surface of the drive shaft 33 can be surely brought into contact with each other, and it is possible to ensure the contact of the two lines in the optical axis C direction.
  • the cover 8 is a member surrounding the moving body 4 in cooperation with the unit main body 2.
  • the cover 8 includes a top wall 81 and a peripheral wall 83 that hangs down from the periphery of the top wall 81.
  • the top wall 81 has a rectangular outline in plan view, and has a through hole 82 penetrating in the central axis C direction at the center thereof. This through hole 82 becomes an optical path.
  • the cover 8 of the present embodiment is formed by drawing, pressing, or the like, for example, a stainless steel thin plate of 0.1 mm to 0.2 mm.
  • the peripheral wall 83 is composed of four side walls 83 a corresponding to the pieces of the top wall 81.
  • the actuator unit 1 configured as described above is manufactured as follows.
  • the actuator body 30 is arranged on the unit body 2. More specifically, the actuator main body 30 is fitted into the actuator holding portion 25 of the unit main body 2 (base portion 20) from the weight 31 side. Then, the bottom surface of the actuator holding portion 25 and the weight 31 are bonded together, whereby the actuator main body 30 is fixed to the unit main body 2. At this time, the central axis of the drive shaft 33 of the actuator main body 30 and the central axis C of the unit main body 2 are parallel to each other.
  • the first electrode coupling spring 26 a and the second electrode coupling spring 26 b are connected to the two external electrodes 32 a facing the piezoelectric element 32.
  • the first electrode terminal 22 and the second electrode terminal 23 and the two external electrodes 32 a of the piezoelectric element 32 are electrically connected.
  • a conductive adhesive in which silver particles are mixed in an epoxy adhesive is connected to the external electrode 32a and the first electrode connection that contacts the external electrode 32a at the joint portion between the external electrode 32a and each of the electrode connection springs 26a and 26b. It is applied so as to contact the spring 26a or the second electrode coupling spring 26b.
  • the movable body 4 is formed by the movable body main body 5 and the guide spring 6. More specifically, it is as follows.
  • the movable body 5 is formed by, for example, drawing or pressing, and thereafter the posture of the first sliding surface 55 with respect to the lens holding surface 54 and the like is corrected. Specifically, this posture correction is performed as follows. In the following description, when the lens barrel 7 is fitted into the movable body 5 such as the lens holding surface 54 (including the lens barrel mounting portion 52a), the lens barrel 7 abuts. A surface that determines the posture of each lens 71 (optical component) in the movable body 5 (movable body 4) is referred to as a posture defining surface.
  • the mobile body 5 is fitted (externally fitted) from the upper side to the moving shaft 90 with the first flange 52 side facing upward.
  • the moving shaft 90 has a shape corresponding to the shape of the inner peripheral surface (lens holding surface) 54 of the movable body 5, that is, a shape that can be fitted to the movable body 5 without rattling.
  • the moving shaft 90 is configured to be movable in a direction orthogonal to the axial direction of the moving shaft 90 toward the member (fixed member) 95 provided with the first reference surface 96.
  • the first reference surface 96 has a predetermined posture (for example, a posture corresponding to the posture of the first sliding surface 55 with respect to the posture defining surface planned in the design) with respect to the posture defining surface.
  • the holding member 92 which is a columnar member having a diameter larger than that of the moving body 5, is on the first flange 52 side of the moving body 5. Hold the end downward.
  • the magnitude of the force with which the pressing member 92 presses the movable body main body 5 is such that the movable body main body 5 does not lift upward from the fitting position with the moving shaft 90. Thereby, it is possible to prevent the movable body main body 5 from being detached from the movable shaft 90 when the movable body main body 5 is sandwiched between the movable shaft 90 and the fixing member 95.
  • the pressing member 92 is configured to be movable toward the fixed member 95 together with the moving shaft 90 while the end of the movable body 5 on the first flange 52 side is pressed toward the moving shaft 90.
  • the moving shaft 90 moves together with the pressing member 92 toward the fixed member 95, and the portion having the first sliding surface 55 in the moving body 5 is sandwiched between the first reference surface 96 and the moving shaft 90.
  • This sandwiching that is, pressing the portion having the first sliding surface 55 in the movable body 5 against the first reference surface 96 causes the entire first sliding surface 55 to be pressed against the first reference surface 96 to bring it into surface contact.
  • the first sliding surface 55 becomes the predetermined posture (relative posture planned in the design) with respect to the posture defining surface. That is, the posture of the first sliding surface 55 with respect to the posture defining surface is corrected.
  • the force with which the moving shaft 90 presses a part of the moving body 5 (the portion including the first sliding surface 55) against the first reference surface 96 is, for example, preferably 500 to 1500 gf. .
  • a portion adjacent to the circumferential direction with respect to a portion sandwiched between the first reference surface 96 and the moving shaft 90 (a portion on both sides in the circumferential direction of the first sliding surface 55) is irradiated with a laser beam and heated, Melt.
  • the laser beam is irradiated while moving the irradiation position from one end in the optical axis C direction to the other end (for example, from the first flange 52 side end in FIG. 12A to the second flange 53 side end).
  • the movable body 5 is a SUS material having a plate pressure of 0.1 mm
  • a 50 W YAG laser beam is irradiated with an irradiation energy of 1 to 2 J.
  • the part irradiated with the laser beam is heated and melted, but immediately after the irradiation with the laser beam, it cools and solidifies.
  • the stress generated by setting the first sliding surface 55 to the predetermined posture with respect to the posture defining surface is removed by the melting. After that, the part solidifies so that the posture of the first sliding surface 55 with respect to the posture defining surface is corrected in the movable body 5 and the posture of the first sliding surface 55 with respect to the posture defining surface is as designed.
  • a highly accurate mobile body 5 is obtained.
  • making the postures of the first and second sliding surfaces 55, 62a with respect to the posture defining surface as designed is referred to as “correction” of the posture, and the stress generated by this correction is melted.
  • the removal and then solidification is referred to as “correction” of the posture.
  • the predetermined range In this embodiment, the 1st flange 52 side edge part
  • the position of the first sliding surface 55 with respect to the posture defining surface is corrected by sandwiching the portion including the first sliding surface 55 in the short cylinder-shaped moving body 5, it is adjacent to the portion including the first sliding surface 55. Stress tends to concentrate on the end of the region in the direction of the optical axis C. For this reason, by melting the portion including the portion where stress is easily concentrated, the stress generated by the correction can be effectively removed while suppressing the melting range.
  • FIG. 12B the predetermined range including the end portion on the first flange 52 side is shown, but the predetermined range including the end portion on the second flange 53 side may be irradiated with the laser beam.
  • the guide spring 6 and the movable body 5 are connected (coupled) by welding, and thereafter the posture of the second sliding surface 62a with respect to the posture defining surface is corrected. As a result, the movable body 4 is completed. Details are as follows.
  • the guide spring 6 is disposed along the outer periphery of the movable body 5 so that the first sliding surface 55 of the movable body 5 and the second sliding surface 62a of the guide spring 6 are adjacent to each other.
  • the first sliding surface 55 and the second sliding surface 62a are adjacent to each other so as to be in contact with the circumferential surface of the drive shaft 33, and the normal lines intersect with each other, and the respective normal lines are light-transmitted.
  • the axes C are orthogonal to each other. That is, the first and second sliding surfaces 55 and 62a are arranged in a V shape when viewed in the direction of the optical axis C as described above.
  • the guide spring 6 and the movable body 5 are connected by welding a plurality of locations (for example, resistance welding (spot welding), laser welding, etc.).
  • the moving body 5 is spot-welded by, for example, laser welding or resistance welding (spot welding).
  • the vicinity of the guide portion 62 of the guide spring 6, the vicinity of the rotation restricting portion 61 a, the vicinity of the base portion of the pressing piece 63, and the like are welded to the moving body 5.
  • the movable body 5 and the guide spring 6 are connected by welding, so that the mobile body 5 and the guide spring 6 can be firmly connected to each other, and can be instantaneously connected unlike the bonding and the like. Can be greatly shortened.
  • the welded mobile body 5 and the guide spring 6 are re-fitted to the moving shaft 90 as shown in FIG.
  • the second sliding surface 62 a of the moving body 5 faces the second reference surface 97 provided on the fixing member 95.
  • the second reference surface 97 is substantially orthogonal to the first reference surface 96 in the fixing member 95 and has a predetermined posture with respect to the posture defining surface (in the example of the present embodiment, the posture defining scheduled in the design). And a posture corresponding to the posture of the second sliding surface 62a with respect to the surface).
  • the rotation limiting member 100 that has been waiting at a standby position that is radially away from the moving shaft 90 moves forward toward the axis of the moving shaft 90, and the guide spring 6 enters the recess 105 provided at the tip thereof.
  • the rotation restricting portion 61a is fitted. Thereby, the rotation around the optical axis C of the movable body 4 (welded movable body main body 5 and guide spring 6) is suppressed. Further, as in the case of correcting the posture of the first sliding surface 55, the pressing member 92 presses the end of the movable body 5 on the first flange 52 side toward the moving shaft 90 (see FIG. 11).
  • the pressing member 110 moves so that the claw 112 protruding from the pressing member 110 faces the fixing member 95 (see the arrows in FIGS. 13 and 14), and the second reference surface 97 and the claw 112
  • the guide portion 62 that is, the portion having the second sliding surface 62a in the guide spring 6) is sandwiched.
  • the second sliding surface 62a becomes the predetermined posture (relative posture planned in the design) with respect to the posture defining surface. That is, the posture of the second sliding surface 62a with respect to the posture defining surface is corrected.
  • the vicinity of the guide portion 62 (a portion adjacent in the circumferential direction) of the guide spring 6 as shown in FIGS. 15A and 15B is irradiated with a laser beam to be heated and melted.
  • the laser beam is irradiated while moving the irradiation position from one end in the optical axis C direction to the other end (for example, from the first flange 52 side end in FIG. 15A to the second flange 53 side end).
  • the guide spring 6 is a SUS material having a plate pressure of 0.1 mm
  • a 50 W YAG laser beam is irradiated with an irradiation energy of 1 to 2 J.
  • the part irradiated with the laser beam is heated and melted, but immediately after the irradiation with the laser beam, it cools and solidifies.
  • the stress generated by setting the second sliding surface 62a to the predetermined posture with respect to the posture defining surface is removed by the melting. Thereafter, the part solidifies, so that in the guide spring 6, the posture of the second sliding surface 62a with respect to the posture defining surface is corrected, and the posture of the second sliding surface 62a with respect to the posture defining surface is as designed.
  • the moving body 4 with high accuracy is completed.
  • the laser beam does not have to be irradiated over the entire optical axis C direction.
  • the laser beam is irradiated to a predetermined range (a part in the optical axis C direction) including one end as shown in FIG. 15B. May be.
  • the guide portion 62 is sandwiched in the short cylindrical guide spring 6 to correct the posture of the second sliding surface 62a relative to the posture defining surface, the optical axis C direction in the region adjacent to the portion including the second sliding surface 62a is corrected. Stress tends to concentrate on the edge. For this reason, by melting the portion including the portion where the stress tends to concentrate, the stress generated by the correction can be effectively removed while suppressing the melting range.
  • the predetermined range including the upper end portion is used, but the predetermined range including the lower end portion may be irradiated with the laser beam.
  • the rotation restricting portion 61a is restricted by the unit main body 2 (third column portion 120c).
  • the drive shaft 33 is disposed so as to be fitted in the groove 29 for part and surrounded by the first sliding surface 55, the second sliding surface 62a, and the pressing portion 63a.
  • the pressing piece 63 is in a state of extending to the first support 120a of the first corner 20a through the outside of the second support 120b of the unit body 2.
  • the pressing portion 63a of the pressing piece 63 is at an initial position (a position in a state where the drive shaft 33 is not surrounded by the first sliding surface 55, the second sliding surface 62a, and the pressing portion 63a). Since the elastic body is elastically deformed in the direction away from the outer peripheral surface of the movable body 5, the drive shaft 33 is pressed against the first sliding surface 55 and the second sliding surface 62 a by the elastic restoring force (elastic force); It has become. That is, the driving shaft 33 is pressed against the first sliding surface 55 and the second sliding surface 62a by the elastic force of the pressing piece 63, and the movable body 4 and the driving shaft 33 are frictionally engaged.
  • the contact portion between the drive shaft 33 and the first sliding surface 55 and the second sliding surface 62a of the moving body 4 and the contact portion between the rotation restricting portion 61a and the restricting portion groove 29 of the moving body 4 are provided with oil.
  • a lubricant such as oil mixed with grease, Teflon (registered trademark) flakes or the like is applied.
  • the actuator unit 1 manufactured as described above has the lens barrel 7 fitted in the lens holding surface 54 of the moving body 4, and the IR cut filter 102 and the lower surface side of the unit body 2.
  • a sensor substrate 104 having an image sensor (image sensor) 103 is disposed. More specifically, the lens barrel 7 is bonded and fixed to the lens holding surface 54 by the adhesive 73 filled in the bonding groove 72 provided in the lens barrel 7. Thereby, a camera module (imaging device) is configured.
  • the camera module is carried in such a manner that the external connection terminal 22b of the first electrode terminal 22 and the external connection terminal 23b (see FIG. 1 etc.) of the second electrode terminal 23 are placed on the circuit board of the mobile phone. Installed in the phone casing.
  • the piezoelectric of the actuator body 30 is supplied.
  • the element 32 vibrates in the direction of the central axis C (extends and contracts repeatedly).
  • the drive shaft 33 reciprocates due to the vibration of the piezoelectric element 32, and the movable body 4 moves in the axial direction (center axis C direction) of the drive shaft 33 due to the reciprocation. Details are as follows.
  • the drive mechanism of the actuator 3 utilizes this.
  • the short-distance shooting position is a position farthest from the base 20 (imaging sensor 103) in the movement range of the moving body 4 in the central axis C direction, and the infinite shooting position is the base 20 (imaging sensor) in the movement range. 103).
  • the postures of the first and second sliding surfaces 55 and 62a with respect to the posture defining surface are designed values ( Even if it is different from the relative posture planned at the time of design, by correcting the postures of the first and second sliding surfaces 55 and 62a with respect to the posture defining surface according to the design value, the moving body 4 with high component accuracy can be obtained. can get.
  • the posture of the lens (optical component) 71 with respect to the drive shaft 33 is as designed (relative posture planned in the design).
  • the accuracy in the optical axis C direction of the lens 71 with respect to the axial direction of the drive shaft 33 (moving direction of the moving body 4) is sufficiently obtained.
  • the actuator unit 1 manufactured by the manufacturing method the accuracy in the optical axis C direction of the lens 71 in the imaging device or the like can be sufficiently ensured only by being incorporated in the imaging device or the like.
  • the movable body 4 is pressed to correct the postures of the first and second sliding surfaces 55 and 62a with respect to the posture defining surface, and the stress generated at this time is easily removed by melting the portion where the stress is generated. Since the postures of the first and second sliding surfaces 55 and 62a with respect to the posture-defining surface can be corrected by a simple process, the manufacturing cost (processing cost) can be suppressed even when the component accuracy of the movable body 4 is sufficiently secured. be able to.
  • actuator unit manufacturing method and the moving body of the present invention are not limited to the above-described embodiment, and it is needless to say that various changes can be made without departing from the scope of the present invention.
  • the specific configuration for correcting the postures of the first and second sliding surfaces 55 and 62a with respect to the posture defining surface is not limited.
  • the first and second sliding portions are sandwiched by sandwiching the portion including the first sliding surface 55 of the movable body 5 or the portion (guide portion 62) having the second sliding surface 62a of the guide spring 6.
  • the configuration for correcting the posture is, for example, as shown in FIG.
  • the structure which presses the 1st flange 52 side edge part toward the 2nd flange 53 side edge part may be sufficient.
  • the pressing member 92 presses the movable body 5 downward with, for example, 200 to 500 gf.
  • the end part on the second flange 53 side is expanded in the radial direction.
  • the pressing member 92 is pressed downward while gradually increasing the pressing force, and the first sliding surface 55 in the optical axis direction.
  • the posture is corrected by holding the pressing force when the angle falls within a predetermined range. In this state, the both sides of the first sliding surface 55 in the circumferential direction are melted and then solidified, whereby the posture of the first sliding surface 55 with respect to the posture defining surface can be corrected.
  • position of the 2nd sliding surface 62a are correct
  • position of the 1st and 2nd sliding surfaces 55 and 62a is correct
  • the moving shaft 90 is moved toward the first reference surface 96, and the first sliding surface of the movable body 5 is moved between the first reference surface 96 and the moving shaft 90.
  • the pressing member 110 is moved so that the claw portion 112 faces the second reference surface 97, and the guide portion 62 is interposed between the second reference surface 97 and the claw portion 112.
  • the first and second sliding surfaces 55 and 62a can be corrected simultaneously by melting and solidifying the vicinity (parts adjacent in the circumferential direction) of the sandwiched parts.
  • the part in order to melt part of the movable body 5 and the guide spring 6 (part where the stress is generated), the part is irradiated with the laser beam, but the present invention is not limited to this configuration.
  • an electric current may be passed through the site where the stress is generated, and the site may be melted using heat generated by the electrical resistance of the site.
  • the movable body 5 and the guide spring 6 of the above embodiment are made of metal, but may be made of resin. Also with such a configuration, the stressed portion can be heated and softened (or melted) to remove the stress, and then be cooled and hardened.
  • a portion 65 having a width in the optical axis C direction smaller than other portions may be formed in the vicinity of the guide portion 62 of the guide spring 6A.
  • the narrow portion 65 is formed by forming the groove 66 from one end in the direction of the optical axis C to the other end.
  • the groove 66 may have a component extending in the optical axis C direction and may be inclined with respect to the optical axis C direction. According to such a configuration, when the posture of the second sliding surface 62a with respect to the posture defining surface is corrected, stress concentrates on the portion 65 having the small width.
  • the portion 65 having the small width The stress generated by correcting the posture of the two sliding surfaces 62a can be removed. That is, by providing the portion 65 having the small width, the melting range can be reduced, and the stress can be reliably removed by melting the portion 65.
  • the posture of the second sliding surface 62a is corrected after the guide spring 6 is welded to the movable body 5.
  • the present invention is not limited to this configuration.
  • the configuration may be such that the stress generated in the guide spring 6 due to the correction of the posture of the second sliding surface 62a and the welding of the guide spring 6 to the movable body 5 are performed simultaneously.
  • a portion of the guide spring 6 where stress is generated when the posture of the second sliding surface 62a with respect to the posture defining surface is corrected, and the movable body 5 that overlaps this portion in the radial direction.
  • the parts are melted together.
  • the portions overlapping in the radial direction can be melted together.
  • the portions overlapping in the radial direction are melted together, the portions are cooled and solidified, whereby the irradiated portions of the laser beam are connected (bonded) (welded).
  • first and second sliding surfaces there are two surfaces (contact surfaces) of the moving body 4 that are in sliding contact (contact) with the drive shaft 33 (first and second sliding surfaces), but one or three may be used. It may be the above.
  • a method for manufacturing an actuator unit includes a movable body having a short cylindrical shape and movable in a state where an optical component is fitted therein, and a drive shaft.
  • An actuator unit that incorporates an actuator having an actuator body that drives in the axial direction, and is included in the surface of the moving body and comes into contact with the driving shaft to contact the driving body with respect to the driving shaft Of the movable body so that the contact surface that defines the position is included in the surface of the movable body excluding the contact surface and has a predetermined posture with respect to the posture defining surface that defines the posture of the optical component in the movable body.
  • the posture correcting step of pressing at least part of the moving body in the pressed state, a portion where stress is generated by the pressing is melted and then solidified. And a stress relief step of removing the stress by causing.
  • the posture of the contact surface with respect to the posture defining surface is different from the design value (relative posture planned at the time of design)
  • the posture of the contact surface with respect to the posture defining surface is corrected as designed.
  • the posture of the optical component with respect to the drive shaft is as designed (relative posture planned in the design).
  • the accuracy of the optical axis direction of the optical component with respect to the axial direction (moving direction of the moving body) is sufficiently obtained.
  • the actuator unit manufactured by the manufacturing method the accuracy in the optical axis direction of the optical component in the imaging device or the like can be sufficiently ensured only by being incorporated in the imaging device or the like.
  • the posture of the contact surface with respect to the posture defining surface is corrected by pressing the moving body, and the stress generated at this time is removed against the posture defining surface by melting and removing the portion where the stress is generated. Since the posture of the contact surface can be corrected, the manufacturing method can suppress the manufacturing cost (processing cost) even if the parts accuracy of the moving body is sufficiently ensured.
  • the contact surface of the movable body in the posture correction step, is such that the contact surface contacts a reference surface having a posture corresponding to the predetermined posture. It is preferable to press a portion having the reference surface against the reference surface, thereby bringing the contact surface into surface contact with the reference surface.
  • the manufacturing method can change the relative posture of the contact surface with respect to the posture defining surface by a simple method of pressing a part of the moving body toward the reference surface and bringing the contact surface into surface contact with the reference surface. It can be easily and reliably corrected.
  • the portion having the contact surface is sandwiched between the reference surface and the pressing surface facing the reference surface so that the portion having the contact surface becomes the reference surface. Can be pressed.
  • the stress relieving step after melting a part in the optical axis direction, which is adjacent to the portion having the contact surface of the moving body in the circumferential direction and includes one end portion in the optical axis direction, It is preferable to solidify.
  • the accuracy of the posture of the movable body with respect to the axial direction of the drive shaft is further increased by bringing the two contact surfaces into contact with the peripheral surface of the drive shaft.
  • the contact surface of the moving body includes a first contact surface and a second contact surface that can contact the drive shaft, respectively, and the first contact surface and the second contact surface. Are arranged in such a manner that they are adjacent to each other so as to be in contact with the peripheral surface of the drive shaft, so that their normal lines intersect and each normal line is orthogonal to the optical axis.
  • the component accuracy of the moving body is ensured. It becomes possible to do. That is, when the component accuracy required for the actuator unit is not so high, the required component accuracy can be satisfied by correcting the posture of one of the contact surfaces.
  • the peripheral wall can be made thin while ensuring the strength of the moving body by forming the moving body with a metal.
  • the said manufacturing method can make a moving body hold
  • the stressed portion may be melted by irradiation with a laser beam, and the stress Alternatively, the current may be melted by causing a current to flow through the site where the stress occurs and causing the site where the stress occurs to generate heat.
  • the moving body has a portion having a smaller width in the optical axis direction in a region adjacent to the portion having the contact surface.
  • the movable body is disposed so as to surround the movable body having a short cylindrical shape and the movable body, and the drive shaft is pushed against the contact surface. And an abutting pressing member.
  • the stress removing step in the movable body, a portion where stress is generated when the posture of the contact surface with respect to the posture defining surface is corrected in the posture correcting step, and the movement of the pressing member.
  • a moving body of an actuator unit is a moving body that is incorporated in an actuator unit and is driven in the axial direction by a drive shaft of an actuator while holding an optical component, and has a short cylindrical shape.
  • a contact surface that is included on the surface of the moving body and determines the posture of the moving body with respect to the drive shaft by contacting the drive shaft is included in the surface of the moving body except the contact surface, and At least a part of the movable body is pressed so as to be in a predetermined posture with respect to the posture defining surface that defines the posture of the optical component, and the portion where the stress is generated is melted to remove the stress generated thereby. After being made, it has a trace caused by being solidified.
  • the actuator unit includes the above-described moving body.
  • the posture of the contact surface with respect to the posture defining surface is different from the design value (relative posture planned at the time of design) at the time of manufacturing the mobile body, the posture of the contact surface with respect to the posture defining surface is changed. Since it is corrected according to the design value, a moving body with high component accuracy can be obtained.
  • the posture of the optical component with respect to the drive shaft becomes the design value (relative posture planned in the design). For this reason, in the actuator unit, the accuracy of the optical axis direction of the optical component with respect to the axial direction of the drive shaft (moving direction of the moving body) is sufficiently obtained. It becomes possible to ensure sufficient accuracy in the axial direction.
  • the posture of the contact surface with respect to the posture defining surface is corrected by pressing the moving body, and the stress generated at this time is removed against the posture defining surface by melting and removing the portion where the stress is generated. Since the posture of the contact surface is corrected, the manufacturing cost (processing cost) can be suppressed even if the component accuracy of the moving body is sufficiently ensured.
  • an actuator unit it is possible to provide a method of manufacturing an actuator unit, a moving body of the actuator unit, and an actuator unit having the same.

Abstract

The present invention provides a method for manufacturing an actuator unit incorporating an actuator which drives a moving body that includes an optical component in the axial direction of a driving shaft. At least a portion of the moving body is pressed and the site at which a stress is generated due to the pressure melts and then congeals so that a contact surface that is included in the surface of the moving body and determines the attitude of the moving body with respect to the driving shaft by coming in contact with the driving shaft takes a prescribed attitude with respect to an attitude defining surface which is included in the surface of the moving body excluding the contact surface and determines the attitude of the optical component in the moving body. The present invention also provides the moving body for an actuator unit manufactured by the manufacturing method and the actuator unit having the moving body.

Description

アクチュエータユニットの製造方法およびアクチュエータユニットの移動体ならびにそれを有するアクチュエータユニットActuator unit manufacturing method, actuator unit moving body, and actuator unit having the same
 本発明は、例えば携帯電話の撮像装置等において、撮像レンズ等の光学部品を駆動するアクチュエータユニットの製造方法、およびこの製造方法によって製造されたアクチュエータユニットの移動体ならびにそれを有するアクチュエータユニットに関する。 The present invention relates to a method of manufacturing an actuator unit that drives an optical component such as an imaging lens in an imaging device of a mobile phone, for example, a moving body of an actuator unit manufactured by this manufacturing method, and an actuator unit having the same.
 従来から、電気機械変換素子を用いたアクチュエータによって撮像レンズ等の光学部品を駆動する駆動装置(アクチュエータユニット)として、特許文献1に記載されたものが知られている。 Conventionally, a drive device (actuator unit) described in Patent Document 1 is known as a drive device (actuator unit) for driving an optical component such as an imaging lens by an actuator using an electromechanical transducer.
 この駆動装置は、図18に示されるように、アクチュエータ本体201と、撮像レンズ(光学部品)202を保持する移動体220と、筐体203と、を備える。アクチュエータ本体201は、駆動部材(駆動軸)210と圧電素子(電気機械変換素子)211とを有する。駆動部材210は、光軸方向(図18における左右方向)に延びる円柱状の軸部材である。圧電素子211は、所定の波形の電力が供給されることにより、光軸方向に伸縮を繰り返すことによって振動する。この圧電素子211の光軸方向の一端(図18における左端)213に、その中心軸と光軸方向とが一致するように駆動部材210が接続されている。移動体220は、撮像レンズ202を保持するレンズ枠221と、レンズ枠221をアクチュエータ本体201に対し移動可能に係合させる摩擦部材222と、を有する。摩擦部材222は、駆動部材210が挿通される光軸方向の貫通孔を有する。この摩擦部材222では、駆動部材210と所定の摩擦力によって係合するように貫通孔の内径が設定されている。筐体203は、内部に収容空間を有し、この収容空間内にアクチュエータ本体201を収納する。 As shown in FIG. 18, this drive device includes an actuator body 201, a moving body 220 that holds an imaging lens (optical component) 202, and a housing 203. The actuator body 201 includes a drive member (drive shaft) 210 and a piezoelectric element (electromechanical conversion element) 211. The drive member 210 is a columnar shaft member that extends in the optical axis direction (left-right direction in FIG. 18). The piezoelectric element 211 vibrates by being repeatedly expanded and contracted in the optical axis direction when electric power having a predetermined waveform is supplied. A driving member 210 is connected to one end (left end in FIG. 18) 213 of the piezoelectric element 211 in the optical axis direction so that the central axis coincides with the optical axis direction. The moving body 220 includes a lens frame 221 that holds the imaging lens 202 and a friction member 222 that engages the lens frame 221 with the actuator main body 201 so as to be movable. The friction member 222 has a through hole in the optical axis direction through which the drive member 210 is inserted. In the friction member 222, the inner diameter of the through hole is set so as to be engaged with the driving member 210 by a predetermined frictional force. The housing 203 has an accommodation space inside, and the actuator main body 201 is accommodated in the accommodation space.
 このような駆動装置200は、カメラや携帯電話の撮像装置等に配置され、撮像レンズ202の変倍や合焦に用いられる。この駆動装置200では、所定の波形の電力が供給されて圧電素子211が光軸方向に振動すると、この圧電素子211に接続された駆動部材210も光軸方向(駆動部材の軸方向)に振動する。このとき、移動体220の摩擦部材222が駆動部材210と所定の摩擦力で係合しているため、移動体220が光軸方向に移動する。これにより、移動体220に保持された撮像レンズ202が光軸方向に移動して変倍や合焦が実施される。 Such a driving device 200 is disposed in an imaging device or the like of a camera or a mobile phone, and is used for zooming or focusing of the imaging lens 202. In the driving device 200, when electric power having a predetermined waveform is supplied and the piezoelectric element 211 vibrates in the optical axis direction, the driving member 210 connected to the piezoelectric element 211 also vibrates in the optical axis direction (axial direction of the driving member). To do. At this time, since the friction member 222 of the moving body 220 is engaged with the driving member 210 with a predetermined frictional force, the moving body 220 moves in the optical axis direction. Thereby, the imaging lens 202 held by the moving body 220 moves in the optical axis direction, and zooming and focusing are performed.
 近年、カメラ機能の高精度化の要請等から、カメラや携帯電話の撮像装置等(以下、単に「撮像装置等」とも称する。)において撮像素子205に対する光学部品の光軸方向を精度よく調整することが求められている。しかし、上記の駆動装置200等では、当該駆動装置200を構成する各部品の製造誤差等によって、駆動部材210の中心軸に対する撮像レンズ202等の光学部品の光軸方向が傾いている場合があり、この場合、駆動装置200を撮像装置等に単に組み込んだだけでは、撮像装置等において撮像素子205に対する光学部品の光軸方向の精度が確保できないときがある。このため、上記の駆動装置200を撮像装置等に組み込む際には、位置決め装置240を用いて当該駆動装置の配置位置や姿勢を調整した後、図19に示すように支持部材206によって固定することで、撮像装置等における光学部品の光軸方向の精度が確保されている。 In recent years, the optical axis direction of an optical component with respect to the image sensor 205 is adjusted with high accuracy in an imaging device or the like of a camera or a mobile phone (hereinafter also simply referred to as “imaging device or the like”) due to a demand for higher accuracy of the camera function. It is demanded. However, in the above-described driving device 200 or the like, the optical axis direction of the optical component such as the imaging lens 202 may be inclined with respect to the central axis of the driving member 210 due to a manufacturing error of each component constituting the driving device 200 or the like. In this case, the accuracy of the optical component in the optical axis direction of the optical component with respect to the imaging element 205 may not be ensured in the imaging device or the like simply by incorporating the driving device 200 into the imaging device or the like. For this reason, when the drive device 200 is incorporated into an imaging device or the like, the positioning device 240 is used to adjust the arrangement position and orientation of the drive device and then fixed by the support member 206 as shown in FIG. Thus, the accuracy in the optical axis direction of the optical component in the imaging apparatus or the like is ensured.
 しかし、上記のように、撮像装置等への組み込み時に駆動装置(アクチュエータユニット)200の配置位置や姿勢の調整を行う場合、駆動装置200を単に組み込む場合と比べて組み込み作業に時間がかかり、自動生産(大量生産)での生産効率が低下する。また、駆動装置200を構成する各部品の部品精度を十分に確保するためには、高い加工精度が求められ、部品の製造コストが高くなる。 However, as described above, when the arrangement position and orientation of the driving device (actuator unit) 200 are adjusted during the incorporation into the imaging device or the like, the assembling work takes time compared to the case where the driving device 200 is simply incorporated, and the automatic operation is performed automatically. Production efficiency in production (mass production) decreases. Further, in order to sufficiently secure the component accuracy of each component constituting the drive device 200, high machining accuracy is required, and the manufacturing cost of the component is increased.
特開2007-159172号公報JP 2007-159172 A
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、コストを抑えつつ部品精度を確保することによって撮像装置等へ組み込むだけで光軸方向の精度が十分に得られるアクチュエータユニットの製造方法、およびこの製造方法によって製造されたアクチュエータユニットの移動体ならびにそれを有するアクチュエータユニットを提供することである。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an actuator capable of sufficiently obtaining accuracy in the direction of the optical axis only by being incorporated in an imaging device or the like by securing component accuracy while suppressing cost. It is an object to provide a method of manufacturing a unit, a moving body of an actuator unit manufactured by the manufacturing method, and an actuator unit having the same.
 本発明にかかるアクチュエータユニットの製造方法は、光学部品を含む移動体を駆動軸の軸方向に駆動するアクチュエータを組み込んだアクチュエータユニットの製造方法であって、移動体表面に含まれかつ駆動軸と当接することによって駆動軸に対する移動体の姿勢を定める当接面が、この当接面を除いた移動体表面に含まれかつ移動体における光学部品の姿勢を定める姿勢規定面に対して所定の姿勢となるように、移動体の少なくとも一部が押圧され、この押圧によって応力の生じた部位が溶融され、その後、凝固される。そして、本発明にかかるアクチュエータユニットの移動体は、この製造方法によって製造され、本発明にかかるアクチュエータユニットは、この移動体を有する。本発明によれば、コストを抑えつつ部品精度を確保することによって撮像装置等へ組み込むだけで光軸方向の精度が十分に得られるアクチュエータユニットの製造方法、およびこの製造方法によって製造されたアクチュエータユニットの移動体を提供することができる。 A method for manufacturing an actuator unit according to the present invention is a method for manufacturing an actuator unit that incorporates an actuator that drives a moving body including optical components in the axial direction of a drive shaft, and is included in the surface of the moving body and contacts the drive shaft. The contact surface that determines the posture of the moving body with respect to the drive shaft by contact is included in the surface of the moving body excluding the contact surface, and has a predetermined posture with respect to the posture defining surface that determines the posture of the optical component in the moving body. In this way, at least a part of the moving body is pressed, and the portion where the stress is generated by the pressing is melted and then solidified. And the moving body of the actuator unit concerning this invention is manufactured by this manufacturing method, and the actuator unit concerning this invention has this moving body. According to the present invention, a method for manufacturing an actuator unit in which accuracy in the optical axis direction can be sufficiently obtained simply by being incorporated in an imaging device or the like by securing component accuracy while suppressing cost, and an actuator unit manufactured by this manufacturing method Can be provided.
 上記並びにその他の本発明の目的、特徴および利点は、以下の詳細な記載と添付図面から明らかになるであろう。 The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.
本実施形態にかかるアクチュエータユニットの斜視図である。It is a perspective view of the actuator unit concerning this embodiment. 前記アクチュエータユニットの分解斜視図である。It is a disassembled perspective view of the actuator unit. 前記アクチュエータユニットにおけるユニット本体の斜視図である。It is a perspective view of the unit main body in the actuator unit. アクチュエータ本体を配置した状態の前記ユニット本体の平面図である。It is a top view of the said unit main body of the state which has arrange | positioned the actuator main body. アクチュエータを配置した状態の前記ユニット本体の平面図である。It is a top view of the said unit main body of the state which has arrange | positioned the actuator. 前記アクチュエータ本体の拡大斜視図である。It is an expansion perspective view of the actuator body. 移動体の斜視図である。It is a perspective view of a moving body. 前記移動体の分解斜視図である。It is a disassembled perspective view of the said mobile body. レンズバレルが保持された状態の前記アクチュエータユニットを説明するための模式図である。It is a schematic diagram for demonstrating the said actuator unit of the state in which the lens barrel was hold | maintained. 姿勢規定面に対する第1摺動面の姿勢の修正工程を説明するための図である。It is a figure for demonstrating the correction process of the attitude | position of the 1st sliding surface with respect to an attitude | position prescription | regulation surface. 押え部材によって移動体本体を押え付けた状態を説明するための図である。It is a figure for demonstrating the state which pressed the mobile body main body with the pressing member. 図Aは、移動体本体を光軸方向の幅全体に亘って溶融させる場合の溶融部位を示すための図であり、図Bは、移動体本体の光軸方向の端部を含みかつ光軸方向における一部分を溶融させる場合の溶融部位を示す図である。FIG. A is a diagram for illustrating a melting portion in the case where the moving body main body is melted over the entire width in the optical axis direction, and FIG. B includes an end portion in the optical axis direction of the moving body main body and the optical axis. It is a figure which shows the fusion | melting site | part in the case of melting a part in a direction. 姿勢規定面に対する第2摺動面の姿勢の修正工程を説明するための図である。It is a figure for demonstrating the correction process of the attitude | position of the 2nd sliding surface with respect to an attitude | position prescription | regulation surface. 前記第2摺動面の姿勢の修正工程における、第2基準面およびその近傍を示す部分拡大図である。It is the elements on larger scale which show the 2nd reference surface and its vicinity in the correction process of the attitude | position of the said 2nd sliding surface. 図Aは、ガイドスプリングを光軸方向の幅全体に亘って溶融させる場合の溶融部位を示すための図であり、図Bは、ガイドスプリングの光軸方向の端部を含みかつ光軸方向における一部分を溶融させる場合の溶融部位を示す図である。FIG. A is a view for illustrating a melting portion when the guide spring is melted over the entire width in the optical axis direction, and FIG. B includes an end portion of the guide spring in the optical axis direction and in the optical axis direction. It is a figure which shows the fusion | melting site | part in the case of melting a part. 移動体本体の第1フランジ側端部を第2フランジ側端部に向けて押圧することによって第1摺動面を第1基準面に押し付ける工程を説明するための図である。It is a figure for demonstrating the process of pressing a 1st sliding surface against a 1st reference surface by pressing the 1st flange side edge part of a mobile body main body toward the 2nd flange side edge part. 光軸方向の幅の小さな部位を有するガイドスプリングと、その溶融位置とを説明するための図である。It is a figure for demonstrating the guide spring which has a site | part with a small width | variety of an optical axis direction, and its melting position. 従来の駆動装置を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the conventional drive device. 前記従来の駆動装置においてアクチュエータ本体が支持部材によって筐体に固定された状態を示す部分拡大断面図である。It is a partial expanded sectional view which shows the state by which the actuator main body was fixed to the housing | casing with the support member in the said conventional drive device.
 以下、本発明にかかる実施の一形態を図面に基づいて説明するが、先ず、アクチュエータユニットについて説明し、その後、このアクチュエータユニットの製造方法を説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。以下の説明において、図1、図2、図6~図9におけるX方向を上側とし、Y方向を下側として説明する。本実施形態のアクチュエータユニットは、撮像装置に用いられており、この場合、上側は、物体側であり、下側は、像側になる。 Hereinafter, an embodiment according to the present invention will be described with reference to the drawings. First, an actuator unit will be described, and then a method for manufacturing the actuator unit will be described. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted suitably. In this specification, when referring generically, it shows with the reference symbol which abbreviate | omitted the suffix, and when referring to an individual structure, it shows with the reference symbol which attached the suffix. In the following description, the X direction in FIGS. 1, 2, and 6 to 9 will be described as the upper side, and the Y direction will be described as the lower side. The actuator unit according to the present embodiment is used in an imaging apparatus. In this case, the upper side is the object side, and the lower side is the image side.
 本実施形態にかかるアクチュエータユニットは、例えば携帯電話などに搭載可能なカメラモジュール(撮像装置)に用いられ、撮像素子に対して撮像レンズ(光学部品)を移動させる(駆動する)。図1および図2に示されるように、このアクチュエータユニット1は、ユニット本体2と、アクチュエータ3と、カバー8とを備える。 The actuator unit according to the present embodiment is used in, for example, a camera module (imaging device) that can be mounted on a mobile phone or the like, and moves (drives) an imaging lens (optical component) with respect to the imaging element. As shown in FIGS. 1 and 2, the actuator unit 1 includes a unit main body 2, an actuator 3, and a cover 8.
 ユニット本体2は、基部20と、複数(本実施形態の例では4つ)の支柱部(第1~第4の支柱部120a、120b、120c、120d)とを有する。このユニット本体2は、例えば、LCP(液晶ポリマー)等の樹脂材料によって形成されている。 The unit main body 2 has a base 20 and a plurality of (four in the example of the present embodiment) struts (first to fourth struts 120a, 120b, 120c, 120d). The unit body 2 is formed of a resin material such as LCP (liquid crystal polymer), for example.
 基部20は、図3~図5にも示されるように、平面視において矩形状の輪郭を有すると共に、中心部に上下方向に貫通する円形状の貫通孔21を有する。この貫通孔21は、光路となり、以下の説明では、貫通孔21の中心を上下に貫通する軸を中心軸(または光軸)Cとする。 As shown in FIGS. 3 to 5, the base portion 20 has a rectangular outline in a plan view and has a circular through hole 21 penetrating in the vertical direction in the center portion. The through hole 21 serves as an optical path. In the following description, an axis passing through the center of the through hole 21 in the vertical direction is a central axis (or optical axis) C.
 この基部20は、4つの角隅部(第1~第4の角隅部20a、20b、20c、20d)を有する。本実施形態では、特定の角隅部(図4における左下の角隅部)を第1の角隅部20aとし、図4において反時計回りに第2の角隅部20b、第3の角隅部20c、第4の角隅部20dとする。 The base 20 has four corners (first to fourth corners 20a, 20b, 20c, 20d). In the present embodiment, a specific corner (the lower left corner in FIG. 4) is the first corner 20a, and the second corner 20b and the third corner are counterclockwise in FIG. A portion 20c and a fourth corner 20d are assumed.
 基部20の第1~第4の角隅部20a、20b、20c、20dには、第1~第4の支柱部120a、120b、120c、120dが設けられている。 The first to fourth corner portions 20a, 20b, 20c, 20d of the base 20 are provided with first to fourth support columns 120a, 120b, 120c, 120d.
 第1の支柱部120aは、アクチュエータ3(詳しくはアクチュエータ本体30)と接している。この第1の支柱部120aは、その表面に外側面121aと内側面122aとを含む。平面視において、外側面121aは基部20の第1の角隅部20aの外側面と面一であり、内側面122aは、アクチュエータ本体30(詳しくは駆動軸33)の外周面に沿って湾曲し、当該アクチュエータ本体30(詳しくは駆動軸33)と接触する。 The first support column 120a is in contact with the actuator 3 (specifically, the actuator body 30). The first support column 120a includes an outer surface 121a and an inner surface 122a on the surface thereof. In plan view, the outer surface 121a is flush with the outer surface of the first corner 20a of the base 20, and the inner surface 122a is curved along the outer peripheral surface of the actuator body 30 (specifically, the drive shaft 33). The actuator body 30 (specifically, the drive shaft 33) comes into contact.
 第2の支柱部120bは、基部の第2の角隅部の外側面よりも内側に設けられている。より具体的には、第2の支柱b120bは、移動体4の移動体本体5とガイドスプリング6との間に設けられている。 The second support column 120b is provided on the inner side of the outer surface of the second corner of the base. More specifically, the second column b 120 b is provided between the moving body 5 of the moving body 4 and the guide spring 6.
 第3の支柱部120cは、移動体4の一部(具体的には、回転規制部61a)が上下動可能に嵌め込まれる規制部用溝29が形成されている。この規制部用溝29は、第3の支柱部120cの内側面(中心軸C側面)122cに設けられ、上下方向に延びている。第3の支柱部120cの外側面121cは、平面視において、基部20の第3の角隅部20cの外側面と面一となっている。 The third support column 120c is formed with a restriction portion groove 29 into which a part of the movable body 4 (specifically, the rotation restriction portion 61a) is fitted so as to be movable up and down. The restriction portion groove 29 is provided on the inner side surface (side surface of the central axis C) 122c of the third support column portion 120c and extends in the vertical direction. The outer surface 121c of the third support column 120c is flush with the outer surface of the third corner portion 20c of the base 20 in plan view.
 第4の支柱部120dは、平面視において、外側面121dが基部20の第4の角隅部20dの外側面と面一となり、内側面122dが移動体4に沿って湾曲するように構成されている。 The fourth support column 120d is configured such that the outer surface 121d is flush with the outer surface of the fourth corner 20d of the base 20 and the inner surface 122d is curved along the moving body 4 in plan view. ing.
 基部20は、第1の角隅部20aにおける第1の支柱部120aの内側(中心軸C側)に、アクチュエータ3(アクチュエータ本体30)を保持するアクチュエータ保持部25を備える。このアクチュエータ保持部25は、基部20の上面20eから所定の深さとなるように円柱状に窪んでいる。 The base portion 20 includes an actuator holding portion 25 that holds the actuator 3 (actuator body 30) on the inner side (center axis C side) of the first support column portion 120a in the first corner portion 20a. The actuator holding portion 25 is recessed in a cylindrical shape so as to have a predetermined depth from the upper surface 20 e of the base portion 20.
 基部20は、第1の角隅部20aに、上述の第1電極端子22と第2電極端子23とを有する。これら第1電極端子22および第2電極端子23は、それぞれ、その中間部が基部20(ユニット本体2)に埋設されている。そして、第1電極端子22および第2電極端子23の先端22a、23aが上面20eのアクチュエータ保持部25を挟んでその両側から突出(露出)し、基端側が基部20の外側面から突出(露出)して外部接続端子22b、23bを構成している。これら外部接続端子22b、23bは、当該アクチュエータユニット1が例えば携帯電話(図示省略)に搭載されたときに、この携帯電話の回路基板やコネクタ等と接続される。 The base 20 includes the first electrode terminal 22 and the second electrode terminal 23 described above at the first corner 20a. The intermediate portions of the first electrode terminal 22 and the second electrode terminal 23 are embedded in the base 20 (unit body 2). And the front-end | tips 22a and 23a of the 1st electrode terminal 22 and the 2nd electrode terminal 23 protrude (exposure) from the both sides of the actuator holding | maintenance part 25 of the upper surface 20e, and the base end side protrudes from the outer surface of the base 20 (exposure). The external connection terminals 22b and 23b are configured. These external connection terminals 22b and 23b are connected to a circuit board, a connector, and the like of the cellular phone when the actuator unit 1 is mounted on, for example, a cellular phone (not shown).
 アクチュエータ3は、アクチュエータ本体30と、移動体4と、を備える。このアクチュエータ本体30は、図6にも示されるように、下方から順に、錘31と、中心軸C方向に伸縮(振動)可能な圧電素子(電気機械変換素子)32と、圧電素子32の伸縮(振動)によって中心軸C方向に往復動(振動)する駆動軸(駆動摩擦部材)33と、を備える。このアクチュエータ本体30は、その一部(駆動軸33)が移動体4に接触するようにユニット本体2に固定される(図5の110、111を参照)。 The actuator 3 includes an actuator body 30 and a moving body 4. As shown in FIG. 6, the actuator body 30 includes, in order from the bottom, a weight 31, a piezoelectric element (electromechanical conversion element) 32 that can be expanded and contracted (vibrated) in the central axis C direction, and expansion and contraction of the piezoelectric element 32. A drive shaft (drive friction member) 33 that reciprocates (vibrates) in the direction of the central axis C by (vibration). This actuator main body 30 is fixed to the unit main body 2 so that a part (drive shaft 33) of the actuator main body 30 contacts the moving body 4 (see 110 and 111 in FIG. 5).
 錘31は、圧電素子32の一端側(本実施形態では下端側)の慣性質量を大きくすることによって、圧電素子32の伸縮による変位を他端側(本実施形態では上端側)のみに発生させる。本実施形態の錘31は、例えば、タングステン、タングステン合金等の比重の高い材料によって構成されている。なお、錘31は、圧電素子32の他端(下端)が錘31の機能と同様の機能を発揮するもの(例えば、ユニット本体2(基部20)等)に取り付けられる場合には、省略されてもよい。 The weight 31 increases the inertial mass on one end side (the lower end side in the present embodiment) of the piezoelectric element 32 so that the displacement due to the expansion and contraction of the piezoelectric element 32 is generated only on the other end side (the upper end side in the present embodiment). . The weight 31 of this embodiment is made of a material having a high specific gravity such as tungsten or a tungsten alloy. Note that the weight 31 is omitted when the other end (lower end) of the piezoelectric element 32 is attached to a device that exhibits a function similar to the function of the weight 31 (for example, the unit main body 2 (base 20)). Also good.
 圧電素子32は、所定の波形の電力が供給されることによって、中心軸C方向に伸縮を繰り返すことにより振動する。本実施形態の圧電素子32は、PZT(チタン酸ジルコン酸鉛)等の材料を薄く伸ばした矩形状の層が層間に内部電極を挟むようにして中心軸C方向に積層された四角柱状の積層型圧電素子によって構成されている。 The piezoelectric element 32 vibrates by repeatedly expanding and contracting in the direction of the central axis C when electric power having a predetermined waveform is supplied. The piezoelectric element 32 according to the present embodiment is a quadrangular columnar laminated piezoelectric element in which a rectangular layer obtained by thinly extending a material such as PZT (lead zirconate titanate) is laminated in the direction of the central axis C so that an internal electrode is sandwiched between the layers. It is comprised by the element.
 圧電素子32は、対向する2つの側面に外部電極32aをそれぞれ有する。これら外部電極32aは、前記2つの側面に銀などをスパッタすることによって形成され、圧電素子32の各層間に挟まれた電極を並列に接続している。 The piezoelectric element 32 has external electrodes 32a on two opposing side surfaces. These external electrodes 32a are formed by sputtering silver or the like on the two side surfaces, and electrodes sandwiched between the layers of the piezoelectric element 32 are connected in parallel.
 駆動軸33は、中心軸C方向に延びる円柱状の部材である。この駆動軸33は、その外周面の一部が移動体4に接触する(図5の110、111を参照)。本実施形態では、駆動軸33は、周方向において2箇所で移動体4と接触している。各接触箇所では、駆動軸33は、移動体4と光軸C方向に延びる直線状に接触している。本実施形態の駆動軸33は、例えば、中心軸C方向にカーボン繊維が配列するように円柱状に成形されたCFRP(炭素繊維強化プラスチック)によって構成されている。 The drive shaft 33 is a columnar member extending in the direction of the central axis C. A part of the outer peripheral surface of the drive shaft 33 contacts the moving body 4 (see 110 and 111 in FIG. 5). In the present embodiment, the drive shaft 33 is in contact with the moving body 4 at two locations in the circumferential direction. At each contact location, the drive shaft 33 is in contact with the moving body 4 in a straight line extending in the direction of the optical axis C. The drive shaft 33 of the present embodiment is made of, for example, CFRP (carbon fiber reinforced plastic) molded in a columnar shape so that carbon fibers are arranged in the direction of the central axis C.
 この駆動軸33は、圧電素子32の外周から全周に亘って径方向外側に突出するように形成されている。 The drive shaft 33 is formed so as to protrude radially outward from the outer periphery of the piezoelectric element 32.
 アクチュエータ本体30は、第1電極連結バネ26aと第2電極連結バネ26bとによって、第1電極端子22および第2電極端子23に通電可能に接続されている。本実施形態の第1および第2電極連結バネ26a、26bは、電気伝導性の高いリン青銅によって構成されるねじりコイルバネであるが、ステンレス、ピアノ線等によって構成されていてもよい。また、第1および第2電極連結バネ26a、26bの表面には、金や白金などでメッキが施されている。 The actuator body 30 is connected to the first electrode terminal 22 and the second electrode terminal 23 by a first electrode coupling spring 26a and a second electrode coupling spring 26b so as to be energized. The first and second electrode coupling springs 26a and 26b of the present embodiment are torsion coil springs made of phosphor bronze having high electrical conductivity, but may be made of stainless steel, piano wire, or the like. The surfaces of the first and second electrode coupling springs 26a and 26b are plated with gold or platinum.
 次に、移動体4について、図7~図9も参照しつつ説明する。 Next, the moving body 4 will be described with reference to FIGS.
 移動体4は、短筒形状を有し、図9に示すレンズバレル7を保持可能でかつユニット本体2に対して中心軸C方向に相対移動可能に構成される。この移動体4は、金属製の円筒状の移動体本体5と、ガイドスプリング(押し当て部材)6とを備える。 The moving body 4 has a short cylindrical shape, is configured to be able to hold the lens barrel 7 shown in FIG. 9 and to be relatively movable in the direction of the central axis C with respect to the unit body 2. The moving body 4 includes a metal cylindrical moving body main body 5 and a guide spring (pressing member) 6.
 移動体本体5は、内周側にレンズ保持面(姿勢規定面)54を備え、このレンズ保持面54によってレンズバレル7を保持する。このレンズバレル7は、1または複数のレンズ(撮像レンズ)群71を保持する。 The movable body 5 includes a lens holding surface (attitude defining surface) 54 on the inner peripheral side, and holds the lens barrel 7 by the lens holding surface 54. The lens barrel 7 holds one or a plurality of lens (imaging lens) groups 71.
 移動体本体5は、筒状部51と、第1フランジ52と、第2フランジ53と、を備える。本実施形態の移動体本体5は、例えば、0.1mm~0.2mmの厚さのステンレス材によって形成されている。 The movable body 5 includes a cylindrical portion 51, a first flange 52, and a second flange 53. The movable body main body 5 of the present embodiment is formed of a stainless material having a thickness of 0.1 mm to 0.2 mm, for example.
 筒状部51では、外周面の一部が駆動軸33と摺接する第1摺動面(第1当接面)55を構成する。すなわち、筒状部51(移動体本体5)は、その外周面に第1摺動面55を含んでいる。本実施形態の第1摺動面55は、移動体本体5の成形加工に際し、移動体本体5の一部を(詳しくは、周方向に所定の幅でかつ中心軸C方向の全体に亘って)平板状にすることによって形成される平面である。 In the cylindrical portion 51, a part of the outer peripheral surface constitutes a first sliding surface (first contact surface) 55 that is in sliding contact with the drive shaft 33. That is, the cylindrical part 51 (movable body main body 5) includes the first sliding surface 55 on the outer peripheral surface thereof. The first sliding surface 55 of the present embodiment has a part of the movable body main body 5 (specifically, a predetermined width in the circumferential direction and the entire center axis C direction) when the movable body main body 5 is molded. ) A flat surface formed by flat plate.
 第1フランジ52は、筒状部51の下端から径方向内側に突出している。この第1フランジ52の上面は、レンズ保持面54に含まれ、レンズバレル載置部52aを構成する。このレンズバレル載置部52aは、レンズ保持面54にレンズバレル7を保持させるときにレンズバレル7が載置される部位である(図9参照)。このようにレンズバレル7がレンズバレル載置部52aに載置された状態でレンズ保持面54に保持されることで、移動体本体5の中心軸とレンズバレル7のレンズ群71の光軸とが互いに傾くことなく揃うようになっている。第2フランジ53は、筒状部51の上端から径方向外側に突出している。これら第1フランジ52および第2フランジ53によって移動体本体5の強度が確保される。 The first flange 52 protrudes radially inward from the lower end of the cylindrical portion 51. The upper surface of the first flange 52 is included in the lens holding surface 54 and constitutes a lens barrel mounting portion 52a. The lens barrel placement portion 52a is a portion where the lens barrel 7 is placed when the lens barrel 7 is held on the lens holding surface 54 (see FIG. 9). In this way, the lens barrel 7 is held on the lens holding surface 54 in a state of being placed on the lens barrel placement portion 52a, so that the central axis of the movable body 5 and the optical axis of the lens group 71 of the lens barrel 7 are obtained. Are aligned without tilting each other. The second flange 53 protrudes radially outward from the upper end of the cylindrical portion 51. The strength of the movable body 5 is ensured by the first flange 52 and the second flange 53.
 以上のように移動体本体5が金属によって形成され、かつ、第1フランジ52および第2フランジ53が設けられることで、移動体本体5の強度が十分に確保され、これにより、移動体本体5の薄肉化を図ることが可能となる。その結果、移動体本体5に保持される(詳しくは、レンズバレル7を介して保持される)レンズ71の大口径化を図ることができる。また、薄肉化によって移動体4の重量を抑えることができるため、落下等の衝撃印加時の負荷を軽減することもできる。 As described above, the moving body main body 5 is made of metal, and the first flange 52 and the second flange 53 are provided, so that the strength of the moving body main body 5 is sufficiently secured. It is possible to reduce the wall thickness. As a result, it is possible to increase the diameter of the lens 71 held by the movable body 5 (specifically, held via the lens barrel 7). Moreover, since the weight of the moving body 4 can be suppressed by reducing the thickness, the load at the time of applying an impact such as dropping can be reduced.
 ガイドスプリング6は、円弧部61と、円弧部61の一端に形成されたガイド部62と、円弧部61の他端に形成された押圧片63とを備える。本実施形態のガイドスプリング6は、例えば、0.1mm~0.2mmの厚さのステンレス材によって形成されている。 The guide spring 6 includes an arc portion 61, a guide portion 62 formed at one end of the arc portion 61, and a pressing piece 63 formed at the other end of the arc portion 61. The guide spring 6 of the present embodiment is formed of a stainless material having a thickness of 0.1 mm to 0.2 mm, for example.
 円弧部61は、ガイド部62から周方向に略180°隔てた位置に、回転規制部61aを備える。この回転規制部61aは、駆動軸33を回転中心にした移動体4の回転を規制するための部位である。この回転規制部61aは、規制枠部61bと、規制枠部61bに形成された半球状の突起61cとを備える。 The arc portion 61 includes a rotation restricting portion 61a at a position separated from the guide portion 62 by approximately 180 ° in the circumferential direction. The rotation restricting portion 61a is a portion for restricting the rotation of the moving body 4 with the drive shaft 33 as the center of rotation. The rotation restricting portion 61a includes a restricting frame portion 61b and a hemispherical protrusion 61c formed on the restricting frame portion 61b.
 規制枠部61bは、円弧部61の一部を径方向外側に矩形状に突出させることにより形成されている。突起61cは、規制枠部61bの両外側面のそれぞれから外側に向かって突出するように形成されている。これら突起61c同士の外幅(各突起61cの先端間の距離)は、規制枠部61bが第3の支柱部120cに設けられた規制部用溝29内に嵌るように、規制部用溝29の内幅よりも若干狭く設定されている。 The regulation frame portion 61b is formed by projecting a part of the arc portion 61 radially outward in a rectangular shape. The protrusion 61c is formed so as to protrude outward from each of the outer side surfaces of the restriction frame portion 61b. The outer width of the protrusions 61c (the distance between the tips of the protrusions 61c) is such that the restriction frame portion 61b fits into the restriction portion groove 29 provided in the third support column 120c. It is set slightly narrower than the inner width of.
 ガイド部62は、円弧部61の一端から径方向外側に延びている。ガイド部62の一方面である第2摺動面(第2当接面)62aは、ガイドスプリング6が移動体本体5に取り付けられた状態で移動体本体5の第1摺動面55に対して略90°となっている。これにより、光軸方向視において、第1および第2摺動面55、62aとがV字状の配置となる。このため、本実施形態では、これら2つの摺動面55、62aをVガイドと称する場合もある。 The guide part 62 extends radially outward from one end of the arc part 61. A second sliding surface (second abutting surface) 62 a that is one surface of the guide portion 62 is in relation to the first sliding surface 55 of the movable body 5 with the guide spring 6 attached to the movable body 5. Is approximately 90 °. Thereby, the first and second sliding surfaces 55 and 62a are arranged in a V shape when viewed in the optical axis direction. For this reason, in this embodiment, these two sliding surfaces 55 and 62a may be called a V guide.
 押圧片63は、円弧部61の他端から直線状に延設されている。押圧片63は、その先端部に、駆動軸33を押圧する押圧部63aを備える。押圧部63aは、押圧片63の他の部位よりも細くなっている。これにより、押圧部63aの光軸C方向の幅が、第1および第2摺動面55、62aの光軸C方向の幅よりも小さくなり、その結果、押圧片63に若干のねじれが発生した場合でも、確実にVガイド(第1および第2摺動面55、62a)と駆動軸33の外周面が当接し、光軸C方向の2線の当たりを確保することが可能となる。 The pressing piece 63 extends linearly from the other end of the arc portion 61. The pressing piece 63 includes a pressing portion 63 a that presses the drive shaft 33 at the tip. The pressing part 63 a is thinner than other parts of the pressing piece 63. As a result, the width of the pressing portion 63a in the optical axis C direction is smaller than the width of the first and second sliding surfaces 55 and 62a in the optical axis C direction. As a result, the pressing piece 63 is slightly twisted. Even in this case, the V guide (first and second sliding surfaces 55, 62a) and the outer peripheral surface of the drive shaft 33 can be surely brought into contact with each other, and it is possible to ensure the contact of the two lines in the optical axis C direction.
 次に、図1および図2に戻ってカバー8について説明する。 Next, returning to FIGS. 1 and 2, the cover 8 will be described.
 カバー8は、ユニット本体2と共同して移動体4を囲む部材である。このカバー8は、天壁81と、天壁81の周縁から垂下する周壁83とを備える。天壁81は、平面視において矩形状の輪郭を有すると共に、その中央部に中心軸C方向に貫通する貫通孔82を有する。この貫通孔82は光路となる。本実施形態のカバー8は、例えば、0.1mm~0.2mmのステンレス製の薄板を絞り加工、プレス加工等によって形成されている。周壁83は、天壁81の各片に対応する4つの側壁83aによって構成されている。 The cover 8 is a member surrounding the moving body 4 in cooperation with the unit main body 2. The cover 8 includes a top wall 81 and a peripheral wall 83 that hangs down from the periphery of the top wall 81. The top wall 81 has a rectangular outline in plan view, and has a through hole 82 penetrating in the central axis C direction at the center thereof. This through hole 82 becomes an optical path. The cover 8 of the present embodiment is formed by drawing, pressing, or the like, for example, a stainless steel thin plate of 0.1 mm to 0.2 mm. The peripheral wall 83 is composed of four side walls 83 a corresponding to the pieces of the top wall 81.
 このように構成されるアクチュエータユニット1は、以下のようにして製造される。 The actuator unit 1 configured as described above is manufactured as follows.
 ユニット本体2にアクチュエータ本体30が配置される。より具体的には、アクチュエータ本体30は、ユニット本体2(基部20)のアクチュエータ保持部25に錘31側から嵌挿される。そして、アクチュエータ保持部25の底面と錘31とが接着され、これにより、アクチュエータ本体30がユニット本体2に固定される。このとき、アクチュエータ本体30の駆動軸33の中心軸と、ユニット本体2の中心軸Cとが平行になっている。 The actuator body 30 is arranged on the unit body 2. More specifically, the actuator main body 30 is fitted into the actuator holding portion 25 of the unit main body 2 (base portion 20) from the weight 31 side. Then, the bottom surface of the actuator holding portion 25 and the weight 31 are bonded together, whereby the actuator main body 30 is fixed to the unit main body 2. At this time, the central axis of the drive shaft 33 of the actuator main body 30 and the central axis C of the unit main body 2 are parallel to each other.
 続いて、圧電素子32の対向する2つの外部電極32aに第1電極連結バネ26aと第2電極連結バネ26bとが接続される。これにより、第1電極端子22および第2電極端子23と圧電素子32の2つの外部電極32aとが電気的に接続される。このとき、外部電極32aと各電極連結バネ26a、26bとの接合部位には、エポキシ系接着剤に銀粒子を混入した導電性接着剤が、外部電極32aと、これに接触する第1電極連結バネ26aまたは第2電極連結バネ26bとに接触するように塗布されている。これにより、各電極連結バネ26a、26bから外部電極32aに加わる弾発力が軽減され、経時的なクリープを抑制することができる。なお、導電性接着剤の接着力が低いため、UV接着剤などを導電性接着剤の上および周囲に塗布して補強してもよい。 Subsequently, the first electrode coupling spring 26 a and the second electrode coupling spring 26 b are connected to the two external electrodes 32 a facing the piezoelectric element 32. Thereby, the first electrode terminal 22 and the second electrode terminal 23 and the two external electrodes 32 a of the piezoelectric element 32 are electrically connected. At this time, a conductive adhesive in which silver particles are mixed in an epoxy adhesive is connected to the external electrode 32a and the first electrode connection that contacts the external electrode 32a at the joint portion between the external electrode 32a and each of the electrode connection springs 26a and 26b. It is applied so as to contact the spring 26a or the second electrode coupling spring 26b. Thereby, the elastic force applied to the external electrode 32a from each electrode connection spring 26a, 26b is reduced, and creep over time can be suppressed. Since the adhesive strength of the conductive adhesive is low, a UV adhesive or the like may be applied on and around the conductive adhesive for reinforcement.
 次に、移動体本体5とガイドスプリング6とによって移動体4を形成する。より具体的には、以下の通りである。 Next, the movable body 4 is formed by the movable body main body 5 and the guide spring 6. More specifically, it is as follows.
 移動体本体5は、例えば、絞り加工やプレス加工によって形成され、その後、レンズ保持面54等に対する第1摺動面55の姿勢の補正が行われる。この姿勢の補正は、詳しくは、以下のように行われる。なお、以下の説明では、レンズ保持面54(レンズバレル載置部52aを含む)等のような、移動体本体5にレンズバレル7を嵌め込んだときにレンズバレル7が当接等することによって移動体本体5(移動体4)における各レンズ71(光学部品)の姿勢を定める面を、姿勢規定面と称する。 The movable body 5 is formed by, for example, drawing or pressing, and thereafter the posture of the first sliding surface 55 with respect to the lens holding surface 54 and the like is corrected. Specifically, this posture correction is performed as follows. In the following description, when the lens barrel 7 is fitted into the movable body 5 such as the lens holding surface 54 (including the lens barrel mounting portion 52a), the lens barrel 7 abuts. A surface that determines the posture of each lens 71 (optical component) in the movable body 5 (movable body 4) is referred to as a posture defining surface.
 図10に示されるように、まず、移動体本体5が、第1フランジ52側を上側に向けた姿勢で、上側から移動軸90に嵌め込まれる(外嵌される)。この移動軸90は、移動体本体5の内周面(レンズ保持面)54の形状と対応する形状、すなわち、移動体本体5とガタツキ無く勘合可能な形状を有する。移動軸90は、第1基準面96が設けられた部材(固定部材)95に向かって当該移動軸90の軸方向と直交する方向に移動可能に構成されている。 As shown in FIG. 10, first, the mobile body 5 is fitted (externally fitted) from the upper side to the moving shaft 90 with the first flange 52 side facing upward. The moving shaft 90 has a shape corresponding to the shape of the inner peripheral surface (lens holding surface) 54 of the movable body 5, that is, a shape that can be fitted to the movable body 5 without rattling. The moving shaft 90 is configured to be movable in a direction orthogonal to the axial direction of the moving shaft 90 toward the member (fixed member) 95 provided with the first reference surface 96.
 このように移動体本体5が移動軸90に嵌め込まれると、移動体本体5の第1摺動面55が第1基準面96と対向する。この第1基準面96は、姿勢規定面に対して所定の姿勢(例えば、設計において予定されている姿勢規定面に対する第1摺動面55の姿勢と対応する姿勢)を有している。 When the moving body 5 is fitted on the moving shaft 90 in this way, the first sliding surface 55 of the moving body 5 faces the first reference surface 96. The first reference surface 96 has a predetermined posture (for example, a posture corresponding to the posture of the first sliding surface 55 with respect to the posture defining surface planned in the design) with respect to the posture defining surface.
 移動体本体5が移動軸90に嵌め込まれると、図11に示されるように、直径が移動体本体5よりも大きな円柱状の部材である押え部材92が移動体本体5の第1フランジ52側端部を下方へ向けて押え付ける。この押え部材92が移動体本体5を押え付ける力の大きさは、移動体本体5が移動軸90との勘合位置よりも上方へ持ち上がらない程度である。これにより、移動軸90と固定部材95とによって移動体本体5を挟んだときに、移動体本体5が移動軸90から外れることを防ぐことができる。この押え部材92は、移動体本体5の第1フランジ52側端部を移動軸90に向けて押え付けた状態のまま、移動軸90と共に固定部材95に向けて移動可能に構成されている。 When the moving body 5 is fitted on the moving shaft 90, as shown in FIG. 11, the holding member 92, which is a columnar member having a diameter larger than that of the moving body 5, is on the first flange 52 side of the moving body 5. Hold the end downward. The magnitude of the force with which the pressing member 92 presses the movable body main body 5 is such that the movable body main body 5 does not lift upward from the fitting position with the moving shaft 90. Thereby, it is possible to prevent the movable body main body 5 from being detached from the movable shaft 90 when the movable body main body 5 is sandwiched between the movable shaft 90 and the fixing member 95. The pressing member 92 is configured to be movable toward the fixed member 95 together with the moving shaft 90 while the end of the movable body 5 on the first flange 52 side is pressed toward the moving shaft 90.
 次に、移動軸90が固定部材95に向かって押え部材92と共に移動し、第1基準面96と移動軸90とによって、移動体本体5における第1摺動面55を有する部位を挟み込む。この挟み込み、すなわち、移動体本体5における第1摺動面55を有する部位を第1基準面96へ押圧することにより、第1摺動面55全体が第1基準面96に押し付けられて面接触する。これにより、第1摺動面55が姿勢規定面に対して前記所定の姿勢(設計において予定されていた相対姿勢)となる。すなわち、姿勢規定面に対する第1摺動面55の姿勢が修正される。本実施形態では、移動軸90が第1基準面96に対して移動体本体5の一部(第1摺動面55を含む部位)を押圧する力は、例えば、好ましくは500~1500gfである。 Next, the moving shaft 90 moves together with the pressing member 92 toward the fixed member 95, and the portion having the first sliding surface 55 in the moving body 5 is sandwiched between the first reference surface 96 and the moving shaft 90. This sandwiching, that is, pressing the portion having the first sliding surface 55 in the movable body 5 against the first reference surface 96 causes the entire first sliding surface 55 to be pressed against the first reference surface 96 to bring it into surface contact. To do. Thus, the first sliding surface 55 becomes the predetermined posture (relative posture planned in the design) with respect to the posture defining surface. That is, the posture of the first sliding surface 55 with respect to the posture defining surface is corrected. In the present embodiment, the force with which the moving shaft 90 presses a part of the moving body 5 (the portion including the first sliding surface 55) against the first reference surface 96 is, for example, preferably 500 to 1500 gf. .
 続いて、第1基準面96と移動軸90とによって挟まれた部位に対して周方向に隣接する部位(第1摺動面55の周方向両側の部位)にレーザー光線を照射して加熱し、溶融させる。このとき、光軸C方向の一端から他端(例えば、図12Aにおける第1フランジ52側端部から第2フランジ53側端部)に向かって照射位置を移動させつつレーザー光線を照射する。例えば、移動体本体5が板圧0.1mmのSUS材であれば、50WのYAGレーザー光線を1~2Jの照射エネルギーで照射する。 Subsequently, a portion adjacent to the circumferential direction with respect to a portion sandwiched between the first reference surface 96 and the moving shaft 90 (a portion on both sides in the circumferential direction of the first sliding surface 55) is irradiated with a laser beam and heated, Melt. At this time, the laser beam is irradiated while moving the irradiation position from one end in the optical axis C direction to the other end (for example, from the first flange 52 side end in FIG. 12A to the second flange 53 side end). For example, if the movable body 5 is a SUS material having a plate pressure of 0.1 mm, a 50 W YAG laser beam is irradiated with an irradiation energy of 1 to 2 J.
 レーザー光線が照射された部位は、加熱されて溶融するが、レーザー光線の照射が終わると、直ぐに冷えて凝固する。前記第1摺動面55を姿勢規定面に対して前記所定の姿勢とすることで生じていた応力が前記溶融によって除去される。その後、当該部位が凝固することで、移動体本体5において姿勢規定面に対する第1摺動面55の姿勢が補正され、姿勢規定面に対する第1摺動面55の姿勢が設計値通りである部品精度の高い移動体本体5が得られる。ここで、本実施形態では、姿勢規定面に対する第1および第2摺動面55、62aの姿勢を設計値通りにすることを姿勢の「修正」と称し、この修正により生じた応力を溶融によって除去し、その後、凝固させることを姿勢の「補正」と称する。 The part irradiated with the laser beam is heated and melted, but immediately after the irradiation with the laser beam, it cools and solidifies. The stress generated by setting the first sliding surface 55 to the predetermined posture with respect to the posture defining surface is removed by the melting. After that, the part solidifies so that the posture of the first sliding surface 55 with respect to the posture defining surface is corrected in the movable body 5 and the posture of the first sliding surface 55 with respect to the posture defining surface is as designed. A highly accurate mobile body 5 is obtained. Here, in the present embodiment, making the postures of the first and second sliding surfaces 55, 62a with respect to the posture defining surface as designed is referred to as “correction” of the posture, and the stress generated by this correction is melted. The removal and then solidification is referred to as “correction” of the posture.
 なお、光軸C方向の全体に亘ってレーザー光を照射しなくてもよく、例えば、図12Bに示すような一端(本実施形態では、第1フランジ52側端部)を含む所定の範囲(光軸C方向の一部分)にのみレーザー光線を照射してもよい。短筒形状の移動体本体5において第1摺動面55を含む部位を挟み込んで姿勢規定面に対する第1摺動面55の姿勢を修正した場合、第1摺動面55を含む部位に隣接する領域における光軸C方向の端部に応力が集中し易い。このため、この応力の集中し易い部分を含む部位を溶融させることで、溶融させる範囲を抑えつつ、前記修正によって生じた応力を効果的に除去することができる。また、図12Bでは第1フランジ52側端部を含む所定の範囲であるが、第2フランジ53側端部を含む所定の範囲にレーザー光線が照射されてもよい。 In addition, it is not necessary to irradiate a laser beam over the whole optical-axis C direction, for example, the predetermined range (In this embodiment, the 1st flange 52 side edge part) as shown in FIG. You may irradiate a laser beam only to a part of the optical axis C direction. When the position of the first sliding surface 55 with respect to the posture defining surface is corrected by sandwiching the portion including the first sliding surface 55 in the short cylinder-shaped moving body 5, it is adjacent to the portion including the first sliding surface 55. Stress tends to concentrate on the end of the region in the direction of the optical axis C. For this reason, by melting the portion including the portion where stress is easily concentrated, the stress generated by the correction can be effectively removed while suppressing the melting range. In FIG. 12B, the predetermined range including the end portion on the first flange 52 side is shown, but the predetermined range including the end portion on the second flange 53 side may be irradiated with the laser beam.
 第1摺動面55の姿勢が補正されると、ガイドスプリング6と移動体本体5とが溶接によって連結(結合)され、その後、姿勢規定面に対する第2摺動面62aの姿勢の補正が行われることによって、移動体4が完成する。詳しくは、以下の通りである。 When the posture of the first sliding surface 55 is corrected, the guide spring 6 and the movable body 5 are connected (coupled) by welding, and thereafter the posture of the second sliding surface 62a with respect to the posture defining surface is corrected. As a result, the movable body 4 is completed. Details are as follows.
 移動体本体5の第1摺動面55とガイドスプリング6の第2摺動面62aとが隣接するように、ガイドスプリング6が移動体本体5の外周に沿って配設される。これにより、第1摺動面55と第2摺動面62aとは、駆動軸33の周面にそれぞれ当接できるように隣接した状態で、互いの法線が交差すると共に各法線が光軸Cとそれぞれ直交した状態となる。すなわち、第1および第2摺動面55、62aは、上述のように、光軸C方向視において、V字状の配置となる。この状態で、複数個所が溶接(例えば、抵抗溶接(スポット溶接)、レーザー溶接等)されることにより、ガイドスプリング6と移動体本体5とが連結される。本実施形態では、例えば、レーザー溶接や抵抗溶接(スポット溶接)によってスポット的に移動体本体5に溶接される。本実施形態の例では、ガイドスプリング6のガイド部62近傍、回転規制部61a近傍、押圧片63の基部近傍等が移動体本体5に溶接される。このように、溶接によって移動体本体5とガイドスプリング6とが連結されることによって、強固に連結させることができると共に、接着などと異なって瞬時に結合させることができるために製造上のタイムタクトを大幅に短縮することができる。 The guide spring 6 is disposed along the outer periphery of the movable body 5 so that the first sliding surface 55 of the movable body 5 and the second sliding surface 62a of the guide spring 6 are adjacent to each other. As a result, the first sliding surface 55 and the second sliding surface 62a are adjacent to each other so as to be in contact with the circumferential surface of the drive shaft 33, and the normal lines intersect with each other, and the respective normal lines are light-transmitted. The axes C are orthogonal to each other. That is, the first and second sliding surfaces 55 and 62a are arranged in a V shape when viewed in the direction of the optical axis C as described above. In this state, the guide spring 6 and the movable body 5 are connected by welding a plurality of locations (for example, resistance welding (spot welding), laser welding, etc.). In this embodiment, the moving body 5 is spot-welded by, for example, laser welding or resistance welding (spot welding). In the example of the present embodiment, the vicinity of the guide portion 62 of the guide spring 6, the vicinity of the rotation restricting portion 61 a, the vicinity of the base portion of the pressing piece 63, and the like are welded to the moving body 5. In this way, the movable body 5 and the guide spring 6 are connected by welding, so that the mobile body 5 and the guide spring 6 can be firmly connected to each other, and can be instantaneously connected unlike the bonding and the like. Can be greatly shortened.
 溶接された移動体本体5とガイドスプリング6とは、図13に示されるように、移動軸90に再度嵌め込まれる。このとき、移動体本体5の第2摺動面62aは、固定部材95に設けられた第2基準面97と対向する。この第2基準面97は、固定部材95において、第1基準面96と略直交し、かつ、姿勢規定面に対して所定の姿勢(本実施形態の例では、設計において予定されていた姿勢規定面に対する第2摺動面62aの姿勢と対応する姿勢)を有している。 The welded mobile body 5 and the guide spring 6 are re-fitted to the moving shaft 90 as shown in FIG. At this time, the second sliding surface 62 a of the moving body 5 faces the second reference surface 97 provided on the fixing member 95. The second reference surface 97 is substantially orthogonal to the first reference surface 96 in the fixing member 95 and has a predetermined posture with respect to the posture defining surface (in the example of the present embodiment, the posture defining scheduled in the design). And a posture corresponding to the posture of the second sliding surface 62a with respect to the surface).
 続いて、移動軸90から径方向に離れた待機位置で待機していた回転制限部材100が、移動軸90の軸心に向かって前進し、その先端に設けられた凹部105内にガイドスプリング6の回転規制部61aが嵌め込まれる。これにより、移動体4(溶接された移動体本体5およびガイドスプリング6)の光軸C周りの回転が抑えられる。また、第1摺動面55の姿勢を補正するときと同様に、押え部材92が移動体本体5の第1フランジ52側端部を移動軸90に向けて押え付ける(図11参照)。 Subsequently, the rotation limiting member 100 that has been waiting at a standby position that is radially away from the moving shaft 90 moves forward toward the axis of the moving shaft 90, and the guide spring 6 enters the recess 105 provided at the tip thereof. The rotation restricting portion 61a is fitted. Thereby, the rotation around the optical axis C of the movable body 4 (welded movable body main body 5 and guide spring 6) is suppressed. Further, as in the case of correcting the posture of the first sliding surface 55, the pressing member 92 presses the end of the movable body 5 on the first flange 52 side toward the moving shaft 90 (see FIG. 11).
 この状態で、押圧部材110から突出した爪部112が固定部材95に向かうように、当該押圧部材110が移動し(図13および図14の矢印参照)、第2基準面97と爪部112とによってガイド部62(すなわち、ガイドスプリング6における第2摺動面62aを有する部位)を挟み込む。この挟み込み、すなわち、ガイド部62を第2基準面97へ押圧することにより、第2摺動面62a全体が第2基準面97に押し付けられて面接触する。これにより、第2摺動面62aが姿勢規定面に対して前記所定の姿勢(設計において予定されていた相対姿勢)となる。すなわち、姿勢規定面に対する第2摺動面62aの姿勢が修正される。 In this state, the pressing member 110 moves so that the claw 112 protruding from the pressing member 110 faces the fixing member 95 (see the arrows in FIGS. 13 and 14), and the second reference surface 97 and the claw 112 Thus, the guide portion 62 (that is, the portion having the second sliding surface 62a in the guide spring 6) is sandwiched. By this sandwiching, that is, by pressing the guide portion 62 against the second reference surface 97, the entire second sliding surface 62a is pressed against the second reference surface 97 to come into surface contact. Thereby, the second sliding surface 62a becomes the predetermined posture (relative posture planned in the design) with respect to the posture defining surface. That is, the posture of the second sliding surface 62a with respect to the posture defining surface is corrected.
 続いて、図15Aおよび図15Bに示すようなガイドスプリング6におけるガイド部62近傍(周方向に隣接する部位)にレーザー光線を照射して加熱し、溶融させる。このとき、光軸C方向の一端から他端(例えば、図15Aにおける第1フランジ52側端部から第2フランジ53側端部)に向かって照射位置を移動させつつレーザー光線を照射する。例えば、ガイドスプリング6が板圧0.1mmのSUS材であれば、50WのYAGレーザー光線を1~2Jの照射エネルギーで照射する。 Subsequently, the vicinity of the guide portion 62 (a portion adjacent in the circumferential direction) of the guide spring 6 as shown in FIGS. 15A and 15B is irradiated with a laser beam to be heated and melted. At this time, the laser beam is irradiated while moving the irradiation position from one end in the optical axis C direction to the other end (for example, from the first flange 52 side end in FIG. 15A to the second flange 53 side end). For example, if the guide spring 6 is a SUS material having a plate pressure of 0.1 mm, a 50 W YAG laser beam is irradiated with an irradiation energy of 1 to 2 J.
 レーザー光線が照射された部位は、加熱されて溶融するが、レーザー光線の照射が終わると、直ぐに冷えて凝固する。前記第2摺動面62aを姿勢規定面に対して前記所定の姿勢とすることで生じていた応力が前記溶融によって除去される。その後、当該部位が凝固することで、ガイドスプリング6において、姿勢規定面に対する第2摺動面62aの姿勢が補正され、姿勢規定面に対する第2摺動面62aの姿勢が設計値通りである部品精度の高い移動体4が完成する。 The part irradiated with the laser beam is heated and melted, but immediately after the irradiation with the laser beam, it cools and solidifies. The stress generated by setting the second sliding surface 62a to the predetermined posture with respect to the posture defining surface is removed by the melting. Thereafter, the part solidifies, so that in the guide spring 6, the posture of the second sliding surface 62a with respect to the posture defining surface is corrected, and the posture of the second sliding surface 62a with respect to the posture defining surface is as designed. The moving body 4 with high accuracy is completed.
 なお、光軸C方向の全体に亘ってレーザー光を照射しなくてもよく、例えば、図15Bに示すような一方の端部を含む所定の範囲(光軸C方向の一部分)にレーザー光線を照射してもよい。短筒状のガイドスプリング6においてガイド部62を挟み込んで姿勢規定面に対する第2摺動面62aの姿勢を修正した場合、第2摺動面62aを含む部位に隣接する領域における光軸C方向の端部に応力が集中し易い。このため、この応力の集中し易い部分を含む部位を溶融させることで、溶融させる範囲を抑えつつ前記修正によって生じた応力を効果的に除去することができる。また、図15Bでは上側の端部を含む所定の範囲であるが、下側の端部を含む所定の範囲にレーザー光線が照射されてもよい。 The laser beam does not have to be irradiated over the entire optical axis C direction. For example, the laser beam is irradiated to a predetermined range (a part in the optical axis C direction) including one end as shown in FIG. 15B. May be. When the guide portion 62 is sandwiched in the short cylindrical guide spring 6 to correct the posture of the second sliding surface 62a relative to the posture defining surface, the optical axis C direction in the region adjacent to the portion including the second sliding surface 62a is corrected. Stress tends to concentrate on the edge. For this reason, by melting the portion including the portion where the stress tends to concentrate, the stress generated by the correction can be effectively removed while suppressing the melting range. Further, in FIG. 15B, the predetermined range including the upper end portion is used, but the predetermined range including the lower end portion may be irradiated with the laser beam.
 このように、姿勢規定面に対する第1および第2摺動面55、62aの姿勢が補正された後の移動体4は、回転規制部61aをユニット本体2(第3の支柱部120c)の規制部用溝29内に嵌め込むと共に、第1摺動面55と第2摺動面62aと押圧部63aとによって駆動軸33を囲むように配置される。このとき、押圧片63は、ユニット本体2の第2の支柱部120bの外側を通って第1の角隅部20aの第1の支柱部120aまで延びた状態になっている。この状態では、押圧片63の押圧部63aは、初期位置(第1摺動面55と第2摺動面62aと押圧部63aとによって駆動軸33を囲んでいない状態での位置)に対して移動体本体5の外周面から離れる方向に弾性変形しているため、その弾性復帰力(弾性力)によって駆動軸33が第1摺動面55および第2摺動面62aに押し付けられた状態となっている。すなわち、押圧片63の弾性力によって駆動軸33が第1摺動面55と第2摺動面62aとに押し付けられて移動体4と駆動軸33とが摩擦係合している。 As described above, the movable body 4 after the postures of the first and second sliding surfaces 55 and 62a with respect to the posture defining surface are corrected, the rotation restricting portion 61a is restricted by the unit main body 2 (third column portion 120c). The drive shaft 33 is disposed so as to be fitted in the groove 29 for part and surrounded by the first sliding surface 55, the second sliding surface 62a, and the pressing portion 63a. At this time, the pressing piece 63 is in a state of extending to the first support 120a of the first corner 20a through the outside of the second support 120b of the unit body 2. In this state, the pressing portion 63a of the pressing piece 63 is at an initial position (a position in a state where the drive shaft 33 is not surrounded by the first sliding surface 55, the second sliding surface 62a, and the pressing portion 63a). Since the elastic body is elastically deformed in the direction away from the outer peripheral surface of the movable body 5, the drive shaft 33 is pressed against the first sliding surface 55 and the second sliding surface 62 a by the elastic restoring force (elastic force); It has become. That is, the driving shaft 33 is pressed against the first sliding surface 55 and the second sliding surface 62a by the elastic force of the pressing piece 63, and the movable body 4 and the driving shaft 33 are frictionally engaged.
 駆動軸33と移動体4の第1摺動面55および第2摺動面62aとの接触部分、並びに、移動体4の回転規制部61aと規制部用溝29との接触部分には、オイルやグリース、テフロン(登録商標)フレークを混入させたオイル等の潤滑剤が塗布される。これにより、摺動部の耐久性向上や放置時の固着に対する信頼性を確保することができる。 The contact portion between the drive shaft 33 and the first sliding surface 55 and the second sliding surface 62a of the moving body 4 and the contact portion between the rotation restricting portion 61a and the restricting portion groove 29 of the moving body 4 are provided with oil. A lubricant such as oil mixed with grease, Teflon (registered trademark) flakes or the like is applied. Thereby, the durability improvement of a sliding part and the reliability with respect to adhering at the time of leaving are securable.
 最後に、カバー8が被せられ、アクチュエータユニット1が完成する。 Finally, the cover 8 is put on and the actuator unit 1 is completed.
 以上のようにして製造されたアクチュエータユニット1は、図9に示されるように、移動体4のレンズ保持面54にレンズバレル7が嵌め込まれ、ユニット本体2の下面側に、IRカットフィルタ102および撮像センサ(撮像素子)103を有するセンサ基板104が配置される。より具体的には、レンズバレル7に設けられた接着溝72に充填された接着剤73によってレンズバレル7がレンズ保持面54に接着固定される。これにより、カメラモジュール(撮像装置)が構成される。 As shown in FIG. 9, the actuator unit 1 manufactured as described above has the lens barrel 7 fitted in the lens holding surface 54 of the moving body 4, and the IR cut filter 102 and the lower surface side of the unit body 2. A sensor substrate 104 having an image sensor (image sensor) 103 is disposed. More specifically, the lens barrel 7 is bonded and fixed to the lens holding surface 54 by the adhesive 73 filled in the bonding groove 72 provided in the lens barrel 7. Thereby, a camera module (imaging device) is configured.
 そして、例えば、携帯電話機の回路基板に、第1電極端子22の外部接続端子22bおよび第2電極端子23の外部接続端子23b(図1等参照)が置かれるようにして、前記カメラモジュールが携帯電話機の筐体内に設置される。 Then, for example, the camera module is carried in such a manner that the external connection terminal 22b of the first electrode terminal 22 and the external connection terminal 23b (see FIG. 1 etc.) of the second electrode terminal 23 are placed on the circuit board of the mobile phone. Installed in the phone casing.
 このように設置された状態で、駆動回路から第1電極端子22の外部接続端子22bおよび第2電極端子23の外部接続端子23bに所定の波形の電力が供給されると、アクチュエータ本体30の圧電素子32が中心軸C方向に振動する(伸縮を繰り返す)。この圧電素子32の振動によって駆動軸33が往復動し、その往復動によって移動体4が駆動軸33の軸方向(中心軸C方向)に移動する。詳しくは、以下の通りである。 When electric power having a predetermined waveform is supplied from the drive circuit to the external connection terminal 22b of the first electrode terminal 22 and the external connection terminal 23b of the second electrode terminal 23 in the state of being installed in this way, the piezoelectric of the actuator body 30 is supplied. The element 32 vibrates in the direction of the central axis C (extends and contracts repeatedly). The drive shaft 33 reciprocates due to the vibration of the piezoelectric element 32, and the movable body 4 moves in the axial direction (center axis C direction) of the drive shaft 33 due to the reciprocation. Details are as follows.
 圧電素子32に所定のデューティ比の矩形波が付与されることによって圧電素子32の変位が三角波状となり、その矩形波のデューティ比を変えることによって振幅の上昇時と下降時とで傾き(速さ)の異なる三角波が発生する。アクチュエータ3の駆動メカニズムは、これを利用するものである。以下では、移動体4が、例えば、近距離撮影位置から無限撮影位置に向かう場合について、具体的に説明する。なお、近距離撮影位置とは、移動体4の中心軸C方向の移動範囲において基部20(撮像センサ103)から最も遠い位置であり、無限撮影位置とは、前記移動範囲において基部20(撮像センサ103)から最も近い位置である。 When a rectangular wave having a predetermined duty ratio is applied to the piezoelectric element 32, the displacement of the piezoelectric element 32 becomes a triangular wave. By changing the duty ratio of the rectangular wave, the slope (speed) is increased and decreased when the amplitude is increased. ) Different triangular waves are generated. The drive mechanism of the actuator 3 utilizes this. Below, the case where the mobile body 4 goes to an infinite imaging | photography position from a short distance imaging | photography position, for example is demonstrated concretely. The short-distance shooting position is a position farthest from the base 20 (imaging sensor 103) in the movement range of the moving body 4 in the central axis C direction, and the infinite shooting position is the base 20 (imaging sensor) in the movement range. 103).
 まず、圧電素子32の縮小によって駆動軸33をゆっくりと下方に移動させると、この駆動軸33に摩擦係合している移動体4も駆動軸33の下方への移動に伴って同方向(下方)に移動する。そして、摩擦係合した摩擦力を超える程の瞬時の圧電素子32の伸長によって駆動軸33を上方に移動させると、移動体4がその位置(前記の下方への移動後の位置)に取り残される。このような駆動軸33の中心軸C方向の往復動を繰返すことにより、移動体4が下方に移動する。 First, when the drive shaft 33 is slowly moved downward by the reduction of the piezoelectric element 32, the moving body 4 that is frictionally engaged with the drive shaft 33 also moves in the same direction (downward as the drive shaft 33 moves downward). ) Then, when the drive shaft 33 is moved upward by the instantaneous extension of the piezoelectric element 32 so as to exceed the frictional friction force, the movable body 4 is left at that position (the position after the downward movement). . By repeating such reciprocation of the drive shaft 33 in the direction of the central axis C, the moving body 4 moves downward.
 以上のアクチュエータユニット1の製造方法およびこの方法によって製造された移動体4によれば、姿勢規定面(レンズ保持面54等)に対する第1および第2摺動面55、62aの姿勢が設計値(設計時に予定されていた相対姿勢)と異なっていても、姿勢規定面に対する第1および第2摺動面55、62aの姿勢を設計値通りに補正することによって、部品精度の高い移動体4が得られる。このようにして得られた部品精度の高い移動体4を用いて製造されたアクチュエータユニット1では、駆動軸33に対するレンズ(光学部品)71の姿勢が設計値通り(設計において予定されていた相対姿勢)になるため、駆動軸33の軸方向(移動体4の移動方向)に対するレンズ71の光軸C方向の精度が十分に得られる。このため、当該製造方法によって製造されたアクチュエータユニット1によれば、撮像装置等へ組み込むだけで撮像装置等におけるレンズ71の光軸C方向の精度を十分に確保することができる。 According to the manufacturing method of the actuator unit 1 and the moving body 4 manufactured by this method, the postures of the first and second sliding surfaces 55 and 62a with respect to the posture defining surface (the lens holding surface 54 and the like) are designed values ( Even if it is different from the relative posture planned at the time of design, by correcting the postures of the first and second sliding surfaces 55 and 62a with respect to the posture defining surface according to the design value, the moving body 4 with high component accuracy can be obtained. can get. In the actuator unit 1 manufactured using the moving body 4 with high component accuracy obtained in this way, the posture of the lens (optical component) 71 with respect to the drive shaft 33 is as designed (relative posture planned in the design). Therefore, the accuracy in the optical axis C direction of the lens 71 with respect to the axial direction of the drive shaft 33 (moving direction of the moving body 4) is sufficiently obtained. For this reason, according to the actuator unit 1 manufactured by the manufacturing method, the accuracy in the optical axis C direction of the lens 71 in the imaging device or the like can be sufficiently ensured only by being incorporated in the imaging device or the like.
 しかも、移動体4を押圧して姿勢規定面に対する第1および第2摺動面55、62aの姿勢を修正し、このとき生じた応力を当該応力の生じた部位を溶融して除去するといった簡単な工程によって、姿勢規定面に対する第1および第2摺動面55、62aの姿勢を補正することができるため、移動体4の部品精度を十分に確保しても製造コスト(加工コスト)を抑えることができる。 Moreover, the movable body 4 is pressed to correct the postures of the first and second sliding surfaces 55 and 62a with respect to the posture defining surface, and the stress generated at this time is easily removed by melting the portion where the stress is generated. Since the postures of the first and second sliding surfaces 55 and 62a with respect to the posture-defining surface can be corrected by a simple process, the manufacturing cost (processing cost) can be suppressed even when the component accuracy of the movable body 4 is sufficiently secured. be able to.
 なお、本発明のアクチュエータユニットの製造方法、および移動体は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 It should be noted that the actuator unit manufacturing method and the moving body of the present invention are not limited to the above-described embodiment, and it is needless to say that various changes can be made without departing from the scope of the present invention.
 姿勢規定面に対する第1および第2摺動面55、62aの姿勢を補正する具体的な構成は、限定されない。上記実施形態では、移動体本体5の第1摺動面55を含む部位またはガイドスプリング6の第2摺動面62aを有する部位(ガイド部62)を挟み込むことによって、第1および第2摺動面55、62aの姿勢が修正されているが、前記姿勢を補正する構成は、例えば、図16に示されるように、移動体本体5を補正用治具150に嵌め込み、移動体本体5の第1フランジ52側端部を第2フランジ53側端部に向けて押圧する構成であってもよい。この場合、押え部材92は、例えば、200~500gfで移動体本体5を下方に向けて押圧する。これにより、第2フランジ53側端部が径方向に押し広げられる。第1摺動面55の光軸方向の角度をレーザー形状測定機LMなどで測りながら、押え部材92を徐々に押圧力をあげながら下方に押圧し、第1摺動面55の光軸方向の角度が所定範囲に収まったところで押圧力を保持することで姿勢が修正される。この状態で第1摺動面55の周方向両側を溶融した後、凝固させることにより、姿勢規定面に対する第1摺動面55の姿勢を補正することができる。 The specific configuration for correcting the postures of the first and second sliding surfaces 55 and 62a with respect to the posture defining surface is not limited. In the above-described embodiment, the first and second sliding portions are sandwiched by sandwiching the portion including the first sliding surface 55 of the movable body 5 or the portion (guide portion 62) having the second sliding surface 62a of the guide spring 6. Although the postures of the surfaces 55 and 62a have been corrected, the configuration for correcting the posture is, for example, as shown in FIG. The structure which presses the 1st flange 52 side edge part toward the 2nd flange 53 side edge part may be sufficient. In this case, the pressing member 92 presses the movable body 5 downward with, for example, 200 to 500 gf. Thereby, the end part on the second flange 53 side is expanded in the radial direction. While measuring the angle of the first sliding surface 55 in the optical axis direction with a laser shape measuring machine LM or the like, the pressing member 92 is pressed downward while gradually increasing the pressing force, and the first sliding surface 55 in the optical axis direction. The posture is corrected by holding the pressing force when the angle falls within a predetermined range. In this state, the both sides of the first sliding surface 55 in the circumferential direction are melted and then solidified, whereby the posture of the first sliding surface 55 with respect to the posture defining surface can be corrected.
 また、上記実施形態では、第1摺動面55の姿勢と、第2摺動面62aの姿勢とが順に補正されているが、例えば、第1および第2摺動面55、62aの姿勢が同時に補正されてもよい。この場合、例えば、図14に示すような状態で、移動軸90が第1基準面96に向けて移動され、第1基準面96と移動軸90とで移動体本体5における第1摺動面55を有する部位が挟み込まれると共に、爪部112が第2基準面97に向かうように押圧部材110を移動させ、第2基準面97と爪部112とでガイド部62が挟み込まれる。そして、それぞれ挟み込まれた部位の近傍(周方向に隣接する部位)を溶融した後、凝固させることにより、第1および第2摺動面55、62aを同時に補正することができる。 Moreover, in the said embodiment, although the attitude | position of the 1st sliding surface 55 and the attitude | position of the 2nd sliding surface 62a are correct | amended in order, for example, the attitude | position of the 1st and 2nd sliding surfaces 55 and 62a is correct | amended. It may be corrected simultaneously. In this case, for example, in the state shown in FIG. 14, the moving shaft 90 is moved toward the first reference surface 96, and the first sliding surface of the movable body 5 is moved between the first reference surface 96 and the moving shaft 90. 55, and the pressing member 110 is moved so that the claw portion 112 faces the second reference surface 97, and the guide portion 62 is interposed between the second reference surface 97 and the claw portion 112. Then, the first and second sliding surfaces 55 and 62a can be corrected simultaneously by melting and solidifying the vicinity (parts adjacent in the circumferential direction) of the sandwiched parts.
 また、上記実施形態では、移動体本体5およびガイドスプリング6の一部(応力の生じている部位)を溶融するために、当該部位にレーザー光線が照射されているが、この構成に限定されない。例えば、前記応力の生じている部位に電流を流し、当該部位の電気抵抗によって生じる熱を利用して当該部位が溶融されてもよい。 Further, in the above embodiment, in order to melt part of the movable body 5 and the guide spring 6 (part where the stress is generated), the part is irradiated with the laser beam, but the present invention is not limited to this configuration. For example, an electric current may be passed through the site where the stress is generated, and the site may be melted using heat generated by the electrical resistance of the site.
 また、上記実施形態の移動体本体5およびガイドスプリング6は、金属製であるが、樹脂製であってもよい。かかる構成によっても、応力の生じた部位を加熱して軟化(または溶融)させることにより応力を除去し、その後、冷却して固めることができる。 Further, the movable body 5 and the guide spring 6 of the above embodiment are made of metal, but may be made of resin. Also with such a configuration, the stressed portion can be heated and softened (or melted) to remove the stress, and then be cooled and hardened.
 また、上記実施形態では、第1摺動面55の姿勢と第2摺動面62aの姿勢とが両方とも補正されているが、いずれか一方(第1摺動面55または第2摺動面62a)の姿勢だけが補正されてもよい。製品(アクチュエータユニット1)に求められる部品精度があまり高くない場合には、いずれか一方の姿勢を補正することで、求められる部品精度を満たすことができる。 Moreover, in the said embodiment, although both the attitude | position of the 1st sliding face 55 and the attitude | position of the 2nd sliding face 62a are correct | amended, either (the 1st sliding face 55 or the 2nd sliding face) Only the posture of 62a) may be corrected. When the component accuracy required for the product (actuator unit 1) is not so high, the required component accuracy can be satisfied by correcting one of the postures.
 また、図17に示されるように、ガイドスプリング6Aのガイド部62近傍に、光軸C方向の幅が他の部位(周方向に隣接する部位)よりも小さな部位65が、形成されてもよい。例えば、光軸C方向のいずれか一方の端部から他方の端部に向かう溝部66が形成されることによって、前記幅の小さな部位65が形成される。この溝部66は、光軸C方向に延びる成分を持っていればよく、光軸C方向に対して傾斜していてもよい。かかる構成によれば、姿勢規定面に対する第2摺動面62aの姿勢を補正したときに、前記幅の小さな部位65に応力が集中するため、当該幅の小さな部位65を溶融することで、第2摺動面62aの姿勢を修正することにより生じた応力を除去することができる。すなわち、前記幅の小さな部位65を設けることで、溶融させる範囲を小さくすることができ、かつ当該部位65を溶融させることで前記応力を確実に除去することができる。 Further, as shown in FIG. 17, a portion 65 having a width in the optical axis C direction smaller than other portions (a portion adjacent in the circumferential direction) may be formed in the vicinity of the guide portion 62 of the guide spring 6A. . For example, the narrow portion 65 is formed by forming the groove 66 from one end in the direction of the optical axis C to the other end. The groove 66 may have a component extending in the optical axis C direction and may be inclined with respect to the optical axis C direction. According to such a configuration, when the posture of the second sliding surface 62a with respect to the posture defining surface is corrected, stress concentrates on the portion 65 having the small width. Therefore, by melting the portion 65 having the small width, The stress generated by correcting the posture of the two sliding surfaces 62a can be removed. That is, by providing the portion 65 having the small width, the melting range can be reduced, and the stress can be reliably removed by melting the portion 65.
 上記実施形態では、移動体本体5にガイドスプリング6が溶接された後に、第2摺動面62aの姿勢が補正されているが、この構成に限定されない。例えば、第2摺動面62aの姿勢の修正によってガイドスプリング6に生じた応力の除去と、移動体本体5へのガイドスプリング6の溶接とを、同時に行う構成であってもよい。例えば、より具体的には、ガイドスプリング6において姿勢規定面に対する第2摺動面62aの姿勢を修正したときに応力が生じた部位と、この部位と径方向に重なっている移動体本体5の部位とが、一緒に溶融される。この場合、例えば、50WのYAGレーザー光線を3~5Jの照射エネルギーで照射することにより、径方向に重なる部位を一緒に溶融させることができる。 In the above embodiment, the posture of the second sliding surface 62a is corrected after the guide spring 6 is welded to the movable body 5. However, the present invention is not limited to this configuration. For example, the configuration may be such that the stress generated in the guide spring 6 due to the correction of the posture of the second sliding surface 62a and the welding of the guide spring 6 to the movable body 5 are performed simultaneously. For example, more specifically, a portion of the guide spring 6 where stress is generated when the posture of the second sliding surface 62a with respect to the posture defining surface is corrected, and the movable body 5 that overlaps this portion in the radial direction. The parts are melted together. In this case, for example, by irradiating a 50 W YAG laser beam with an irradiation energy of 3 to 5 J, the portions overlapping in the radial direction can be melted together.
 このように径方向に重なる部位を一緒に溶融させた後、当該部位が冷えて凝固することにより、前記レーザー光線の照射部位が連結(結合)される(溶接される)。 Thus, after the portions overlapping in the radial direction are melted together, the portions are cooled and solidified, whereby the irradiated portions of the laser beam are connected (bonded) (welded).
 上記実施形態では、駆動軸33と摺接(当接)する移動体4の面(当接面)が2つ(第1および第2摺動面)であるが、1つでもよく、3つ以上であってもよい。 In the above embodiment, there are two surfaces (contact surfaces) of the moving body 4 that are in sliding contact (contact) with the drive shaft 33 (first and second sliding surfaces), but one or three may be used. It may be the above.
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 一態様にかかるアクチュエータユニットの製造方法は、短筒形状を有し、その内側に光学部品が嵌め込まれた状態で移動可能な移動体と、駆動軸を有し、この駆動軸によって前記移動体をその軸方向に駆動するアクチュエータ本体と、を有するアクチュエータが組み込まれたアクチュエータユニットの製造方法であって、移動体表面に含まれかつ前記駆動軸と当接することによって当該駆動軸に対する前記移動体の姿勢を定める当接面が、この当接面を除いた移動体表面に含まれかつ前記移動体における前記光学部品の姿勢を定める姿勢規定面に対して所定の姿勢となるように、前記移動体の少なくとも一部を押圧する姿勢修正工程と、前記押圧された状態の前記移動体において、前記押圧によって応力の生じた部位を溶融させた後、凝固させることによって前記応力を除去する応力除去工程と、を備える。 A method for manufacturing an actuator unit according to one aspect includes a movable body having a short cylindrical shape and movable in a state where an optical component is fitted therein, and a drive shaft. An actuator unit that incorporates an actuator having an actuator body that drives in the axial direction, and is included in the surface of the moving body and comes into contact with the driving shaft to contact the driving body with respect to the driving shaft Of the movable body so that the contact surface that defines the position is included in the surface of the movable body excluding the contact surface and has a predetermined posture with respect to the posture defining surface that defines the posture of the optical component in the movable body. In the posture correcting step of pressing at least part of the moving body in the pressed state, a portion where stress is generated by the pressing is melted and then solidified. And a stress relief step of removing the stress by causing.
 かかる構成によれば、姿勢規定面に対する当接面の姿勢が設計値(設計時に予定されていた相対姿勢)と異なっていても、姿勢規定面に対する当接面の姿勢を設計値通りに補正することによって、部品精度の高い移動体が得られる。このようにして得られた部品精度の高い移動体を用いて製造されたアクチュエータユニットでは、駆動軸に対する光学部品の姿勢が設計値通り(設計において予定されていた相対姿勢)になるため、駆動軸の軸方向(移動体の移動方向)に対する光学部品の光軸方向の精度が十分に得られる。このため、当該製造方法によって製造されたアクチュエータユニットによれば、撮像装置等へ組み込むだけで撮像装置等における光学部品の光軸方向の精度を十分に確保することができる。 According to this configuration, even if the posture of the contact surface with respect to the posture defining surface is different from the design value (relative posture planned at the time of design), the posture of the contact surface with respect to the posture defining surface is corrected as designed. Thus, a moving body with high component accuracy is obtained. In the actuator unit manufactured using the moving part with high component accuracy obtained in this way, the posture of the optical component with respect to the drive shaft is as designed (relative posture planned in the design). The accuracy of the optical axis direction of the optical component with respect to the axial direction (moving direction of the moving body) is sufficiently obtained. For this reason, according to the actuator unit manufactured by the manufacturing method, the accuracy in the optical axis direction of the optical component in the imaging device or the like can be sufficiently ensured only by being incorporated in the imaging device or the like.
 しかも、移動体を押圧して姿勢規定面に対する当接面の姿勢を修正し、このとき生じた応力を当該応力の生じた部位を溶融して除去するといった簡単な工程によって、姿勢規定面に対する当接面の姿勢を補正することができるため、当該製造方法は、移動体の部品精度を十分に確保しても製造コスト(加工コスト)を抑えることができる。 In addition, the posture of the contact surface with respect to the posture defining surface is corrected by pressing the moving body, and the stress generated at this time is removed against the posture defining surface by melting and removing the portion where the stress is generated. Since the posture of the contact surface can be corrected, the manufacturing method can suppress the manufacturing cost (processing cost) even if the parts accuracy of the moving body is sufficiently ensured.
 他の一態様では、上述のアクチュエータユニットの製造方法において、前記姿勢修正工程では、前記当接面が前記所定の姿勢と対応する姿勢の基準面と接するように、前記移動体における前記当接面を有する部位を前記基準面に押圧し、これにより前記当接面を前記基準面に面接触させることが好ましい。 In another aspect, in the method for manufacturing an actuator unit described above, in the posture correction step, the contact surface of the movable body is such that the contact surface contacts a reference surface having a posture corresponding to the predetermined posture. It is preferable to press a portion having the reference surface against the reference surface, thereby bringing the contact surface into surface contact with the reference surface.
 このように、移動体の一部を基準面に向けて押圧して当接面を基準面に面接触させるといった簡単な方法によって、当該製造方法は、姿勢規定面に対する当接面の相対姿勢を容易かつ確実に修正することができる。 In this way, the manufacturing method can change the relative posture of the contact surface with respect to the posture defining surface by a simple method of pressing a part of the moving body toward the reference surface and bringing the contact surface into surface contact with the reference surface. It can be easily and reliably corrected.
 この場合、前記姿勢修正工程において、例えば、前記基準面と、この基準面に対向する押圧面とで前記当接面を有する部位を挟み込むことによって、前記当接面を有する部位を前記基準面に押し付けることができる。 In this case, in the posture correction step, for example, the portion having the contact surface is sandwiched between the reference surface and the pressing surface facing the reference surface so that the portion having the contact surface becomes the reference surface. Can be pressed.
 この場合、前記応力除去工程では、前記移動体の前記当接面を有する部位と周方向に隣接しかつ前記光軸方向の一方側端部を含む前記光軸方向の一部分を溶融させた後、凝固させることが好ましい。 In this case, in the stress relieving step, after melting a part in the optical axis direction, which is adjacent to the portion having the contact surface of the moving body in the circumferential direction and includes one end portion in the optical axis direction, It is preferable to solidify.
 短筒形状の移動体において当接面を有する部位を挟み込んで姿勢規定面に対する当接面の姿勢を修正すると、当接面を有する部位に隣接する領域の光軸方向の一方側端部に応力が集中し易い。このため、この応力の集中し易い部分を含む光軸方向の一部分を溶融させることで、当該製造方法は、溶融させる範囲を抑えつつ、前記修正によって生じた応力を効果的に除去することができる。 If the position of the contact surface with respect to the posture defining surface is corrected by sandwiching the portion having the contact surface in the short cylinder-shaped moving body, stress is applied to one end in the optical axis direction of the region adjacent to the portion having the contact surface. Is easy to concentrate. For this reason, by melting a portion in the optical axis direction including a portion where the stress is likely to concentrate, the manufacturing method can effectively remove the stress generated by the correction while suppressing the melting range. .
 他の一態様では、これら上述のアクチュエータユニットの製造方法において、2つの当接面を駆動軸の周面に当接させることにより、駆動軸の軸方向に対する移動体の姿勢の精度をより高くする場合には、移動体の前記当接面が、前記駆動軸とそれぞれ当接可能な第1当接面と第2当接面とからなり、前記第1当接面と前記第2当接面とは、前記駆動軸の周面にそれぞれ当接できるように隣接した状態で、互いの法線が交差すると共に各法線が前記光軸とそれぞれ直交するようにそれぞれ配置される。このとき、前記姿勢修正工程および前記応力除去工程において、前記第1当接面および前記第2当接面の少なくとも一方の前記姿勢規定面に対する姿勢が修正されれば、移動体の部品精度を確保することが可能となる。すなわち、アクチュエータユニットに求められる部品精度があまり高くない場合には、いずれか一方の当接面の姿勢を補正することによって、求められる部品精度を満たすことができる。 In another aspect, in the above-described manufacturing method of the actuator unit, the accuracy of the posture of the movable body with respect to the axial direction of the drive shaft is further increased by bringing the two contact surfaces into contact with the peripheral surface of the drive shaft. In this case, the contact surface of the moving body includes a first contact surface and a second contact surface that can contact the drive shaft, respectively, and the first contact surface and the second contact surface. Are arranged in such a manner that they are adjacent to each other so as to be in contact with the peripheral surface of the drive shaft, so that their normal lines intersect and each normal line is orthogonal to the optical axis. At this time, if the posture of at least one of the first contact surface and the second contact surface with respect to the posture defining surface is corrected in the posture correction step and the stress removal step, the component accuracy of the moving body is ensured. It becomes possible to do. That is, when the component accuracy required for the actuator unit is not so high, the required component accuracy can be satisfied by correcting the posture of one of the contact surfaces.
 他の一態様では、これら上述のアクチュエータユニットの製造方法において、前記移動体を金属によって形成することで、移動体の強度を確保しつつ周壁部を薄くすることができる。これにより、当該製造方法は、移動体の外寸を大きくすることなく、径のより大きな光学部品を移動体に保持させることができる。 In another aspect, in the above-described manufacturing method of the actuator unit, the peripheral wall can be made thin while ensuring the strength of the moving body by forming the moving body with a metal. Thereby, the said manufacturing method can make a moving body hold | maintain an optical component with a larger diameter, without enlarging the outer dimension of a moving body.
 このような移動体が金属(合金を含む)製のアクチュエータユニットを製造する場合、例えば、前記応力除去工程では、レーザー光線の照射によって前記応力の生じた部位を溶融させてもよく、また、前記応力の生じた部位に電流を流して当該応力の生じた部位を発熱させることによって溶融させてもよい。 When such a moving body manufactures an actuator unit made of metal (including an alloy), for example, in the stress removal step, the stressed portion may be melted by irradiation with a laser beam, and the stress Alternatively, the current may be melted by causing a current to flow through the site where the stress occurs and causing the site where the stress occurs to generate heat.
 他の一態様では、これら上述のアクチュエータユニットの製造方法において、前記移動体が、前記当接面を有する部位と隣接する領域に、前記光軸方向の幅が隣接する部位よりも小さな部位を有することで、姿勢修正工程において姿勢規定面に対する当接面の姿勢を修正したときに、前記小さな部位に応力を集中させることができる。そして、前記応力除去工程において、前記小さな部位を溶融させた後、凝固させることで、当該製造方法は、前記応力をより確実かつ効果的に除去することができる。 In another aspect, in the above-described manufacturing method of the actuator unit, the moving body has a portion having a smaller width in the optical axis direction in a region adjacent to the portion having the contact surface. Thus, when the posture of the contact surface with respect to the posture defining surface is corrected in the posture correcting step, stress can be concentrated on the small part. And in the said stress removal process, the said manufacturing method can remove the said stress more reliably and effectively by melting the said small site | part and solidifying it.
 他の一態様では、これら上述のアクチュエータユニットの製造方法において、前記移動体が、短筒状の移動体本体と、この移動体本体を囲うように配置され、前記駆動軸を当接面に押し当てる押し当て部材と、を有してもよい。この場合、前記応力除去工程では、前記移動体本体において、前記姿勢修正工程で前記姿勢規定面に対する前記当接面の姿勢を修正したときに応力が生じた部位と、前記押し当て部材における前記移動体本体の応力が生じた部位と径方向に重なっている部位とを溶融させた後、凝固させることにより、前記応力の除去と移動体本体と押し当て部材との溶接とを同時に行うことができる。 In another aspect, in the above-described manufacturing method of the actuator unit, the movable body is disposed so as to surround the movable body having a short cylindrical shape and the movable body, and the drive shaft is pushed against the contact surface. And an abutting pressing member. In this case, in the stress removing step, in the movable body, a portion where stress is generated when the posture of the contact surface with respect to the posture defining surface is corrected in the posture correcting step, and the movement of the pressing member. By melting and then solidifying the part of the body main body where the stress is generated and the part overlapping in the radial direction, the stress can be removed and the moving body main body and the pressing member can be welded simultaneously. .
 他の一態様にかかるアクチュエータユニットの移動体は、アクチュエータユニットに組み込まれ、光学部品を保持した状態でアクチュエータの駆動軸によってその軸方向に駆動される移動体であって、短筒形状を有する当該移動体の表面に含まれかつ前記駆動軸と当接することによって当該駆動軸に対する当該移動体の姿勢を定める当接面が、この当接面を除いた移動体表面に含まれかつ前記移動体における前記光学部品の姿勢を定める姿勢規定面に対して所定の姿勢となるように、当該移動体の少なくとも一部が押圧され、これにより生じた応力を除去するために当該応力が生じた部位が溶融された後、凝固させられたことで生じた痕跡を有する。そして、他の一態様にかかるアクチュエータユニットは、このような上述の移動体を有する。 A moving body of an actuator unit according to another aspect is a moving body that is incorporated in an actuator unit and is driven in the axial direction by a drive shaft of an actuator while holding an optical component, and has a short cylindrical shape. A contact surface that is included on the surface of the moving body and determines the posture of the moving body with respect to the drive shaft by contacting the drive shaft is included in the surface of the moving body except the contact surface, and At least a part of the movable body is pressed so as to be in a predetermined posture with respect to the posture defining surface that defines the posture of the optical component, and the portion where the stress is generated is melted to remove the stress generated thereby. After being made, it has a trace caused by being solidified. The actuator unit according to another aspect includes the above-described moving body.
 かかる構成によれば、移動体の製造時において姿勢規定面に対する当接面の姿勢が設計値(設計時に予定されていた相対姿勢)と異なっていても、姿勢規定面に対する当接面の姿勢を設計値通りに補正されているため、部品精度の高い移動体が得られる。このようにして得られた部品精度の高い移動体を用いてアクチュエータユニットが製造されると、駆動軸に対する光学部品の姿勢が設計値通り(設計において予定されていた相対姿勢)になる。このため、当該アクチュエータユニットでは、駆動軸の軸方向(移動体の移動方向)に対する光学部品の光軸方向の精度が十分に得られ、撮像装置等へ組み込むだけで撮像装置等における光学部品の光軸方向の精度を十分に確保することが可能となる。 According to such a configuration, even when the posture of the contact surface with respect to the posture defining surface is different from the design value (relative posture planned at the time of design) at the time of manufacturing the mobile body, the posture of the contact surface with respect to the posture defining surface is changed. Since it is corrected according to the design value, a moving body with high component accuracy can be obtained. When an actuator unit is manufactured using a moving body with high component accuracy obtained in this way, the posture of the optical component with respect to the drive shaft becomes the design value (relative posture planned in the design). For this reason, in the actuator unit, the accuracy of the optical axis direction of the optical component with respect to the axial direction of the drive shaft (moving direction of the moving body) is sufficiently obtained. It becomes possible to ensure sufficient accuracy in the axial direction.
 しかも、移動体を押圧して姿勢規定面に対する当接面の姿勢を修正し、このとき生じた応力を当該応力の生じた部位を溶融して除去するといった簡単な工程によって、姿勢規定面に対する当接面の姿勢が補正されているため、移動体の部品精度が十分に確保されていても製造コスト(加工コスト)を抑えることができる。 In addition, the posture of the contact surface with respect to the posture defining surface is corrected by pressing the moving body, and the stress generated at this time is removed against the posture defining surface by melting and removing the portion where the stress is generated. Since the posture of the contact surface is corrected, the manufacturing cost (processing cost) can be suppressed even if the component accuracy of the moving body is sufficiently ensured.
 この出願は、2013年5月20日に出願された日本国特許出願特願2013-106154を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2013-106154 filed on May 20, 2013, the contents of which are included in this application.
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been appropriately and fully described above with reference to the drawings. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not covered by the claims. To be construed as inclusive.
 本発明によれば、アクチュエータユニットの製造方法、およびアクチュエータユニットの移動体ならびにそれを有するアクチュエータユニットを提供することができる。 According to the present invention, it is possible to provide a method of manufacturing an actuator unit, a moving body of the actuator unit, and an actuator unit having the same.

Claims (12)

  1.  短筒形状を有し、その内側に光学部品を保持した状態で移動可能な移動体と、駆動軸を有し、この駆動軸によって前記移動体をその軸方向に駆動するアクチュエータ本体と、を有するアクチュエータが組み込まれたアクチュエータユニットの製造方法であって、
     移動体表面に含まれかつ前記駆動軸と当接することによって当該駆動軸に対する前記移動体の姿勢を定める当接面が、この当接面を除いた移動体表面に含まれかつ前記移動体における前記光学部品の姿勢を定める姿勢規定面に対して所定の姿勢となるように、前記移動体の少なくとも一部を押圧する姿勢修正工程と、
     前記押圧された状態の前記移動体において、前記押圧によって応力の生じた部位を溶融させた後、凝固させることによって前記応力を除去する応力除去工程と、を備える、
     アクチュエータユニットの製造方法。
    A movable body having a short cylindrical shape and movable while holding an optical component inside thereof, and an actuator main body having a drive shaft and driving the movable body in the axial direction by the drive shaft A method of manufacturing an actuator unit incorporating an actuator,
    A contact surface that is included on the surface of the movable body and that determines the posture of the movable body with respect to the drive shaft by contacting the drive shaft is included in the surface of the movable body excluding the contact surface, and the movable body includes the contact surface. A posture correcting step of pressing at least a part of the movable body so as to have a predetermined posture with respect to a posture defining surface that determines a posture of the optical component;
    A stress removing step of removing the stress by solidifying the portion where the stress is generated by the pressing in the moving body in the pressed state,
    Actuator unit manufacturing method.
  2.  前記姿勢修正工程では、前記当接面が前記所定の姿勢と対応する姿勢の基準面と接するように、前記移動体における前記当接面を有する部位を前記基準面に押圧し、これにより前記当接面を前記基準面に面接触させる、
     請求項1に記載のアクチュエータユニットの製造方法。
    In the posture correcting step, a portion having the contact surface in the movable body is pressed against the reference surface so that the contact surface is in contact with a reference surface having a posture corresponding to the predetermined posture. Bringing the contact surface into surface contact with the reference surface;
    A method for manufacturing the actuator unit according to claim 1.
  3.  前記姿勢修正工程では、前記基準面と、この基準面に対向する押圧面とで前記当接面を有する部位を挟み込むことによって当該当接面を有する部位を前記基準面に押し付ける、
     請求項2に記載のアクチュエータユニットの製造方法。
    In the posture correction step, the portion having the contact surface is pressed against the reference surface by sandwiching the portion having the contact surface between the reference surface and a pressing surface facing the reference surface.
    A method for manufacturing the actuator unit according to claim 2.
  4.  前記応力除去工程では、前記移動体の前記当接面を有する部位と周方向に隣接しかつ前記光軸方向の一方側端部を含む前記光軸方向の一部分を溶融させた後、凝固させる、
     請求項3に記載のアクチュエータユニットの製造方法。
    In the stress relieving step, after melting a part in the optical axis direction, which is adjacent to the portion having the contact surface of the moving body in the circumferential direction and includes one end portion in the optical axis direction, the solidified.
    The manufacturing method of the actuator unit of Claim 3.
  5.  前記当接面は、前記駆動軸とそれぞれ当接可能な第1当接面と第2当接面とからなり、
     前記第1当接面と前記第2当接面とは、前記駆動軸の周面にそれぞれ当接できるように隣接した状態で、互いの法線が交差すると共に各法線が前記光軸とそれぞれ直交するようにそれぞれ配置され、
     前記姿勢修正工程および前記応力除去工程では、前記第1当接面および前記第2当接面の少なくとも一方の前記姿勢規定面に対する姿勢が修正される、
     請求項1~4のいずれか1項に記載のアクチュエータユニットの製造方法。
    The contact surface includes a first contact surface and a second contact surface that can contact the drive shaft, respectively.
    The first abutment surface and the second abutment surface are adjacent to each other so that they can abut on the peripheral surface of the drive shaft. Are arranged to be orthogonal to each other,
    In the posture correcting step and the stress removing step, a posture of at least one of the first contact surface and the second contact surface with respect to the posture defining surface is corrected.
    The method for manufacturing the actuator unit according to any one of claims 1 to 4.
  6.  前記移動体は金属によって形成されている、
     請求項1~5のいずれか1項に記載のアクチュエータユニットの製造方法。
    The moving body is made of metal,
    The method for manufacturing an actuator unit according to any one of claims 1 to 5.
  7.  前記応力除去工程では、レーザー光線の照射によって前記応力の生じた部位を溶融させる、
     請求項6に記載のアクチュエータユニットの製造方法。
    In the stress removal step, the stressed portion is melted by laser beam irradiation.
    A method for manufacturing the actuator unit according to claim 6.
  8.  前記応力除去工程では、前記応力の生じた部位に電流を流して当該応力の生じた部位を発熱させることによって溶融させる、
     請求項6に記載のアクチュエータユニットの製造方法。
    In the stress relieving step, a current is passed through the stressed part to melt the stressed part to generate heat,
    A method for manufacturing the actuator unit according to claim 6.
  9.  前記移動体は、前記当接面を有する部位と隣接する領域に、前記光軸方向の幅が隣接する部位よりも小さな部位を有し、
     前記応力除去工程では、前記小さな部位を溶融させた後、凝固させる、
     請求項1~7のいずれか1項に記載のアクチュエータユニットの製造方法。
    The moving body has a portion that is smaller than a portion adjacent to the width of the optical axis in a region adjacent to the portion having the contact surface,
    In the stress relief step, the small part is melted and then solidified.
    The method for manufacturing an actuator unit according to any one of claims 1 to 7.
  10.  前記移動体は、短筒状の移動体本体と、この移動体本体を囲うように配置され、前記駆動軸を当接面に押し当てる押し当て部材と、を有し、
     前記応力除去工程では、
    前記移動体本体において、前記姿勢修正工程で前記姿勢規定面に対する前記当接面の姿勢を修正したときに応力が生じた部位と、前記押し当て部材における前記移動体本体の応力が生じた部位と径方向に重なっている部位とを溶融させた後、凝固させる、
     請求項1~9のいずれか1項に記載のアクチュエータユニットの製造方法。
    The movable body has a short cylindrical movable body main body, and a pressing member that is disposed so as to surround the movable body main body and presses the drive shaft against a contact surface,
    In the stress relief step,
    In the movable body main body, a portion where stress is generated when the posture of the contact surface with respect to the posture defining surface is corrected in the posture correction step, and a portion where stress of the movable body main body is generated in the pressing member. After melting the part overlapping in the radial direction, solidify,
    The method for manufacturing an actuator unit according to any one of claims 1 to 9.
  11.  アクチュエータユニットに組み込まれ、光学部品を保持した状態でアクチュエータの駆動軸によってその軸方向に駆動される移動体であって、
     短筒形状を有する当該移動体の表面に含まれかつ前記駆動軸と当接することによって当該駆動軸に対する当該移動体の姿勢を定める当接面が、この当接面を除いた移動体表面に含まれかつ前記移動体における前記光学部品の姿勢を定める姿勢規定面に対して所定の姿勢となるように、当該移動体の少なくとも一部が押圧され、これにより生じた応力を除去するために当該応力が生じた部位が溶融された後、凝固させられたことで生じた痕跡を有する、
     アクチュエータユニットの移動体。
    A moving body incorporated in an actuator unit and driven in the axial direction by a drive shaft of an actuator while holding an optical component;
    A contact surface that is included in the surface of the movable body having a short cylindrical shape and determines the posture of the movable body with respect to the drive shaft by contacting the drive shaft is included in the surface of the movable body excluding the contact surface. In addition, at least a part of the moving body is pressed so as to be in a predetermined posture with respect to a posture defining surface that determines the posture of the optical component in the moving body, and the stress is generated to remove the stress generated thereby. After the site where the
    Actuator unit moving body.
  12.  請求項11に記載のアクチュエータユニットの移動体を有するアクチュエータユニット。 An actuator unit having the actuator unit moving body according to claim 11.
PCT/JP2014/062174 2013-05-20 2014-05-02 Method for manufacturing actuator unit, moving body for actuator unit, and actuator unit having same WO2014188866A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013106154 2013-05-20
JP2013-106154 2013-05-20

Publications (1)

Publication Number Publication Date
WO2014188866A1 true WO2014188866A1 (en) 2014-11-27

Family

ID=51933429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062174 WO2014188866A1 (en) 2013-05-20 2014-05-02 Method for manufacturing actuator unit, moving body for actuator unit, and actuator unit having same

Country Status (1)

Country Link
WO (1) WO2014188866A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010136569A (en) * 2008-12-08 2010-06-17 Sharp Corp Driving device, imaging device, and electronic equipment
JP2010183674A (en) * 2009-02-03 2010-08-19 Sharp Corp Drive device, image capturing apparatus with the same, and electronic apparatus
JP2013062997A (en) * 2011-09-15 2013-04-04 Konica Minolta Advanced Layers Inc Drive mechanism and lens unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010136569A (en) * 2008-12-08 2010-06-17 Sharp Corp Driving device, imaging device, and electronic equipment
JP2010183674A (en) * 2009-02-03 2010-08-19 Sharp Corp Drive device, image capturing apparatus with the same, and electronic apparatus
JP2013062997A (en) * 2011-09-15 2013-04-04 Konica Minolta Advanced Layers Inc Drive mechanism and lens unit

Similar Documents

Publication Publication Date Title
EP1895344B1 (en) Camera module
JP5569535B2 (en) Drive mechanism and image pickup apparatus using the same
JP6155460B2 (en) Drive member, linear drive device, camera device, and electronic device
KR101359243B1 (en) Electrical machine conversion element and drive device
WO2010004993A1 (en) Drive module, method of assembling the same, and electronic apparatus
JPWO2011055503A1 (en) Imaging apparatus, method for manufacturing the same, and adjustment jig
JP2012047906A (en) Drive module and electronic apparatus
WO2014203529A1 (en) Vibration-type actuator, interchangeable lens, image pickup apparatus, and automatic stage
JP2010151007A (en) Driving module and electronic device
JP5515643B2 (en) Lens unit, imaging apparatus using the same, and method of assembling lens unit
JP2011099900A (en) Lens unit, image pickup device using the same, and method for connecting optical element
JP5565543B1 (en) Driving device and imaging device
JP5392011B2 (en) Imaging device
JP2011107413A (en) Actuator, drive module, and electronic equipment
JP5565540B1 (en) Actuator unit and imaging device
WO2014188866A1 (en) Method for manufacturing actuator unit, moving body for actuator unit, and actuator unit having same
JP2012047908A (en) Drive module and electronic equipment
JP2011118334A (en) Imaging apparatus
JP2017181863A (en) Unit with wiring board and magnetic driving device
WO2014162721A1 (en) Lens holding unit and method for manufacturing lens holding unit
JP5556976B1 (en) Imaging lens driving actuator unit and imaging apparatus
JP5618028B2 (en) Driving device and imaging device
JP2010020177A (en) Drive module and electronic device having the same
WO2024014258A1 (en) Vibration actuator and electronic device
WO2014049963A1 (en) Drive device production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14801704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14801704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP