WO2014049880A1 - Radiation blocking material and method for manufacturing same - Google Patents

Radiation blocking material and method for manufacturing same Download PDF

Info

Publication number
WO2014049880A1
WO2014049880A1 PCT/JP2012/075261 JP2012075261W WO2014049880A1 WO 2014049880 A1 WO2014049880 A1 WO 2014049880A1 JP 2012075261 W JP2012075261 W JP 2012075261W WO 2014049880 A1 WO2014049880 A1 WO 2014049880A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
shielding material
radiation shielding
compound
silicon
Prior art date
Application number
PCT/JP2012/075261
Other languages
French (fr)
Japanese (ja)
Inventor
愉 川原
Original Assignee
株式会社カワハラ技研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カワハラ技研 filed Critical 株式会社カワハラ技研
Priority to PCT/JP2012/075261 priority Critical patent/WO2014049880A1/en
Publication of WO2014049880A1 publication Critical patent/WO2014049880A1/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/08Metals; Alloys; Cermets, i.e. sintered mixtures of ceramics and metals
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F3/00Shielding characterised by its physical form, e.g. granules, or shape of the material
    • G21F3/02Clothing

Definitions

  • the present invention relates to a radiation shielding material and a manufacturing method thereof.
  • Radiation refers to a general term for ⁇ rays, ⁇ rays, ⁇ rays, X rays, neutron rays, and the like. Among them, ⁇ rays and ⁇ rays can be easily shielded by a thin film such as aluminum. On the other hand, ⁇ -rays, X-rays, and neutron rays have a high property of transmitting substances, and therefore, substances that shield these substances have been researched and developed (for example, Patent Document 1). *
  • lead is known as a substance having a particularly high ability to shield X-rays and ⁇ -rays among commercially available products.
  • lead is harmful to the human body and there are concerns about adverse effects on the natural environment, lead-free radiation shielding materials are required.
  • the present inventors have made extensive studies. As a result, it has been found that by using a material containing a specific element as a raw material, a substance capable of shielding X-rays can be obtained.
  • the present invention relates to the following radiation shielding materials and methods for producing the same.
  • Item 1 A radiation shielding material comprising at least silicon, strontium, magnesium, europium and dysprosium as essential elements.
  • Item 2. Item 1 characterized by containing 5-30% by mass of silicon, 30-60% by mass of strontium, 1-20% by mass of magnesium, 0.1-5% by mass of europium, and 0.1-5% by mass of dysprosium.
  • the radiation shielding material described in 1. Item 3.
  • Item 3. The radiation shielding material according to Item 1 or 2, which is obtained by firing at least silicon oxide, strontium carbonate, magnesium oxide, europium oxide, and dysprosium oxide.
  • Item 4. Item 4. The radiation shielding material according to Item 3, which is obtained by further plasma sintering after firing.
  • a method for producing a radiation shielding material having at least silicon, strontium, magnesium, europium and dysprosium as essential elements comprising a firing step of mixing and firing a silicon compound, a strontium compound, a magnesium compound, a europium compound and a dysprosium compound
  • the manufacturing method of a radiation shielding material comprising a firing step of mixing and firing a silicon compound, a strontium compound, a magnesium compound, a europium compound and a dysprosium compound.
  • the radiation shielding material of the present invention can shield X-rays.
  • ultraviolet rays can be shielded.
  • FIG. 1 shows an example of a flowchart of the manufacturing method of the present invention.
  • FIG. 2 is an image of the radiation shielding material obtained in Example 1 of the present invention.
  • Radiation shielding material The radiation shielding material of the present invention is characterized by having at least silicon, strontium, magnesium, europium and dysprosium as essential elements. By combining these elements, X-rays can be shielded at a practical level. It can also absorb ultraviolet rays. Furthermore, since it is a silicate-based compound, it has a lighter specific gravity than lead and is excellent in workability. *
  • the content of silicon (Si) is preferably 5 to 30% by mass, more preferably 10 to 20% by mass. *
  • the content of strontium (Sr) is preferably 30 to 60% by mass, more preferably 40 to 50% by mass. *
  • the magnesium (Mg) content is preferably 1 to 20% by mass, more preferably 5 to 10% by mass. *
  • the content of europium (Eu) is preferably 0.1 to 5% by mass, more preferably 0.5 to 3% by mass.
  • the content of dysprosium (Dy) is preferably 0.1 to 5% by mass, more preferably 0.5 to 3% by mass.
  • the radiation shielding material of the present invention may contain oxygen atoms (preferably 10 to 50% by mass, more preferably 20 to 40% by mass) in addition to the above essential elements. Further, it may contain a boron atom, a radiation absorbing atom other than the above (for example, a lanthanoid element such as erbium) or the like, and may further contain impurities inevitable in production.
  • oxygen atoms preferably 10 to 50% by mass, more preferably 20 to 40% by mass
  • it may contain a boron atom, a radiation absorbing atom other than the above (for example, a lanthanoid element such as erbium) or the like, and may further contain impurities inevitable in production.
  • lead element is not included substantially from a harmful viewpoint.
  • it is 5% by mass or less, preferably 1% by mass or less.
  • the shape of the radiation shielding material of the present invention may be appropriately determined according to the method of using the shielding material, and examples thereof include granular (powder), pellet shape, lump shape, film shape, plate shape and the like.
  • the shielding material of the present invention can be powder-processed and mixed with other organic substances (powder, fibers) or the like and used for various shielding applications. *
  • the average particle diameter may be 0.1 ⁇ m to 1000 ⁇ m, preferably 1 ⁇ m to 100 ⁇ m.
  • the radiation shielding material of the present invention may be used alone as a compound containing the above essential elements, for example, water, an organic solvent (alcohol, ether, etc.), a surfactant, a resin binder, inorganic particles, You may use together with additives, such as organic particles and a radiation shielding material other than this invention.
  • a titanium compound such as titanium or titanium oxide in combination.
  • the ultraviolet shielding property can be further improved.
  • the radiation shielding material of the present invention can be used in various forms for the purpose of shielding (protecting) radiation.
  • it can be used for protective apron, medical apron, protective suit, space suit, wallpaper, exterior wall surface, roofing material, cosmetics, sunscreen, facial cream, medical equipment (mammography, etc.) and the like.
  • X-rays not only X-rays but also ultraviolet rays can be shielded, which is suitable for cosmetics, sunscreens and the like.
  • a suitable method for producing the radiation shielding material of the present invention comprises a firing step of mixing and firing a silicon compound, a strontium compound, a magnesium compound, a europium compound and a dysprosium compound. Specifically, for example, a step of mixing and sintering silicon oxide, strontium carbonate (SrCO 3 ), magnesium oxide (MgO), europium oxide (Eu 2 O 3 ), and dysprosium oxide (Dy 2 O 3 ). It can manufacture by passing.
  • silicon oxide any of silicon dioxide (SiO 2 ), silicon monoxide (SiO) and the like may be used, but in the present invention, SiO 2 is preferably used.
  • the blending ratio is not limited, for example, silicon oxide 20 to 60% by mass, preferably 30 to 50% by mass, strontium carbonate 20 to 60% by mass, preferably 30 to 50% by mass, magnesium oxide 5 to 40% by mass , Preferably 10-30% by weight, europium oxide 0.1-5% by weight, preferably 0.2-1% by weight and dysprosium oxide 0.1-5% by weight, preferably 0.2-1% by weight, do it. *
  • a boron compound such as boric acid may be further added.
  • a boron compound such as boric acid (H 3 BO 3 ) may be further added.
  • the amount of boric acid is not limited, but is preferably 0.1 to 5% by mass, more preferably 0.5 to 3% by mass.
  • the raw material may be pulverized by a pulverizer such as a ball mill or a rod mill, or may not be pulverized, but in the present invention, pulverization is preferable.
  • a pulverizer such as a ball mill or a rod mill
  • the firing temperature may be, for example, 500 to 2000 ° C., preferably 1000 to 1500 ° C. in an electric furnace. *
  • the firing atmosphere may be either an air atmosphere or an inert gas atmosphere, but is preferably an air atmosphere.
  • the firing time may be appropriately determined according to the firing temperature, firing atmosphere, and the like.
  • the firing time may be 10 minutes to 10 hours, preferably 30 minutes to 5 hours.
  • Plasma sintering may be performed according to a conventional method. For example, it may be performed at 500 to 2000 ° C. (preferably 700 to 1500 ° C.) with a plasma sintering machine.
  • the sintering time may be appropriately determined according to the sintering temperature. For example, the sintering time may be 5 minutes to 2 hours, preferably 10 minutes to 1 hour.
  • Example 1 SiO 2 (manufactured by Iwai Chemical Co., Ltd.) 40 wt%, SrCO 3 (manufactured by Honjo Chemical Corporation) 38.2 wt%, MgO (manufactured by Ube Materials Co., Ltd.) 20 mass%, Eu 2 O 3 (Neomagu 0.4% by mass), 0.4% by mass of Dy 2 O 3 (manufactured by Neomag) and 1% by mass of H 3 BO 3 (manufactured by Iwai Chemicals) were placed in a ball mill mixer and mixed for 1 hour. Next, it was put in an electric furnace and baked under conditions of 1300 ° C. and 2 hours in an air atmosphere. After firing, it was naturally cooled to room temperature and pulverized with a ball mill mixer until the average particle size became 7 ⁇ m (FIG. 1). This obtained the radiation shielding material of Example 1 (FIG. 2).
  • Example 1 was Sr 2 MgSi 2 O 7 .Eu 3+ , Dy 3+ .
  • Example 2 The radiation shielding material obtained in Example 1 was further sintered at 1000 ° C. for about 30 minutes with a plasma sintering machine (product name “SPS-1030” manufactured by SPS Shintec Co., Ltd.). After sintering, it was naturally cooled to room temperature to obtain the radiation shielding material of Example 2 (pellet shape, thickness 3 mm).
  • a plasma sintering machine product name “SPS-1030” manufactured by SPS Shintec Co., Ltd.
  • Example 1 ⁇ X-ray shielding performance (X-ray transmittance measurement)>
  • the radiation shielding material of Example 1 was further processed into a pellet (thickness 3.95 mm) by a press machine.
  • the X-ray transmittances of the samples of Examples 1 and 2 and Comparative Examples 1 and 2 were measured under the condition of a measurement energy of 50 keV, and the linear absorption coefficient was calculated from the transmittance.
  • the linear absorption coefficient is calculated by dividing the natural logarithm of transmittance by the thickness (cm) of the sample.
  • Table 1 The obtained measurement results are shown in Table 1. *
  • UV ray transmission measurement> The ultraviolet ray transmittance of Example 1 was measured with an ultraviolet-visible spectrophotometer (UV2400PC, manufactured by Shimadzu Corporation). As a result, the transmittance was 20% or less in the wavelength range of 250 nm to 400 nm. *
  • Examples 1 and 2 of the present invention have practical thicknesses, although they are not as good as lead as the X-ray shielding material of Comparative Example 1. Sufficiently low transmittance can be obtained and it has a good linear absorption coefficient. In particular, when compared with the aluminum of Comparative Example 2, it can be seen that it has a sufficiently good linear absorption coefficient. *
  • Example 1 of the present invention has good ultraviolet shielding performance because of its low ultraviolet transmittance. Furthermore, it is also effective for electron beams. *
  • the radiation shielding material of the present invention has a specific gravity that is significantly lighter than the specific gravity of lead (11.34), can be easily deformed into a granular or plate shape, and is excellent in workability. Therefore, it turns out that it can be used for various uses and forms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Luminescent Compositions (AREA)

Abstract

[Problem] The present invention addresses the issue of providing a radiation blocking material capable of blocking x-rays. [Solution] The present invention discloses: a radiation blocking material having, as essential elements, at least silicon, strontium, magnesium, europium and dysprosium; and a method for manufacturing the radiation blocking material.

Description

放射線遮蔽材及びその製造方法Radiation shielding material and manufacturing method thereof
本発明は、放射線遮蔽材及びその製造方法に関する。 The present invention relates to a radiation shielding material and a manufacturing method thereof.
放射線は、α線、β線、γ線、X線、中性子線等の総称を指す。その中でも、α線やβ線はアルミニウム等の薄膜でも容易に遮蔽できる。一方、γ線、X線、中性子線は物質を透過する性質が高いため、これらを遮蔽する物質が研究開発されている(例えば、特許文献1)。  Radiation refers to a general term for α rays, β rays, γ rays, X rays, neutron rays, and the like. Among them, α rays and β rays can be easily shielded by a thin film such as aluminum. On the other hand, γ-rays, X-rays, and neutron rays have a high property of transmitting substances, and therefore, substances that shield these substances have been researched and developed (for example, Patent Document 1). *
このうち、X線やγ線を遮蔽する能力が特に高い物質として、市販品の中では、鉛が知られている。しかし、鉛は、人体に有害であり、自然環境への悪影響も懸念されているため、無鉛の放射線遮蔽材が求められている。  Among these, lead is known as a substance having a particularly high ability to shield X-rays and γ-rays among commercially available products. However, since lead is harmful to the human body and there are concerns about adverse effects on the natural environment, lead-free radiation shielding materials are required. *
特に、近年の原子力発電所の事故により、新たな放射線遮蔽材の開発が急務となっている。 In particular, due to recent accidents at nuclear power plants, the development of new radiation shielding materials has become an urgent task.
特開平6-128447号公報JP-A-6-128447
したがって、X線を遮蔽できる新しい種類の無鉛の放射線遮蔽材の提供が望まれている。 Therefore, it is desired to provide a new type of lead-free radiation shielding material capable of shielding X-rays.
本発明者らは、上記問題に鑑み、鋭意研究を重ねてきた。その結果、特定の元素を含む材料を原材料とすることにより、X線を遮蔽できる物質が得られることを見出した。本発明は、以下の放射線遮蔽材及びその製造方法に関する。  In view of the above problems, the present inventors have made extensive studies. As a result, it has been found that by using a material containing a specific element as a raw material, a substance capable of shielding X-rays can be obtained. The present invention relates to the following radiation shielding materials and methods for producing the same. *
項1.少なくともケイ素、ストロンチウム、マグネシウム、ユーロピウム及びジスプロシウムを必須元素として有することを特徴とする放射線遮蔽材。項2.ケイ素5~30質量%、ストロンチウム30~60質量%、マグネシウム1~20質量%、ユーロピウム0.1~5質量%、及びジスプロシウム0.1~5質量%を含有することを特徴とする前記項1に記載の放射線遮蔽材。項3.少なくともケイ素酸化物、炭酸ストロンチウム、酸化マグネシウム、酸化ユーロピウム及び酸化ジスプロシウムを焼成して得られることを特徴とする前記項1又は2に記載の放射線遮蔽材。項4.焼成後、さらにプラズマ焼結されて得られることを特徴とする前記項3に記載の放射線遮蔽材。項5.少なくともケイ素、ストロンチウム、マグネシウム、ユーロピウム及びジスプロシウムを必須元素として有する放射線遮蔽材の製造方法であって、ケイ素化合物、ストロンチウム化合物、マグネシウム化合物、ユーロピウム化合物及びジスプロシウム化合物を混合し、焼成する焼成工程を備えた、放射線遮蔽材の製造方法。項6.前記焼成工程が、上記化合物に加えて、さらにホウ酸を混合し、焼成する工程である、前記項5に記載の製造方法。項7.さらに、プラズマ焼結する工程を備えた、前記項5又は6に記載の製造方法。 Item 1. A radiation shielding material comprising at least silicon, strontium, magnesium, europium and dysprosium as essential elements. Item 2. Item 1 characterized by containing 5-30% by mass of silicon, 30-60% by mass of strontium, 1-20% by mass of magnesium, 0.1-5% by mass of europium, and 0.1-5% by mass of dysprosium. The radiation shielding material described in 1. Item 3. Item 3. The radiation shielding material according to Item 1 or 2, which is obtained by firing at least silicon oxide, strontium carbonate, magnesium oxide, europium oxide, and dysprosium oxide. Item 4. Item 4. The radiation shielding material according to Item 3, which is obtained by further plasma sintering after firing. Item 5. A method for producing a radiation shielding material having at least silicon, strontium, magnesium, europium and dysprosium as essential elements, comprising a firing step of mixing and firing a silicon compound, a strontium compound, a magnesium compound, a europium compound and a dysprosium compound The manufacturing method of a radiation shielding material. Item 6. Item 6. The method according to Item 5, wherein the baking step is a step of further mixing and baking boric acid in addition to the compound. Item 7. Furthermore, the manufacturing method of said claim | item 5 or 6 provided with the process of plasma-sintering.
本発明の放射線遮蔽材は、X線を遮蔽することができる。また、紫外線も遮蔽することができる。 The radiation shielding material of the present invention can shield X-rays. In addition, ultraviolet rays can be shielded.
図1は、本発明の製造方法のフローチャートの一例を示す。FIG. 1 shows an example of a flowchart of the manufacturing method of the present invention. 図2は、本発明の実施例1で得られた放射線遮蔽材の画像である。FIG. 2 is an image of the radiation shielding material obtained in Example 1 of the present invention.
1.放射線遮蔽材 本発明の放射線遮蔽材は、少なくともケイ素、ストロンチウム、マグネシウム、ユーロピウム及びジスプロシウムを必須元素として有することを特徴とする。これらの元素を組み合わせることにより、実用的なレベルで、X線を遮蔽することができる。また、紫外線の吸収も可能である。さらに、ケイ酸塩系化合物であるため鉛よりも比重が軽く、加工性にも優れている。  1. Radiation shielding material The radiation shielding material of the present invention is characterized by having at least silicon, strontium, magnesium, europium and dysprosium as essential elements. By combining these elements, X-rays can be shielded at a practical level. It can also absorb ultraviolet rays. Furthermore, since it is a silicate-based compound, it has a lighter specific gravity than lead and is excellent in workability. *
ケイ素(Si)の含有量は、好ましくは5~30質量%、より好ましくは10~20質量%である。  The content of silicon (Si) is preferably 5 to 30% by mass, more preferably 10 to 20% by mass. *
ストロンチウム(Sr)の含有量は、好ましくは30~60質量%、より好ましくは40~50質量%である。  The content of strontium (Sr) is preferably 30 to 60% by mass, more preferably 40 to 50% by mass. *
マグネシウム(Mg)の含有量は、好ましくは1~20質量%、より好ましくは5~10質量%である。  The magnesium (Mg) content is preferably 1 to 20% by mass, more preferably 5 to 10% by mass. *
ユーロピウム(Eu)の含有量は、好ましくは0.1~5質量%、より好ましくは0.5~3質量%である。  The content of europium (Eu) is preferably 0.1 to 5% by mass, more preferably 0.5 to 3% by mass. *
ジスプロシウム(Dy)の含有量は、好ましくは0.1~5質量%、より好ましくは0.5~3質量%である。  The content of dysprosium (Dy) is preferably 0.1 to 5% by mass, more preferably 0.5 to 3% by mass. *
本発明の放射線遮蔽材は、上記必須元素以外にも酸素原子(好ましくは10~50質量%、より好ましくは20~40質量%)を含んでいてもよい。また、ホウ素原子、上記以外の放射線吸収原子(例えば、エルビウム等のランタノイド元素)等を含んでいてもよく、さらには、製造上不可避な不純物等を含んでいてもよい。  The radiation shielding material of the present invention may contain oxygen atoms (preferably 10 to 50% by mass, more preferably 20 to 40% by mass) in addition to the above essential elements. Further, it may contain a boron atom, a radiation absorbing atom other than the above (for example, a lanthanoid element such as erbium) or the like, and may further contain impurities inevitable in production. *
本発明では、有害性の観点から、鉛元素を実質的に含まないことが好ましい。例えば、5質量%以下、好ましくは1質量%以下である。  In this invention, it is preferable that lead element is not included substantially from a harmful viewpoint. For example, it is 5% by mass or less, preferably 1% by mass or less. *
本発明の放射線遮蔽材の形状は、遮蔽材の使用方法等に応じて適宜決定すればよいが、例えば、粒状(粉体)、ペレット状、塊状、フィルム状、板状等が挙げられる。特に、本発明の遮蔽材は、粉体加工が可能で、他の有機物(粉状、繊維状)等に混入させ、様々な遮蔽用途に使用することができる。  The shape of the radiation shielding material of the present invention may be appropriately determined according to the method of using the shielding material, and examples thereof include granular (powder), pellet shape, lump shape, film shape, plate shape and the like. In particular, the shielding material of the present invention can be powder-processed and mixed with other organic substances (powder, fibers) or the like and used for various shielding applications. *
粒状の場合は、例えば、平均粒子径が0.1μm~1000μm、好ましくは1μm~100μmとすればよい。  In the case of a granular shape, for example, the average particle diameter may be 0.1 μm to 1000 μm, preferably 1 μm to 100 μm. *
また、本発明の放射線遮蔽材は、上記必須元素等を含有する化合物単独で使用してもよいし、例えば、水、有機溶剤(アルコール、エーテル等)、界面活性剤、樹脂バインダー、無機粒子、有機粒子、本発明以外の放射線遮蔽材等といった添加剤と併せて使用してもよい。特に、本発明では、チタン、酸化チタン等のチタン化合物を併用することが好ましい。これにより、紫外線の遮蔽性をより向上させることができる。  Further, the radiation shielding material of the present invention may be used alone as a compound containing the above essential elements, for example, water, an organic solvent (alcohol, ether, etc.), a surfactant, a resin binder, inorganic particles, You may use together with additives, such as organic particles and a radiation shielding material other than this invention. In particular, in the present invention, it is preferable to use a titanium compound such as titanium or titanium oxide in combination. Thereby, the ultraviolet shielding property can be further improved. *
本発明の放射線遮蔽材は、放射線を遮蔽(防護)する用途に様々な形で使用できる。例えば、防護エプロン、医療用エプロン、防護服、宇宙服、壁紙、外装壁面、屋根材、化粧品、日焼け止め、顔用クリーム、医療機器(マンモグラフィー等)などに使用することができる。特に、本発明では、X線のみならず紫外線も遮蔽できるため、化粧品、日焼け止め等に適している。  The radiation shielding material of the present invention can be used in various forms for the purpose of shielding (protecting) radiation. For example, it can be used for protective apron, medical apron, protective suit, space suit, wallpaper, exterior wall surface, roofing material, cosmetics, sunscreen, facial cream, medical equipment (mammography, etc.) and the like. In particular, in the present invention, not only X-rays but also ultraviolet rays can be shielded, which is suitable for cosmetics, sunscreens and the like. *
2.放射線遮蔽材の製造方法 本発明の放射線遮蔽材の好適な製造方法は、ケイ素化合物、ストロンチウム化合物、マグネシウム化合物、ユーロピウム化合物及びジスプロシウム化合物を混合し、焼成する焼成工程を備えることを特徴とする。具体的には、例えば、ケイ素酸化物、炭酸ストロンチウム(SrCO)、酸化マグネシウム(MgO)、酸化ユーロピウム(Eu)及び酸化ジスプロシウム(Dy)を混合し、焼結する工程を経ることにより製造することができる。  2. Method for Producing Radiation Shielding Material A suitable method for producing the radiation shielding material of the present invention comprises a firing step of mixing and firing a silicon compound, a strontium compound, a magnesium compound, a europium compound and a dysprosium compound. Specifically, for example, a step of mixing and sintering silicon oxide, strontium carbonate (SrCO 3 ), magnesium oxide (MgO), europium oxide (Eu 2 O 3 ), and dysprosium oxide (Dy 2 O 3 ). It can manufacture by passing.
ケイ素酸化物としては、二酸化ケイ素(SiO)、一酸化ケイ素(SiO)等のいずれでもよいが、本発明ではSiOが好適に用いられる。  As the silicon oxide, any of silicon dioxide (SiO 2 ), silicon monoxide (SiO) and the like may be used, but in the present invention, SiO 2 is preferably used.
配合割合は限定的でないが、例えば、ケイ素酸化物20~60質量%、好ましくは30~50質量%、炭酸ストロンチウム20~60質量%、好ましくは30~50質量%、酸化マグネシウ5~40質量%、好ましくは10~30質量%、酸化ユーロピウム0.1~5質量%、好ましくは0.2~1質量%及び酸化ジスプロシウム0.1~5質量%、好ましくは0.2~1質量%、とすればよい。  Although the blending ratio is not limited, for example, silicon oxide 20 to 60% by mass, preferably 30 to 50% by mass, strontium carbonate 20 to 60% by mass, preferably 30 to 50% by mass, magnesium oxide 5 to 40% by mass , Preferably 10-30% by weight, europium oxide 0.1-5% by weight, preferably 0.2-1% by weight and dysprosium oxide 0.1-5% by weight, preferably 0.2-1% by weight, do it. *
上記原料に加えて、さらにホウ酸(HBO)等のホウ素化合物を加えてもよい。これにより、焼成時に金属間の電子移動を容易にさせ、酸化還元作用を促進させることができる。ホウ酸の配合量は限定的でないが、好ましくは0.1~5質量%、より好ましくは0.5~3質量%である。  In addition to the raw materials, a boron compound such as boric acid (H 3 BO 3 ) may be further added. Thereby, the electron transfer between metals can be made easy at the time of baking, and a redox action can be promoted. The amount of boric acid is not limited, but is preferably 0.1 to 5% by mass, more preferably 0.5 to 3% by mass.
混合した後、ボールミル、ロッドミル等の粉砕機で上記原料を粉砕してもよいし、粉砕しなくてもよいが、本発明では粉砕することが好ましい。  After mixing, the raw material may be pulverized by a pulverizer such as a ball mill or a rod mill, or may not be pulverized, but in the present invention, pulverization is preferable. *
焼成温度は、例えば、電気炉にて500~2000℃、好ましくは1000~1500℃とすればよい。  The firing temperature may be, for example, 500 to 2000 ° C., preferably 1000 to 1500 ° C. in an electric furnace. *
焼成雰囲気は、大気雰囲気及び不活性ガス雰囲気のいずれでもよいが、好ましくは大気雰囲気である。  The firing atmosphere may be either an air atmosphere or an inert gas atmosphere, but is preferably an air atmosphere. *
焼成時間は、焼成温度、焼成雰囲気等に応じて適宜決定すればよいが、例えば、10分~10時間、好ましくは30分~5時間とすればよい。  The firing time may be appropriately determined according to the firing temperature, firing atmosphere, and the like. For example, the firing time may be 10 minutes to 10 hours, preferably 30 minutes to 5 hours. *
本発明では、上記焼成工程後に、さらにプラズマ焼結工程を加えることが好ましい。これにより、得られる放射線遮蔽材のX線の吸収量を向上させることができる。  In this invention, it is preferable to add a plasma sintering process after the said baking process. Thereby, the amount of X-ray absorption of the obtained radiation shielding material can be improved. *
プラズマ焼結は、常法に従って行えばよく、例えばプラズマ焼結機で、500~2000℃(好ましくは700~1500℃)にて焼結すればよい。焼結時間は、焼結温度に応じて適宜決定すればよいが、例えば、5分~2時間、好ましくは10分~1時間とすればよい。 Plasma sintering may be performed according to a conventional method. For example, it may be performed at 500 to 2000 ° C. (preferably 700 to 1500 ° C.) with a plasma sintering machine. The sintering time may be appropriately determined according to the sintering temperature. For example, the sintering time may be 5 minutes to 2 hours, preferably 10 minutes to 1 hour.
本発明を、以下に実施例を用いて、さらに詳細に説明する。なお、本発明は、以下の実施例に限定されるものではない。  The present invention will be described in more detail with reference to the following examples. The present invention is not limited to the following examples. *
<実施例1> SiO(岩井化学薬品社製)40質量%、SrCO(本荘ケミカル社製)38.2質量%、MgO(宇部マテリアルズ社製)20質量%、Eu(ネオマグ社製)0.4質量%、Dy(ネオマグ社製)0.4質量%及びHBO(岩井化学薬品社製)1質量%をボールミル混合器に入れ、1時間混合した。次いで、電気炉に入れ、大気雰囲気で、1300℃、2時間の条件で焼成した。焼成後、常温まで自然冷却し、ボールミル混合機にて平均粒子径が7μmになるまで粉砕した(図1)。これにより、実施例1の放射線遮蔽材を得た(図2)。  <Example 1> SiO 2 (manufactured by Iwai Chemical Co., Ltd.) 40 wt%, SrCO 3 (manufactured by Honjo Chemical Corporation) 38.2 wt%, MgO (manufactured by Ube Materials Co., Ltd.) 20 mass%, Eu 2 O 3 (Neomagu 0.4% by mass), 0.4% by mass of Dy 2 O 3 (manufactured by Neomag) and 1% by mass of H 3 BO 3 (manufactured by Iwai Chemicals) were placed in a ball mill mixer and mixed for 1 hour. Next, it was put in an electric furnace and baked under conditions of 1300 ° C. and 2 hours in an air atmosphere. After firing, it was naturally cooled to room temperature and pulverized with a ball mill mixer until the average particle size became 7 μm (FIG. 1). This obtained the radiation shielding material of Example 1 (FIG. 2).
なお、実施例1の放射線遮蔽材の組成比率を測定したところ、Si13.3質量%、Sr42.4質量%、Mg6.23質量%、Eu0.84質量%、Dy1.83質量%、O(酸素原子)31.3質量%であり、残りは不純物であった。  In addition, when the composition ratio of the radiation shielding material of Example 1 was measured, Si13.3 mass%, Sr42.4 mass%, Mg6.23 mass%, Eu0.84 mass%, Dy1.83 mass%, O (oxygen) Atom) 31.3% by mass, and the rest were impurities. *
比重を測定したところ、3.7g/cm3であった。X線回折装置による定性分析及び蛍光X線分析で測定したところ、上記実施例1は、Sr2MgSi2O7・Eu3+,Dy3+であることが推定された。  When the specific gravity was measured, it was 3.7 g / cm 3 . As a result of qualitative analysis and X-ray fluorescence analysis using an X-ray diffractometer, it was estimated that Example 1 was Sr 2 MgSi 2 O 7 .Eu 3+ , Dy 3+ .
<実施例2> 実施例1で得られた放射線遮蔽材をさらに、プラズマ焼結機(SPSシンテック社製、製品名「SPS-1030」)にて、1000℃で、約30分焼結した。焼結後、常温まで自然冷却し、実施例2の放射線遮蔽材(ペレット状、厚み3mm)を得た。<比較例> 鉛板(厚さ0.3mm、市販品)、アルミニウム板(厚さ3mm、市販品)をそれぞれ比較例1及び比較例2とした。  Example 2 The radiation shielding material obtained in Example 1 was further sintered at 1000 ° C. for about 30 minutes with a plasma sintering machine (product name “SPS-1030” manufactured by SPS Shintec Co., Ltd.). After sintering, it was naturally cooled to room temperature to obtain the radiation shielding material of Example 2 (pellet shape, thickness 3 mm). <Comparative Example> A lead plate (thickness 0.3 mm, commercially available product) and an aluminum plate (thickness 3 mm, commercially available product) were used as Comparative Example 1 and Comparative Example 2, respectively. *
<X線遮蔽性能(X線透過率測定)> 実施例1の放射線遮蔽材は、さらにプレス機によりペレット状(厚み3.95mm)に加工した。透過法により、測定エネルギー50keVの条件で、実施例1~2及び比較例1~2の試料のX線の透過率を測定し、透過率から線吸収係数を計算した。なお、線吸収係数は、透過率の自然対数をとった値を、試料の厚み(cm)で除することにより計算される。得られた測定結果を表1に示す。  <X-ray shielding performance (X-ray transmittance measurement)> The radiation shielding material of Example 1 was further processed into a pellet (thickness 3.95 mm) by a press machine. By the transmission method, the X-ray transmittances of the samples of Examples 1 and 2 and Comparative Examples 1 and 2 were measured under the condition of a measurement energy of 50 keV, and the linear absorption coefficient was calculated from the transmittance. The linear absorption coefficient is calculated by dividing the natural logarithm of transmittance by the thickness (cm) of the sample. The obtained measurement results are shown in Table 1. *
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<紫外線遮蔽能:紫外線透過測定> 紫外可視分光光度計(UV2400PC、島津製作所製)により、実施例1の紫外線の透過率を測定した。その結果、250nm~400nmの波長域においては、透過率が20%以下であった。  <Ultraviolet ray shielding ability: ultraviolet ray transmission measurement> The ultraviolet ray transmittance of Example 1 was measured with an ultraviolet-visible spectrophotometer (UV2400PC, manufactured by Shimadzu Corporation). As a result, the transmittance was 20% or less in the wavelength range of 250 nm to 400 nm. *
上記の結果から、X線透過率測定において、本発明の実施例1及び2は、比較例1のX線遮蔽物質としては非常に優れている鉛には及ばないものの、実用的な厚さで十分低い透過率を得ることができ、良好な線吸収係数を有している。特に、比較例2のアルミニウムと比較すると、十分に良好な線吸収係数を持っていることが分かる。  From the above results, in the X-ray transmittance measurement, Examples 1 and 2 of the present invention have practical thicknesses, although they are not as good as lead as the X-ray shielding material of Comparative Example 1. Sufficiently low transmittance can be obtained and it has a good linear absorption coefficient. In particular, when compared with the aluminum of Comparative Example 2, it can be seen that it has a sufficiently good linear absorption coefficient. *
 加えて、本発明の実施例1は、紫外線の透過率が低いため、良好な紫外線遮蔽性能を有していることも分かる。さらには、電子線に対しても効果がある。  In addition, it can also be seen that Example 1 of the present invention has good ultraviolet shielding performance because of its low ultraviolet transmittance. Furthermore, it is also effective for electron beams. *
また、本発明の放射線遮蔽材は、比重が鉛の比重(11.34)よりも大幅に軽く、粒状や板状に容易に変形することができ加工性にも優れている。よって、さまざまな用途や形態で使用可能であることが分かる。 The radiation shielding material of the present invention has a specific gravity that is significantly lighter than the specific gravity of lead (11.34), can be easily deformed into a granular or plate shape, and is excellent in workability. Therefore, it turns out that it can be used for various uses and forms.

Claims (7)

  1. 少なくともケイ素、ストロンチウム、マグネシウム、ユーロピウム及びジスプロシウムを必須元素として有することを特徴とする放射線遮蔽材。 A radiation shielding material comprising at least silicon, strontium, magnesium, europium and dysprosium as essential elements.
  2. ケイ素5~30質量%、ストロンチウム30~60質量%、マグネシウム1~20質量%、ユーロピウム0.1~5質量%、及びジスプロシウム0.1~5質量%を含有することを特徴とする請求項1に記載の放射線遮蔽材。 2. The composition contains 5 to 30% by mass of silicon, 30 to 60% by mass of strontium, 1 to 20% by mass of magnesium, 0.1 to 5% by mass of europium, and 0.1 to 5% by mass of dysprosium. The radiation shielding material described in 1.
  3. 少なくともケイ素酸化物、炭酸ストロンチウム、酸化マグネシウム、酸化ユーロピウム及び酸化ジスプロシウムを焼成して得られることを特徴とする請求項1又は2に記載の放射線遮蔽材。 The radiation shielding material according to claim 1, wherein the radiation shielding material is obtained by firing at least silicon oxide, strontium carbonate, magnesium oxide, europium oxide, and dysprosium oxide.
  4. 焼成後、さらにプラズマ焼結されて得られることを特徴とする請求項3に記載の放射線遮蔽材。 The radiation shielding material according to claim 3, which is obtained by further plasma sintering after firing.
  5. 少なくともケイ素、ストロンチウム、マグネシウム、ユーロピウム及びジスプロシウムを必須元素として有する放射線遮蔽材の製造方法であって、ケイ素化合物、ストロンチウム化合物、マグネシウム化合物、ユーロピウム化合物及びジスプロシウム化合物を混合し、焼成する焼成工程を備えた、放射線遮蔽材の製造方法。 A method for producing a radiation shielding material having at least silicon, strontium, magnesium, europium and dysprosium as essential elements, comprising a firing step of mixing and firing a silicon compound, a strontium compound, a magnesium compound, a europium compound and a dysprosium compound The manufacturing method of a radiation shielding material.
  6. 前記焼成工程が、上記化合物に加えて、さらにホウ酸を混合し、焼成する工程である、請求項5に記載の製造方法。 The manufacturing method according to claim 5, wherein the baking step is a step of mixing and baking boric acid in addition to the compound.
  7. さらに、プラズマ焼結する工程を備えた、請求項5又は6に記載の製造方法。 Furthermore, the manufacturing method of Claim 5 or 6 provided with the process of plasma-sintering.
PCT/JP2012/075261 2012-09-28 2012-09-28 Radiation blocking material and method for manufacturing same WO2014049880A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/075261 WO2014049880A1 (en) 2012-09-28 2012-09-28 Radiation blocking material and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/075261 WO2014049880A1 (en) 2012-09-28 2012-09-28 Radiation blocking material and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2014049880A1 true WO2014049880A1 (en) 2014-04-03

Family

ID=50387338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075261 WO2014049880A1 (en) 2012-09-28 2012-09-28 Radiation blocking material and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2014049880A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006510919A (en) * 2002-12-17 2006-03-30 ランクセス・ドイチユラント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Lead-free mixture used as an additive for radiation protection
WO2007043280A1 (en) * 2005-10-13 2007-04-19 Ohara Inc. Radiation shielding glass
JP2009096662A (en) * 2007-10-16 2009-05-07 Ohara Inc Glass composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006510919A (en) * 2002-12-17 2006-03-30 ランクセス・ドイチユラント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Lead-free mixture used as an additive for radiation protection
WO2007043280A1 (en) * 2005-10-13 2007-04-19 Ohara Inc. Radiation shielding glass
JP2009096662A (en) * 2007-10-16 2009-05-07 Ohara Inc Glass composition

Similar Documents

Publication Publication Date Title
Rashad et al. Physical and nuclear shielding properties of newly synthesized magnesium oxide and zinc oxide nanoparticles
Sayyed et al. Recycling and optimizing waste lab glass with Bi2O3 nanoparticles to use as a transparent shield for photons
Ghoneim et al. Shielding behavior of V2O5 doped lead borate glasses towards gamma irradiation
Colorado et al. Wollastonite based-Chemically Bonded Phosphate Ceramics with lead oxide contents under gamma irradiation
EP2985333B1 (en) Fluorescent material, scintillator and radiation conversion panel
EP2826835A1 (en) Solid scintillator, radiation detector and radiographic examination device
JP2007063065A (en) Glass
JP2012072331A (en) Material for solid scintillator, solid scintillator, and radiation detector and radiation inspection device using the same
CN102131735A (en) Mayenite-type compound and process for production of same
Kim et al. Thermal properties of CaMgSi2O6 glass–ceramics with Al2O3
CN103011709A (en) Anti-radiation building putty powder and preparation method thereof
Shen et al. The radiation hardness of Pr: LuAG scintillating ceramics
Temir et al. Study of the effect of doping CeO2 in TeO2–MoO–Bi2O3 ceramics on the phase composition, optical properties and shielding efficiency of gamma radiation
JP5145507B1 (en) Radiation shielding material and manufacturing method thereof
Esawii et al. High impact tungsten-doped borosilicate glass composite for gamma and neutron transparent radiation shielding
Alzahrani et al. Physical, microstructural, and radiation energy absorption properties of recycled CRT-screen glass doped with Bi2O3
Salim et al. The local structure of phosphor material, Sr2MgSi2O7 and Sr2MgSi2O7: Eu2+ by infrared spectroscopy
WO2014049880A1 (en) Radiation blocking material and method for manufacturing same
CN1651548B (en) Scintillating material based on doped lithium iodide
JP5571140B2 (en) Radiation shielding material and manufacturing method thereof
US10472245B2 (en) Synthesis of nanostructured zinc silicate from renewable sources
JP2013061287A (en) Method of producing paste, and paste
JP6952314B1 (en) Scintillator and radiation detector
Rajadesingu et al. Single step pulverization effect of Borax decahydrate and Boric acid—a comparison
CN110526712B (en) Doped YAG transparent ceramic and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12885502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12885502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP