WO2014049806A1 - Silicon carbide semiconductor device and method for manufacturing same - Google Patents

Silicon carbide semiconductor device and method for manufacturing same Download PDF

Info

Publication number
WO2014049806A1
WO2014049806A1 PCT/JP2012/075004 JP2012075004W WO2014049806A1 WO 2014049806 A1 WO2014049806 A1 WO 2014049806A1 JP 2012075004 W JP2012075004 W JP 2012075004W WO 2014049806 A1 WO2014049806 A1 WO 2014049806A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
silicon carbide
region
semiconductor device
carbide semiconductor
Prior art date
Application number
PCT/JP2012/075004
Other languages
French (fr)
Japanese (ja)
Inventor
宏行 松島
直樹 手賀
龍太 土屋
久本 大
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2012/075004 priority Critical patent/WO2014049806A1/en
Priority to JP2014537975A priority patent/JP5799176B2/en
Publication of WO2014049806A1 publication Critical patent/WO2014049806A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation
    • H01L21/0465Making n or p doped regions or layers, e.g. using diffusion using ion implantation using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation
    • H01L21/047Making n or p doped regions or layers, e.g. using diffusion using ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/6606Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes

Definitions

  • the present invention relates to a silicon carbide semiconductor device and a method for manufacturing the same, and more particularly to a termination structure of a high voltage semiconductor device.
  • the power semiconductor device using SiC can reduce the on-resistance at the same breakdown voltage as compared with the power semiconductor device using Si. This is due to the fact that the dielectric breakdown strength of SiC is about 10 times that of Si, so that the depletion layer width is about one-tenth and the epitaxial layer serving as the drift layer can be made thinner.
  • the breakdown voltage of the power semiconductor device is determined by the thickness and impurity concentration of the epitaxial layer constituting the drift layer. However, since electric field concentration occurs in the termination region around the active region, if a structure for relaxing the electric field is not provided, breakdown occurs at a value smaller than the designed breakdown voltage.
  • JTE Joint Termination Extension
  • FLR Field Limiting Ring
  • the FLR structure is a floating region in which conductive impurities opposite to the conductivity of the substrate are implanted in a ring shape having a plan view.
  • the breakdown voltage of the FLR structure can be adjusted by adjusting the number of p-type ring rings, the interval between p-type rings, the depth for forming the p-type ring, or the impurity concentration.
  • the degree of electric field concentration is different between the corner portion and the line portion in a plan view shape, the electric field is more likely to be concentrated at the corner portion than at the line portion. For this reason, breakage easily occurs at the corner.
  • the extension of the depletion layer in the corner portion is smaller than the extension of the depletion layer in the line portion, the optimum distance between the p-type rings and the impurity concentration constituting the p-type ring in the line portion and the corner portion. Will be different.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-158817 (Patent Document 1), by selectively adding impurities only to the outside of the corner portion of the p-type ring, the electric field concentrated on the corner portion is dispersed to the outside of the corner portion. , Making it difficult to break down.
  • Patent Document 2 the width of the p-type ring corner portion is wider than that of the line portion. As a result, the distance between the p-type rings at the corner portion is reduced, and the corner portion The electric field concentration is reduced.
  • An object of the present invention is to provide a high voltage silicon carbide semiconductor device with high reproducibility.
  • the epitaxial layer includes, as a planar view region, an active region and an end region surrounding the active region.
  • Impurities of a second conductivity type having a plan view shape surrounding the active region in a ring shape are implanted, and a plurality of rings that are not in direct contact with the first electrode are provided, and the ring is a straight line in a plan view shape And a corner portion connecting the line portions, the distance between the rings gradually increases from the connecting portion between the line portion and the corner portion toward the middle of the corner.
  • the ring has a structure in which the high-concentration region is sandwiched between the low-concentration regions in a plan view shape, and the ring of the low-concentration regions as it goes from the connection part of the line part and the corner part to the middle of the corner. Reduce impurity concentration.
  • a high breakdown voltage silicon carbide semiconductor device having high reproducibility can be provided.
  • FIG. 1 is a top view of a principal part of a silicon carbide semiconductor device of Example 1.
  • FIG. 1 is a cross-sectional view of a termination region of a silicon carbide semiconductor device of Example 1.
  • FIG. 5 is a cross-sectional view of a termination region in another structure of the silicon carbide semiconductor device of Example 1.
  • FIG. 1 is a detailed cross-sectional view of a termination region of a silicon carbide semiconductor device of Example 1.
  • FIG. It is the figure shown about the impurity concentration of the ring 3 in FIG. 2 is a cross-sectional view of a corner portion and a line portion in a termination region of the silicon carbide semiconductor device of Example 1.
  • FIG. 3 is a schematic cross-sectional view showing an enlarged part of a termination region of the silicon carbide semiconductor device of Example 1.
  • FIG. 6 is a cross-sectional view of the termination region of the silicon carbide semiconductor device for explaining the manufacturing process of Example 1;
  • FIG. 9 is a cross-sectional view of a termination region of the silicon carbide semiconductor device, illustrating a manufacturing process following FIG. 8.
  • FIG. 10 is a cross-sectional view of a termination region of the silicon carbide semiconductor device, illustrating a manufacturing process following FIG. 9.
  • FIG. 13 is a cross-sectional view corresponding to a cross section taken along line II in FIG. 12 and a cross-sectional view corresponding to II-II. 3 is a top view of a principal part of the silicon carbide semiconductor according to Example 1.
  • FIG. 5 is a cross-sectional view of a termination region in the manufacturing process of the silicon carbide semiconductor according to Example 1.
  • FIG. 5 is a cross-sectional view of a termination region in the manufacturing process of the silicon carbide semiconductor according to Example 1.
  • FIG. 5 is a cross-sectional view of a termination region in the manufacturing process of the silicon carbide semiconductor according to Example 1.
  • FIG. 3 is a cross-sectional view of a termination region for explaining a manufacturing process of a silicon carbide semiconductor of Example 1.
  • FIG. FIG. 17 is a cross-sectional view of a termination region illustrating a manufacturing process following FIG. 16.
  • FIG. 18 is a sectional view of a termination region of the silicon carbide semiconductor device, illustrating a manufacturing process following FIG. 17;
  • FIG. 18 is a sectional view of a termination region of the silicon carbide semiconductor device, illustrating a manufacturing process following FIG. 17;
  • FIG. 10 is a termination region cross-sectional view illustrating a manufacturing process of a silicon carbide semiconductor device of Example 2.
  • FIG. 21 is a cross-sectional view of a termination region of the silicon carbide semiconductor device, illustrating a manufacturing process following FIG. 20.
  • FIG. 6 is an enlarged view of a ring 205 of the silicon carbide semiconductor device of Example 2.
  • FIG. 12 is a cross-sectional view of a termination region of the silicon carbide semiconductor device of Example 3.
  • FIG. 12 is a cross-sectional view of a termination region in the manufacturing process of the silicon carbide semiconductor device of Example 3.
  • FIG. 12 is a cross-sectional view of a termination region of the silicon carbide semiconductor device of Example 4.
  • FIG. FIG. 12 is a cross-sectional view of a termination region in the process for manufacturing a silicon carbide semiconductor device according to Example 4;
  • FIG. 27 is a cross-sectional view of a termination region of the silicon carbide semiconductor device, illustrating a manufacturing process following FIG. 26.
  • FIG. 28 is a sectional view of a termination region of the silicon carbide semiconductor device, illustrating a manufacturing process following FIG. 27.
  • 10 is a sectional view of a termination region of a silicon carbide semiconductor device of Example 5.
  • FIG. 10 is a cross-sectional view of a termination region illustrating a manufacturing process for a silicon carbide semiconductor device of Example 5.
  • FIG. FIG. FIG. 12 is a cross-sectional view of a termination region in the process for manufacturing a silicon carbide semiconductor device according to Example 4;
  • FIG. 27 is a cross-sectional view of a termination region of the
  • FIG. 31 is a cross-sectional view of a termination region of the silicon carbide semiconductor device, illustrating a manufacturing process following FIG. 30.
  • FIG. 32 is a cross-sectional view of a termination region of the silicon carbide semiconductor device, illustrating a manufacturing process following FIG. 31.
  • 12 is a sectional view of a termination region of a silicon carbide semiconductor device of Example 6.
  • FIG. 10 is a sectional view of a termination region, illustrating a manufacturing process according to Example 6.
  • FIG. 32 is a cross-sectional view of a termination region of the silicon carbide semiconductor device, illustrating a manufacturing process following FIG. 31.
  • FIG. 32 is a cross-sectional view of a termination region of the silicon carbide semiconductor device, illustrating a
  • FIG. 12 is a sectional view of a termination region in the manufacturing process of Example 7.
  • FIG. FIG. 38 is a cross-sectional view of a termination region of the silicon carbide semiconductor device, illustrating a manufacturing process following FIG. 37.
  • FIG. 39 is a cross-sectional view of a termination region of the silicon carbide semiconductor device, illustrating a manufacturing process following FIG. 38.
  • FIG. 40 is a cross-sectional view of a termination region of the silicon carbide semiconductor device, illustrating a manufacturing process following FIG. 39;
  • FIGS. 1 is a top view of a principal part of a silicon carbide semiconductor device
  • FIG. 2 is a sectional view of a termination region of the silicon carbide semiconductor device of Example 1
  • FIG. 3 is a sectional view of a termination region in another structure of the silicon carbide semiconductor device of Example 1.
  • 4 is a detailed view of a cross section of the termination region of the silicon carbide semiconductor device of Example 1
  • FIG. 5 is a diagram showing the impurity concentration of the ring in FIG. 4
  • FIG. 6 is a corner in the termination region of the silicon carbide semiconductor device of Example 1.
  • FIG. 7 is a schematic cross-sectional view showing a part of the termination region of the silicon carbide semiconductor device of Example 1 in an enlarged manner.
  • silicon carbide semiconductor device 1 includes a p-type well region in an active region 2 at the center of a silicon carbide semiconductor device in which a diode and a transistor are arranged, and a terminal region surrounding active region 2 in plan view.
  • 106 a plurality of p-type floating field limiting rings (hereinafter, referred to as rings) 105 that are arranged in multiple concentric positions, and an n + -type ring region that surrounds the ring 105 in plan view
  • a channel stopper 107 is a plurality of p-type floating field limiting rings 105 that are arranged in multiple concentric positions, and an n + -type ring region that surrounds the ring 105 in plan view.
  • the maximum electric field portion sequentially moves to the outer p-type ring 105 and yields at the outermost ring 105, so that the silicon carbide semiconductor device can have a high breakdown voltage.
  • the example in which the triple ring 105 is formed is illustrated using FIG. 1, the present invention is not limited to this.
  • An electrode 104 is formed on the back surface (second main surface) of the SiC substrate 101.
  • n ⁇ type epitaxial layer 102 made of SiC having an impurity concentration lower than that of the SiC substrate 101 is formed on the surface (first main surface) of the n + type SiC substrate 101 made of SiC.
  • the thicknesses of the n + type SiC substrate 101 and the n ⁇ type epitaxial layer 102 are set in the range of 5 to 20 ⁇ m.
  • a p-type ring 105 is formed in the n ⁇ -type epitaxial layer 102.
  • the depth of the ring 105 from the surface of the epitaxial layer 102 is set within a range of 0.5 to 2.0 ⁇ m, and the distance between the rings 105 is set within a range of 0.5 to 2.5 ⁇ m.
  • the distances between the rings 105 do not necessarily have to be constant.
  • FIG. 3 shows a structure in which the distance between the rings 105 is changed while maintaining the distance between the well region 106 and the channel stopper 107 in FIG. Specifically, the pressure resistance is further improved by narrowing the distance between the inner rings 105 and widening the distance between the outer rings 105.
  • the distance between the channel stopper and the outermost ring 105 is outside.
  • the distance between the rings 105 is the largest.
  • a p-type well region 106 is formed inside the ring 105 of the n ⁇ -type epitaxial layer 102.
  • the depth of the p-type well region 106 from the surface of the epitaxial layer 102 is set within a range of 0.5 to 2.0 ⁇ m.
  • the depth of the ring 105 and the well region 106 can be set individually, but it goes without saying that when the same depth is set, they can be formed simultaneously in the same process.
  • a channel stopper 107 having an n + type planar view shape in a ring shape is formed in the n ⁇ type epitaxial layer 102.
  • the depth of the channel stopper 107 from the surface of the epitaxial layer 102 is set within a range of 0.5 to 2 ⁇ m.
  • ⁇ ” and “ + ” used in the description so far are symbols representing the relative impurity concentration of n-type or p-type conductivity.
  • the impurity concentration of the n-type impurity increases in the order of “n ⁇ ”, “n”, and “n + ”.
  • the preferable range of the impurity concentration of the n + -type SiC substrate 101 is 1 ⁇ 10 18 to 1 ⁇ 10 21 cm ⁇ 3
  • the preferable range of the impurity concentration of the n ⁇ -type epitaxial layer 102 is 1 ⁇ 10 14 to 1 ⁇ .
  • the ring 105 and the p-type well region are 1 ⁇ 10 16 to 1 ⁇ 10 19 cm ⁇ 3
  • the n + -type channel stopper 107 is 1 ⁇ 10 19 to 1 ⁇ 10 21 cm ⁇ 3. Is set within the range.
  • the ring 105 includes a high concentration region 105a having a high impurity concentration and a low concentration region 105b having a low impurity concentration sandwiching the high concentration region 105a.
  • a more detailed structure is shown in FIG.
  • the position of the surface of the high concentration region 105a of the ring 105 is 0.05 ⁇ m lower than the position of the surface of the low concentration region of the ring 105 and the n ⁇ type epitaxial layer where the ring 105 is not formed. This is formed by scraping the surface in the etching step when forming the high concentration region 105a of the ring 105.
  • the vertical axis represents the impurity concentration of the ring 105
  • the horizontal axis represents the width of the ring 105.
  • the concentration distribution becomes the darkest at the center of the ring (high concentration region 105a), and gradually decreases toward the periphery of the ring 105 (low concentration region 105b).
  • the impurity concentration of the high concentration region 105a at the center of the ring is 1 ⁇ 10 17 to 1 ⁇ 10 18 cm ⁇ 3
  • the impurity concentration of the low concentration region 105b at the periphery of the ring is 1 ⁇ 10 15 to 2 ⁇ 10 17 cm -3
  • the width of the low concentration region 105b in the corner portion of the ring 105 is larger.
  • the ring width of the line portion is substantially constant, but the width of the ring 105 gradually increases from the connecting portion between the line portion and the corner portion to the middle of the corner portion. It is widest in the middle of the corner.
  • the corner ring has a ring width 1.3 to 1.6 times the ring width of the line portion.
  • the density of the peripheral part is different between the corner part and the line part. Specifically, although the impurity concentration in the low concentration region 105b in the line portion is substantially constant, the impurity concentration in the low concentration region 105b increases from the connection portion between the line portion and the corner portion to the middle of the corner portion. Is gradually thinner, and is the thinnest in the middle of the corner portion of the ring 105. The density at the midpoint of the corner portion of the ring 105 is approximately half that of the line portion.
  • the electric field concentration applied to the p-type well region 106 is easily dispersed to the outer ring 105, and the silicon carbide semiconductor device can have a high breakdown voltage.
  • FIG. 12 is a top view of the silicon carbide semiconductor device of Example 1, and is a diagram in which the ring 105 of FIG. 1 is extracted.
  • a silicon carbide according to the present embodiment will be described with reference to a cross-sectional view corresponding to a cross section taken along line II of the corner portion of the ring 105 and a cross-sectional view corresponding to a cross section taken along line II-II of the stripe portion of the ring 105.
  • a method for manufacturing a semiconductor device will be described.
  • a 4H—SiC (silicon carbide) substrate 101 is prepared, and the Si surface is the upper surface.
  • SiC substrate 101 a substrate into which nitrogen which is an n-type impurity is introduced is used.
  • an SiC n ⁇ type epitaxial layer 102 is formed on the surface (first main surface) of the SiC substrate 101 by an epitaxial growth method.
  • N-type impurities are introduced into epitaxial layer 102 so as to have a concentration lower than that of SiC substrate 101.
  • the impurity concentration of epitaxial layer 102 depends on the element rating of the silicon carbide semiconductor device, but is set in the range of 1 ⁇ 10 14 to 1 ⁇ 10 17 cm ⁇ 3 .
  • the thickness of the epitaxial layer 102 is set in the range of 5 to 20 ⁇ m.
  • an insulating film is deposited on the surface of the epitaxial layer 102 by a plasma CVD (Chemical Vapor Deposition) method.
  • a SiO 2 film 109 is deposited.
  • the thickness of the SiO 2 film 109 is set in the range of 1 to 3 ⁇ m.
  • the hard mask pattern 109 a is formed on the surface of the epitaxial layer 102 by processing the SiO 2 film 109 by a dry etching method using the resist pattern as a mask.
  • the width of the hard mask pattern 109a corresponding to the ring 105 is set in the range of 1 to 2.5 ⁇ m.
  • the surface of the epitaxial layer 102 is shaved by several nm (5 nm or less), and a first step is formed in the epitaxial layer 102 below the side surface of the hard mask pattern 109a (see FIG. (Not shown in FIG. 10).
  • p-type impurities are ion-implanted into the epitaxial layer 102.
  • Al was used as the p-type impurity.
  • the ring 105 of the epitaxial layer 102 is formed.
  • FIG. 11 is a cross-sectional view corresponding to the cross section taken along line II of FIG. 12 and a cross-sectional view corresponding to II-II.
  • the oblique impurity implantation is performed four times in total from the directions of N1, N2, N3, and N4 shown in FIG. 12 and at an angle from the normal line of the substrate.
  • N1, N2, N3, and N4 are inclined 45 degrees from the line portion of the ring 105.
  • the angle (elevation angle) at the time of oblique impurity implantation is 10 to 45 degrees (elevation angle 45 to 80 degrees) from the normal direction of SiC epitaxial substrate 103.
  • the depth of the ring 105 from the surface of the epitaxial layer 102 is set in the range of 0.5 to 2 ⁇ m.
  • FIG. 13 shows a p-type impurity distribution when impurities are implanted from the N1 direction of FIG. If only the ring by this injection process is shown, it will be the ring 105c. Since the N1 direction is a direction toward the upper right in the figure inclined 45 degrees to the right from the vertical line of the ring 105 when viewed in plan, impurities are implanted into a region where the hard mask pattern 109a is shifted in the upper right direction. In addition, the lateral spread of impurities in the II section, which is the corner portion of the ring 105, and the lateral spread of impurities in the II-II section, which is the line portion of the ring 105, are different. Will spread greatly.
  • FIG. 14 shows a p-type impurity distribution when impurities are implanted from the N2 direction of FIG. If only the ring by this injection process is shown, it will be the ring 105d.
  • the N2 direction is a direction from the vertical line of the ring 105 toward the lower left in the figure tilted 135 degrees to the left when viewed in plan, so that the impurity is implanted into a region where the hard mask pattern 109a is shifted to the lower left.
  • the lateral spread of impurities in the II section which is the corner portion of the ring 105
  • the lateral spread of impurities in the II-II section which is the line portion of the ring 105, are different. Will spread greatly.
  • FIG. 15 is a p-type impurity distribution when impurities are implanted from the N3 direction of FIG. If only the ring by this injection process is shown, it will be the ring 105e.
  • the N3 direction is a direction from the vertical line of the ring 105 toward the lower right in the drawing inclined 135 degrees to the right in the plan view, so that impurities are implanted into a region where the hard mask pattern 109a is shifted to the lower right.
  • the lateral spread of impurities in the II section which is the corner portion of the ring 105
  • the lateral spread of impurities in the II-II section which is the line portion of the ring 105, are different. Will spread greatly.
  • FIG. 16 shows a p-type impurity distribution when impurities are implanted from the N4 direction of FIG. If only the ring by this injection process is shown, it will be the ring 105f. Since the N3 direction is a direction from the vertical line of the ring 105 toward the upper left in the drawing when viewed in plan, an impurity is implanted into a region where the hard mask pattern 109a is shifted in the upper left direction. In addition, the lateral spread of impurities in the II section, which is the corner portion of the ring 105, and the lateral spread of impurities in the II-II section, which is the line portion of the ring 105, are different. Will spread greatly.
  • the rings 105c to 105f are overlapped, so that the ring 105 having the high concentration region 105a and the low concentration region 105b shown in FIG. 11 is formed.
  • the impurity concentration in the low concentration region 105b arranged inside and outside the ring so as to sandwich the high concentration region 105a in the corner portion (II cross section) of the ring 105 is one impurity implantation, whereas the line of the ring 105
  • the impurity concentration of the low concentration region 105b in the portion (II-II cross section) is equivalent to two impurity implantations.
  • the low concentration region 105 b at the corner portion of the ring 105 has half the concentration of the low concentration region 105 b at the line portion of the ring 105.
  • the spread of the low concentration region 105b at the corner portion of the ring 105 is 1 / ⁇ 2 at the maximum of the spread of the low concentration region 105b at the line portion of the ring 105 because the implantation angle is 45 degrees.
  • vertical implantation is combined in addition to oblique implantation.
  • the impurity concentration of the high concentration region 105a of the ring 105 is set to 1 ⁇ 10 16 to 1 ⁇ 10 19 cm ⁇ 3
  • the impurity concentration of the low concentration region 105b is set to 1 ⁇ 10 15 to 1 ⁇ 10 18 cm ⁇ 3.
  • the low concentration region 106b is formed outside the high concentration region 106a.
  • the low concentration region 106b is wider than the low concentration region 105b of the ring 105 because the opening of the hard mask pattern 109a in the well region 106 is large.
  • vertical implantation is combined.
  • the impurity concentration of the well region 106 is set in the range of 1 ⁇ 10 16 to 1 ⁇ 10 19 cm ⁇ 3 .
  • impurities are vertically implanted using the hard mask pattern 109b as a mask.
  • nitrogen is ion-implanted as an n-type impurity into the epitaxial layer 102 to form an n + -type channel stopper 107.
  • the impurity concentration of the channel stopper 107 is set in the range of 1 ⁇ 10 19 to 1 ⁇ 10 21 cm ⁇ 3 .
  • the manufacturing method of the first embodiment as a result of forming the ring 105 by oblique implantation of impurities, the spread of the impurities at the corners of the ring 105 becomes larger, so that the electric field is more easily relaxed than the vertical implantation of impurities. . Furthermore, since it can be realized with a single hard mask, the reproducibility is high with no mask displacement.
  • the ring 205 is not formed by oblique impurity implantation but is formed by two or more impurity implantation steps.
  • a method for manufacturing a silicon carbide semiconductor device according to Example 2 will be described in the order of steps with reference to FIGS.
  • an n ⁇ type epitaxial layer 102 is formed on the surface (first main surface) of the n + type SiC substrate 101, and an SiC epitaxial layer comprising the SiC substrate 101 and the epitaxial layer 102 is formed.
  • a substrate 103 is formed.
  • the impurity concentration of the SiC substrate 101 is set in the range of 1 ⁇ 10 18 to 1 ⁇ 10 21 cm ⁇ 3
  • the impurity concentration of the epitaxial layer 102 is in the range of 1 ⁇ 10 14 to 1 ⁇ 10 17 cm ⁇ 3 . Is set in
  • the low concentration region 205b is formed.
  • the distance (opening width) between the adjacent hard mask patterns 209a is wider in the corner portion than in the line portion, and the opening width that is constant in the line portion is intermediate between the connecting portion between the line portion and the corner portion. Widening towards the point.
  • the impurity concentration of the low concentration region 205b is in the range of 1 ⁇ 10 15 to 2 ⁇ 10 17 cm ⁇ 3 .
  • the surface of the epitaxial layer 102 is shaved by 1 to 5 nm as in the first embodiment, and the epitaxial layer below the side surface of the hard mask is formed.
  • a first step is formed at 102.
  • Al which is a p-type impurity
  • a hard mask pattern 209b made of a SiO 2 film whose width between the hard masks is narrower than that of the hard mask pattern 209a.
  • the impurity concentration of the high concentration region 205a is set within the range of 1 ⁇ 10 17 to 1 ⁇ 10 18 cm ⁇ 3 .
  • the high concentration region 205a is formed inside the low concentration region 205b.
  • the low concentration region 205b is arranged so as to sandwich the high concentration region 205a.
  • the surface of the epitaxial layer 102 is shaved by 1 to 5 nm as in the first step, and the epitaxial layer below the side surface of the hard mask is formed.
  • a second step is formed at 102 (see FIG. 22).
  • a well region 206 is formed by ion-implanting p-type impurities and Al into the epitaxial layer 203 using the hard mask pattern 209c as a mask (not shown).
  • the impurity concentration of the well region 206 is in the range of 1 ⁇ 10 16 to 1 ⁇ 10 19 cm ⁇ 3 .
  • the well region 206 may be formed simultaneously with the ring 205. Further, the well region 206 may be formed in two or more exposure steps simultaneously with the ring 205.
  • n-type impurities and nitrogen are ion-implanted into the epitaxial layer 102 to form an n + -type ring (not shown).
  • the impurity concentration of the n-type ring is set in the range of 1 ⁇ 10 19 to 1 ⁇ 10 21 cm ⁇ 3 .
  • a ring may be formed with two or more exposures by increasing the number of hard mask patterns during ring formation.
  • the final width and impurity concentration of the low concentration region 205b can be arbitrarily set. Can be set.
  • a p + -type auxiliary ring 310 is formed in the well region 306.
  • a p + -type auxiliary ring 310 is formed in the well region.
  • the depth of the p + -type auxiliary ring 310 from the surface of the epitaxial layer 102 is set in the range of 0.1 to 0.5 ⁇ m.
  • the impurity concentration of the p + -type auxiliary ring 310 is set in the range of 1 ⁇ 10 19 to 1 ⁇ 10 21 cm ⁇ 3 .
  • the p + type auxiliary ring 310 is formed by the process shown in FIG. A p-type impurity, Al, is implanted into the epitaxial layer 102 using the hard mask 309a made of the SiO 2 film as a pattern.
  • the formation of the ring 105 and the channel stopper 107 are the same as in the first embodiment.
  • the well region is formed by the p + -type auxiliary ring 310 having a high impurity concentration.
  • the elongation of the depletion layer in 306 stops. That is, the breakdown in the well region 306 is less likely to occur, so that it is robust against the termination structure of the active region.
  • Example 4 The difference between Example 4 and Example 1 described above is that the depth of the p-type ring differs depending on the ring.
  • the ring close to the active region is formed shallow and formed deeper as the distance from the active region increases.
  • FIG. 25 shows a sectional view of the termination region of the silicon carbide semiconductor device.
  • the formation depth of the ring 405 increases as the distance from the active region increases.
  • the depth of each ring 405 is set to 0.5 to 4.0 ⁇ m.
  • the ring on the outer side of the ring on the active region side is larger than the ring on the active region side so that the depth of the ring 405h adjacent to the outside of the ring 405g is not less than the first ring and the depth of the ring 405i on the outside of the ring 405h is not less than the ring 405h It is formed to be deep. Therefore, a more robust termination can be formed.
  • a method for manufacturing a silicon carbide semiconductor device in Example 4 will be described with reference to FIGS. Since the manufacturing method other than the p-type ring is the same as that of the first embodiment, it will not be described.
  • the epitaxial layer 102 is ion-implanted with a p-type impurity, Al. This forms the innermost ring 405g.
  • a p-type ring 405h that is deeper from the surface than the ring 405g is adjacent to the outside of the ring 405g.
  • p-type impurities and Al are obliquely ion-implanted into the epitaxial layer 102 to form a p-type ring 405i that is deeper from the surface than the ring 405g adjacent to the outside of the ring 405g. Form.
  • Each ring is formed by oblique ion implantation as in the first embodiment.
  • the difference between the fifth embodiment and the first embodiment described above is that the ring epitaxial layer is dug to a predetermined depth by the p-type well region 506, and the p-type ring 505 is formed below the step.
  • FIG. 29 shows a sectional view of the termination region of the silicon carbide semiconductor device.
  • the region for forming the ring 505 b is dug to a predetermined depth from the surface of the epitaxial layer 102.
  • the predetermined depth is 0.5 to 1.5 ⁇ m.
  • the depth of the p-type well region 506 is 0.5 to 2.0 ⁇ m from the dug surface, and the impurity concentration is in the range of 1 ⁇ 10 16 to 1 ⁇ 10 19 cm ⁇ 3 .
  • Example 5 A method for manufacturing a silicon carbide semiconductor device in Example 5 will be described with reference to FIGS.
  • An insulating film and a SiO 2 film are deposited on the surface of the epitaxial layer 102 by plasma CVD (Chemical Vapor Deposition).
  • the thickness of the SiO 2 film is 1 to 3 ⁇ m.
  • the hard mask pattern 509a made of the SiO 2 film is formed on the surface of the epitaxial layer 102 by processing the SiO 2 film by a dry etching method using the resist pattern as a mask.
  • a ring region without a hard mask is processed by a dry etching method.
  • the depth of the processed region from the surface of the epitaxial layer 102 is 0.5 to 1.5 ⁇ m.
  • a p-type ring 505 is formed in the lower stage of the step formed by digging in the same manner as in the first embodiment.
  • a p-type well region 506 is also formed at the same time.
  • the p-type well region 506 straddles the stepped portion. Since the p-type well region 506 is formed by oblique impurity implantation similarly to the ring, a region 506b that is not formed by normal impurity implantation is formed. As a result, the distance from the side wall of the stepped portion at the bottom of the p-type well region to the stepped portion on the surface becomes longer, and the destruction in the p-type well region does not occur.
  • the ring can be formed at a position deeper than the active region from the epitaxial layer 102, so that a higher breakdown voltage can be obtained.
  • This is a silicon carbide semiconductor device.
  • the difference between the sixth embodiment and the first embodiment described above is that the widths of the p-type rings 605g, 605h, and 605i are not constant, the ring width close to the active region is formed wider, and narrower as the distance from the active region increases. It is a point to be done.
  • FIG. 34 shows a cross-sectional view of the termination region of the silicon carbide semiconductor device.
  • the width of the ring decreases as the distance from the active region increases.
  • the width of the first ring that is closest to the active is 4.0 to 5.0 ⁇ m.
  • the outer ring is wider than the inner ring width so that the width of the second ring outside the first ring is equal to or smaller than the first ring, and the width of the third ring outside the second ring is equal to or smaller than the second ring.
  • the width is formed to be smaller.
  • a method for manufacturing the silicon carbide semiconductor device according to the sixth embodiment will be described with reference to FIGS. Since the manufacturing method other than the p-type ring 605 is the same as that of the first embodiment, it is omitted.
  • the hard mask pattern 609a made of the SiO 2 film is formed on the surface of the epitaxial layer 102 by processing the SiO 2 film by the dry etching method using the resist pattern as a mask.
  • the innermost pattern width L1 is 4.0 to 5.0 ⁇ m.
  • the outermost pattern width L2 from the innermost side is narrower than the pattern width L1.
  • the pattern width L3 that is one outside of the pattern width L2 is narrower than the pattern width L2.
  • the pattern width Ln is formed narrower than the pattern width Ln-1.
  • a ring 605 is formed by implanting oblique ions of p-type impurities and Al into the epitaxial layer 102. At this time, since the width of the ring 605 depends on the pattern width of FIG.
  • Example 6 the total impurity concentration of the ring in the region near the active is large, and the total impurity concentration is decreased as the distance is increased. Therefore, a more robust termination can be formed.
  • the difference between the seventh embodiment and the first embodiment described above is that the total impurity concentration constituting the p-type ring 705 is larger in the inner ring, and the total impurity concentration is smaller toward the outer side. Is a point.
  • FIG. 37 shows a cross-sectional view of the termination region of the silicon carbide semiconductor device.
  • 38 to 40 are diagrams showing a method of manufacturing the silicon carbide semiconductor device in the seventh embodiment. Since the manufacturing method other than the p-type ring is the same as that of the first embodiment, it is omitted.
  • the total impurity concentration of the ring 705 in the region close to the active region is large, and the total impurity concentration decreases as the distance from the active region increases.
  • a p-type first ring 705a is formed in the epitaxial layer 102 by ion-implanting p-type impurities and Al into the epitaxial layer 102.
  • the ring 705g is formed by oblique ion implantation as in the first embodiment.
  • p-type impurities and Al are obliquely ion-implanted into the epitaxial layer 102, whereby p having a total impurity concentration lower than the total impurity concentration of the first ring outside the first ring.
  • a second ring 705h of the mold is formed.
  • a p-type impurity, Al is obliquely ion-implanted into the epitaxial layer 102, so that p having a total impurity concentration lower than the total impurity concentration of the second ring outside the second ring.
  • a third ring 705i of the mold is formed.
  • the total impurity concentration of the ring in the region close to the active region is large, and the total impurity concentration decreases as the distance from the active region increases, so that a more robust termination can be formed.
  • SYMBOLS 1 Silicon carbide semiconductor device, 2 ... Active region, 3 ... Ring, 4 ... Channel stopper, 5 ... P-type well region, 101 ... SiC substrate, 102 ... Epitaxial layer, 103 ... SiC epitaxial substrate, 104 ... Electrode, 105 ... p-type ring, 105a ... high concentration region of ring 105, 105b ... low concentration region of ring 105, 106 ... p-type well region, 106a ... high concentration region of p-type well region, 106b ... high concentration region of p-type well region , 107 ... channel stopper, 108 ... SiO film, 109 ... hard mask, 109a, 109b, 109c ... hard mask pattern, N1 ... impurity injection direction, N2 ... impurity injection direction, N3 ... impurity injection direction, N4 ... impurity injection direction,

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

The purpose of the present invention is to provide a silicon carbide semiconductor device having high repeatability and a high withstand voltage. In order to achieve the purpose, in multi-formed field limiting rings, the distance between the rings is gradually reduced toward a corner portion from a line portion, and the impurity concentration of a low-concentration region that sandwiches a high-concentration region at the center of a line is reduced toward the corner portion from the line portion.

Description

炭化珪素半導体装置およびその製造方法Silicon carbide semiconductor device and manufacturing method thereof
 本発明は、炭化珪素半導体装置及びその製造方法に関し、特に高耐圧半導体装置のターミネーション構造に関する。 The present invention relates to a silicon carbide semiconductor device and a method for manufacturing the same, and more particularly to a termination structure of a high voltage semiconductor device.
 SiCを用いたパワー半導体装置は、Siを用いたパワー半導体装置と比較して、同耐圧ではオン抵抗の低抵抗化が可能である。これは、SiCの絶縁破壊強度がSiの約10倍であるため、空乏層幅が約10分の1となり、ドリフト層となるエピタキシャル層を薄くできることに起因している。 The power semiconductor device using SiC can reduce the on-resistance at the same breakdown voltage as compared with the power semiconductor device using Si. This is due to the fact that the dielectric breakdown strength of SiC is about 10 times that of Si, so that the depletion layer width is about one-tenth and the epitaxial layer serving as the drift layer can be made thinner.
 しかしながら、オフ状態において、SiCを用いたパワー半導体装置の最大電界はSiを用いたパワー半導体の10倍であるため、電界を緩和するために用いるターミネーション構造が重要となる。 However, since the maximum electric field of a power semiconductor device using SiC is 10 times that of a power semiconductor using Si in the off state, the termination structure used for relaxing the electric field is important.
 パワー半導体装置の耐圧はドリフト層を構成するエピタキシャル層の厚さと不純物濃度によって決まる。しかしながら、アクティブ領域の周囲にある終端領域では電界集中が生じるため、電界緩和のための構造を設けなければ、設計上の耐圧よりも小さな値で破壊がおきてしまう。 The breakdown voltage of the power semiconductor device is determined by the thickness and impurity concentration of the epitaxial layer constituting the drift layer. However, since electric field concentration occurs in the termination region around the active region, if a structure for relaxing the electric field is not provided, breakdown occurs at a value smaller than the designed breakdown voltage.
 そのような電界緩和構造として、一般に、JTE(Junction Termination Extention)構造、FLR(Field Limitting Ring)構造が知られている。 As such an electric field relaxation structure, a JTE (Junction Termination Extension) structure and an FLR (Field Limiting Ring) structure are generally known.
 上記構造のうち、FLR構造は、基板の導電性と反対の導電性不純物が平面視形状が多重のリング状に注入されたフローティング領域のことである。一般に、FLR構造は、p型リング環数、p型リング間の間隔、p型リングを形成する深さあるいは不純物濃度を調整することで、耐圧が調整できることが知られている。 Among the above structures, the FLR structure is a floating region in which conductive impurities opposite to the conductivity of the substrate are implanted in a ring shape having a plan view. In general, it is known that the breakdown voltage of the FLR structure can be adjusted by adjusting the number of p-type ring rings, the interval between p-type rings, the depth for forming the p-type ring, or the impurity concentration.
 しかしながら、FLR構造において、平面視形状のコーナー部とライン部では、電界集中の度合いが異なるため、コーナー部ではライン部に比べ電界が集中しやすい。そのため、コーナー部で破壊が起きやすい。このとき、コーナー部での空乏層の伸びは、ライン部の空乏層の伸びに比べて小さくなるため、ライン部とコーナー部とでは最適なp型リング間距離やp型リングを構成する不純物濃度が異なってくる。 However, in the FLR structure, since the degree of electric field concentration is different between the corner portion and the line portion in a plan view shape, the electric field is more likely to be concentrated at the corner portion than at the line portion. For this reason, breakage easily occurs at the corner. At this time, since the extension of the depletion layer in the corner portion is smaller than the extension of the depletion layer in the line portion, the optimum distance between the p-type rings and the impurity concentration constituting the p-type ring in the line portion and the corner portion. Will be different.
 特開2004-158817号公報(特許文献1)では、p型リングのコーナー部の外側にのみ選択的に不純物を添加することで、コーナー部へ集中していた電界をコーナー部の外側へ分散させ、破壊を生じにくくしている。 In Japanese Patent Application Laid-Open No. 2004-158817 (Patent Document 1), by selectively adding impurities only to the outside of the corner portion of the p-type ring, the electric field concentrated on the corner portion is dispersed to the outside of the corner portion. , Making it difficult to break down.
 特開2011-171552号公報(特許文献2)では、p型リングコーナー部の幅をライン部よりも広くしているため、結果としてコーナー部でのp型リング間距離が小さくなり、コーナー部での電界集中が緩和される構造となっている。 In Japanese Patent Application Laid-Open No. 2011-171552 (Patent Document 2), the width of the p-type ring corner portion is wider than that of the line portion. As a result, the distance between the p-type rings at the corner portion is reduced, and the corner portion The electric field concentration is reduced.
特開2004-158817号公報JP 2004-158817 A 特開2011-171552号公報JP 2011-171552 A
 特許文献1の各コーナーの外側にのみ選択的に不純物を添加する構造は、p型リングの不純物インプラント用マスクとは別のマスクで不純物をインプラントせざるをえない。しかし、インプラントする領域がp型リングの外側に限定されているので、マスクの位置ズレにより耐圧が変動しやすい。また、深い位置だけのインプラントは不純物濃度の制御が難しい。従って、この構造では高い再現性で高耐圧の炭化珪素半導体装置が得られない。 In the structure in which impurities are selectively added only outside the corners of Patent Document 1, impurities must be implanted using a mask different from the p-type ring impurity implantation mask. However, since the region to be implanted is limited to the outside of the p-type ring, the breakdown voltage tends to fluctuate due to the displacement of the mask. Moreover, it is difficult to control the impurity concentration of an implant only at a deep position. Therefore, with this structure, a silicon carbide semiconductor device with high reproducibility and high breakdown voltage cannot be obtained.
 特許文献2の不純物濃度を一様に小さくしてリング内への空乏層の伸びを大きくする方法では、リング内に空乏層が伸びきってしまい、破壊が生じてしまう。 In the method of uniformly reducing the impurity concentration in Patent Document 2 to increase the extension of the depletion layer into the ring, the depletion layer extends completely into the ring, resulting in destruction.
 本発明の目的は、高い再現性のある高耐圧炭化珪素半導体装置を提供することにある。 An object of the present invention is to provide a high voltage silicon carbide semiconductor device with high reproducibility.
 本願において開示される発明のうち、上記目的を解決する代表的な手段簡単に説明すれば、次のとおりである。 Of the inventions disclosed in the present application, representative means for solving the above-described object will be briefly described as follows.
 第1導電型の炭化珪素基板と、前記炭化珪素基板の表面上に形成された第1導電型の炭化珪素エピタキシャル層と、前記エピタキシャル層上に配置された第1電極と、前記炭化珪素基板の裏面に配置された第2電極とを備えた炭化珪素半導体装置において、前記エピタキシャル層は平面視領域として、アクティブ領域と、前記アクティブ領域を囲む端部領域とを備え、前記端部領域は、前記アクティブ領域を前記リング状に囲む平面視形状となる第2導電型の不純物が注入され、前記第1電極に直接接していないリングを多重に備え、前記リングは、平面視形状で直線状のライン部と、前記ライン部を繋ぐコーナー部とを備え、前記ライン部と前記コーナー部の接続部から前記コーナーの中間に向かうにしたがって前記リング間距離が徐々に狭くし、さらに、前記リングは、平面視形状で高濃度領域を低濃度領域で挟み込む構造を備え、前記ライン部と前記コーナー部の接続部から前記コーナーの中間に向かうにしたがって前記低濃度領域の不純物濃度を薄くする。 A first conductivity type silicon carbide substrate; a first conductivity type silicon carbide epitaxial layer formed on a surface of the silicon carbide substrate; a first electrode disposed on the epitaxial layer; and the silicon carbide substrate. In the silicon carbide semiconductor device including the second electrode disposed on the back surface, the epitaxial layer includes, as a planar view region, an active region and an end region surrounding the active region. Impurities of a second conductivity type having a plan view shape surrounding the active region in a ring shape are implanted, and a plurality of rings that are not in direct contact with the first electrode are provided, and the ring is a straight line in a plan view shape And a corner portion connecting the line portions, the distance between the rings gradually increases from the connecting portion between the line portion and the corner portion toward the middle of the corner. Further, the ring has a structure in which the high-concentration region is sandwiched between the low-concentration regions in a plan view shape, and the ring of the low-concentration regions as it goes from the connection part of the line part and the corner part to the middle of the corner. Reduce impurity concentration.
 本発明によれば、高い再現性を備えた高耐圧な炭化珪素半導体装置を提供することができる。 According to the present invention, a high breakdown voltage silicon carbide semiconductor device having high reproducibility can be provided.
実施例1の炭化珪素半導体装置の要部上面図である。1 is a top view of a principal part of a silicon carbide semiconductor device of Example 1. FIG. 実施例1の炭化珪素半導体装置の終端領域断面図である。1 is a cross-sectional view of a termination region of a silicon carbide semiconductor device of Example 1. FIG. 実施例1の炭化珪素半導体装置の別構造における終端領域断面図である。5 is a cross-sectional view of a termination region in another structure of the silicon carbide semiconductor device of Example 1. FIG. 実施例1の炭化珪素半導体装置を終端領域の断面詳細図である。1 is a detailed cross-sectional view of a termination region of a silicon carbide semiconductor device of Example 1. FIG. 図4におけるリング3の不純物濃度について示した図である。It is the figure shown about the impurity concentration of the ring 3 in FIG. 実施例1の炭化珪素半導体装置の終端領域におけるコーナー部とライン部の断面図である。2 is a cross-sectional view of a corner portion and a line portion in a termination region of the silicon carbide semiconductor device of Example 1. FIG. 実施例1の炭化珪素半導体装置の終端領域の一部を拡大して示す模式断面図である。FIG. 3 is a schematic cross-sectional view showing an enlarged part of a termination region of the silicon carbide semiconductor device of Example 1. 実施例1の製造工程を説明する炭化珪素半導体装置の終端領域断面図である。FIG. 6 is a cross-sectional view of the termination region of the silicon carbide semiconductor device for explaining the manufacturing process of Example 1; 図8に続く製造工程を説明する炭化珪素半導体装置の終端領域断面図である。FIG. 9 is a cross-sectional view of a termination region of the silicon carbide semiconductor device, illustrating a manufacturing process following FIG. 8. 図9に続く製造工程を説明する炭化珪素半導体装置の終端領域断面図である。FIG. 10 is a cross-sectional view of a termination region of the silicon carbide semiconductor device, illustrating a manufacturing process following FIG. 9. 図12のI―I線の断面に相当する断面図とII―IIに相当する断面図である。FIG. 13 is a cross-sectional view corresponding to a cross section taken along line II in FIG. 12 and a cross-sectional view corresponding to II-II. 実施例1による炭化珪素半導体の要部上面図である。3 is a top view of a principal part of the silicon carbide semiconductor according to Example 1. FIG. 実施例1による炭化珪素半導体の製造工程における終端領域断面図である。5 is a cross-sectional view of a termination region in the manufacturing process of the silicon carbide semiconductor according to Example 1. FIG. 実施例1による炭化珪素半導体の製造工程における終端領域断面図である。5 is a cross-sectional view of a termination region in the manufacturing process of the silicon carbide semiconductor according to Example 1. FIG. 実施例1による炭化珪素半導体の製造工程における終端領域断面図である。5 is a cross-sectional view of a termination region in the manufacturing process of the silicon carbide semiconductor according to Example 1. FIG. 実施例1の炭化珪素半導体の製造工程を説明する終端領域断面図である。3 is a cross-sectional view of a termination region for explaining a manufacturing process of a silicon carbide semiconductor of Example 1. FIG. 図16に続く製造工程を説明する終端領域断面図である。FIG. 17 is a cross-sectional view of a termination region illustrating a manufacturing process following FIG. 16. 図17に続く製造工程を説明する炭化珪素半導体装置の終端領域断面図である。FIG. 18 is a sectional view of a termination region of the silicon carbide semiconductor device, illustrating a manufacturing process following FIG. 17; 図17に続く製造工程を説明する炭化珪素半導体装置の終端領域断面図である。FIG. 18 is a sectional view of a termination region of the silicon carbide semiconductor device, illustrating a manufacturing process following FIG. 17; 実施例2の炭化珪素半導体装置の製造工程を説明する終端領域断面図である。FIG. 10 is a termination region cross-sectional view illustrating a manufacturing process of a silicon carbide semiconductor device of Example 2. 図20に続く製造工程を説明する炭化珪素半導体装置の終端領域断面図である。FIG. 21 is a cross-sectional view of a termination region of the silicon carbide semiconductor device, illustrating a manufacturing process following FIG. 20. 実施例2の炭化珪素半導体装置のリング205の拡大図である。FIG. 6 is an enlarged view of a ring 205 of the silicon carbide semiconductor device of Example 2. 実施例3の炭化珪素半導体装置の終端領域断面図である。FIG. 12 is a cross-sectional view of a termination region of the silicon carbide semiconductor device of Example 3. 実施例3の炭化珪素半導体装置の製造工程における終端領域断面図である。FIG. 12 is a cross-sectional view of a termination region in the manufacturing process of the silicon carbide semiconductor device of Example 3. 実施例4の炭化珪素半導体装置の終端領域断面図である。12 is a cross-sectional view of a termination region of the silicon carbide semiconductor device of Example 4. FIG. 実施例4による炭化珪素半導体装置の製造工程における終端領域断面図である。FIG. 12 is a cross-sectional view of a termination region in the process for manufacturing a silicon carbide semiconductor device according to Example 4; 図26に続く製造工程を説明する炭化珪素半導体装置の終端領域断面図である。FIG. 27 is a cross-sectional view of a termination region of the silicon carbide semiconductor device, illustrating a manufacturing process following FIG. 26. 図27に続く製造工程を説明する炭化珪素半導体装置の終端領域断面図である。FIG. 28 is a sectional view of a termination region of the silicon carbide semiconductor device, illustrating a manufacturing process following FIG. 27. 実施例5の炭化珪素半導体装置の終端領域断面図である。10 is a sectional view of a termination region of a silicon carbide semiconductor device of Example 5. FIG. 実施例5の炭化珪素半導体装置の製造工程を説明する終端領域断面図である。10 is a cross-sectional view of a termination region illustrating a manufacturing process for a silicon carbide semiconductor device of Example 5. FIG. 図30に続く製造工程を説明する炭化珪素半導体装置の終端領域断面図である。FIG. 31 is a cross-sectional view of a termination region of the silicon carbide semiconductor device, illustrating a manufacturing process following FIG. 30. 図31に続く製造工程を説明する炭化珪素半導体装置の終端領域断面図である。FIG. 32 is a cross-sectional view of a termination region of the silicon carbide semiconductor device, illustrating a manufacturing process following FIG. 31. 実施例6の炭化珪素半導体装置の終端領域断面図である。12 is a sectional view of a termination region of a silicon carbide semiconductor device of Example 6. FIG. 実施例6の製造工程を説明する終端領域断面図である。10 is a sectional view of a termination region, illustrating a manufacturing process according to Example 6. FIG. 図34に続く製造工程を説明する炭化珪素半導体装置の終端領域断面図である。FIG. 35 is a cross-sectional view of a termination region of the silicon carbide semiconductor device, illustrating a manufacturing process following FIG. 34. 実施例7の炭化珪素半導体装置の終端領域断面図である。12 is a sectional view of a termination region of a silicon carbide semiconductor device of Example 7. FIG. 実施例7の製造工程における終端領域断面図である。12 is a sectional view of a termination region in the manufacturing process of Example 7. FIG. 図37に続く製造工程を説明する炭化珪素半導体装置の終端領域断面図である。FIG. 38 is a cross-sectional view of a termination region of the silicon carbide semiconductor device, illustrating a manufacturing process following FIG. 37. 図38に続く製造工程を説明する炭化珪素半導体装置の終端領域断面図である。FIG. 39 is a cross-sectional view of a termination region of the silicon carbide semiconductor device, illustrating a manufacturing process following FIG. 38. 図39に続く製造工程を説明する炭化珪素半導体装置の終端領域断面図である。FIG. 40 is a cross-sectional view of a termination region of the silicon carbide semiconductor device, illustrating a manufacturing process following FIG. 39;
 以下の実施の形態で用いる図面においては、平面図であっても図面を見易くするためにハッチングを付す場合もある。また、以下の実施の形態を説明するための全図において、同一機能を有するものは原則として同一の符号を付し、その繰り返しの説明は省略する。以下、本発明の実施の形態を図面に基づいて詳細に説明する。 In the drawings used in the following embodiments, even a plan view may be hatched to make the drawings easy to see. In all the drawings for explaining the following embodiments, components having the same function are denoted by the same reference numerals in principle, and repeated description thereof is omitted. Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[デバイス構造]
 実施例1の炭化珪素半導体装置について図1~図7を用いて説明する。図1は炭化珪素半導体装置の要部上面図、図2は実施例1の炭化珪素半導体装置の終端領域断面図、図3は実施例1の炭化珪素半導体装置の別構造における終端領域断面図、図4は実施例1の炭化珪素半導体装置の終端領域断面の詳細図、図5は図4におけるリングの不純物濃度について示した図、図6は実施例1の炭化珪素半導体装置の終端領域におけるコーナー部とライン部の断面図、図7は実施例1の炭化珪素半導体装置の終端領域の一部を拡大して示す模式断面図である。
[Device structure]
A silicon carbide semiconductor device of Example 1 will be described with reference to FIGS. 1 is a top view of a principal part of a silicon carbide semiconductor device, FIG. 2 is a sectional view of a termination region of the silicon carbide semiconductor device of Example 1, and FIG. 3 is a sectional view of a termination region in another structure of the silicon carbide semiconductor device of Example 1. 4 is a detailed view of a cross section of the termination region of the silicon carbide semiconductor device of Example 1, FIG. 5 is a diagram showing the impurity concentration of the ring in FIG. 4, and FIG. 6 is a corner in the termination region of the silicon carbide semiconductor device of Example 1. FIG. 7 is a schematic cross-sectional view showing a part of the termination region of the silicon carbide semiconductor device of Example 1 in an enlarged manner.
 図1に示すように、炭化珪素半導体装置1は、ダイオードやトランジスタが配置される炭化珪素半導体装置の中央のアクティブ領域2と、平面視においてアクティブ領域2を囲む終端領域に、p型のウェル領域106と、互いに同心となるように多重に複数配置されたp型フローティング・フィールド・リミッティング・リング(以下、リングと記す)105と、さらに平面視において上記リング105を囲むn型のリング領域であるチャネルストッパ107がある。 As shown in FIG. 1, silicon carbide semiconductor device 1 includes a p-type well region in an active region 2 at the center of a silicon carbide semiconductor device in which a diode and a transistor are arranged, and a terminal region surrounding active region 2 in plan view. 106, a plurality of p-type floating field limiting rings (hereinafter, referred to as rings) 105 that are arranged in multiple concentric positions, and an n + -type ring region that surrounds the ring 105 in plan view There is a channel stopper 107.
 オフ時において、最大電界部分が順次外側のp型のリング105へ移り、最外周のリング105で降伏するようになるので、炭化珪素半導体装置を高耐圧とすることが可能となる。図1を用いて3重のリング105が形成されている例を図示しているが、本発明はこれに限定されるものではない。 When off, the maximum electric field portion sequentially moves to the outer p-type ring 105 and yields at the outermost ring 105, so that the silicon carbide semiconductor device can have a high breakdown voltage. Although the example in which the triple ring 105 is formed is illustrated using FIG. 1, the present invention is not limited to this.
 次に、本実施例1による炭化珪素半導体装置の構造を、図2を用いて説明する。 Next, the structure of the silicon carbide semiconductor device according to the first embodiment will be described with reference to FIG.
 SiC基板101の裏面(第2主面)には電極104が形成されている。 An electrode 104 is formed on the back surface (second main surface) of the SiC substrate 101.
 SiCからなるn型のSiC基板101の表面(第1主面)上に、SiC基板101よりも不純物濃度の低いSiCからなるn型のエピタキシャル層102が形成されている。n型のSiC基板101とn型のエピタキシャル層102の厚さを、5~20μmの範囲内で設定されている。 An n type epitaxial layer 102 made of SiC having an impurity concentration lower than that of the SiC substrate 101 is formed on the surface (first main surface) of the n + type SiC substrate 101 made of SiC. The thicknesses of the n + type SiC substrate 101 and the n type epitaxial layer 102 are set in the range of 5 to 20 μm.
 n型のエピタキシャル層102内にはp型のリング105が形成されている。リング105のエピタキシャル層102の表面からの深さは、0.5~2.0μmの範囲内で設定され、リング105間の距離は0.5~2.5μmの範囲内で設定されている。図3に示してあるように、リング105間の各距離は必ずしも一定である必要はない。図3は、図2のウェル領域106とチャネルストッパ107との間の距離を保ちながら、リング105同士の間隔を変えた構造を示している。具体的には、内側のリング105間距離を狭め、外側のリング105間距離を広げることで耐圧を更に向上させる構造としている。なお、チャネルストッパと最外周のリング105との距離も縮めることで、p型ウェル領域106とリング間距離、リング105同士の距離、チャネルストッパ107と最外周のリング105との距離のうち、外側のリング105間距離が最も大きくなっている。 A p-type ring 105 is formed in the n -type epitaxial layer 102. The depth of the ring 105 from the surface of the epitaxial layer 102 is set within a range of 0.5 to 2.0 μm, and the distance between the rings 105 is set within a range of 0.5 to 2.5 μm. As shown in FIG. 3, the distances between the rings 105 do not necessarily have to be constant. FIG. 3 shows a structure in which the distance between the rings 105 is changed while maintaining the distance between the well region 106 and the channel stopper 107 in FIG. Specifically, the pressure resistance is further improved by narrowing the distance between the inner rings 105 and widening the distance between the outer rings 105. In addition, by reducing the distance between the channel stopper and the outermost ring 105, the distance between the p-type well region 106 and the ring, the distance between the rings 105, and the distance between the channel stopper 107 and the outermost ring 105 is outside. The distance between the rings 105 is the largest.
 n型のエピタキシャル層102のリング105の内側にはp型のウェル領域106が形成されている。p型のウェル領域106のエピタキシャル層102の表面からの深さは、0.5~2.0μmの範囲内で設定されている。 A p-type well region 106 is formed inside the ring 105 of the n -type epitaxial layer 102. The depth of the p-type well region 106 from the surface of the epitaxial layer 102 is set within a range of 0.5 to 2.0 μm.
 リング105とウェル領域106とは個別に深さを設定可能であるが、同じ深さに設定する場合、同じ工程で同時に形成することができるのは言うまでもない。 The depth of the ring 105 and the well region 106 can be set individually, but it goes without saying that when the same depth is set, they can be formed simultaneously in the same process.
 リング105の外側には、n型のエピタキシャル層102内にはn型の平面視形状がリング状であるチャネルストッパ107が形成されている。チャネルストッパ107のエピタキシャル層102の表面からの深さは、0.5~2μmの範囲内で設定されている。 On the outside of the ring 105, a channel stopper 107 having an n + type planar view shape in a ring shape is formed in the n type epitaxial layer 102. The depth of the channel stopper 107 from the surface of the epitaxial layer 102 is set within a range of 0.5 to 2 μm.
 なお、ここまでの説明で用いた「」および「」は、導電型がn型またはp型の相対的な不純物濃度を表記した符号である。「n」、「n」、「n」の順にn型不純物の不純物濃度は高くなる。n型のSiC基板101の不純物濃度の好ましい範囲は、1×1018~1×1021cm-3、n型のエピタキシャル層102の不純物濃度の好ましい範囲は、1×1014~1×1017cm-3、リング105及びp型のウェル領域は、1×1016~1×1019cm-3、n型のチャネルストッパ107は、1×1019~1×1021cm-3の範囲内で設定されている。 Note that “ ” and “ + ” used in the description so far are symbols representing the relative impurity concentration of n-type or p-type conductivity. The impurity concentration of the n-type impurity increases in the order of “n ”, “n”, and “n + ”. The preferable range of the impurity concentration of the n + -type SiC substrate 101 is 1 × 10 18 to 1 × 10 21 cm −3 , and the preferable range of the impurity concentration of the n -type epitaxial layer 102 is 1 × 10 14 to 1 ×. 10 17 cm −3 , the ring 105 and the p-type well region are 1 × 10 16 to 1 × 10 19 cm −3 , and the n + -type channel stopper 107 is 1 × 10 19 to 1 × 10 21 cm −3. Is set within the range.
 図4に示すように、リング105は不純物濃度が濃い高濃度領域105aと、高濃度領域105aを挟み込む不純物濃度が低い低濃度領域105bで構成されている。より詳細な構造を示すと、図7に示すようになっている。リング105の高濃度領域105aの表面の位置は、リング105の低濃度領域及びリング105が形成されないn型のエピタキシャル層の表面の位置よりも、0.05μm低くなっている。これは、リング105の高濃度領域105aを形成する際のエッチング工程において、表面を削ることにより形成されるものである。 As shown in FIG. 4, the ring 105 includes a high concentration region 105a having a high impurity concentration and a low concentration region 105b having a low impurity concentration sandwiching the high concentration region 105a. A more detailed structure is shown in FIG. The position of the surface of the high concentration region 105a of the ring 105 is 0.05 μm lower than the position of the surface of the low concentration region of the ring 105 and the n type epitaxial layer where the ring 105 is not formed. This is formed by scraping the surface in the etching step when forming the high concentration region 105a of the ring 105.
 図5のグラフは、縦軸にリング105の不純物濃度、横軸にリング105の幅をとったものである。図5に示すようにその濃度分布はリングの中央で最も濃くなり(高濃度領域105a)、リング105の周辺部にいくにしたがって徐々に薄くなる(低濃度領域105b)。本実施例では、リング中央部の高濃度領域105aの不純物濃度は、1×1017~1×1018cm-3、リング周辺部の低濃度領域105bの不純物濃度は、1×1015~2×1017cm-3になっている。 In the graph of FIG. 5, the vertical axis represents the impurity concentration of the ring 105, and the horizontal axis represents the width of the ring 105. As shown in FIG. 5, the concentration distribution becomes the darkest at the center of the ring (high concentration region 105a), and gradually decreases toward the periphery of the ring 105 (low concentration region 105b). In the present embodiment, the impurity concentration of the high concentration region 105a at the center of the ring is 1 × 10 17 to 1 × 10 18 cm −3 , and the impurity concentration of the low concentration region 105b at the periphery of the ring is 1 × 10 15 to 2 × 10 17 cm -3
 図6に示すように、リング105のコーナー部における低濃度領域105bと、リング105のライン部における低濃度領域105bではリング105のコーナー部における低濃度領域105bの方が幅が大きくなっている。具体的には、ライン部のリング幅は実質的に一定であるが、ライン部とコーナー部との接続部から、コーナー部の中間にいくにしたがってリング105の幅は徐々に広くなり、リング105のコーナー部の最も中間で最も広くなっている。そして、コーナーブのリング幅の大きさはライン部のリング幅の1.3~1.6倍になっている。 As shown in FIG. 6, in the low concentration region 105b in the corner portion of the ring 105 and the low concentration region 105b in the line portion of the ring 105, the width of the low concentration region 105b in the corner portion of the ring 105 is larger. Specifically, the ring width of the line portion is substantially constant, but the width of the ring 105 gradually increases from the connecting portion between the line portion and the corner portion to the middle of the corner portion. It is widest in the middle of the corner. The corner ring has a ring width 1.3 to 1.6 times the ring width of the line portion.
 コーナー部とライン部では周辺部分の濃度も異なっている。具体的には、ライン部の低濃度領域105bの不純物濃度は実質的に一定であるが、ライン部とコーナー部との接続部から、コーナー部の中間にいくにしたがって低濃度領域105bの不純物濃度は徐々に薄くなり、リング105のコーナー部の最も中間で最も薄くなっている。リング105のコーナー部の中間点における濃度はライン部の概ね半分になっている。 The density of the peripheral part is different between the corner part and the line part. Specifically, although the impurity concentration in the low concentration region 105b in the line portion is substantially constant, the impurity concentration in the low concentration region 105b increases from the connection portion between the line portion and the corner portion to the middle of the corner portion. Is gradually thinner, and is the thinnest in the middle of the corner portion of the ring 105. The density at the midpoint of the corner portion of the ring 105 is approximately half that of the line portion.
 以上のように、本実施例によれば、p型ウェル領域106にかかる電界集中が外側のリング105へと分散されやすくなっており、炭化珪素半導体装置を高耐圧にできる。 As described above, according to the present embodiment, the electric field concentration applied to the p-type well region 106 is easily dispersed to the outer ring 105, and the silicon carbide semiconductor device can have a high breakdown voltage.
 そして、以下の不純物の斜め注入による製造方法を採用可能になるので、再現性高く高耐圧の炭化珪素半導体装置を製造することも可能になる。
[炭化珪素半導体装置の製造方法]
 実施例1による炭化珪素半導体装置の製造方法について図8~図19を用いて工程順に説明する。
Since the following manufacturing method by oblique implantation of impurities can be employed, it is possible to manufacture a silicon carbide semiconductor device with high reproducibility and high breakdown voltage.
[Method for Manufacturing Silicon Carbide Semiconductor Device]
A method for manufacturing the silicon carbide semiconductor device according to the first embodiment will be described in the order of steps with reference to FIGS.
 図12は、実施例1の炭化珪素半導体装置の上面図で、図1のリング105を抜粋した図である。以下、リング105のコーナー部であるI―I線の断面に相当する断面図と、リング105のストライプ部であるII―II線の断面に相当する断面図を用いて、本実施例の炭化珪素半導体装置の製造方法を説明する。 FIG. 12 is a top view of the silicon carbide semiconductor device of Example 1, and is a diagram in which the ring 105 of FIG. 1 is extracted. Hereinafter, a silicon carbide according to the present embodiment will be described with reference to a cross-sectional view corresponding to a cross section taken along line II of the corner portion of the ring 105 and a cross-sectional view corresponding to a cross section taken along line II-II of the stripe portion of the ring 105. A method for manufacturing a semiconductor device will be described.
 まず、図8に示すように、4H-SiC(炭化珪素)基板101を用意し、Si面を上面とする。SiC基板101としては、n型不純物である窒素が導入されている基板を用いる。 First, as shown in FIG. 8, a 4H—SiC (silicon carbide) substrate 101 is prepared, and the Si surface is the upper surface. As the SiC substrate 101, a substrate into which nitrogen which is an n-type impurity is introduced is used.
 次に、SiC基板101の表面(第1主面)にエピタキシャル成長法によりSiCのn型のエピタキシャル層102を形成する。エピタキシャル層102には、SiC基板101の不純物濃度よりも低い濃度となるようにn型不純物が導入されている。エピタキシャル層102の不純物濃度は炭化珪素半導体装置の素子定格に依存するが、1×1014~1×1017cm-3の範囲で設定されている。また、エピタキシャル層102の厚さは、5~20μmの範囲で設定されている。以上の工程により、SiC基板101およびエピタキシャル層102からなるSiCエピタキシャル基板103が形成される。 Next, an SiC n type epitaxial layer 102 is formed on the surface (first main surface) of the SiC substrate 101 by an epitaxial growth method. N-type impurities are introduced into epitaxial layer 102 so as to have a concentration lower than that of SiC substrate 101. The impurity concentration of epitaxial layer 102 depends on the element rating of the silicon carbide semiconductor device, but is set in the range of 1 × 10 14 to 1 × 10 17 cm −3 . The thickness of the epitaxial layer 102 is set in the range of 5 to 20 μm. Through the above steps, SiC epitaxial substrate 103 composed of SiC substrate 101 and epitaxial layer 102 is formed.
 次に、図9に示すように、エピタキシャル層102の表面上に、プラズマCVD(Chemical Vapor Deposition)法により絶縁膜を堆積する。実施例ではSiO膜109を堆積する。SiO膜109の厚さは、1~3μmの範囲で設定されている。 Next, as shown in FIG. 9, an insulating film is deposited on the surface of the epitaxial layer 102 by a plasma CVD (Chemical Vapor Deposition) method. In the embodiment, a SiO 2 film 109 is deposited. The thickness of the SiO 2 film 109 is set in the range of 1 to 3 μm.
 続いて、図10に示すようにレジストパターンをマスクとして、SiO膜109をドライエッチング法により加工することにより、ハードマスクパターン109aをエピタキシャル層102の表面上に形成する。リング105に対応したハードマスクパターン109aの幅は、1~2.5μmの範囲で設定されている。この際、前述の図7を用いて説明したように、エピタキシャル層102の表面が数nm(5nm以下)削れて、ハードマスクパターン109aの側面下のエピタキシャル層102に第1段差が形成される(図10では図示せず)。 Subsequently, as shown in FIG. 10, the hard mask pattern 109 a is formed on the surface of the epitaxial layer 102 by processing the SiO 2 film 109 by a dry etching method using the resist pattern as a mask. The width of the hard mask pattern 109a corresponding to the ring 105 is set in the range of 1 to 2.5 μm. At this time, as described with reference to FIG. 7, the surface of the epitaxial layer 102 is shaved by several nm (5 nm or less), and a first step is formed in the epitaxial layer 102 below the side surface of the hard mask pattern 109a (see FIG. (Not shown in FIG. 10).
 次に、エピタキシャル層102にp型不純物をイオン注入する。実施例では、p型不純物としてAlを用いた。これにより、エピタキシャル層102のリング105を形成する。 Next, p-type impurities are ion-implanted into the epitaxial layer 102. In the examples, Al was used as the p-type impurity. Thereby, the ring 105 of the epitaxial layer 102 is formed.
 図11は図12のI―I線の断面に相当する断面図とII―IIに相当する断面図である。図12に示してある、N1、N2、N3、N4の方向から計4回、基板の法線から角度をつけて斜め不純物注入する。ここで、N1、N2、N3、N4は、リング105のライン部から45度傾いている。また、斜め不純物注入時の角度(仰角)は、SiCエピタキシャル基板103の法線方向から10~45度(仰角45~80度)である。リング105のエピタキシャル層102の表面からの深さは、0.5~2μmの範囲内で設定されている。 FIG. 11 is a cross-sectional view corresponding to the cross section taken along line II of FIG. 12 and a cross-sectional view corresponding to II-II. The oblique impurity implantation is performed four times in total from the directions of N1, N2, N3, and N4 shown in FIG. 12 and at an angle from the normal line of the substrate. Here, N1, N2, N3, and N4 are inclined 45 degrees from the line portion of the ring 105. The angle (elevation angle) at the time of oblique impurity implantation is 10 to 45 degrees (elevation angle 45 to 80 degrees) from the normal direction of SiC epitaxial substrate 103. The depth of the ring 105 from the surface of the epitaxial layer 102 is set in the range of 0.5 to 2 μm.
 ここで、図13~図16を用いて、斜め不純物注入によって図6のように、リング105のコーナー部とリング105のライン部で低濃度領域105bの幅・濃度を異ならしめる工程を説明する。 Here, using FIG. 13 to FIG. 16, a process of making the width / concentration of the low concentration region 105b different between the corner portion of the ring 105 and the line portion of the ring 105 by oblique impurity implantation as shown in FIG.
 図13は図12のN1方向から不純物注入したときのp型不純物分布である。本注入工程によるリングのみを示すとリング105cとなる。N1方向は、平面視した際にリング105の縦ラインから右45度傾けた図の右上に向かう方向であるので、ハードマスクパターン109aを右上方向にずらした領域に不純物が注入される。なお、リング105のコーナー部であるI―I断面での不純物の横方向への広がりとリング105のライン部であるII―II断面での不純物の横方向への広がりは異なり、コーナー部の方が大きく広がる。 FIG. 13 shows a p-type impurity distribution when impurities are implanted from the N1 direction of FIG. If only the ring by this injection process is shown, it will be the ring 105c. Since the N1 direction is a direction toward the upper right in the figure inclined 45 degrees to the right from the vertical line of the ring 105 when viewed in plan, impurities are implanted into a region where the hard mask pattern 109a is shifted in the upper right direction. In addition, the lateral spread of impurities in the II section, which is the corner portion of the ring 105, and the lateral spread of impurities in the II-II section, which is the line portion of the ring 105, are different. Will spread greatly.
 図14は図12のN2方向から不純物注入したときのp型不純物分布である。本注入工程によるリングのみを示すとリング105dとなる。N2方向は、平面視した際にリング105の縦ラインから左135度傾けた図の左下に向かう方向であるので、ハードマスクパターン109aを左下方向にずらした領域に不純物が注入される。なお、リング105のコーナー部であるI―I断面での不純物の横方向への広がりとリング105のライン部であるII―II断面での不純物の横方向への広がりは異なり、コーナー部の方が大きく広がる。 FIG. 14 shows a p-type impurity distribution when impurities are implanted from the N2 direction of FIG. If only the ring by this injection process is shown, it will be the ring 105d. The N2 direction is a direction from the vertical line of the ring 105 toward the lower left in the figure tilted 135 degrees to the left when viewed in plan, so that the impurity is implanted into a region where the hard mask pattern 109a is shifted to the lower left. In addition, the lateral spread of impurities in the II section, which is the corner portion of the ring 105, and the lateral spread of impurities in the II-II section, which is the line portion of the ring 105, are different. Will spread greatly.
 図15は図12のN3方向から不純物注入したときのp型不純物分布である。本注入工程によるリングのみを示すとリング105eとなる。N3方向は、平面視した際にリング105の縦ラインから右135度傾けた図の右下に向かう方向であるので、ハードマスクパターン109aを右下方向にずらした領域に不純物が注入される。なお、リング105のコーナー部であるI―I断面での不純物の横方向への広がりとリング105のライン部であるII―II断面での不純物の横方向への広がりは異なり、コーナー部の方が大きく広がる。 FIG. 15 is a p-type impurity distribution when impurities are implanted from the N3 direction of FIG. If only the ring by this injection process is shown, it will be the ring 105e. The N3 direction is a direction from the vertical line of the ring 105 toward the lower right in the drawing inclined 135 degrees to the right in the plan view, so that impurities are implanted into a region where the hard mask pattern 109a is shifted to the lower right. In addition, the lateral spread of impurities in the II section, which is the corner portion of the ring 105, and the lateral spread of impurities in the II-II section, which is the line portion of the ring 105, are different. Will spread greatly.
 図16は図12のN4方向から不純物注入したときのp型不純物分布である。本注入工程によるリングのみを示すとリング105fとなる。N3方向は、平面視した際にリング105の縦ラインから左45傾けた図の左上に向かう方向であるので、ハードマスクパターン109aを左上方向にずらした領域に不純物が注入される。なお、リング105のコーナー部であるI―I断面での不純物の横方向への広がりとリング105のライン部であるII―II断面での不純物の横方向への広がりは異なり、コーナー部の方が大きく広がる。 FIG. 16 shows a p-type impurity distribution when impurities are implanted from the N4 direction of FIG. If only the ring by this injection process is shown, it will be the ring 105f. Since the N3 direction is a direction from the vertical line of the ring 105 toward the upper left in the drawing when viewed in plan, an impurity is implanted into a region where the hard mask pattern 109a is shifted in the upper left direction. In addition, the lateral spread of impurities in the II section, which is the corner portion of the ring 105, and the lateral spread of impurities in the II-II section, which is the line portion of the ring 105, are different. Will spread greatly.
 以上、4つの斜め不純物工程を経ると、リング105c~fを重ね打ちしたことになるので、図11に示す高濃度領域105aと低濃度領域105bを有するリング105が形成される。なお、リング105のコーナー部(I-I断面)における高濃度領域105aを挟むようにリング内外に配置された低濃度領域105bにおける不純物濃度は不純物注入1回分であるのに対し、リング105のライン部(II―II断面)における低濃度領域105bの不純物濃度は不純物注入2回分である。つまり、リング105のコーナー部の低濃度領域105bは、リング105のライン部の低濃度領域105bの半分の濃度となる。また、リング105のコーナー部の低濃度領域105bの広がりは、注入角度を45度にしているため、リング105のライン部の低濃度領域105bの広がりの最大1/√2となる。さらに、高濃度領域105aの濃度を高める場合には、斜め注入の他に垂直注入を組み合わせる。 As described above, when the four oblique impurity steps are performed, the rings 105c to 105f are overlapped, so that the ring 105 having the high concentration region 105a and the low concentration region 105b shown in FIG. 11 is formed. The impurity concentration in the low concentration region 105b arranged inside and outside the ring so as to sandwich the high concentration region 105a in the corner portion (II cross section) of the ring 105 is one impurity implantation, whereas the line of the ring 105 The impurity concentration of the low concentration region 105b in the portion (II-II cross section) is equivalent to two impurity implantations. That is, the low concentration region 105 b at the corner portion of the ring 105 has half the concentration of the low concentration region 105 b at the line portion of the ring 105. Further, the spread of the low concentration region 105b at the corner portion of the ring 105 is 1 / √2 at the maximum of the spread of the low concentration region 105b at the line portion of the ring 105 because the implantation angle is 45 degrees. Further, in order to increase the concentration of the high concentration region 105a, vertical implantation is combined in addition to oblique implantation.
 なお、リング105の高濃度領域105aの不純物濃度は1×1016~1×1019cm-3、低濃度領域105bの不純物濃度は1×1015~1×1018cm-3で設定されている。 The impurity concentration of the high concentration region 105a of the ring 105 is set to 1 × 10 16 to 1 × 10 19 cm −3 , and the impurity concentration of the low concentration region 105b is set to 1 × 10 15 to 1 × 10 18 cm −3. Yes.
 また、図17に示すように、ウェル領域106を、斜め不純物注入によるリング105形成と同時に形成する場合、高濃度領域106aの外側に低濃度領域106bが形成される。そして、この低濃度領域106bはウェル領域106のハードマスクパターン109aの開口が大きいため、リング105の低濃度領域105bよりも幅が広くなる。高濃度領域106aの濃度をさらに高める場合には、垂直注入を組み合わせる。なお、ウェル領域106の不純物濃度は、1×1016~1×1019cm-3の範囲で設定されている。 As shown in FIG. 17, when the well region 106 is formed simultaneously with the formation of the ring 105 by the oblique impurity implantation, the low concentration region 106b is formed outside the high concentration region 106a. The low concentration region 106b is wider than the low concentration region 105b of the ring 105 because the opening of the hard mask pattern 109a in the well region 106 is large. In order to further increase the concentration of the high concentration region 106a, vertical implantation is combined. The impurity concentration of the well region 106 is set in the range of 1 × 10 16 to 1 × 10 19 cm −3 .
 なお、図18に示すように、ウェル領域106を斜め不純物注入によるリング105形成と別に形成する場合、ハードマスクパターン109bをマスクとして、不純物を垂直注入する。 As shown in FIG. 18, when the well region 106 is formed separately from the formation of the ring 105 by oblique impurity implantation, impurities are vertically implanted using the hard mask pattern 109b as a mask.
 次に、図19に示すように、ハードマスクパターン109cをマスクとして、エピタキシャル層102にn型不純物として窒素をイオン注入して、n型のチャネルストッパ107を形成する。チャネルストッパ107の不純物濃度は、1×1019~1×1021cm-3の範囲で設定されている。 Next, as shown in FIG. 19, using the hard mask pattern 109 c as a mask, nitrogen is ion-implanted as an n-type impurity into the epitaxial layer 102 to form an n + -type channel stopper 107. The impurity concentration of the channel stopper 107 is set in the range of 1 × 10 19 to 1 × 10 21 cm −3 .
 実施例1の製造方法によれば、リング105を不純物の斜め注入で形成した結果、リング105のコーナー部での不純物の広がりが大きくなるので、不純物の垂直注入よりも、電界が緩和されやすくなる。さらに、1枚のハードマスクで実現可能なので、マスクの位置ズレがなく再現性が高い。 According to the manufacturing method of the first embodiment, as a result of forming the ring 105 by oblique implantation of impurities, the spread of the impurities at the corners of the ring 105 becomes larger, so that the electric field is more easily relaxed than the vertical implantation of impurities. . Furthermore, since it can be realized with a single hard mask, the reproducibility is high with no mask displacement.
 実施例2と前述した実施例1との相違点は、リング205を斜め不純物注入で形成せず、2回以上の不純物注入工程で形成することである。 The difference between the second embodiment and the first embodiment described above is that the ring 205 is not formed by oblique impurity implantation but is formed by two or more impurity implantation steps.
 実施例2による炭化珪素半導体装置の製造方法について図20~図22を用いて工程順に説明する。 A method for manufacturing a silicon carbide semiconductor device according to Example 2 will be described in the order of steps with reference to FIGS.
 前述した実施例1と同様にして、n+型のSiC基板101の表面(第1主面)上にn型のエピタキシャル層102を形成して、SiC基板101とエピタキシャル層102とからなるSiCエピタキシャル基板103を形成する。SiC基板101の不純物濃度は、1×1018~1×1021cm-3の範囲で設定されており、エピタキシャル層102の不純物濃度は、1×1014~1×1017cm-3の範囲で設定されている。 In the same manner as in Example 1 described above, an n type epitaxial layer 102 is formed on the surface (first main surface) of the n + type SiC substrate 101, and an SiC epitaxial layer comprising the SiC substrate 101 and the epitaxial layer 102 is formed. A substrate 103 is formed. The impurity concentration of the SiC substrate 101 is set in the range of 1 × 10 18 to 1 × 10 21 cm −3 , and the impurity concentration of the epitaxial layer 102 is in the range of 1 × 10 14 to 1 × 10 17 cm −3 . Is set in
 次に、図20に示すように、SiO膜からなるハードマスクパターン209aをマスクとして、エピタキシャル層102にp型不純物、Alをイオン注入する。これにより、低濃度領域205bを形成する。このとき、隣り合うハードマスクパターン209aの距離(開口幅)はライン部よりもコーナー部のほうが広く、ライン部で一定にとした開口幅がライン部とコーナー部との接続部からコーナー部の中間点に向かって広くなっている。この低濃度領域205bの不純物濃度は、1×1015~2×1017cm-3の範囲である。なお、上記ハードマスクパターン209aをエピタキシャル層102の表面上に形成する際には、前述した実施例1と同様に、エピタキシャル層102の表面が1~5nm削れて、ハードマスクの側面下のエピタキシャル層102に第1段差が形成される。 Next, as shown in FIG. 20, p-type impurities and Al are ion-implanted into the epitaxial layer 102 using the hard mask pattern 209a made of the SiO 2 film as a mask. Thereby, the low concentration region 205b is formed. At this time, the distance (opening width) between the adjacent hard mask patterns 209a is wider in the corner portion than in the line portion, and the opening width that is constant in the line portion is intermediate between the connecting portion between the line portion and the corner portion. Widening towards the point. The impurity concentration of the low concentration region 205b is in the range of 1 × 10 15 to 2 × 10 17 cm −3 . When the hard mask pattern 209a is formed on the surface of the epitaxial layer 102, the surface of the epitaxial layer 102 is shaved by 1 to 5 nm as in the first embodiment, and the epitaxial layer below the side surface of the hard mask is formed. A first step is formed at 102.
 次に、図21に示すように、ハードマスクパターン209aよりハードマスク間の幅が狭い、SiO膜からなるハードマスクパターン209bをマスクとして、エピタキシャル層102にp型不純物であるAlを注入する。この高濃度領域205aの不純物濃度は、1×1017~1×1018cm-3の範囲内で設定されている。これにより、低濃度領域205bの内側に高濃度領域205aを形成する。この工程により、低濃度領域205bは高濃度領域205aを挟むように配置されたことになる。 Next, as shown in FIG. 21, Al, which is a p-type impurity, is implanted into the epitaxial layer 102 using a hard mask pattern 209b made of a SiO 2 film whose width between the hard masks is narrower than that of the hard mask pattern 209a. The impurity concentration of the high concentration region 205a is set within the range of 1 × 10 17 to 1 × 10 18 cm −3 . Thereby, the high concentration region 205a is formed inside the low concentration region 205b. By this step, the low concentration region 205b is arranged so as to sandwich the high concentration region 205a.
 なお、上記ハードマスクパターン2をエピタキシャル層102の表面上に形成する際には、前述した第1段差と同様に、エピタキシャル層102の表面が1~5nm削れて、ハードマスクの側面下のエピタキシャル層102に第2段差が形成される(図22参照)。 When the hard mask pattern 2 is formed on the surface of the epitaxial layer 102, the surface of the epitaxial layer 102 is shaved by 1 to 5 nm as in the first step, and the epitaxial layer below the side surface of the hard mask is formed. A second step is formed at 102 (see FIG. 22).
 次に、ハードマスクパターン209cをマスクとして、エピタキシャル層203にp型不純物、Alをイオン注入することで、ウェル領域206を形成する(図は省略)。ウェル領域206の不純物濃度は、1×1016~1×1019cm-3の範囲である。なお、ウェル領域206は、リング205と同時に形成してもかまわない。また、ウェル領域206は、リング205と同時に2回以上の露光工程で形成してもかまわない。 Next, a well region 206 is formed by ion-implanting p-type impurities and Al into the epitaxial layer 203 using the hard mask pattern 209c as a mask (not shown). The impurity concentration of the well region 206 is in the range of 1 × 10 16 to 1 × 10 19 cm −3 . Note that the well region 206 may be formed simultaneously with the ring 205. Further, the well region 206 may be formed in two or more exposure steps simultaneously with the ring 205.
 次に、別のハードマスクパターンをマスクとして、エピタキシャル層102にn型不純物、窒素をイオン注入して、n型のリングを形成する(図は省略)。n型リングの不純物濃度は、1×1019~1×1021cm-3の範囲で設定してある。 Next, using another hard mask pattern as a mask, n-type impurities and nitrogen are ion-implanted into the epitaxial layer 102 to form an n + -type ring (not shown). The impurity concentration of the n-type ring is set in the range of 1 × 10 19 to 1 × 10 21 cm −3 .
 以上が2回の露光での製造方法であるが、リング形成時のハードマスクパターンを増やすことで、2回以上の露光でリングを形成してもかまわない。 Although the above is a manufacturing method with two exposures, a ring may be formed with two or more exposures by increasing the number of hard mask patterns during ring formation.
 本実施例2による炭化珪素半導体装置では、2つのハードマスクパターンで垂直に不純物注入するため、実施例1の斜めイオン注入とは異なり、最終的な低濃度領域205bの幅・不純物濃度を任意に設定できる。 In the silicon carbide semiconductor device according to the second embodiment, since impurities are implanted vertically with two hard mask patterns, unlike the oblique ion implantation of the first embodiment, the final width and impurity concentration of the low concentration region 205b can be arbitrarily set. Can be set.
 実施例3と前述した実施例1との相違点は、ウェル領域内306に、p型の補助リング310を形成することである。 The difference between the third embodiment and the first embodiment described above is that a p + -type auxiliary ring 310 is formed in the well region 306.
 図23に示すように、ウェル領域内に、p型の補助リング310が形成されている。p型の補助リング310のエピタキシャル層102の表面からの深さは、0.1~0.5μmの範囲で設定してある。p型の補助リング310の不純物濃度は、1×1019~1×1021cm-3の範囲で設定されている。 As shown in FIG. 23, a p + -type auxiliary ring 310 is formed in the well region. The depth of the p + -type auxiliary ring 310 from the surface of the epitaxial layer 102 is set in the range of 0.1 to 0.5 μm. The impurity concentration of the p + -type auxiliary ring 310 is set in the range of 1 × 10 19 to 1 × 10 21 cm −3 .
 p+型の補助リング310は図24に示す工程にて形成される。SiO2膜からなるハードマスク309aをパターンとして、エピタキシャル層102にp型不純物、Alを注入する。なお、リング105の形成、チャネルストッパ107の形成は、実施例1と同様である。 The p + type auxiliary ring 310 is formed by the process shown in FIG. A p-type impurity, Al, is implanted into the epitaxial layer 102 using the hard mask 309a made of the SiO 2 film as a pattern. The formation of the ring 105 and the channel stopper 107 are the same as in the first embodiment.
 このように、実施例3によれば、p型ウェル領域306の濃度が薄くp型ウェル領域306内を空乏層が伸びていくときでも、不純物濃度の大きいp型の補助リング310によってウェル領域306内における空乏層の伸びがとまる。つまり、ウェル領域306における破壊が生じにくくなるため、アクティブ領域の終端構造に対してロバストとなる。 Thus, according to the third embodiment, even when the concentration of the p-type well region 306 is low and the depletion layer extends in the p-type well region 306, the well region is formed by the p + -type auxiliary ring 310 having a high impurity concentration. The elongation of the depletion layer in 306 stops. That is, the breakdown in the well region 306 is less likely to occur, so that it is robust against the termination structure of the active region.
 実施例4と前述した実施例1との相違点は、p型のリングの深さが、リングによって異なることである。アクティブ領域に近いリングは浅く形成され、アクティブ領域から遠ざかるにつれて深く形成される。 The difference between Example 4 and Example 1 described above is that the depth of the p-type ring differs depending on the ring. The ring close to the active region is formed shallow and formed deeper as the distance from the active region increases.
 実施例4における炭化珪素半導体装置の構成の特徴を、図25を用いて説明する。図25は炭化珪素半導体装置の終端領域の断面図を示したものである。リング405の形成深さがアクティブ領域から遠ざかるにしたがって深くなっている。各リング405の深さは、0.5~4.0μmで設定してある。リング405gの外側隣のリング405hの深さは第1リング以上、リング405hの外側隣のリング405iの深さはリング405h以上となるように、アクティブ領域側のリングよりも外側のリングのうほうが深くなるように形成される。従って、よりロバストなターミネーションを形成することができる。 The characteristics of the structure of the silicon carbide semiconductor device in Example 4 will be described with reference to FIG. FIG. 25 shows a sectional view of the termination region of the silicon carbide semiconductor device. The formation depth of the ring 405 increases as the distance from the active region increases. The depth of each ring 405 is set to 0.5 to 4.0 μm. The ring on the outer side of the ring on the active region side is larger than the ring on the active region side so that the depth of the ring 405h adjacent to the outside of the ring 405g is not less than the first ring and the depth of the ring 405i on the outside of the ring 405h is not less than the ring 405h It is formed to be deep. Therefore, a more robust termination can be formed.
 実施例4における炭化珪素半導体装置の製造方法を図26~28を用いて説明する。なお、p型リング以外の製造方法は実施例1と同様であるため記さない。 A method for manufacturing a silicon carbide semiconductor device in Example 4 will be described with reference to FIGS. Since the manufacturing method other than the p-type ring is the same as that of the first embodiment, it will not be described.
 図26に示すようにエピタキシャル層102にp型不純物、Alをイオン注入する。これにより、最も内側のリング405gを形成する。 As shown in FIG. 26, the epitaxial layer 102 is ion-implanted with a p-type impurity, Al. This forms the innermost ring 405g.
 次に、図27に示すように、エピタキシャル層102にp型不純物、Alを斜めイオン注入することで、リング405gの外側隣にリング405gよりも表面からの深さがあるp型のリング405hを形成する。 Next, as shown in FIG. 27, by obliquely implanting p-type impurities and Al into the epitaxial layer 102, a p-type ring 405h that is deeper from the surface than the ring 405g is adjacent to the outside of the ring 405g. Form.
 次に、図28に示すように、エピタキシャル層102にp型不純物、Alを斜めイオン注入することで、リング405gの外側隣にリング405gよりも表面からの深さがあるp型のリング405iを形成する。 Next, as shown in FIG. 28, p-type impurities and Al are obliquely ion-implanted into the epitaxial layer 102 to form a p-type ring 405i that is deeper from the surface than the ring 405g adjacent to the outside of the ring 405g. Form.
 各リングは実施例1と同様、斜めイオン注入で形成する。 Each ring is formed by oblique ion implantation as in the first embodiment.
 このように実施例4によれば、実施例1と同様に効果を得るだけでなく、リング形成深さがリングによって異なるリング405g~iを形成しているので、よりロバストなターミネーションを形成することができる。 As described above, according to the fourth embodiment, not only the same effects as in the first embodiment are obtained, but also the rings 405g to 405i having different ring formation depths are formed, so that a more robust termination is formed. Can do.
 実施例5と前述した実施例1との相違点は、リングのエピタキシャル層をp型のウェル領域506で所定の深さ掘り込み、段差の下段にp型のリング505を形成することである。 The difference between the fifth embodiment and the first embodiment described above is that the ring epitaxial layer is dug to a predetermined depth by the p-type well region 506, and the p-type ring 505 is formed below the step.
 実施例5における炭化珪素半導体装置の特徴を、図29を用いて説明する。図29は炭化珪素半導体装置の終端領域の断面図を示したものである。 The characteristics of the silicon carbide semiconductor device in Example 5 will be described with reference to FIG. FIG. 29 shows a sectional view of the termination region of the silicon carbide semiconductor device.
 リング505bを形成する領域が、エピタキシャル層102の表面から所定の深さ掘り込んである。所定の深さは、0.5~1.5μmである。 The region for forming the ring 505 b is dug to a predetermined depth from the surface of the epitaxial layer 102. The predetermined depth is 0.5 to 1.5 μm.
 p型のウェル領域506の深さは掘り込んだ面から0.5~2.0μmで、不純物濃度は、1×1016~1×1019cm-3の範囲である。 The depth of the p-type well region 506 is 0.5 to 2.0 μm from the dug surface, and the impurity concentration is in the range of 1 × 10 16 to 1 × 10 19 cm −3 .
 実施例5における炭化珪素半導体装置の製造方法を図30~33を用いて説明する。 A method for manufacturing a silicon carbide semiconductor device in Example 5 will be described with reference to FIGS.
 エピタキシャル層102の表面上に、プラズマCVD(Chemical Vapor Deposition)法により絶縁膜、SiO膜を堆積する。SiO膜の厚さは、1~3μmである。続いて、図30に示すようにレジストパターンをマスクとして、SiO膜をドライエッチング法により加工することにより、SiO膜からなるハードマスクパターン509aをエピタキシャル層102の表面上に形成する。 An insulating film and a SiO 2 film are deposited on the surface of the epitaxial layer 102 by plasma CVD (Chemical Vapor Deposition). The thickness of the SiO 2 film is 1 to 3 μm. Subsequently, as shown in FIG. 30, the hard mask pattern 509a made of the SiO 2 film is formed on the surface of the epitaxial layer 102 by processing the SiO 2 film by a dry etching method using the resist pattern as a mask.
 次に、図31に示すように、ハードマスクが無いリング領域をドライエッチング法により加工する。加工された領域のエピタキシャル層102の表面からの深さは、0.5~1.5μmである。 Next, as shown in FIG. 31, a ring region without a hard mask is processed by a dry etching method. The depth of the processed region from the surface of the epitaxial layer 102 is 0.5 to 1.5 μm.
 次に、図32に示すように、掘り込まれることによってできた段差の下段に、実施例1と同様にして、p型のリング505を形成する。このとき、p型のウェル領域506も同時に形成される。 Next, as shown in FIG. 32, a p-type ring 505 is formed in the lower stage of the step formed by digging in the same manner as in the first embodiment. At this time, a p-type well region 506 is also formed at the same time.
 p型のウェル領域506は、図33に示すように、掘り込まれた段差にまたがっている。p型のウェル領域506はリングと同様に斜め不純物注入にて形成されるため、通常の不純物注入では形成されない領域506bが形成される。これにより、p型ウェル領域底部における段差部の側壁から表面の段差部までの距離が長くなり、p型ウェル領域での破壊が生じなくなる。 As shown in FIG. 33, the p-type well region 506 straddles the stepped portion. Since the p-type well region 506 is formed by oblique impurity implantation similarly to the ring, a region 506b that is not formed by normal impurity implantation is formed. As a result, the distance from the side wall of the stepped portion at the bottom of the p-type well region to the stepped portion on the surface becomes longer, and the destruction in the p-type well region does not occur.
 このように実施例5によれば、実施例1の効果を得ることができるだけでなく、さらに、リングをエピタキシャル層102からの距離がアクティブ領域より深い位置に形成することができるので、より高耐圧な炭化珪素半導体装置をとなっている。 As described above, according to the fifth embodiment, not only the effects of the first embodiment can be obtained, but also the ring can be formed at a position deeper than the active region from the epitaxial layer 102, so that a higher breakdown voltage can be obtained. This is a silicon carbide semiconductor device.
 本実施例6と前述した実施例1との相違点は、p型のリング605g、605h,605iの幅が一定でなく、アクティブ領域に近いリング幅は広く形成され、アクティブ領域から遠ざかるにつれて狭く形成される点である。 The difference between the sixth embodiment and the first embodiment described above is that the widths of the p-type rings 605g, 605h, and 605i are not constant, the ring width close to the active region is formed wider, and narrower as the distance from the active region increases. It is a point to be done.
 図34は炭化珪素半導体装置の終端領域の断面図を示したものである。図34に示すようにリングの幅がアクティブ領域から遠ざかるにしたがって小さくなっている。最もアクティブに近い第1リングの幅は、4.0~5.0μmである。第1リングの外側の第2リングの幅は第1リング以下、第2リングの外側の第3リングの幅は第2リング以下、となるように、一つ内側のリング幅よりも外側のリング幅のほうが小さくなるように形成される。 FIG. 34 shows a cross-sectional view of the termination region of the silicon carbide semiconductor device. As shown in FIG. 34, the width of the ring decreases as the distance from the active region increases. The width of the first ring that is closest to the active is 4.0 to 5.0 μm. The outer ring is wider than the inner ring width so that the width of the second ring outside the first ring is equal to or smaller than the first ring, and the width of the third ring outside the second ring is equal to or smaller than the second ring. The width is formed to be smaller.
 本実施例6における炭化珪素半導体装置の製造方法を図35~36を用いて説明する。なお、p型のリング605以外の製造方法は実施例1と同様であるため割愛する。 A method for manufacturing the silicon carbide semiconductor device according to the sixth embodiment will be described with reference to FIGS. Since the manufacturing method other than the p-type ring 605 is the same as that of the first embodiment, it is omitted.
 エピタキシャル層102の表面上に、プラズマCVD(Chemical Vapor Deposition)法により絶縁膜、SiO膜を堆積する。SiO膜の厚さは、1~3μmである。続いて、図35に示すようにレジストパターンをマスクとして、SiO膜をドライエッチング法により加工することにより、SiO膜からなるハードマスクパターン609aをエピタキシャル層102の表面上に形成する。ハードマスクパターン609aにおいて、最も内側のパターン幅L1は、4.0~5.0μmである。最も内側より1つ外側のパターン幅L2は、パターン幅L1よりも狭い。また、パターン幅L2の1つ外側のパターン幅L3は、パターン幅L2よりも狭い。以上のように、パターン幅Lnはパターン幅Ln-1よりも狭く形成される。 An insulating film and a SiO 2 film are deposited on the surface of the epitaxial layer 102 by plasma CVD (Chemical Vapor Deposition). The thickness of the SiO 2 film is 1 to 3 μm. Subsequently, as shown in FIG. 35, the hard mask pattern 609a made of the SiO 2 film is formed on the surface of the epitaxial layer 102 by processing the SiO 2 film by the dry etching method using the resist pattern as a mask. In the hard mask pattern 609a, the innermost pattern width L1 is 4.0 to 5.0 μm. The outermost pattern width L2 from the innermost side is narrower than the pattern width L1. The pattern width L3 that is one outside of the pattern width L2 is narrower than the pattern width L2. As described above, the pattern width Ln is formed narrower than the pattern width Ln-1.
 次に、図36に示すように、エピタキシャル層102にp型不純物、Alを斜めイオン注入することで、リング605を形成する。この時、リング605の幅は図36のパターン幅によるため、パターン幅同様、外側に行くほど狭くなる。 Next, as shown in FIG. 36, a ring 605 is formed by implanting oblique ions of p-type impurities and Al into the epitaxial layer 102. At this time, since the width of the ring 605 depends on the pattern width of FIG.
 このように実施例6によれば、アクティブに近い領域におけるリングの総不純物濃度は大きく、遠ざかるにつれて総不純物濃度が小さくなるため、よりロバストなターミネーションを形成することができる。 As described above, according to Example 6, the total impurity concentration of the ring in the region near the active is large, and the total impurity concentration is decreased as the distance is increased. Therefore, a more robust termination can be formed.
 実施例7と前述した実施例1との相違点は、p型のリング705を構成する総不純物濃度が、内側のリングほど総不純物濃度が大きく、外側にいくにしたがって、総不純物濃度が小さくなる点である。 The difference between the seventh embodiment and the first embodiment described above is that the total impurity concentration constituting the p-type ring 705 is larger in the inner ring, and the total impurity concentration is smaller toward the outer side. Is a point.
 実施例7における炭化珪素半導体装置の終端領域の特徴を、図37を用いて、同終端領域の製造方法を、図38~40を用いて説明する。 The characteristics of the termination region of the silicon carbide semiconductor device in Example 7 will be described with reference to FIG. 37 and the manufacturing method of the termination region with reference to FIGS.
 図37は炭化珪素半導体装置の終端領域の断面図を示したものである。図38~40は実施例7における炭化珪素半導体装置の製造方法を示す図である。なお、p型リング以外の製造方法は実施例1と同様であるため割愛する。 FIG. 37 shows a cross-sectional view of the termination region of the silicon carbide semiconductor device. 38 to 40 are diagrams showing a method of manufacturing the silicon carbide semiconductor device in the seventh embodiment. Since the manufacturing method other than the p-type ring is the same as that of the first embodiment, it is omitted.
 図37に示すように、アクティブ領域に近い領域におけるリング705の総不純物濃度は大きく、アクティブ領域から遠ざかるにつれて総不純物濃度が小さくなるようにしたものである。 As shown in FIG. 37, the total impurity concentration of the ring 705 in the region close to the active region is large, and the total impurity concentration decreases as the distance from the active region increases.
 図38に示すようにエピタキシャル層102にp型不純物、Alをイオン注入することにより、エピタキシャル層102にp型の第1リング705aを形成する。ここでリング705gは実施例1と同様、斜めイオン注入で形成する。 38, a p-type first ring 705a is formed in the epitaxial layer 102 by ion-implanting p-type impurities and Al into the epitaxial layer 102. As shown in FIG. Here, the ring 705g is formed by oblique ion implantation as in the first embodiment.
 次に、図39に示すように、エピタキシャル層102にp型不純物、Alを斜めイオン注入することで、第1リングの外側に第1リングの総不純物濃度よりも低い総不純物濃度を有したp型の第2リング705hを形成する。 Next, as shown in FIG. 39, p-type impurities and Al are obliquely ion-implanted into the epitaxial layer 102, whereby p having a total impurity concentration lower than the total impurity concentration of the first ring outside the first ring. A second ring 705h of the mold is formed.
 次に、図40に示すように、エピタキシャル層102にp型不純物、Alを斜めイオン注入することで、第2リングの外側に第2リングの総不純物濃度よりも低い総不純物濃度を有したp型の第3リング705iを形成する。 Next, as shown in FIG. 40, a p-type impurity, Al, is obliquely ion-implanted into the epitaxial layer 102, so that p having a total impurity concentration lower than the total impurity concentration of the second ring outside the second ring. A third ring 705i of the mold is formed.
 このように実施例7によれば、アクティブ領域に近い領域におけるリングの総不純物濃度は大きく、アクティブ領域に遠ざかるにつれて総不純物濃度が小さくなるため、よりロバストなターミネーションを形成することができる。 Thus, according to Example 7, the total impurity concentration of the ring in the region close to the active region is large, and the total impurity concentration decreases as the distance from the active region increases, so that a more robust termination can be formed.
1…炭化珪素半導体装置、2…アクティブ領域、3…リング、4…チャネルストッパ、5…p型ウェル領域、101…SiC基板、102…エピタキシャル層、103…SiCエピタキシャル基板、104…電極、105…p型リング、105a…リング105の高濃度領域、105b…リング105の低濃度領域、106…p型ウェル領域、106a…p型ウェル領域の高濃度領域、106b…p型ウェル領域の高濃度領域、107…チャネルストッパ、108…SiO膜、109…ハードマスク、109a、109b、109c…ハードマスクパターン、N1…不純物注入方向、N2…不純物注入方向、N3…不純物注入方向、N4…不純物注入方向、 DESCRIPTION OF SYMBOLS 1 ... Silicon carbide semiconductor device, 2 ... Active region, 3 ... Ring, 4 ... Channel stopper, 5 ... P-type well region, 101 ... SiC substrate, 102 ... Epitaxial layer, 103 ... SiC epitaxial substrate, 104 ... Electrode, 105 ... p-type ring, 105a ... high concentration region of ring 105, 105b ... low concentration region of ring 105, 106 ... p-type well region, 106a ... high concentration region of p-type well region, 106b ... high concentration region of p-type well region , 107 ... channel stopper, 108 ... SiO film, 109 ... hard mask, 109a, 109b, 109c ... hard mask pattern, N1 ... impurity injection direction, N2 ... impurity injection direction, N3 ... impurity injection direction, N4 ... impurity injection direction,

Claims (6)

  1.  第1導電型の炭化珪素基板と、前記炭化珪素基板の表面上に形成された第1導電型の炭化珪素エピタキシャル層と、前記エピタキシャル層上に配置された第1電極と、前記炭化珪素基板の裏面に配置された第2電極とを備えた炭化珪素半導体装置において、
     前記エピタキシャル層は平面視領域として、アクティブ領域と、前記アクティブ領域を囲む端部領域とを備え、
     前記端部領域は、前記アクティブ領域を前記リング状に囲む平面視形状となる第2導電型の不純物が注入され、前記第1電極に直接接していないリングを多重に備え、
     前記リングは、平面視形状で直線状のライン部と、前記ライン部を繋ぐコーナー部とを備え、前記ライン部と前記コーナー部の接続部から前記コーナーの中間に向かうにしたがって前記リング間距離が徐々に狭くなり、
     前記リングは、平面視形状で高濃度領域を低濃度領域で挟み込む構造を備え、前記ライン部と前記コーナー部の接続部から前記コーナーの中間に向かうにしたがって前記低濃度領域の不純物濃度が薄くなることを特徴とする炭化珪素半導体装置。
    A first conductivity type silicon carbide substrate, a first conductivity type silicon carbide epitaxial layer formed on a surface of the silicon carbide substrate, a first electrode disposed on the epitaxial layer, and the silicon carbide substrate. In a silicon carbide semiconductor device comprising a second electrode disposed on the back surface,
    The epitaxial layer includes, as a plan view region, an active region and an end region surrounding the active region,
    The end region is provided with multiple rings that are implanted with a second conductivity type impurity in a plan view surrounding the active region in a ring shape and are not in direct contact with the first electrode,
    The ring includes a linear line portion in a plan view shape and a corner portion connecting the line portions, and the distance between the rings increases from the connecting portion of the line portion and the corner portion toward the middle of the corner. Gradually narrowing,
    The ring has a structure in which a high-concentration region is sandwiched between low-concentration regions in a plan view shape, and the impurity concentration in the low-concentration region becomes thinner from the connection portion between the line portion and the corner portion toward the middle of the corner. The silicon carbide semiconductor device characterized by the above-mentioned.
  2.  請求項1において、
     前記コーナー部のリング幅は、前記コーナー部の中間に向かって前記コーナー部内側と外側の両方に広がっていることを特徴とする炭化珪素半導体装置。
    In claim 1,
    The silicon carbide semiconductor device according to claim 1, wherein a ring width of the corner portion extends both inside and outside the corner portion toward an intermediate portion of the corner portion.
  3.  請求項2において、
     前記リングの間隔がライン部から前記コーナー部に向かって徐々に狭くなっていることを特徴とした炭化珪素半導体装置。
    In claim 2,
    A silicon carbide semiconductor device, wherein a distance between the rings gradually decreases from a line portion toward the corner portion.
  4.  請求項3において、
     前記リングの高濃度領域の不純物濃度は1×1016~1×1019cm-3
     前記リングの低濃度領域の不純物濃度は1×1015~1×1018cm-3であることを特徴とする炭化珪素半導体装置。
    In claim 3,
    The impurity concentration of the high concentration region of the ring is 1 × 10 16 to 1 × 10 19 cm −3 ,
    The silicon carbide semiconductor device, wherein an impurity concentration in the low concentration region of the ring is 1 × 10 15 to 1 × 10 18 cm −3 .
  5.  請求項1において、
     前記リングは前記アクティブ領域より一段低い位置に設けられていることを特徴とする炭化珪素半導体装置。
    In claim 1,
    The ring is provided at a position one step lower than the active region.
  6.  炭化珪素基板上のエピタキシャル層に矩形のアクティブ領域と、
     前記アクティブ領域を囲み、かつ、電極に直接接していないp型リングを備えた炭化珪素半導体装置の製造方法において、
     前記p型リングは、平面視で前記p型リングの一辺に対して傾けた角度、かつ、前記炭化珪素基板平面に対して傾けた角度にイオン注入することを特徴とする炭化珪素半導体装置の製造方法。
    A rectangular active region in the epitaxial layer on the silicon carbide substrate;
    In a method for manufacturing a silicon carbide semiconductor device including a p-type ring that surrounds the active region and is not in direct contact with an electrode,
    The p-type ring is ion-implanted at an angle inclined with respect to one side of the p-type ring in a plan view and an angle inclined with respect to the plane of the silicon carbide substrate. Method.
PCT/JP2012/075004 2012-09-28 2012-09-28 Silicon carbide semiconductor device and method for manufacturing same WO2014049806A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/075004 WO2014049806A1 (en) 2012-09-28 2012-09-28 Silicon carbide semiconductor device and method for manufacturing same
JP2014537975A JP5799176B2 (en) 2012-09-28 2012-09-28 Silicon carbide semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/075004 WO2014049806A1 (en) 2012-09-28 2012-09-28 Silicon carbide semiconductor device and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2014049806A1 true WO2014049806A1 (en) 2014-04-03

Family

ID=50387269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075004 WO2014049806A1 (en) 2012-09-28 2012-09-28 Silicon carbide semiconductor device and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP5799176B2 (en)
WO (1) WO2014049806A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015207701A (en) * 2014-04-22 2015-11-19 株式会社豊田中央研究所 semiconductor device
CN108766999A (en) * 2018-08-02 2018-11-06 盛廷微电子(深圳)有限公司 Terminal for semiconductor power device
JP2019083317A (en) * 2017-10-27 2019-05-30 インフィニオン テクノロジーズ アクチエンゲゼルシャフトInfineon Technologies AG Semiconductor device having termination structure including field zone and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06244405A (en) * 1993-02-15 1994-09-02 Fuji Electric Co Ltd Semiconductor device
JPH0799328A (en) * 1993-06-28 1995-04-11 Motorola Inc High-voltage semiconductor structure
JPH08288524A (en) * 1995-04-11 1996-11-01 Toshiba Corp High breakdown strength semiconductor element
WO2007091360A1 (en) * 2006-02-07 2007-08-16 Mitsubishi Electric Corporation Semiconductor device and method for manufacturing same
JP2012064796A (en) * 2010-09-16 2012-03-29 Panasonic Corp Semiconductor device manufacturing method and semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06244405A (en) * 1993-02-15 1994-09-02 Fuji Electric Co Ltd Semiconductor device
JPH0799328A (en) * 1993-06-28 1995-04-11 Motorola Inc High-voltage semiconductor structure
JPH08288524A (en) * 1995-04-11 1996-11-01 Toshiba Corp High breakdown strength semiconductor element
WO2007091360A1 (en) * 2006-02-07 2007-08-16 Mitsubishi Electric Corporation Semiconductor device and method for manufacturing same
JP2012064796A (en) * 2010-09-16 2012-03-29 Panasonic Corp Semiconductor device manufacturing method and semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015207701A (en) * 2014-04-22 2015-11-19 株式会社豊田中央研究所 semiconductor device
JP2019083317A (en) * 2017-10-27 2019-05-30 インフィニオン テクノロジーズ アクチエンゲゼルシャフトInfineon Technologies AG Semiconductor device having termination structure including field zone and manufacturing method thereof
JP7271133B2 (en) 2017-10-27 2023-05-11 インフィニオン テクノロジーズ アクチエンゲゼルシャフト Semiconductor device with termination structure including field zone and method of manufacturing same
CN108766999A (en) * 2018-08-02 2018-11-06 盛廷微电子(深圳)有限公司 Terminal for semiconductor power device
CN108766999B (en) * 2018-08-02 2024-04-16 盛廷微电子(深圳)有限公司 Terminal for semiconductor power device

Also Published As

Publication number Publication date
JP5799176B2 (en) 2015-10-21
JPWO2014049806A1 (en) 2016-08-22

Similar Documents

Publication Publication Date Title
JP5472451B2 (en) Semiconductor device manufacturing method and semiconductor device
US7777292B2 (en) Semiconductor device
JP5342752B2 (en) Semiconductor device
WO2014054319A1 (en) Semiconductor device and method for manufacturing same
US9954072B2 (en) Silicon-carbide semiconductor device and manufacturing method thereof
US20110309464A1 (en) Semiconductor device including cell region and peripheral region having high breakdown voltage structure
JP2006005275A (en) Semiconductor device for electric power
JP2007266505A (en) Semiconductor element for power
US9640651B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP2011204796A (en) Semiconductor apparatus, and method of manufacturing the same
JP2006332607A (en) Semiconductor device
JP2019054087A (en) Semiconductor device and manufacturing method of the same
JP5559232B2 (en) Power semiconductor device
US8642427B1 (en) Semiconductor device and method for fabricating the same
JP5799176B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
TW201511135A (en) Method of manufacturing semiconductor device
JP6129117B2 (en) Semiconductor device and manufacturing method thereof
US20230197774A1 (en) Semiconductor device and method for manufacturing the same
JP5996611B2 (en) Junction field effect transistor cell with lateral channel region
JP2008147232A (en) Silicon carbide semiconductor device and manufacturing method therefor
US7129542B2 (en) High voltage semiconductor device having high breakdown voltage and method of fabricating the same
JP7006389B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
JP7439746B2 (en) silicon carbide semiconductor device
WO2024084778A1 (en) Semiconductor device and method for producing same
JP6681809B2 (en) SEMICONDUCTOR DEVICE AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12885622

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014537975

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12885622

Country of ref document: EP

Kind code of ref document: A1