WO2014049780A1 - Heating device, soldering device, heating method, and soldering method - Google Patents

Heating device, soldering device, heating method, and soldering method Download PDF

Info

Publication number
WO2014049780A1
WO2014049780A1 PCT/JP2012/074906 JP2012074906W WO2014049780A1 WO 2014049780 A1 WO2014049780 A1 WO 2014049780A1 JP 2012074906 W JP2012074906 W JP 2012074906W WO 2014049780 A1 WO2014049780 A1 WO 2014049780A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
heating
solder
heated
heating device
Prior art date
Application number
PCT/JP2012/074906
Other languages
French (fr)
Japanese (ja)
Inventor
雅代 高橋
Original Assignee
パイオニアデジタルデザインアンドマニュファクチャリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニアデジタルデザインアンドマニュファクチャリング株式会社 filed Critical パイオニアデジタルデザインアンドマニュファクチャリング株式会社
Priority to PCT/JP2012/074906 priority Critical patent/WO2014049780A1/en
Publication of WO2014049780A1 publication Critical patent/WO2014049780A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3494Heating methods for reflowing of solder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/005Soldering by means of radiant energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B7/00Heating by electric discharge
    • H05B7/18Heating by arc discharge
    • H05B7/22Indirect heating by arc discharge

Definitions

  • the present invention relates to a heating device, a soldering device, a heating method, and a soldering method.
  • Patent Document 1 discloses a light that emits infrared light as a light source for heating solder.
  • Patent Documents 2 and 3 disclose laser light sources as light sources for heating solder.
  • An object of the present invention is to provide a heating device, a soldering device, a heating method, and a soldering method that can be easily reduced in size and cost.
  • a heating device is a heating device that heats an object to be heated, and a high-pressure mercury lamp that emits light of a predetermined wavelength, and reflects and collects light in a first wavelength range among the light of the predetermined wavelength.
  • the first wavelength range is more than 405 nm and not more than 800 nm.
  • a soldering apparatus includes an installation portion in which an electronic component is installed and the above-described heating device, and heats the solder applied to the electronic component with light in the first wavelength range. .
  • the heating method of the present invention is a heating method for heating an object to be heated, which emits light having a predetermined wavelength from a high-pressure mercury lamp, and reflects light having a wavelength exceeding 405 nm and not more than 800 nm out of the light having the predetermined wavelength. And the object to be heated is heated with the condensed light.
  • the soldering method of the present invention emits light having a predetermined wavelength from a high-pressure mercury lamp, and reflects and collects light having a wavelength of more than 405 nm and not more than 800 nm out of the light having the predetermined wavelength, which is applied to an electronic component.
  • the formed solder is heated with the condensed light, and the solder is solidified.
  • the fragmentary sectional view which shows schematic structure of the soldering apparatus in embodiment of this invention.
  • the block diagram which shows schematic structure of the soldering apparatus in the said embodiment.
  • the fragmentary sectional view which shows schematic structure of the light source device in the said embodiment.
  • the flowchart which shows the soldering method in the said embodiment.
  • a soldering apparatus 1 heats a solder SL as an object to be heated applied to an electronic component EL, and joins terminals (not shown) of the electronic component EL to each other.
  • the soldering apparatus 1 includes a transport device 2, a solder application device 3, a heating device 4, and a control device 9.
  • the transport device 2 transports the electronic component EL to a position where it can be heated by the heating device 4.
  • the transport device 2 includes a substantially box-shaped main body 21.
  • the main body 21 includes a substantially rectangular upper surface 22.
  • the upper surface 22 is provided with a case 23 that houses a light guide unit 6, a temperature measurement unit 7, and a photographing unit 8, which will be described later, of the heating device 4.
  • the case 23 is formed in a substantially box shape whose bottom surface and left surface are open.
  • the left surface of the case 23 is provided with a lid 231 that opens and closes the left surface.
  • a gap (not shown) is provided between the lower end of the lid portion 231 and the upper surface 22.
  • the upper surface 22 is provided with a linear motor 24 extending from the inside of the case 23 toward the outside of the case 23.
  • the linear motor 24 is provided with a stage 25 as an installation portion that can reciprocate along the linear motor 24.
  • An electronic component EL is installed on the stage 25.
  • the electronic component EL placed on the stage 25 is transported into the case 23 through a gap by driving the linear motor 24 and heated by the heating device 4.
  • the solder application device 3 applies the solder SL to the electronic component EL on the stage 25 located outside the case 23.
  • the heating device 4 heats the solder SL of the electronic component EL transported by the transport device 2.
  • the heating device 4 includes a light source device 5, a light guide unit 6, a temperature measurement unit 7, and a photographing unit 8.
  • the light source device 5 includes a box-shaped case 51 as shown in FIG.
  • the case 51 is provided with a lid 511 for opening and closing the upper surface of the case 51.
  • a high-pressure mercury lamp 52, a condensing mirror 53, a shutter 54 constituting a light intensity adjusting unit, and a connector 55 are provided inside the case 51.
  • the high-pressure mercury lamp 52 is used for a general UV irradiator.
  • the high-pressure mercury lamp 52 emits light L1 having peak wavelengths of 296 nm, 302 nm, 312 nm, 365 nm, 405 nm, 435 nm, 546 nm, and 576 nm.
  • the condenser mirror 53 includes a spheroidal reflecting surface 531.
  • the reflecting surface 531 reflects the light in the first wavelength range and the light in the second wavelength range and collects the light on the incident surface 551 of the connector 55.
  • the first wavelength range is more than 405 nm and not more than 800 nm.
  • the second wavelength range is 200 nm or more and 405 nm or less.
  • the condensing mirror 53 reflects light having a wavelength of 200 nm or more and 800 nm or less.
  • the light L1 emitted from the high-pressure mercury lamp 52 is reflected by the reflecting surface 531, and the light L2 having characteristics as shown in FIG. 4 enters the incident surface 551 of the connector 55.
  • the light L2 includes light in the first wavelength range.
  • the solder SL can be heated by the light L2.
  • the shutter 54 is provided on the optical path of the light L2.
  • the shutter 54 is configured such that the opening degree can be adjusted.
  • the shutter 54 blocks the light L2 reflected by the condenser mirror 53 and adjusts the intensity of the light L2 incident on the incident surface 551.
  • the heating temperature of the solder SL can be changed by adjusting the intensity of the light L2.
  • the connector 55 is provided so that the incident surface 551 is located inside the case 51 and the connecting portion 552 facing the incident surface 551 is located outside the case 51.
  • the connector 55 includes a transmission part 553 that transmits the light L2.
  • the light guide 6 guides the light L2 to the outside of the case 51 without reducing the intensity of the light L2.
  • the light guide unit 6 includes two optical fibers 61 as light guide members and two fiber support units 62 constituting an irradiation position adjusting unit.
  • the optical fiber 61 is formed in a substantially rod shape that can be bent.
  • the optical fiber 61 is provided so that one end is located outside the case 23 and the other end is located inside the case 23.
  • a connector 63 is provided at one end of the two optical fibers 61.
  • the connector 63 includes a connecting portion 631 that is detachably connected to the connecting portion 552 of the connector 55.
  • the connector 63 includes a transmission part 632 that transmits the light L2.
  • a condensing lens 64 is provided at the other end of the optical fiber 61.
  • the condensing lens 64 condenses the light L2 emitted from the optical fiber 61 at a predetermined position.
  • the fiber support unit 62 supports the other end side of the optical fiber 61.
  • the fiber support portion 62 is configured to be movable on the upper surface 22. As the fiber support 62 moves, the other end of the optical fiber 61 moves in a direction substantially orthogonal to the axis of the optical fiber 61 as indicated by an arrow D1. As the fiber support 62 moves, the other end of the optical fiber 61 moves in a direction substantially parallel to the axis of the optical fiber 61 as indicated by an arrow D2.
  • the temperature measuring unit 7 measures the temperature of the solder SL and outputs a signal corresponding to the measurement result to the control device 9.
  • a radiation thermometer may be used as the temperature measuring unit 7.
  • the imaging unit 8 images the electronic component EL and outputs a signal corresponding to the imaging result to the control device 9.
  • the installation position of the temperature measurement unit 7 and the imaging unit 8 may be any position as long as the temperature of the solder SL can be measured or the electronic component EL can be imaged.
  • the control device 9 includes an input unit 91, a display unit 92, a storage unit 93, and a control unit 94.
  • the input unit 91 includes a keyboard, a mouse, a touch pen, and the like, and is configured to be able to set and input various information.
  • storage part 93 memorize
  • the control unit 94 is configured by processing a program and data stored in the storage unit 93 by a CPU (Central Processing Unit). The control unit 94 performs various processes based on various data stored in the storage unit 93.
  • the control unit 94 includes a solder application control unit 941, a fiber position control unit 942 constituting an irradiation position adjustment unit, a lamp control unit 943, a shutter control unit 944 constituting a light intensity adjustment unit, and a display control unit. 945.
  • the solder application control unit 941 controls the conveying device 2 and the solder applying device 3 to apply the solder SL to the electronic component EL or convey the electronic component EL into and out of the case 23.
  • the lamp control unit 943 controls the high pressure mercury lamp 52.
  • the fiber position control unit 942 controls the position of the fiber support unit 62 and adjusts the incident angle and irradiation distance of the light L2 with respect to the solder SL.
  • the shutter control unit 944 controls the opening degree of the shutter 54 based on the temperature measurement result in the temperature measurement unit 7 and adjusts the intensity of the light L ⁇ b> 2 incident on the incident surface 551.
  • the display control unit 945 causes the display unit 92 to display an image photographed by the photographing unit 8.
  • solder application control unit 941 of the control device 9 sets the soldering conditions based on the setting input of the input unit 91 by the operator. It is determined whether or not it is necessary (step S1). Examples of the soldering conditions include the application position and application area of the solder SL, the melting temperature of the solder SL, the irradiation angle and spot diameter of the light L2 with respect to the solder SL, and the number of electronic components EL to be soldered.
  • step S1 when it is determined that the soldering conditions need to be set, the solder application control unit 941 stores data based on the setting input of the input unit 91 in the storage unit 93 and sets the soldering conditions ( Step S2).
  • the solder application control unit 941 controls an electronic component conveying device (not shown) to As indicated by the dotted line, the electronic component EL is set on the stage 25 (step S3).
  • the solder application control unit 941 controls the solder application device 3 based on the soldering conditions to apply the solder SL to the electronic component EL (step S4). Then, as shown by the solid line in FIG. 1, the solder application control unit 941 controls the transport device 2 to carry the electronic component EL into the case 23 (step S5). Thereafter, the fiber position control unit 942 of the control device 9 determines whether or not adjustment of the irradiation state of the light L2 is necessary based on the soldering conditions (step S6).
  • step S6 when the fiber position control unit 942 determines that adjustment is necessary, the fiber position control unit 942 controls the fiber support unit 62 and moves the distal end side of the optical fiber 61 in the direction indicated by the arrow D1 or the arrow D2.
  • the irradiation state of the light L2 is adjusted (step S7).
  • the fiber position control unit 942 moves the optical fiber 61 so that the irradiation angle and spot diameter of the light L2 are in an appropriate state based on the application position and application area of the solder SL and the melting temperature of the solder SL.
  • step S8 the lamp controller 943 of the control device 9 turns on the high-pressure mercury lamp 52 when the fiber position controller 942 performs the process of step S7 or when it is determined that the adjustment of the irradiation state is unnecessary in step S6.
  • step S8 the process of step S8, as shown in FIG. 3, the light L1 emitted from the high-pressure mercury lamp 52 is reflected by the condensing mirror 53, and the light L2 is condensed by the incident surface 551.
  • the light L ⁇ b> 2 collected by the incident surface 551 is guided to the outside of the case 51 by the optical fiber 61 and is applied to the solder SL.
  • the light L2 includes a component in the first wavelength range (exceeding 405 nm and not more than 800 nm). For this reason, the solder SL is heated mainly by components in the first wavelength range.
  • the temperature measurement unit 7 measures the temperature of the solder SL irradiated with the light L2, and transmits the measurement result to the control device 9 (step S9).
  • This temperature measurement is preferably performed after a predetermined time has elapsed from the process of step S8, for example, and the temperature of the solder SL has risen to a temperature corresponding to the intensity of the light L2.
  • the shutter control unit 944 of the control device 9 determines whether or not the temperature adjustment of the solder SL is necessary based on the soldering conditions and the temperature measurement result in step S9 (step S10).
  • step S10 when the shutter control unit 944 determines that temperature adjustment is necessary, the shutter control unit 944 adjusts the opening of the shutter 54 (step S11). Specifically, when it is determined that the temperature needs to be raised, the shutter control unit 944 increases the opening of the shutter 54. When the opening degree of the shutter 54 increases, the intensity of the light L2 irradiated to the solder SL through the optical fiber 61 increases, and the heating temperature of the solder SL increases. On the other hand, when the shutter control unit 944 determines that the temperature needs to be lowered, the heating temperature of the solder SL is lowered by reducing the opening degree of the shutter 54 and reducing the intensity of the light L2 applied to the solder SL. . As described above, by appropriately adjusting the temperature of the solder SL, there is a problem that the solder SL cannot be melted without being melted, or that the solder SL is excessively melted and flows to an unintended position. Can be prevented.
  • the lamp controller 943 determines whether the soldering is completed when the shutter controller 944 performs the process of step S11 or when it is determined in step S10 that the temperature adjustment is unnecessary (step S12). ). For example, after a predetermined time has elapsed since the completion of the process of step S11, or when the process of step S11 is not performed, the lamp control unit 943, after the predetermined time has elapsed after the completion of the process of step S8, It is determined that soldering (for example, joining of terminals (not shown)) is completed. Thereafter, the lamp controller 943 turns off the high-pressure mercury lamp 52 (step S13). By the processing in step S13, the irradiation of the light L2 onto the solder SL is completed, and the temperature of the solder SL is lowered and solidified.
  • step S14 the solder application controller 941 controls the transport device 2 to carry out the electronic component EL out of the case 23 (step S14). Then, the solder application control unit 941 determines whether or not to set the next electronic component EL based on the soldering conditions (step S15). In step S15, when the solder application control unit 941 determines to set, the process of step S3 is performed. On the other hand, if the solder application control unit 941 determines not to set in step S15, the process ends.
  • the photographing unit 8 photographs the electronic component EL during the above-described soldering.
  • the display control unit 945 causes the display unit 92 to display an image captured by the imaging unit 8.
  • the operator can visually confirm the molten state of the solder SL.
  • the operator checks the melting state of the solder SL when the opening of the shutter 54 is maximized (when the intensity of the light L2 is maximized), and whether or not the solder SL is melted in a state corresponding to the opening. Based on the above, it can be determined whether or not the high-pressure mercury lamp 52 has deteriorated over time.
  • the operator can replace the high-pressure mercury lamp 52 with a new high-pressure mercury lamp 52 when the high-pressure mercury lamp 52 has deteriorated over time.
  • the heating device 4 reflects the light L2 including light in the first wavelength range (exceeding 405 nm and not more than 800 nm) out of the light emitted from the high-pressure mercury lamp 52 and collects the light with a connector 55. 53.
  • a general UV irradiator only light having a wavelength of 405 nm or less out of light emitted from a high-pressure mercury lamp is reflected by a condensing mirror and condensed to irradiate an object to be irradiated. That is, the UV irradiator does not reflect light in the first wavelength range.
  • the heating device 4 includes a light guide 6 that guides the light L ⁇ b> 2 to the outside of the case 51. For this reason, even if it is necessary to increase the distance between the heating position of the solder SL and the light source device 5 due to the installation position and installation space of the transport device 2 and the heating device 4, the configuration of the light guide unit 6. It is possible to appropriately heat the solder SL by changing. Furthermore, since the light guide unit 6 is configured to be detachable from the case 51, only the failed heating device 4 or only the light guide unit 6 can be replaced, and unnecessary repair is unnecessary.
  • the light guide 6 includes a bendable optical fiber 61. For this reason, by bending the optical fiber 61, the irradiation position of the light L2, the spot diameter, and the like can be adjusted, and the solder SL can be appropriately heated. For example, even when the application range of the solder SL is large or when there is a variation in the dimensions of the electronic component EL, the solder SL can be uniformly heated over the entire application range. Further, since the position of the fiber support section 62 can be adjusted by the control of the fiber position control section 942, the irradiation position of the light L2 can be finely adjusted. Furthermore, by emitting the light L2 from the substantially rod-shaped optical fiber 61, it can be locally heated.
  • the heating device 4 includes a shutter 54 that adjusts the intensity of the light L2 applied to the solder SL. For this reason, the heating temperature of the solder SL can be appropriately adjusted by adjusting the intensity of the light L2 in accordance with the melting temperature of the solder SL. In particular, the heating temperature of the solder SL can be adjusted with a simple configuration that only adjusts the light shielding amount of the light L2 by adjusting the opening of the shutter 54. Further, since the shutter control unit 944 adjusts the intensity of the light L2 based on the temperature of the solder SL measured by the temperature measuring unit 7, the heating temperature of the solder SL can be appropriately adjusted according to the actual heating state.
  • the heating device 4 includes an imaging unit 8 that images the electronic component EL. For this reason, by displaying the melting state of the solder SL photographed by the photographing unit 8 on the display unit 92, the operator can determine whether or not the high-pressure mercury lamp 52 has deteriorated with time during the soldering process.
  • a condensing mirror 53 that reflects light in the first wavelength range and the second wavelength range is applied as the condensing mirror of the heating device 4. That is, the condensing mirror 53 that reflects light of all wavelengths is applied.
  • the cost of the heating device 4 can be easily reduced by applying the collectable mirror 53 that is easily available and inexpensive as compared with the collective mirror that reflects only light in the first wavelength range.
  • the present invention is not limited to the above-described embodiment, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
  • the condensing mirror 53 that reflects only light in the first wavelength range may be used.
  • the solder SL may be positioned at the light L2 condensing position (position where the incident surface 551 is provided) in the light source device 5.
  • the optical fiber 61 may be configured not to be bent.
  • the fiber support unit 62 may be moved manually by an operator without using the configuration in which the fiber support unit 62 is movable by the control of the fiber position control unit 942. Further, the temperature measurement unit 7 or the imaging unit 8 may not be provided.
  • the number of the optical fibers 61 provided in the light guide unit 6 may be one or three or more.
  • the object to be heated by the heating device 4 is not limited to the solder SL, and may be a thermosetting adhesive.
  • the coating film of the coil may be heated and melted as an object to be heated.
  • the light L2 may be emitted from only one optical fiber 61 in correspondence with the position of the solder SL in the electronic component EL.
  • the intensity of the light L2 emitted from the two optical fibers 61 may be individually adjustable. And you may apply the heating apparatus 4 to the apparatus and reflow furnace which take a solder from an electronic component. Further, the condensing lens 64 may not be provided in the optical fiber 61.
  • the emission intensity of the high-pressure mercury lamp 52 may be adjusted without adjusting the opening of the shutter 54.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

In order to allow a conventional UV irradiator to be used as a heating device (4) by simply replacing a light collecting mirror thereof, and easily achieve size reduction and reduced costs compared with a constitution using a light source of infrared rays or laser light, this heating device (5) is provided with a high pressure mercury lamp (52) that emits light of prescribed wavelengths and a light collecting mirror (53) that reflects and collects light of a first wavelength range out of the light of the prescribed wavelengths, and the first wavelength range is greater than 405 nm and less than or equal to 800 nm.

Description

加熱装置、はんだ付け装置、加熱方法、および、はんだ付け方法Heating device, soldering device, heating method, and soldering method
 本発明は、加熱装置、はんだ付け装置、加熱方法、および、はんだ付け方法に関する。 The present invention relates to a heating device, a soldering device, a heating method, and a soldering method.
 従来、電子部品の量産工程に用いられるはんだ付け装置が知られている。(例えば、特許文献1~3参照)。
 特許文献1には、はんだを加熱する光源として赤外線を出射するライトが開示されている。特許文献2,3には、はんだを加熱する光源としてレーザ光源が開示されている。
Conventionally, a soldering apparatus used in a mass production process of electronic components is known. (For example, see Patent Documents 1 to 3).
Patent Document 1 discloses a light that emits infrared light as a light source for heating solder. Patent Documents 2 and 3 disclose laser light sources as light sources for heating solder.
特開2010-62046号公報JP 2010-62046 A 特開2011-66201号公報JP 2011-66201 A 特開2011-216503号公報JP 2011-216503 A
 しかしながら、特許文献1~3のような構成では、はんだを加熱する光源として、赤外線またはレーザ光を出射する光源を用いているため、加熱装置の小型化およびコストダウンを容易に図れないおそれがある。 However, in the configurations as disclosed in Patent Documents 1 to 3, since a light source that emits infrared light or laser light is used as a light source for heating the solder, there is a possibility that the heating device cannot be reduced in size and cost easily. .
 本発明は、小型化およびコストダウンを容易に図れる加熱装置、はんだ付け装置、加熱方法、および、はんだ付け方法を提供することを1つの目的とする。 An object of the present invention is to provide a heating device, a soldering device, a heating method, and a soldering method that can be easily reduced in size and cost.
 本発明の加熱装置は、被加熱物を加熱する加熱装置であって、所定波長の光を出射する高圧水銀ランプと、前記所定波長の光のうち、第1波長範囲の光を反射して集光する集光ミラーとを備え、前記第1波長範囲は、405nmを超えかつ800nm以下であることを特徴とする。 A heating device according to the present invention is a heating device that heats an object to be heated, and a high-pressure mercury lamp that emits light of a predetermined wavelength, and reflects and collects light in a first wavelength range among the light of the predetermined wavelength. The first wavelength range is more than 405 nm and not more than 800 nm.
 本発明のはんだ付け装置は、電子部品が設置される設置部と、上述の加熱装置とを備え、前記電子部品に塗布されたはんだを前記第1波長範囲の光で加熱することを特徴とする。 A soldering apparatus according to the present invention includes an installation portion in which an electronic component is installed and the above-described heating device, and heats the solder applied to the electronic component with light in the first wavelength range. .
 本発明の加熱方法は、被加熱物を加熱する加熱方法であって、所定波長の光を高圧水銀ランプから出射し、前記所定波長の光のうち、405nmを超えかつ800nm以下の光を反射して集光し、当該集光した光で被加熱物を加熱することを特徴とする。 The heating method of the present invention is a heating method for heating an object to be heated, which emits light having a predetermined wavelength from a high-pressure mercury lamp, and reflects light having a wavelength exceeding 405 nm and not more than 800 nm out of the light having the predetermined wavelength. And the object to be heated is heated with the condensed light.
 本発明のはんだ付け方法は、所定波長の光を高圧水銀ランプから出射し、前記所定波長の光のうち、波長が405nmを超えかつ800nm以下の光を反射して集光し、電子部品に塗布されたはんだを前記集光した光で加熱し、前記はんだを固化することを特徴とする。 The soldering method of the present invention emits light having a predetermined wavelength from a high-pressure mercury lamp, and reflects and collects light having a wavelength of more than 405 nm and not more than 800 nm out of the light having the predetermined wavelength, which is applied to an electronic component. The formed solder is heated with the condensed light, and the solder is solidified.
本発明の実施形態におけるはんだ付け装置の概略構成を示す部分断面図。The fragmentary sectional view which shows schematic structure of the soldering apparatus in embodiment of this invention. 前記実施形態におけるはんだ付け装置の概略構成を示すブロック図。The block diagram which shows schematic structure of the soldering apparatus in the said embodiment. 前記実施形態における光源装置の概略構成を示す部分断面図。The fragmentary sectional view which shows schematic structure of the light source device in the said embodiment. 前記実施形態における集光ミラーの反射特性を示す図。The figure which shows the reflective characteristic of the condensing mirror in the said embodiment. 前記実施形態におけるはんだ付け方法を示すフローチャート。The flowchart which shows the soldering method in the said embodiment. 前記実施形態におけるはんだ付け方法を示すフローチャート。The flowchart which shows the soldering method in the said embodiment.
{はんだ付け装置の構成}
 図1において、はんだ付け装置1は、電子部品ELに塗布された被加熱物としてのはんだSLを加熱し、電子部品ELの図示しない端子同士を接合する。はんだ付け装置1は、図1および図2に示すように、搬送装置2と、はんだ塗布装置3と、加熱装置4と、制御装置9とを備える。
{Configuration of soldering equipment}
In FIG. 1, a soldering apparatus 1 heats a solder SL as an object to be heated applied to an electronic component EL, and joins terminals (not shown) of the electronic component EL to each other. As shown in FIGS. 1 and 2, the soldering apparatus 1 includes a transport device 2, a solder application device 3, a heating device 4, and a control device 9.
 搬送装置2は、図1に示すように、電子部品ELを加熱装置4により加熱可能な位置まで搬送する。搬送装置2は、略箱状の本体部21を備える。
 本体部21は、略長方形状の上面22を備える。上面22には、加熱装置4の後述する導光部6、温度測定部7、撮影部8を収容するケース23が設けられている。ケース23は、下面および左面が開口する略箱状に形成されている。ケース23の左面には、当該左面を開閉する蓋部231が設けられている。この蓋部231の下端と上面22との間には、図示しない隙間が設けられている。
 また、上面22には、ケース23の内部から当該ケース23の外部に向かって延びるリニアモータ24が設けられている。リニアモータ24には、当該リニアモータ24に沿って往復可能な設置部としてのステージ25が設けられている。ステージ25には、電子部品ELが設置される。このステージ25に載置された電子部品ELは、リニアモータ24の駆動によって、隙間を介してケース23の内部に搬送され、加熱装置4により加熱される。
 はんだ塗布装置3は、ケース23の外部に位置するステージ25上の電子部品ELに、はんだSLを塗布する。
As shown in FIG. 1, the transport device 2 transports the electronic component EL to a position where it can be heated by the heating device 4. The transport device 2 includes a substantially box-shaped main body 21.
The main body 21 includes a substantially rectangular upper surface 22. The upper surface 22 is provided with a case 23 that houses a light guide unit 6, a temperature measurement unit 7, and a photographing unit 8, which will be described later, of the heating device 4. The case 23 is formed in a substantially box shape whose bottom surface and left surface are open. The left surface of the case 23 is provided with a lid 231 that opens and closes the left surface. A gap (not shown) is provided between the lower end of the lid portion 231 and the upper surface 22.
The upper surface 22 is provided with a linear motor 24 extending from the inside of the case 23 toward the outside of the case 23. The linear motor 24 is provided with a stage 25 as an installation portion that can reciprocate along the linear motor 24. An electronic component EL is installed on the stage 25. The electronic component EL placed on the stage 25 is transported into the case 23 through a gap by driving the linear motor 24 and heated by the heating device 4.
The solder application device 3 applies the solder SL to the electronic component EL on the stage 25 located outside the case 23.
 加熱装置4は、搬送装置2により搬送された電子部品ELのはんだSLを加熱する。加熱装置4は、光源装置5と、導光部6と、温度測定部7と、撮影部8とを備える The heating device 4 heats the solder SL of the electronic component EL transported by the transport device 2. The heating device 4 includes a light source device 5, a light guide unit 6, a temperature measurement unit 7, and a photographing unit 8.
 光源装置5は、図3に示すように、箱状のケース51を備える。ケース51には、当該ケース51の上面を開閉するための蓋部511が設けられている。ケース51の内部には、高圧水銀ランプ52と、集光ミラー53と、光強度調節部を構成するシャッタ54と、コネクタ55とが設けられている。 The light source device 5 includes a box-shaped case 51 as shown in FIG. The case 51 is provided with a lid 511 for opening and closing the upper surface of the case 51. Inside the case 51, a high-pressure mercury lamp 52, a condensing mirror 53, a shutter 54 constituting a light intensity adjusting unit, and a connector 55 are provided.
 高圧水銀ランプ52は、一般的なUV照射器に用いられるものである。この高圧水銀ランプ52は、例えば、ピーク波長が296nm、302nm、312nm、365nm、405nm、435nm、546nm、576nmの光L1を出射する。
 集光ミラー53は、回転楕円面形状の反射面531を備える。この反射面531は、第1波長範囲の光と、第2波長範囲の光とを反射して、コネクタ55の入射面551で集光する。ここで、第1波長範囲は、405nmを超えかつ800nm以下である。第2波長範囲は、200nm以上かつ405nm以下である。すなわち、集光ミラー53は、波長が200nm以上かつ800nm以下の光を反射する。
 このような構成により、高圧水銀ランプ52から出射した光L1は、反射面531で反射され、図4に示すような特性を有する光L2がコネクタ55の入射面551に入射する。この光L2には、第1波長範囲の光が含まれている。このため、この光L2によってはんだSLを加熱することができる。
 シャッタ54は、図3に示すように、光L2の光路上に設けられている。シャッタ54は、開度を調整可能に構成されている。このシャッタ54は、集光ミラー53で反射された光L2を遮光して、入射面551に入射する光L2の強度を調節する。この光L2の強度の調節によって、はんだSLの加熱温度を変更することができる。
 コネクタ55は、入射面551がケース51の内部に位置し、当該入射面551と対向する連結部552がケース51の外部に位置するように設けられている。コネクタ55は、光L2を透過する透過部553を備える。
The high-pressure mercury lamp 52 is used for a general UV irradiator. For example, the high-pressure mercury lamp 52 emits light L1 having peak wavelengths of 296 nm, 302 nm, 312 nm, 365 nm, 405 nm, 435 nm, 546 nm, and 576 nm.
The condenser mirror 53 includes a spheroidal reflecting surface 531. The reflecting surface 531 reflects the light in the first wavelength range and the light in the second wavelength range and collects the light on the incident surface 551 of the connector 55. Here, the first wavelength range is more than 405 nm and not more than 800 nm. The second wavelength range is 200 nm or more and 405 nm or less. That is, the condensing mirror 53 reflects light having a wavelength of 200 nm or more and 800 nm or less.
With such a configuration, the light L1 emitted from the high-pressure mercury lamp 52 is reflected by the reflecting surface 531, and the light L2 having characteristics as shown in FIG. 4 enters the incident surface 551 of the connector 55. The light L2 includes light in the first wavelength range. For this reason, the solder SL can be heated by the light L2.
As shown in FIG. 3, the shutter 54 is provided on the optical path of the light L2. The shutter 54 is configured such that the opening degree can be adjusted. The shutter 54 blocks the light L2 reflected by the condenser mirror 53 and adjusts the intensity of the light L2 incident on the incident surface 551. The heating temperature of the solder SL can be changed by adjusting the intensity of the light L2.
The connector 55 is provided so that the incident surface 551 is located inside the case 51 and the connecting portion 552 facing the incident surface 551 is located outside the case 51. The connector 55 includes a transmission part 553 that transmits the light L2.
 導光部6は、光L2を当該光L2の強度を落とさずにケース51の外部へ導く。この導光部6は、図1および図3に示すように、導光部材としての2本の光ファイバ61と、照射位置調節部を構成する2個のファイバ支持部62とを備える。 The light guide 6 guides the light L2 to the outside of the case 51 without reducing the intensity of the light L2. As shown in FIGS. 1 and 3, the light guide unit 6 includes two optical fibers 61 as light guide members and two fiber support units 62 constituting an irradiation position adjusting unit.
 光ファイバ61は、屈曲可能な略棒状に形成されている。光ファイバ61は、一端がケース23の外部に位置し、他端がケース23の内部に位置するように設けられている。2本の光ファイバ61の一端には、コネクタ63が設けられている。
 このコネクタ63は、コネクタ55の連結部552に着脱自在に連結される連結部631を備える。また、コネクタ63は、光L2を透過する透過部632を備える。
 一方、光ファイバ61の他端には、集光レンズ64が設けられている。この集光レンズ64は、光ファイバ61から出射する光L2を所定の位置で集光する。
 ファイバ支持部62は、光ファイバ61の他端側を支持する。また、ファイバ支持部62は、上面22上を移動自在に構成されている。このファイバ支持部62の移動に伴い、矢印D1に示すように、光ファイバ61の他端側は、当該光ファイバ61の軸と略直交する方向に動く。また、ファイバ支持部62の移動に伴い、矢印D2に示すように、光ファイバ61の他端側は、当該光ファイバ61の軸と略平行な方向に動く。
The optical fiber 61 is formed in a substantially rod shape that can be bent. The optical fiber 61 is provided so that one end is located outside the case 23 and the other end is located inside the case 23. A connector 63 is provided at one end of the two optical fibers 61.
The connector 63 includes a connecting portion 631 that is detachably connected to the connecting portion 552 of the connector 55. The connector 63 includes a transmission part 632 that transmits the light L2.
On the other hand, a condensing lens 64 is provided at the other end of the optical fiber 61. The condensing lens 64 condenses the light L2 emitted from the optical fiber 61 at a predetermined position.
The fiber support unit 62 supports the other end side of the optical fiber 61. Further, the fiber support portion 62 is configured to be movable on the upper surface 22. As the fiber support 62 moves, the other end of the optical fiber 61 moves in a direction substantially orthogonal to the axis of the optical fiber 61 as indicated by an arrow D1. As the fiber support 62 moves, the other end of the optical fiber 61 moves in a direction substantially parallel to the axis of the optical fiber 61 as indicated by an arrow D2.
 温度測定部7は、はんだSLの温度を測定し、この測定結果に対応する信号を制御装置9へ出力する。温度測定部7としては、放射温度計を用いてもよい。
 撮影部8は、電子部品ELを撮影し、この撮影結果に対応する信号を制御装置9へ出力する。
 なお、温度測定部7および撮影部8の設置位置としては、はんだSLの温度を測定可能あるいは電子部品ELを撮影可能な位置であれば、いずれの位置であってもよい。
The temperature measuring unit 7 measures the temperature of the solder SL and outputs a signal corresponding to the measurement result to the control device 9. A radiation thermometer may be used as the temperature measuring unit 7.
The imaging unit 8 images the electronic component EL and outputs a signal corresponding to the imaging result to the control device 9.
The installation position of the temperature measurement unit 7 and the imaging unit 8 may be any position as long as the temperature of the solder SL can be measured or the electronic component EL can be imaged.
 制御装置9は、図2に示すように、入力部91と、表示部92と、記憶部93と、制御部94とを備える。
 入力部91は、キーボード、マウスあるいはタッチペンなどを含み、各種情報を設定入力可能に構成されている。
 記憶部93は、はんだ付け装置1全体の制御に必要な各種データを記憶する。
 制御部94は、記憶部93に記憶されたプログラムおよびデータをCPU(Central Processing Unit)が処理することにより構成される。この制御部94は、記憶部93に記憶された各種データに基づいて、各種処理を行う。そして、制御部94は、はんだ塗布制御部941と、照射位置調節部を構成するファイバ位置制御部942と、ランプ制御部943と、光強度調節部を構成するシャッタ制御部944と、表示制御部945とを備える。
As shown in FIG. 2, the control device 9 includes an input unit 91, a display unit 92, a storage unit 93, and a control unit 94.
The input unit 91 includes a keyboard, a mouse, a touch pen, and the like, and is configured to be able to set and input various information.
The memory | storage part 93 memorize | stores various data required for control of the soldering apparatus 1 whole.
The control unit 94 is configured by processing a program and data stored in the storage unit 93 by a CPU (Central Processing Unit). The control unit 94 performs various processes based on various data stored in the storage unit 93. The control unit 94 includes a solder application control unit 941, a fiber position control unit 942 constituting an irradiation position adjustment unit, a lamp control unit 943, a shutter control unit 944 constituting a light intensity adjustment unit, and a display control unit. 945.
 はんだ塗布制御部941は、搬送装置2およびはんだ塗布装置3を制御し、電子部品ELにはんだSLを塗布したり、電子部品ELをケース23内外へ搬送する。
 ランプ制御部943は、高圧水銀ランプ52を制御する。
 ファイバ位置制御部942は、ファイバ支持部62の位置を制御し、はんだSLに対する光L2の入射角度や照射距離を調節する。
 シャッタ制御部944は、温度測定部7における温度の測定結果に基づいて、シャッタ54の開度を制御し、入射面551に入射する光L2の強度を調節する。
 表示制御部945は、撮影部8で撮影された画像を表示部92に表示させる。
The solder application control unit 941 controls the conveying device 2 and the solder applying device 3 to apply the solder SL to the electronic component EL or convey the electronic component EL into and out of the case 23.
The lamp control unit 943 controls the high pressure mercury lamp 52.
The fiber position control unit 942 controls the position of the fiber support unit 62 and adjusts the incident angle and irradiation distance of the light L2 with respect to the solder SL.
The shutter control unit 944 controls the opening degree of the shutter 54 based on the temperature measurement result in the temperature measurement unit 7 and adjusts the intensity of the light L <b> 2 incident on the incident surface 551.
The display control unit 945 causes the display unit 92 to display an image photographed by the photographing unit 8.
{はんだ付け装置の作用}
 次に、はんだ付け装置1の作用について説明する。
 図5に示すように、はんだ付け装置1の図示しない電源がオンされると、制御装置9のはんだ塗布制御部941は、オペレータによる入力部91の設定入力に基づいて、はんだ付け条件の設定が必要か否かを判断する(ステップS1)。はんだ付け条件としては、はんだSLの塗布位置や塗布面積、はんだSLの溶融温度、はんだSLに対する光L2の照射角度やスポット径、はんだ付けの対象となる電子部品ELの個数などが例示できる。
 このステップS1において、はんだ塗布制御部941は、はんだ付け条件の設定が必要であると判断した場合、入力部91の設定入力に基づくデータを記憶部93に記憶させ、はんだ付け条件を設定する(ステップS2)。はんだ塗布制御部941は、ステップS2の処理を行った場合、または、ステップS1においてはんだ付け条件の設定が不要であると判断した場合、図示しない電子部品搬送装置を制御して、図1に二点鎖線で示すように、電子部品ELをステージ25上にセットする(ステップS3)。
{Action of soldering device}
Next, the operation of the soldering apparatus 1 will be described.
As shown in FIG. 5, when a power supply (not shown) of the soldering device 1 is turned on, the solder application control unit 941 of the control device 9 sets the soldering conditions based on the setting input of the input unit 91 by the operator. It is determined whether or not it is necessary (step S1). Examples of the soldering conditions include the application position and application area of the solder SL, the melting temperature of the solder SL, the irradiation angle and spot diameter of the light L2 with respect to the solder SL, and the number of electronic components EL to be soldered.
In this step S1, when it is determined that the soldering conditions need to be set, the solder application control unit 941 stores data based on the setting input of the input unit 91 in the storage unit 93 and sets the soldering conditions ( Step S2). When the processing of step S2 is performed or when it is determined that the setting of the soldering conditions is unnecessary in step S1, the solder application control unit 941 controls an electronic component conveying device (not shown) to As indicated by the dotted line, the electronic component EL is set on the stage 25 (step S3).
 次に、はんだ塗布制御部941は、はんだ付け条件に基づきはんだ塗布装置3を制御して、電子部品ELにはんだSLを塗布する(ステップS4)。そして、はんだ塗布制御部941は、図1に実線で示すように、搬送装置2を制御して電子部品ELをケース23内に搬入する(ステップS5)。
 この後、制御装置9のファイバ位置制御部942は、はんだ付け条件に基づいて、光L2の照射状態の調節が必要か否かを判断する(ステップS6)。このステップS6において、ファイバ位置制御部942は、調節が必要であると判断した場合、ファイバ支持部62を制御し、光ファイバ61の先端側を矢印D1や矢印D2に示す方向に動かすことで、光L2の照射状態を調節する(ステップS7)。例えば、ファイバ位置制御部942は、はんだSLの塗布位置や塗布面積、はんだSLの溶融温度に基づいて、光L2の照射角度やスポット径が適切な状態となるように、光ファイバ61を動かす。
Next, the solder application control unit 941 controls the solder application device 3 based on the soldering conditions to apply the solder SL to the electronic component EL (step S4). Then, as shown by the solid line in FIG. 1, the solder application control unit 941 controls the transport device 2 to carry the electronic component EL into the case 23 (step S5).
Thereafter, the fiber position control unit 942 of the control device 9 determines whether or not adjustment of the irradiation state of the light L2 is necessary based on the soldering conditions (step S6). In this step S6, when the fiber position control unit 942 determines that adjustment is necessary, the fiber position control unit 942 controls the fiber support unit 62 and moves the distal end side of the optical fiber 61 in the direction indicated by the arrow D1 or the arrow D2. The irradiation state of the light L2 is adjusted (step S7). For example, the fiber position control unit 942 moves the optical fiber 61 so that the irradiation angle and spot diameter of the light L2 are in an appropriate state based on the application position and application area of the solder SL and the melting temperature of the solder SL.
 そして、制御装置9のランプ制御部943は、ファイバ位置制御部942がステップS7の処理を行った場合、または、ステップS6において照射状態の調節が不要であると判断した場合、高圧水銀ランプ52を点灯させる(ステップS8)。このステップS8の処理によって、図3に示すように、高圧水銀ランプ52から出射した光L1が集光ミラー53で反射し、光L2が入射面551で集光する。この入射面551で集光した光L2は、図1に示すように、光ファイバ61によってケース51の外部に導かれ、はんだSLに照射される。ここで、図4に示すように、光L2は、第1波長範囲(405nmを超えかつ800nm以下)の成分を含んでいる。このため、はんだSLは、主に第1波長範囲の成分によって加熱される。 Then, the lamp controller 943 of the control device 9 turns on the high-pressure mercury lamp 52 when the fiber position controller 942 performs the process of step S7 or when it is determined that the adjustment of the irradiation state is unnecessary in step S6. Turn on (step S8). By the process of step S8, as shown in FIG. 3, the light L1 emitted from the high-pressure mercury lamp 52 is reflected by the condensing mirror 53, and the light L2 is condensed by the incident surface 551. As shown in FIG. 1, the light L <b> 2 collected by the incident surface 551 is guided to the outside of the case 51 by the optical fiber 61 and is applied to the solder SL. Here, as illustrated in FIG. 4, the light L2 includes a component in the first wavelength range (exceeding 405 nm and not more than 800 nm). For this reason, the solder SL is heated mainly by components in the first wavelength range.
 一方、図6に示すように、温度測定部7は、光L2が照射されたはんだSLの温度を測定し、測定結果を制御装置9へ送信する(ステップS9)。この温度の測定は、例えばステップS8の処理から所定時間経過して、はんだSLの温度が光L2の強度に対応する温度まで上昇した後に行われることが好ましい。
 そして、制御装置9のシャッタ制御部944は、はんだ付け条件、および、ステップS9における温度の測定結果に基づいて、はんだSLの温度調節が必要か否かを判断する(ステップS10)。このステップS10において、シャッタ制御部944は、温度調節が必要であると判断した場合、シャッタ54の開度を調節する(ステップS11)。
 具体的に、シャッタ制御部944は、温度を上げる必要があると判断した場合、シャッタ54の開度を大きくする。シャッタ54の開度が大きくなると、光ファイバ61を介してはんだSLに照射される光L2の強度が大きくなり、はんだSLの加熱温度が上がる。一方、シャッタ制御部944は、温度を下げる必要があると判断した場合、シャッタ54の開度を小さくし、はんだSLに照射される光L2の強度を小さくすることではんだSLの加熱温度を下げる。
 このように、はんだSLの温度を適切に調節することによって、はんだSLが溶融せずにはんだ付けができないという不具合や、はんだSLが溶融しすぎてはんだSLが意図しない位置へ流れてしまうという不具合を防止できる。
On the other hand, as shown in FIG. 6, the temperature measurement unit 7 measures the temperature of the solder SL irradiated with the light L2, and transmits the measurement result to the control device 9 (step S9). This temperature measurement is preferably performed after a predetermined time has elapsed from the process of step S8, for example, and the temperature of the solder SL has risen to a temperature corresponding to the intensity of the light L2.
Then, the shutter control unit 944 of the control device 9 determines whether or not the temperature adjustment of the solder SL is necessary based on the soldering conditions and the temperature measurement result in step S9 (step S10). In step S10, when the shutter control unit 944 determines that temperature adjustment is necessary, the shutter control unit 944 adjusts the opening of the shutter 54 (step S11).
Specifically, when it is determined that the temperature needs to be raised, the shutter control unit 944 increases the opening of the shutter 54. When the opening degree of the shutter 54 increases, the intensity of the light L2 irradiated to the solder SL through the optical fiber 61 increases, and the heating temperature of the solder SL increases. On the other hand, when the shutter control unit 944 determines that the temperature needs to be lowered, the heating temperature of the solder SL is lowered by reducing the opening degree of the shutter 54 and reducing the intensity of the light L2 applied to the solder SL. .
As described above, by appropriately adjusting the temperature of the solder SL, there is a problem that the solder SL cannot be melted without being melted, or that the solder SL is excessively melted and flows to an unintended position. Can be prevented.
 ランプ制御部943は、シャッタ制御部944がステップS11の処理を行った場合、または、ステップS10において温度調節が不要であると判断した場合、はんだ付けが完了したか否かを判断する(ステップS12)。例えば、ランプ制御部943は、ステップS11の処理が終了してから所定時間が経過した後、あるいは、ステップS11の処理を行わないときにはステップS8の処理が終了してから所定時間が経過した後、はんだ付け(例えば、図示しない端子同士の接合)が完了したと判断する。
 この後、ランプ制御部943は、高圧水銀ランプ52を消灯する(ステップS13)。このステップS13の処理によって、はんだSLへの光L2の照射が終了し、はんだSLの温度が下がり固化する。
The lamp controller 943 determines whether the soldering is completed when the shutter controller 944 performs the process of step S11 or when it is determined in step S10 that the temperature adjustment is unnecessary (step S12). ). For example, after a predetermined time has elapsed since the completion of the process of step S11, or when the process of step S11 is not performed, the lamp control unit 943, after the predetermined time has elapsed after the completion of the process of step S8, It is determined that soldering (for example, joining of terminals (not shown)) is completed.
Thereafter, the lamp controller 943 turns off the high-pressure mercury lamp 52 (step S13). By the processing in step S13, the irradiation of the light L2 onto the solder SL is completed, and the temperature of the solder SL is lowered and solidified.
 次に、はんだ塗布制御部941は、搬送装置2を制御して電子部品ELをケース23外に搬出する(ステップS14)。そして、はんだ塗布制御部941は、はんだ付け条件に基づいて、次の電子部品ELをセットするか否かを判断する(ステップS15)。このステップS15において、はんだ塗布制御部941は、セットすると判断した場合、ステップS3の処理を行う。一方で、はんだ塗布制御部941は、ステップS15においてセットしないと判断した場合、処理を終了する。 Next, the solder application controller 941 controls the transport device 2 to carry out the electronic component EL out of the case 23 (step S14). Then, the solder application control unit 941 determines whether or not to set the next electronic component EL based on the soldering conditions (step S15). In step S15, when the solder application control unit 941 determines to set, the process of step S3 is performed. On the other hand, if the solder application control unit 941 determines not to set in step S15, the process ends.
 また、撮影部8は、上述のはんだ付け中に、電子部品ELを撮影する。そして、表示制御部945は、撮影部8が撮影した画像を表示部92に表示させる。このような構成により、オペレータは、はんだSLの溶融状態を目視で確認できる。オペレータは、シャッタ54の開度を最大にしたとき(光L2の強度を最大にしたとき)のはんだSLの溶融状態を確認し、開度に応じた状態にはんだSLが溶融しているか否かに基づいて、高圧水銀ランプ52が経時劣化しているか否かを判断できる。そして、オペレータは、高圧水銀ランプ52が経時劣化している場合には、新しい高圧水銀ランプ52と交換できる。 Further, the photographing unit 8 photographs the electronic component EL during the above-described soldering. Then, the display control unit 945 causes the display unit 92 to display an image captured by the imaging unit 8. With such a configuration, the operator can visually confirm the molten state of the solder SL. The operator checks the melting state of the solder SL when the opening of the shutter 54 is maximized (when the intensity of the light L2 is maximized), and whether or not the solder SL is melted in a state corresponding to the opening. Based on the above, it can be determined whether or not the high-pressure mercury lamp 52 has deteriorated over time. The operator can replace the high-pressure mercury lamp 52 with a new high-pressure mercury lamp 52 when the high-pressure mercury lamp 52 has deteriorated over time.
 {実施形態の作用効果}
 上述したような実施形態では、以下のような作用効果を奏することができる。
 (1)加熱装置4は、高圧水銀ランプ52が出射した光のうち、第1波長範囲(405nmを超えかつ800nm以下)の光を含む光L2を反射してコネクタ55で集光する集光ミラー53を備える。
 ここで、一般的なUV照射器では、高圧水銀ランプから出射された光のうち、405nm以下の光のみを集光ミラーで反射して集光し、被照射物に照射している。すなわち、UV照射器では、第1波長範囲の光を反射していない。上記実施形態では、このようなUV照射器において、従来利用していなかった405nmを超える光を集光ミラー53で反射して、当該反射した光L2によってはんだSLを加熱する構成としている。このため、従来あるUV照射器の集光ミラーを交換するだけで、加熱装置4として利用することができ、赤外線やレーザ光の光源を用いる構成と比べて、小型化およびコストダウンを容易に図ることができる。
{Operational effects of the embodiment}
In the embodiment as described above, the following operational effects can be achieved.
(1) The heating device 4 reflects the light L2 including light in the first wavelength range (exceeding 405 nm and not more than 800 nm) out of the light emitted from the high-pressure mercury lamp 52 and collects the light with a connector 55. 53.
Here, in a general UV irradiator, only light having a wavelength of 405 nm or less out of light emitted from a high-pressure mercury lamp is reflected by a condensing mirror and condensed to irradiate an object to be irradiated. That is, the UV irradiator does not reflect light in the first wavelength range. In the above embodiment, in such a UV irradiator, light that exceeds 405 nm, which has not been conventionally used, is reflected by the condenser mirror 53, and the solder SL is heated by the reflected light L2. For this reason, it can be used as the heating device 4 simply by exchanging the condensing mirror of the conventional UV irradiator, and can be easily reduced in size and cost as compared with a configuration using a light source of infrared rays or laser light. be able to.
 (2)加熱装置4は、光L2をケース51の外部へ導く導光部6を備える。
 このため、搬送装置2や加熱装置4の設置位置や設置スペースの関係で、はんだSLの加熱位置と光源装置5との距離を大きくする必要がある場合であっても、導光部6の構成を変更することによってはんだSLを適切に加熱できる。さらには、導光部6をケース51に着脱自在に構成することで、故障した加熱装置4のみあるいは導光部6のみを交換することができ、余計な修理が不要となる。
(2) The heating device 4 includes a light guide 6 that guides the light L <b> 2 to the outside of the case 51.
For this reason, even if it is necessary to increase the distance between the heating position of the solder SL and the light source device 5 due to the installation position and installation space of the transport device 2 and the heating device 4, the configuration of the light guide unit 6. It is possible to appropriately heat the solder SL by changing. Furthermore, since the light guide unit 6 is configured to be detachable from the case 51, only the failed heating device 4 or only the light guide unit 6 can be replaced, and unnecessary repair is unnecessary.
 (3)導光部6は、屈曲可能な光ファイバ61を備える。
 このため、光ファイバ61を屈曲させることで光L2の照射位置やスポット径などの調節が可能となり、はんだSLを適切に加熱できる。例えば、はんだSLの塗布範囲が大きい場合や、電子部品ELの寸法のばらつきがある場合でも、はんだSLの塗布範囲全域にわたって均一に加熱できる。
 また、ファイバ位置制御部942の制御によってファイバ支持部62の位置を調節可能としているため、光L2の照射位置を微調節することができる。さらに、略棒状の光ファイバ61から光L2を出射することで、局所的に加熱することができる。したがって、電子部品EL上に複数のはんだSLが点在する場合でも、複数のはんだSLのみを同時に加熱することが可能となり、はんだSL以外の部分の温度上昇を最小限に抑えることができる。また、光L2を集光する集光レンズ64を光ファイバ61に設けているため、狭い範囲での局所的な加熱が可能となる。
(3) The light guide 6 includes a bendable optical fiber 61.
For this reason, by bending the optical fiber 61, the irradiation position of the light L2, the spot diameter, and the like can be adjusted, and the solder SL can be appropriately heated. For example, even when the application range of the solder SL is large or when there is a variation in the dimensions of the electronic component EL, the solder SL can be uniformly heated over the entire application range.
Further, since the position of the fiber support section 62 can be adjusted by the control of the fiber position control section 942, the irradiation position of the light L2 can be finely adjusted. Furthermore, by emitting the light L2 from the substantially rod-shaped optical fiber 61, it can be locally heated. Therefore, even when a plurality of solders SL are scattered on the electronic component EL, it is possible to heat only the plurality of solders SL at the same time, and it is possible to minimize the temperature rise of the part other than the solders SL. Moreover, since the condensing lens 64 which condenses the light L2 is provided in the optical fiber 61, the local heating in the narrow range is attained.
 (4)加熱装置4は、はんだSLに照射される光L2の強度を調節するシャッタ54を備える。
 このため、はんだSLの溶融温度に合わせて光L2の強度を調節することで、はんだSLの加熱温度を適切に調節できる。特に、シャッタ54の開度の調節によって光L2の遮光量を調節するだけの簡単な構成で、はんだSLの加熱温度を調節できる。
 また、シャッタ制御部944が温度測定部7で測定されたはんだSLの温度に基づいて、光L2の強度を調節するため、実際の加熱状態に応じてはんだSLの加熱温度を適切に調節できる。
(4) The heating device 4 includes a shutter 54 that adjusts the intensity of the light L2 applied to the solder SL.
For this reason, the heating temperature of the solder SL can be appropriately adjusted by adjusting the intensity of the light L2 in accordance with the melting temperature of the solder SL. In particular, the heating temperature of the solder SL can be adjusted with a simple configuration that only adjusts the light shielding amount of the light L2 by adjusting the opening of the shutter 54.
Further, since the shutter control unit 944 adjusts the intensity of the light L2 based on the temperature of the solder SL measured by the temperature measuring unit 7, the heating temperature of the solder SL can be appropriately adjusted according to the actual heating state.
 (5)加熱装置4は、電子部品ELを撮影する撮影部8を備える。
 このため、撮影部8が撮影したはんだSLの溶融状態を表示部92に表示させることで、オペレータは、はんだ付け処理中に、高圧水銀ランプ52が経時劣化しているか否かを判断できる。
(5) The heating device 4 includes an imaging unit 8 that images the electronic component EL.
For this reason, by displaying the melting state of the solder SL photographed by the photographing unit 8 on the display unit 92, the operator can determine whether or not the high-pressure mercury lamp 52 has deteriorated with time during the soldering process.
 (6)加熱装置4の集光ミラーとして、第1波長範囲および第2波長範囲の光を反射する集光ミラー53を適用している。すなわち、全ての波長の光を反射する集光ミラー53を適用している。
 このように、第1波長範囲の光のみを反射する集光ミラーと比べて、入手が容易でありかつ安価な集光ミラー53を適用することで、加熱装置4のコストダウンを容易に図れる。
(6) A condensing mirror 53 that reflects light in the first wavelength range and the second wavelength range is applied as the condensing mirror of the heating device 4. That is, the condensing mirror 53 that reflects light of all wavelengths is applied.
Thus, the cost of the heating device 4 can be easily reduced by applying the collectable mirror 53 that is easily available and inexpensive as compared with the collective mirror that reflects only light in the first wavelength range.
[変形例]
 なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良などは本発明に含まれるものである。
 例えば、上記実施形態において、第1波長範囲の光のみを反射する集光ミラー53を用いてもよい。また、集光ミラー53としては、435nm、546nm、576nmのうち、いずれか1つまたは2つの波長の光のみを反射するものを用いてもよい。
[Modification]
It should be noted that the present invention is not limited to the above-described embodiment, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
For example, in the above embodiment, the condensing mirror 53 that reflects only light in the first wavelength range may be used. Moreover, as the condensing mirror 53, you may use what reflects only the light of any one or two wavelengths among 435 nm, 546 nm, and 576 nm.
 加熱装置4に導光部6を設けずに、例えば光源装置5における光L2の集光位置(入射面551が設けられた位置)に、はんだSLが位置するように構成してもよい。
 また、光ファイバ61を屈曲しないように構成してもよい。さらに、ファイバ支持部62をファイバ位置制御部942の制御によって移動可能な構成とせずに、オペレータが手作業によってファイバ支持部62を移動させてもよい。また、温度測定部7または撮影部8を設けなくてもよい。
Instead of providing the light guide 6 in the heating device 4, for example, the solder SL may be positioned at the light L2 condensing position (position where the incident surface 551 is provided) in the light source device 5.
Further, the optical fiber 61 may be configured not to be bent. Further, the fiber support unit 62 may be moved manually by an operator without using the configuration in which the fiber support unit 62 is movable by the control of the fiber position control unit 942. Further, the temperature measurement unit 7 or the imaging unit 8 may not be provided.
 さらに、導光部6に設ける光ファイバ61の本数は、1本であってもよいし3本以上であってもよい。
 また、加熱装置4で加熱する被加熱物としては、はんだSLに限らず、熱硬化型接着剤であってもよい。さらに、コイルの被覆膜を被加熱物として加熱して溶融してもよい。
 また、電子部品ELにおけるはんだSLの位置に対応して、一方のみの光ファイバ61から光L2を出射させてもよい。さらに、2本の光ファイバ61から出射する光L2の強度を個別に調節可能としてもよい。
 そして、電子部品からはんだを取る装置やリフロー炉に加熱装置4を適用してもよい。また、光ファイバ61に集光レンズ64を設けなくてもよい。
 さらに、はんだSLに照射される光L2の強度を調節する際に、シャッタ54の開度を調節せずに、高圧水銀ランプ52の発光強度を調節してもよい。
Furthermore, the number of the optical fibers 61 provided in the light guide unit 6 may be one or three or more.
Further, the object to be heated by the heating device 4 is not limited to the solder SL, and may be a thermosetting adhesive. Furthermore, the coating film of the coil may be heated and melted as an object to be heated.
Further, the light L2 may be emitted from only one optical fiber 61 in correspondence with the position of the solder SL in the electronic component EL. Furthermore, the intensity of the light L2 emitted from the two optical fibers 61 may be individually adjustable.
And you may apply the heating apparatus 4 to the apparatus and reflow furnace which take a solder from an electronic component. Further, the condensing lens 64 may not be provided in the optical fiber 61.
Furthermore, when adjusting the intensity of the light L2 applied to the solder SL, the emission intensity of the high-pressure mercury lamp 52 may be adjusted without adjusting the opening of the shutter 54.
   1…はんだ付け装置
   4…加熱装置
   6…導光部
   7…温度測定部
   8…撮影部
  25…設置部としてのステージ
  51…ケース
  52…高圧水銀ランプ
  53…集光ミラー
  54…光強度調節部を構成するシャッタ
  61…導光部材としての光ファイバ
DESCRIPTION OF SYMBOLS 1 ... Soldering device 4 ... Heating device 6 ... Light guide part 7 ... Temperature measurement part 8 ... Imaging | photography part 25 ... Stage as installation part 51 ... Case 52 ... High pressure mercury lamp 53 ... Condensing mirror 54 ... Light intensity adjustment part Constructing shutter 61 ... Optical fiber as light guide member

Claims (10)

  1.  被加熱物を加熱する加熱装置であって、
     所定波長の光を出射する高圧水銀ランプと、
     前記所定波長の光のうち、第1波長範囲の光を反射して集光する集光ミラーとを備え、
     前記第1波長範囲は、405nmを超えかつ800nm以下であることを特徴とする加熱装置。
    A heating device for heating an object to be heated,
    A high-pressure mercury lamp that emits light of a predetermined wavelength;
    A light collecting mirror that reflects and collects light in the first wavelength range out of the predetermined wavelength light;
    The heating apparatus according to claim 1, wherein the first wavelength range is greater than 405 nm and not greater than 800 nm.
  2.  請求項1に記載の加熱装置において、
     前記高圧水銀ランプおよび前記集光ミラーを収容するケースと、
     前記ケースに着脱自在に設けられ、前記第1波長範囲の光を前記ケースの外部へ導き前記被加熱物に照射する導光部を備えることを特徴とする加熱装置。
    The heating device according to claim 1,
    A case for housing the high-pressure mercury lamp and the condenser mirror;
    A heating apparatus comprising a light guide section that is detachably provided on the case and guides the light to be heated to the outside of the case with light in the first wavelength range.
  3.  請求項2に記載の加熱装置において、
     前記導光部は、屈曲可能な導光部材を備えることを特徴とする加熱装置。
    The heating device according to claim 2, wherein
    The said light guide part is equipped with the light guide member which can be bent, The heating apparatus characterized by the above-mentioned.
  4.  請求項1に記載の加熱装置において、
     前記被加熱物に照射される前記第1波長範囲の光の強度を調節する光強度調節部を備えることを特徴とする加熱装置。
    The heating device according to claim 1,
    A heating apparatus comprising: a light intensity adjusting unit that adjusts the intensity of light in the first wavelength range irradiated on the object to be heated.
  5.  請求項4に記載の加熱装置において、
     前記被加熱物の温度を測定する温度測定部を備え、
     前記光強度調節部は、前記被加熱物の温度の測定結果に基づいて、前記光の強度を調節することを特徴とする加熱装置。
    The heating device according to claim 4, wherein
    A temperature measuring unit for measuring the temperature of the object to be heated;
    The said light intensity adjustment part adjusts the intensity | strength of the said light based on the measurement result of the temperature of the said to-be-heated material, The heating apparatus characterized by the above-mentioned.
  6.  請求項1に記載の加熱装置において、
     前記被加熱物を撮影する撮影部を備えることを特徴とする加熱装置。
    The heating device according to claim 1,
    A heating apparatus comprising a photographing unit that photographs the object to be heated.
  7.  請求項1に記載の加熱装置において、
     前記集光ミラーは、前記所定波長の光のうち、第2波長範囲の光を反射して集光し、
     前記第2波長範囲は、405nm以下かつ200nm以上であることを特徴とする加熱装置。
    The heating device according to claim 1,
    The condensing mirror reflects and condenses light in the second wavelength range among the light of the predetermined wavelength,
    The heating apparatus, wherein the second wavelength range is 405 nm or less and 200 nm or more.
  8.  電子部品が設置される設置部と、
     請求項1に記載の加熱装置とを備え、
     前記電子部品に塗布されたはんだを前記第1波長範囲の光で加熱することを特徴とするはんだ付け装置。
    An installation section where electronic components are installed;
    A heating device according to claim 1,
    A soldering apparatus, wherein the solder applied to the electronic component is heated with light in the first wavelength range.
  9.  被加熱物を加熱する加熱方法であって、
     所定波長の光を高圧水銀ランプから出射し、
     前記所定波長の光のうち、405nmを超えかつ800nm以下の光を反射して集光し、
     当該集光した光で被加熱物を加熱することを特徴とする加熱方法。
    A heating method for heating an object to be heated,
    Light of a predetermined wavelength is emitted from a high-pressure mercury lamp,
    Of the light having the predetermined wavelength, it reflects and collects light exceeding 405 nm and not more than 800 nm,
    A heating method characterized by heating an object to be heated with the condensed light.
  10.  所定波長の光を高圧水銀ランプから出射し、
     前記所定波長の光のうち、波長が405nmを超えかつ800nm以下の光を反射して集光し、
     電子部品に塗布されたはんだを前記集光した光で加熱し、
     前記はんだを固化することを特徴とするはんだ付け方法。
    Light of a predetermined wavelength is emitted from a high-pressure mercury lamp,
    Of the light having the predetermined wavelength, the light having a wavelength exceeding 405 nm and not more than 800 nm is reflected and collected,
    Heat the solder applied to the electronic component with the collected light,
    A soldering method comprising solidifying the solder.
PCT/JP2012/074906 2012-09-27 2012-09-27 Heating device, soldering device, heating method, and soldering method WO2014049780A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/074906 WO2014049780A1 (en) 2012-09-27 2012-09-27 Heating device, soldering device, heating method, and soldering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/074906 WO2014049780A1 (en) 2012-09-27 2012-09-27 Heating device, soldering device, heating method, and soldering method

Publications (1)

Publication Number Publication Date
WO2014049780A1 true WO2014049780A1 (en) 2014-04-03

Family

ID=50387245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074906 WO2014049780A1 (en) 2012-09-27 2012-09-27 Heating device, soldering device, heating method, and soldering method

Country Status (1)

Country Link
WO (1) WO2014049780A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110891333A (en) * 2019-10-29 2020-03-17 何海文 Photo-thermal structure and hair dryer
CN115401285A (en) * 2022-07-28 2022-11-29 成都飞机工业(集团)有限责任公司 Automatic heating equipment for cable soldering tin ring and use method
CN115401285B (en) * 2022-07-28 2024-06-07 成都飞机工业(集团)有限责任公司 Automatic heating equipment for cable soldering tin ring and use method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03204171A (en) * 1989-12-28 1991-09-05 Ushio Inc Light beam soldering device
JPH0917577A (en) * 1996-08-09 1997-01-17 Matsushita Electric Ind Co Ltd Output light generating device
JP2010010589A (en) * 2008-06-30 2010-01-14 Japan Unix Co Ltd Laser type soldering method and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03204171A (en) * 1989-12-28 1991-09-05 Ushio Inc Light beam soldering device
JPH0917577A (en) * 1996-08-09 1997-01-17 Matsushita Electric Ind Co Ltd Output light generating device
JP2010010589A (en) * 2008-06-30 2010-01-14 Japan Unix Co Ltd Laser type soldering method and apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110891333A (en) * 2019-10-29 2020-03-17 何海文 Photo-thermal structure and hair dryer
CN115401285A (en) * 2022-07-28 2022-11-29 成都飞机工业(集团)有限责任公司 Automatic heating equipment for cable soldering tin ring and use method
CN115401285B (en) * 2022-07-28 2024-06-07 成都飞机工业(集团)有限责任公司 Automatic heating equipment for cable soldering tin ring and use method

Similar Documents

Publication Publication Date Title
US8525072B2 (en) Laser soldering apparatus
TW457158B (en) Laser soldering method
TWI670132B (en) Laser soldering apparatus
JP5833603B2 (en) Analytical apparatus and analytical method for photothermal analysis of sample
JP2018187638A5 (en)
CN105628210A (en) Pyrometric detection device, method for calibrating the same, and apparatus for producing three-dimensional work pieces
JPWO2019159427A1 (en) Camera module adjustment device and camera module adjustment method
US9030646B2 (en) Exposure apparatus and photomask used therein
WO2014049780A1 (en) Heating device, soldering device, heating method, and soldering method
US10406725B2 (en) Light source apparatus for resin curing
JP5324320B2 (en) Electronic component processing apparatus and electronic component processing method
JP6201310B2 (en) Polarized light irradiation device
JP2008119714A (en) Laser beam machining apparatus
JP2007065437A (en) Fiber collimator
KR102094629B1 (en) Light source device and driving method of light source device
JP6894485B2 (en) Soldering equipment and its system controller
WO2020138357A1 (en) Production method for light-transmittable component and production system for light-transmittable component
JP6551697B2 (en) Light source device for resin curing
JP2006045598A (en) Device for improving residual stress in installed pipe
JP2006326629A (en) Laser beam machining apparatus and its machining method
JP5908297B2 (en) Exposure equipment
JP2009160602A (en) Soldering device
JP2005085708A (en) Local heating device and method
US20040228437A1 (en) In-situ monitoring system for bonding process and method therefor
JP2013215762A (en) Laser joining system and laser joining method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12885255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12885255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP