WO2014049711A1 - Communications system, electronic component attachment device and error processing method for communications system - Google Patents

Communications system, electronic component attachment device and error processing method for communications system Download PDF

Info

Publication number
WO2014049711A1
WO2014049711A1 PCT/JP2012/074692 JP2012074692W WO2014049711A1 WO 2014049711 A1 WO2014049711 A1 WO 2014049711A1 JP 2012074692 W JP2012074692 W JP 2012074692W WO 2014049711 A1 WO2014049711 A1 WO 2014049711A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
type
information
control unit
error
Prior art date
Application number
PCT/JP2012/074692
Other languages
French (fr)
Japanese (ja)
Inventor
重元 廣田
神藤 高広
伸夫 長坂
泰章 今寺
義彦 長瀬
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to PCT/JP2012/074692 priority Critical patent/WO2014049711A1/en
Priority to JP2014537890A priority patent/JP5989787B2/en
Publication of WO2014049711A1 publication Critical patent/WO2014049711A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/24Negotiation of communication capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/40Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass for recovering from a failure of a protocol instance or entity, e.g. service redundancy protocols, protocol state redundancy or protocol service redirection

Definitions

  • the present invention relates to a communication system that performs data communication with different types of error processing according to the type of data, an electronic component mounting apparatus that uses the communication system, and an error processing method of the communication system.
  • a center device that provides a communication service automatically confirms the configuration of a plurality of user devices that use the service and changes settings for the user devices (for example, Patent Document 1).
  • the user apparatus has a plurality of connectors to which interface cards (IF cards) are attached, and periodically checks the attachment status of the IF cards in the connectors to obtain detection results. Transmit to the center device.
  • the center device determines a change in configuration in each user device based on the detection result transmitted from each user device, and changes the destination identifier set in the IF card according to the result.
  • a time division multiplexing (TDM) method is used for downlink communication from the center apparatus to the user apparatus, and the transmission within the frame to be transmitted. Is set with an error correction code for detecting an error in the data.
  • JP-A-11-205311 (paragraphs 0008, 0087 to 0100, FIGS. 6 and 10)
  • a suitable error processing may differ depending on the type of data to be transmitted.
  • the type of data input from each connector of the user device differs depending on the electrical device connected via the IF card, and is different for each electrical device (data type). There is a need to adapt error handling.
  • Patent Document 1 describes that the destination identifier is changed according to the installation status of the IF card on the user device side, but the error processing is changed according to the type of data input from each connector. There is no mention of what to do. Therefore, suitable error processing cannot be performed according to the data type of each electrical equipment connected to the communication system. Furthermore, in order to maintain the versatility that various devices can be attached and detached using the above-described connector as a common interface to the communication system, input / output is performed to each device regardless of which connector the electrical device is connected to. It is desirable that suitable error processing is applied to the data.
  • the present invention has been made in view of the above-described problems, and relates to a connection terminal to which an electrical device is connected with respect to a communication system in which a plurality of electrical devices that input and output data having different preferred error processing are connected. It is an object of the present invention to provide a communication system capable of performing suitable error processing according to the type of data, an electronic component mounting apparatus using the communication system, and an error processing method of the communication system.
  • the communication system performs data communication with different types of error processing depending on the type of data.
  • the electrical equipment includes an information storage unit that stores information related to the type of data to be communicated.
  • the data communication unit includes a connection terminal to which the electrical device is connected.
  • the data communication unit obtains information related to the type of data from the information storage unit provided in the electrical apparatus on the transmission side, and sets error information according to the data based on the information.
  • a transmission-side control unit that assigns setting means to a connection terminal to which the electrical device is connected is provided.
  • the data communication unit acquires information related to the type of data from the information storage unit provided in the electrical apparatus on the receiving side, and based on the information, error detection processing according to the data, or error detection / correction
  • a receiving-side control unit that assigns error checking means for performing processing to a connection terminal to which the electrical device is connected is provided.
  • the communication system according to claim 2 is the communication system according to claim 1, wherein the transmission side control unit includes a plurality of error processing setting means for each type of data, and the transmission side electrical equipment is connected. Based on the information related to the type of data acquired from the information storage unit of the electrical equipment, the transmission side selection means for connecting to any of a plurality of error processing setting means, the reception side control unit, A plurality of error checking means are provided for each type of data, and a plurality of error checking is performed based on the information related to the type of data acquired from the information storage unit of the electrical equipment for the connection terminal to which the receiving side electrical equipment is connected Receiving-side selecting means connected to any of the means;
  • the communication system according to claim 3 is the communication system according to claim 1, wherein the transmission side control unit and the reception side control unit are based on configuration data according to information related to the type of acquired data. And a programmable logic device in which error processing setting means and error checking means are configured.
  • the data communication unit includes a storage unit in which configuration data is stored, and is acquired from an information storage unit provided in the electrical device. Corresponding configuration data is selected from the storage unit based on information relating to the type of data to be stored.
  • the communication system according to claim 5 is the communication system according to claim 3, wherein the information relating to the type of data includes configuration data.
  • the communication system according to claim 6 is the communication system according to claim 4, wherein at least one of the transmission side control unit and the reception side control unit corresponds to information related to the type of error processing of the acquired data.
  • the transmission side control unit and the reception side control unit corresponds to information related to the type of error processing of the acquired data.
  • the communication system according to claim 7 is the communication system according to any one of claims 1 to 6, wherein a data transfer rate is determined for each type of data, and the transmission side control unit and the reception side control unit Performs error output when the sum of the data transfer rates corresponding to the information relating to the acquired data type exceeds the maximum communication rate.
  • the data transfer rate is a data transfer rate defined by a communication protocol with which the communication system conforms. Amount of data transferred per unit time specified according to the communication protocol, such as the communication speed of the signal determined according to the communication bandwidth and communication method specified by the communication protocol, and the ratio of actual data to one unit of communication It is.
  • the communication system according to claim 8 is the communication system according to any one of claims 1 to 7, wherein the information storage unit includes at least one of a memory, a dip switch, a rotary switch, and a jumper pin.
  • the communication system according to claim 9 is the communication system according to any one of claims 1 to 8, wherein the data communication unit includes an abnormality detection unit that detects an abnormality in data communication, and the transmission side control unit At least one of the reception-side control unit outputs a control signal to the electrical device based on the detection signal of the abnormality detection unit.
  • the electronic component mounting apparatus is an electronic component mounting that transmits various types of data with different types of error processing by communication according to the type of data related to the mounting operation of the electronic component on the substrate.
  • the apparatus includes an electrical device including an information storage unit that stores information on a type of data to be communicated, and a data communication unit including a connection terminal to which the electrical device is connected.
  • An error processing setting means for acquiring information relating to the type of data from an information storage unit provided in the electrical equipment on the side, and setting additional information relating to error processing according to the data based on the information, the electrical equipment Information related to the type of data is acquired from the transmission side control unit assigned to the connection terminal to be connected and the information storage unit provided in the electrical apparatus on the reception side, and an error is detected based on the data based on the information Error checking means for performing detection and correction processing of physical or error, and a reception-side control unit that assigns to the connection terminal electrical instrumentation device is connected.
  • An error processing method for a communication system is an error processing method for a communication system that performs communication of data having different types of error processing according to the type of data. Accordingly, in the step of monitoring the connection of the electrical device to the connection terminal of the data communication unit that performs data transmission and reception, and in the step of monitoring, when the connection of a new electrical device is detected, the data communication unit transmits and receives data A step of stopping, a step of acquiring information relating to a type of data input / output by the electrical device from a newly connected electrical device, and a type of data input / output by the electrical device based on the acquired information Assigning the processing means for performing the error handling to the connection terminal to which the electrical equipment is connected.
  • the transmission side control unit of the data communication unit acquires information on the type of data from the information storage unit provided in the electrical device on the transmission side, and based on the information Then, error processing setting means for setting additional information related to error processing according to data is assigned to a connection terminal to which the electrical equipment is connected.
  • the receiving side control unit of the data communication unit acquires information related to the type of data from the information storage unit provided in the receiving side electrical equipment, and detects an error according to the data based on the information Error checking means for performing processing or error detection / correction processing is assigned to a connection terminal to which the electrical equipment is connected.
  • error processing setting means and error checking means for performing error processing suitable for data input / output to / from the connection terminals connected to the electrical equipment by the control units on the transmission side and the reception side Can be assigned. Therefore, it is possible to configure a communication system to which suitable error processing according to the type of data is applied regardless of the connection terminal to be connected when the electrical device is connected to the data communication unit.
  • the transmission-side control unit determines the plurality of error processing setting means provided for each data type based on the information related to the data type acquired from the information storage unit of the electrical device. And a transmission-side selection means for selectively connecting to a connection terminal to which the transmission-side electrical device is connected.
  • the receiving-side control unit has a plurality of error checking means provided for each data type, based on information relating to the type of data acquired from the information storage unit of the electrical device, a connection terminal to which the receiving-side electrical device is connected Receiving-side selecting means for selectively connecting to the receiver.
  • each control unit controls the transmission side selection unit and the reception side selection unit based on the information acquired from the information storage unit, thereby making it easy to perform error processing setting unit and error confirmation unit suitable for the electrical equipment.
  • a communication system that can be connected to can be configured.
  • the error processing setting unit and the error confirmation unit are configured based on configuration data corresponding to information related to the type of data acquired using the programmable logic device.
  • the configuration of the error processing setting means and the error checking means can be changed according to the type of data input / output from the connection terminal, and a communication system capable of flexibly changing the type of error processing in the data communication unit can be configured.
  • the data communication unit selects configuration data corresponding to the type of data from the storage unit.
  • an error processing setting unit and an error confirmation unit corresponding to the type of data can be configured on the data communication unit side, and the information storage unit In other words, the configuration of the electrical equipment can be simplified.
  • the configuration data is included in the information related to the type of data acquired from the information storage unit, and the configuration data according to the type of data input / output by each electrical device Is provided.
  • the configuration data corresponding to the type of data does not exist in the data communication unit due to a configuration change, and the error processing setting unit and the error checking unit cannot be configured appropriately.
  • an error when necessary configuration data is not stored in the storage unit, an error can be output to notify the user and prompt the user to take action.
  • each control unit when each control unit sums up the data transfer rates determined for each data type exceeds the maximum communication rate, an error is output to indicate that. The user can be alerted to take action.
  • the information storage unit can be easily configured using at least one of a memory, a dip switch, a rotary switch, and a jumper pin.
  • At least one of the transmission side control unit and the reception side control unit controls the electrical device based on the detection signal of the abnormality detection unit that detects a communication abnormality.
  • the transmission-side control unit can prompt the user to perform a response by executing control for notifying the transmission-side electrical device of the communication abnormality based on the detection signal of the abnormality detection unit.
  • the reception-side control unit can execute a process such as fail-safe for safely stopping the electrical device on the reception side.
  • An electronic component mounting apparatus to which suitable error processing according to the type of data is applied can be configured regardless of the connection terminal to be connected when connecting to the data communication unit.
  • the connection of the electrical equipment to the connection terminal of the data communication unit is monitored, and a connection of a new electrical equipment is detected. Stop transmission / reception of the data communication unit. Then, the electrical equipment is connected to processing means for acquiring information related to the type of data input / output by the electrical equipment from the information storage unit of the electrical equipment and performing error processing according to the data type based on the acquired information. Assign to the connection terminal.
  • processing means for stopping transmission / reception of the data communication unit and performing suitable error processing on the newly connected electrical device is automatically performed. Connected to. Therefore, for example, when a failure occurs in any electrical device during system operation, it is possible to restore the system by replacing the failed electrical device without stopping the entire communication system.
  • FIG. 1 It is a perspective view of the electronic component mounting apparatus with which the communication system of this embodiment is applied. It is a schematic plan view of the state which removed the upper cover of the electronic component mounting apparatus shown in FIG. It is a block diagram of an electronic component mounting apparatus. It is a figure which shows the breakdown for every data kind by which multiplex communication is carried out. It is a schematic block diagram of a multiplexing communication system. It is a schematic block diagram of the optical wireless apparatus 93 by the side of transmission. It is a figure for demonstrating the information preserve
  • mounting apparatus an electronic component mounting apparatus (hereinafter sometimes abbreviated as “mounting apparatus”) will be described as an example of an apparatus to which the communication system of the present application is applied.
  • the mounting device 10 includes a device main body 11, a pair of display devices 13 provided integrally with the device main body 11, and supply devices 15 and 16 provided detachably with respect to the device main body 11. Is provided.
  • the mounting device 10 is an electronic component (not shown) with respect to the circuit board 100 transported by the transport device 21 housed in the device body 11 based on the control of the control device 80 shown in FIG. It is an apparatus which implements mounting work.
  • the direction in which the circuit board 100 is transported by the transport device 21 (the left-right direction in FIG. 2) is the X-axis direction
  • the horizontal direction of the circuit board 100 is X-axis direction.
  • a direction perpendicular to the direction is referred to as a Y-axis direction and will be described.
  • the device body 11 includes display devices 13 at both ends in the Y-axis direction on one end side in the X-axis direction. Each display device 13 is a touch panel display device, and displays information related to the mounting operation of the electronic component. Further, the apparatus main body 11 includes supply devices 15 and 16 that are mounted so as to be sandwiched from both sides in the Y-axis direction.
  • the supply device 15 is a feeder-type supply device, and includes a plurality of tape feeders 15A that are housed in a state where various electronic components are taped and wound on a reel.
  • the supply device 16 is a tray-type supply device, and has a plurality of component trays 16A (see FIG. 2) on which a plurality of electronic components are placed.
  • FIG. 2 is a schematic plan view showing the mounting apparatus 10 from the upper (upper side in FIG. 1) viewpoint with the upper cover 11A (see FIG. 1) of the apparatus main body 11 removed.
  • the apparatus main body 11 includes the transport device 21, a mounting head 22 for mounting electronic components on the circuit board 100, and a moving device 23 for moving the mounting head 22. Prepare for the top.
  • the transfer device 21 is provided in a substantially central portion of the base 20 in the Y-axis direction, and moves the pair of conveyor belts 31, the substrate holding device 32 held on the conveyor belt 31, and the substrate holding device 32. And an electromagnetic motor 33.
  • the substrate holding device 32 holds the circuit board 100.
  • the output shaft of the electromagnetic motor 33 is drivingly connected to the conveyor belt 31.
  • the electromagnetic motor 33 is, for example, a servo motor that can accurately control the rotation angle.
  • the circuit board 100 moves in the X-axis direction together with the substrate holding device 32 when the conveyor belt 31 rotates around based on the driving of the electromagnetic motor 33.
  • the mounting head 22 has a suction nozzle 41 that sucks electronic components on the lower surface facing the circuit board 100.
  • the suction nozzle 41 communicates with the negative pressure air and the positive pressure air passage via a positive / negative pressure supply device 42 (see FIG. 3), sucks and holds the electronic component with the negative pressure, and supplies a slight positive pressure.
  • the held electronic component is removed.
  • the mounting head 22 includes a nozzle lifting device (see FIG. 3) 43 that lifts and lowers the suction nozzle 41 and a nozzle rotation device (see FIG. 3) 44 that rotates the suction nozzle 41 about its axis. The vertical position of the electronic component to be held and the holding posture of the electronic component are changed.
  • the nozzle lifting device 43 includes, for example, an electromagnetic motor 43A as a drive source.
  • the mounting head 22 has a position detection sensor 45 (see FIG. 3) for detecting the position of the electronic component to be held in the vertical direction. Further, a mark camera 47 for photographing the circuit board 100 is fixed to the mounting head 22 in a state of facing downward.
  • the suction nozzle 41 is detachable from the mounting head 22 and can be changed according to the size and shape of the electronic component.
  • the mounting head 22 is moved to an arbitrary position on the base 20 by the moving device 23.
  • the moving device 23 includes an X-axis direction slide mechanism 50 for moving the mounting head 22 in the X-axis direction, and a Y-axis direction slide mechanism 52 for moving the mounting head 22 in the Y-axis direction.
  • the X-axis direction slide mechanism 50 has an X-axis slider 54 provided on the base 20 so as to be movable in the X-axis direction, and an electromagnetic motor 56 as a drive source.
  • the X-axis slider 54 moves to an arbitrary position in the X-axis direction based on driving of the electromagnetic motor 56.
  • the Y-axis direction slide mechanism 52 has a Y-axis slider 58 provided on the side surface of the X-axis slider 54 so as to be movable in the Y-axis direction, and an electromagnetic motor 60 as a drive source.
  • the Y-axis slider 58 moves to an arbitrary position in the Y-axis direction based on driving of the electromagnetic motor 60.
  • the mounting head 22 is attached to the Y-axis slider 58 and moves to an arbitrary position on the base 20 as the moving device 23 is driven. Thereby, the mark camera 47 can image the surface of an arbitrary position of the circuit board 100 by moving the mounting head 22. Image data photographed by the mark camera 47 is processed by the image processing device 71 (see FIG. 3) and output to the control device 80.
  • the mounting head 22 is attached to the Y-axis slider 58 via the connector 48 and can be attached and detached with a single touch, and can be changed to a different type of work head, for example, a dispenser head.
  • the base 20 has supply devices 15 and 16 connected to each side surface in the Y-axis direction. Each of the supply devices 15 and 16 can be attached to and detached from the base 20 in order to cope with a shortage of electronic components to be supplied, changes in the types of electronic components, and the like.
  • the base 20 is provided with a parts camera 73 at a substantially central portion in the X-axis direction at a portion to which the supply devices 15 and 16 are connected. Each part camera 73 is provided in a state of facing upward, and images the electronic components sucked and held by the suction nozzle 41 of the mounting head 22 from each of the supply devices 15 and 16.
  • the parts camera 73 outputs the captured image data to the image processing device 71 (see FIG. 3).
  • the image processing device 71 outputs the processed data to the control device 80.
  • the mounting apparatus 10 uses optical wireless multiplexed communication for data communication between the control apparatus 80 of the mounting apparatus 10 and parts (various apparatuses) other than the control apparatus 80. Is used.
  • the configuration of the mounting apparatus 10 illustrated in FIG. 3 is an example in the case of applying a communication system, and is appropriately changed according to the type and number of apparatuses provided in the mounting apparatus 10.
  • the communication system of the present application is a system that can be applied to an automatic machine operating in various production lines in addition to the electronic component mounting apparatus exemplified by the mounting apparatus 10.
  • the control device 80 includes a controller 82 mainly composed of a computer having a CPU, ROM, RAM, and the like, an image board 84, a drive control board 85, and an I / O board 86.
  • the controller 82 communicates with each device via each board 84, 85, 86.
  • Each board 84, 85, 86 is connected to one end of a transmission path 95 via an optical wireless device 91, and optical wireless communication is performed on the transmission path 95.
  • the other end of the transmission path 95 is connected to various devices (camera, motor, sensor, etc.) via the optical wireless device 93.
  • various devices camera, motor, sensor, etc.
  • the moving device 23 is provided with a light emitting / receiving unit 92 ⁇ / b> B of the optical wireless device 93 facing the light emitting / receiving unit 92 ⁇ / b> A of the optical wireless device 91 connected to the control device 80. .
  • the light emitting / receiving unit 92B is fixed to the X-axis slider 54 of the moving device 23 so that the optical axis coincides with the light emitting / receiving unit 92A on the optical wireless device 91 side.
  • various types of information communication can be performed between the light emitting / receiving units 92A and 92B (optical wireless devices 91 and 93).
  • the image board 84 shown in FIG. 3 is a board that controls input / output of image data.
  • the controller 82 uses the image board 84 to hold information (type, shape, etc.) on the circuit board 100 detected by the image processing apparatus 71 from processing of the image data of the mark camera 47 and hold the circuit board 100 by the board holding device 32. Receive information such as position error.
  • the drive control board 85 is a board that controls input / output of operation commands for the electromagnetic motor and information fed back from the electromagnetic motor in real time.
  • the controller 82 receives servo control information such as torque information and position information (vertical position of the electronic component held by the suction nozzle 41) acquired by the electromagnetic motor 43A via the drive control board 85.
  • the I / O board 86 is a board that controls input / output of an output signal of the position detection sensor 45, for example.
  • Data input from these devices to the control device 80 is multiplexed by the optical wireless device 93 and then transmitted through the transmission path 95 as an optical wireless signal.
  • the optical wireless device 91 performs a process of demultiplexing the transmitted multiplexed signal and separating it into individual data. Of the separated data, the optical wireless device 91 transfers image data to the image board 84, servo control information to the drive control board 85, and I / O signals to the I / O board 86.
  • the controller 82 processes each data received by the optical wireless device 91. For example, the controller 82 outputs a control signal for the electromagnetic motor 43 ⁇ / b> A based on the processing result to the optical wireless device 91 via the drive control board 85.
  • the optical wireless device 93 transfers the control signal transmitted from the optical wireless device 91 to the nozzle lifting / lowering device 43.
  • the electromagnetic motor 43A operates based on the control signal.
  • the controller 82 outputs a control signal for changing the display of the display device 13 to the display device 13 via the I / O board 86 and the optical wireless devices 91 and 93.
  • control device 80 various types of information transmitted and received between the control device 80 and each device other than the control device 80 are transmitted and received as data multiplexed on the transmission path 95, for example, time division multiplexing (TDM) frame data.
  • TDM time division multiplexing
  • an electronic component is mounted on the circuit board 100 held by the substrate holding device 32 by the mounting head 22.
  • the controller 82 drives the transport device 21 to transport the circuit board 100 to the working position, stops the electromagnetic motor 33, and holds the circuit board 100 in a fixed manner.
  • the controller 82 drives the moving device 23 to move the mounting head 22 onto the circuit board 100 and images the circuit board 100 with the mark camera 47.
  • the controller 82 determines the type of the circuit board received from the image processing apparatus 71 and the error in the holding position of the circuit board 100.
  • the controller 82 drives the supply devices 15 and 16 having electronic components according to the determination result for the type of board, and performs control to send the corresponding electronic components to the supply position to the mounting head 22.
  • the controller 82 drives the moving device 23 to suck and hold the electronic component conveyed at the supply position by the suction nozzle 41 of the mounting head 22.
  • the controller 82 moves the mounting head 22 holding the electronic component onto the parts camera 73 to image the state of the electronic component. At this time, the controller 82 acquires an error in the holding position of the electronic component based on the imaging result. Next, the controller 82 moves the mounting head 22 to the mounting position on the circuit board 100 and rotates the suction nozzle 41 based on the holding position error between the circuit board and the electronic component, and then mounts the electronic component on the circuit board 100. .
  • FIG. 4 illustrates an example of each data type in the mounting apparatus 10 described above and an error correction rule applied to the data type.
  • the data type (A) shown in FIG. 4 is data classified as a high-speed signal, and is image data transmitted and received by the image board 84.
  • the data type (B) is data classified as a medium speed signal, and is an operation command or servo control information transmitted / received by the drive control board 85.
  • the data type (C) is data classified as a low-speed signal, and is an I / O signal transmitted / received by the I / O board 86.
  • the image data classified as (A) has a relatively large amount of data constituting one frame. Since the amount of data per frame is large, it is not realistic to retransmit data for bit errors. For this reason, it is common to perform error correction at the reception destination instead of retransmission.
  • the error processing of the data type classified as (A) is performed, for example, by adding a forward error correction code (FEC) of a Hamming code to image data.
  • FEC forward error correction code
  • a data transfer rate of 1 Gbps or more is required as a field network standard in the FA field.
  • about 1 ms is secured as the data processing time including error correction processing.
  • the motor drive control needs to be performed with respect to the electromagnetic motor 33 in accordance with the feedback of the servo control information from the electromagnetic motor 33, for example. Response may be required.
  • the amount of data required for the operation command and servo control information is smaller than that of the image data (A) described above. For this reason, the error processing of the data type classified as (B) may require control certainty, and for example, processing based on majority logic is performed. In the process based on majority logic, for example, the same operation command with a parity code added is transmitted three times.
  • Match / mismatch is detected by parity check among the three commands, and if they match, a heavy coefficient is added and the score for each data value is totaled. As a result, the data value that obtains the highest score is set as the final value.
  • error processing is simple and high-speed processing can be performed. For example, a data transfer rate of 125 Mbps is generally used as a field network standard in the FA field.
  • the data processing time per command is required to be high speed of about 1 ⁇ s, for example, due to restrictions such as communication protocol specifications.
  • the I / O signals classified as (C) are classified into, for example, input signals of various switches of the mounting apparatus 10 and control signals for turning on the display lamps in addition to the detection signals of the position detection sensor 45 described above. These signals are not required to have high speed. For example, a data transfer rate of several Kbps and a data processing time of about 1 ms are sufficient.
  • the processing of the error of the data type classified as (C) is performed by a plurality of transmissions, for example, with a parity code added. In the continuous transmission, the transmitted data is acquired by confirming that all the data has the same data value. If there is a case where the data value is different even once in continuous transmission, the data transmission is cancelled.
  • the present invention is applied to a signal that can maintain the original state even when the signal transmission is a low-speed signal transmission and the data transmission is canceled.
  • the above-described classification of data types and the error detection method corresponding thereto are merely examples, and it is preferable to appropriately change according to the contents of data.
  • the mounting device 10 is configured as a module in which each device is replaceable with respect to the mounting device 10 (device main body 11).
  • the mounting head 22 is changed to a different type of work head (dispenser head or the like).
  • the mounting device 10 includes a plurality of moving devices 23 and conveying devices 21
  • the number of moving devices 23 and conveying devices 21 is changed according to the manufacturing efficiency required in the production line.
  • the user may change each module so that a desired device configuration is obtained.
  • the module In order to allow the user to freely change the module, ideally, it is desirable that all the modules or each input / output terminal of the module be configured with a common interface.
  • the multiplexed communication applied to the mounting apparatus 10 it is required to adapt the error detection method according to the data type. Therefore, such a mounting apparatus 10 is desired to have a configuration in which appropriate error correction is performed on data transmitted by multiplexed communication regardless of the connector to which each module is connected.
  • the multiplex communication system 110 shown in FIG. 5 is a communication system that connects the mounting head 22 and the control device 80.
  • the mounting head 22 is described as a transmission side and the control device 80 is described as a reception side.
  • a connector 22 ⁇ / b> A that is electrically connected to the electromagnetic motor 43 ⁇ / b> A of the nozzle lifting / lowering device 43 is connected to a connector 93 ⁇ / b> A of the optical wireless device 93.
  • the connector 22 ⁇ / b> B connected to the position detection sensor 45 is connected to the connector 93 ⁇ / b> B of the optical wireless device 93.
  • the connector 22 ⁇ / b> C connected to the mark camera 47 is connected to the connector 93 ⁇ / b> C of the optical wireless device 93.
  • the connector 80A electrically connected to the image board 84 is the connector 91A of the optical wireless device 91
  • the connector 80B connected to the drive control board 85 is the connector 91B of the optical wireless device 91.
  • the connectors 80C connected to the I / O board 86 are connected to the connectors 91C of the optical wireless device 91, respectively.
  • the connection between the mounting head 22 and each of the connectors 22A to 22C and the connection between the control device 80 and each of the connectors 80A to 80C may be connected via cables.
  • the optical wireless device 93 on the transmission side includes the connectors 93A to 93C, the selector 121, the code assigning circuits 123A to 123C, the control unit 125, and the multiplexing device 127.
  • the selector 121 is connected between the connectors 93A to 93C and the sign assignment circuits 123A to 123C.
  • the code assigning circuits 123A to 123C perform a setting process for adding error correction information corresponding to each data type described above.
  • the control unit 125 controls the selector 121 to switch the connection between the connectors 93A to 93C and the code providing circuits 123A to 123C.
  • the multiplexing device 127 multiplexes the output signals of the code assigning circuits 123 A to 123 C and transmits the multiplexed signals to the multiplexing device 137 of the receiving optical wireless device 91 via the transmission path 95.
  • the optical wireless device 91 on the receiving side includes a multiplexing device 137, connectors 91A to 91C, a selector 131, correction circuits 133A to 133C, and a control unit 135.
  • the multiplexing device 137 demultiplexes the signal transmitted from the multiplexing device 127, separates it into individual data, and outputs the data to the correction circuits 133A to 133C.
  • the selector 131 is connected between the correction circuits 133A to 133C and the connectors 91A to 91C.
  • the control unit 135 controls the selector 131 to control the connection between the correction circuits 133A to 133C and the connectors 91A to 91C.
  • the code assigning circuits 123A to 123C correspond to the correction circuits 133A to 133C in this order.
  • the code addition circuit 123A and the correction circuit 133A are circuits that perform error correction / detection processing on image data.
  • the code adding circuit 123A performs a process of adding an error correction code (a Hamming code corresponding to the data type (A) in FIG. 4) to input data.
  • the correction circuit 133A executes processing for detecting and correcting whether there is an error in the image data based on the code data provided by the code addition circuit 123A for the input data.
  • the optical wireless device 93 is described as the transmitting side, but the same control as described above is performed for data transmission using the optical wireless device 93 as the receiving side. More specifically, the optical wireless device 91 includes code adding circuits 134A to 134C connected to the selector 131 and the multiplexing device 137, similarly to the optical wireless device 93. The optical wireless device 93 includes correction circuits 124A to 124C connected to the selector 121 and the multiplexer 127 corresponding to the code adding circuits 134A to 134C of the optical wireless device 91.
  • the code adding circuits 134A to 134C execute setting processing for adding error correction information corresponding to each data type, and the correction circuits 124A to 124C of the optical wireless device 93 on the reception side. Error correction / detection processing is executed in step. In this way, data transmission is performed with the optical wireless device 91 as the transmission side and the optical wireless device 93 as the reception side.
  • the optical wireless device 93 includes a logic device that can be programmed by the selector 121, the code assigning circuits 123 ⁇ / b> A to 123 ⁇ / b> C, and the multiplexing device 127, for example, an FPGA (Field Programmable Gate Array) 140. .
  • FPGA Field Programmable Gate Array
  • the control unit 125 of the optical wireless device 93 includes a ROM 141, a CPLD (Complex Programmable Logic Device) 143, a CPU 144, and a DRAM 146.
  • the ROM 141 is a rewritable non-volatile memory such as a flash memory, for example, and stores programs for the FPGA 140 to configure the selector 121, the code assignment circuits 123A to 123C, and the multiplexing device 127.
  • the DRAM 146 is a volatile memory, and an area corresponding to each of the connectors 93A to 93C is secured.
  • the optical wireless device 93 includes an external terminal 129 as shown in FIG.
  • the external terminal 129 is, for example, a USB (Universal Serial Bus) type terminal.
  • the connector 22A includes a memory 151A and a physical layer (PHY) chip 153A.
  • the memory 151A information (data type (B) in FIG. 4) regarding the data type of the device to which the connector 22A is connected (in this case, the electromagnetic motor 43A) is stored.
  • the PHY chip 153A performs digitization processing of an analog voltage input from the electromagnetic motor 43A to the connector 22A. Since the other connectors 22B and 22C of the mounting head 22 have the same configuration as the connector 22A, the description thereof is omitted. Further, the connectors 22A to 22C may be configured such that the PHY chips 153A to 153C are omitted.
  • FIG. 7 shows an example of data (setting information) stored in the memory 151A.
  • data type for example, data type, error correction type, information on a sign assignment circuit, required communication speed (data communication rate) information, connector module name, serial number, and the like are stored.
  • data input from the connector 22A is classified into servo control (feedback) information, a parity check process is performed as an error correction method, and a data transfer rate of 125 Mbps is required. "Connector for use” is set, and the production number at the time of production is "012345".
  • the optical wireless device 93 illustrated in FIG. 6 is activated when the mounting device 10 is powered on, and each circuit of the control unit 125 is activated. Further, the control unit 125 executes a process for supplying power to the connectors 22A to 22C (memory 151A to 151C, etc.) connected to the connectors 93A to 93C when the CPU 144 is activated. The CPU 144 determines the connector to which the device is connected from the connectors 93A to 93C and other connectors (not shown) based on this power supply process.
  • the CPLD 143 reads out the program stored in the ROM 141 and outputs it to the FPGA 140.
  • the FPGA 140 configures a selector 121, code assigning circuits 123A to 123C, and a multiplexing device 127 based on the input program.
  • the control unit 125 reads various information stored in the memory 151 ⁇ / b> A of the connector 22 ⁇ / b> A and stores it in a corresponding area of the DRAM 146.
  • the CPU 144 performs the same processing for the other connectors 22B and 22C, reads various information from the memories 151B and 151C included in the connectors 22B and 22C, and stores them in a corresponding area of the DRAM 146. Note that the CPU 144 is set not to execute the above-described reading process for connectors (including connectors 93A to 93C) to which no device is connected.
  • the CPU 144 determines the type of error correction based on the information read from the memories 151A to 151C of the connectors 22A to 22C. For example, when the type of error correction of the connector 22A is not the type of error correction stored in advance in the ROM 141, the CPU 144 reconfigures the code assignment circuits 123A to 123C based on the circuit information stored in the memory 151A. To do.
  • the memory 151A stores the circuit information of the code providing circuit corresponding to the data type (see FIG. 7), and the CPU 144 outputs the circuit information read to the DRAM 146 to the FPGA 140, thereby configuring the corresponding code adding circuit.
  • the selector 121 is not always necessary.
  • the sign assignment circuit to be configured is determined based on the input program, the sign assignment circuit (any one of 123A to 123C) can be directly connected to the corresponding connector (any one of 93A to 93C). .
  • the CPU 144 outputs the data stored in the DRAM 146 to the FPGA 140.
  • the FPGA 140 reconfigures (reconfigures) the circuit (input / output destination) of the selector 121 based on the input data.
  • the code providing circuits 123A to 123C capable of executing appropriate error correction / detection processing are connected to the connectors 22A to 22C.
  • the connectors 22B and 22C are connected to code providing circuits 123A to 123C corresponding to the data type.
  • control unit 135 of the optical wireless device 91 on the reception side is similar to the control unit 125 on the transmission side, based on data stored in memories (not shown) of the connectors 80A to 80C, and the selector 131 and the correction circuits 133A to 133A.
  • control is performed so that correction circuits 133A to 133C corresponding to the data types to be output to connectors 80A to 80C (connectors 91A to 91C) are connected.
  • image data acquired by the mark camera 47 on the transmission side shown in FIG. 5 is input to the optical wireless device 93 via the connector 93C and is input by the selector 121.
  • the data is output to the code assigning circuit 123A corresponding to the image data.
  • the output of the code adding circuit 123A is input to the optical wireless device 91 via the transmission path 95 and subjected to data error detection / correction processing in the correction circuit 133A corresponding to the image data.
  • the output of the correction circuit 133A is output from the connector 91A by the selector 131 and input to the image board 84.
  • the control units 125 and 135 read the data stored in the memories (including the memories 151A to 151C) of the connectors 22A to 22C and 80A to 80C, and the read data Based on the above, the input / output destinations of the selectors 121 and 131 are switched, or each connector is connected to the corresponding code assigning circuit and correction circuit. As a result, the code assigning circuits 123A to 123C and the correction circuits 133A to 133C corresponding to the types are applied to the data inputted to and outputted from the connectors 22A to 22C and 80A to 80C.
  • each device such as the mounting head 22
  • the mounting device 10 to which various devices can be attached and detached the mounting device 10 to which the device can be easily connected can be configured.
  • code adding circuits 134A to 134C and the correction circuits 124A to 124C shown in FIG. 5 are configured by programmable logic devices and configured based on circuit information, like the correction circuits 133A to 133C and the code adding circuits 123A to 123C. Configured.
  • the optical wireless device 91 includes an external terminal 139 similar to the optical wireless device 93, and a ROM (not shown) included in the control unit 135 based on data input from the external terminal 139.
  • the circuit information of the program (correction circuits 133A to 133C) stored in () is updated.
  • the communication between the multiplexers 127 and 137 is performed by transmitting, for example, data corresponding to each error correction process (combination of the code adding circuits 123A to 123C and the correction circuits 133A to 133C) in the TDM frame data. For example, information (header or the like) indicating the data length of the frame and the data delimiter of each data type is added and transmitted.
  • control unit 125 performs processing for monitoring connections to the connectors 93A to 93C as the multiplexed communication system 110 operates (step S10 in FIG. 8).
  • the control unit 125 periodically detects input / output of the control signal terminals of the connectors 93A to 93C, and checks whether there is an interrupt process (power supply start, etc.) caused by a new connection to the connectors 93A to 93C. A determination process is performed (step S11). A case where a connector is connected in step S11 will be described. As an example, it is assumed that the connector 22A is connected to the connector 93A. When the interrupt signal of the connector 22A is input from the control signal terminal of the connector 93A along with the connection, the control unit 125 controls the communication of the multiplexed communication system 110 in cooperation with the control unit 135 on the receiving side. Is performed (step S13).
  • step S ⁇ b> 13 the control unit 125 performs a process of reading information on the data type from the memory 151 ⁇ / b> A of the connector 22 ⁇ / b> A and storing it in the DRAM 146.
  • the control unit 125 performs the same processing for each of the connectors 93A to 93C when connection to the plurality of connectors 93A to 93C occurs.
  • control unit 125 determines whether the total value of the data transfer rates required for data communication in each of the connectors 22A to 22C exceeds the maximum communication rate in the transmission path 95 from the information stored in the DRAM 146 (see FIG. 7). Is determined (step S15). When the total data transfer rate exceeds the maximum communication rate, the control unit 125 performs a process of displaying the display 210 indicating the system error shown in FIG. 9 on, for example, the display device 13 (see FIG. 1) (Step 1). S17). In the example shown in FIG.
  • the data transfer rate of the connector 22A is 125 Mbps
  • the data transfer rate of the connector 22B is 6000 Mbps
  • the data transfer rate of the connector 22C is 6000 Mbps.
  • the data transfer rate is 12125 Mbps.
  • the display 210 displays a selection unit 211 that prompts the user to perform an operation, and the control unit 125 stops the processing until the selection unit 211 of the touch panel display device 13 is selected by the user, for example. Perform the process. For example, when the control unit 125 detects that the selection unit 211 has been selected, the control unit 125 restarts the process from step S10.
  • the display 210 displays the data transfer rate of each of the connectors 22A to 22C.
  • the user can confirm the connection error on the display 210 and can change the connection of the connectors 22A to 22C again according to the display. it can. Thereby, it is possible to configure the multiplexed communication system 110 that can more quickly cope with a system error due to the limitation of the maximum communication rate.
  • the data transfer rate and display 210 shown in FIG. 9 are examples.
  • the set value of the maximum communication rate is set in advance in, for example, the ROM 141 (see FIG. 6).
  • the control unit 125 may output an error to another display device (for example, the display unit of the control device 80), a display lamp, or the like.
  • the control unit 125 includes the circuit information (error correction type) of the code adding circuit stored in the ROM 141. Then, it is determined whether there is one corresponding to the type of error correction of the newly connected connector 22A (step S19).
  • the control unit 125 (CPU 144) reads out data including the corresponding circuit information from the ROM 141 (step S21), and outputs the read circuit information to the FPGA 140 to give a code. Reconfiguration is performed in which the circuits 123A to 123C are changed to code adding circuits corresponding to the circuit information (step S22).
  • step S19 the control unit 125 executes a process of reading the circuit information of the sign assignment circuit from the memory 151A of the newly connected connector 22A to the DRAM 146 (step S24). . Then, the control unit 125 outputs the circuit information stored in the DRAM 146 to the FPGA 140 and executes reconfiguration (step S25).
  • step S27 the control unit 125 repeatedly executes reconfiguration until it can be confirmed whether the rewriting of the circuit for the FPGA 140 has been normally completed. For example, the control unit 125 inputs and outputs a test signal to the FPGA 140 to check whether the circuit is normally reconfigured.
  • step S27 when the control unit 125 determines that the circuit rewriting has been normally completed, the control unit 125 performs control to resume communication of the multiplexed communication system 110 in cooperation with the control unit 135 on the reception side (step S29). Then, the same process is executed again from the monitoring process in step S10. In the above description, the case where there is a new connection to one connector has been described.
  • control unit 135 reception side
  • control unit 125 description thereof is omitted.
  • the multiplexing device 127 of the optical wireless device 93 includes a detection unit 128 that detects a communication abnormality in the transmission path 95. For example, when the transmission path 95 is disconnected, the detection unit 128 outputs the detection signal SI1 to the control unit 125.
  • the control unit 125 controls each device (nozzle lifting device 43 and the like) included in the mounting head 22 based on the detection signal SI1 from the detection unit 128.
  • the detection of the communication abnormality in the detection unit 128 is performed, for example, by periodically transmitting and receiving data for confirming communication between the multiplexers 127 and 137, and a state in which the data cannot be received passes for a predetermined time, or reception of optical wireless signals. Detection is possible based on conditions such as the amount being equal to or less than the threshold.
  • the devices connected to the optical wireless devices 91 and 93 need to be appropriately processed according to the functions and features of each device when a communication abnormality occurs.
  • the nozzle lifting and lowering device 43 connected to the optical wireless device 93 needs to execute a process such as fail-safe to safely stop when communication with the control device 80 is cut off, that is, when control from the control device 80 becomes impossible.
  • the control unit 125 performs control to stop the nozzle lifting / lowering device 43 (electromagnetic motor 43A) based on the detection signal SI1 from the detection unit 128.
  • the control unit 125 performs control to output the control signal S1 to the electromagnetic motor 43A via the connectors 93A and 22A in accordance with the input of the detection signal SI1 to stop it safely.
  • the multiplexing device 137 of the optical wireless device 91 includes a detection unit 138 that detects a communication abnormality in the transmission path 95.
  • the detection unit 138 outputs the detection signal SI ⁇ b> 2 to the control unit 135 when detecting the disconnection of the transmission path 95.
  • the control unit 135 controls the control device 80 based on the detection signal SI2 from the detection unit 138.
  • the control unit 135 controls a notification buzzer and a lamp (both not shown) connected to the control device 80 via the connectors 91A and 80A in response to the input of the detection signal SI2, and a communication abnormality has occurred to the user. Inform you. Thereby, a user can respond quickly to communication abnormality.
  • control at the time of communication abnormality is an example, and the control content is appropriately changed according to the functions and features of the devices connected to the optical wireless devices 91 and 93.
  • the control unit 125 does not stop the electromagnetic motor 43A and drives the mounting head 22 to the retracted position, or sets the fixing (locked) state so as not to change the state.
  • the control unit 125 may perform control to stop the supply of power to the position detection sensor 45. Further, for example, the control unit 125 may perform control for setting the mark camera 47 to the initial state / position.
  • invalid data may be input to each control board 84, 85, 86.
  • control unit 135 may execute control for causing the control boards 84, 85, 86 to discard the input data when the detection signal SI2 is input. Moreover, you may change the control content according to the aspect of communication abnormality. For example, the control unit 125 may execute control to delay the rotation speed of the motor without stopping the electromagnetic motor 43A when reception data such as a momentary interruption cannot be temporarily received.
  • the transmission-side control unit 125 reads information (data type shown in FIG. 7) related to the data type stored in the memories 151A to 151C of the connectors 22A to 22C, and controls the selector 121 based on the read data.
  • the connectors 22A to 22C are connected to the code providing circuits 123A to 123C for performing the error correction setting process according to the input / output data type.
  • the data set by the code adding circuits 123A to 123C is multiplexed by the multiplexer 127 and transmitted.
  • the multiplexing device 137 demultiplexes the signal transferred from the transmitting side, separates it into individual data, and outputs the data to the correction circuits 133A to 133C.
  • the control unit 135 reads data stored in the memories (not shown) of the connectors 80A to 80C and controls the selector 131, and controls the connectors 80A to 80C according to the data type.
  • the correction circuits 133A to 133C are connected.
  • the sign assigning circuits 123A to 123C and the correction circuits 133A to 133C corresponding to the types are applied to the data inputted to and outputted from the connectors 22A to 22C and 80A to 80C.
  • the user does not need to be aware of which connector corresponds to which data type when connecting each device (such as the mounting head 22) to the mounting device 10. That is, in the mounting device 10 to which various devices can be attached and detached, the mounting device 10 to which the device can be easily connected can be configured.
  • the multiplexing communication system 110 is an example of a communication system
  • the mounting head 22 is an example of an electrical equipment
  • the optical wireless devices 91 and 93 are examples of a data communication unit
  • the memories 151A to 151C are information storage units.
  • connectors 91A to 91C and 93A to 93C are examples of connection terminals
  • sign assignment circuits 123A to 123C are examples of error processing setting means
  • detection units 128 and 138 are examples of abnormality detection units.
  • the correction circuits 133A to 133C are examples of error checking means
  • the selector 121 is an example of a transmission side selection means
  • the selector 131 is an example of a reception side selection means
  • the control unit 125 is an example of a transmission side control part.
  • the control unit 135 and the selector 131 are an example of the receiving side control unit.
  • this invention is not limited to said embodiment, It cannot be overemphasized that various improvement and change are possible within the range which does not deviate from the meaning of this invention.
  • communication by optical wireless has been described as an example.
  • the present application is not limited to this, and can be applied to wireless communication using various electromagnetic waves in addition to infrared rays and visible light.
  • the present invention can be similarly applied to wired communication, and can be similarly applied to telecommunication instead of wireless communication.
  • the said embodiment demonstrated the communication which multiplexed as an example, this application is not limited to this.
  • the above-described multiplexed communication system 110 is not limited to communication between devices (the control device 80 and other devices) built in the mounting device 10, and is similarly applied to communication between a plurality of mounting devices 10. Can do.
  • the present invention can be applied to multiplexed communication that requires an error correction rule to be adapted according to the type of data to be transmitted.
  • the data type is handled as a different data type for each data type shown in FIG. 4, but the present application is not limited to this.
  • servo control information is handled as one data type, and one type of error correction processing (for example, majority logic) is performed.
  • the present invention is not limited to this.
  • the servo control information is different for each servo control information for controlling the electromagnetic motor 33 corresponding to the X-axis direction and the electromagnetic motor 60 corresponding to the Y-axis direction in FIG.
  • Each type of error handling may be implemented. That is, the type of data in the present application includes a case where data is handled as a different type according to a control target, other data handling mode, and the like.
  • data transmitted in the multiplexed communication system 110 of the above embodiment may include data that is not subjected to error processing. Further, error processing may be performed a plurality of times for one type of data.
  • the connectors 93A to 93C output different data types, but a plurality of connectors may output or input the same data type.
  • a plurality of connectors may output or input the same data type.
  • data classified into the same data type is input from the connectors 303 and 304 connected to the transmission-side selector 301.
  • FIG. 10 shows a state of two switching operations in the selectors 301 and 308 in FIG.
  • the selector 301 Based on the control from the control unit 312, the selector 301 switches the connection of the connectors 303 and 304 to one code adding circuit 306 corresponding to the data type. Also, the output side of the code assigning circuit 306 is connected to the multiplexing device 310 via the selector 308. That is, in the configuration shown in FIG. 10, the selector 308 controlled by the control unit 312 is also provided on the output side of the code providing circuit 306.
  • 10 Mbps is set as the data transfer rate in the memories 303A and 304A of the connectors 303 and 304 will be described.
  • the control unit 312 controls the selector 301 to maintain the data transfer rate required for the data output of the connectors 303 and 304 based on the information read from the memories 303A and 304A. For example, the control unit 312 causes the selectors 301 and 308 and the sign assigning circuit 306 to be calculated by multiplying the number of connectors (two in this case) that output the same data type as the data transfer rate, that is, 20 Mbps. The operation frequency is maintained to maintain the data transfer rate. As a result, it is possible to perform an appropriate error correction process while maintaining the required data transfer rate. In the configuration shown in FIG.
  • the selectors 301 and 308 are provided with buffers 313 and 314 corresponding to the outputs of the connectors 303 and 304, respectively.
  • a buffer that stores data in a FIFO (First In First Out) format is conceivable.
  • the configuration of the connectors (connectors 22A to 22C, etc.) as connection portions in the above embodiment is an example, and may be changed as appropriate.
  • the optical wireless device 93 is configured such that the connectors 93A to 93C are connected to the connectors 22A to 22C on a one-to-one basis, but the present invention is not limited to this, and a plurality of inputs / outputs corresponding to the connectors 93A to 93C are used. It is good also as a structure which provides a terminal etc. in one (1 set) connector, ie, the structure which connects the mounting head 22 and the optical radio
  • the ROM 141 storing the circuit information may be omitted.
  • the code adding circuits 123A to 123C and the correction circuits 133A to 133C are configured based on circuit information (see FIG. 7) stored in the memories (including the memories 151A to 151C) included in the connectors 22A to 22C and 80A to 80C. May be.
  • the optical wireless devices 91 and 93 do not need to be provided with circuit information (libraries) in advance, and the system configuration is more versatile. can do.
  • the circuit information may not be stored in the memories 151A to 151C, that is, the circuit information of the code adding circuits 123A to 123C and the correction circuits 133A to 133C may be stored only in the ROM 141.
  • the necessary combinations of circuit information are assumed to be combinations of numbers obtained by multiplying the number of connectors and the number of types of error correction. Therefore, it is preferable to store all of them in the ROM 141 in advance.
  • control unit 125 may output an error when the circuit information of the code assigning circuits 123A to 123C corresponding to the data types of the connectors 22A to 22C is not stored in the memories 151A to 151C and the ROM 141.
  • the optical wireless device 93 can be configured with a configuration that does not use a programmable logic device such as an FPGA, that is, a built-in circuit that cannot be changed on the user side (field).
  • control parts 125 and 135 controlled each apparatus based on detection signal SI1 and SI2 of the detection parts 128 and 138, it is limited to this.
  • the detection units 128 and 138 may directly control the electromagnetic motor 43A when communication is abnormal.
  • the structure of the mounting apparatus 10 of the said embodiment is an example, and changes suitably.
  • it is good also as a structure provided with two or more moving apparatuses 23 which can be attached or detached with respect to the apparatus main body 11.
  • FIG. For example, it is good also as a structure provided with multiple conveyor belts 31 (plural lanes).
  • a configuration in which a plurality of mounting devices 10 are drivingly connected in the transport direction may be employed.
  • the memories 151A to 151C as information storage units may be changed to other devices / devices (for example, dip switches, rotary switches, jumper pins, etc.) that can set information related to data types. Further, the information storage unit may be configured using a plurality of types of these devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Supply And Installment Of Electrical Components (AREA)
  • Communication Control (AREA)

Abstract

Provided is a communications system capable of suitably processing errors in accordance with data type and regardless of the connection terminal to which an electrical device is connected, for a communications system in which a plurality of electrical devices are connected that input and output data having different suitable error processing. A transmission-side control unit (125) obtains information relating to the type of data output by a nozzle elevating device (43) from a memory housed in each connector (22A-22C) connected to connectors (93A-93C) in an optical wireless device (93), and connects code allocation circuits (123A-123C) corresponding to that type to a connector (93A-93C). On the reception side, error detection/correction is performed on received data, using correction circuits (133A-133C). In a similar manner to the transmission side, a control unit (135) on the reception side connects the correction circuits (133A-133C) to the connectors (91A-91C) on the basis of information obtained from a memory housed in the connectors (80A-80C) connected to a control device (80).

Description

通信システム、電子部品装着装置及び通信システムの誤り処理方法Communication system, electronic component mounting apparatus, and error processing method of communication system
 本発明は、データの種類に応じて誤り処理の種類が異なるデータの通信を行う通信システム、その通信システムを用いる電子部品装着装置及び通信システムの誤り処理方法に関するものである。 The present invention relates to a communication system that performs data communication with different types of error processing according to the type of data, an electronic component mounting apparatus that uses the communication system, and an error processing method of the communication system.
 従来、通信システムに係る技術が開示されている。例えば、通信サービスを提供するセンタ装置がサービスを利用する複数のユーザ装置の構成を自動的に確認しユーザ装置に対する設定を変更するものがある(例えば、特許文献1など)。 Conventionally, technologies related to communication systems have been disclosed. For example, a center device that provides a communication service automatically confirms the configuration of a plurality of user devices that use the service and changes settings for the user devices (for example, Patent Document 1).
 特許文献1に例示される技術では、ユーザ装置は、インターフェースカード(IFカード)が装着される複数のコネクタを有しており、当該コネクタにおけるIFカードの装着状況を定期的に検査し検出結果をセンタ装置に送信する。センタ装置は、各ユーザ装置から送信される検出結果に基づいて各ユーザ装置における構成の変更を判定しその結果に応じてIFカードに設定する宛先識別子を変更する。 In the technique exemplified in Patent Document 1, the user apparatus has a plurality of connectors to which interface cards (IF cards) are attached, and periodically checks the attachment status of the IF cards in the connectors to obtain detection results. Transmit to the center device. The center device determines a change in configuration in each user device based on the detection result transmitted from each user device, and changes the destination identifier set in the IF card according to the result.
 また、特許文献1の通信システムに用いられる光ファイバネットワークでは、センタ装置からユーザ装置への下り方向の通信に時分割多重(TDM:Time Division Multiplexing)方式が用いられており、伝送されるフレーム内にはデータの誤りを検出するための誤り訂正符号が設定されている。 In addition, in the optical fiber network used in the communication system of Patent Document 1, a time division multiplexing (TDM) method is used for downlink communication from the center apparatus to the user apparatus, and the transmission within the frame to be transmitted. Is set with an error correction code for detecting an error in the data.
特開平11-205311号公報(段落0008、0087~0100、図6,10)JP-A-11-205311 (paragraphs 0008, 0087 to 0100, FIGS. 6 and 10)
 ところで、上記したような通信システムを用いて複数の装置間のデータ通信を行う構成において、伝送されるデータの種類等によっては好適な誤り処理(訂正規則等)が異なる場合がある。例えば、特許文献1に例示される通信システムでは、ユーザ装置の各コネクタから入力されるデータの種類がIFカードを介して接続される電装装置に応じて異なり、電装装置(データの種類)ごとに誤り処理を適合させる必要が生じる。 Incidentally, in a configuration for performing data communication between a plurality of devices using the communication system as described above, a suitable error processing (correction rule or the like) may differ depending on the type of data to be transmitted. For example, in the communication system exemplified in Patent Document 1, the type of data input from each connector of the user device differs depending on the electrical device connected via the IF card, and is different for each electrical device (data type). There is a need to adapt error handling.
 しかしながら、特許文献1には、ユーザ装置側におけるIFカードの装着状況に応じて宛先識別子を変更することが記載されているが、各コネクタから入力されるデータの種類等に応じて誤り処理を変更することについては何ら記載されていない。そのため、通信システムに接続される各電装装置のデータの種類に応じて好適な誤り処理を実施することはできない。
 さらに、上記したようなコネクタを通信システムに対する共通のインターフェースとして各種装置が着脱可能となる汎用性を維持するには、電装装置がどのコネクタに接続されるかに係わらず各装置に入出力されるデータに対して好適な誤り処理が適用されることが望ましい。
However, Patent Document 1 describes that the destination identifier is changed according to the installation status of the IF card on the user device side, but the error processing is changed according to the type of data input from each connector. There is no mention of what to do. Therefore, suitable error processing cannot be performed according to the data type of each electrical equipment connected to the communication system.
Furthermore, in order to maintain the versatility that various devices can be attached and detached using the above-described connector as a common interface to the communication system, input / output is performed to each device regardless of which connector the electrical device is connected to. It is desirable that suitable error processing is applied to the data.
 本発明は、上記した課題を鑑みてなされたものであり、好適となる誤り処理が異なるデータを入出力する電装装置が複数接続される通信システムに対し、電装装置が接続される接続端子に係わらずデータの種類に応じた好適な誤り処理を行なうことが可能な通信システム、その通信システムを用いる電子部品装着装置及び通信システムの誤り処理方法を提供することを目的とする。 The present invention has been made in view of the above-described problems, and relates to a connection terminal to which an electrical device is connected with respect to a communication system in which a plurality of electrical devices that input and output data having different preferred error processing are connected. It is an object of the present invention to provide a communication system capable of performing suitable error processing according to the type of data, an electronic component mounting apparatus using the communication system, and an error processing method of the communication system.
 上記課題を鑑みてなされた本願の請求項1に記載の通信システムは、データの種類に応じて誤り処理の種類が異なるデータの通信を行なう。電装装置は、通信されるデータの種類に係る情報が格納される情報格納部を備える。データ通信部は、電装装置が接続される接続端子を備える。また、データ通信部は、送信側の電装装置に備えられる情報格納部からデータの種類に係る情報を取得し、該情報に基づいて該データに応じた誤り処理に係る付加情報を設定する誤り処理設定手段を、該電装装置が接続される接続端子に割り当てる送信側制御部を備える。また、データ通信部は、受信側の電装装置に備えられる情報格納部からデータの種類に係る情報を取得し、該情報に基づいて該データに応じた誤りの検出処理、又は誤りの検出・訂正処理を行なう誤り確認手段を、該電装装置が接続される接続端子に割り当てる受信側制御部を備える。 The communication system according to claim 1 of the present application, which has been made in view of the above problems, performs data communication with different types of error processing depending on the type of data. The electrical equipment includes an information storage unit that stores information related to the type of data to be communicated. The data communication unit includes a connection terminal to which the electrical device is connected. In addition, the data communication unit obtains information related to the type of data from the information storage unit provided in the electrical apparatus on the transmission side, and sets error information according to the data based on the information. A transmission-side control unit that assigns setting means to a connection terminal to which the electrical device is connected is provided. In addition, the data communication unit acquires information related to the type of data from the information storage unit provided in the electrical apparatus on the receiving side, and based on the information, error detection processing according to the data, or error detection / correction A receiving-side control unit that assigns error checking means for performing processing to a connection terminal to which the electrical device is connected is provided.
 また、請求項2に記載の通信システムは、請求項1に記載の通信システムにおいて、送信側制御部は、誤り処理設定手段を、データの種類ごとに複数備え、送信側の電装装置が接続される接続端子を、該電装装置の情報格納部から取得したデータの種類に係る情報に基づいて、複数の誤り処理設定手段の何れかに接続する送信側選択手段を備え、受信側制御部は、誤り確認手段を、データの種類ごとに複数備え、受信側の電装装置が接続される接続端子を、該電装装置の情報格納部から取得したデータの種類に係る情報に基づいて、複数の誤り確認手段の何れかに接続する受信側選択手段を備える。 The communication system according to claim 2 is the communication system according to claim 1, wherein the transmission side control unit includes a plurality of error processing setting means for each type of data, and the transmission side electrical equipment is connected. Based on the information related to the type of data acquired from the information storage unit of the electrical equipment, the transmission side selection means for connecting to any of a plurality of error processing setting means, the reception side control unit, A plurality of error checking means are provided for each type of data, and a plurality of error checking is performed based on the information related to the type of data acquired from the information storage unit of the electrical equipment for the connection terminal to which the receiving side electrical equipment is connected Receiving-side selecting means connected to any of the means;
 また、請求項3に記載の通信システムは、請求項1に記載の通信システムにおいて、送信側制御部及び受信側制御部は、取得したデータの種類の係る情報に応じたコンフィグレーションデータに基づいて、誤り処理設定手段及び誤り確認手段が構成されるプログラマブル論理デバイスを備える。 The communication system according to claim 3 is the communication system according to claim 1, wherein the transmission side control unit and the reception side control unit are based on configuration data according to information related to the type of acquired data. And a programmable logic device in which error processing setting means and error checking means are configured.
 また、請求項4に記載の通信システムは、請求項3に記載の通信システムにおいて、データ通信部は、コンフィグレーションデータが格納される記憶部を備え、電装装置に備えられる情報格納部から取得されるデータの種類に係る情報により、記憶部から対応するコンフィグレーションデータが選択される。 According to a fourth aspect of the present invention, in the communication system according to the third aspect, the data communication unit includes a storage unit in which configuration data is stored, and is acquired from an information storage unit provided in the electrical device. Corresponding configuration data is selected from the storage unit based on information relating to the type of data to be stored.
 また、請求項5に記載の通信システムは、請求項3に記載の通信システムにおいて、データの種類に係る情報はコンフィグレーションデータを含む。 Further, the communication system according to claim 5 is the communication system according to claim 3, wherein the information relating to the type of data includes configuration data.
 また、請求項6に記載の通信システムは、請求項4に記載の通信システムにおいて、送信側制御部及び受信側制御部の少なくとも一方は、取得したデータの誤り処理の種類に係る情報に対応するコンフィグレーションデータが記憶部に格納されていない場合に、エラー出力を行う。 Further, the communication system according to claim 6 is the communication system according to claim 4, wherein at least one of the transmission side control unit and the reception side control unit corresponds to information related to the type of error processing of the acquired data. When configuration data is not stored in the storage unit, an error is output.
 また、請求項7に記載の通信システムは、請求項1ないし6のいずれかに記載の通信システムにおいて、データの種類ごとにデータ転送レートが定められてなり、送信側制御部及び受信側制御部は、取得したデータの種類に係る情報に応じたデータ転送レートを合計した値が最大通信レートを超える場合に、エラー出力を行う。
 ここで、データ転送レートとは、通信システムが準拠する通信プロトコルによって規定されるデータの転送速度である。通信プロトコルによって規定されている通信帯域や通信方式に応じて定められる信号の通信速度や1単位の通信に占める実データの割合など、通信プロトコルに応じて規定される単位時間当たりのデータの転送量である。
The communication system according to claim 7 is the communication system according to any one of claims 1 to 6, wherein a data transfer rate is determined for each type of data, and the transmission side control unit and the reception side control unit Performs error output when the sum of the data transfer rates corresponding to the information relating to the acquired data type exceeds the maximum communication rate.
Here, the data transfer rate is a data transfer rate defined by a communication protocol with which the communication system conforms. Amount of data transferred per unit time specified according to the communication protocol, such as the communication speed of the signal determined according to the communication bandwidth and communication method specified by the communication protocol, and the ratio of actual data to one unit of communication It is.
 また、請求項8に記載の通信システムは、請求項1ないし7のいずれかに記載の通信システムにおいて、情報格納部は、メモリ、ディップスイッチ、ロータリースイッチ及びジャンパピンのうち少なくとも1つを備える。 Further, the communication system according to claim 8 is the communication system according to any one of claims 1 to 7, wherein the information storage unit includes at least one of a memory, a dip switch, a rotary switch, and a jumper pin.
 また、請求項9に記載の通信システムは、請求項1ないし8のいずれかに記載の通信システムにおいて、データ通信部は、データの通信の異常を検出する異常検出部を備え、送信側制御部及び受信側制御部の少なくとも一方は、異常検出部の検出信号に基づいて電装装置に対し制御信号を出力する。 The communication system according to claim 9 is the communication system according to any one of claims 1 to 8, wherein the data communication unit includes an abnormality detection unit that detects an abnormality in data communication, and the transmission side control unit At least one of the reception-side control unit outputs a control signal to the electrical device based on the detection signal of the abnormality detection unit.
 また、本願の請求項10に記載の電子部品装着装置は、電子部品の基板への装着作業に係るデータの種類に応じて誤り処理の種類が異なる各種のデータを、通信により伝送する電子部品装着装置であって、通信されるデータの種類に係る情報が格納される情報格納部を備える電装装置と、電装装置が接続される接続端子を備えるデータ通信部とを備え、データ通信部は、送信側の電装装置に備えられる情報格納部からデータの種類に係る情報を取得し、該情報に基づいて該データに応じた誤り処理に係る付加情報を設定する誤り処理設定手段を、該電装装置が接続される接続端子に割り当てる送信側制御部と、受信側の電装装置に備えられる情報格納部からデータの種類に係る情報を取得し、該情報に基づいて該データに応じた誤りの検出処理又は誤りの検出・訂正処理を行なう誤り確認手段を、該電装装置が接続される接続端子に割り当てる受信側制御部とを備える。 The electronic component mounting apparatus according to claim 10 of the present application is an electronic component mounting that transmits various types of data with different types of error processing by communication according to the type of data related to the mounting operation of the electronic component on the substrate. The apparatus includes an electrical device including an information storage unit that stores information on a type of data to be communicated, and a data communication unit including a connection terminal to which the electrical device is connected. An error processing setting means for acquiring information relating to the type of data from an information storage unit provided in the electrical equipment on the side, and setting additional information relating to error processing according to the data based on the information, the electrical equipment Information related to the type of data is acquired from the transmission side control unit assigned to the connection terminal to be connected and the information storage unit provided in the electrical apparatus on the reception side, and an error is detected based on the data based on the information Error checking means for performing detection and correction processing of physical or error, and a reception-side control unit that assigns to the connection terminal electrical instrumentation device is connected.
 また、本願の請求項11に記載の通信システムの誤り処理方法は、データの種類に応じて誤り処理の種類が異なるデータの通信を行なう通信システムの誤り処理方法であって、該通信システムの稼働にともない、データの送受信を行うデータ通信部の接続端子に対する電装装置の接続を監視するステップと、監視するステップにおいて、新たな電装装置の接続が検出された場合にデータ通信部のデータの送受信を停止させるステップと、新たに接続された電装装置から、該電装装置が入出力するデータの種類に係る情報を取得するステップと、取得した情報に基づいて電装装置が入出力するデータの種類に応じた誤り処理を行う処理手段を、電装装置が接続される接続端子に割り当てるステップとを備える。 An error processing method for a communication system according to claim 11 of the present application is an error processing method for a communication system that performs communication of data having different types of error processing according to the type of data. Accordingly, in the step of monitoring the connection of the electrical device to the connection terminal of the data communication unit that performs data transmission and reception, and in the step of monitoring, when the connection of a new electrical device is detected, the data communication unit transmits and receives data A step of stopping, a step of acquiring information relating to a type of data input / output by the electrical device from a newly connected electrical device, and a type of data input / output by the electrical device based on the acquired information Assigning the processing means for performing the error handling to the connection terminal to which the electrical equipment is connected.
 請求項1に記載の通信システムでは、送信側において、データ通信部の送信側制御部が、送信側の電装装置に備えられる情報格納部からデータの種類に係る情報を取得し、該情報に基づいてデータに応じた誤り処理に係る付加情報を設定する誤り処理設定手段を、該電装装置が接続される接続端子に割り当てる。一方、受信側では、データ通信部の受信側制御部が、受信側の電装装置に備えられる情報格納部からデータの種類に係る情報を取得し、該情報に基づいてデータに応じた誤りの検出処理又は誤りの検出・訂正処理を行なう誤り確認手段を、該電装装置が接続される接続端子に割り当てる。 In the communication system according to claim 1, on the transmission side, the transmission side control unit of the data communication unit acquires information on the type of data from the information storage unit provided in the electrical device on the transmission side, and based on the information Then, error processing setting means for setting additional information related to error processing according to data is assigned to a connection terminal to which the electrical equipment is connected. On the other hand, on the receiving side, the receiving side control unit of the data communication unit acquires information related to the type of data from the information storage unit provided in the receiving side electrical equipment, and detects an error according to the data based on the information Error checking means for performing processing or error detection / correction processing is assigned to a connection terminal to which the electrical equipment is connected.
 このような構成では、送信側及び受信側の各制御部により電装装置が接続された接続端子に、該接続端子に入出力されるデータに好適な誤り処理を行う誤り処理設定手段及び誤り確認手段を割り当てることができる。そのため、電装装置をデータ通信部に接続する際に接続する接続端子に係わらずデータの種類に応じた好適な誤り処理が適用される通信システムが構成できる。 In such a configuration, error processing setting means and error checking means for performing error processing suitable for data input / output to / from the connection terminals connected to the electrical equipment by the control units on the transmission side and the reception side Can be assigned. Therefore, it is possible to configure a communication system to which suitable error processing according to the type of data is applied regardless of the connection terminal to be connected when the electrical device is connected to the data communication unit.
 また、請求項2に記載の通信システムでは、送信側制御部は、データの種類ごとに備えられる複数の誤り処理設定手段を、電装装置の情報格納部から取得したデータの種類に係る情報に基づいて、送信側の電装装置が接続される接続端子に選択的に接続する送信側選択手段を備える。受信側制御部は、データの種類ごとに備えられる複数の誤り確認手段を、電装装置の情報格納部から取得したデータの種類に係る情報に基づいて、受信側の電装装置が接続される接続端子に選択的に接続する受信側選択手段を備える。これにより、各制御部が情報格納部から取得した情報に基づいて送信側選択手段及び受信側選択手段を制御することにより、電装装置に対して好適となる誤り処理設定手段及び誤り確認手段を容易に接続可能な通信システムが構成できる。 In the communication system according to claim 2, the transmission-side control unit determines the plurality of error processing setting means provided for each data type based on the information related to the data type acquired from the information storage unit of the electrical device. And a transmission-side selection means for selectively connecting to a connection terminal to which the transmission-side electrical device is connected. The receiving-side control unit has a plurality of error checking means provided for each data type, based on information relating to the type of data acquired from the information storage unit of the electrical device, a connection terminal to which the receiving-side electrical device is connected Receiving-side selecting means for selectively connecting to the receiver. Thereby, each control unit controls the transmission side selection unit and the reception side selection unit based on the information acquired from the information storage unit, thereby making it easy to perform error processing setting unit and error confirmation unit suitable for the electrical equipment. A communication system that can be connected to can be configured.
 また、請求項3に記載の通信システムでは、誤り処理設定手段及び誤り確認手段は、プログラマブル論理デバイスを利用して取得したデータの種類の係る情報に応じたコンフィグレーションデータに基づいて構成される。これにより、接続端子から入出力されるデータの種類に応じて誤り処理設定手段及び誤り確認手段の構成を変更でき、データ通信部における誤り処理の種類を柔軟に変更可能な通信システムが構成できる。 In the communication system according to claim 3, the error processing setting unit and the error confirmation unit are configured based on configuration data corresponding to information related to the type of data acquired using the programmable logic device. Thereby, the configuration of the error processing setting means and the error checking means can be changed according to the type of data input / output from the connection terminal, and a communication system capable of flexibly changing the type of error processing in the data communication unit can be configured.
 また、請求項4に記載の通信システムでは、データ通信部がデータの種類に応じたコンフィグレーションデータを記憶部から選択する。これにより、電装装置の各情報格納部にデータの種類に応じたコンフィグレーションデータを備えなくともデータ通信部側でデータの種類に応じた誤り処理設定手段及び誤り確認手段を構成でき、情報格納部の構成、即ち電装装置の構成の簡易化が図れる。 In the communication system according to claim 4, the data communication unit selects configuration data corresponding to the type of data from the storage unit. Thus, even if each information storage unit of the electrical equipment is not provided with configuration data corresponding to the type of data, an error processing setting unit and an error confirmation unit corresponding to the type of data can be configured on the data communication unit side, and the information storage unit In other words, the configuration of the electrical equipment can be simplified.
 また、請求項5に記載の通信システムでは、情報格納部から取得されるデータの種類に係る情報にはコンフィグレーションデータが含まれ、各電装装置が入出力するデータの種類に応じたコンフィグレーションデータを備える。これにより、例えば構成の変更によってデータの種類に対応するコンフィグレーションデータがデータ通信部内になく適切に誤り処理設定手段及び誤り確認手段が構成できないといった事態を防止することが可能となる。 In the communication system according to claim 5, the configuration data is included in the information related to the type of data acquired from the information storage unit, and the configuration data according to the type of data input / output by each electrical device Is provided. As a result, it is possible to prevent a situation in which, for example, the configuration data corresponding to the type of data does not exist in the data communication unit due to a configuration change, and the error processing setting unit and the error checking unit cannot be configured appropriately.
 また、請求項6に記載の通信システムでは、必要なコンフィグレーションデータが記憶部に格納されていない場合にエラー出力を行うことでその旨を使用者に報知して対応を促すことができる。 Further, in the communication system according to the sixth aspect, when necessary configuration data is not stored in the storage unit, an error can be output to notify the user and prompt the user to take action.
 また、請求項7に記載の通信システムでは、各制御部が、データの種類ごとに定めされたデータ転送レートを合計した値が最大通信レートを超える場合に、エラー出力を行うことでその旨を使用者に報知して対応を促すことができる。 In addition, in the communication system according to claim 7, when each control unit sums up the data transfer rates determined for each data type exceeds the maximum communication rate, an error is output to indicate that. The user can be alerted to take action.
 また、請求項8に記載の通信システムでは、メモリ、ディップスイッチ、ロータリースイッチ及びジャンパピンのうち少なくとも1つを用いて情報格納部を容易に構成できる。 In the communication system according to claim 8, the information storage unit can be easily configured using at least one of a memory, a dip switch, a rotary switch, and a jumper pin.
 また、請求項9に記載の通信システムでは、送信側制御部及び受信側制御部の少なくとも一方は、通信の異常を検出する異常検出部の検出信号に基づいて電装装置を制御する。これにより、例えば、送信側制御部は、異常検出部の検出信号に基づいて送信側の電装装置に対し通信異常を報知させる制御を実行することでユーザに対し対応の実施を促すことが可能となる。また、例えば、受信側制御部は、受信側の電装装置に対し安全に停止させるフェールセーフ等の処理を実行することが可能となる。 In the communication system according to claim 9, at least one of the transmission side control unit and the reception side control unit controls the electrical device based on the detection signal of the abnormality detection unit that detects a communication abnormality. Thereby, for example, the transmission-side control unit can prompt the user to perform a response by executing control for notifying the transmission-side electrical device of the communication abnormality based on the detection signal of the abnormality detection unit. Become. In addition, for example, the reception-side control unit can execute a process such as fail-safe for safely stopping the electrical device on the reception side.
 また、請求項10に記載の電子部品装着装置では、各電装装置間を通信されるデータにそのデータの種類に応じた好適な誤り処理が特に要求される電子部品装着装置に対し、各電装装置をデータ通信部に接続する際に接続する接続端子に係わらずデータの種類に応じた好適な誤り処理が適用される電子部品装着装置が構成できる。 Further, in the electronic component mounting apparatus according to claim 10, for each electronic component mounting apparatus that requires particularly suitable error processing according to the type of data to be communicated between the respective electrical component apparatuses, An electronic component mounting apparatus to which suitable error processing according to the type of data is applied can be configured regardless of the connection terminal to be connected when connecting to the data communication unit.
 また、請求項11に記載の通信システムの誤り処理方法では、通信システムの稼働にともない、データ通信部の接続端子に対する電装装置の接続を監視し、新たな電装装置の接続が検出された場合にデータ通信部の送受信を停止させる。そして、電装装置の情報格納部から電装装置が入出力するデータの種類に係る情報を取得し、その取得した情報に基づいてデータの種類に応じた誤り処理を行う処理手段を電装装置が接続される接続端子に割り当てる。これにより、通信システムの稼働中にデータ通信部に電装装置が接続された場合に、データ通信部の送受信を停止させ新たに接続された電装装置に対し好適な誤り処理を行う処理手段が自動的に接続される。従って、例えばシステム稼働中に任意の電装装置に障害が生じた場合に、通信システム全体を停止させることなく障害が生じた電装装置を交換してシステムの復旧を図ることが可能となる。 In the communication system error processing method according to claim 11, when the communication system is operated, the connection of the electrical equipment to the connection terminal of the data communication unit is monitored, and a connection of a new electrical equipment is detected. Stop transmission / reception of the data communication unit. Then, the electrical equipment is connected to processing means for acquiring information related to the type of data input / output by the electrical equipment from the information storage unit of the electrical equipment and performing error processing according to the data type based on the acquired information. Assign to the connection terminal. As a result, when an electrical device is connected to the data communication unit during operation of the communication system, processing means for stopping transmission / reception of the data communication unit and performing suitable error processing on the newly connected electrical device is automatically performed. Connected to. Therefore, for example, when a failure occurs in any electrical device during system operation, it is possible to restore the system by replacing the failed electrical device without stopping the entire communication system.
本実施形態の通信システムが適用される電子部品装着装置の斜視図である。It is a perspective view of the electronic component mounting apparatus with which the communication system of this embodiment is applied. 図1に示す電子部品装着装置の上部カバーを取り外した状態の概略平面図である。It is a schematic plan view of the state which removed the upper cover of the electronic component mounting apparatus shown in FIG. 電子部品装着装置のブロック図である。It is a block diagram of an electronic component mounting apparatus. 多重化通信されるデータ種ごとの内訳を示す図である。It is a figure which shows the breakdown for every data kind by which multiplex communication is carried out. 多重化通信システムの概略構成図である。It is a schematic block diagram of a multiplexing communication system. 送信側の光無線装置93の概略構成図である。It is a schematic block diagram of the optical wireless apparatus 93 by the side of transmission. コネクタが備えるメモリに保存される情報を説明するための図である。It is a figure for demonstrating the information preserve | saved at the memory with which a connector is provided. システム稼働中において新たなコネクタの接続が生じた場合の制御部の処理を説明するためのフローチャートである。It is a flowchart for demonstrating the process of the control part when a new connector connection arises during system operation. データ転送レートの合計が最大通信レートを超えた場合のエラー表示を示す図である。It is a figure which shows an error display when the sum total of a data transfer rate exceeds the maximum communication rate. 別の光無線装置300の概略構成図である。2 is a schematic configuration diagram of another optical wireless device 300. FIG.
 以下、本発明の実施形態について図を参照して説明する。初めに、本願の通信システムを適用する装置の一例として電子部品装着装置(以下、「装着装置」と略する場合がある)について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, an electronic component mounting apparatus (hereinafter sometimes abbreviated as “mounting apparatus”) will be described as an example of an apparatus to which the communication system of the present application is applied.
(装着装置10の構成)
 図1に示すように、装着装置10は、装置本体11と、装置本体11に一体的に設けられる一対の表示装置13と、装置本体11に対して着脱可能に設けられる供給装置15,16とを備える。本実施形態の装着装置10は、図3に示す制御装置80の制御に基づいて、装置本体11内に収容される搬送装置21にて搬送される回路基板100に対して電子部品(図示略)の装着作業を実施する装置である。なお、本実施例では、図1に示すように、搬送装置21により回路基板100が搬送される方向(図2における左右方向)をX軸方向、回路基板100の搬送方向に水平でX軸方向に対して直角な方向をY軸方向と称し、説明する。
(Configuration of mounting device 10)
As shown in FIG. 1, the mounting device 10 includes a device main body 11, a pair of display devices 13 provided integrally with the device main body 11, and supply devices 15 and 16 provided detachably with respect to the device main body 11. Is provided. The mounting device 10 according to the present embodiment is an electronic component (not shown) with respect to the circuit board 100 transported by the transport device 21 housed in the device body 11 based on the control of the control device 80 shown in FIG. It is an apparatus which implements mounting work. In this embodiment, as shown in FIG. 1, the direction in which the circuit board 100 is transported by the transport device 21 (the left-right direction in FIG. 2) is the X-axis direction, and the horizontal direction of the circuit board 100 is X-axis direction. A direction perpendicular to the direction is referred to as a Y-axis direction and will be described.
 装置本体11は、X軸方向の一端側でY軸方向における両端部に表示装置13を各々備える。各表示装置13は、タッチパネル式の表示装置であり、電子部品の装着作業に関する情報を表示する。また、装置本体11は、Y軸方向の両側から挟むようにして装着される供給装置15,16を備える。供給装置15は、フィーダ型の供給装置であり、各種の電子部品がテーピング化されリールに巻回させた状態で収容されるテープフィーダ15Aを複数有している。供給装置16は、トレイ型の供給装置であり、複数の電子部品が載置された部品トレイ16A(図2参照)を複数有している。 The device body 11 includes display devices 13 at both ends in the Y-axis direction on one end side in the X-axis direction. Each display device 13 is a touch panel display device, and displays information related to the mounting operation of the electronic component. Further, the apparatus main body 11 includes supply devices 15 and 16 that are mounted so as to be sandwiched from both sides in the Y-axis direction. The supply device 15 is a feeder-type supply device, and includes a plurality of tape feeders 15A that are housed in a state where various electronic components are taped and wound on a reel. The supply device 16 is a tray-type supply device, and has a plurality of component trays 16A (see FIG. 2) on which a plurality of electronic components are placed.
 図2は、装置本体11の上部カバー11A(図1参照)を取り除いた状態で装着装置10を上方(図1における上側)からの視点において示した概略平面図である。図2に示すように、装置本体11は、上記搬送装置21と、回路基板100に対して電子部品を装着する装着ヘッド22と、その装着ヘッド22を移動させる移動装置23とを基台20の上に備える。 FIG. 2 is a schematic plan view showing the mounting apparatus 10 from the upper (upper side in FIG. 1) viewpoint with the upper cover 11A (see FIG. 1) of the apparatus main body 11 removed. As shown in FIG. 2, the apparatus main body 11 includes the transport device 21, a mounting head 22 for mounting electronic components on the circuit board 100, and a moving device 23 for moving the mounting head 22. Prepare for the top.
 搬送装置21は、基台20におけるY軸方向の略中央部に設けられており、1対のコンベアベルト31と、コンベアベルト31に保持された基板保持装置32と、基板保持装置32を移動させる電磁モータ33とを有している。基板保持装置32は回路基板100を保持する。電磁モータ33は、出力軸がコンベアベルト31に駆動連結されている。電磁モータ33は、例えば、回転角度を精度良く制御可能なサーボモータでる。搬送装置21は、電磁モータ33の駆動に基づいてコンベアベルト31が周回動作を行うことで、基板保持装置32とともに回路基板100がX軸方向に移動する。 The transfer device 21 is provided in a substantially central portion of the base 20 in the Y-axis direction, and moves the pair of conveyor belts 31, the substrate holding device 32 held on the conveyor belt 31, and the substrate holding device 32. And an electromagnetic motor 33. The substrate holding device 32 holds the circuit board 100. The output shaft of the electromagnetic motor 33 is drivingly connected to the conveyor belt 31. The electromagnetic motor 33 is, for example, a servo motor that can accurately control the rotation angle. In the transport device 21, the circuit board 100 moves in the X-axis direction together with the substrate holding device 32 when the conveyor belt 31 rotates around based on the driving of the electromagnetic motor 33.
 装着ヘッド22は、回路基板100と対向する下面に電子部品を吸着する吸着ノズル41を有する。吸着ノズル41は、正負圧供給装置42(図3参照)を介して負圧エア、正圧エア通路に通じており、負圧にて電子部品を吸着保持し、僅かな正圧が供給されることで保持した電子部品を離脱する。また、装着ヘッド22は、吸着ノズル41を昇降させるノズル昇降装置(図3参照)43及び吸着ノズル41をそれの軸心回りに自転させるノズル自転装置(図3参照)44を有しており、保持する電子部品の上下方向の位置及び電子部品の保持姿勢を変更する。ノズル昇降装置43は、駆動源として例えば電磁モータ43Aを備える。また、装着ヘッド22は、保持する電子部品の上下方向の位置を検出するための位置検出センサ45(図3参照)を有している。また、装着ヘッド22には、回路基板100を撮影するためのマークカメラ47が下方を向いた状態で固定されている。なお、吸着ノズル41は、装着ヘッド22に対し着脱可能であり、電子部品のサイズ、形状等に応じて変更できる。 The mounting head 22 has a suction nozzle 41 that sucks electronic components on the lower surface facing the circuit board 100. The suction nozzle 41 communicates with the negative pressure air and the positive pressure air passage via a positive / negative pressure supply device 42 (see FIG. 3), sucks and holds the electronic component with the negative pressure, and supplies a slight positive pressure. The held electronic component is removed. The mounting head 22 includes a nozzle lifting device (see FIG. 3) 43 that lifts and lowers the suction nozzle 41 and a nozzle rotation device (see FIG. 3) 44 that rotates the suction nozzle 41 about its axis. The vertical position of the electronic component to be held and the holding posture of the electronic component are changed. The nozzle lifting device 43 includes, for example, an electromagnetic motor 43A as a drive source. The mounting head 22 has a position detection sensor 45 (see FIG. 3) for detecting the position of the electronic component to be held in the vertical direction. Further, a mark camera 47 for photographing the circuit board 100 is fixed to the mounting head 22 in a state of facing downward. The suction nozzle 41 is detachable from the mounting head 22 and can be changed according to the size and shape of the electronic component.
 また、装着ヘッド22は、移動装置23によって基台20上の任意の位置に移動する。詳述すると、移動装置23は、装着ヘッド22をX軸方向に移動させるためのX軸方向スライド機構50と、装着ヘッド22をY軸方向に移動させるためのY軸方向スライド機構52とを備える。X軸方向スライド機構50は、X軸方向に移動可能に基台20上に設けられたX軸スライダ54と、駆動源として電磁モータ56とを有している。X軸スライダ54は、電磁モータ56の駆動に基づいてX軸方向の任意の位置に移動する。 Further, the mounting head 22 is moved to an arbitrary position on the base 20 by the moving device 23. More specifically, the moving device 23 includes an X-axis direction slide mechanism 50 for moving the mounting head 22 in the X-axis direction, and a Y-axis direction slide mechanism 52 for moving the mounting head 22 in the Y-axis direction. . The X-axis direction slide mechanism 50 has an X-axis slider 54 provided on the base 20 so as to be movable in the X-axis direction, and an electromagnetic motor 56 as a drive source. The X-axis slider 54 moves to an arbitrary position in the X-axis direction based on driving of the electromagnetic motor 56.
 また、Y軸方向スライド機構52は、Y軸方向に移動可能にX軸スライダ54の側面に設けられたY軸スライダ58と、駆動源としての電磁モータ60とを有している。Y軸スライダ58は、電磁モータ60の駆動に基づいて、Y軸方向の任意の位置に移動する。そして、装着ヘッド22は、Y軸スライダ58に取り付けらており、移動装置23の駆動にともなって基台20上の任意の位置に移動する。これにより、マークカメラ47は、装着ヘッド22が移動させられることで回路基板100の任意の位置の表面が撮像可能となる。マークカメラ47により撮影された画像データは、画像処理装置71(図3参照)により処理され制御装置80に出力される。また、装着ヘッド22は、Y軸スライダ58にコネクタ48を介して取り付けられワンタッチで着脱可能であり、種類の異なる作業ヘッド、例えば、ディスペンサヘッド等に変更できる。 The Y-axis direction slide mechanism 52 has a Y-axis slider 58 provided on the side surface of the X-axis slider 54 so as to be movable in the Y-axis direction, and an electromagnetic motor 60 as a drive source. The Y-axis slider 58 moves to an arbitrary position in the Y-axis direction based on driving of the electromagnetic motor 60. The mounting head 22 is attached to the Y-axis slider 58 and moves to an arbitrary position on the base 20 as the moving device 23 is driven. Thereby, the mark camera 47 can image the surface of an arbitrary position of the circuit board 100 by moving the mounting head 22. Image data photographed by the mark camera 47 is processed by the image processing device 71 (see FIG. 3) and output to the control device 80. The mounting head 22 is attached to the Y-axis slider 58 via the connector 48 and can be attached and detached with a single touch, and can be changed to a different type of work head, for example, a dispenser head.
 また、基台20は、Y軸方向の各側面部に供給装置15,16が接続されている。各供給装置15,16は、供給する電子部品の不足や電子部品の種類の変更等に対応するべく、基台20に着脱可能とされている。また、基台20には、各供給装置15,16が接続される部分におけるX軸方向の略中央部にパーツカメラ73が各々設けられている。各パーツカメラ73は、上方を向いた状態で設けられており、各供給装置15,16から装着ヘッド22の吸着ノズル41に吸着保持された電子部品を撮像する。パーツカメラ73は、撮影された画像データを画像処理装置71(図3参照)に出力する。画像処理装置71は、処理したデータを制御装置80に出力する。 Further, the base 20 has supply devices 15 and 16 connected to each side surface in the Y-axis direction. Each of the supply devices 15 and 16 can be attached to and detached from the base 20 in order to cope with a shortage of electronic components to be supplied, changes in the types of electronic components, and the like. Further, the base 20 is provided with a parts camera 73 at a substantially central portion in the X-axis direction at a portion to which the supply devices 15 and 16 are connected. Each part camera 73 is provided in a state of facing upward, and images the electronic components sucked and held by the suction nozzle 41 of the mounting head 22 from each of the supply devices 15 and 16. The parts camera 73 outputs the captured image data to the image processing device 71 (see FIG. 3). The image processing device 71 outputs the processed data to the control device 80.
(装着装置10に適用される通信システム(多重化通信システム))
 ここで、図3に示すように、本実施形態の装着装置10は、装着装置10の制御装置80と制御装置80以外の部分(各種装置)との間のデータ通信に光無線の多重化通信を用いる。なお、図3に示す装着装置10の構成は、通信システムを適用する場合の一例であり、装着装置10が備える装置の種類や数等に応じて適宜変更する。また、本願の通信システムは、装着装置10に例示される電子部品装着装置の他に、様々な製造ラインにおいて稼働する自動機などに適用可能なシステムである。
(Communication system applied to mounting device 10 (multiplexed communication system))
Here, as shown in FIG. 3, the mounting apparatus 10 according to the present embodiment uses optical wireless multiplexed communication for data communication between the control apparatus 80 of the mounting apparatus 10 and parts (various apparatuses) other than the control apparatus 80. Is used. Note that the configuration of the mounting apparatus 10 illustrated in FIG. 3 is an example in the case of applying a communication system, and is appropriately changed according to the type and number of apparatuses provided in the mounting apparatus 10. The communication system of the present application is a system that can be applied to an automatic machine operating in various production lines in addition to the electronic component mounting apparatus exemplified by the mounting apparatus 10.
 図3に示すように、制御装置80は、CPU、ROM、RAM等を備えたコンピュータを主体とするコントローラ82と、画像ボード84と、駆動制御ボード85と、I/Oボード86とを備える。コントローラ82は、各ボード84,85,86を介して各装置と通信を行う。各ボード84,85,86は、光無線装置91を介して伝送路95の一端に接続され、伝送路95において光無線による通信が行われる。伝送路95の他端は光無線装置93を介して各種装置(カメラ、モータ、センサ等)に接続されている。例えば、図2に示すように、移動装置23には、制御装置80に接続される光無線装置91の受発光部92Aに対向して、光無線装置93の受発光部92Bが設けられている。受発光部92Bは、光無線装置91側の受発光部92Aとの間で光軸が一致するように移動装置23のX軸スライダ54に固定されている。これにより、受発光部92A,92B(光無線装置91,93)間で各種情報通信が可能とされている。 As shown in FIG. 3, the control device 80 includes a controller 82 mainly composed of a computer having a CPU, ROM, RAM, and the like, an image board 84, a drive control board 85, and an I / O board 86. The controller 82 communicates with each device via each board 84, 85, 86. Each board 84, 85, 86 is connected to one end of a transmission path 95 via an optical wireless device 91, and optical wireless communication is performed on the transmission path 95. The other end of the transmission path 95 is connected to various devices (camera, motor, sensor, etc.) via the optical wireless device 93. For example, as shown in FIG. 2, the moving device 23 is provided with a light emitting / receiving unit 92 </ b> B of the optical wireless device 93 facing the light emitting / receiving unit 92 </ b> A of the optical wireless device 91 connected to the control device 80. . The light emitting / receiving unit 92B is fixed to the X-axis slider 54 of the moving device 23 so that the optical axis coincides with the light emitting / receiving unit 92A on the optical wireless device 91 side. As a result, various types of information communication can be performed between the light emitting / receiving units 92A and 92B (optical wireless devices 91 and 93).
 図3に示す画像ボード84は、画像データの入出力を制御するボードである。例えば、コントローラ82は、画像ボード84を介して画像処理装置71がマークカメラ47の画像データに対する処理から検出した回路基板100に関する情報(種類・形状等)や回路基板100の基板保持装置32による保持位置の誤差等の情報を受信する。駆動制御ボード85は、電磁モータに対する動作指令や電磁モータからリアルタイムでフィードバックされる情報等の入出力を制御するボードである。例えば、コントローラ82は、駆動制御ボード85を介して電磁モータ43Aにより取得されるトルク情報や位置情報(吸着ノズル41に保持される電子部品の上下位置)などのサーボ制御情報を受信する。I/Oボード86は、例えば位置検出センサ45の出力信号等の入出力を制御するボードである。これら制御装置80に各装置から入力されるデータは、光無線装置93により多重化された上で光無線信号として伝送路95を伝送される。光無線装置91は、伝送された多重化信号の多重化を解除し個々のデータに分離する処理を行う。光無線装置91は、分離されたデータのうち、画像データを画像ボード84に、サーボ制御情報を駆動制御ボード85に、I/O信号をI/Oボード86に転送する。 The image board 84 shown in FIG. 3 is a board that controls input / output of image data. For example, the controller 82 uses the image board 84 to hold information (type, shape, etc.) on the circuit board 100 detected by the image processing apparatus 71 from processing of the image data of the mark camera 47 and hold the circuit board 100 by the board holding device 32. Receive information such as position error. The drive control board 85 is a board that controls input / output of operation commands for the electromagnetic motor and information fed back from the electromagnetic motor in real time. For example, the controller 82 receives servo control information such as torque information and position information (vertical position of the electronic component held by the suction nozzle 41) acquired by the electromagnetic motor 43A via the drive control board 85. The I / O board 86 is a board that controls input / output of an output signal of the position detection sensor 45, for example. Data input from these devices to the control device 80 is multiplexed by the optical wireless device 93 and then transmitted through the transmission path 95 as an optical wireless signal. The optical wireless device 91 performs a process of demultiplexing the transmitted multiplexed signal and separating it into individual data. Of the separated data, the optical wireless device 91 transfers image data to the image board 84, servo control information to the drive control board 85, and I / O signals to the I / O board 86.
 一方で、コントローラ82は、光無線装置91により受信された各データを処理する。コントローラ82は、例えば処理結果に基づいた電磁モータ43Aに対する制御信号を、駆動制御ボード85を介して光無線装置91に出力する。光無線装置93は、光無線装置91から伝送される制御信号をノズル昇降装置43に転送する。これにより、電磁モータ43Aが制御信号に基づいて動作する。また、コントローラ82は、例えば表示装置13の表示を変更する制御信号をI/Oボード86、光無線装置91,93を介して表示装置13に出力する。このように、制御装置80と制御装置80以外の各装置とで送受信される各種情報は、伝送路95上を多重化されたデータ、例えば時分割多重(TDM)方式のフレームデータとして送受信される。なお、制御装置80と他の装置間の通信は、その一部だけを光無線通信にて実施してよい。 On the other hand, the controller 82 processes each data received by the optical wireless device 91. For example, the controller 82 outputs a control signal for the electromagnetic motor 43 </ b> A based on the processing result to the optical wireless device 91 via the drive control board 85. The optical wireless device 93 transfers the control signal transmitted from the optical wireless device 91 to the nozzle lifting / lowering device 43. Thus, the electromagnetic motor 43A operates based on the control signal. For example, the controller 82 outputs a control signal for changing the display of the display device 13 to the display device 13 via the I / O board 86 and the optical wireless devices 91 and 93. As described above, various types of information transmitted and received between the control device 80 and each device other than the control device 80 are transmitted and received as data multiplexed on the transmission path 95, for example, time division multiplexing (TDM) frame data. . Note that only part of the communication between the control device 80 and another device may be performed by optical wireless communication.
 上述した装着装置10では、基板保持装置32に保持された回路基板100に対して装着ヘッド22によって電子部品の装着作業を行う。具体的には、コントローラ82は、搬送装置21を駆動して回路基板100を作業位置まで搬送し、電磁モータ33を停止させて回路基板100を固定的に保持させる。次に、コントローラ82は、移動装置23を駆動して装着ヘッド22を回路基板100上に移動させマークカメラ47により回路基板100を撮像する。この際に、コントローラ82は、画像処理装置71から受信した回路基板の種類及び回路基板100の保持位置の誤差を判定する。次に、コントローラ82は、基板の種類に対する判定結果に応じた電子部品を有する供給装置15,16を駆動し、該当する電子部品を装着ヘッド22への供給位置に送り出す制御を行う。次に、コントローラ82は、移動装置23を駆動して供給位置の搬送された電子部品を装着ヘッド22の吸着ノズル41により吸着保持させる。 In the mounting device 10 described above, an electronic component is mounted on the circuit board 100 held by the substrate holding device 32 by the mounting head 22. Specifically, the controller 82 drives the transport device 21 to transport the circuit board 100 to the working position, stops the electromagnetic motor 33, and holds the circuit board 100 in a fixed manner. Next, the controller 82 drives the moving device 23 to move the mounting head 22 onto the circuit board 100 and images the circuit board 100 with the mark camera 47. At this time, the controller 82 determines the type of the circuit board received from the image processing apparatus 71 and the error in the holding position of the circuit board 100. Next, the controller 82 drives the supply devices 15 and 16 having electronic components according to the determination result for the type of board, and performs control to send the corresponding electronic components to the supply position to the mounting head 22. Next, the controller 82 drives the moving device 23 to suck and hold the electronic component conveyed at the supply position by the suction nozzle 41 of the mounting head 22.
 次に、コントローラ82は、電子部品を保持した装着ヘッド22をパーツカメラ73上に移動させて電子部品の状態を撮像させる。この際に、コントローラ82は、撮像結果に基づいて電子部品の保持位置の誤差を取得する。次に、コントローラ82は、装着ヘッド22を回路基板100上の装着位置に移動させ回路基板及び電子部品の保持位置誤差に基づいて吸着ノズル41を自転させた後に電子部品を回路基板100に装着させる。 Next, the controller 82 moves the mounting head 22 holding the electronic component onto the parts camera 73 to image the state of the electronic component. At this time, the controller 82 acquires an error in the holding position of the electronic component based on the imaging result. Next, the controller 82 moves the mounting head 22 to the mounting position on the circuit board 100 and rotates the suction nozzle 41 based on the holding position error between the circuit board and the electronic component, and then mounts the electronic component on the circuit board 100. .
 以下の説明では、上記した多重化通信を用いて電子部品の装着を実施する装着装置10に適用して好適な通信システム(多重化通信システム)について説明する。
(データ種と誤り訂正規則)
 まず、制御装置80と制御装置80以外の各装置との間の多重化通信では、異なる種類のデータが伝送される。このような多重化通信では、データ種ごとに誤り訂正規則を適合させる必要が生じる。詳述すると、図4に上記した装着装置10における各データ種と、そのデータ種に適用する誤り訂正規則の一例を例示する。図4に示す(A)のデータ種は、高速信号として分類されるデータであり、画像ボード84により送受信される画像データである。(B)のデータ種は、中速信号として分類されるデータであり、駆動制御ボード85により送受信される動作指令やサーボ制御情報である。(C)のデータ種は、低速信号に分類されるデータであり、I/Oボード86により送受信されるI/O信号である。
In the following description, a communication system (multiplexed communication system) suitable for application to the mounting apparatus 10 that mounts electronic components using the above-described multiplexed communication will be described.
(Data types and error correction rules)
First, in the multiplexed communication between the control device 80 and each device other than the control device 80, different types of data are transmitted. In such multiplexed communication, it is necessary to adapt error correction rules for each data type. Specifically, FIG. 4 illustrates an example of each data type in the mounting apparatus 10 described above and an error correction rule applied to the data type. The data type (A) shown in FIG. 4 is data classified as a high-speed signal, and is image data transmitted and received by the image board 84. The data type (B) is data classified as a medium speed signal, and is an operation command or servo control information transmitted / received by the drive control board 85. The data type (C) is data classified as a low-speed signal, and is an I / O signal transmitted / received by the I / O board 86.
 (A)に分類される画像データは、1フレームを構成するデータ量が比較的大きなものである。1フレーム当りのデータ量が大きいため、ビットエラーに対してデータの再送を行なうことは現実的ではない。このため、再送に代えて受信先での誤り訂正を行なうことが一般的である。(A)に分類されるデータ種の誤り処理は、例えば画像データにハミング符号の前方誤り訂正コード(FEC)を付与した処理が行われる。なお、この種のデータ伝送では、FA分野におけるフィールドネットワークの標準規格として、例えば1Gbps以上のデータ転送レートが要求される。また、1フレームの表示が更新されるまでの時間は多少の余裕があるため誤り訂正処理を含むデータ処理時間として1ms程度を確保する。 The image data classified as (A) has a relatively large amount of data constituting one frame. Since the amount of data per frame is large, it is not realistic to retransmit data for bit errors. For this reason, it is common to perform error correction at the reception destination instead of retransmission. The error processing of the data type classified as (A) is performed, for example, by adding a forward error correction code (FEC) of a Hamming code to image data. In this type of data transmission, for example, a data transfer rate of 1 Gbps or more is required as a field network standard in the FA field. In addition, since there is some time until the display of one frame is updated, about 1 ms is secured as the data processing time including error correction processing.
 (B)に分類される動作指令やサーボ制御情報において、モータの駆動制御は、例えば、電磁モータ33からのサーボ制御情報のフィードバックに応じて電磁モータ33に対して動作指令をする必要があり高速な応答が要求される場合がある。その一方で、動作指令やサーボ制御情報に必要なデータ量は上記した(A)の画像データに比して小さなものである。このため、(B)に分類されるデータ種の誤りの処理は、制御の確実性が求められることもあり、例えば多数決論理による処理が行われる。多数決論理による処理は、例えばパリティ符号を付与した同じ動作指令を3回送信する。3回の指令のうちパリティチェックで一致・不一致を検出し、一致した場合に重い係数を付与してデータ値ごとの評点を集計する。その結果、最も高い評点を得たデータ値を確定値とする。これにより、複数回のデータ伝送と多数決論理により、確実性を確保しながらデータ値を伝送することができる。また、誤りの処理が単純であり高速な処理ができる。なお、FA分野におけるフィールドネットワークの標準規格として、例えば125Mbpsのデータ転送レートが一般的に使用されている。また、1指令あたりのデータ処理時間は、通信プロトコルの仕様等の制約から、例えば1μs程度の高速性が要求される。 In the operation command and servo control information classified as (B), the motor drive control needs to be performed with respect to the electromagnetic motor 33 in accordance with the feedback of the servo control information from the electromagnetic motor 33, for example. Response may be required. On the other hand, the amount of data required for the operation command and servo control information is smaller than that of the image data (A) described above. For this reason, the error processing of the data type classified as (B) may require control certainty, and for example, processing based on majority logic is performed. In the process based on majority logic, for example, the same operation command with a parity code added is transmitted three times. Match / mismatch is detected by parity check among the three commands, and if they match, a heavy coefficient is added and the score for each data value is totaled. As a result, the data value that obtains the highest score is set as the final value. Thus, the data value can be transmitted while ensuring certainty by a plurality of times of data transmission and majority logic. Further, error processing is simple and high-speed processing can be performed. For example, a data transfer rate of 125 Mbps is generally used as a field network standard in the FA field. In addition, the data processing time per command is required to be high speed of about 1 μs, for example, due to restrictions such as communication protocol specifications.
 (C)に分類されるI/O信号は、上記した位置検出センサ45の検出信号の他に、例えば装着装置10の各種スイッチの入力信号や表示ランプを点灯させる制御信号等が分類される。これらの信号には高速性が要求されることはなく、例えば、数Kbpsのデータ転送レート、1ms程度のデータ処理時間が確保されれば足りるものである。(C)に分類されるデータ種の誤りの処理は、例えばパリティ符号を付与した上で複数回の伝送により行なわれる。連続伝送において全てのデータが同一データ値であることの確認により伝送されたデータが取得される。連続伝送のうち1回でもデータ値が異なる場合があれば、データの伝送がキャンセルされる。低速の信号伝送であってデータ伝送がキャンセルされた場合にも元の状態を維持することが可能な信号に適用される。なお、上記したデータ種の分類とそれに応じた誤り検出方法は一例であり、データの内容に応じて適宜変更することが好ましい。 The I / O signals classified as (C) are classified into, for example, input signals of various switches of the mounting apparatus 10 and control signals for turning on the display lamps in addition to the detection signals of the position detection sensor 45 described above. These signals are not required to have high speed. For example, a data transfer rate of several Kbps and a data processing time of about 1 ms are sufficient. The processing of the error of the data type classified as (C) is performed by a plurality of transmissions, for example, with a parity code added. In the continuous transmission, the transmitted data is acquired by confirming that all the data has the same data value. If there is a case where the data value is different even once in continuous transmission, the data transmission is cancelled. The present invention is applied to a signal that can maintain the original state even when the signal transmission is a low-speed signal transmission and the data transmission is canceled. Note that the above-described classification of data types and the error detection method corresponding thereto are merely examples, and it is preferable to appropriately change according to the contents of data.
(共通インターフェース)
 上記したように、装着装置10に適用される多重化通信では、データ種の特徴に応じて誤り検出方法を適合させる必要がある。その一方で、装着装置10は、各装置が装着装置10(装置本体11)に対して交換可能なモジュールとして構成とされている。例えば、装着ヘッド22を種類の異なる作業ヘッド(ディスペンサヘッド等)に変更する。あるいは、装着装置10が移動装置23及び搬送装置21を複数備える構成では、製造ラインで要求される製造効率等に応じて移動装置23や搬送装置21の台数を変更する。つまり、上記した構成変更に限らず、装着装置10のような交換可能なモジュールを有する装置では、使用者が所望の装置構成となるように各モジュールを変更する場合がある。そして、使用者がモジュールを自由に変更可能とするには、理想的には全てのモジュールのあるいはモジュールの各入出力端子が共通のインターフェースで構成されることが望ましい。しかしながら、上記したように、装着装置10に適用される多重化通信では、データ種に応じて誤り検出方法を適合させることが要求される。従って、このような装着装置10では、各モジュールが接続されるコネクタに係わらず多重化通信により伝送されるデータに適切な誤り訂正が実施される構成が望まれている。
(Common interface)
As described above, in the multiplex communication applied to the mounting apparatus 10, it is necessary to adapt the error detection method according to the characteristics of the data type. On the other hand, the mounting device 10 is configured as a module in which each device is replaceable with respect to the mounting device 10 (device main body 11). For example, the mounting head 22 is changed to a different type of work head (dispenser head or the like). Alternatively, in the configuration in which the mounting device 10 includes a plurality of moving devices 23 and conveying devices 21, the number of moving devices 23 and conveying devices 21 is changed according to the manufacturing efficiency required in the production line. That is, in addition to the above-described configuration change, in a device having a replaceable module such as the mounting device 10, the user may change each module so that a desired device configuration is obtained. In order to allow the user to freely change the module, ideally, it is desirable that all the modules or each input / output terminal of the module be configured with a common interface. However, as described above, in the multiplexed communication applied to the mounting apparatus 10, it is required to adapt the error detection method according to the data type. Therefore, such a mounting apparatus 10 is desired to have a configuration in which appropriate error correction is performed on data transmitted by multiplexed communication regardless of the connector to which each module is connected.
 そこで、本発明者らは、装着装置10に適用可能な通信システムにおいて、上記した「データ種に応じた誤り処理」と「共通のインターフェースを有する汎用性」との両立を図るべく検討を重ねた結果、本発明をなすに至った。以下に装着装置10に適用する通信システムの一実施形態を説明する。 Therefore, the present inventors have repeatedly studied to achieve both the above-described “error processing according to data type” and “general versatility having a common interface” in a communication system applicable to the mounting apparatus 10. As a result, the present invention has been made. An embodiment of a communication system applied to the mounting apparatus 10 will be described below.
 図5に示す多重化通信システム110は、装着ヘッド22と制御装置80とを接続する通信システムであり、説明を理解し易くするために装着ヘッド22を送信側、制御装置80を受信側として説明する。装着ヘッド22は、ノズル昇降装置43の電磁モータ43Aに電気的に接続されるコネクタ22Aが光無線装置93のコネクタ93Aに接続されている。また、装着ヘッド22は、位置検出センサ45に接続されるコネクタ22Bが光無線装置93のコネクタ93Bに接続されている。また、装着ヘッド22は、マークカメラ47に接続されるコネクタ22Cが光無線装置93のコネクタ93Cに接続されている。一方受信側の制御装置80は、画像ボード84に電気的に接続されるコネクタ80Aが光無線装置91のコネクタ91Aに、駆動制御ボード85に接続されるコネクタ80Bが光無線装置91のコネクタ91Bに、I/Oボード86に接続されるコネクタ80Cが光無線装置91のコネクタ91Cに各々接続されている。なお、装着ヘッド22と各コネクタ22A~22Cとの接続、及び制御装置80と各コネクタ80A~80Cとの接続は、ケーブルを介した接続構成でもよい。 The multiplex communication system 110 shown in FIG. 5 is a communication system that connects the mounting head 22 and the control device 80. In order to make the description easy to understand, the mounting head 22 is described as a transmission side and the control device 80 is described as a reception side. To do. In the mounting head 22, a connector 22 </ b> A that is electrically connected to the electromagnetic motor 43 </ b> A of the nozzle lifting / lowering device 43 is connected to a connector 93 </ b> A of the optical wireless device 93. In the mounting head 22, the connector 22 </ b> B connected to the position detection sensor 45 is connected to the connector 93 </ b> B of the optical wireless device 93. In the mounting head 22, the connector 22 </ b> C connected to the mark camera 47 is connected to the connector 93 </ b> C of the optical wireless device 93. On the other hand, in the control device 80 on the receiving side, the connector 80A electrically connected to the image board 84 is the connector 91A of the optical wireless device 91, and the connector 80B connected to the drive control board 85 is the connector 91B of the optical wireless device 91. The connectors 80C connected to the I / O board 86 are connected to the connectors 91C of the optical wireless device 91, respectively. The connection between the mounting head 22 and each of the connectors 22A to 22C and the connection between the control device 80 and each of the connectors 80A to 80C may be connected via cables.
 送信側の光無線装置93は、上記したコネクタ93A~93Cと、セレクタ121と、符号付与回路123A~123Cと、制御部125と、多重化装置127とを備える。セレクタ121は、コネクタ93A~93Cと符号付与回路123A~123Cとの間に接続されている。符号付与回路123A~123Cは、上述した各データ種に対応した誤り訂正の情報を付加する設定処理を行う。制御部125は、セレクタ121を制御し、各コネクタ93A~93Cと符号付与回路123A~123Cとの接続を切替える制御を行う。多重化装置127は、各符号付与回路123A~123Cの出力信号を多重化し伝送路95を介して受信側の光無線装置91の多重化装置137に伝送する。 The optical wireless device 93 on the transmission side includes the connectors 93A to 93C, the selector 121, the code assigning circuits 123A to 123C, the control unit 125, and the multiplexing device 127. The selector 121 is connected between the connectors 93A to 93C and the sign assignment circuits 123A to 123C. The code assigning circuits 123A to 123C perform a setting process for adding error correction information corresponding to each data type described above. The control unit 125 controls the selector 121 to switch the connection between the connectors 93A to 93C and the code providing circuits 123A to 123C. The multiplexing device 127 multiplexes the output signals of the code assigning circuits 123 A to 123 C and transmits the multiplexed signals to the multiplexing device 137 of the receiving optical wireless device 91 via the transmission path 95.
 受信側の光無線装置91は、多重化装置137と、コネクタ91A~91Cと、セレクタ131と、訂正回路133A~133Cと、制御部135とを備える。多重化装置137は、多重化装置127から伝送される信号の多重化を解除し個々のデータに分離して各訂正回路133A~133Cに出力する。セレクタ131は、訂正回路133A~133Cとコネクタ91A~91Cとの間に接続されている。制御部135は、セレクタ131を制御し、各訂正回路133A~133Cとコネクタ91A~91Cとの接続を切替える制御を行う。 The optical wireless device 91 on the receiving side includes a multiplexing device 137, connectors 91A to 91C, a selector 131, correction circuits 133A to 133C, and a control unit 135. The multiplexing device 137 demultiplexes the signal transmitted from the multiplexing device 127, separates it into individual data, and outputs the data to the correction circuits 133A to 133C. The selector 131 is connected between the correction circuits 133A to 133C and the connectors 91A to 91C. The control unit 135 controls the selector 131 to control the connection between the correction circuits 133A to 133C and the connectors 91A to 91C.
 各符号付与回路123A~123Cは、訂正回路133A~133Cの順に各々対応する。例えば、符号付与回路123A及び訂正回路133Aは、画像データに対する誤り訂正・検出処理を行う回路である。符号付与回路123Aは、入力されるデータに対し誤り訂正の符号(図4のデータ種(A)に該当するハミング符号)を付与する処理を行う。訂正回路133Aは、入力されるデータに対し符号付与回路123Aにて付与された符号データに基づいて画像データに誤りがないかを検出し訂正する処理を実行する。 The code assigning circuits 123A to 123C correspond to the correction circuits 133A to 133C in this order. For example, the code addition circuit 123A and the correction circuit 133A are circuits that perform error correction / detection processing on image data. The code adding circuit 123A performs a process of adding an error correction code (a Hamming code corresponding to the data type (A) in FIG. 4) to input data. The correction circuit 133A executes processing for detecting and correcting whether there is an error in the image data based on the code data provided by the code addition circuit 123A for the input data.
 なお、上記した説明では、光無線装置93を送信側として説明したが、光無線装置93を受信側としたデータ伝送についても、上記した内容と同様の制御が実施される。詳述すると、光無線装置91は、光無線装置93と同様に、セレクタ131と多重化装置137とに接続される符号付与回路134A~134Cを備える。また、光無線装置93は、光無線装置91の符号付与回路134A~134Cに対応して、セレクタ121と多重化装置127とに接続される訂正回路124A~124Cを備える。そして、送信側の光無線装置91において、符号付与回路134A~134Cが各データ種に対応した誤り訂正の情報を付加する設定処理を実行し、受信側の光無線装置93の訂正回路124A~124Cにおいて誤り訂正・検出処理が実行される。このようにして、光無線装置91を送信側、光無線装置93を受信側としたデータ伝送が実施される。 In the above description, the optical wireless device 93 is described as the transmitting side, but the same control as described above is performed for data transmission using the optical wireless device 93 as the receiving side. More specifically, the optical wireless device 91 includes code adding circuits 134A to 134C connected to the selector 131 and the multiplexing device 137, similarly to the optical wireless device 93. The optical wireless device 93 includes correction circuits 124A to 124C connected to the selector 121 and the multiplexer 127 corresponding to the code adding circuits 134A to 134C of the optical wireless device 91. Then, in the optical wireless device 91 on the transmission side, the code adding circuits 134A to 134C execute setting processing for adding error correction information corresponding to each data type, and the correction circuits 124A to 124C of the optical wireless device 93 on the reception side. Error correction / detection processing is executed in step. In this way, data transmission is performed with the optical wireless device 91 as the transmission side and the optical wireless device 93 as the reception side.
 次に、制御部125が各セレクタ121を切替制御する制御方法について説明する。以下の説明では、主として装着ヘッド22のコネクタ22A(光無線装置93のコネクタ93A)を送信側として説明する。まず、図6に示すように、光無線装置93は、セレクタ121、符号付与回路123A~123C及び多重化装置127がプログラム可能なロジックデバイス、例えばFPGA(Field Programmable Gate Array)140で構成されている。また、光無線装置93の制御部125は、ROM141と、CPLD(Complex Programmable Logic Device)143と、CPU144と、DRAM146とを備える。ROM141は、例えばフラッシュメモリ等の書き換え可能な不揮発性メモリであり、FPGA140がセレクタ121、符号付与回路123A~123C及び多重化装置127を構成するためのプログラムが保存されている。DRAM146は、揮発性メモリであり、各コネクタ93A~93Cに対応した領域が確保されている。なお、光無線装置93は、図5に示すように外部端子129を備えており、外部端子129から入力されるデータに基づいてROM141に保存されるプログラム、例えば符号付与回路123A~123Cの回路情報が更新される。外部端子129は、例えばUSB(Universal Serial Bus)形式の端子である。 Next, a control method in which the control unit 125 performs switching control of each selector 121 will be described. In the following description, the connector 22A of the mounting head 22 (the connector 93A of the optical wireless device 93) will be mainly described as the transmission side. First, as shown in FIG. 6, the optical wireless device 93 includes a logic device that can be programmed by the selector 121, the code assigning circuits 123 </ b> A to 123 </ b> C, and the multiplexing device 127, for example, an FPGA (Field Programmable Gate Array) 140. . The control unit 125 of the optical wireless device 93 includes a ROM 141, a CPLD (Complex Programmable Logic Device) 143, a CPU 144, and a DRAM 146. The ROM 141 is a rewritable non-volatile memory such as a flash memory, for example, and stores programs for the FPGA 140 to configure the selector 121, the code assignment circuits 123A to 123C, and the multiplexing device 127. The DRAM 146 is a volatile memory, and an area corresponding to each of the connectors 93A to 93C is secured. The optical wireless device 93 includes an external terminal 129 as shown in FIG. 5, and a program stored in the ROM 141 based on data input from the external terminal 129, for example, circuit information of the code providing circuits 123A to 123C. Is updated. The external terminal 129 is, for example, a USB (Universal Serial Bus) type terminal.
 図6に示すように、コネクタ22Aは、メモリ151Aと物理層(PHY)チップ153Aとが内蔵されている。メモリ151Aには、コネクタ22Aが接続される装置(この場合、電磁モータ43A)のデータ種に関する情報(図4のデータ種(B))が保存されている。PHYチップ153Aは、電磁モータ43Aからコネクタ22Aに入力されるアナログ電圧のデジタル化処理等する。なお、装着ヘッド22の他のコネクタ22B,22Cは、コネクタ22Aと同様の構成となっているため説明を省略する。また、コネクタ22A~22Cは、PHYチップ153A~153Cを省略した構成としてもよい。 As shown in FIG. 6, the connector 22A includes a memory 151A and a physical layer (PHY) chip 153A. In the memory 151A, information (data type (B) in FIG. 4) regarding the data type of the device to which the connector 22A is connected (in this case, the electromagnetic motor 43A) is stored. The PHY chip 153A performs digitization processing of an analog voltage input from the electromagnetic motor 43A to the connector 22A. Since the other connectors 22B and 22C of the mounting head 22 have the same configuration as the connector 22A, the description thereof is omitted. Further, the connectors 22A to 22C may be configured such that the PHY chips 153A to 153C are omitted.
 図7にメモリ151Aに保存されるデータ(設定情報)の一例を示す。メモリ151Aには、例えば、データ種、誤り訂正の種類、符号付与回路の情報、要求される通信速度(データ通信レート)情報、コネクタモジュールの名称、シリアル番号等が保存されている。図7に示す例では、コネクタ22Aから入力されるデータがサーボ制御(フィードバック)情報に分類され、誤り訂正方法としてパリティチェックによる処理を実施され、データ転送レートとして125Mbpsが要求され、「ノズル昇降装置用コネクタ」の名称が設定され、製造時の製造番号が「012345・・・」であることを示している。 FIG. 7 shows an example of data (setting information) stored in the memory 151A. In the memory 151A, for example, data type, error correction type, information on a sign assignment circuit, required communication speed (data communication rate) information, connector module name, serial number, and the like are stored. In the example shown in FIG. 7, data input from the connector 22A is classified into servo control (feedback) information, a parity check process is performed as an error correction method, and a data transfer rate of 125 Mbps is required. "Connector for use" is set, and the production number at the time of production is "012345..."
 次に、制御部125の制御動作について説明する。図6に示す光無線装置93は、装着装置10に対する電源投入にともなって起動し、制御部125の各回路が起動する。また、制御部125は、CPU144が起動にともなって各コネクタ93A~93Cに接続されたコネクタ22A~22C(メモリ151A~151C等)に電源を供給する処理を実行する。CPU144は、この電源供給の処理に基づいてコネクタ93A~93Cや図示しない他のコネクタの中から装置が接続されているコネクタを判定する。 Next, the control operation of the control unit 125 will be described. The optical wireless device 93 illustrated in FIG. 6 is activated when the mounting device 10 is powered on, and each circuit of the control unit 125 is activated. Further, the control unit 125 executes a process for supplying power to the connectors 22A to 22C (memory 151A to 151C, etc.) connected to the connectors 93A to 93C when the CPU 144 is activated. The CPU 144 determines the connector to which the device is connected from the connectors 93A to 93C and other connectors (not shown) based on this power supply process.
 次に、CPLD143は、ROM141に保存されたプログラムを読み出してFPGA140に出力する。FPGA140は、入力されたプログラムに基づいてセレクタ121、符号付与回路123A~123C及び多重化装置127を構成する。また、制御部125は、FPGA140による回路の構成にともなって、CPU144がコネクタ22Aのメモリ151Aに保存された各種情報を読み出してDRAM146の対応する領域に保存する。この際に、CPU144は、他のコネクタ22B,22Cについても同様の処理を行い、各コネクタ22B,22Cが備えるメモリ151B,151Cから各種情報を読み出してDRAM146の対応する領域に保存する。なお、CPU144は、装置が接続されていないコネクタ(コネクタ93A~93Cを含む)については上記した読み出し処理を実行しない設定となっている。 Next, the CPLD 143 reads out the program stored in the ROM 141 and outputs it to the FPGA 140. The FPGA 140 configures a selector 121, code assigning circuits 123A to 123C, and a multiplexing device 127 based on the input program. Further, in accordance with the circuit configuration of the FPGA 140, the control unit 125 reads various information stored in the memory 151 </ b> A of the connector 22 </ b> A and stores it in a corresponding area of the DRAM 146. At this time, the CPU 144 performs the same processing for the other connectors 22B and 22C, reads various information from the memories 151B and 151C included in the connectors 22B and 22C, and stores them in a corresponding area of the DRAM 146. Note that the CPU 144 is set not to execute the above-described reading process for connectors (including connectors 93A to 93C) to which no device is connected.
 次に、CPU144は、各コネクタ22A~22Cのメモリ151A~151Cから読み出した情報に基づいて誤り訂正の種類を判定する。例えば、CPU144は、コネクタ22Aの誤り訂正の種類がROM141に予め保存された誤り訂正の種類になかった場合に、符号付与回路123A~123Cをメモリ151Aに保存された回路情報に基づいてリコンフィグレーションする。メモリ151Aには、データ種に対応する符号付与回路の回路情報が保存されており(図7参照)、CPU144がDRAM146に読み出した回路情報をFPGA140に出力することで対応する符号付与回路が構成される。 Next, the CPU 144 determines the type of error correction based on the information read from the memories 151A to 151C of the connectors 22A to 22C. For example, when the type of error correction of the connector 22A is not the type of error correction stored in advance in the ROM 141, the CPU 144 reconfigures the code assignment circuits 123A to 123C based on the circuit information stored in the memory 151A. To do. The memory 151A stores the circuit information of the code providing circuit corresponding to the data type (see FIG. 7), and the CPU 144 outputs the circuit information read to the DRAM 146 to the FPGA 140, thereby configuring the corresponding code adding circuit. The
 この場合、セレクタ121は、必ずしも必要ではない。入力されたプログラムに基づいて構成すべき符号付与回路が決定される場合には、符号付与回路(123A~123Cの何れか)を対応するコネクタ(93A~93Cの何れか)に直結することもできる。 In this case, the selector 121 is not always necessary. In the case where the sign assignment circuit to be configured is determined based on the input program, the sign assignment circuit (any one of 123A to 123C) can be directly connected to the corresponding connector (any one of 93A to 93C). .
 また、CPU144は、DRAM146に保存したデータをFPGA140に出力する。FPGA140は、入力されるデータに基づいてセレクタ121の回路(入出力先)を再構成(リコンフィグレーション)する。これにより、各コネクタ22A~22Cに対し適切な誤り訂正・検出処理が実行可能な符号付与回路123A~123Cが接続されることとなる。同様に、コネクタ22B,22Cは、データ種に応じた符号付与回路123A~123Cが接続される。なお、受信側の光無線装置91の制御部135は、送信側の制御部125と同様に、コネクタ80A~80Cのメモリ(図示略)に保存されるデータに基づいてセレクタ131及び訂正回路133A~133Cをリコンフィグレーションすることで、各コネクタ80A~80C(コネクタ91A~91C)に出力すべきデータ種に応じた訂正回路133A~133Cが接続されるように制御する。 Further, the CPU 144 outputs the data stored in the DRAM 146 to the FPGA 140. The FPGA 140 reconfigures (reconfigures) the circuit (input / output destination) of the selector 121 based on the input data. As a result, the code providing circuits 123A to 123C capable of executing appropriate error correction / detection processing are connected to the connectors 22A to 22C. Similarly, the connectors 22B and 22C are connected to code providing circuits 123A to 123C corresponding to the data type. Note that the control unit 135 of the optical wireless device 91 on the reception side is similar to the control unit 125 on the transmission side, based on data stored in memories (not shown) of the connectors 80A to 80C, and the selector 131 and the correction circuits 133A to 133A. By reconfiguring 133C, control is performed so that correction circuits 133A to 133C corresponding to the data types to be output to connectors 80A to 80C (connectors 91A to 91C) are connected.
 このように構成された多重化通信システム110では、例えば、図5に示す送信側のマークカメラ47にて取得された画像データは、コネクタ93Cを介して光無線装置93に入力されセレクタ121にて画像データに対応する符号付与回路123Aに出力される。また、符号付与回路123Aの出力は、伝送路95を介して光無線装置91に入力され画像データに対応する訂正回路133Aにてデータの誤り検出・訂正処理が施される。そして、訂正回路133Aの出力は、セレクタ131によりコネクタ91Aから出力され画像ボード84に入力される。従って、本実施形態の光無線装置91,93は、制御部125,135が各コネクタ22A~22C,80A~80Cのメモリ(メモリ151A~151Cを含む)に保存されたデータを読み出しその読み出したデータに基づいてセレクタ121,131の入出力先を切り替え、あるいは各コネクタを対応する符号付与回路及び訂正回路に接続する。これにより、各コネクタ22A~22C,80A~80Cに入出力されるデータに対し、その種類に応じた符号付与回路123A~123C及び訂正回路133A~133Cが適用される。そのため、使用者が各装置(装着ヘッド22等)を装着装置10に接続する際にどのコネクタがどのデータ種に対応しているかを意識する必要がない。即ち、各種装置が着脱可能な装着装置10において当該装置が容易に接続できる装着装置10が構成できる。 In the multiplexed communication system 110 configured in this way, for example, image data acquired by the mark camera 47 on the transmission side shown in FIG. 5 is input to the optical wireless device 93 via the connector 93C and is input by the selector 121. The data is output to the code assigning circuit 123A corresponding to the image data. Further, the output of the code adding circuit 123A is input to the optical wireless device 91 via the transmission path 95 and subjected to data error detection / correction processing in the correction circuit 133A corresponding to the image data. The output of the correction circuit 133A is output from the connector 91A by the selector 131 and input to the image board 84. Therefore, in the optical wireless devices 91 and 93 according to the present embodiment, the control units 125 and 135 read the data stored in the memories (including the memories 151A to 151C) of the connectors 22A to 22C and 80A to 80C, and the read data Based on the above, the input / output destinations of the selectors 121 and 131 are switched, or each connector is connected to the corresponding code assigning circuit and correction circuit. As a result, the code assigning circuits 123A to 123C and the correction circuits 133A to 133C corresponding to the types are applied to the data inputted to and outputted from the connectors 22A to 22C and 80A to 80C. Therefore, when the user connects each device (such as the mounting head 22) to the mounting device 10, there is no need to be aware of which connector corresponds to which data type. That is, in the mounting device 10 to which various devices can be attached and detached, the mounting device 10 to which the device can be easily connected can be configured.
 なお、図5に示す符号付与回路134A~134C及び訂正回路124A~124Cは、訂正回路133A~133C及び符号付与回路123A~123Cと同様に、プログラム可能なロジックデバイスで構成され回路情報に基づいてコンフィグレーションして構成される。 Note that the code adding circuits 134A to 134C and the correction circuits 124A to 124C shown in FIG. 5 are configured by programmable logic devices and configured based on circuit information, like the correction circuits 133A to 133C and the code adding circuits 123A to 123C. Configured.
 また、図5に示すように、光無線装置91は、光無線装置93と同様に外部端子139を備えており、外部端子139から入力されるデータに基づいて制御部135が備えるROM(図示略)に保存されるプログラム(訂正回路133A~133C)の回路情報が更新される。また、多重化装置127,137間の通信は、例えばTDM方式のフレームデータに各誤り訂正処理(符号付与回路123A~123C,訂正回路133A~133Cの組み合わせ)に対応した各データが含まれて伝送されており、例えばフレームのデータ長と各データ種のデータの区切りを示す情報(ヘッダ等)を付加して伝送される。 As shown in FIG. 5, the optical wireless device 91 includes an external terminal 139 similar to the optical wireless device 93, and a ROM (not shown) included in the control unit 135 based on data input from the external terminal 139. The circuit information of the program (correction circuits 133A to 133C) stored in () is updated. The communication between the multiplexers 127 and 137 is performed by transmitting, for example, data corresponding to each error correction process (combination of the code adding circuits 123A to 123C and the correction circuits 133A to 133C) in the TDM frame data. For example, information (header or the like) indicating the data length of the frame and the data delimiter of each data type is added and transmitted.
 次に、上記した多重化通信システム110において、システム稼働時に光無線装置91,93の各コネクタ91A~91C,93A~93Cに新たな接続が生じた場合の動作について説明する。なお、以下の説明では、システムが稼働後にコネクタ93Aに対してコネクタ22Aが接続された場合の制御部125の動作について図8のフローチャートに従って説明する。
 まず、制御部125は、多重化通信システム110の稼働にともないコネクタ93A~93Cに対する接続を監視する処理を行う(図8のステップS10)。例えば、制御部125は、各コネクタ93A~93Cの制御信号用端子の入出力を定期的に検出してコネクタ93A~93Cに対する新たな接続により生じる割込み処理(電源の供給開始等)がないかを判定する処理を行う(ステップS11)。ステップS11においてコネクタが接続される場合を説明する。一例として、コネクタ93Aにコネクタ22Aが接続されるものとして説明する。接続にともない、コネクタ93Aの制御信号用端子からコネクタ22Aの割り込み信号が入力されると、制御部125は、受信側の制御部135と協働して多重化通信システム110の通信を停止させる制御を行う(ステップS13)。また、ステップS13において、制御部125は、コネクタ22Aのメモリ151Aからデータ種に関する情報を読み出しDRAM146に保存する処理を行う。なお、制御部125は、複数のコネクタ93A~93Cに対する接続が生じた場合には各コネクタ93A~93Cに対して同様の処理を実施する。
Next, in the multiplexing communication system 110 described above, an operation when a new connection occurs in each of the connectors 91A to 91C and 93A to 93C of the optical wireless devices 91 and 93 during system operation will be described. In the following description, the operation of the control unit 125 when the connector 22A is connected to the connector 93A after the system is operated will be described with reference to the flowchart of FIG.
First, the control unit 125 performs processing for monitoring connections to the connectors 93A to 93C as the multiplexed communication system 110 operates (step S10 in FIG. 8). For example, the control unit 125 periodically detects input / output of the control signal terminals of the connectors 93A to 93C, and checks whether there is an interrupt process (power supply start, etc.) caused by a new connection to the connectors 93A to 93C. A determination process is performed (step S11). A case where a connector is connected in step S11 will be described. As an example, it is assumed that the connector 22A is connected to the connector 93A. When the interrupt signal of the connector 22A is input from the control signal terminal of the connector 93A along with the connection, the control unit 125 controls the communication of the multiplexed communication system 110 in cooperation with the control unit 135 on the receiving side. Is performed (step S13). In step S <b> 13, the control unit 125 performs a process of reading information on the data type from the memory 151 </ b> A of the connector 22 </ b> A and storing it in the DRAM 146. The control unit 125 performs the same processing for each of the connectors 93A to 93C when connection to the plurality of connectors 93A to 93C occurs.
 次いで、制御部125は、DRAM146に保存される情報(図7参照)から各コネクタ22A~22Cにおけるデータ通信で要求されるデータ転送レートの合計値が伝送路95における最大通信レートを超えていないかを判定する(ステップS15)。制御部125は、合計したデータ転送レートが最大通信レートを超えていた場合に、図9に示すシステムエラーを示す表示210を、例えば表示装置13(図1参照)に表示させる処理を行う(ステップS17)。図9に示す例では、伝送路95の最大通信速度が10000Mbpsである設定に対し、コネクタ22Aのデータ転送レートが125Mbps、コネクタ22Bのデータ転送レートが6000Mbps、コネクタ22Cのデータ転送レートが6000Mbpsで合計したデータ転送レートが12125Mbpsである場合を示している。これにより、使用者は、接続の変更によりデータ転送レートの合計がシステムの設定容量を超えたことを確認できる。 Next, the control unit 125 determines whether the total value of the data transfer rates required for data communication in each of the connectors 22A to 22C exceeds the maximum communication rate in the transmission path 95 from the information stored in the DRAM 146 (see FIG. 7). Is determined (step S15). When the total data transfer rate exceeds the maximum communication rate, the control unit 125 performs a process of displaying the display 210 indicating the system error shown in FIG. 9 on, for example, the display device 13 (see FIG. 1) (Step 1). S17). In the example shown in FIG. 9, for the setting where the maximum communication speed of the transmission path 95 is 10,000 Mbps, the data transfer rate of the connector 22A is 125 Mbps, the data transfer rate of the connector 22B is 6000 Mbps, and the data transfer rate of the connector 22C is 6000 Mbps. In this example, the data transfer rate is 12125 Mbps. Thus, the user can confirm that the total data transfer rate has exceeded the set capacity of the system due to the connection change.
 また、表示210には、使用者に操作を促す選択部211が表示されており、制御部125は、例えばタッチパネル式の表示装置13の選択部211が使用者により選択されるまでは処理を停止する処理を行う。また、制御部125は、例えば選択部211が選択されたことを検出した場合に、ステップS10から処理を再開する。表示210には、各コネクタ22A~22Cのデータ転送レートが表示されており、使用者は表示210によって接続の誤りが確認できるとともに、その表示に従って各コネクタ22A~22Cの接続を再度変更することができる。これにより、最大通信レートの制限によるシステムエラーに対してより迅速に対応可能な多重化通信システム110が構成できる。なお、図9に示すデータ転送レート及び表示210の内容は一例である。また、最大通信レートの設定値は、例えばROM141(図6参照)に予め設定する。また、制御部125は、他の表示装置(例えば制御装置80の表示部)や表示ランプ等にエラー出力してもよい。 The display 210 displays a selection unit 211 that prompts the user to perform an operation, and the control unit 125 stops the processing until the selection unit 211 of the touch panel display device 13 is selected by the user, for example. Perform the process. For example, when the control unit 125 detects that the selection unit 211 has been selected, the control unit 125 restarts the process from step S10. The display 210 displays the data transfer rate of each of the connectors 22A to 22C. The user can confirm the connection error on the display 210 and can change the connection of the connectors 22A to 22C again according to the display. it can. Thereby, it is possible to configure the multiplexed communication system 110 that can more quickly cope with a system error due to the limitation of the maximum communication rate. The data transfer rate and display 210 shown in FIG. 9 are examples. The set value of the maximum communication rate is set in advance in, for example, the ROM 141 (see FIG. 6). The control unit 125 may output an error to another display device (for example, the display unit of the control device 80), a display lamp, or the like.
 次に、制御部125は、ステップS15において合計したデータ転送レートが最大通信速度の大きさ以下であった場合に、ROM141に保存された符号付与回路の回路情報(誤り訂正の種類)の中に、新たに接続されたコネクタ22Aの誤り訂正の種類に対応するものがあるかを判定する(ステップS19)。ステップS19において対応する回路情報があった場合には、制御部125(CPU144)は、該当する回路情報を含むデータをROM141から読み出し(ステップS21)、読み出した回路情報をFPGA140に出力して符号付与回路123A~123Cを回路情報に応じた符号付与回路に変更するリコンフィグレーションを実行する(ステップS22)。また、ステップS19において対応する回路情報がなかった場合には、制御部125は、新たに接続されたコネクタ22Aのメモリ151Aから符号付与回路の回路情報をDRAM146に読み出す処理を実行する(ステップS24)。そして、制御部125は、DRAM146に保存した回路情報をFPGA140に出力してリコンフィグレーションを実行する(ステップS25)。 Next, when the total data transfer rate in step S15 is equal to or less than the maximum communication speed, the control unit 125 includes the circuit information (error correction type) of the code adding circuit stored in the ROM 141. Then, it is determined whether there is one corresponding to the type of error correction of the newly connected connector 22A (step S19). When there is corresponding circuit information in step S19, the control unit 125 (CPU 144) reads out data including the corresponding circuit information from the ROM 141 (step S21), and outputs the read circuit information to the FPGA 140 to give a code. Reconfiguration is performed in which the circuits 123A to 123C are changed to code adding circuits corresponding to the circuit information (step S22). If there is no corresponding circuit information in step S19, the control unit 125 executes a process of reading the circuit information of the sign assignment circuit from the memory 151A of the newly connected connector 22A to the DRAM 146 (step S24). . Then, the control unit 125 outputs the circuit information stored in the DRAM 146 to the FPGA 140 and executes reconfiguration (step S25).
 次いで、ステップS27において、制御部125は、FPGA140に対する回路の書き換えが正常に終了しているかを確認できるまでリコンフィグを繰り返し実行する。制御部125は、例えばFPGA140に試験信号を入出力して回路が正常に再構成されているかを確認する。ステップS27において、制御部125は、回路の書き換えが正常に終了したと判定すると、受信側の制御部135と協働して多重化通信システム110の通信を再開する制御を行う(ステップS29)。そして、ステップS10における監視処理から再度同じ処理を実行する。なお、上記した説明では、1つのコネクタに新たな接続があった場合を想定して説明したが、複数のコネクタに対する新たな接続があった場合についても同様の処理を順次実施する。また、制御部135(受信側)の動作(コネクタ80A~80Cに対する新たな接続時)については制御部125と同様であるため説明を省略する。 Next, in step S27, the control unit 125 repeatedly executes reconfiguration until it can be confirmed whether the rewriting of the circuit for the FPGA 140 has been normally completed. For example, the control unit 125 inputs and outputs a test signal to the FPGA 140 to check whether the circuit is normally reconfigured. In step S27, when the control unit 125 determines that the circuit rewriting has been normally completed, the control unit 125 performs control to resume communication of the multiplexed communication system 110 in cooperation with the control unit 135 on the reception side (step S29). Then, the same process is executed again from the monitoring process in step S10. In the above description, the case where there is a new connection to one connector has been described. However, the same processing is sequentially performed when there is a new connection to a plurality of connectors. Further, the operation of the control unit 135 (reception side) (at the time of new connection to the connectors 80A to 80C) is the same as that of the control unit 125, and thus description thereof is omitted.
(通信異常時の動作)
 次に、上記した多重化通信システム110において通信異常が発生した場合の動作について説明する。
 図5に示すように、光無線装置93の多重化装置127は、伝送路95における通信の異常を検出する検出部128を備える。検出部128は、例えば伝送路95が切断された場合に、検出信号SI1を制御部125に出力する。制御部125は、検出部128からの検出信号SI1に基づいて、装着ヘッド22が備える各装置(ノズル昇降装置43等)を制御する。なお、検出部128における通信異常の検出は、例えば、多重化装置127,137間において定期的に通信を確認するデータを送受信し当該データが受信できない状態が所定時間経過する、あるいは光無線の受光量が閾値以下となる等の条件に基づいて検出することができる。
(Operation when communication is abnormal)
Next, an operation when communication abnormality occurs in the above-described multiplexed communication system 110 will be described.
As illustrated in FIG. 5, the multiplexing device 127 of the optical wireless device 93 includes a detection unit 128 that detects a communication abnormality in the transmission path 95. For example, when the transmission path 95 is disconnected, the detection unit 128 outputs the detection signal SI1 to the control unit 125. The control unit 125 controls each device (nozzle lifting device 43 and the like) included in the mounting head 22 based on the detection signal SI1 from the detection unit 128. The detection of the communication abnormality in the detection unit 128 is performed, for example, by periodically transmitting and receiving data for confirming communication between the multiplexers 127 and 137, and a state in which the data cannot be received passes for a predetermined time, or reception of optical wireless signals. Detection is possible based on conditions such as the amount being equal to or less than the threshold.
 ここで、光無線装置91,93に接続される装置は、通信の異常が発生した場合に、各装置の機能・特徴等に応じて適切に処理される必要がある。例えば、光無線装置93に接続されるノズル昇降装置43は、制御装置80との通信が切断、即ち制御装置80から制御ができなくなった場合に安全に停止させるフェールセーフ等の処理を実行する必要がある。従って、制御部125は、検出部128からの検出信号SI1に基づいてノズル昇降装置43(電磁モータ43A)を停止させる制御を行う。制御部125は、検出信号SI1の入力に応じてコネクタ93A,22Aを介して電磁モータ43Aに制御信号S1を出力して安全に停止させる制御を行う。 Here, the devices connected to the optical wireless devices 91 and 93 need to be appropriately processed according to the functions and features of each device when a communication abnormality occurs. For example, the nozzle lifting and lowering device 43 connected to the optical wireless device 93 needs to execute a process such as fail-safe to safely stop when communication with the control device 80 is cut off, that is, when control from the control device 80 becomes impossible. There is. Therefore, the control unit 125 performs control to stop the nozzle lifting / lowering device 43 (electromagnetic motor 43A) based on the detection signal SI1 from the detection unit 128. The control unit 125 performs control to output the control signal S1 to the electromagnetic motor 43A via the connectors 93A and 22A in accordance with the input of the detection signal SI1 to stop it safely.
 また、光無線装置91の多重化装置137は、伝送路95における通信の異常を検出する検出部138を備える。検出部138は、伝送路95の切断を検出した場合に、検出信号SI2を制御部135に出力する。制御部135は、検出部138からの検出信号SI2に基づいて制御装置80を制御する。例えば、制御部135は、検出信号SI2の入力に応じてコネクタ91A,80Aを介して制御装置80に接続される報知ブザーやランプ(共に図示略)を制御しユーザに対して通信異常が発生したことを報知する。これにより、通信異常に対してユーザが迅速に対応できる。 Also, the multiplexing device 137 of the optical wireless device 91 includes a detection unit 138 that detects a communication abnormality in the transmission path 95. The detection unit 138 outputs the detection signal SI <b> 2 to the control unit 135 when detecting the disconnection of the transmission path 95. The control unit 135 controls the control device 80 based on the detection signal SI2 from the detection unit 138. For example, the control unit 135 controls a notification buzzer and a lamp (both not shown) connected to the control device 80 via the connectors 91A and 80A in response to the input of the detection signal SI2, and a communication abnormality has occurred to the user. Inform you. Thereby, a user can respond quickly to communication abnormality.
 なお、上記した通信異常時における制御は一例であり、光無線装置91,93に接続される装置の機能・特徴等に応じて制御内容を適宜変更する。例えば、制御部125は、検出信号SI1を入力した場合に、電磁モータ43Aを停止させずに、装着ヘッド22が退避する位置まで駆動する、あるいは状態を変更させないように固定(ロック)状態としてもよい。また、例えば、制御部125は、位置検出センサ45への電力の供給を停止する制御を行ってもよい。また、例えば、制御部125は、マークカメラ47を初期状態・位置にする制御を行ってもよい。また、例えば、通信の断線が発生すると各制御ボード84,85,86には、有効でないデータが入力される可能性がある。従って、制御部135は、検出信号SI2を入力した場合に、各制御ボード84,85,86に対し入力データを破棄させる制御を実行してもよい。また、制御内容を通信異常の態様に応じて変更してもよい。例えば、制御部125は、瞬断のような受信データが一時的に受信できないような場合に、電磁モータ43Aを停止せずにモータの回転速度を遅らせる制御を実行してもよい。 Note that the above control at the time of communication abnormality is an example, and the control content is appropriately changed according to the functions and features of the devices connected to the optical wireless devices 91 and 93. For example, when the detection signal SI1 is input, the control unit 125 does not stop the electromagnetic motor 43A and drives the mounting head 22 to the retracted position, or sets the fixing (locked) state so as not to change the state. Good. For example, the control unit 125 may perform control to stop the supply of power to the position detection sensor 45. Further, for example, the control unit 125 may perform control for setting the mark camera 47 to the initial state / position. In addition, for example, when communication disconnection occurs, invalid data may be input to each control board 84, 85, 86. Therefore, the control unit 135 may execute control for causing the control boards 84, 85, 86 to discard the input data when the detection signal SI2 is input. Moreover, you may change the control content according to the aspect of communication abnormality. For example, the control unit 125 may execute control to delay the rotation speed of the motor without stopping the electromagnetic motor 43A when reception data such as a momentary interruption cannot be temporarily received.
 以上、詳細に説明した本実施形態によれば以下の効果を奏する。送信側の制御部125は、コネクタ22A~22Cのメモリ151A~151Cに保存されたデータ種に係る情報(図7に示すデータ種)を読み出し、その読み出したデータに基づいてセレクタ121を制御する。これにより、各コネクタ22A~22Cは、入出力するデータ種に応じた誤り訂正の設定処理を行う符号付与回路123A~123Cが接続される。これら符号付与回路123A~123Cにより設定処理されたデータは、多重化装置127により多重化して送信される。
 一方、受信側において、多重化装置137は、送信側から転送される信号の多重化を解除し個々のデータに分離して各訂正回路133A~133Cに出力する。また、制御部135は、送信側の制御部125と同様に、コネクタ80A~80Cのメモリ(図示略)に保存されたデータを読み出してセレクタ131を制御し、コネクタ80A~80Cをデータ種に応じた訂正回路133A~133Cに接続する。
As mentioned above, according to this embodiment described in detail, there exist the following effects. The transmission-side control unit 125 reads information (data type shown in FIG. 7) related to the data type stored in the memories 151A to 151C of the connectors 22A to 22C, and controls the selector 121 based on the read data. As a result, the connectors 22A to 22C are connected to the code providing circuits 123A to 123C for performing the error correction setting process according to the input / output data type. The data set by the code adding circuits 123A to 123C is multiplexed by the multiplexer 127 and transmitted.
On the other hand, on the receiving side, the multiplexing device 137 demultiplexes the signal transferred from the transmitting side, separates it into individual data, and outputs the data to the correction circuits 133A to 133C. Similarly to the control unit 125 on the transmission side, the control unit 135 reads data stored in the memories (not shown) of the connectors 80A to 80C and controls the selector 131, and controls the connectors 80A to 80C according to the data type. The correction circuits 133A to 133C are connected.
 これにより、各コネクタ22A~22C,80A~80Cに入出力されるデータに対し、その種類に応じた符号付与回路123A~123C及び訂正回路133A~133Cが適用される。その結果、使用者が各装置(装着ヘッド22等)を装着装置10に接続する際にどのコネクタがどのデータ種に対応しているかを意識する必要がない。即ち、各種装置が着脱可能な装着装置10において当該装置が容易に接続できる装着装置10が構成できる。 As a result, the sign assigning circuits 123A to 123C and the correction circuits 133A to 133C corresponding to the types are applied to the data inputted to and outputted from the connectors 22A to 22C and 80A to 80C. As a result, the user does not need to be aware of which connector corresponds to which data type when connecting each device (such as the mounting head 22) to the mounting device 10. That is, in the mounting device 10 to which various devices can be attached and detached, the mounting device 10 to which the device can be easily connected can be configured.
 因みに、多重化通信システム110は、通信システムの一例として、装着ヘッド22は、電装装置の一例として、光無線装置91,93は、データ通信部の一例として、メモリ151A~151Cは、情報格納部の一例として、コネクタ91A~91C,93A~93Cは、接続端子の一例として、符号付与回路123A~123Cは、誤り処理設定手段の一例として、検出部128,138は、異常検出部の一例として、訂正回路133A~133Cは、誤り確認手段の一例として、セレクタ121は、送信側選択手段の一例として、セレクタ131は、受信側選択手段の一例として、制御部125、セレクタ121は、送信側制御部の一例として、制御部135、セレクタ131は、受信側制御部の一例として、FPGA140は、プログラマブル論理デバイスの一例として挙げられる。 Incidentally, the multiplexing communication system 110 is an example of a communication system, the mounting head 22 is an example of an electrical equipment, the optical wireless devices 91 and 93 are examples of a data communication unit, and the memories 151A to 151C are information storage units. As an example, connectors 91A to 91C and 93A to 93C are examples of connection terminals, sign assignment circuits 123A to 123C are examples of error processing setting means, and detection units 128 and 138 are examples of abnormality detection units. The correction circuits 133A to 133C are examples of error checking means, the selector 121 is an example of a transmission side selection means, the selector 131 is an example of a reception side selection means, the control unit 125, and the selector 121 is a transmission side control part. As an example, the control unit 135 and the selector 131 are an example of the receiving side control unit. One example of a Guramaburu logical device.
 なお、本発明は上記の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲内での種々の改良、変更が可能であることは言うまでもない。
 例えば、上記実施形態では、光無線による通信を例に説明したが、本願はこれに限定されるものではなく、赤外線や可視光などの他に様々な電磁波を用いた無線通信にも適用できる。また、有線の通信においても同様に適用でき、無線通信ではなく電気通信においても同様に適用することができる。
 また、上記実施形態では多重化した通信を例に説明したが、本願はこれに限定されるものではない。
In addition, this invention is not limited to said embodiment, It cannot be overemphasized that various improvement and change are possible within the range which does not deviate from the meaning of this invention.
For example, in the above embodiment, communication by optical wireless has been described as an example. However, the present application is not limited to this, and can be applied to wireless communication using various electromagnetic waves in addition to infrared rays and visible light. Further, the present invention can be similarly applied to wired communication, and can be similarly applied to telecommunication instead of wireless communication.
Moreover, although the said embodiment demonstrated the communication which multiplexed as an example, this application is not limited to this.
 また、上記した多重化通信システム110は、装着装置10に内蔵される装置(制御装置80とその他の装置)間の通信に限らず、複数の装着装置10間の通信にも同様に適用することができる。要は、伝送されるデータの種類に応じて誤り訂正規則を適合させる必要がある多重化通信に適用できる。 The above-described multiplexed communication system 110 is not limited to communication between devices (the control device 80 and other devices) built in the mounting device 10, and is similarly applied to communication between a plurality of mounting devices 10. Can do. In short, the present invention can be applied to multiplexed communication that requires an error correction rule to be adapted according to the type of data to be transmitted.
 また、上記実施形態では、データの種類として、図4に示されるデータ種ごとに異なるデータの種類として取り扱ったが、本願はこれに限定されない。例えば、上記実施形態では、サーボ制御情報を1つのデータ種として取り扱い1種類の誤り訂正処理(例えば、多数決論理)を実施したが、これに限定されない。例えば、同じデータ種とされたサーボ制御情報であっても、図2におけるX軸方向に対応する電磁モータ33と、Y軸方向に対応する電磁モータ60とを制御する各サーボ制御情報に対し異なる種類の誤り処理を各々に実施してもよい。即ち、本願におけるデータの種類とは、制御対象やその他のデータの取り扱い態様などに応じてデータを異なる種類として取り扱う場合も含む。 In the above embodiment, the data type is handled as a different data type for each data type shown in FIG. 4, but the present application is not limited to this. For example, in the above embodiment, servo control information is handled as one data type, and one type of error correction processing (for example, majority logic) is performed. However, the present invention is not limited to this. For example, even if the servo control information is the same data type, the servo control information is different for each servo control information for controlling the electromagnetic motor 33 corresponding to the X-axis direction and the electromagnetic motor 60 corresponding to the Y-axis direction in FIG. Each type of error handling may be implemented. That is, the type of data in the present application includes a case where data is handled as a different type according to a control target, other data handling mode, and the like.
 また、上記実施形態の多重化通信システム110において伝送されるデータには、誤り処理が実施されないデータが含まれてもよい。また、1種類のデータに対して複数回の誤り処理が実施されてもよい。 In addition, data transmitted in the multiplexed communication system 110 of the above embodiment may include data that is not subjected to error processing. Further, error processing may be performed a plurality of times for one type of data.
 また、上記実施形態では、コネクタ93A~93Cが各々異なるデータ種を出力する構成としたが、複数のコネクタが同一のデータ種を出力、あるいは入力する構成でもよい。例えば、図10に示す光無線装置300では、送信側のセレクタ301に接続されるコネクタ303,304から同一のデータ種に分類されるデータを入力する。なお、図10は、セレクタ301,308における2つの切替動作の状態を1図で示している。 In the above embodiment, the connectors 93A to 93C output different data types, but a plurality of connectors may output or input the same data type. For example, in the optical wireless device 300 illustrated in FIG. 10, data classified into the same data type is input from the connectors 303 and 304 connected to the transmission-side selector 301. Note that FIG. 10 shows a state of two switching operations in the selectors 301 and 308 in FIG.
 セレクタ301は、制御部312からの制御に基づいて、データ種に対応する1つの符号付与回路306に対してコネクタ303,304の接続を切替える。また、符号付与回路306の出力側は、セレクタ308を介して多重化装置310が接続されている。つまり、図10に示す構成では、符号付与回路306の出力側にも制御部312により制御されるセレクタ308が設けられている。
 ここで、例えば、コネクタ303,304のメモリ303A,304Aにはデータ転送レートとして10Mbpsが設定された場合を説明する。制御部312は、メモリ303A,304Aから読み出した情報に基づいて各コネクタ303,304のデータ出力で要求されるデータ転送レートを維持させるためにセレクタ301を制御する。例えば、制御部312は、セレクタ301,308、及び符号付与回路306をデータ転送レートと同一のデータ種が出力されるコネクタの個数(この場2個)の乗算で算出される値、即ち、20Mbpsのデータ転送レートを維持する動作周波数で動作させる。これにより、要求されるデータ転送レートを維持しつつ、適切な誤り訂正処理を実施することができる。なお、図10に示す構成では、セレクタ301、308に、各コネクタ303,304の出力に対応して、それぞれバッファ313、314を設けることが好ましい。例えばFIFO(First In First Out)形式でデータが保存されるバッファが考えられる。
Based on the control from the control unit 312, the selector 301 switches the connection of the connectors 303 and 304 to one code adding circuit 306 corresponding to the data type. Also, the output side of the code assigning circuit 306 is connected to the multiplexing device 310 via the selector 308. That is, in the configuration shown in FIG. 10, the selector 308 controlled by the control unit 312 is also provided on the output side of the code providing circuit 306.
Here, for example, a case where 10 Mbps is set as the data transfer rate in the memories 303A and 304A of the connectors 303 and 304 will be described. The control unit 312 controls the selector 301 to maintain the data transfer rate required for the data output of the connectors 303 and 304 based on the information read from the memories 303A and 304A. For example, the control unit 312 causes the selectors 301 and 308 and the sign assigning circuit 306 to be calculated by multiplying the number of connectors (two in this case) that output the same data type as the data transfer rate, that is, 20 Mbps. The operation frequency is maintained to maintain the data transfer rate. As a result, it is possible to perform an appropriate error correction process while maintaining the required data transfer rate. In the configuration shown in FIG. 10, it is preferable that the selectors 301 and 308 are provided with buffers 313 and 314 corresponding to the outputs of the connectors 303 and 304, respectively. For example, a buffer that stores data in a FIFO (First In First Out) format is conceivable.
 また、上記実施形態における接続部としてのコネクタ(コネクタ22A~22C等)の構成は一例であり、適宜変更してもよい。例えば、光無線装置93は、各コネクタ93A~93Cがコネクタ22A~22Cの各々と一対一で接続される構成としたが、これに限定されず、各コネクタ93A~93Cに対応する複数の入出力端子等を一つ(1組)のコネクタに設けるような構成、即ち装着ヘッド22と光無線装置93とを1組のコネクタで接続する構成としてもよい。このような複数の端子等を備えるコネクタを接続部とする構成において、本願発明を適用することにより、例えば装着ヘッド22の種類・機能等に応じて装着ヘッド22が有するコネクタの入出力端子の配置が変更された場合においても光無線装置93側の端子と電気的に接続されるような端子の配置であれば、各端子に入出力されるデータに対して好適な誤り訂正処理を適用することが可能となる。 In addition, the configuration of the connectors (connectors 22A to 22C, etc.) as connection portions in the above embodiment is an example, and may be changed as appropriate. For example, the optical wireless device 93 is configured such that the connectors 93A to 93C are connected to the connectors 22A to 22C on a one-to-one basis, but the present invention is not limited to this, and a plurality of inputs / outputs corresponding to the connectors 93A to 93C are used. It is good also as a structure which provides a terminal etc. in one (1 set) connector, ie, the structure which connects the mounting head 22 and the optical radio | wireless apparatus 93 by 1 set of connectors. In such a configuration in which a connector having a plurality of terminals and the like is used as a connection portion, by applying the present invention, for example, the arrangement of the input / output terminals of the connector included in the mounting head 22 according to the type and function of the mounting head 22 If the terminal arrangement is such that it is electrically connected to the terminal on the optical wireless device 93 side even when the signal is changed, a suitable error correction process is applied to the data input to and output from each terminal. Is possible.
 また、上記実施形態において、回路情報(符号付与回路123A~123C及び訂正回路133A~133C)が保存されたROM141を省略した構成としてもよい。例えば、コネクタ22A~22C,80A~80Cが備えるメモリ(メモリ151A~151Cを含む)に保存された回路情報(図7参照)に基づいて符号付与回路123A~123C及び訂正回路133A~133Cを構成してもよい。これにより、接続されたコネクタから適宜必要な回路情報を読み出してシステムを構成することで、光無線装置91,93に予め回路情報(ライブラリ)を備える必要がなく、より汎用性の高いシステム構成とすることができる。
 また、上記構成とは逆に、メモリ151A~151Cに回路情報を保存しない構成、即ち、ROM141のみに符号付与回路123A~123C及び訂正回路133A~133Cの回路情報を保存する構成としてもよい。この場合、必要となる回路情報の組合せは、コネクタの数と誤り訂正の種類の数とを掛け合わせた数の組合せが想定されるため、それらすべてをROM141に予め保存することが好ましい。
In the above-described embodiment, the ROM 141 storing the circuit information (the code addition circuits 123A to 123C and the correction circuits 133A to 133C) may be omitted. For example, the code adding circuits 123A to 123C and the correction circuits 133A to 133C are configured based on circuit information (see FIG. 7) stored in the memories (including the memories 151A to 151C) included in the connectors 22A to 22C and 80A to 80C. May be. Thereby, by reading out necessary circuit information from the connected connector as needed and configuring the system, the optical wireless devices 91 and 93 do not need to be provided with circuit information (libraries) in advance, and the system configuration is more versatile. can do.
Contrary to the above configuration, the circuit information may not be stored in the memories 151A to 151C, that is, the circuit information of the code adding circuits 123A to 123C and the correction circuits 133A to 133C may be stored only in the ROM 141. In this case, the necessary combinations of circuit information are assumed to be combinations of numbers obtained by multiplying the number of connectors and the number of types of error correction. Therefore, it is preferable to store all of them in the ROM 141 in advance.
 また、制御部125は、コネクタ22A~22Cのデータ種に対応する符号付与回路123A~123Cの回路情報がメモリ151A~151C及びROM141に保存されていなかった場合にエラーを出力してもよい。 Also, the control unit 125 may output an error when the circuit information of the code assigning circuits 123A to 123C corresponding to the data types of the connectors 22A to 22C is not stored in the memories 151A to 151C and the ROM 141.
 また、光無線装置93のセレクタ121、符号付与回路123A~123C及び多重化装置127の回路の一部をFPGAで構成してもよい。また、セレクタ121及び多重化装置127と、符号付与回路123A~123Cとを別々のFPGAで構成してもよい。なお、光無線装置93は、FPGA等のプログラマブル論理デバイスを用いない構成、即ちユーザ側(フィールド)で変更できないような組み込みの回路で構成可能なことは言うまでもない。 Further, a part of the circuits of the selector 121, the code assigning circuits 123A to 123C, and the multiplexing device 127 of the optical wireless device 93 may be configured by FPGA. Further, the selector 121 and the multiplexer 127 and the code assigning circuits 123A to 123C may be configured by separate FPGAs. Needless to say, the optical wireless device 93 can be configured with a configuration that does not use a programmable logic device such as an FPGA, that is, a built-in circuit that cannot be changed on the user side (field).
 また、上記実施形態の多重化通信システム110における通信異常時の動作では、制御部125,135が、検出部128,138の検出信号SI1,SI2に基づいて各装置を制御したが、これに限定されない。例えば、通信異常の際に、検出部128,138が電磁モータ43Aを直接的に制御してもよい。 Moreover, in the operation | movement at the time of communication abnormality in the multiplex communication system 110 of the said embodiment, although the control parts 125 and 135 controlled each apparatus based on detection signal SI1 and SI2 of the detection parts 128 and 138, it is limited to this. Not. For example, the detection units 128 and 138 may directly control the electromagnetic motor 43A when communication is abnormal.
 また、上記実施形態の装着装置10の構成は一例であり、適宜変更する。例えば装置本体11に対して着脱可能な移動装置23を複数備えた構成としてもよい。また、例えば、コンベアベルト31を複数個(複数レーン)備えた構成としてもよい。また、例えば、複数の装着装置10を搬送方向に駆動連結した構成としてもよい。
 また、情報格納部としてのメモリ151A~151Cは、データ種に係る情報が設定可能な他の機器・装置(例えば、ディップスイッチ、ロータリースイッチ及びジャンパピン等)に変更してもよい。また、情報格納部を、これらの機器等を複数種類用いて構成してもよい。
Moreover, the structure of the mounting apparatus 10 of the said embodiment is an example, and changes suitably. For example, it is good also as a structure provided with two or more moving apparatuses 23 which can be attached or detached with respect to the apparatus main body 11. FIG. For example, it is good also as a structure provided with multiple conveyor belts 31 (plural lanes). Further, for example, a configuration in which a plurality of mounting devices 10 are drivingly connected in the transport direction may be employed.
The memories 151A to 151C as information storage units may be changed to other devices / devices (for example, dip switches, rotary switches, jumper pins, etc.) that can set information related to data types. Further, the information storage unit may be configured using a plurality of types of these devices.
110 多重化通信システム、22 装着ヘッド、91,93 光無線装置、151A~151C メモリ、22A~22C、80A~80C コネクタ、123A~123C 符号付与回路、128,138 検出部、133A~133C 訂正回路、121,131 セレクタ、125,135 制御部、127,137 多重化装置、140 FPGA、129,139 外部端子 110 multiplexing communication system, 22 mounting head, 91, 93 optical wireless device, 151A to 151C memory, 22A to 22C, 80A to 80C connector, 123A to 123C code assigning circuit, 128 and 138 detection unit, 133A to 133C correction circuit, 121, 131 selector, 125, 135 control unit, 127, 137 multiplexer, 140 FPGA, 129, 139 external terminal

Claims (11)

  1.  データの種類に応じて誤り処理の種類が異なる前記データの通信を行なう通信システムであって、
     通信される前記データの種類に係る情報が格納される情報格納部を備える電装装置と、
     前記電装装置が接続される接続端子を備えるデータ通信部とを備え、
     前記データ通信部は、
     送信側の前記電装装置に備えられる前記情報格納部から前記データの種類に係る情報を取得し、該情報に基づいて該データに応じた誤り処理に係る付加情報を設定する誤り処理設定手段を、該電装装置が接続される前記接続端子に割り当てる送信側制御部と、
     受信側の前記電装装置に備えられる前記情報格納部から前記データの種類に係る情報を取得し、該情報に基づいて該データに応じた誤りの検出処理又は誤りの検出・訂正処理を行なう誤り確認手段を、該電装装置が接続される前記接続端子に割り当てる受信側制御部とを備えることを特徴とする通信システム。
    A communication system for performing communication of the data with different types of error processing depending on the type of data,
    An electrical device comprising an information storage unit in which information relating to the type of data to be communicated is stored;
    A data communication unit including a connection terminal to which the electrical device is connected;
    The data communication unit is
    Error processing setting means for acquiring information related to the type of data from the information storage unit provided in the electrical device on the transmission side, and setting additional information related to error processing according to the data based on the information, A transmission side control unit assigned to the connection terminal to which the electrical equipment is connected;
    An error check that acquires information related to the type of data from the information storage unit provided in the electrical device on the receiving side, and performs error detection processing or error detection / correction processing according to the data based on the information And a receiving-side control unit that assigns means to the connection terminal to which the electrical device is connected.
  2.  前記送信側制御部は、
     前記誤り処理設定手段を、前記データの種類ごとに複数備え、
     送信側の前記電装装置が接続される前記接続端子を、該電装装置の前記情報格納部から取得した前記データの種類に係る情報に基づいて、複数の前記誤り処理設定手段の何れかに接続する送信側選択手段を備え、
     前記受信側制御部は、
     前記誤り確認手段を、前記データの種類ごとに複数備え、
     受信側の前記電装装置が接続される前記接続端子を、該電装装置の前記情報格納部から取得した前記データの種類に係る情報に基づいて、複数の前記誤り確認手段の何れかに接続する受信側選択手段を備えることを特徴とする請求項1に記載の通信システム。
    The transmission side control unit
    A plurality of the error processing setting means are provided for each type of data,
    The connection terminal to which the electrical device on the transmission side is connected is connected to one of the plurality of error processing setting means based on the information relating to the type of data acquired from the information storage unit of the electrical device. A transmission side selection means,
    The receiving side control unit
    A plurality of the error checking means are provided for each type of the data,
    Reception for connecting the connection terminal to which the electrical device on the receiving side is connected to any one of the plurality of error checking means based on the information relating to the type of data acquired from the information storage unit of the electrical device The communication system according to claim 1, further comprising side selection means.
  3.  前記送信側制御部及び前記受信側制御部は、
     取得した前記データの種類の係る情報に応じたコンフィグレーションデータに基づいて、前記誤り処理設定手段及び前記誤り確認手段が構成されるプログラマブル論理デバイスを備えることを特徴とする請求項1に記載の通信システム。
    The transmission side control unit and the reception side control unit are:
    The communication according to claim 1, further comprising: a programmable logic device in which the error processing setting unit and the error checking unit are configured based on configuration data corresponding to the acquired information regarding the type of the data. system.
  4.  前記データ通信部は、
     前記コンフィグレーションデータが格納される記憶部を備え、
     前記電装装置に備えられる前記情報格納部から取得される前記データの種類に係る情報により、前記記憶部から対応するコンフィグレーションデータが選択されることを特徴とする請求項3に記載の通信システム。
    The data communication unit is
    A storage unit for storing the configuration data;
    The communication system according to claim 3, wherein corresponding configuration data is selected from the storage unit based on information relating to the type of data acquired from the information storage unit provided in the electrical device.
  5.  前記データの種類に係る情報は前記コンフィグレーションデータを含むことを特徴とする請求項3に記載の通信システム。 4. The communication system according to claim 3, wherein the information related to the type of data includes the configuration data.
  6.  前記送信側制御部又は前記受信側制御部の少なくとも一方は、取得した前記データの種類に係る情報に対応する前記コンフィグレーションデータが前記記憶部に格納されていない場合に、エラー出力を行うことを特徴とする請求項4に記載の通信システム。 At least one of the transmission side control unit or the reception side control unit performs error output when the configuration data corresponding to the acquired information on the type of data is not stored in the storage unit. The communication system according to claim 4, characterized in that:
  7.  前記データの種類ごとにデータ転送レートが定められてなり、
     前記送信側制御部及び前記受信側制御部は、取得した前記データの種類に係る情報に応じた前記データ転送レートを合計した値が最大通信レートを超える場合に、エラー出力を行うことを特徴とする請求項1ないし6のいずれかに記載の通信システム。
    A data transfer rate is determined for each type of data,
    The transmission-side control unit and the reception-side control unit perform error output when a value obtained by summing the data transfer rates according to information on the acquired data type exceeds a maximum communication rate. A communication system according to any one of claims 1 to 6.
  8.  前記情報格納部は、メモリ、ディップスイッチ、ロータリースイッチ及びジャンパピンのうち少なくとも1つを備えることを特徴とする請求項1ないし7のいずれかに記載の通信システム。 The communication system according to any one of claims 1 to 7, wherein the information storage unit includes at least one of a memory, a dip switch, a rotary switch, and a jumper pin.
  9.  前記データ通信部は、前記データの通信の異常を検出する異常検出部を備え、
     前記送信側制御部及び前記受信側制御部の少なくとも一方は、前記異常検出部の検出信号に基づいて前記電装装置に対し制御信号を出力することを特徴とする請求項1ないし8のいずれかに通信システム。
    The data communication unit includes an abnormality detection unit that detects an abnormality in communication of the data,
    The at least one of the transmission side control unit and the reception side control unit outputs a control signal to the electrical device based on a detection signal of the abnormality detection unit. Communications system.
  10.  電子部品の基板への装着作業に係るデータの種類に応じて誤り処理の種類が異なる各種のデータを、通信により伝送する電子部品装着装置であって、
     通信される前記データの種類に係る情報が格納される情報格納部を備える電装装置と、
     前記電装装置が接続される接続端子を備えるデータ通信部とを備え、
     前記データ通信部は、
     送信側の前記電装装置に備えられる前記情報格納部から前記データの種類に係る情報を取得し、該情報に基づいて該データに応じた誤り処理に係る付加情報を設定する誤り処理設定手段を、該電装装置が接続される前記接続端子に割り当てる送信側制御部と、
     受信側の前記電装装置に備えられる前記情報格納部から前記データの種類に係る情報を取得し、該情報に基づいて該データに応じた誤りの検出処理又は誤りの検出・訂正処理を行なう誤り確認手段を、該電装装置が接続される前記接続端子に割り当てる受信側制御部とを備えることを特徴とする電子部品装着装置。
    An electronic component mounting apparatus that transmits various types of data with different types of error processing according to the type of data related to the mounting operation of the electronic component on the board, by communication,
    An electrical device comprising an information storage unit in which information relating to the type of data to be communicated is stored;
    A data communication unit including a connection terminal to which the electrical device is connected;
    The data communication unit is
    Error processing setting means for acquiring information related to the type of data from the information storage unit provided in the electrical device on the transmission side, and setting additional information related to error processing according to the data based on the information, A transmission side control unit assigned to the connection terminal to which the electrical equipment is connected;
    An error check that acquires information related to the type of data from the information storage unit provided in the electrical device on the receiving side, and performs error detection processing or error detection / correction processing according to the data based on the information An electronic component mounting apparatus comprising: a receiving side control unit that assigns means to the connection terminal to which the electrical device is connected.
  11.  データの種類に応じて誤り処理の種類が異なる前記データの通信を行なう通信システムの誤り処理方法であって、
     該通信システムの稼働にともない、前記データの送受信を行うデータ通信部の接続端子に対する電装装置の接続を監視するステップと、
     前記監視するステップにおいて、新たな前記電装装置の接続が検出された場合に前記データ通信部の前記データの送受信を停止させるステップと、
     前記新たに接続された前記電装装置から、該電装装置が入出力する前記データの種類に係る情報を取得するステップと、
     取得した前記情報に基づいて前記電装装置が入出力する前記データの種類に応じた誤り処理を行う処理手段を、前記電装装置が接続される前記接続端子に割り当てるステップとを備えることを特徴とする通信システムの誤り処理方法。
    An error processing method of a communication system for performing communication of the data in which the type of error processing differs according to the type of data,
    With the operation of the communication system, monitoring the connection of the electrical equipment to the connection terminal of the data communication unit that transmits and receives the data;
    In the monitoring step, when a new connection of the electrical equipment is detected, stopping the transmission / reception of the data of the data communication unit;
    Obtaining from the newly connected electrical device information relating to the type of data that the electrical device inputs and outputs;
    Allocating processing means for performing error processing according to the type of data input / output to / from the electrical equipment based on the acquired information to the connection terminal to which the electrical equipment is connected. An error processing method for a communication system.
PCT/JP2012/074692 2012-09-26 2012-09-26 Communications system, electronic component attachment device and error processing method for communications system WO2014049711A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/074692 WO2014049711A1 (en) 2012-09-26 2012-09-26 Communications system, electronic component attachment device and error processing method for communications system
JP2014537890A JP5989787B2 (en) 2012-09-26 2012-09-26 Communication system, electronic component mounting apparatus, and error processing method of communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/074692 WO2014049711A1 (en) 2012-09-26 2012-09-26 Communications system, electronic component attachment device and error processing method for communications system

Publications (1)

Publication Number Publication Date
WO2014049711A1 true WO2014049711A1 (en) 2014-04-03

Family

ID=50387177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074692 WO2014049711A1 (en) 2012-09-26 2012-09-26 Communications system, electronic component attachment device and error processing method for communications system

Country Status (2)

Country Link
JP (1) JP5989787B2 (en)
WO (1) WO2014049711A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112612745A (en) * 2020-12-15 2021-04-06 海宁奕斯伟集成电路设计有限公司 Data transmission method and device, electronic equipment and readable storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09191331A (en) * 1996-01-10 1997-07-22 Yamatake Honeywell Co Ltd Communication method and communication equipment
JP2001156872A (en) * 1999-11-29 2001-06-08 Mitsubishi Electric Corp Communication protocol conversion system and monitor
JP2003167843A (en) * 2001-11-29 2003-06-13 Sharp Corp Signal input and output device
JP2010278974A (en) * 2009-06-01 2010-12-09 Nippon Telegr & Teleph Corp <Ntt> Digital transmission system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09191331A (en) * 1996-01-10 1997-07-22 Yamatake Honeywell Co Ltd Communication method and communication equipment
JP2001156872A (en) * 1999-11-29 2001-06-08 Mitsubishi Electric Corp Communication protocol conversion system and monitor
JP2003167843A (en) * 2001-11-29 2003-06-13 Sharp Corp Signal input and output device
JP2010278974A (en) * 2009-06-01 2010-12-09 Nippon Telegr & Teleph Corp <Ntt> Digital transmission system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112612745A (en) * 2020-12-15 2021-04-06 海宁奕斯伟集成电路设计有限公司 Data transmission method and device, electronic equipment and readable storage medium

Also Published As

Publication number Publication date
JPWO2014049711A1 (en) 2016-08-22
JP5989787B2 (en) 2016-09-07

Similar Documents

Publication Publication Date Title
US20160261373A1 (en) Multiplexing communication system and substrate working machine
JP5989787B2 (en) Communication system, electronic component mounting apparatus, and error processing method of communication system
JP6168655B2 (en) COMMUNICATION SYSTEM, ELECTRONIC COMPONENT MOUNTING APPARATUS, AND COMPRESSION PROCESSING METHOD FOR COMMUNICATION SYSTEM
CN107409151B (en) Multiplex communication system and work machine
WO2014132324A1 (en) Communication system and electronic component mounting device
EP2745153A1 (en) Fibre adapter for a small form-factor pluggable unit
KR101229729B1 (en) Network i/o system and network configuring method
JP6858278B2 (en) Multiplier, work equipment, and how to disconnect communication
JP5931918B2 (en) Multiplex communication system, transmission device, reception device, and processing device for electronic component mounting device
JP6267709B2 (en) Multiplexing communication system for mounting machine and mounting machine
JP6189336B2 (en) Wireless communication system and electronic component mounting apparatus
JP6438793B2 (en) Multiplex communication equipment
JP6131315B2 (en) Communication system and electronic component mounting apparatus
JP6043797B2 (en) COMMUNICATION SYSTEM, ELECTRONIC COMPONENT MOUNTING DEVICE, AND STARTING METHOD FOR ELECTRONIC COMPONENT MOUNTING DEVICE
JP6587658B2 (en) Optical wireless communication system and electronic component mounting apparatus
JP6905976B2 (en) Anti-board work machine
WO2014147775A1 (en) Communication system and electronic component attachment device
WO2022259456A1 (en) Optical multiplex communication device, work machine, and communication method
EP3554017A1 (en) Substrate work system
WO2021171549A1 (en) Work machine
WO2021075019A1 (en) Communication device and work machine
CN111873609B (en) Screen printing system
JP2023035694A (en) Display system for substrate work
JPWO2019123524A1 (en) Communication control device
JP2019003335A (en) Board work system and board work apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12885782

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014537890

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12885782

Country of ref document: EP

Kind code of ref document: A1