WO2014048246A1 - 一种频偏估计的方法和设备 - Google Patents
一种频偏估计的方法和设备 Download PDFInfo
- Publication number
- WO2014048246A1 WO2014048246A1 PCT/CN2013/083181 CN2013083181W WO2014048246A1 WO 2014048246 A1 WO2014048246 A1 WO 2014048246A1 CN 2013083181 W CN2013083181 W CN 2013083181W WO 2014048246 A1 WO2014048246 A1 WO 2014048246A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frequency offset
- sliding correlation
- correlation peak
- received data
- index
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 230000001360 synchronised effect Effects 0.000 claims abstract description 10
- 238000012545 processing Methods 0.000 claims description 45
- 230000000875 corresponding effect Effects 0.000 description 19
- 238000010586 diagram Methods 0.000 description 12
- 230000002596 correlated effect Effects 0.000 description 6
- 238000007476 Maximum Likelihood Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/04—Speed or phase control by synchronisation signals
- H04L7/041—Speed or phase control by synchronisation signals using special codes as synchronising signal
- H04L7/042—Detectors therefor, e.g. correlators, state machines
Definitions
- the present application relates to the field of communications technologies, and in particular, to a method and device for frequency offset estimation. Background of the invention
- terminals supporting multiple standards such as GSM (Global System of Mobile communication), WCDMA (Wideband Code Division Multiple Access), LTE (Long) Term Evolution (Long Term Evolution), TD-SCDMA (Time Division-Synchronous Code Division Multiple Access) and other types of terminals have been rapidly developed.
- GSM Global System of Mobile communication
- WCDMA Wideband Code Division Multiple Access
- LTE Long
- LTE Long
- TD-SCDMA Time Division-Synchronous Code Division Multiple Access
- the example of the present application provides a method and apparatus for frequency offset estimation to improve the accuracy of frequency offset estimation in the case of large frequency offsets.
- a method for estimating frequency offset includes: Obtaining received data;
- the received data after the de-frequency offset processing is correlated with the local reference signal to obtain a sliding correlation peak
- the received data is synchronized by using the sliding correlation peak corresponding index maxjndex, and the frequency offset estimation is performed on the received data after synchronization, and the carrier frequency and the set frequency are obtained. deviation.
- a device for frequency offset estimation comprising: an interface, a memory, and a first acquisition instruction for communicating with the memory, to indicate obtaining received data from the interface;
- Processing instructions configured to perform de-frequency offset processing on the received data by using a frequency offset size f_step;
- a second obtaining instruction configured to indicate that the received data after the de-frequency offset processing is correlated with the local reference signal to obtain a sliding correlation peak
- a determining instruction configured to indicate whether the sliding correlation peak is not less than a threshold value corr_threshold
- a third obtaining instruction configured to, when determining that the sliding correlation peak is not less than the threshold value corr_threshold according to the determining instruction, instructing to synchronize the received data by using the sliding correlation peak corresponding index maxjndex, after synchronizing The data is received for frequency offset estimation, and the deviation between the carrier frequency and the set frequency is obtained.
- FIG. 1 is a schematic diagram of the AFC processing flow
- 2A is a schematic diagram showing the sliding correlation result when the ideal frequency is not biased
- 2B is a schematic diagram showing the sliding correlation result at a frequency offset of 5 kHz;
- 2C is a schematic diagram of sliding correlation results at a frequency offset of 10 kHz;
- FIG. 3 is a schematic flow chart of a method for estimating a frequency offset according to an example of the present application
- FIG. 4 is a schematic diagram showing a variation curve of a correlation peak under the influence of a statistical frequency offset value of an example in the present application
- FIG. 5 is a schematic structural diagram of a device for frequency offset estimation provided by an example of the present application.
- Figure 6 is a schematic diagram showing the structure of another apparatus for frequency offset estimation provided by an example of the present application.
- AFC Auto Frequency
- Step 101 Obtain received data.
- Step 102 Perform timing estimation by using time domain sliding correlation.
- the timing estimation method includes frequency domain equalization estimation, time domain correlation estimation and maximum likelihood estimation; the frequency domain equalization estimation is to equalize the received pilot signals, and then perform conjugate correlation on two adjacent pilots to obtain The phase difference of the adjacent pilots determines the synchronization error according to the correspondence between the phase and the timing deviation; the time domain correlation estimation uses the pilot to correlate with the local reference signal, and finds the correlation result.
- the index of the maximum and maximum values determines the synchronization error; the maximum likelihood estimation uses the time domain correlation to obtain the maximum likelihood estimate to determine the synchronization error.
- Step 103 Synchronize the received data according to the timing estimation result.
- Step 104 Perform frequency offset estimation by using the synchronization result to obtain a deviation between the carrier frequency and the set frequency.
- the frequency offset estimation and the timing estimation are mutually influential, so accurate timing estimation needs to be performed before the frequency offset estimation.
- FIG. 2A is ideal without frequency.
- FIG. 2B is a schematic diagram of sliding correlation results at 5 kHz frequency offset
- FIG. 2C is a schematic diagram of sliding correlation results at 10 kHz frequency offset; as can be seen from FIG. 2A to FIG. 2C, the larger the frequency offset is The timing error is larger. Further, since the timing estimation cannot perform accurate timing synchronization, an error is introduced to the frequency offset estimation, which results in a frequency offset estimation result which is very inaccurate.
- the first example of the present application provides a frequency offset estimation method, which performs de-frequency offset processing on the received data in advance to In the case of frequency offset, the deviation between the carrier frequency of the transmitted signal of the terminal and the set frequency can be accurately determined. Further, by performing de-frequency offset processing on the received data in advance, the frequency offset range can be determined in advance, that is, within a certain range. The frequency offset estimation may be performed, thereby expanding the final frequency offset estimation range; as shown in FIG. 3, the frequency offset estimation method may include the following steps:
- Step 301 obtaining received data.
- Step 302 Perform de-frequency offset processing on the received data by using a frequency offset size f_step;
- the frequency offset size f_step can be selected according to the actual experience value, and when the frequency offset size f_step is selected, it is necessary to ensure that the time domain sliding correlation mode can be accurately timed within the f_step frequency range.
- F_step is a value of the frequency offset estimation algorithm that can correctly estimate the frequency offset. This value varies according to various algorithms. The value can be the maximum value of the estimated frequency offset corresponding to the frequency offset estimation algorithm. Less than this maximum.
- Step 303 Perform sliding correlation on the received data after the de-frequency offset processing and the local reference signal (such as time domain sliding correlation) to obtain a sliding correlation peak.
- Step 304 Determine whether the sliding correlation peak is not less than the threshold value corr_threshold; if the sliding correlation peak is not less than the threshold value corr_threshold, execute step 305; if the sliding correlation peak is less than the threshold value corr_threshold, execute step 302.
- the relative change of the sliding correlation value at different frequency offsets is determined by the signal characteristics, so that the frequency offset range exceeding the accurate timing can also satisfy the threshold value judgment.
- step 305 t ⁇ value data ( max_index-i ) /data ( max_index+i ), and) the absolute value of the data t (data value of max_index-i ) / data ( max_index+i ) is 1 or not, if yes, Then, step 305 is performed; if no, step 302 is performed.
- max_index is the index corresponding to the sliding correlation peak
- data (max_index-i) represents the sliding correlation value of the max_index-i position
- data (max_index+i) represents the max_index+i position The sliding related value.
- the ratio threshold (ie, 1) is a ratio range of two points corresponding to the left and right positions of the sliding correlation peak, the correlation curve is ideally symmetric, and the ratio threshold is 1; in practical applications, this is further To determine whether it is the basis of the correct position, the ratio threshold is selected as 1 ⁇ ", " is the allowable error of the ratio; based on this, the sliding correlation peak is not determined.
- the threshold value corr_threshold is less than, the two values t(data_max_index-i) /data(max_index+i) corresponding to the positions on both sides of the sliding correlation peak may be calculated, and the value t (data_max_index-i) is broken. ) / data ( max_index+i ) is between 1-o and 1+ o; if yes, go to step 305; if no, go to step 302
- the index max_index corresponding to the sliding correlation peak is the received data alignment point, and the currently removed frequency offset value f_offset is recorded, and the frequency offset value f_offset is the frequency.
- the partial size f_step is multiplied by the number m, m is an integer, and m is the number of times the de-frequency offset processing is performed on the received data by the frequency offset size f_step.
- the threshold value corr_ threshold is determined according to the influence of the frequency offset value on the sliding correlation peak in a certain frequency offset range, and the threshold value corr_threshold is determined, including but not Limited to:
- Step a performing de-frequency offset processing on the received data by using a frequency offset factor f_step_ref; the frequency offset factor f_step_ref is generated in a frequency interval f_step_ref within a certain large frequency offset range, and the large frequency offset range includes frequency
- f_step_ref*N The maximum value that can be reached
- N is an integer, that is, the maximum value of the large frequency offset range needs to be larger than the upper limit of the AFC frequency offset estimated by the comprehensive measuring instrument.
- Step b slidingly correlating the received data after the frequency offset processing with the local reference signal, obtaining a sliding correlation peak, and adding the number of sliding correlation peaks to one
- Step c Determine whether the number of times the sliding correlation peak is obtained is equal to N, and N is a positive integer not less than 2; if yes, execute step d, if no, perform step a
- Step d determining the threshold value corr_threshold by the obtained N-time sliding correlation peaks.
- the step d specifically includes: determining a maximum sliding correlation peak V and a second largest sliding correlation among the obtained N sliding correlation peaks Peak value ⁇ 2 , and determine the threshold value corr_threshold as: secondary large sliding correlation peak + (maximum sliding correlation peak - second large slip The correlation peak, 12, ie ⁇ 2 + (V 2 ) / 2 ; the threshold corr_threshold is the middle position of the maximum sliding correlation peak and the second largest sliding correlation peak, and the accuracy of the threshold value corr_threshold is higher.
- the threshold value corr_threshold cannot be too close to the maximum slip correlation peak.
- the curve of the correlation peak is shown in Fig. 4.
- the correlation peak threshold 1 can be selected according to the above-mentioned correlation peak threshold determination principle, but the relative change between the threshold 1 and the maximum value is small; when the selection principle of the correlation peak threshold is difficult to satisfy at the same time, it is necessary to preferentially ensure that the threshold value and the maximum value are sufficient.
- the interval is used to correctly discriminate the relationship between the peak and the threshold, so the final correlation peak threshold is determined as the position of the threshold 2.
- the characteristics of the sliding correlation peak result to be bilaterally symmetrical, and to judge the peak value belonging to the misjudgment by judging the absolute value of the ratio of the numerical point corresponding to the left and right positions of the sliding correlation peak.
- Step 305 Synchronize the received data by using the sliding correlation peak corresponding index max_index, perform frequency offset estimation on the synchronized received data, and obtain a deviation between the carrier frequency and the set frequency.
- the received data is synchronized by using the sliding correlation peak corresponding to the line I max_index, and the frequency offset estimation is performed on the received data after the synchronization, and the deviation between the carrier frequency and the set frequency is obtained, which specifically includes: Step 1.
- the peak corresponding index max_index is the received data alignment point; Step 2, using the received data alignment point to synchronize the received data, the frequency offset range of the signal is [f_offset, f_offset+f_step]; Step 3, de-frequency offset of the received data after synchronization
- the value f_offset, the frequency offset value f_offset is the frequency offset size f_step multiplied by the number m, m is the number of times the de-frequency offset processing is performed on the received data by the frequency offset size f_step;
- Step 4 frequency offset of the data after the de-frequency offset value f_offset It is estimated that the frequency offset value f_est is obtained; Step 5 obtains the deviation between the carrier frequency and the set frequency as f_offset+f_est Second example
- the following describes in detail the determination process of the timing synchronization and the frequency offset estimation process in the TD-LTE system, and the process may include the following steps:
- Step 1 Calculate the de-frequency bias factor by the following formula.
- f n (f) e-]
- t is the sampling time point w, the sampling time interval;
- ⁇ timing estimate for each frequency offset
- v, ⁇ is the number of samples.
- Step 2 Assuming that the received signal (ie, the received data) is s(t , , the received signal is subjected to de-frequency offset processing by the following formula.
- Step 3 The received data after the de-frequency offset is related to the local reference signal by the following formula.
- Step 4 Obtain the sliding correlation peak and the sliding correlation peak corresponding to the following formula
- Z ' is the reference signal, which is the number of samples of the correlation peak offset.
- -' and - are the lower thresholds of the absolute value of the correlation result of the number of samples from the correlation peak respectively.
- ⁇ is the frequency offset of the received signal when the timing is completed, and n is an integer.
- Step 6. Synchronize the received signal, and the result is (0.
- Step 7. De-frequency offset. Obtained.
- Step 8. Perform frequency offset estimation on the signal ⁇ ) to obtain a frequency offset value.
- Step 9 The deviation between the carrier frequency and the set frequency results in L + f .
- the timing estimation uses a multi-cycle method to increase the frequency offset range supported by the timing, and the calculation amount is increased by "-1 times; the frequency offset estimation is based on the original algorithm, and the range is increased. Without increasing the complexity of the frequency offset estimation algorithm.
- the third example of the present application also provides a device for frequency offset estimation. As shown in FIG. 5, the device includes:
- a first obtaining module 11 configured to obtain received data
- the processing module 12 is configured to perform de-frequency offset processing on the received data by using a frequency offset size f_step;
- a second obtaining module 13 is configured to perform sliding correlation between the received data after the de-frequency offset processing and the local reference signal to obtain a sliding correlation peak;
- the determining module 14 is configured to determine whether the sliding correlation peak is not less than a threshold value corr_threshold;
- the third obtaining module 15 is configured to use the sliding correlation peak corresponding index when the determining module 14 determines that the sliding correlation peak is not less than a threshold value corr_threshold
- the max_index synchronizes the received data, performs frequency offset estimation on the received data after synchronization, and obtains a deviation between the carrier frequency and the set frequency.
- the determining module 14 is further configured to calculate a ratio data (max_index-i) /data (max_index+i) of two points corresponding to the two sides of the sliding correlation peak, and determine the ratio data (max_index-i) Whether I data ( max_index+i ) is between 1-o and 1+ o; where o is the allowable error and i is the number of samples of the sliding correlation peak offset.
- the frequency offset estimation device further includes: a determining module 16, configured to determine the threshold value corr_threshold by the following steps; Step a, performing de-frequency offset processing on the received data by using a frequency offset factor f_step_ref; Step b, The received data after the partial processing is correlated with the local reference signal, and the sliding correlation peak is obtained, and the number of sliding correlation peaks is increased by one; Step c, determining whether the sliding correlation peak obtaining number is equal to N, N is a positive integer not less than 2 If yes, go to step d, otherwise go to step a; step d, determine the threshold value corr_thresholdo by the obtained N times of sliding correlation peaks
- the determining module 16 is further configured to determine a maximum sliding correlation peak and a second largest sliding correlation peak among the obtained N times sliding correlation peaks, and determine that the threshold value corr_threshold is: a second largest sliding correlation peak + (maximum sliding correlation Peak-second large sliding correlation peak) /2.
- the third obtaining module 15 is specifically configured to determine that the sliding correlation peak corresponding index max_index is a received data alignment point; and use the received data alignment point to synchronize the received data; and perform frequency synchronization on the received data after synchronization
- the frequency offset value f_offset is determined by: determining that the frequency offset value f_offset is the frequency offset size f_step multiplied by the number of times m, and the number of times m is the execution of the received data by the frequency offset size f_step The number of times the frequency offset processing is performed.
- the modules of the device of the present application may be integrated into one or may be deployed separately. The above modules can be combined into one module, or can be further split into multiple sub-modules.
- the modules in the above apparatus may be distributed in the apparatus of the above example as described in the above examples, or may be correspondingly changed in one or more apparatuses different from the above examples.
- the modules in the above example can be combined into one module, or can be further split into multiple sub-modules.
- the application also provides a machine readable storage medium storing instructions for causing a machine to perform a frequency offset estimation method as described herein.
- a system or apparatus equipped with a storage medium on which software program code implementing the functions of any of the above examples is stored, and a computer (or CPU or MPU) of the system or apparatus is read may be provided.
- the program code stored in the storage medium is executed and executed.
- FIG. 6 is a schematic diagram of a device structure of another frequency offset estimation provided by an example of the present application.
- the frequency offset estimation device 60 can include a memory 601, and one or more processors in communication with the memory 601, and an interface 603.
- the first obtaining instruction 6011, the processing instruction 6012, the second obtaining instruction 6013, the determining instruction 6014, and the third obtaining instruction executable by the processor 602 are stored. 6015.
- the first obtaining instruction 6011 is configured to indicate that the received data is obtained through the interface 603.
- the processing instruction 6012 is configured to indicate that the received data is received by a frequency offset size f_step Perform de-frequency offset processing.
- the second obtaining instruction 6013 is configured to indicate that the received data after the de-frequency offset processing is correlated with the local reference signal to obtain a sliding correlation peak;
- the determining instruction 6014 is configured to indicate whether the sliding correlation peak is not less than a threshold value corr_threshold.
- the third obtaining instruction 6015 is configured to, when determining, according to the determining instruction 6014, that the sliding correlation peak is not less than a threshold value corr_threshold, indicating that the received data is synchronized by using the sliding correlation peak corresponding index maxjndex, After the synchronization, the data is received for frequency offset estimation, and the deviation between the carrier frequency and the set frequency is obtained.
- the determining instruction 6014 is further configured to indicate that a ratio data (max_index-i) /data (max_index+i) of two points corresponding to the two sides of the sliding correlation peak is calculated, and the ratio data (max_index-i) is determined. Whether I data ( max_index+i ) is between 1-o and 1+ ⁇ ; where ⁇ is the allowable error and i is the number of samples of the sliding correlation peak offset.
- the memory 601 is further configured to store a determination instruction 6016 for indicating that the threshold value corr_threshold is determined by the following steps: Step a, performing de-frequency offset processing on the received data by using a frequency offset factor f_step_ref; Step b, de-frequencying The received data after the partial processing is correlated with the local reference signal, and the sliding correlation peak is obtained, and the number of sliding correlation peaks is increased by one; Step c, determining whether the sliding correlation peak obtaining number is equal to N, N is a positive integer not less than 2 If yes, perform step d, otherwise perform step a; step d, determine the threshold value corr_threshold by the obtained N times of sliding correlation peaks.
- the determining instruction 6016 is further configured to instruct to determine the maximum sliding correlation peak and the second largest sliding correlation peak among the obtained N-time sliding correlation peaks, and determine that the threshold value corr_threshold is: the second largest sliding correlation peak + (maximum sliding Correlated peak-second large sliding correlation peak) /2.
- the third obtaining instruction 6015 is specifically configured to indicate that the sliding correlation peak is determined to be corresponding
- the index max_index is a received data alignment point; and the received data is synchronized by using the received data alignment point; the de-frequency offset value f_offset of the received data after synchronization; and the de-frequency offset value (the data after ⁇ 861 is frequency-transmitted)
- the partial estimation obtains the frequency offset value f_est; and obtains a deviation between the carrier frequency and the set frequency as f_offset+f_est.
- the frequency offset value f_offset is determined by: determining that the frequency offset value f_offset is the frequency offset size f_step multiplied by the number of times m, and the number of times m is the execution of the received data by the frequency offset size f_step The number of times the frequency offset processing is performed.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Synchronisation In Digital Transmission Systems (AREA)
Abstract
一种频偏估计的方法,该方法包括:获得接收数据;通过频偏大小f_step对所述接收数据进行去频偏处理;对去频偏处理后的接收数据与本地参考信号进行滑动相关,获得滑动相关峰值;判断所述滑动相关峰值是否不小于门限值corr_threshold;如果判断所述滑动相关峰值不小于门限值corr_threshold,利用所述滑动相关峰值对应索SImax_index对所述接收数据进行同步,对同步后接收数据进行频偏估计,获得载波频率与设定频率的偏差。
Description
一种频偏估计的方法和设备 本申请要求于 2012 年 9 月 29 日提交中国专利局、 申请号为 201210374720.5、 申请名称为 "一种频偏估计的方法和设备" 的中国专 利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本申请涉及通信技术领域, 特别涉及一种频偏估计的方法和设备。 发明背景
随着移动通信系统的快速发展, 支持多种制式的终端(如支持 GSM ( Global System of Mobile communication , 全球移动通讯系统 )、 WCDMA( Wideband Code Division Multiple Access,宽带码分多址)、 LTE ( Long Term Evolution , 长期 演 进 ) 、 TD-SCDMA ( Time Division- Synchronous Code Division Multiple Access,时分同步码分多址 ) 等多种制式的终端)得到了迅速发展, 在对终端进行射频一致性相关测 试之前, 需要确定终端发射信号的载波频率与设定频率的偏差, 并基于 此通知终端调整载波频率, 使得该终端调整载波频率之后的发射信号在 接收端进行下变频、 滤波等处理后, 能够被正确还原。 发明内容
本申请的例子提供了一种频偏估计的方法和设备, 以在大频偏的情 况下, 提高频偏估计的准确性。
本申请的技术方案如下。
一种频偏估计的方法, 包括:
获得接收数据;
通过频偏大小 f_step对所述接收数据进行去频偏处理;
对去频偏处理后的接收数据与本地参考信号进行滑动相关, 获得滑 动相关峰值;
判断所述滑动相关峰值是否不小于门限值 corr_threshold;
如果判断所述滑动相关峰值小于门限值 corr_threshold, 返回执行通 过频偏大小 f_step对所述接收数据进行去频偏处理的步骤;
如果判断所述滑动相关峰值不小于门限值 corr_threshold, 则利用所 述滑动相关峰值对应索引 maxjndex对所述接收数据进行同步, 对同步 后接收数据进行频偏估计, 获得载波频率与设定频率的偏差。
一种频偏估计的设备, 包括接口, 存储器, 以及与所述存储器通信 第一获得指令, 用于指示从所述接口获得接收数据;
处理指令, 用于指示通过频偏大小 f_step对所述接收数据进行去频 偏处理;
第二获得指令, 用于指示对去频偏处理后的接收数据与本地参考信 号进行滑动相关, 获得滑动相关峰值;
判断指令, 用于指示判断所述滑动相关峰值是否不小于门限值 corr_threshold;
第三获得指令, 用于当根据所述判断指令判断所述滑动相关峰值不 小于所述门限值 corr_threshold时,指示利用所述滑动相关峰值对应索引 maxjndex对所述接收数据进行同步,对同步后接收数据进行频偏估计, 获得载波频率与设定频率的偏差。
根据本申请的上述技术方案, 通过预先对接收数据进行去频偏处 理, 使得在大频偏的情况下, 能够准确进行定时同步, 提高定时估计的
准确性, 并大幅提高频偏估计的范围。 附图简要说明
图 1是 AFC处理流程示意图;
图 2A是理想无频偏时的滑动相关结果示意图;
图 2B是 5kHz频偏时的滑动相关结果示意图;
图 2C是 10kHz频偏时的滑动相关结果示意图;
图 3是本申请一个例子提供的一种频偏估计的方法流程示意图; 图 4是本申请一个例子中对一段数据统计频偏值影响下, 相关峰值 的变化曲线示意图;
图 5是本申请一个例子提供的一种频偏估计的设备结构示意图。 图 6 是本申请一个例子提供的另外一种频偏估计的设备结构示意 图。
实施本发明的方式
为了确定载波频率与设定频率的偏差,可采用 AFC( Auto Frequency
Calibration, 自动频率校准) 方式得到载波频率与设定频率的偏差, 如 图 1所示, 为 AFC处理流程示意图, 该方式包括以下步骤:
步骤 101 , 获得接收数据。
步骤 102, 利用时域滑动相关进行定时估计。 其中, 定时估计方法 包括频域均衡估计、 时域相关估计和最大似然估计; 频域均衡估计是将 接收到的导频信号进行均衡后, 对两列相邻导频进行共轭相关, 得到相 邻导频的相位差, 根据相位和定时偏差的对应关系确定同步误差; 时域 相关估计是利用导频与本地参考信号进行滑动相关, 通过寻找相关结果
最大值及最大值的索引确定同步误差; 最大似然估计是利用时域相关, 求取最大似然估计确定同步误差。
步骤 103, 根据定时估计结果对接收数据进行同步。
步骤 104, 利用同步结果进行频偏估计, 得到载波频率与设定频率 的偏差。
需要注意的是, 在得到载波频率与设定频率的偏差过程中, 频偏估 计与定时估计是相互影响的, 因此在进行频偏估计之前需要进行准确的 定时估计。
由于随着频偏的增大, 相关峰值会逐渐下降, 因此在频偏较大的情 况下, AFC方式进行定时估计时定时误差较大; 以 20M带宽 LTE信号 为例, 图 2A为理想无频偏时的滑动相关结果示意图, 图 2B为 5kHz频 偏时的滑动相关结果示意图, 图 2C为 10kHz频偏时的滑动相关结果示 意图; 从图 2A-图 2C中可看出, 频偏越大则定时误差越大; 进一步的, 由于定时估计无法进行准确的定时同步, 因此会给频偏估计引入误差, 导致频偏估计结果非常不准确。
第一个例子
针对上述技术方案中,定时估计不准确导致频偏估计不准确的缺陷, 本申请的第一个例子提供了一种频偏估计的方法, 通过预先对接收数据 进行去频偏处理, 以在大频偏的情况下, 可以准确的确定终端发射信号 的载波频率与设定频率的偏差; 进一步的, 通过预先对接收数据进行去 频偏处理, 可以预先确定出频偏范围, 即在一定范围内进行频偏估计即 可, 从而扩大了最终的频偏估计范围; 如图 3所示, 该频偏估计的方法 可以包括以下步骤:
步骤 301 , 获得接收数据。
步骤 302, 通过频偏大小 f_step对接收数据进行去频偏处理; 其中,
该频偏大小 f_step可以根据实际经验值进行选取, 且在选取该频偏大小 f_step时, 需要保证在 f_step频率范围内, 时域滑动相关方式能够准确 定时。 f_step为所用频偏估计算法能正确估计出频偏的一个值, 这个值 根据各种算法的不同而不同, 该值可以为频偏估计算法对应的估计频偏 的最大值, 也可以根据实现需要小于该最大值。
步骤 303 , 对去频偏处理后的接收数据与本地参考信号进行滑动相 关(如时域滑动相关), 获得滑动相关峰值。
步骤 304, 判断滑动相关峰值是否不小于门限值 corr_threshold; 如 果滑动相关峰值不小于门限值 corr_threshold, 则执行步骤 305; 如果滑 动相关峰值小于门限值 corr_threshold, 则执行步骤 302。
本申请的上述例子中, 对于某些制式, 由信号特点决定滑动相关值 在不同频偏时的相对变化较小, 从而出现超过准确定时的频偏范围也能 满足门限值判断的情况, 为避免该情况的错判, 还可利用相关结果左右 对称的特点进一步判断定时是否准确; 基于此, 在判断滑动相关峰值不 小于门限值 corr_threshold之后,还可计算滑动相关峰值两侧位置对应的 两个 、的 t匕值 data ( max_index-i ) /data ( max_index+i ), 并 )断 t匕值 data ( max_index-i ) / data ( max_index+i ) 的绝对值是否在 1附近, 如果是, 则执行步骤 305; 如果否, 则执行步骤 302。
其中, i为滑动相关峰值偏移的样点数, max_index为滑动相关峰值 对应的索引, data ( max_index-i )表示 max_index-i位置的滑动相关值 , 且 data ( max_index+i )表示 max_index+i位置的滑动相关值。
进一步的, 由于比值门限(即 1 ) 为滑动相关峰值左右两侧位置对 应的两个点的比值范围, 理想情况下相关曲线是对称的, 比值门限为 1 ; 在实际应用中, 以此作为进一步判断是否为正确位置的依据, 此时选取 比值门限为 1 ± " , "为比值的允许误差; 基于此, 判断滑动相关峰值不
小于门限值 corr_threshold之后,还可计算滑动相关峰值两侧位置对应的 两个 、的 t匕值 data ( max_index-i ) /data ( max_index+i ), 并 )断 t匕值 data ( max_index-i ) / data ( max_index+i )是否位于 1- o与 1+ o之间; 如果 是, 则执行步骤 305; 如果否, 执行步骤 302
本申请的该例子中, 如果确定滑动相关峰值大于等于门限值 corr_threshold, 则确定滑动相关峰值对应的索引 max_index为接收数据 对齐点, 并记录当前去掉的频偏值 f_offset, 频偏值 f_offset为频偏大小 f_step乘以次数 m, m为整数, 且 m为执行通过频偏大小 f_step对接收 数据进行去频偏处理的次数。
本申请的该例子中, 还需要根据某较大频偏范围内, 频偏值对滑动 相关峰值的影响, 确定上述门限值 corr_ threshold , 且上述门限值 corr_threshold的确定方式, 具体包括但不限于:
步骤 a、 通过频偏因子 f_step_ref对接收数据进行去频偏处理; 该频 偏因子 f_step_ref是在某个大频偏范围内的以频率间隔 f_step_ref为步进 生成的, 且该大频偏范围包含频偏可能达到的最大值, 为 f_step_ref*N,
N为整数, 即该大频偏范围的最大值需要大于综测仪设定的 AFC频偏估 计上限。
步骤 b、对去频偏处理后的接收数据与本地参考信号进行滑动相关, 获得滑动相关峰值, 并将滑动相关峰值获得次数加 1
步骤 c、 判断滑动相关峰值获得次数是否等于 N, N为不小于 2的 正整数; 如果是, 则执行步骤 d, 如果否, 则执行步骤 a
步骤 d、 通过获得的 N次滑动相关峰值确定门限值 corr_threshold„ 在本申请的一个例子中, 步骤 d具体包括: 确定获得的 N次滑动相 关峰值中的最大滑动相关峰值 V 和次大滑动相关峰值 ¥ 2 , 并确定门 限值 corr_threshold为: 次大滑动相关峰值 + (最大滑动相关峰值-次大滑
动相关峰值、12 , 即 ¥ 2 + ( V 2 )/ 2; 该门限值 corr_threshold为最大 滑动相关峰值与次大滑动相关峰值的中间位置, 且为了保证门限值 corr_threshold判断的准确性较高,门限值 corr_threshold不能与最大滑动 相关峰值过于接近。
以 20M的 LTE信号为例, 对一段数据统计频偏值影响时, 相关峰 值的变化曲线如图 4所示, 从图 4可以看出, 随着频偏的增大, 相关峰 值呈波动变化, 可以按照上述相关峰值门限确定原则选取相关峰值门限 1 , 但门限 1 与最大值的相对变化较小; 当相关峰值门限的选取原则很 难同时满足时, 需要优先保证门限值与最大值有足够的间隔, 来正确辨 别峰值与门限的大小关系,因此最终相关峰值门限确定为门限 2的位置。 此外, 对于满足门限要求的误判, 需要利用滑动相关峰值结果左右对称 的特点, 通过判断滑动相关峰值左右两侧位置对应数值点比值的绝对 值, 将属于误判的峰值点排除。
步骤 305 , 利用滑动相关峰值对应索引 max_index对接收数据进行 同步, 对同步后接收数据进行频偏估计, 获得载波频率与设定频率的偏 差。
本申请的该例子中, 利用滑动相关峰值对应索 I max_index对接收 数据进行同步, 对同步后接收数据进行频偏估计, 获得载波频率与设定 频率的偏差, 具体包括: 步骤 1、确定滑动相关峰值对应索引 max_index 为接收数据对齐点; 步骤 2、 利用接收数据对齐点对接收数据进行同步, 信号的频偏范围为 [f_offset, f_offset+f_step] ; 步骤 3、 对同步后的接收数 据去频偏值 f_offset, 频偏值 f_offset为频偏大小 f_step乘以次数 m, m 为执行通过频偏大小 f_step对接收数据进行去频偏处理的次数; 步骤 4 对去频偏值 f_offset后的数据进行频偏估计,得到频偏值 f_est; 步骤 5 获得载波频率与设定频率的偏差为 f_offset+f_est
第二个例子
以下结合 TD-LTE系统中定时同步的确定过程以及频偏估计过程进 行详细说明, 该过程可以包括以下步骤:
步骤 1、 通过如下公式计算去频偏因子。 fn (f) = e-] . 在上述公式中, t为采样点 w的时间, 为采样时间间 隔; ·"为每次定时估计频偏, "为整数, 为频偏步进; Ν ,υ , 为采样点数。
步骤 3、 通过如下公式对去频偏后接收数据与本地参考信号进行滑 动相关。
步骤 4、 通过如下公式获得滑动相关峰值以及滑动相关峰值对应的
) = max( r ( ) 步骤 5、 利用滑动相关峰值门限和滑动相关峰值左右对称的特点: 判断滑动相关峰值的有效性; 其中, 如
, 则定时位置 timing_position= Wmax; = ·η ; 否则, 重复上述步骤 2-步骤 4;
在上述公式中, Z '为参考信号, 为相关峰值偏移的样点数, 为判 断相关峰值的门限, -'和 -分别为从相关峰值偏移 个样点数的相关 结果比值绝对值的低门限和高门限, ^为定时完成时接收信号去掉的 频偏, n为整数。 步骤 6、 对接收信号 同步, 结果为 (0。 步骤 7、 对 ^去频偏 。 , 得到 。 步骤 8、 对信号^^^^)进行频偏估计, 得到频偏值 。
步骤 9、 载波频率与设定频率的偏差最终结果为 L + f 。
综上所述, 本申请的该例子中, 定时估计利用多次循环的方法, 提 高了其支持的频偏范围, 计算量增加了 " -1倍; 频偏估计在原有算法基 础上, 范围增加了 而没有带来频偏估计算法复杂度的提升。
第三个例子
本申请的第三个例子还提供了一种频偏估计的设备, 如图 5所示, 该设备包括:
第一获得模块 11 , 用于获得接收数据;
处理模块 12, 用于通过频偏大小 f_step对所述接收数据进行去频偏 处理;
第二获得模块 13 ,用于对去频偏处理后的接收数据与本地参考信号 进行滑动相关, 获得滑动相关峰值;
判断模块 14 , 用于判断滑动相关峰值是否不小于门限值 corr_threshold;
第三获得模块 15 , 用于当所述判断模块 14判断所述滑动相关峰值 不小于门限值 corr_threshold 时, 利用所述滑动相关峰值对应索引
max_index对所述接收数据进行同步,对同步后接收数据进行频偏估计, 获得载波频率与设定频率的偏差。
所述判断模块 14,还用于计算所述滑动相关峰值两侧位置对应的两 个点的比值 data ( max_index-i ) /data ( max_index+i ), 并判断所述比值 data ( max_index-i ) I data ( max_index+i )是否位于 1- o与 1+ o之间; 其中, o为允许误差, i为滑动相关峰值偏移的样点数。
该频偏估计设备还包括: 确定模块 16, 用于通过如下步骤确定所述 门限值 corr_threshold; 步骤 a、通过频偏因子 f_step_ref对所述接收数据 进行去频偏处理; 步骤 b、 对去频偏处理后的接收数据与本地参考信号 进行滑动相关, 获得滑动相关峰值, 并将滑动相关峰值获得次数加 1 ; 步骤 c、 判断滑动相关峰值获得次数是否等于 N, N为不小于 2的正整 数; 如果是, 执行步骤 d, 否则执行步骤 a; 步骤 d、 通过获得的 N次滑 动相关峰值确定门限值 corr_thresholdo
所述确定模块 16,进一步用于确定获得的 N次滑动相关峰值中的最 大滑动相关峰值以及次大滑动相关峰值, 并确定所述门限值 corr_threshold为: 次大滑动相关峰值 + (最大滑动相关峰值 -次大滑动相 关峰值 ) /2。
所述第三获得模块 15 , 具体用于确定所述滑动相关峰值对应索引 max_index 为接收数据对齐点; 并利用所述接收数据对齐点对所述接收 数据进行同步; 对同步后的接收数据去频偏值 f_offset; 并对去频偏值 f_offset后的数据进行频偏估计, 得到频偏值 f_est; 以及, 获得载波频 率与设定频率的偏差为 f_offset+f_est。
该例子中, 所述频偏值 f_offset 的确定方式为: 确定所述频偏值 f_offset为所述频偏大小 f_step乘以次数 m, 所述次数 m为执行通过频 偏大小 f_step对所述接收数据进行去频偏处理的次数。
其中, 本申请装置的各个模块可以集成于一体, 也可以分离部署。 上述模块可以合并为一个模块, 也可以进一步拆分成多个子模块。
附图只是本申请例子的示意图, 附图中的模块或流程并不一定是实 施本申请所必须的。
上述装置中的模块可以按照上述例子的描述分布于上述例子的装置 中, 也可以进行相应变化位于不同于上述例子的一个或多个装置中。 上 述例子中的模块可以合并为一个模块, 也可以进一步拆分成多个子模 块。
上述本申请例子中的序号仅仅为了描述, 不代表例子的优劣。
本申请还提供了一种机器可读的存储介质, 存储用于使一机器执行 如本文所述的频偏估计方法的指令。 具体地, 可以提供配有存储介质的 系统或者装置, 在该存储介质上存储着实现上述例子中任一例子的功能 的软件程序代码, 且使该系统或者装置的计算机(或 CPU或 MPU )读 出并执行存储在存储介质中的程序代码。 任何一项例子的功能, 因此程序代码和存储程序代码的存储介质构成了 本申请的一部分。
例如, 图 6是本申请一个例子提供的另外一种频偏估计的设备结构 示意图。 如图 6所示, 该频偏估计设备 60可包括存储器 601 , 以及与所 述存储器 601通信的一个或多个处理器, 以及接口 603。 这里为了筒化 描述, 假设只有一个处理器 602, 该存储器 601 中存储可由所述处理器 602执行的第一获得指令 6011 , 处理指令 6012, 第二获得指令 6013 , 判断指令 6014和第三获得指令 6015。
所述第一获得指令 6011用于指示通过所述接口 603获得接收数据。 所述处理指令 6012, 用于指示通过频偏大小 f_step对所述接收数据
进行去频偏处理。
所述第二获得指令 6013 ,用于指示对去频偏处理后的接收数据与本 地参考信号进行滑动相关, 获得滑动相关峰值;
所述判断指令 6014,用于指示判断滑动相关峰值是否不小于门限值 corr_threshold。
所述第三获得指令 6015 , 用于当根据所述判断指令 6014判断所述 滑动相关峰值不小于门限值 corr_threshold时,指示利用所述滑动相关峰 值对应索引 maxjndex对所述接收数据进行同步, 对同步后接收数据进 行频偏估计, 获得载波频率与设定频率的偏差。
所述判断指令 6014,还用于指示计算所述滑动相关峰值两侧位置对 应的两个点的比值 data ( max_index-i ) /data ( max_index+i ), 并判断所 述比值 data ( max_index-i ) I data ( max_index+i )是否位于 1- o与 1+ α 之间; 其中, α为允许误差, i为滑动相关峰值偏移的样点数。
该存储器 601进一步用于存储确定指令 6016,用于指示通过如下步 骤确定所述门限值 corr_threshold; 步骤 a、通过频偏因子 f_step_ref对所 述接收数据进行去频偏处理; 步骤 b、 对去频偏处理后的接收数据与本 地参考信号进行滑动相关, 获得滑动相关峰值, 并将滑动相关峰值获得 次数加 1 ; 步骤 c、 判断滑动相关峰值获得次数是否等于 N, N为不小于 2的正整数; 如果是, 执行步骤 d, 否则执行步骤 a; 步骤 d、 通过获得 的 N次滑动相关峰值确定门限值 corr_threshold。
所述确定指令 6016,进一步用于指示确定获得的 N次滑动相关峰值 中的最大滑动相关峰值以及次大滑动相关峰值, 并确定所述门限值 corr_threshold为: 次大滑动相关峰值 + (最大滑动相关峰值 -次大滑动相 关峰值 ) /2。
所述第三获得指令 6015 ,具体用于指示确定所述滑动相关峰值对应
索引 max_index为接收数据对齐点; 并利用所述接收数据对齐点对所述 接收数据进行同步; 对同步后的接收数据去频偏值 f_offset; 并对去频偏 值 (^861后的数据进行频偏估计, 得到频偏值 f_est; 以及, 获得载波 频率与设定频率的偏差为 f_offset+f_est。
该例子中, 所述频偏值 f_offset 的确定方式为: 确定所述频偏值 f_offset为所述频偏大小 f_step乘以次数 m, 所述次数 m为执行通过频 偏大小 f_step对所述接收数据进行去频偏处理的次数。
根据本申请的上述技术方案, 通过预先对接收数据进行去频偏处 理, 使得在大频偏的情况下, 能够准确进行定时同步, 提高定时估计的 准确性, 并大幅提高频偏估计的范围。
Claims
1、 一种频偏估计的方法, 其特征在于, 包括:
获得接收数据;
通过频偏大小 f_step对所述接收数据进行去频偏处理;
对去频偏处理后的接收数据与本地参考信号进行滑动相关, 获得滑 动相关峰值;
判断所述滑动相关峰值是否不小于门限值 corr_threshold;
如果判断所述滑动相关峰值小于门限值 corr_threshold, 则返回执行 通过频偏大小 f_step对所述接收数据进行去频偏处理的步骤;
如果判断所述滑动相关峰值不小于门限值 corr_threshold, 则利用所 述滑动相关峰值对应索引 maxjndex对所述接收数据进行同步, 对同步 后接收数据进行频偏估计, 获得载波频率与设定频率的偏差。
2、如权利要求 1所述的方法, 其特征在于, 所述判断滑动相关峰值 是否不小于门限值 corr_threshold之后, 所述方法进一步包括:
计算所述滑动相关峰值两侧位置对应的两个点的比值 data
( max_index-i )/data( max_index+i ),并判断所述比值 data( max_index-i ) I data ( max_index+i )是否位于 1- o与 1+ o之间, α为允许误差, i为滑 动相关峰值偏移的样点数;
^口果 !]断所述 t匕值 data ( max_index-i ) I data ( max_index+i )位于 1 - α与 1 + α之间, 则利用所述滑动相关峰值对应索 I max_index对所述 接收数据进行同步, 对同步后接收数据进行频偏估计, 获得载波频率与 设定频率的偏差;
^口果判断所述比值 data ( max_index-i ) I data ( max_index+i )不位于 1- a与 1+ o之间, 则返回执行通过频偏大小 f_step对所述接收数据进行
去频偏处理的步骤。
3、如权利要求 1所述的方法,其特征在于,所述门限值 corr_threshold 的确定方式, 具体包括:
通过频偏因子 f_step_ref对所述接收数据进行去频偏处理; 对去频偏处理后的接收数据与本地参考信号进行滑动相关, 获得滑 动相关峰值, 并将滑动相关峰值获得次数加 1 ;
判断滑动相关峰值获得次数是否等于 N, N为不小于 2的正整数; 如果判断滑动相关峰值获得次数不等于 N, 则返回执行通过频偏因子 f_step_ref对所述接收数据进行去频偏处理的步骤;
如果判断滑动相关峰值获得次数等于 N, 则通过获得的 N次滑动相 关峰值确定所述门限值 corr_thresholdo
4、 如权利要求 3所述的方法, 其特征在于, 所述通过获得的 N次 滑动相关峰值确定所述门限值 corr_threshold具体包括:
确定获得的 N次滑动相关峰值中的最大滑动相关峰值以及次大滑动 相关峰值,并确定所述门限值 corr_threshold为:次大滑动相关峰值 + (最 大滑动相关峰值-次大滑动相关峰值) /2。
5、如权利要求 1所述的方法, 其特征在于, 所述利用滑动相关峰值 对应索引 max_index对所述接收数据进行同步, 对同步后接收数据进行 频偏估计, 获得载波频率与设定频率的偏差具体包括:
确定所述滑动相关峰值对应索引 max_index为接收数据对齐点; 利用所述接收数据对齐点对所述接收数据进行同步;
对同步后的接收数据去频偏值 f_offset;
对去频偏值 f_offset后的数据进行频偏估计, 得到频偏值 f_est; 获得载波频率与设定频率的偏差为 f_offset+f_est。
6、 如权利要求 5所述的方法, 其特征在于, 所述频偏值 f_offset的
确定方式, 具体包括:
确定所述频偏值 f_offset为所述频偏大小 f_step乘以次数 m, 且所 述次数 m为执行通过频偏大小 f_step对所述接收数据进行去频偏处理的 次数。
7、 一种频偏估计的设备, 其特征在于, 包括接口, 存储器, 以及与 所述存储器通信的处理器, 其中所述存储器用于存储可被所述处理器执 行的下列指令:
第一获得指令, 用于指示从所述接口获得接收数据;
处理指令, 用于指示通过频偏大小 f_step对所述接收数据进行去频 偏处理;
第二获得指令, 用于指示对去频偏处理后的接收数据与本地参考信 号进行滑动相关, 获得滑动相关峰值;
判断指令, 用于判断所述滑动相关峰值是否不小于门限值 corr_threshold;
第三获得指令, 用于当根据所述判断指令判断所述滑动相关峰值不 小于门限值 corr_threshold 时, 利用所述滑动相关峰值对应索引 max_index对所述接收数据进行同步,对同步后接收数据进行频偏估计, 获得载波频率与设定频率的偏差。
8、 如权利要求 7所述的设备, 其特征在于,
所述判断指令, 还用于指示计算所述滑动相关峰值两侧位置对应的 两个点的比值 data ( max_index-i ) /data ( max_index+i ), 并判断所述比 值 data ( max_index-i ) I data ( max_index+i )是否位于 1- o与 1+ o之间; 其中, α为允许误差, i为滑动相关峰值偏移的样点数。
9、如权利要求 7所述的设备, 其特征在于, 所述存储器进一步用于 存储可被所述处理器执行的确定指令, 其中
所述确定指令用 于指示通过如下步骤确定所述门限值 corr_threshold;
通过频偏因子 f_step_ref对所述接收数据进行去频偏处理;
对去频偏处理后的接收数据与本地参考信号进行滑动相关, 获得滑 动相关峰值, 并将滑动相关峰值获得次数加 1 ;
判断滑动相关峰值获得次数是否等于 N, N为不小于 2的正整数; 如果判断所述滑动相关峰值不等于 N, 返回执行通过频偏因子 f_step_ref对所述接收数据进行去频偏处理的步骤;
如果判断所述滑动相关峰值等于 Ν,,则通过获得的 Ν次滑动相关峰 值确定所述门限值 corr_thresholdo
10、 如权利要求 9所述的设备, 其特征在于,
所述确定指令, 进一步用于指示确定获得的 N次滑动相关峰值中的 最大滑动相关峰值以及次大滑动相关峰值, 并确定所述门限值 corr_threshold为: 次大滑动相关峰值 + (最大滑动相关峰值 -次大滑动相 关峰值 ) /2。
11、 如权利要求 7所述的设备, 其特征在于,
所述第三获得指令, 具体用于指示确定所述滑动相关峰值对应索引 max_index 为接收数据对齐点; 利用所述接收数据对齐点对所述接收数 据进行同步;对同步后的接收数据去频偏值 f_offset;对去频偏值 f_offset 后的数据进行频偏估计,得到频偏值 f_est; 获得载波频率与设定频率的 偏差为 f_offset+f_est。
12、 如权利要求 11所述的设备, 其特征在于, 所述频偏值 f_offset 的确定方式为: 确定所述频偏值 f_offset为所述频偏大小 f_step乘以次 数 m,所述次数 m为执行通过频偏大小 f_step对所述接收数据进行去频 偏处理的次数。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210374720.5A CN103716261B (zh) | 2012-09-29 | 2012-09-29 | 一种频偏估计的方法和设备 |
CN201210374720.5 | 2012-09-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014048246A1 true WO2014048246A1 (zh) | 2014-04-03 |
Family
ID=50386974
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/083181 WO2014048246A1 (zh) | 2012-09-29 | 2013-09-10 | 一种频偏估计的方法和设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103716261B (zh) |
WO (1) | WO2014048246A1 (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1282479A (zh) * | 1997-10-14 | 2001-01-31 | 艾利森公司 | 无线通信的同步技术及系统 |
CN2757450Y (zh) * | 2004-11-15 | 2006-02-08 | 凯明信息科技股份有限公司 | 粗略频率校正装置 |
CN1801796A (zh) * | 2004-12-31 | 2006-07-12 | 联发科技股份有限公司 | 频率同步装置及其方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5151926A (en) * | 1991-05-21 | 1992-09-29 | General Electric Company | Sample timing and carrier frequency estimation circuit for sine-cosine detectors |
CN100499623C (zh) * | 2004-11-09 | 2009-06-10 | 华为技术有限公司 | 一种实现正交频分复用精确时间同步的方法 |
CN102082583B (zh) * | 2009-11-27 | 2013-06-05 | 电信科学技术研究院 | 一种频偏估计方法及装置 |
-
2012
- 2012-09-29 CN CN201210374720.5A patent/CN103716261B/zh active Active
-
2013
- 2013-09-10 WO PCT/CN2013/083181 patent/WO2014048246A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1282479A (zh) * | 1997-10-14 | 2001-01-31 | 艾利森公司 | 无线通信的同步技术及系统 |
CN2757450Y (zh) * | 2004-11-15 | 2006-02-08 | 凯明信息科技股份有限公司 | 粗略频率校正装置 |
CN1801796A (zh) * | 2004-12-31 | 2006-07-12 | 联发科技股份有限公司 | 频率同步装置及其方法 |
Also Published As
Publication number | Publication date |
---|---|
CN103716261A (zh) | 2014-04-09 |
CN103716261B (zh) | 2017-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017071270A1 (zh) | 一种本地时钟调整方法、授时方法及装置 | |
RU2463741C2 (ru) | Способы и устройство для измерения двусторонней задержки в мобильной станции | |
CN103929391B (zh) | 一种频率校准方法及装置 | |
KR102350707B1 (ko) | 뉴머롤로지의 블라인드 검출을 위한 시스템 및 방법 | |
US8638882B2 (en) | Method and apparatus for offset estimation in mobile communication system | |
CN102025671B (zh) | 时间粗同步和频率精同步的时域联合估计方法 | |
TWI454072B (zh) | 頻率估計技術 | |
CN108123774A (zh) | 一种窄带物联网下行同步方法及其系统 | |
CN109428847B (zh) | NB-IoT系统中下行次同步信号的检测与同步方法及装置 | |
CN102457870A (zh) | 主同步信号检测方法、装置及小区搜索方法、系统 | |
CN113132284B (zh) | 一种载波相位跟踪方法及装置 | |
CN108282434A (zh) | 一种lte下行主同步信号的检测方法 | |
CN103095624A (zh) | 一种帧同步方法 | |
CN113037590B (zh) | 一种用于通信系统中的时延估计方法和装置 | |
WO2019034145A1 (zh) | 一种首径到达时差测量方法和装置 | |
WO2014048246A1 (zh) | 一种频偏估计的方法和设备 | |
JP2015065655A (ja) | リファレンス信号受信パワーを確定するための方法、端末及びシステム | |
EP2159927A1 (en) | Method and system for the extension of frequency offset range estimation based on correlation of complex sequences | |
CN104184524B (zh) | 一种频率校准方法及装置 | |
WO2011140875A1 (zh) | 在移动通信系统中实现上行同步的方法和装置 | |
US20190215208A1 (en) | Wireless communication device and time and frequency synchronization method of the same | |
KR102042042B1 (ko) | 단말 간 통신에서의 반송파 주파수 옵셋 추정과 단말 정보 검출 방법 | |
CN105187353B (zh) | 一种ofdm系统中的符号定时同步方法及装置 | |
CN106411793B (zh) | Dmrs信道参数估计方法、装置及用户终端 | |
WO2017096506A1 (en) | Wireless communication device and method therein for time synchronization in a wireless communication network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13840201 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13840201 Country of ref document: EP Kind code of ref document: A1 |