WO2014048119A1 - 一种非金属矿物地下原地钻孔溶蚀采矿新工艺 - Google Patents

一种非金属矿物地下原地钻孔溶蚀采矿新工艺 Download PDF

Info

Publication number
WO2014048119A1
WO2014048119A1 PCT/CN2013/075449 CN2013075449W WO2014048119A1 WO 2014048119 A1 WO2014048119 A1 WO 2014048119A1 CN 2013075449 W CN2013075449 W CN 2013075449W WO 2014048119 A1 WO2014048119 A1 WO 2014048119A1
Authority
WO
WIPO (PCT)
Prior art keywords
underground
mining
drilling
ore body
technology
Prior art date
Application number
PCT/CN2013/075449
Other languages
English (en)
French (fr)
Inventor
秦勇
王燕珊
熊惠
Original Assignee
Qin Yong
Wang Yanshan
Xiong Hui
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qin Yong, Wang Yanshan, Xiong Hui filed Critical Qin Yong
Publication of WO2014048119A1 publication Critical patent/WO2014048119A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C41/00Methods of underground or surface mining; Layouts therefor
    • E21C41/16Methods of underground mining; Layouts therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/28Dissolving minerals other than hydrocarbons, e.g. by an alkaline or acid leaching agent
    • E21B43/283Dissolving minerals other than hydrocarbons, e.g. by an alkaline or acid leaching agent in association with a fracturing process

Definitions

  • the invention relates to the use of a dissolving liquid (such as water, chemical dissolving liquid, etc.), according to the physicochemical properties of the non-metallic mineral, utilizing the characteristics of being soluble in water or chemical dissolving liquid, to dissolve the mineral component in the target ore body. , a new mining method that converts solids into liquids and extracts minerals after harvesting. Background technique
  • the target ore body is selected to understand the structural form of the ore body by geophysical drilling technology.
  • the drilling plan is designed by directional drilling technology to form an effective channel in the ore body.
  • the ore body can also be transformed into a seepage channel by petroleum engineering fracturing technology. Injecting water or chemical solution into the injection well, and performing sufficient physical and chemical reaction with the ore to dissolve into a liquid, pumping it to the ground through the production well, and separating the effective mineral component according to the physicochemical properties of the mineral, and separating it.
  • the water or chemical solution is reinjected into the underground ore body for recycling, and the mining is repeated in turn.
  • Non-metallic mineral underground in-situ drilling and erosion mining new technology method different from traditional mining technology, reducing the traditional mining process mining and other aspects, while using the new directional drilling technology and fracturing technology, can be used to mine hundreds of meters to several kilometers
  • offshore drilling platforms can also be used for underground in-situ drilling and erosion mining of non-metallic minerals. Summary of the invention
  • the present invention provides a method for drilling a new process of underground in-situ drilling and erosion mining of non-metallic minerals, especially a liquid mining method for mineral deposits that are difficult to mine in the hundreds of meters to several kilometers underground.
  • the method includes:
  • the above-mentioned well pattern distribution scheme may adopt a parallel arrangement of well pattern distribution, and the amount of injected liquid and the amount of produced liquid remain relatively high;
  • All of the above injection and production wells use directional well connection or fracturing techniques to modify the target formation.
  • Channels or cracks are formed inside the ore body to form a flow dissolution channel or a seepage dissolution channel between the injection and production well networks, that is, the injection well and the production well are all in a connected state on the plane.
  • Underground in-situ drilling and erosion mining new technology uses a new directional drilling process and fracturing technology to mine non-metallic minerals that are difficult to mine from a few hundred meters to several kilometers, using water or chemical solutions, etc., by chemical and physical reactions,
  • the useful mineral components in the ore body have changed the large-scale infrastructure construction of traditional mining technology and reduced the mining process.
  • the specific advantages are as follows:
  • This patented technology liquid mining does not require large-scale infrastructure construction in the underground or on the ground.
  • New directional liquid mining can be carried out on non-metallic deposits that are buried deep (hundreds of meters to several kilometers) and difficult to mine.
  • the dissolving liquid used in the target ore body is water or chemical dissolving liquid, and the environmental pollution is not caused by implementing effective environmental protection measures.
  • Figure 1 is a plan view showing the fracturing transformation of the present invention
  • FIG. 2 is a schematic perspective view of a fracturing space of the present invention
  • Figure 3 is a schematic view of the injection well of the present invention
  • Figure 4 is a schematic view of the production well of the present invention
  • Figure 5 is a schematic cross-sectional view of the fracturing reforming
  • FIG. 6 is a schematic diagram of a directional well connection according to the present invention.
  • FIG. 7 is a schematic plan view of a production process flow of the present invention.
  • the present invention employs a parallel arrangement of well patterns in which the injection well (1) is parallel to the production well (2).
  • the present invention adopts a parallel arrangement of well patterns, in which the amount of injected liquid in the injection well (2) is equal to the amount of produced liquid in the production well (1).
  • the present invention performs directional drilling on the target ore layer (3) according to the well pattern distribution, and inserts a corrosion-resistant casing (1) into the injection well, cementing with a high-strength cementing material, and then inserting a corrosion-resistant oil pipe (2) And the wellhead device is completed.
  • the present invention performs directional drilling on the target ore layer (3) according to the distribution of the well pattern, and inserts the corrosion-resistant casing (1) into the production well, cementing with high-strength cementing material, and then cutting into the corrosion-resistant oil pipe (2) ) and completion of the wellhead installation, and extraction of the sucking rod (4) and pump (5) into the well.
  • the present invention transforms the target formation by using the technique of large-scale fracturing equipment (1) for all injection wells and production wells, injecting fracturing fluid and proppant (2), and forming a plane along the stratum inside the ore body.
  • the crack (3) is formed to form a circulation passage or a seepage passage between the injection-production well network, that is, the injection well and the production well are all in a connected state on the plane.
  • the mining block of the present invention performs directional drilling (1, 2) on the ore body (3) in the block to form a circulation passage or a seepage passage between the injection-production well network.
  • the treatment process of the present invention comprises underground liquid production, recovery by a recovery device, separation of minerals and waste residue by a separation device, and separation of the separated water or chemical solution liquid along the surface pipeline to the injection well for reinjection, circulation Use, repeatedly mining in turn.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Earth Drilling (AREA)

Abstract

一种非金属矿物地下原地钻孔溶蚀采矿工艺,该工艺利用溶解液如水、化学溶解液等,依据非金属矿物的物理化学性质,利用其可溶于水或化学溶解液的特点,以溶蚀出目标矿体中的矿物成分,使其从固态转化为液态,采收后提取矿物。该工艺与传统开采技术不同,减少了传统采矿过程采掘等环节,同时利用定向钻井工艺以及压裂技术,可以开采几百米至数千米难以开采的矿藏,同时对海洋地下矿藏,利用海上钻井平台也可实施非金属矿物地下原地钻孔溶蚀采矿的应用。

Description

一种非金属矿物地下原地钻孔溶蚀采矿新工艺 技术领域
本发明涉及一种指利用溶解液 (如水、 化学溶解液等), 依据非金属矿物 的物理化学性质, 利用其可溶于水或化学溶解液的特点, 以溶蚀出目标矿体中 的矿物成分, 使其从固态转化为液态, 采收后提取矿物的新型采矿方法。 背景技术
选择目标矿体以物探钻探技术了解矿体的构造形态,根据构造情况利用定 向钻井技术设计钻井方案, 使其矿体内形成有效通道, 也可用石油工程压裂技 术对矿体进行改造形成渗流通道, 向注入井注入水或化学溶解液, 与矿石进行 充分的物理化学反应后溶蚀为液体, 通过采出井抽采至地面, 依据其矿物的物 理化学性质, 进行分离出有效的矿物成分, 分离出的水或化学溶解液回注至地 下矿体循环利用, 依次反复开采。
非金属矿物地下原地钻孔溶蚀采矿新工艺的方法, 与传统开采技术不同, 减少了传统采矿过程采掘等环节, 同时利用新型定向钻井工艺以及压裂技术, 可以开采几百米至数千米难以开采的矿藏, 同时对海洋地下矿藏, 利用海上钻 井平台也可实施非金属矿物地下原地钻孔溶蚀采矿的应用。 发明内容
为克服现有技术之不足,本发明提供一种非金属矿物地下原地钻孔溶蚀采 矿新工艺的方法,尤其是位于地下几百米至数千米难以开采的矿藏的液体开采 方法。 该方法包括:
1、 根据勘测结果, 制定开采方案; , ~n
2、 根据构造情况选择具有一定规模的矿体, 划定采矿区块;
3、 在划定区块内进行定向钻井;
4、 在钻井深度要求穿透目标地层, 以高强度固井材料固井后完井;;
5、 根据矿体矿物成分含量计算矿体矿物储量, 制定开采井网分布方案及 钻井设计方案。
上述的井网分布方案可采用平行排列的井网分布方式,注入液量与采出液 量保持相当水平;
上述所有注入井及采出井利用定向井连通或压裂技术对目标地层进行改 造。
在矿体内部形成通道或裂缝, 以形成注采井网之间的流通溶蚀通道或渗流 溶蚀通道, 即在平面上注入井与采出井全部形成连通状态。
地下原地钻孔溶蚀采矿新工艺利用新型定向钻井工艺以及压裂技术开采 几百米至数千米难以开采的非金属矿藏, 利用水或化学溶解液等, 借助化学反 应和物理反应, 溶蚀出矿体中的有用矿物成分, 改变了传统开采技术上大规模 的基础设施建设, 减少了采矿过程中采掘等环节。 具体优点如下:
1、本项专利技术液体采矿均不用在地下或者地面进行大规模的基础建设。
2、 可对埋藏较深 (几百米-数千米) 难以开采的非金属矿藏进行新型定向 液体采矿。
3、 减少了传统采矿过程中采掘等环节。
4、 实行井下无人作业。
5、 本发明通过对目标矿体使用的溶解液是水或者化学溶解液, 实施有效 环保措施后不会对环境造成污染。
6、 本发明技术工艺流程均在地下完成, 不会造成如传统工艺在地面生产 , ~n 形成的粉尘、 有毒有害气体产生的环境污染 附图说明
图 1为本发明压裂改造平面示意图;
图 2为本发明压裂改造空间立体示意图;
图 3为本发明注入井示意图
图 4为本发明采出井示意图
图 5为本发明压裂改造剖面示意图
图 6为本发明定向井连通示意图;
图 7为本发明生产工艺流程平面示意图; 具体实施方式
以下结合附图对本发明的具体实施例做进一步详述。
参照图 1,本发明采用平行排列的井网分布方式,注入井(1 )与采出井(2) 保持平行。
参照图 2, 本发明采用平行排列的井网分布方式, 注入井(2)注入液量与 采出井 (1 ) 采出液量保持相等水平。
参照图 3, 本发明根据井网分布对目标矿层(3)进行定向钻井, 对注入井 下入耐腐蚀套管 (1 ), 采用高强度固井材料固井, 后下入耐腐蚀油管 (2) 及 井口装置完井。
参照图 4, 本发明根据井网分布对目标矿层(3)进行定向钻井, 对采出井 下入耐腐蚀套管 (1 ), 采用高强度固井材料固井, 后下入耐腐蚀油管 (2) 及 井口装置完井, 并对采出井下入抽油杆 (4) 和泵 (5) 进行抽采。 参照图 5, 本发明对所有注入井及采出井利用大型压裂设备(1 )的技术对 目标地层进行改造, 注入压裂液及支撑剂(2), 在矿体内部形成沿地层平面走 向的裂缝(3), 以形成注采井网之间的流通通道或渗流通道, 即在平面上注入 井与采出井全部形成连通状态。
参照图 6, 本发明的采矿区块, 对区块内矿体(3 )进行定向钻井(1、 2), 形成注采井网之间的流通通道或渗流通道。
参照图 7, 本发明处理工艺包括地下产出液体, 通过回收装置进行回收, 经分离装置对矿物及废渣进行分离,将分离后的水或化学溶解液沿地面管线流 向注入井进行回注, 循环利用, 依次反复开采。

Claims

权 利 要 求 书
1、 一种非金属矿物地下原地钻孔溶蚀采矿新工艺, 其特征在于:
( 1 ) 利用水或化学溶解液等, 以溶蚀出目标矿体中的有用矿物;
(2) 借助化学反应和物理反应, 使矿体从固态转化为液态, 采收后提取 有用矿物。
2、如权利要求 1所述的一种非金属矿物地下原地钻孔溶蚀采矿新工艺的方法, 其特征在于上述的目标矿体以物探钻探技术了解矿体构造形态,根据构造情况 利用定向钻井技术, 也可用石油工程压裂技术对矿体进行改造, 使其矿体内形 成通道或裂缝, 以形成注采井网之间的流通溶蚀通道或渗流溶蚀通道, 向注入 井注入水或化学溶解液等,与矿石进行充分的物理化学反应后将矿石浸泡溶蚀 为液体, 通过采出井抽采至地面, 用盐田、 分离装置或其他工艺方案回收有用 的矿物,将分离后的水或化学溶解液回注至地下矿体循环利用,依次反复开采。
3、 如权利要求 1或者 2所述的一种非金属矿物地下原地钻孔溶蚀采矿新工艺 的方法, 其特征在于利用定向钻井技术或大型压裂技术对矿体进行改造, 使矿 体在内部形成流通溶蚀通道或渗流溶蚀通道, 向注入井注入的水或化学溶解液 等, 与矿石进行充分的反应。
4、如权利要求 2所述的一种非金属矿物地下原地钻孔溶蚀采矿新工艺的方法, 其特征在于钻井深度要求穿透目标地层, 以高强度固井材料固井后完井。
5、如权利要求 2所述的一种非金属矿物地下原地钻孔溶蚀采矿新工艺的方法, 其特征在于制定的开采井网分布方案采用平行排列的井网分布方案, 即在平面 上注入井与采出井全部形成连通状态。
6、如权利要求 2所述的一种非金属矿物地下原地钻孔溶蚀采矿新工艺的方法, 其特征在于目标层使用定向钻井技术通道或压裂通道。
7、如权利要求 3所述的一种非金属矿物地下原地钻孔溶蚀采矿新工艺的方法, 其特征在于上述的反应为化学反应和物理反应中的溶蚀特性。
8、 如权利要求 1或者 2所述的一种非金属矿物地下原地钻孔溶蚀采矿新工艺 的方法,其特征在具有可溶解性的矿物都可运用非金属矿物地下原地钻孔溶蚀 采矿新工艺的方法进行开采。
9、 如权利要求 1或者 2所述的一种非金属矿物地下原地钻孔溶蚀采矿新工艺 的方法, 其特征在同时适用于陆地、 海洋等几百米至数千米的矿体开采。
PCT/CN2013/075449 2012-09-25 2013-05-10 一种非金属矿物地下原地钻孔溶蚀采矿新工艺 WO2014048119A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210358805.4 2012-09-25
CN2012103588054A CN102828730A (zh) 2012-09-25 2012-09-25 一种非金属矿物地下原地钻孔溶蚀采矿新工艺

Publications (1)

Publication Number Publication Date
WO2014048119A1 true WO2014048119A1 (zh) 2014-04-03

Family

ID=47332018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075449 WO2014048119A1 (zh) 2012-09-25 2013-05-10 一种非金属矿物地下原地钻孔溶蚀采矿新工艺

Country Status (2)

Country Link
CN (1) CN102828730A (zh)
WO (1) WO2014048119A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10012064B2 (en) 2015-04-09 2018-07-03 Highlands Natural Resources, Plc Gas diverter for well and reservoir stimulation
US10344204B2 (en) 2015-04-09 2019-07-09 Diversion Technologies, LLC Gas diverter for well and reservoir stimulation
US10982520B2 (en) 2016-04-27 2021-04-20 Highland Natural Resources, PLC Gas diverter for well and reservoir stimulation

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102828730A (zh) * 2012-09-25 2012-12-19 秦勇 一种非金属矿物地下原地钻孔溶蚀采矿新工艺
RU2017119195A (ru) * 2014-11-03 2018-12-05 Бейкер Хьюз Инкорпорейтед Добыча руд на месте залегания из подземных пластов
CN105927193B (zh) * 2016-07-19 2018-07-06 中盐勘察设计院有限公司 一种深厚固体盐湖石盐矿层的开采方法
CN109252852A (zh) * 2018-10-12 2019-01-22 中国科学院青海盐湖研究所 第四纪非洲地下钾矿的溶采方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3822916A (en) * 1972-11-16 1974-07-09 Akzona Inc In-situ extraction of mineral values from ore deposits
US5690390A (en) * 1996-04-19 1997-11-25 Fmc Corporation Process for solution mining underground evaporite ore formations such as trona
CN1818326A (zh) * 2006-02-23 2006-08-16 上海太平洋化工(集团)淮安元明粉有限公司 芒硝矿压裂开采方法
CN101315025A (zh) * 2008-06-05 2008-12-03 太原理工大学 一种盐岩溶腔储气库的建造方法
CN101429860A (zh) * 2008-12-12 2009-05-13 东华理工大学 一种淡化少试剂地浸采铀方法
US20100225154A1 (en) * 2009-03-05 2010-09-09 Fmc Corporation Method for Simultaneously Mining Vertically Disposed Beds
CN102191932A (zh) * 2011-04-08 2011-09-21 太原理工大学 钙芒硝矿原位注热浸泡控制水溶开采方法
CN102418524A (zh) * 2011-09-22 2012-04-18 秦勇 一种地下原地钻孔浸出采矿新工艺
CN102828730A (zh) * 2012-09-25 2012-12-19 秦勇 一种非金属矿物地下原地钻孔溶蚀采矿新工艺

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3912330A (en) * 1974-03-04 1975-10-14 Us Interior Chemical mining of copper porphyry ores

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3822916A (en) * 1972-11-16 1974-07-09 Akzona Inc In-situ extraction of mineral values from ore deposits
US5690390A (en) * 1996-04-19 1997-11-25 Fmc Corporation Process for solution mining underground evaporite ore formations such as trona
CN1818326A (zh) * 2006-02-23 2006-08-16 上海太平洋化工(集团)淮安元明粉有限公司 芒硝矿压裂开采方法
CN101315025A (zh) * 2008-06-05 2008-12-03 太原理工大学 一种盐岩溶腔储气库的建造方法
CN101429860A (zh) * 2008-12-12 2009-05-13 东华理工大学 一种淡化少试剂地浸采铀方法
US20100225154A1 (en) * 2009-03-05 2010-09-09 Fmc Corporation Method for Simultaneously Mining Vertically Disposed Beds
CN102191932A (zh) * 2011-04-08 2011-09-21 太原理工大学 钙芒硝矿原位注热浸泡控制水溶开采方法
CN102418524A (zh) * 2011-09-22 2012-04-18 秦勇 一种地下原地钻孔浸出采矿新工艺
CN102828730A (zh) * 2012-09-25 2012-12-19 秦勇 一种非金属矿物地下原地钻孔溶蚀采矿新工艺

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10012064B2 (en) 2015-04-09 2018-07-03 Highlands Natural Resources, Plc Gas diverter for well and reservoir stimulation
US10344204B2 (en) 2015-04-09 2019-07-09 Diversion Technologies, LLC Gas diverter for well and reservoir stimulation
US10385257B2 (en) 2015-04-09 2019-08-20 Highands Natural Resources, PLC Gas diverter for well and reservoir stimulation
US10385258B2 (en) 2015-04-09 2019-08-20 Highlands Natural Resources, Plc Gas diverter for well and reservoir stimulation
US10982520B2 (en) 2016-04-27 2021-04-20 Highland Natural Resources, PLC Gas diverter for well and reservoir stimulation

Also Published As

Publication number Publication date
CN102828730A (zh) 2012-12-19

Similar Documents

Publication Publication Date Title
CN109488259B (zh) 基于温海水-砾石吞吐置换开采i类水合物系统的方法
WO2014048119A1 (zh) 一种非金属矿物地下原地钻孔溶蚀采矿新工艺
CN107642346B (zh) 一种海底浅层非成岩天然气水合物领眼回拖射流开采方法及开采装置
CN110397428B (zh) 一种直井与u型对接井联合开采煤层气的驱替煤层气增产方法
CN110644963B (zh) 一种基于多分支井开采水合物的方法
CN106285617B (zh) 天然气水平井完井方法
CN108868706B (zh) 定向钻进超临界二氧化碳致裂置换开采天然气水合物方法
WO2013041036A1 (zh) 一种地下原地钻孔浸出釆矿新工艺
CN105003237A (zh) 地热开采天然气水合物与co2废气回注处理一体化的装置及方法
US10989036B2 (en) Drilling casing and method of performing fast drilling and completion of large-borehole multilateral well
CN104806217A (zh) 煤层群井地联合分层压裂分组合层排采方法
CN103982163A (zh) 一种海洋天然气水合物单井降压开采系统及方法
WO2016078627A1 (zh) 一种利用钻井机器人钻多分枝鱼骨径向微小井眼的页岩气储层钻完井和增产系统及方法
Wei et al. A state-of-the-art review and prospect of gas hydrate reservoir drilling techniques
Ye et al. A novel thermal stimulation approach for natural gas hydrate exploitation——the application of the self-entry energy compensation device in the Shenhu sea
CN108930529B (zh) 基于废弃油气井的油-热-电联产方法
RU2661513C1 (ru) Способ выработки слабодренируемых участков нефтяной залежи
CN105888613A (zh) 钻屑深井注入工艺
Wu et al. Development of a novel self-entry exploitation device for marine natural gas hydrate and the feasibility studies
CN116658137B (zh) 一种含水层co₂封存与自流注水增产原油方法与系统
CN107558950A (zh) 用于油页岩地下原位开采区域封闭的定向堵漏方法
RU2465434C1 (ru) Способ восстановления обводненной газовой скважины со смятой эксплуатационной колонной в продуктивном интервале
RU2264533C2 (ru) Способ разработки залежи нефти в карбонатном или терригенном пласте с развитой макротрещиноватостью
CN108756827B (zh) 一种海底可燃冰的开采系统及方法
CN109707362B (zh) 一种挖潜老井储层纵向单砂体剩余油的定点压裂方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13840350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13840350

Country of ref document: EP

Kind code of ref document: A1