RU2465434C1 - Способ восстановления обводненной газовой скважины со смятой эксплуатационной колонной в продуктивном интервале - Google Patents

Способ восстановления обводненной газовой скважины со смятой эксплуатационной колонной в продуктивном интервале Download PDF

Info

Publication number
RU2465434C1
RU2465434C1 RU2011126726/03A RU2011126726A RU2465434C1 RU 2465434 C1 RU2465434 C1 RU 2465434C1 RU 2011126726/03 A RU2011126726/03 A RU 2011126726/03A RU 2011126726 A RU2011126726 A RU 2011126726A RU 2465434 C1 RU2465434 C1 RU 2465434C1
Authority
RU
Russia
Prior art keywords
water
well
cement
gas
production
Prior art date
Application number
RU2011126726/03A
Other languages
English (en)
Inventor
Александр Васильевич Кустышев (RU)
Александр Васильевич Кустышев
Валерий Зирякович Минликаев (RU)
Валерий Зирякович Минликаев
Александр Александрович Сингуров (RU)
Александр Александрович Сингуров
Алексей Викторович Кононов (RU)
Алексей Викторович Кононов
Иван Васильевич Чижов (RU)
Иван Васильевич Чижов
Денис Александрович Кустышев (RU)
Денис Александрович Кустышев
Владимир Николаевич Дубровский (RU)
Владимир Николаевич Дубровский
Егор Викторович Вакорин (RU)
Егор Викторович Вакорин
Original Assignee
Открытое акционерное общество "Газпром"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Газпром" filed Critical Открытое акционерное общество "Газпром"
Priority to RU2011126726/03A priority Critical patent/RU2465434C1/ru
Application granted granted Critical
Publication of RU2465434C1 publication Critical patent/RU2465434C1/ru

Links

Images

Landscapes

  • Earth Drilling (AREA)

Abstract

Изобретение относится к нефтегазодобывающей промышленности, а именно к восстановлению обводненной простаивающей газовой скважины со смятой эксплуатационной колонной в продуктивном интервале в условиях аномально низкого пластового давления и незначительной газоносной толщины оставшейся части продуктивного пласта. Обеспечивает дополнительную добычу газа из ранее простаивающей скважины, из ее потерянной для дренирования зоны при минимальных затратах на ее ремонт. Сущность изобретения: по способу отрезают и извлекают верхнюю часть лифтовой колонны, в обводненном основном стволе скважины устанавливают ликвидационный цементный мост, выше него в эксплуатационной колонне основного ствола вырезают окно и бурят дополнительный ствол, не выходящий за пределы призабойной зоны эксплуатационной колонны основного ствола обводненной скважины и с размещением башмака на 2-3 м выше газоводяного контакта - ГВК, обсаживают дополнительный ствол хвостовиком из обсадных труб и цементируют, перфорируют хвостовик на 5-7 м выше ГВК с образованием технологических отверстий под водоизоляцию, закачивают через эти отверстия водоизоляционную композицию, оттесняющую воду в глубину пласта и образующую водоизоляционный экран, докрепляют водоизоляционную композицию продавливаемым под давлением через технологические отверстия под водоизоляцию пластифицированным тампонажным цементным составом с повышенной проникающей способностью, устанавливают в хвостовике изоляционный цементный мост из тампонажного цемента нормальной плотности, перекрывающий технологические отверстия под водоизоляцию, после завершения периода ожидания затвердевания цемента и испытания изоляционного цементного моста на прочность и герметичность перфорируют хвостовик в верхней части продуктивного пласта и осваивают скважину. 3 пр., 1 ил.

Description

Изобретение относится к нефтегазодобывающей промышленности, а именно к восстановлению обводненной простаивающей газовой скважины со смятой эксплуатационной колонной в продуктивном интервале в условиях аномально низкого пластового давления (АНПД) и незначительной газоносной толщины оставшейся части продуктивного пласта.
Большинство нефтегазоконденсатных месторождений Западной Сибири относятся к сложнопостроенным месторождениям с чередованием песчанистых и глинистых прослоек, образующих порою изолированные друг от друга линзы. Месторождения вступили в завершающую стадию разработки, характеризующейся АНПД, внедрением в залежь подошвенных вод и разрушением призабойной зоны пласта (ПЗП). Большое количество скважин на этих месторождениях выбывают из эксплуатации по причине их обводнения и смятия эксплуатационных колонн. Нередки случаи, когда подошвенные воды перекрывают весь интервал перфорации и скважины выходят из действующего фонда, переходя в бездействующий. Осложняющим фактором является наличие смятия эксплуатационной колонны и прихват лифтовой колонны, исключающие возможность попадания ремонтного инструмента в ствол скважины. В этом случае восстановить скважину и вывести ее из бездействующего фонда традиционными методами не всегда удается.
Примером этому могут служить скважины №202, 203, 186, 198, 199 Вынгапуровского месторождения, в которых были выявлены нарушения целостности эксплуатационных колонн, выраженные на скважинах №202, 203 полным смятием эксплуатационных колонн, а в скважинах №186, 198, 199 частичным смятием и смещением эксплуатационных колонн. Обычно такие нарушения происходят в зоне кровли продуктивного пласта, а также в зонах расположения глинистых пропластков. Причем смятие сопровождается срезом эксплуатационной колонны и ее смещением по горизонтали. При этом зачастую происходит прихват лифтовых колонн, извлечь которые практически невозможно, либо для их извлечения необходимы большие временные, технические и финансовые затраты. Таким образом, основной ствол скважины в результате смятия эксплуатационной колонны практически потерян как для добычи, так и для ремонта скважины. Здесь возможны два пути решения этой проблемы: либо ликвидация скважины как объекта добычи, либо проведение дорогостоящего ремонта по бурению бокового ствола с выходом его в недренированную зону, при этом эта часть продуктивного пласта, расположенная вблизи основного ствола, будет потеряна для целей разработки месторождения.
Известен способ восстановления скважины бурением бокового ствола [Техника и технология строительства боковых стволов в нефтяных и газовых скважинах / Шенбергер В.М. и др.- Тюмень: Изд-во «Нефтегазовый университет», 2007, 594 с.].
Недостатком этого способа восстановления обводненной простаивающей газовой скважины со смятой эксплуатационной колонной в условиях АНПД и незначительной газоносной толщины оставшейся части продуктивного пласта являются значительные затраты на ремонт скважины и невозможность вскрытия дренируемой ПЗП обводненной скважины, а значит безвозвратной потери данного участка месторождения для целей добычи.
Известен способ восстановления продуктивности и ввода в эксплуатацию простаивающих нефтяных и газовых скважин, включающий производство ремонтно-изоляционных работ и вскрытие продуктивного пласта [Патент РФ №2273718, Е21В 29/10, опубл. 10.04.2006].
Недостатком этого способа восстановления обводненной простаивающей газовой скважины со смятой эксплуатационной колонной в условиях АНПД и незначительной газоносной толщины оставшейся части продуктивного пласта являются значительные затраты на ремонт скважины и невозможность вскрытия дренируемой ПЗП обводненной скважины, а значит безвозвратной потери данного участка месторождения для целей добычи.
Известен способ восстановления продуктивности и ввода в эксплуатацию простаивающих скважин, включающий производство ремонтно-изоляционных работ и вскрытие продуктивного пласта в обсадной колонне [Патент РФ №2231630, Е21В 43/00, 43/32, опубл. 27.06.2004].
Недостатком этого способа восстановления обводненной простаивающей газовой скважины со смятой эксплуатационной колонной в условиях АНПД и незначительной газоносной толщины оставшейся части продуктивного пласта являются значительные затраты на ремонт скважины и невозможность вскрытия дренируемой ПЗП обводненной скважины, а значит безвозвратной потери данного участка месторождения для целей добычи.
Задача, стоящая при создании изобретения, состоит в разработке надежного способа восстановления обводненной простаивающей газовой скважины со смятой эксплуатационной колонной в условиях АНПД и незначительной газоносной толщины оставшейся части продуктивного пласта.
Достигаемый технический результат, который получается в результате создания изобретения, состоит в получении дополнительной добычи газа из ранее простаивающей скважины, из ее потерянной для дренирования зоны, при минимальных затратах на ее ремонт.
Поставленная задача и технический результат соответственно решаются и достигаются тем, что при восстановлении обводненной газовой скважины со смятой эксплуатационной колонной в продуктивном интервале отрезают и извлекают верхнюю часть лифтовой колонны, в обводненном основном стволе скважины устанавливают ликвидационный цементный мост, выше него в эксплуатационной колонне основного ствола вырезают окно и бурят дополнительный ствол, не выходящий за пределы призабойной зоны основного ствола обводненной скважины и с размещением башмака на 2-3 м выше газоводяного контакта (ГВК), обсаживают дополнительный ствол хвостовиком из обсадных труб и цементируют, перфорируют хвостовик на 5-7 м выше ГВК с образованием технологических отверстий под водоизоляцию, закачивают через эти отверстия водоизоляционную композицию, оттесняющую воду в глубину пласта и образующую водоизоляционный экран, докрепляют водоизоляционную композицию продавливаемым под давлением через технологические отверстия под водоизоляцию пластифицированным тампонажным цементным составом с повышенной проникающей способностью, устанавливают в хвостовике изоляционный цементный мост из тампонажного цемента нормальной плотности, перекрывающий технологические отверстия под водоизоляцию, после завершения периода ожидания затвердевания цемента и испытания изоляционного цементного моста на прочность и герметичность перфорируют хвостовик в верхней части продуктивного пласта и осваивают скважину.
На фиг. показана конструкция восстановленной газовой скважины после ремонта.
Способ реализуется в обводненной простаивающей газовой скважине со смятой эксплуатационной колонной основного ствола 1 и прихваченной лифтовой колонной 2, в которой первоначально эксплуатационная колонна основного ствола 1 была проперфорирована на всю толщину эффективной газоносной части продуктивного пласта 3. В процессе эксплуатации интервал перфорации 4 был частично перекрыт подошвенными водами с размещением ГВК 5 в верхней части интервала перфорации 4.
Первоначально в обводненной простаивающей газовой скважине обрезают лифтовую колонну 2, например, труборезом выше места прихвата и извлекают обрезанную часть лифтовой колонны 2 на поверхность. Причем прихват наиболее вероятен в зоне кровли 6 продуктивного пласта 3 или в зонах расположения глинистых пропластков 7.
Далее в эксплуатационной колонне основного ствола 1 скважины устанавливают ликвидационный цементный мост 8. Отрезанную нижнюю часть лифтовой колонны 2 цементируют в составе ликвидационного цементного моста 8, образуя дополнительную армирующую конструкцию данного цементного моста 8.
Выше ликвидационного цементного моста 8 в эксплуатационной колонне основного ствола 1 вырезают окно 9 на 30-50 м выше кровли 6 продуктивного пласта 3 и с использованием клина-отклонителя 10 и забойной телеметрической системы (на фиг. не показана), например, производства ЗАО НПП «Самарские горизонты» (см. http://www.sagor.ru/cat8.html), бурят дополнительный ствол 11, не выходящий за пределы призабойной зоны основного ствола 1 обводненной простаивающей газовой скважины с размещением башмака на 2-3 м выше ГВК 5. При этом бурение дополнительного ствола 11 в интервале продуктивного пласта 3 осуществляют на буровом растворе на полимерной или углеводородной основе.
Известно, что конфигурация, размеры и гидродинамические характеристики призабойной зоны изменяются в течение всего срока существования скважины. Они определяют гидравлическую связь скважины с пластом и весьма существенно влияют на ее производительность. Конфигурация зоны с измененными гидродинамическими характеристиками пласта в приствольной части скважины не имеет какой-то строгой геометрической формы, и ее морфология, особенно в трещиноватых и трещиновато-поровых коллекторах сложна и многообразна. Качественную и количественную оценку физико-геологических свойств пласта и гидравлического сопротивления призабойной зоны дают гидродинамические исследования скважин. В результате получают не фактические размеры зоны, а размер эквивалентной по гидравлическим свойствам круговой зоны. В связи с этим под пределами призабойной зоны основного ствола 1 понимается участок продуктивного пласта, примыкающий к основному стволу 1 (эквивалентная по гидравлическим свойствам круговая зона) скважины, с радиусом от оси основного ствола, равным 2-3 радиусам скважины, что, например, для скважины с эксплуатационной колонной, равной 168 мм, составляет ориентировочно от 280 до 420 мм. Данные значения являются средними и характеризуют пределы призабойной зоны относительно основного ствола 1 скважины (см., например, http://dic.academic.ru/dic.nsf/polytechnic/). При этом размещение башмака на 2-3 м выше ГВК обусловлено тем, что, с одной стороны, гарантирует, что нижний торец хвостовика 12 не попадет в зону ГВК 5, с другой стороны, при размещении нижнего торца хвостовика 12 на 2-3 м выше ГВК 5 незначительно сокращается толщина оставшейся необводненной зоны продуктивного пласта 3.
Дополнительный ствол 11 обсаживают хвостовиком 12 из обсадных труб, например, диаметром 114 мм при диаметре эксплуатационной колонны 168 мм и цементируют.
Хвостовик 12 перфорируют на 5-7 м выше ГВК 5 с образованием технологических отверстий 13 под водоизоляцию. При этом в качестве перфоратора применяют мощные кумулятивные перфораторы, такие как, PI 2906 Омега, или ЗПКТ 73-ГП, либо ПРК 42С, ПКС-80. Перфорация хвостовика 12 на 5-7 м выше ГВК 5 обусловлена необходимостью сохранения прочностных свойств эксплуатационной колонны, а также стремлением минимально сократить дренированную зону и в то же время создать через этот интервал прочный водоизоляционный экран. Расстояние между нижними и верхними перфорационными отверстиями хвостовика 12 обусловлено конструкцией перфоратора, например, ПКС-80, а именно на одном метре колонны должно быть порядка 10 отверстий.
Закачивают через технологические отверстия 13 водоизоляционную композицию 14, оттесняя подошвенную воду с образованием водоизоляционного экрана 15. Образованный водоизоляционный экран 15 препятствует проникновению воды на забой хвостовика 12. В практике нефтегазовой промышленности в качестве водоизоляционных композиций могут использоваться, например, составы, описанные в книге (Справочная книга по текущему и капитальному ремонту скважин / А.Д.Амиров и др. - М.: Недра, 1979, с. 238-241) и другие составы, приведенные в книгах (Изоляционные работы при заканчивании и эксплуатации нефтяных скважин / И.И.Клещенко и др. - М.: Недра, 1998, 267 с.; Капитальный ремонт скважин. Изоляционные работы / В.Г.Уметбаев и др. - Уфа: РИЦ АНК «Башнефть», 2000, 424 с.; Технология капитального и подземного ремонта нефтяных и газовых скважин: Учебник для вузов / Ю.М.Басарыгин и др. - Крансодар: Сов. Кубань, 2002, 584 с.; Гасумов Р.А., Нерсесов С.В., Мосиенко В.Г. Технология изоляции притока пластовых вод в газовых и газоконденсатных скважинах // Обз. Информ. Сер.: разработка и эксплуатация газовых и газоконденсатных месторождений. - М.: ИРЦ Газпром, 2005, 107 с.).
Помимо этого известны следующие водоизоляционные композиции:
- модификатор (113-63 или 113-65) + этилсиликат (ЭТС-40 или ЭТС-16)+гидрофобная кремнийорганическая жидкость (ГЖК);
- этилсиликат (ЭТС-40 или ЭТС-16) + синтетическая виноградная кислота (СВК) + хлорид кальция (CaCl2);
- поливиниловый спирт (ПВС)+гидрофобная кремнийорганическая жидкость (ГКЖ).
Известны также гелеобразующие водоизоляционные композиции, например, силикатный гель-гелеобразующая основа + хлорид кальция (CaCl2) + соляная кислота (HCl) + сульфат аммония (NH4)2SO4 или полимерный гель-гелеобразующая основа+полиакриламит (ПАА).
Закачку водоизоляционной композиции проводят из расчета ее объема и давления закачки.
Объем водоизоляционной композиции, закачиваемой в пласт, зависит от геолого-физических характеристик объекта и определяется по результатам технико-экономических расчетов (см. например, патент РФ №2124634, стр.3).
Методики промысловых наблюдений включают в себя определение объема водоизоляционной композиции, который, с одной стороны, зависит от свойств реагентов, с другой, - от коллекторских свойств пород и объема промытых зон. Для большинства химреагентов при ограничении водопритоков в скважины этот объем определяется из расчета заполнения ими обводненного участка призабойной зоны пласта, который не всегда соответствует фактическим объемам закачки.
Воздействие на пласт основано на изменении фильтрационного сопротивления его обводненной зоны, а определение объема водоизоляционной композиции производят по остаточному сопротивлению, создаваемому ей в пористой среде (см., например, http://neft.-i-gaz.ru/litera/index0 155.htm).
Водоизоляционную композицию 14 докрепляют пластифицированным тампонажным цементным составом с повышенной проникающей способностью, повышенной прочностью и стойкостью к пластовой воде, продавливаемым в обводненную часть продуктивного пласта 3 под давлением через технологические отверстия 13 под водоизоляцию. Под пластифицированным тампонажным цементным составом понимается цементный состав, содержащий пластифицирующую добавку, составляющую, например, 1,0-3,0% от массы цемента (см., например, http://www.emaco-spb.ru/glenium_sky_591). Такие пластифицированные тампонажные цементные составы обладают повышенной проникающей способностью. Из уровня техники (см., например, www.dobi.oglib.ru/bgl/2684/303.html) известно, что проникающая способность тампонажного цементного состава характеризуется пластической вязкостью. Высокая проникающая способность характерна для тампонажных цементных составов, вязкость которых приближается к вязкости воды. Пластическая вязкость пластифицированного тампонажного цементного состава составляет 30-50 Сп. Отсутствие твердой фазы также обуславливает высокую проникающую способность состава и хорошую фильтруемость в пористой среде.
При закачке водоизоляционной композиции и доукрепляющего пластифицированного тампонажного цементного состава необходимо контролировать давление закачки. Как было установлено экспериментальным путем на скважинах №186, 198, 199 Вынгапуровского месторождения, закачку водоизоляционной композиции и доукрепляющего пластифицированного тампонажного цементного состава вели до давления на 10% ниже давления гидроразрыва.
Дополнительно в хвостовике 12 устанавливают изоляционный цементный мост 16 из тампонажного цемента нормальной плотности, который перекрывает технологические отверстия 13 под водоизоляцию, выполненные в хвостовике 12 дополнительного ствола 10. Под тампонажным цементом нормальной плотности понимается тампонажный цементный состав плотностью 1750-1950 кг/м3 (см., например, http://www.ng-burenie.ru/reastab.php), например, ПТЦ-1-50 - 60%, вода - 40%.
После завершения периода ожидания затвердевания цемента и испытания изоляционного цементного моста 16 на прочность и герметичность перфорируют хвостовик 12 в верхней необводненной менее эффективной низкопроницаемой газоносной части продуктивного пласта 3 с образованием новых перфорационных отверстий 17 под эксплуатацию.
В качестве перфоратора применяют мощные кумулятивные перфораторы, такие как PI 2906 Омега, или ЗПКТ 73-ГП, либо ПРК 42С или ПКС 80. Можно для перфорации хвостовика 12 использовать гидропескоструйную перфорацию либо применить метод щелевой разгрузки с образованием продольных вертикальных щелей.
В заключение в скважину спускают новую лифтовую колонну 18 до глубины верхней кромки вырезанного в эксплуатационной колонне основного ствола 1 окна 9 и осваивают скважину путем вызова притока газа из газоносной части продуктивного пласта 3 через новые перфорационные отверстия 17 под эксплуатацию.
После отработки скважины и проведения газодинамических исследований скважину вводят в эксплуатацию.
Примеры осуществления заявленного способа.
Пример 1.
Способ реализуется на обводненной скважине со смятой эксплуатационной колонной диаметром 168 мм, длиной 1000 м. Подошва пласта размещена на глубине 980 м, кровля пласта на глубине 955 м, а ГВК - на 978 м от поверхности. Обрезают лифтовую колонну выше места прихвата, расположенного в зоне кровли 6 продуктивного пласта 3, труборезом, например труборезом внутренним ТРВ-168, и извлекают на поверхность. Затем в эксплуатационной колонне 1 устанавливают ликвидационный цементный мост 8 из тампонажного цемента нормальной плотности, составляющей 1750 кг/м3, например, из тампонажного цемента ПТЦ-1-50, в соотношении: ПТЦ-1-50 - 60%, вода - 40%. Над ликвидационным мостом 8 в эксплуатационной колонне 1 (с внутренним диаметром, например, 150 мм) вырезают окно 9 на расстоянии 30-50 м выше кровли 6 продуктивного пласта 3. Размещают внутри эксплуатационной колонны 1 клин-отклонитель 10, например, марки КОС-168 плоского типа или КО-168 желобного типа и бурят с использованием забойной телеметрической системы (на фиг. не показана) производства ЗАО НПП «Самарские горизонты» дополнительный ствол 11 не выходящий за пределы призабойной зоны основного ствола обводненной скважины. После этого обсаживают дополнительный ствол 11, хвостовиком 12 диаметром 114 мм. Башмак хвостовика размещают на расстоянии 2 м от ГВК. В нижней части хвостовика проводят перфорацию перфоратором ПКС-80. Нижний ряд технологических перфорационных отверстий расположен на расстоянии 5 м выше ГВК. Верхний ряд перфорационных отверстий 13 размещают на расстоянии 6 м выше ГВК. В перфорационные отверстия 13 последовательно закачивают водоизоляционную композицию (модификатор 113-63 или 113-65)+этилсиликат (ЭТС-40 или ЭТО 16 + гидрофобная кремнийорганическая жидкость (ГЖК), доукрепляют пластифицированным тампонажным цементным раствором с повышенной проницаемостью (ПТЦ-1-50 - 60 мас.% + Мк-85 - 40 мас.% (микрокремнезем конденсированный) + водный раствор хлорида кальция CaCl2 - 150 мас.% (плотностью 1065 кг/м3) + СП-1 - 2 мас.% (суперпластификатор) + 250 EXR - 0,8 мас.% (натросол для понижения водоотдачи).
Затем устанавливают цементный мост 16 из тампонажного цементного состава нормальной плотности, составляющей 1750 кг/м3, например, в соотношении: ПТЦ-1-50 - 60%, вода - 40%, перекрывая им интервал перфорации. После завершения периода ожидания затвердевания цементного моста 16 испытывают его на прочность и герметичность. После перфорируют хвостовик 12 в верхней части продуктивного пласта 3.
В заключение в скважину спускают новую лифтовую колонну 18 диаметром 114 мм до глубины верхней кромки вырезанного в эксплуатационной колонне основного ствола 1 окна 9 и осваивают скважину путем вызова притока газа из газоносной части продуктивного пласта 3 через новые перфорационные отверстия 17 под эксплуатацию.
После отработки скважины и проведения газодинамических исследований скважину вводят в эксплуатацию.
Пример 2.
Способ реализуется на обводненной скважине со смятой эксплуатационной колонной диаметром 219 мм, длиной 1200 м. Подошва пласта размещена на глубине 985 м, кровля пласта на глубине 960 м, а ГВК - на 983 м от поверхности. Обрезают лифтовую колонну выше места прихвата, расположенного в зоне кровли 6 продуктивного пласта 3, труборезом, например труборезом внутренним ТРВ-219, и извлекают на поверхность. Затем в эксплуатационной колонне 1 устанавливают ликвидационный цементный мост 8 из тампонажного цемента нормальной плотности, составляющей 1750 кг/м3, например, в соотношении: ПТЦ-1-50 - 60%, вода - 40%. Над ликвидационным мостом 8 в эксплуатационной колонне 1 (с внутренним диаметром, например, 150 мм) вырезают окно 9 на расстоянии 30-50 м выше кровли 6 продуктивного пласта 3. Размещают внутри эксплуатационной колонны 1 клин-отклонитель 10, например, марки КОС-219 плоского типа и бурят с использованием забойной телеметрической системы (на фиг. не показана) производства ЗАО НПП «Самарские горизонты» дополнительный ствол 11, не выходящий за пределы призабойной зоны основного ствола обводненной скважины. После этого обсаживают дополнительный ствол 11 хвостовиком 12 диаметром 146 мм. Башмак хвостовика размещают на расстоянии 2,5 м от ГВК. В нижней части хвостовика проводят перфорацию перфоратором ПКС-80. Нижний ряд технологических перфорационных отверстий расположен на расстоянии 5,5 м выше ГВК. Верхний ряд перфорационных отверстий 13 размещают на расстоянии 6,5 м выше ГВК. В перфорационные отверстия 13 последовательно закачивают водоизоляционную композицию: этилсиликат (ЭТС-40 или ЭТС-16) + синтетическая кислота (СВК) + хлорид кальция (CaCl2), доукрепляют пластифицированным тампонажным цементным раствором с повышенной проницаемостью (ПТЦ-1-50 - 60 мас.% + Мк-85 - 40 мас.% (микрокремнезем конденсированный)+водный раствор хлорида кальция CaCl2 - 150 мас.% (плотностью 1065 кг/м3) + СП-1 - 2 мас.% (суперпластификатор) + полипропиленовые волокна + 250 EXR - 0,8 мас.% (натросол для понижения водоотдачи).
Затем устанавливают цементный мост 16 из тампонажного цементного состава нормальной плотности, составляющей 1750 кг/м3, например, из тампонажного цемента ПТЦ-1-50, в соотношении: ПТЦ-1-50 - 60%, вода - 40%, перекрывая им интервал перфорации. После завершения периода ожидания затвердевания цементного моста 16 испытывают его на прочность и герметичность. После перфорируют хвостовик 12 в верхней части продуктивного пласта 3.
В заключение в скважину спускают новую лифтовую колонну 18 диаметром 168 мм до глубины верхней кромки вырезанного в эксплуатационной колонне основного ствола 1 окна 9 и осваивают скважину путем вызова притока газа из газоносной части продуктивного пласта 3 через новые перфорационные отверстия 17 под эксплуатацию.
После отработки скважины и проведения газодинамических исследований скважину вводят в эксплуатацию.
Пример 3.
Способ реализуется на обводненной скважине со смятой эксплуатационной колонной диаметром 146 мм, длиной 1450 м, подошва пласта размещена на глубине 1085 м, кровля пласта на глубине 1060 м, а ГВК - на 1083 м от поверхности. Обрезают лифтовую колонну выше места прихвата, расположенного в зоне кровли 6 продуктивного пласта 3, труборезом, например труборезом внутренним ТРВ-146, и извлекают на поверхность. Затем в эксплуатационной колонне 1 устанавливают ликвидационный цементный мост 8 из тампонажного цемента нормальной плотности, составляющей 1750 кг/м3, например, в соотношении: ПТЦ-1-50 - 60%, вода - 40%. Над ликвидационным мостом 8 в эксплуатационной колонне 1 (с внутренним диаметром, например, 150 мм) вырезают окно 9 на расстоянии 30-50 м выше кровли 6 продуктивного пласта 3. Размещают внутри эксплуатационной колонны 1 клин-отклонитель 10, например, марки КОС-168 плоского типа и бурят с использованием забойной телеметрической системы (на фиг. не показана) производства ЗАО НПП «Самарские горизонты» дополнительный ствол 11, не выходящий за пределы призабойной зоны основного ствола обводненной скважины. После этого обсаживают дополнительный ствол 11 хвостовиком 12 диаметром 102 мм. Башмак хвостовика размещают на расстоянии 3 м от ГВК. В нижней части хвостовика проводят перфорацию перфоратором ПКС-80. Нижний ряд технологических перфорационных отверстий расположен на расстоянии 6 м выше ГВК. Верхний ряд перфорационных отверстий 13 размещают на расстоянии 7 м выше ГВК. В перфорационные отверстия 13 последовательно закачивают водоизоляционную композицию (модификатор 113-63 или 113-65) + этилсиликат (ЭТС-40 или ЭТС-16 + гидрофобная кремнийорганическая жидкость (ГЖК), доукрепляют пластифицированным тампонажным цементным раствором с повышенной проницаемостью (ПТЦ-1-50 - 98 мас.% + Мк-85 - 2 мас.% (микрокремнезем конденсированный)+вода 55 мас.% + Окзил - 04 мас.% (пластификатор) + 250 EXR - 0,8 мас.% (натросол для понижения водоотдачи).
Затем устанавливают цементный мост 16 из тампонажного цементного состава нормальной плотности, составляющей 1750 кг/м3, например, из тампонажного цемента ПТЦ-1-50, в соотношении: ПТЦ-1-50 - 60%, вода - 40%, перекрывая им интервал перфорации. После завершения периода ожидания затвердевания цементного моста 16 испытывают его на прочность и герметичность. После перфорируют хвостовик 12 в верхней части продуктивного пласта 3.
В заключение в скважину спускают новую лифтовую колонну 18 диаметром 73 мм до глубины верхней кромки вырезанного в эксплуатационной колонне основного ствола 1 окна 9 и осваивают скважину путем вызова притока газа из газоносной части продуктивного пласта 3 через новые перфорационные отверстия 17 под эксплуатацию.
После отработки скважины и проведения газодинамических исследований скважину вводят в эксплуатацию.

Claims (1)

  1. Способ восстановления обводненной газовой скважины со смятой эксплуатационной колонной в продуктивном интервале, при котором отрезают и извлекают верхнюю часть лифтовой колонны, в обводненном основном стволе скважины устанавливают ликвидационный цементный мост, выше него в эксплуатационной колонне основного ствола вырезают окно и бурят дополнительный ствол, не выходящий за пределы призабойной зоны эксплуатационной колонны основного ствола обводненной скважины и с размещением башмака на 2-3 м выше газоводяного контакта - ГВК, обсаживают дополнительный ствол хвостовиком из обсадных труб и цементируют, перфорируют хвостовик на 5-7 м выше ГВК с образованием технологических отверстий под водоизоляцию, закачивают через эти отверстия водоизоляционную композицию, оттесняющую воду в глубину пласта и образующую водоизоляционный экран, докрепляют водоизоляционную композицию продавливаемым под давлением через технологические отверстия под водоизоляцию пластифицированным тампонажным цементным составом с повышенной проникающей способностью, устанавливают в хвостовике изоляционный цементный мост из тампонажного цемента нормальной плотности, перекрывающий технологические отверстия под водоизоляцию, после завершения периода ожидания затвердевания цемента и испытания изоляционного цементного моста на прочность и герметичность перфорируют хвостовик в верхней части продуктивного пласта и осваивают скважину.
RU2011126726/03A 2011-06-29 2011-06-29 Способ восстановления обводненной газовой скважины со смятой эксплуатационной колонной в продуктивном интервале RU2465434C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011126726/03A RU2465434C1 (ru) 2011-06-29 2011-06-29 Способ восстановления обводненной газовой скважины со смятой эксплуатационной колонной в продуктивном интервале

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011126726/03A RU2465434C1 (ru) 2011-06-29 2011-06-29 Способ восстановления обводненной газовой скважины со смятой эксплуатационной колонной в продуктивном интервале

Publications (1)

Publication Number Publication Date
RU2465434C1 true RU2465434C1 (ru) 2012-10-27

Family

ID=47147489

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011126726/03A RU2465434C1 (ru) 2011-06-29 2011-06-29 Способ восстановления обводненной газовой скважины со смятой эксплуатационной колонной в продуктивном интервале

Country Status (1)

Country Link
RU (1) RU2465434C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2539060C1 (ru) * 2013-11-07 2015-01-10 Открытое акционерное общество "Газпром" Способ восстановления самозадавливающейся газовой скважины с аномально низким пластовым давлением
RU2580532C2 (ru) * 2014-09-04 2016-04-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тюменский государственный нефтегазовый университет" (ТюмГНГУ) Способ изоляции притока пластовых вод в скважине
RU2631512C1 (ru) * 2016-07-26 2017-09-25 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тюменский индустриальный университет" (ТИУ) Способ изоляции притока подошвенных вод в нефтяных скважинах
CN109356553A (zh) * 2018-10-29 2019-02-19 中国矿业大学 一种煤层气水平井塌孔造洞穴卸压开采模拟试验系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2057904C1 (ru) * 1993-06-15 1996-04-10 Нижневолжский научно-исследовательский институт геологии и геофизики Способ крепления скважин
RU2154150C2 (ru) * 1998-06-15 2000-08-10 Предприятие "Астраханьгазпром" РАО "Газпром" Способ изоляции перекрытого эксплуатационной колонной продуктивного пласта
RU2231630C1 (ru) * 2002-11-15 2004-06-27 Общество с ограниченной ответственностью "ТюменНИИгипрогаз" Способ восстановления продуктивности и ввода в эксплуатацию простаивающих нефтяных и газовых скважин
EP1978071A1 (en) * 2007-04-06 2008-10-08 Services Pétroliers Schlumberger Method and composition for zonal isolation of a well
RU2378493C1 (ru) * 2008-09-15 2010-01-10 Открытое акционерное общество "Газпром" (ОАО "Газпром") Способ расконсервации нефтегазовой скважины с негерметичной эксплуатационной колонной в условиях наличия в разрезе многолетнемерзлых пород
RU2386779C1 (ru) * 2009-01-30 2010-04-20 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Способ ремонта обсадной колонны в скважине с дефектным участком и внутренним сужением обсадной колонны
RU2405930C1 (ru) * 2009-09-04 2010-12-10 Кустышев Александр Васильевич Способ изоляции притока пластовых вод в скважине со смятой эксплуатационной колонной в условиях аномально низких пластовых давлений

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2057904C1 (ru) * 1993-06-15 1996-04-10 Нижневолжский научно-исследовательский институт геологии и геофизики Способ крепления скважин
RU2154150C2 (ru) * 1998-06-15 2000-08-10 Предприятие "Астраханьгазпром" РАО "Газпром" Способ изоляции перекрытого эксплуатационной колонной продуктивного пласта
RU2231630C1 (ru) * 2002-11-15 2004-06-27 Общество с ограниченной ответственностью "ТюменНИИгипрогаз" Способ восстановления продуктивности и ввода в эксплуатацию простаивающих нефтяных и газовых скважин
EP1978071A1 (en) * 2007-04-06 2008-10-08 Services Pétroliers Schlumberger Method and composition for zonal isolation of a well
RU2378493C1 (ru) * 2008-09-15 2010-01-10 Открытое акционерное общество "Газпром" (ОАО "Газпром") Способ расконсервации нефтегазовой скважины с негерметичной эксплуатационной колонной в условиях наличия в разрезе многолетнемерзлых пород
RU2386779C1 (ru) * 2009-01-30 2010-04-20 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Способ ремонта обсадной колонны в скважине с дефектным участком и внутренним сужением обсадной колонны
RU2405930C1 (ru) * 2009-09-04 2010-12-10 Кустышев Александр Васильевич Способ изоляции притока пластовых вод в скважине со смятой эксплуатационной колонной в условиях аномально низких пластовых давлений

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2539060C1 (ru) * 2013-11-07 2015-01-10 Открытое акционерное общество "Газпром" Способ восстановления самозадавливающейся газовой скважины с аномально низким пластовым давлением
RU2580532C2 (ru) * 2014-09-04 2016-04-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тюменский государственный нефтегазовый университет" (ТюмГНГУ) Способ изоляции притока пластовых вод в скважине
RU2631512C1 (ru) * 2016-07-26 2017-09-25 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тюменский индустриальный университет" (ТИУ) Способ изоляции притока подошвенных вод в нефтяных скважинах
CN109356553A (zh) * 2018-10-29 2019-02-19 中国矿业大学 一种煤层气水平井塌孔造洞穴卸压开采模拟试验系统

Similar Documents

Publication Publication Date Title
RU2359115C2 (ru) Управление по нескольким азимутам вертикальными трещинами, возникающими при гидравлических разрывах в рыхлых или слабосцементированных осадочных породах
CN110397428B (zh) 一种直井与u型对接井联合开采煤层气的驱替煤层气增产方法
RU2459934C1 (ru) Способ разработки многопластового неоднородного нефтяного месторождения
RU2526937C1 (ru) Способ разработки низкопроницаемой нефтяной залежи
RU2612061C1 (ru) Способ разработки сланцевых карбонатных нефтяных залежей
RU2578134C1 (ru) Способ разработки нефтяной залежи в трещиноватых коллекторах с водонефтяными зонами
RU2483209C1 (ru) Способ гидравлического разрыва пласта в скважине
RU2382183C1 (ru) Способ разработки многопластовой залежи нефти в поздней стадии с неустойчивыми породами покрышки и неоднородным коллектором
RU2420657C1 (ru) Способ разработки обводненных нефтяных месторождений
RU2465434C1 (ru) Способ восстановления обводненной газовой скважины со смятой эксплуатационной колонной в продуктивном интервале
RU2570157C1 (ru) Способ увеличения нефтеотдачи залежи, вскрытой горизонтальной скважиной
RU2612060C9 (ru) Способ разработки карбонатных сланцевых нефтяных отложений
RU2366805C1 (ru) Способ эксплуатации залежи углеводородов
RU2681796C1 (ru) Способ разработки залежи сверхвязкой нефти с глинистой перемычкой
RU2509884C1 (ru) Способ разработки обводненного нефтяного месторождения
RU2743478C1 (ru) Способ добычи трудноизвлекаемого туронского газа
RU2550642C1 (ru) Способ разработки нефтяной залежи горизонтальными скважинами
WO2014028105A1 (en) Penetrating a subterranean formation
RU2616052C1 (ru) Способ разработки сланцевых карбонатных нефтяных коллекторов
RU2405930C1 (ru) Способ изоляции притока пластовых вод в скважине со смятой эксплуатационной колонной в условиях аномально низких пластовых давлений
RU2510456C2 (ru) Способ образования вертикально направленной трещины при гидроразрыве продуктивного пласта
RU2695906C1 (ru) Способ разработки слабопроницаемой нефтяной залежи с применением горизонтальных скважин и водогазового воздействия
RU2170340C1 (ru) Способ разработки нефтяной залежи
RU2524800C1 (ru) Способ разработки неоднородного месторождения наклонными и горизонтальными скважинами
RU2494247C1 (ru) Способ разработки обводненного нефтяного месторождения