WO2014047300A1 - Finish curing method and system for leather-based substrates - Google Patents

Finish curing method and system for leather-based substrates Download PDF

Info

Publication number
WO2014047300A1
WO2014047300A1 PCT/US2013/060639 US2013060639W WO2014047300A1 WO 2014047300 A1 WO2014047300 A1 WO 2014047300A1 US 2013060639 W US2013060639 W US 2013060639W WO 2014047300 A1 WO2014047300 A1 WO 2014047300A1
Authority
WO
WIPO (PCT)
Prior art keywords
coated substrate
heating zone
substrate
passing
base coat
Prior art date
Application number
PCT/US2013/060639
Other languages
French (fr)
Inventor
Karl ROHR
Nathan MULLINIX
Donald VESEY
Robert Curtis LEACH
Original Assignee
Eagle Ottawa, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eagle Ottawa, Llc filed Critical Eagle Ottawa, Llc
Priority to US14/428,851 priority Critical patent/US20150276311A1/en
Publication of WO2014047300A1 publication Critical patent/WO2014047300A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/28Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun
    • F26B3/30Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun from infrared-emitting elements
    • CCHEMISTRY; METALLURGY
    • C14SKINS; HIDES; PELTS; LEATHER
    • C14CCHEMICAL TREATMENT OF HIDES, SKINS OR LEATHER, e.g. TANNING, IMPREGNATING, FINISHING; APPARATUS THEREFOR; COMPOSITIONS FOR TANNING
    • C14C11/00Surface finishing of leather
    • CCHEMISTRY; METALLURGY
    • C14SKINS; HIDES; PELTS; LEATHER
    • C14CCHEMICAL TREATMENT OF HIDES, SKINS OR LEATHER, e.g. TANNING, IMPREGNATING, FINISHING; APPARATUS THEREFOR; COMPOSITIONS FOR TANNING
    • C14C15/00Apparatus for chemical treatment or washing of hides, skins, or leather
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B13/00Machines and apparatus for drying fabrics, fibres, yarns, or other materials in long lengths, with progressive movement
    • F26B13/10Arrangements for feeding, heating or supporting materials; Controlling movement, tension or position of materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/28Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun
    • F26B3/283Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun in combination with convection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0033Heating devices using lamps
    • H05B3/0038Heating devices using lamps for industrial applications

Definitions

  • the present invention provides a method of finish curing a leather-based substrate.
  • a base coat is applied onto a surface of a substrate to form a coated substrate and the coated substrate is passed through a first heating zone to heat the base coat.
  • the coated substrate is passed through a second heating zone that emits infrared electromagnetic waves at a frequency corresponding to strong absorption by water to remove a desired amount of moisture from the base coat.
  • the coated substrate is then passed through a third heating zone to completely cure the base coat on the coated substrate.
  • the frequency corresponding to strong absorption by water may be in a range of 2900-3100 nanometers.
  • a temperature of the coated substrate passing through the second heating zone may be sensed and a power level of the second heating zone may be adjusted to maintain a desired temperature of the coated substrate.
  • air may be directed over the coated substrate that is passing through the second heating zone to remove moisture building up on the coated substrate.
  • the coated substrate may be passed through a cooling unit to cool the base coat after the base coat has been completely cured.
  • a color coat may be applied onto the surface of the coated substrate after the coated substrate has been cooled by the cooling unit.
  • the present invention also provides a system for finish curing a coated substrate.
  • the system includes a conveyor that passes the coated substrate through a first heating zone, a second heating zone, and a third heating zone.
  • the first heating zone includes a first infrared emitter module that heats the coated substrate.
  • the second heating zone includes a second infrared emitter module that emits infrared electromagnetic waves at a frequency corresponding to strong absorption by water to remove a desired amount of moisture from the coated substrate.
  • the third heating zone includes a third infrared emitter module to completely cure the coated substrate.
  • the frequency corresponding to strong absorption by water may be in a range of 2900-3100 nanometers.
  • the system may further include a controller providing power to the second infrared emitter module to heat the second emitter module to about 1300 degrees Fahrenheit.
  • the controller may sense a temperature of the coated substrate passing through the second heating zone and further may adjust a power level of the second infrared emitter module to maintain a desired temperature of the coated substrate.
  • the system may further include an air manifold.
  • the air manifold may direct air over the coated substrate as the substrate passes through the second heating zone to remove moisture building up on the coated substrate.
  • the directed air may be warmed by the second infrared emitter module.
  • one or more of the second infrared emitter module and the third infrared emitter module may include ceramic fiber mounted panels with perforated ventilation holes.
  • the system may further include a cooling unit. After the coated substrate has been passed through the third heating zone, the conveyor may pass the coated substrate through the cooling unit.
  • a method according to the present invention can include applying a base coat onto a surface of a substrate to form a coated substrate and passing the coated substrate through a first curing stage to heat, dry, and completely cure the base coat on the coated substrate.
  • the first curing stage includes at least one heating zone emitting infrared electromagnetic waves at a frequency corresponding to strong absorption by water to remove a desired amount of moisture from the base coat.
  • the method also includes applying a color coat onto a surface of the coated substrate to form a colored substrate and passing the colored substrate through a second curing stage to heat, dry, and completely cure the color coat on the colored substrate.
  • the second curing stage includes at least one heating zone emitting infrared electromagnetic waves at the frequency corresponding to strong absorption by water to remove a desired amount of moisture from the color coat.
  • FIG. 1 is a flow chart of a leather coating and finishing process according to one embodiment of the invention.
  • FIG. 2 is side view of a system for carrying out the leather coating and finishing process of FIG. 1.
  • FIG. 3 is an underside view of an infrared emitter module for use with the system of FIG. 2.
  • the present invention provides a high efficiency finish curing system and method for coatings applied to leather and non-leather alternative substrates.
  • the finish curing process attains optimal finished product improvements through the utilization of multiple infrared (IR) emitter oven components in place of one or more conventional gas and electric-resistance element thermal units.
  • IR infrared
  • These equipment changes, as well as other process enhancements further described below, result in a much more responsive curing process in comparison to current industry standards, which minimizes the amount of residence time within ovens and air off or cooling of the substrates.
  • FIG. 1 illustrates a leather coating and finishing process according to one
  • a substrate for example, leather or non-leather alternative
  • a preliminary unwinding step (not shown) is required where the substrates are fed through a 90-degree roller turn and de-dusted before being introduced onto the conveyor line.
  • the substrate proceeds to an initial coating station where a prime or base coat is applied by air spray or a roller coat apparatus.
  • the coated substrate proceeds to a first curing stage 14, where the applied coatings are dried and chemically cured as a cross-linked thermoset.
  • the coated substrate proceeds to a first heating zone including an infrared (IR) high purity emitter module to heat the substrate.
  • IR infrared
  • the QB ⁇ 22680523.1 proceeds to a second heating zone where all required moisture is removed from the coating.
  • the second heating zone includes a similar IR emitter module, or modules, with integrated perforated ceramic fiber mounted panels. Perforated ventilation holes through the ceramic panels create disruptive air flow across substrate surfaces in order to increase evaporation and encourage removal of a water-laden vapor barrier from the substrate surface as the substrate is drying.
  • the substrate proceeds to a third heating zone at step 20.
  • the third heating zone including another IR emitter module, continues to maintain the coating temperature to assure complete cure, or crosslinking of the coating.
  • the substrate continues through a chiller/cooling unit to cool the coated substrate, and at step 24, the substrate proceeds to a second coating station where a color coat is applied.
  • the colored substrate proceeds to a second curing stage 26, including a first heating zone (step 28), a second heating zone (step 30), a third heating zone (step 32), and a cooling unit (step 34).
  • the first curing stage 14 and the second curing stage 26 include substantially identical equipment (i.e., all heating zones include IR emitter modules).
  • the substrate proceeds to an accumulation/storage stage (step 36) for subsequent steps such as embossing and/or additional finishing.
  • FIG. 2 illustrates a system 38 for carrying out the process described above. More specifically, FIG. 2 illustrates a system 38 with one or more conveyor lines 39 for passing a substrate through a first curing stage 40 and a second curing stage 42.
  • the curing stages 40, 42 are substantially identical and each includes a first heating zone 44, a second heating zone 46, a third heating zone 48, and a chiller/cooling unit 50.
  • Each of the heating zones 44, 46, and 48 include IR emitter modules 52 (shown in FIG. 3).
  • the IR emitter modules 52 emit specific peak IR frequencies that are matched to water or, in other words, include the peak absorption range of
  • QB ⁇ 22680523.1 water (for example, approximately 2900 nanometers to approximately 3100 nanometers) so that, when the IR energy is emitted toward a substrate surface, water molecules throughout the coating and substrate layers absorb the electromagnetic IR. IR absorption causes the water molecules to vibrate, resulting in friction and elevation of the water temperature in order to convert the liquid water molecules into gaseous water vapor. This allows a more effective removal of the water in the vapor state with only a slight air turbulence directed toward the substrate surface when combined with adequate exhaust air flow.
  • the IR absorption and evaporation of water molecules described above also eliminates solidification of the coating on the substrate surface, thus promoting consistent curing which results in an even coating thickness.
  • the consistent and even coating thickness allows evaporated water molecules to escape the coating surface, preventing the creation of surface defects such as pin holes and blistering, among other issues, due to entrapment of gases (that is., water vapor) under the substrate surface.
  • the IR energy transmitted to the surface also elevates the solids temperature within the coating after the moisture is removed to achieve a complete, thermoset, cross-linked cure of the remaining solids in the coating system (for example, while in the third heating zone 48 described above).
  • FIG. 2 illustrates an air manifold 54 in both the second heating zone 46 and the third heating zone 48 to provide the forced air.
  • the forced air within the heating zones 44, 46, and 48 is directed over the coated substrate in order to permit the surface temperature of the coated substrate to be maintained while a portion of specific IR- wavelength emissions are transmitted through the coating surface, as described above.
  • the IR emitter modules 52 each include
  • the forced air is forced through perforated ventilation holes 57 of the ceramic panels 55 to reach the substrate surfaces.
  • Providing the perforated ventilation holes 57 through the ceramic panels 55 creates disruptive air flow across the substrate surfaces in order to increase water evaporation and encourage removal of the water-laden vapor barrier from the substrate surface as the substrate is drying.
  • the forced air is also heated as it passes through the IR emitter modules 52 to reach the substrate surfaces.
  • the warmed forced air, with or without the ventilation holes 57 causing disruptive air flow allows efficient curing without an oven “air off step, as is required with conventional curing. Elimination of the "air off step substantially reduces required equipment investment and floor space, resulting in a more efficient facility layout.
  • the IR emitter modules 52 described above each include a primary IR emitter source with stamped elements 56, as shown in Fig. 3, constructed from a thin band of an alloy (i.e., Kanthal®) which has been formulated to contain copper, iron and aluminum.
  • Kanthal® an alloy which has been formulated to contain copper, iron and aluminum.
  • This alloy when heated to about 1700 degrees Fahrenheit (about 925 degrees Celsius), causes the aluminum to migrate to the surface of the element in the form of alumina.
  • Alumina a non-oxidizing and non- conductive "ceramic-like" material, provides each emitter element 56 with extended life expectancy up to 10 times that of conventional nickel chromium resistive heating elements which experience continuous oxidization at a steady rate while heated until the material has been spent and element failure occurs.
  • Kanthal® heating elements 56 coupled to the ceramic fiber mounted panels 55 enables self cleaning capabilities of the IR emitter modules 52 and removes the need for reflectors. These are both unique benefits over standard industry convection ovens,
  • QB ⁇ 22680523.1 and the self-cleaning capabilities also provide for reduced downtime in comparison to industry standard convection ovens.
  • the elements 56 of the IR emitter modules 52 each consist of a very low mass, allowing a higher responsiveness to applied current and, as a result, an approximate three to four- second heat up from standby temperatures of about 500 degrees Fahrenheit (260 degrees Celsius) to about 1300 degrees Fahrenheit (705 degrees Celsius) [about 1280 degrees Fahrenheit (693 degrees Celsius) achieves 3000 nanometer IR transmissions, which are absorbed by water molecules at almost 100% efficiency], and an approximate five-second cool down to below about 500 degrees Fahrenheit (260 degrees Celsius). Furthermore, quick changes in heating zone temperatures can be accomplished by adjusting power applied to the emitter modules 52.
  • the fast heat up and cool down aspects of the IR emitter elements 56 permit a relatively close distance between the elements 56 and a substrate along a conveyor line 39 in the heating zones 44, 46, and 48 and eliminates the need to utilize mechanical retraction to remove the IR emitter elements 56 away from the moving material substrate on the conveyor line 39.
  • the ability to keep the IR emitter elements 56 close to the substrate produces high system efficiencies as compared to conventional methods.
  • conventional heating elements may require being positioned up to about 3 to 4 times further from the substrates than the IR emitter elements 56 of the present invention, thus causing about 10 to 20 times less radiant efficiency (due to the inverse square law regarding IR proximity to bodies as stated in Plank's Law and Wien's Constant).
  • the fast heat up and cool down aspects also cause reduced energy usage and, as a result, reduced operating costs in comparison to conventional ovens.
  • the IR emitter module 52 in the second heating zone 46 includes an embedded quartz thermowell (not shown) positioned
  • thermowell includes a 1/16 inch diameter Chromel/Alumel (type "K") thermocouple to provide precise analog process signals used as input to a controller of the system 38 or a separate closed loop element temperature digital control device.
  • the controller also monitors temperatures within the second heating zone 46 and, more specifically, determines and monitors temperatures of the substrate surface.
  • the controller adjusts the power (specifically, the voltage) applied to the IR emitter elements 56 in order to maintain a desired temperature profile of the substrate surface within the second heating zone 46.
  • the controller modulates the voltage applied to the IR emitter elements 56 in the first, second, or third heating zones 44, 46 and 48 to accomplish specific IR wavelength emissions, within a range of peak wavelengths, based on required coating variations in thickness, exposure time to IR emissions, and chemical characteristics.
  • the controller further controls the conveyor line 39 and thus, the speed at which the substrate passes through the curing stages 40 and 42.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Textile Engineering (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)

Abstract

A method and system for finish curing a leather-based substrate includes applying a base coat onto a surface of a substrate to form a coated substrate and passing the coated substrate through a first heating zone to heat the base coat. The method also includes passing the coated substrate through a second heating zone that emits infrared electromagnetic waves at a frequency corresponding to strong absorption by water to remove a desired amount of moisture from the base coat, and passing the coated substrate through a third heating zone to completely cure the base coat on the coated substrate.

Description

FINISH CURING METHOD AND SYSTEM FOR LEATHER-BASED SUBSTRATES
CROSS REFERENCES TO RELATED APPLICATIONS
[0001] This application claims the benefit of the filing date of United States Provisional Patent Application No. 61/704,239 entitled "Finish Curing Method and System for Leather- Based Substrates" filed September 21, 2012, which is hereby incorporated by reference for all purposes as if set forth in its entirety herein.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH
[0002] Not Applicable.
BACKGROUND OF INVENTION
[0003] Common finishing practices for applying prime, base and top or finish paint coats to leather and non-leather substrates implement one or more of air spray and roll coat transfer systems. Curing processes that are used to dry the paint coats utilize industry-standard steam, hot oil, gas-fired or electric element convection ovens. Although these conventional ovens and curing processes meet their functional objectives, they possess several aspects of inefficiency. For example, these ovens have limited capabilities to adjust thermal conditions of a substrate being cured and include long response times (for example, up to 20 minutes) to obtain thermal energy changes without adversely affecting the substrate or coating. Also, current convection oven technology typically requires higher levels of energy to reach and maintain target temperatures to adequately dry coatings applied to a substrate surface. These downfalls result in potential over or under curing of the substrate resulting in mud cracking or tackiness, as well as excessive energy use for heat up conditions and extensive down time for cleaning of the oven
-1-
QB\22680523.1 heat sources to maintain radiant efficiencies. Furthermore, curing processes that use conventional ovens require additional equipment and floor space for inclusion of a final "air off oven section to assure proper cure.
[0004] Therefore, a need exists for a system and method for finish curing leather-based substrates that overcome the above-identified inefficiencies of current industry standards.
SUMMARY OF THE INVENTION
[0005] According to one aspect, the present invention provides a method of finish curing a leather-based substrate. A base coat is applied onto a surface of a substrate to form a coated substrate and the coated substrate is passed through a first heating zone to heat the base coat. The coated substrate is passed through a second heating zone that emits infrared electromagnetic waves at a frequency corresponding to strong absorption by water to remove a desired amount of moisture from the base coat. The coated substrate is then passed through a third heating zone to completely cure the base coat on the coated substrate.
[0006] In some forms of this method, the frequency corresponding to strong absorption by water may be in a range of 2900-3100 nanometers.
[0007] In some forms of this method, a temperature of the coated substrate passing through the second heating zone may be sensed and a power level of the second heating zone may be adjusted to maintain a desired temperature of the coated substrate.
[0008] In some forms of this method, air may be directed over the coated substrate that is passing through the second heating zone to remove moisture building up on the coated substrate.
[0009] In some forms of this method, the coated substrate may be passed through a cooling unit to cool the base coat after the base coat has been completely cured.
-2-
QB\22680523.1 [0010] In some forms of this method, a color coat may be applied onto the surface of the coated substrate after the coated substrate has been cooled by the cooling unit.
[0011] According to another aspect, the present invention also provides a system for finish curing a coated substrate. The system includes a conveyor that passes the coated substrate through a first heating zone, a second heating zone, and a third heating zone. The first heating zone includes a first infrared emitter module that heats the coated substrate. The second heating zone includes a second infrared emitter module that emits infrared electromagnetic waves at a frequency corresponding to strong absorption by water to remove a desired amount of moisture from the coated substrate. The third heating zone includes a third infrared emitter module to completely cure the coated substrate.
[0012] In some forms of this system, the frequency corresponding to strong absorption by water may be in a range of 2900-3100 nanometers.
[0013] In some forms of this system, the system may further include a controller providing power to the second infrared emitter module to heat the second emitter module to about 1300 degrees Fahrenheit. The controller may sense a temperature of the coated substrate passing through the second heating zone and further may adjust a power level of the second infrared emitter module to maintain a desired temperature of the coated substrate.
[0014] In some forms of the system, the system may further include an air manifold. The air manifold may direct air over the coated substrate as the substrate passes through the second heating zone to remove moisture building up on the coated substrate. The directed air may be warmed by the second infrared emitter module.
-3-
QB\22680523.1 [0015] In some forms of the system, one or more of the second infrared emitter module and the third infrared emitter module may include ceramic fiber mounted panels with perforated ventilation holes.
[0016] In some forms of the system, the system may further include a cooling unit. After the coated substrate has been passed through the third heating zone, the conveyor may pass the coated substrate through the cooling unit.
[0017] According to another aspect, a method according to the present invention can include applying a base coat onto a surface of a substrate to form a coated substrate and passing the coated substrate through a first curing stage to heat, dry, and completely cure the base coat on the coated substrate. The first curing stage includes at least one heating zone emitting infrared electromagnetic waves at a frequency corresponding to strong absorption by water to remove a desired amount of moisture from the base coat. The method also includes applying a color coat onto a surface of the coated substrate to form a colored substrate and passing the colored substrate through a second curing stage to heat, dry, and completely cure the color coat on the colored substrate. The second curing stage includes at least one heating zone emitting infrared electromagnetic waves at the frequency corresponding to strong absorption by water to remove a desired amount of moisture from the color coat.
[0018] The foregoing and other objects and advantages of the invention will appear from the following detailed description. In the description, reference is made to the accompanying drawings which illustrate a preferred embodiment of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
[0019] FIG. 1 is a flow chart of a leather coating and finishing process according to one embodiment of the invention.
-4-
QB\22680523.1 [0020] FIG. 2 is side view of a system for carrying out the leather coating and finishing process of FIG. 1.
[0021] FIG. 3 is an underside view of an infrared emitter module for use with the system of FIG. 2.
DETAILED DESCRIPTION OF THE INVENTION
[0022] The present invention provides a high efficiency finish curing system and method for coatings applied to leather and non-leather alternative substrates. The finish curing process attains optimal finished product improvements through the utilization of multiple infrared (IR) emitter oven components in place of one or more conventional gas and electric-resistance element thermal units. These equipment changes, as well as other process enhancements further described below, result in a much more responsive curing process in comparison to current industry standards, which minimizes the amount of residence time within ovens and air off or cooling of the substrates.
[0023] FIG. 1 illustrates a leather coating and finishing process according to one
embodiment of the invention. At step 10, a substrate (for example, leather or non-leather alternative) is introduced on a conveyor line. With respect to rolled substrates, a preliminary unwinding step (not shown) is required where the substrates are fed through a 90-degree roller turn and de-dusted before being introduced onto the conveyor line. At step 12, the substrate proceeds to an initial coating station where a prime or base coat is applied by air spray or a roller coat apparatus. Following step 12, the coated substrate proceeds to a first curing stage 14, where the applied coatings are dried and chemically cured as a cross-linked thermoset. Within the first curing stage 14, at step 16, the coated substrate proceeds to a first heating zone including an infrared (IR) high purity emitter module to heat the substrate. At step 18, the coated substrate
-5-
QB\22680523.1 proceeds to a second heating zone where all required moisture is removed from the coating. The second heating zone includes a similar IR emitter module, or modules, with integrated perforated ceramic fiber mounted panels. Perforated ventilation holes through the ceramic panels create disruptive air flow across substrate surfaces in order to increase evaporation and encourage removal of a water-laden vapor barrier from the substrate surface as the substrate is drying. After exiting the second heating zone, the substrate proceeds to a third heating zone at step 20. The third heating zone, including another IR emitter module, continues to maintain the coating temperature to assure complete cure, or crosslinking of the coating. At step 22, the substrate continues through a chiller/cooling unit to cool the coated substrate, and at step 24, the substrate proceeds to a second coating station where a color coat is applied.
[0024] Following step 24, the colored substrate proceeds to a second curing stage 26, including a first heating zone (step 28), a second heating zone (step 30), a third heating zone (step 32), and a cooling unit (step 34). The first curing stage 14 and the second curing stage 26 include substantially identical equipment (i.e., all heating zones include IR emitter modules). Following the second curing stage 26, the substrate proceeds to an accumulation/storage stage (step 36) for subsequent steps such as embossing and/or additional finishing.
[0025] FIG. 2 illustrates a system 38 for carrying out the process described above. More specifically, FIG. 2 illustrates a system 38 with one or more conveyor lines 39 for passing a substrate through a first curing stage 40 and a second curing stage 42. The curing stages 40, 42 are substantially identical and each includes a first heating zone 44, a second heating zone 46, a third heating zone 48, and a chiller/cooling unit 50. Each of the heating zones 44, 46, and 48 include IR emitter modules 52 (shown in FIG. 3). The IR emitter modules 52 emit specific peak IR frequencies that are matched to water or, in other words, include the peak absorption range of
-6-
QB\22680523.1 water (for example, approximately 2900 nanometers to approximately 3100 nanometers) so that, when the IR energy is emitted toward a substrate surface, water molecules throughout the coating and substrate layers absorb the electromagnetic IR. IR absorption causes the water molecules to vibrate, resulting in friction and elevation of the water temperature in order to convert the liquid water molecules into gaseous water vapor. This allows a more effective removal of the water in the vapor state with only a slight air turbulence directed toward the substrate surface when combined with adequate exhaust air flow.
[0026] The IR absorption and evaporation of water molecules described above also eliminates solidification of the coating on the substrate surface, thus promoting consistent curing which results in an even coating thickness. The consistent and even coating thickness allows evaporated water molecules to escape the coating surface, preventing the creation of surface defects such as pin holes and blistering, among other issues, due to entrapment of gases (that is., water vapor) under the substrate surface. The IR energy transmitted to the surface also elevates the solids temperature within the coating after the moisture is removed to achieve a complete, thermoset, cross-linked cure of the remaining solids in the coating system (for example, while in the third heating zone 48 described above).
[0027] In addition to IR emission, forced ambient air is applied in one or more of the heating zones 44, 46, and 48 to help accomplish consistent and even curing of the substrate coating. For example, FIG. 2 illustrates an air manifold 54 in both the second heating zone 46 and the third heating zone 48 to provide the forced air. The forced air within the heating zones 44, 46, and 48 is directed over the coated substrate in order to permit the surface temperature of the coated substrate to be maintained while a portion of specific IR- wavelength emissions are transmitted through the coating surface, as described above. Also, the IR emitter modules 52 each include
-7-
QB\22680523.1 perforated ceramic fiber mounted panels 55, as shown in FIG. 3. The forced air is forced through perforated ventilation holes 57 of the ceramic panels 55 to reach the substrate surfaces. Providing the perforated ventilation holes 57 through the ceramic panels 55 creates disruptive air flow across the substrate surfaces in order to increase water evaporation and encourage removal of the water-laden vapor barrier from the substrate surface as the substrate is drying. The forced air is also heated as it passes through the IR emitter modules 52 to reach the substrate surfaces. The warmed forced air, with or without the ventilation holes 57 causing disruptive air flow, allows efficient curing without an oven "air off step, as is required with conventional curing. Elimination of the "air off step substantially reduces required equipment investment and floor space, resulting in a more efficient facility layout.
[0028] The IR emitter modules 52 described above each include a primary IR emitter source with stamped elements 56, as shown in Fig. 3, constructed from a thin band of an alloy (i.e., Kanthal®) which has been formulated to contain copper, iron and aluminum. This alloy, when heated to about 1700 degrees Fahrenheit (about 925 degrees Celsius), causes the aluminum to migrate to the surface of the element in the form of alumina. Alumina, a non-oxidizing and non- conductive "ceramic-like" material, provides each emitter element 56 with extended life expectancy up to 10 times that of conventional nickel chromium resistive heating elements which experience continuous oxidization at a steady rate while heated until the material has been spent and element failure occurs.
[0029] In addition, the use of Kanthal® heating elements 56 coupled to the ceramic fiber mounted panels 55 enables self cleaning capabilities of the IR emitter modules 52 and removes the need for reflectors. These are both unique benefits over standard industry convection ovens,
-8-
QB\22680523.1 and the self-cleaning capabilities also provide for reduced downtime in comparison to industry standard convection ovens.
[0030] The elements 56 of the IR emitter modules 52 each consist of a very low mass, allowing a higher responsiveness to applied current and, as a result, an approximate three to four- second heat up from standby temperatures of about 500 degrees Fahrenheit (260 degrees Celsius) to about 1300 degrees Fahrenheit (705 degrees Celsius) [about 1280 degrees Fahrenheit (693 degrees Celsius) achieves 3000 nanometer IR transmissions, which are absorbed by water molecules at almost 100% efficiency], and an approximate five-second cool down to below about 500 degrees Fahrenheit (260 degrees Celsius). Furthermore, quick changes in heating zone temperatures can be accomplished by adjusting power applied to the emitter modules 52.
[0031] The fast heat up and cool down aspects of the IR emitter elements 56 permit a relatively close distance between the elements 56 and a substrate along a conveyor line 39 in the heating zones 44, 46, and 48 and eliminates the need to utilize mechanical retraction to remove the IR emitter elements 56 away from the moving material substrate on the conveyor line 39. The ability to keep the IR emitter elements 56 close to the substrate produces high system efficiencies as compared to conventional methods. For example, conventional heating elements may require being positioned up to about 3 to 4 times further from the substrates than the IR emitter elements 56 of the present invention, thus causing about 10 to 20 times less radiant efficiency (due to the inverse square law regarding IR proximity to bodies as stated in Plank's Law and Wien's Constant). The fast heat up and cool down aspects also cause reduced energy usage and, as a result, reduced operating costs in comparison to conventional ovens.
[0032] The IR emitter module 52 in the second heating zone 46 (and/or in the first and the third heating zones 44 and 48) includes an embedded quartz thermowell (not shown) positioned
-9-
QB\22680523.1 in direct contact with a primary IR element 56. The thermowell includes a 1/16 inch diameter Chromel/Alumel (type "K") thermocouple to provide precise analog process signals used as input to a controller of the system 38 or a separate closed loop element temperature digital control device. The controller also monitors temperatures within the second heating zone 46 and, more specifically, determines and monitors temperatures of the substrate surface. The controller adjusts the power (specifically, the voltage) applied to the IR emitter elements 56 in order to maintain a desired temperature profile of the substrate surface within the second heating zone 46. In addition, the controller modulates the voltage applied to the IR emitter elements 56 in the first, second, or third heating zones 44, 46 and 48 to accomplish specific IR wavelength emissions, within a range of peak wavelengths, based on required coating variations in thickness, exposure time to IR emissions, and chemical characteristics. In some implementations, the controller further controls the conveyor line 39 and thus, the speed at which the substrate passes through the curing stages 40 and 42.
[0033] While there has been shown and described what are at present considered the preferred embodiments of the invention, it will be obvious to those skilled in the art that various changes and modifications can be made therein without departing from the scope of the invention defined by the appended claims.
-10-
QB\22680523.1

Claims

CLAIMS I claim:
1. A method of finish curing a leather-based substrate, the method comprising: applying a base coat onto a surface of a substrate to form a coated substrate; passing the coated substrate through a first heating zone to heat the base coat; passing the coated substrate through a second heating zone, the second heating zone emitting infrared electromagnetic waves at a frequency corresponding to strong absorption by water to remove a desired amount of moisture from the base coat; and
passing the coated substrate through a third heating zone to completely cure the base coat on the coated substrate.
2. The method as in claim 1, in which the frequency corresponding to strong absorption by water is in a range of 2900-3100 nanometers.
3. The method as in claim 1, further comprising the step of sensing a temperature of the coated substrate passing through the second heating zone and adjusting a power level of the second heating zone to maintain a desired temperature of the coated substrate.
4. The method as in claim 1, further comprising the step of directing air over the coated substrate passing through the second heating zone to remove moisture building up on the coated substrate.
-11-
QB\22680523.1
5. The method as in claim 1, further comprising the step of passing the coated substrate through a cooling unit to cool the base coat after the base coat has been completely cured.
6. The method as in claim 5, further comprising the step of applying a color coat onto the surface of the coated substrate after the coated substrate has been cooled by the cooling unit.
-12-
QB\22680523.1
7. A system for finish curing a coated substrate, the system comprising: a conveyor passing the coated substrate through a first heating zone, a second heating zone, and a third heating zone;
the first heating zone including a first infrared emitter module heating the coated substrate;
the second heating zone including a second infrared emitter module emitting infrared electromagnetic waves at a frequency corresponding to strong absorption by water to remove a desired amount of moisture from the coated substrate; and
the third heating zone including a third infrared emitter module completely curing the coated substrate.
8. The system as in claim 7, in which the frequency corresponding to strong absorption by water is in a range of 2900-3100 nanometers.
9. The system as in claim 7, further comprising a controller providing power to the second infrared emitter module to heat the second emitter module to about 1300 degrees Fahrenheit (705 degrees Celsius).
10. The system as in claim 9, in which the controller senses a temperature of the coated substrate passing through the second heating zone and adjusts a power level of the second infrared emitter module to maintain a desired temperature of the coated substrate.
-13-
QB\22680523.1
11. The system as in claim 7, further comprising an air manifold directing air over the coated substrate passing through the second heating zone to remove moisture building up on the coated substrate.
12. The system as in claim 11 , in which the directed air is warmed by the second infrared emitter module.
13. The system as in claim 7, in which at least one of the second infrared emitter module and the third infrared emitter module includes ceramic fiber mounted panels with perforated ventilation holes.
14. The system as in claim 7, further comprising a cooling unit, in which the conveyor passes the coated substrate through the cooling unit after the coated substrate has been passed through the third heating zone.
-14-
QB\22680523.1
15. A method of finish curing a leather-based substrate, the method comprising: applying a base coat onto a surface of a substrate to form a coated substrate; passing the coated substrate through a first curing stage to heat, dry, and completely cure the base coat on the coated substrate, the first curing stage including at least one first heating zone emitting infrared electromagnetic waves at a frequency corresponding to strong absorption by water to remove a desired amount of moisture from the base coat;
applying a color coat onto a surface of the coated substrate to form a colored substrate; and
passing the colored substrate through a second curing stage to heat, dry, and completely cure the color coat on the colored substrate, the second curing stage including at least one second heating zone emitting infrared electromagnetic waves at the frequency corresponding to strong absorption by water to remove a desired amount of moisture from the color coat.
16. The method as in claim 17, in which the frequency corresponding to strong absorption by water is in a range of 2900-3100 nanometers.
-15-
QB\22680523.1
PCT/US2013/060639 2012-09-21 2013-09-19 Finish curing method and system for leather-based substrates WO2014047300A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/428,851 US20150276311A1 (en) 2012-09-21 2013-09-19 Finish curing method and system for leather-based substrates

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261704239P 2012-09-21 2012-09-21
US61/704,239 2012-09-21

Publications (1)

Publication Number Publication Date
WO2014047300A1 true WO2014047300A1 (en) 2014-03-27

Family

ID=49305148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/060639 WO2014047300A1 (en) 2012-09-21 2013-09-19 Finish curing method and system for leather-based substrates

Country Status (2)

Country Link
US (1) US20150276311A1 (en)
WO (1) WO2014047300A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019106615A1 (en) * 2017-11-30 2019-06-06 Officine Di Cartigliano S.P.A. Plant for drying pretreated flexible sheet products

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20130270A1 (en) * 2013-04-03 2014-10-04 Itt Italia Srl METHOD AND PLANT TO CARRY OUT THERMAL TREATMENTS OF BRAKING ELEMENTS, IN PARTICULAR BRAKE PADS
IT201900008388A1 (en) * 2019-06-07 2020-12-07 Evolution Tech S R L PROCEDURE FOR THE TREATMENT OF LEAFLET ELEMENTS
DE102022124575A1 (en) * 2022-09-23 2024-03-28 Duo Technik Gmbh Device for drying fabrics

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2169241A (en) * 1984-11-20 1986-07-09 Sisma S A Improvements relating to the manufacture of polyurethane coated materials by the transfer coating particularly imitation leather materials
WO2007115680A1 (en) * 2006-04-05 2007-10-18 Lanxess Deutschland Gmbh Unpressurised expansion by means of ir
US20100269366A1 (en) * 2009-04-28 2010-10-28 Mitsubishi Heavy Industries, Ltd. Drying device
CN101942768A (en) * 2009-07-28 2011-01-12 丽水市优耐克水性树脂科技有限公司 Dry method production line of water-based ecological synthetic leather

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102080332B (en) * 2010-12-27 2012-05-09 陕西科技大学 Preparation method of waterborne polyurethane synthetic leather base
US9017815B2 (en) * 2012-09-13 2015-04-28 Ppg Industries Ohio, Inc. Near-infrared radiation curable multilayer coating systems and methods for applying same
WO2014047307A1 (en) * 2012-09-21 2014-03-27 Eagle Ottawa, Llc Softening process and system for roll goods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2169241A (en) * 1984-11-20 1986-07-09 Sisma S A Improvements relating to the manufacture of polyurethane coated materials by the transfer coating particularly imitation leather materials
WO2007115680A1 (en) * 2006-04-05 2007-10-18 Lanxess Deutschland Gmbh Unpressurised expansion by means of ir
US20100269366A1 (en) * 2009-04-28 2010-10-28 Mitsubishi Heavy Industries, Ltd. Drying device
CN101942768A (en) * 2009-07-28 2011-01-12 丽水市优耐克水性树脂科技有限公司 Dry method production line of water-based ecological synthetic leather

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 201128, Derwent World Patents Index; AN 2011-C50002, XP002718496 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019106615A1 (en) * 2017-11-30 2019-06-06 Officine Di Cartigliano S.P.A. Plant for drying pretreated flexible sheet products
CN111417733A (en) * 2017-11-30 2020-07-14 卡尔蒂格利诺·奥菲希恩公司 Apparatus for drying pretreated flexible sheet products

Also Published As

Publication number Publication date
US20150276311A1 (en) 2015-10-01

Similar Documents

Publication Publication Date Title
US20150276311A1 (en) Finish curing method and system for leather-based substrates
US4756091A (en) Hybrid high-velocity heated air/infra-red drying oven
JP7243992B2 (en) Heat spreader, waveguide unit, and conveyor-type paint drying oven including the same
US5634402A (en) Coating heater system
JP2015155091A (en) Dryer
TWI419234B (en) Managing thermal budget in annealing of substrates
JP6274661B2 (en) Drying equipment
JP2006226629A (en) Radiation drier
KR20080059358A (en) A apparatus for drying using a hot wind and a heat source
US20100028555A1 (en) Radiation appliance, method and arrangement for powder coating of timber-derived products
WO2015117927A1 (en) Method to dry or cure an organic coating on a glass plate
JP2022535260A (en) Method and apparatus for manufacturing electrical components on flexible substrates
EP3327395A1 (en) Radiation device for treating a fiber web and/or eliminating bubbles of a coating of a fiber web and method of treating a fiber web and/or eliminating bubbles of a coating of a fiber web by radiation
CA2843492A1 (en) Method and device for drying a fluid film applied to a substrate
JP2015528886A (en) Method and device for drying fluid film applied to substrate surface
JP3062719B2 (en) Baking furnace and baking method for heat-resistant pre-coated metal sheet
KR101251035B1 (en) Leather dryer using far-infrared
CN104169454A (en) Powder-coating apparatus and powder-coating method
ES2874545T3 (en) Procedure for the production of brake pads, procedure for shortening the drying time of a layer of glue applied to a brake disc for a brake pad
JP2007275828A (en) Surface treated steel making method and heating drying apparatus
US10126051B2 (en) Method for drying of a coating and related device
JPH0523262Y2 (en)
KR102115289B1 (en) Heating apparatus for metal plate
JP2003251250A (en) Method and apparatus for applying water based coating material
JPS60232275A (en) Heating and drying apparatus of painted steel plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13773967

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13773967

Country of ref document: EP

Kind code of ref document: A1