WO2014046534A1 - Pipeta con boquilla móvil - Google Patents

Pipeta con boquilla móvil Download PDF

Info

Publication number
WO2014046534A1
WO2014046534A1 PCT/MX2013/000110 MX2013000110W WO2014046534A1 WO 2014046534 A1 WO2014046534 A1 WO 2014046534A1 MX 2013000110 W MX2013000110 W MX 2013000110W WO 2014046534 A1 WO2014046534 A1 WO 2014046534A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
pipette
tip
disposable
movement
Prior art date
Application number
PCT/MX2013/000110
Other languages
English (en)
French (fr)
Inventor
Diana Elizabeth CALVA MENDEZ
Mario Marcelo LEHMAN
Alexis Adrian ORTIZ OLVERA
Original Assignee
Calva Mendez Diana Elizabeth
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calva Mendez Diana Elizabeth filed Critical Calva Mendez Diana Elizabeth
Publication of WO2014046534A1 publication Critical patent/WO2014046534A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0275Interchangeable or disposable dispensing tips
    • B01L3/0279Interchangeable or disposable dispensing tips co-operating with positive ejection means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/025Align devices or objects to ensure defined positions relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/08Ergonomic or safety aspects of handling devices
    • B01L2200/087Ergonomic aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/103General features of the devices using disposable tips

Definitions

  • This invention relates to pipetting systems, which today are made up of a pipette and a container of disposable tips. In a general sense, it refers to those systems, equipment and methods that perform suction and dispensing operations, such as piston pipettes, using disposable tips, and including manual pipettes (with one or several channels). Variations and modifications in the systems and devices that exist in the market are also included.
  • This invention specifically relates to a hybrid pipette, with fundamentally mechanical components but which may contain some electronic components as well, and which is operated manually.
  • the fundamental properties are two: 1) a container of disposable tips can be attached to it, 2) it has a movable nozzle, to allow the insertion and expulsion of the disposable tip as well as to position itself at different pipetting angles. All this implies, however, greater complexity in the system as a whole. It is shown in three levels: block diagram, schematic diagram for some functions and parts, and finally some examples are shown which are actually modalities in which they can be constituted.
  • Piston pipettes are devices that are used in the transfer and dispensing of liquids (precisely) in laboratories in different areas specialties, where scientific-technological research, metrology, routine tests, forensic analysis, or the development of new methods or procedures, as well as devices and equipment are involved. This extends to various areas of science and technology and related industries, especially food, biotechnology, molecular biology, genetics, health, biomedicine, environment, chemistry and pharmacology, without being limited to them.
  • Ergonomics in general This refers to the effort made by the user to operate the pipette or for the insertion and expulsion of the disposable tips, in terms of the shape and exterior design of the pipette to be operated by hand, and the location of the drive buttons .
  • Internal mechanism Geometric and structural distribution, in which the drive and operating mechanisms that favor the use of the device during the pipetting process (aspirated / dispensed) are taken into account.
  • Disposable tips It includes the material of which they are made and geometry that they possess, in addition to the system for their insertion in the pipette, materials and geometry of the nozzle, where such disposable tips are inserted, and intermediate elements (such as o-rings or gaskets) that intervene in the sealing.
  • Disposable tips ejection system Mechanisms and systems that allow this function to be performed with a certain force, which is important to minimize to avoid skeletal muscle damage in the user.
  • the ergonomic analysis of a pipette seeks to establish and optimize the relationship between insertion and expulsion forces.
  • Disposable tip containers (racks, by name in English). It is intended that these also facilitate the storage, transport and insertion of disposable tips in the pipette. Due to the necessary movements that the user makes, with his arm and hand, skeletal muscle conditions may appear. They occur due to a cumulative effect when carrying out several transfers and / or dispensing of liquids, and they appear due to the repetitive force and movements that must be done on the buttons of the pipette and for the transfer and support of this, being the most common those that are shown in Table 1.
  • Aspirated / dispensed aspirated from one or more containers and dispensed in another container (s).
  • the volume of liquid aspirate can be selected within a certain range and remain fixed in the process, while for the dispensing several volumes can be programmed.
  • Insertion / expulsion of disposable tips this is the process of replacing the disposable tips, and is done to avoid contamination between one sample and another in each pipetting operation.
  • the operations of insertion and expulsion of disposable tips are found as part of two well-differentiated devices or processes (one for insertion and the other for expulsion).
  • insertion force and expulsion force both applied on the disposable tips and on the pipette nozzle.
  • the ratio of both forces to a certain pipette is a characteristic graphic normally presented by the manufacturers, which represents an important ergonomic property.
  • the force of expulsion that must be done on the disposable tip has a direct relationship with the insertion force, and the graph that relates them is a central issue in the development of manual pipettes. Manufacturers often include it in presentation brochures or in technical reports to highlight the ergonomics of their device. In this way, many of the considerations on ergonomics have to do, among other things, with the relationship of forces that must be done to insert the disposable tip at the end of the pipette and the corresponding force that must be done for its expulsion. You can see the references in Table 4 for examples of ejection systems for disposable tips.
  • a type of manual pipetting system which has a mobile nozzle and a container, with disposable tips inside, which can be attached to the pipette housing.
  • the system can be configured in two ways: one to be able to establish and modify the type of geometry between axial and non-axial, and another to be able to insert / eject the disposable tips that are placed at the end of the same nozzle.
  • the nozzle has a rotation and / or translation movement that locates it aligned with the disposable tip that is inside a container, and is then inserted into the end of the nozzle.
  • the movement that the nozzle must carry out depends on its initial location (according to the corresponding ⁇ value) and the relative position of the disposable tip container within the pipetting system.
  • Two concrete examples of pipettes are also included with the attached disposable tip container and with a mobile nozzle, for both types of axial and non-axial geometries.
  • the invention is in relation to a pipetting system, having a conceptual change with respect to what is known, since a container with disposable tips can be attached to the pipette.
  • this invention has to do with a nozzle that has a movement that can cause it to change the pipetting position, even leading it to convert from an axial system to a non-axial system.
  • the invention in a third aspect, relates to a pipetting system where the pipette and the disposable tip container are part of the same system as a single device or equipment.
  • the geometric and functional properties, as well as the components of the aforementioned parts should be conceived as a set, and not separately.
  • the invention relates to the realization of a functional or operational change in the pipetting systems, so that the expulsion operation is replaced by an insertion / expulsion operation that are carried out jointly and / or in parallel. to any other function or movement of the device (or within it).
  • the invention is to show concrete examples of the structure and components contained in manual pipetting systems, in relation to the first aspects considered.
  • a sixth aspect it is to establish an ergonomic system and a procedure that acts together on the forces of insertion and expulsion, which allows homogenizing and minimizing them in the case of a manual pipette with a container of disposable tips attached.
  • a seventh aspect it refers to an ergonomic handle, which can be used in both axial and non-axial geometry, which gives it greater flexibility so that the user can choose the most comfortable position for his hand and arm.
  • using a mobile nozzle seeks to avoid or reduce repetitive movements of the arm and hand of the user. This means greater complexity in the technology involved, but it is possible to have a more comfortable system for the user.
  • Fig. 1 is a block diagram of a pipette with a movable nozzle and that can move over G2 and has pipetting positions P1, P2 and P3 at different angles ( ⁇ 1, ⁇ 2, ⁇ 3) that are already fixed.
  • a disposable tip container attached (21), and the nozzle moves on G1 between the pipetting position and C, expelling the disposable tip (23A) already used in an intermediate position B.
  • Fig. 2b is a schematic diagram of a mobile nozzle, as in Fig. 2a, but in this case the guide G1 moves to the H2 position and the disposable tip container moves from the JO position to the J1 position.
  • Fig. 3 is a schematic diagram of a pipette with a mobile nozzle that has four pipetting positions: in the axial direction and on the wedges (42A), (42B) and (42C), and moves to fixed positions, such as angle ( ⁇ ), when the head (43A) moves linearly in the direction of the arrow V0.
  • Fig. 4 shows the schematic diagram of a flexible nozzle, on the axis of rotation (49), to allow it to be axially aligned with one of the disposable tips inside the container (51) and allow the insertion of a new disposable tip into its extreme, as indicated by the direction of arrow F3.
  • Fig. 5 is a schematic diagram of the pipette body, externally in the form of a decentralized handle type handle, which allows linear movement up and down of the nozzle, according to Fig. 3, in order to be able to take fixed positions at different angles
  • Fig. 6 shows a different modality to Fig. 1, since there are now four blocks (2A, 2B, 2C and 2D) of interaction with the user because the insertion and ejection systems are separated, and also the interactions between some system blocks are modified.
  • Fig. 7a is an example of a simple mechanical pipette with axial symmetry, which is operated manually and has a disposable tip container coupled (71) on the body (72).
  • Fig. 7b shows the angular movement R1 that follows the mobile nozzle, for the case of the simple pipette of the example of Fig. 6a, when a force F is applied to one of the activation buttons (77) and it serves to align axially in the Z1 direction. This allows the operation of inserting a new disposable tip on the nozzle (84), which is inside the box (85).
  • Fig. 7c is a perspective view with a cross-sectional view at height AA 'for the single pipette of Fig. 7a, together with the disposable tip container attached, which allows to see the internal components and how they are coupled such components as well as the three parts into which it is divided: container (71), body (72) and tip (73).
  • Fig. 8a is a perspective view, from position B2, of an example of a simple mechanical pipette with non-axial symmetry, which is operated manually and has a disposable tip container attached (118). It also has a tip (117), a body (119).
  • Fig. 8b is a perspective view with a cross section at the height BB ', for the case of Fig. 7a, which allows the components inside the pipette and the container with disposable tips to be seen.
  • Fig. 1 shows the block diagram of the pipetting system as a whole, consisting of the manual pipette, with the movable nozzle, and the disposable tip container.
  • a base D that is the body of the pipette, and externally it has the shape of a handle to be able to hold and operate it. On This body also seats the external components that are the movable tip and the box with disposable tips.
  • the mobile tip of the pipette is constituted by an expulsion module (14), an internal nozzle movement module (12), two sliding modules (33) and (34), and also includes the nozzle (13), the ejector tube (15) and the disposable tip (23A) that is inserted into the nozzle.
  • These modules are activated from the set of blocks S, which are within the dashed line and represent the fundamental functions of the system.
  • the guide G1 is for the movement of the pipette tip in the disposable tip replacement operation
  • the guide G2 is for the positioning of the pipette tip at different pipetting angles.
  • Display and programming block (1) From here the functions of the pipetting system are programmed, the suction / dispensing volumes of liquid are established and these volumes can be viewed on a mechanical or electronic display. This block is connected to the suction / dispensing block (4) because it also allows visualizing the volumes of liquid entering and leaving the disposable tip (23A). It includes mechanical, pneumatic, electronic and optical components, without being limited.
  • Drive block assembly (2A, 2B and 2C) It can be formed by manually operated buttons or levers, with mechanical, pneumatic, electronic or electromagnetic transmissions. In other words, these blocks are responsible for interacting with the user.
  • the suction / dispensing drive block (2B) is for activating the suction / dispensing subsystem, and is then connected to the suction / dispensing block (4).
  • the drive block for insertion / ejection (2C) is for activating the disposable tip insertion / ejection subsystem, and connects directly to the intermediate nozzle movement and disposable tip insertion / ejection block (6).
  • Suction / dispensing block (4) Through it the pipetting device performs its essential function, which is the transfer of liquids between different containers, vessels or containers. This is, by suction or aspiration of a liquid precisely, according to a volume previously determined by the user, which is then dispensed (all or in parts) with the same volumetric precision in another container (s) .
  • the suction / dispensing block represents the basic components to make the vacuum inside the disposable tip (23A) and allow liquid to enter it, and then press for all or parts to come out.
  • the connection (26) it acts on the connection module for pressure (13A) and this on the nozzle (13), which extends inside the ejection tube (15), and which has the disposable tip inserted at its end (23A).
  • the subsystem of aspirated / dispensed is usually composed of a piston that displaces air inside a pressure chamber, which is driven by a motor or manually, transmitting pressure changes to the nozzle (13), which has an inner channel that It connects directly to the disposable tip at the end (23A).
  • Disposable tip ejection block (3) The expulsion of the disposable tip (23A), inserted into the end of the nozzle (13), is done once it has been used in order to be discarded and avoid contamination between different samples.
  • the nozzle (13) is a conical-shaped plastic tube, which goes inside the ejection tube (15). It can be seen in the position (B) that is fixed with respect to the ejection tube, which moves to push the disposable tip (23A). In other words, the ejection tube (15) can rise and fall in relation to the concentric axial direction it has with the nozzle (13), and its purpose is to transmit the force (which the user or the device exerts) to expel the tip disposable (23A).
  • the module (3) intervenes which, by means of the connection (27), acts on the ejection module (14) and is on the ejection tube (15).
  • This movement of the ejection tube (15) is combined with the movement of the pipette tip assembly, which in an intermediate position (B) finally ejects the disposable tip (23A).
  • Axial movement block (5) When the tip of the pipette, already without a disposable tip at the end of the nozzle (13), is positioned in C aligned with the disposable tip removed (23) in the axial direction of both ⁇ the axial movement block (5) activates the internal nozzle movement module (12) through the connection (28), which then moves the nozzle (13) in the axial direction towards the disposable tip (23) to facilitate the insertion of the same, and that are held together by friction.
  • intermediate elements such as o-rings or gaskets, either elastic or inflatable, can be used, as well as rounded edges on the nozzle (13) and on the disposable tip (23) or be constructed of materials sufficiently flexible for adjustment.
  • the block (11) directs the movement of the tip of the pipette by operating on the sliding module (33), through the connection (30), and on the guide G2 through the connection (29).
  • the components used in the function of the block (1 1) can be motors, actuators, with rails, guides that are on the housing material, without being limited in all cases.
  • Movement block for insertion of disposable tip (10) It is activated from the intermediate block (6), and its function is to direct the movement of the tip of the pipette by operating on the sliding module (34), by connecting (31), and on the G1 guide through connection (32).
  • the positions that the tip of the pipette takes in its path from P1 to C is a continuum, that is to say that it passes successively through the intermediate positions A and B but does not have a fixed position there, but only in P1 and C.
  • An intermediate position between these combined movements of the pipette tip and ejector tube (15) causes the disposable tip (23A) to be ejected from the nozzle (13).
  • position B you can see the relative location of the nozzle (13) and the ejector tube (15).
  • Location block for disposable tips (8) It has connection with the intermediate block (6), in order to coordinate the movements of the set of disposable tips (22), located inside the box (21), with the other functions of the Pipetting system that are developed primarily during the replacement operation.
  • the block (8) acts on the set of disposable tips (22), guides the assembly through the location module (16), with which it has the connection (35), and activates the section module (17), with the connection (36), so that one of the disposable tips is separated from the rest and placed in the position of the disposable tip (23).
  • the Components included for such functions may contain mechanical elements such as springs and locks, as well as electronic, electromagnetic or pneumatic elements, without being limited.
  • Disposable tip insertion block (7) When inserting the disposable tip (23) over the nozzle (13) it must be ensured that it is inserted with sufficient force to ensure a seal that ensures the accuracy of the suction volume and dispensed, but that at the same time demands from the user (in the case of a manual system) the least possible force to expel the disposable tip. That is, in this sense, there is a relationship with the disposable tip ejection subsystem, defined by the disposable tip ejection block (3).
  • the disposable tip insertion block (7) acts, through the connection (37), on the insertion module (18) which is responsible for adjusting and bringing the disposable tip away (23) in the axial direction towards the nozzle positioned in C, to finally insert it over it.
  • Box coupling block (9) It is responsible for joining the coupling (20) of the box (21) with the bridge (19), which is on the base (D). It consists of flexible locks, of plastic material, magnetic, electromagnetic couplings or mechanical hooks that allow to firmly hold the box on the base structure (D).
  • the disposable tip replacement subsystem consists of: • the blocks: drive for insertion / expulsion of the disposable tip (2C), ejection of disposable tip (3), axial movement of the nozzle (5), intermediate (6), for the movement of the nozzle and the insertion / ejection of disposable tip, angular positioning of the pipette tip (11), movement for insertion of disposable tip (10), location of disposable tips (8), insertion of disposable tip (7), of box coupling (9),
  • FIG. 2a shows the schematic diagram of the mobile nozzle, for the configuration we call fixed box, which is anchored and fixed on the housing D, since the guide G1 becomes the guide H1 (as indicated by arrow E1) when the pipetting angle is changed from position P1 to position P3.
  • the guide G1 becomes the guide H1 (as indicated by arrow E1) when the pipetting angle is changed from position P1 to position P3.
  • the guide G1 moves to the H2 position, in the direction of the arrow E2, and the disposable tip container moves from the JO position to the J1. In this way, the angle at which the guide G1 is initially located is preserved.
  • FIG. 3 is a schematic diagram to show how the nozzle (45) moves, with the disposable tip (46) inserted at its end, to position itself at different pipetting angles such as (for example) ⁇ 1, ⁇ 2 and ⁇ 3 in Fig. 1.
  • the cavity (40), located inside the pipette housing, through which the nozzle (45) is moved, is shown through the positioning guide (41A) ), which is linear and is an example of the G2 guide.
  • the angles and the manner in which the nozzle (45) is located are in accordance with the components involved in the process, which may have certain type of characteristics to position the nozzle (45).
  • the positioning head (43A) moves over the positioning guide (41A) linearly (up and down), and the angle ( ⁇ ) is changed when the positioning head (43A) moves in the direction indicated by arrow V0, with the nozzle (45) supported by a transverse axis (44A).
  • the nozzle (45) makes a rotational movement on the transverse axis (44A) and is located on the mentioned wedges until it reaches the one in the last position (upwards), having angularly travel the distance R2 (see also Fig. 2a), in a certain direction D PN for an angle ⁇ .
  • the pivot (49) which serves to flex the nozzle (45) and perform the disposable tip replacement operation, as shown in Fig. 4.
  • FIG. 3 is with a cut lateral, with respect to the angular and linear movement of the nozzle (45), which is made in the plane of the page, since the cavity (40) has circular symmetry, as shown in the upper part of the figure with the circle PR'P'R.
  • the lateral section of Fig. 3 is then in the direction parallel to the line PP ', this is important to be able to locate the modules presented with respect to those of the following figure (Fig. 4).
  • Fig. 4 shows a schematic diagram of the other function that the mobile nozzle (45) can perform, now being flexible on the pivot (49), showing a rotational movement on the axis of the pivot (49). This allows it to be axially aligned with one of the disposable tips (52A) inside the container (51) and allows the insertion of a new disposable tip at the end of the nozzle (45).
  • the replacement guide (41 B) On the same inner cavity (40), and in the cutting direction RR ', is the replacement guide (41 B) which is a schematic example of the guide G1 of Fig. 2a.
  • the ejector rod (47) which slides laterally outwards through the projection (47A), in the direction of the arrow V2, to allow vertical movement of the rest of the components such as the ejector, which is formed by two sections numbered with (48) and (50). Both sections flex and the lower section (50) makes a rotational movement around the axis of the pivot (49) together with the lower portion of the nozzle (45), to accompany it when it is located in the axial direction of the tip disposable disposable (52A) of the assembly (52) that are inside the box (51). The movement is carried forward by the head (43B) in the direction of the arrow V1, which makes a linear movement parallel to that of the head (43A).
  • the force F1 is exerted in the direction of the arrow for the expulsion of the tip disposable, when applied on the ejector rod (47).
  • the nozzle (45) and the ejector section (50) flex to be able to insert a new disposable tip at the end of the nozzle (45), it can also make a backward movement and then be propelled with a force F2 towards the disposable tip (52A), to which a force F3 (which in this case is the greatest) is also applied from some components located inside the box (51).
  • the angular path R1 is the one shown in Fig. 2a, to arrive at an insertion angle (a).
  • a rotation movement of the ejector rod (47) must be included when the angular direction of pipetting is changed (seen in Fig. 3 ).
  • the set consists of two or more buttons such as (57), the control panel (59), the housing (53) which is made of plastic and holds all the components, the suction / dispensing module (54), the block of electronic / mechanical components (55), the lock (56), the nozzle (45) and the disposable tip (46) at its end.
  • the wavy shape (58) On the inside of the handle, which is the outside of the Housing is the wavy shape (58), which is very flexible to accommodate the fingers and allow the device to fit over them.
  • the ejector sections (48) and (50) and the ejector rod (47) were not included, but may be included in this type of pipette.
  • the housing It is important to highlight in this configuration of the housing it is located inside the palm of the hand and also outside, in a symmetrical or approximately symmetrical manner, placing the pipette components in the same way.
  • the housing has a shape similar to a letter "D", with the fingers of the hand entering inside it. This makes the system more ergonomic, since it retains a good balance without greatly increasing the weight since the housing can be made very light by precision thermoforming methods.
  • a first variant arises from combining the types of pipette tip movements, shown in Figs. 2a and 2b with what is shown, more specifically, in Figs. 3, 4 and 5.
  • a mobile pipette tip has been shown that moves towards a fixed box, then corresponding to the (more general) case of Fig. 2a. Consequently, the case of the mobile box that is located in another position, as shown in Fig. 2b, is another of the possibilities that can occur as variants of what is explained in relation to Figs. 3, 4 and 5.
  • FIG. 1 Another modality is referred to the block diagram of Fig. 1, where the set of drive blocks, through interaction with the user, is made up of three blocks: The angular drive block (2A), the drive block of the aspirated / dispensed (2B) and drive block for insertion / expulsion (2C).
  • This last block is divided in two, so that the insertion expulsion is done separately and then there are two subsystems: one for insertion and the other for expulsion, through the drive block for expulsion (2D), connected to the eject block (3), and the drive block for insertion (2E), connected to the intermediate block (6).
  • This configuration can be very useful in the sense of simplifying the components of the pipetting system, although the drive and the interaction with the user must be done with a greater quantity of components.
  • the modality regarding operation is that the pipette can be converted from an axial geometry to a non-axial geometry, in relation to the pipetting angle that is selected.
  • EXAMPLE 1 Simple mechanical pipette, with manual operation and axial symmetry, with disposable tip container attached.
  • the pipette is basically divided into three parts that can be seen in Fig. 7a, which is an exterior perspective view (from B1). Said parts are: the body (72), for the interaction with the user, the tip (73) that is mobile, for the interaction with the liquid, and the container of disposable tips (71), for the replacement thereof. Each of these has inside the mechanical and / or electronic elements for the operation of the pipette as a whole.
  • the body (72) is constituted by a housing (75) composed in turn by two non-symmetrical parts and made of plastic material, and inside are the mechanisms for the different functions of the pipette. Such mechanisms can be accessed by disassembling the two parts of the housing (75) at the height of AA ', indicated in Fig. 7a.
  • the housing (75) has a handle shape, suitable for seating the fingers on the handle (81).
  • the buttons (77) and (78) which allow the user to perform the different functions. Both have suitable shapes for the settlement of the fingers: the button (77) is shaped like a fungus and the button (78) is slightly concave.
  • the button (77) performs the insertion and ejection operations of the disposable tip (84A), which is inserted over the end of the nozzle (84), according to the direction of the arrow F4.
  • the button (78) is for performing the suction and dispensing operations, to and from the disposable tip (84A), and consists of a stop (79) that is part of the variable volume mechanism.
  • the volume of liquid aspirated / dispensed is regulated through the knob (74) and its value can be displayed in the window included in the cylinder (76), which is part of the housing (75).
  • the tip of the pipette (73) is located towards the bottom of the pipette, and constitutes its termination in contact with the liquid (s) that it is desired to transfer. Externally, it consists of a base (82), which can pivot on an axis seated in the housing (75), as can be seen in Fig. 7c, and an ejector tube (83), fixed on the base (82), which performs the expulsion of the disposable tip (84A) once it has been used. Inside the ejector tube (83), and concentrically, is located the nozzle (84) which has a conical shape. The disposable tip (84A) is seated (by friction), in the direction indicated by the arrow.
  • the container (71) consists of a box (85), which carries a certain amount of disposable tips similar to (84A), as well as the lid (88), arms (80) and (86) and the positioning mechanisms of the disposable tips inside the box (85).
  • the container (71) is coupled to the housing (75) through the arms (80) and (86), which are made of plastic and can be slightly flexed.
  • the lower arms (86) enter with a forced adjustment, through tabs located on the end thereof, and on notches made on the outside of the base of the housing (75).
  • the inside of the box (85) can be accessed through a lid (88) that enters tightly, but that the user can simply assemble and disassemble, and serves to protect the internal mechanism as well as the sterility of the disposable tips that are inside the box.
  • the connection between the drive mechanisms of the pipette, located inside the housing (75), and the mechanisms inside the case (85) is through the connecting cylinder (87), which is attached to the handle (75) .
  • components belonging to the body (72) and the container (71) are coupled to coordinate the movements of the tip (73) with the positioning of a disposable tip inside the box (85).
  • the housing (75) - box (85) assembly forms a structure similar to the guard of a sword, which for the pipette performs a different function since it allows the user to stop holding it from the handle with the hand without The pipette falls out.
  • This is important from the ergonomic point of view, since in the case of the use of the pipette in several tests the user can open and close the hand and avoid fatigue. It may even be thought that the system becomes heavier than what is normally seen in pipettes, however the box (85) can be made of plastic with a precision thermoforming process and the assembly (with disposable tips inside) does not introduce much additional weight. In this sense, it is worth mentioning that it has already been shown that the important property is not weight reduction but a better balance in the device, which can be seen in this case.
  • Fig. 7b which is a side view based on Fig. 7a
  • the user applies a force F (as indicated by the arrow) down on the button (77).
  • F as indicated by the arrow
  • the disposable tip (84A) is pushed by the ejector tube (83), since there is a relative movement between it and the nozzle (84), which causes it to be inserted into the ejector tube (83 ), while making the mentioned movement (in the direction of the double arrow R1) around the axis in which the head (82) sits.
  • the nozzle (84) is aligned in the Z1 direction with the disposable tip that is in the same direction and inside the box (85).
  • This disposable tip (109) can best be seen in Fig. 7c.
  • the nozzle (84) is inserted almost entirely into the ejector tube, and then an internal mechanism releases it so that it moves on a guide and, by the action of a spring, goes towards the crown ( upper part) of the disposable tip, whose axis is on Z1, located inside the box (85) and inserted into said disposable tip with the appropriate force (which is minimal and homogeneous for the process).
  • Fig. 7c shows a perspective view with the cut at the height of AA ', as indicated in Fig. 7a, which allows to see most of the internal elements of the pipette, including the container.
  • this cut is achieved physically by disassembling one of the two parts that compose it; that is, removing the screws that are located in the posts (90A), (90B) and (90C).
  • the container (71) is removable and is coupled to the housing (75) by means of the arms (80) and (86).
  • the container consists of a closed container or box (85) with a lid (88) that comes under pressure, and contains inside the disposable tips so that they can be exchanged towards the tip of the pipette (73) , specifically the nozzle (84).
  • the exchange of disposable tips is achieved through the rack (104), which is part of the mechanical system that is activated with the button (77), and the gear (102) located on the shaft (105).
  • the latter is in turn coupled with its counterpart, which is the shaft (07), which is a component of the container (71), and thus allows the container to be disassembled from the pipette.
  • Both axes (105) and (107) are located inside the connecting cylinder (87), which is an extension of the housing (75).
  • the suction / dispensing system is activated by the button (78), and has the stop (79) and the compression spring (91), which restores the button (78) to its initial position.
  • Fig. 7c we will list the components that constitute each subsystem included in the pipette, such as: insertion / expulsion and aspirated / dispensed.
  • the lever (96) is connected to the nozzle head (101) through the bolt on (100), to transmit the movement to the nozzle (84), which ends in the form of a truncated conical cylinder (see also Fig. 7a) with its rounded end, and on it that the disposable tip (84A) is inserted by friction .
  • the nozzle (84) is inside the ejector (83), and therefore it cannot be seen.
  • the head (82) and the ejector tube (83) are joined and only develop a rotational movement around the shaft (99) and are driven by the movement of the lever (96) - nozzle assembly (84).
  • the nozzle head (101) has the shaft (98) that moves over guides that are part of the housing (75), which makes it describe to the nozzle (84) a relative movement into the ejector tube ( 83), and within this there is a spring which, when it reaches the axial alignment point (Z1 axis in Fig. 7b) with the disposable tip (109) positioned at the bottom of the case (85), drives the nozzle in the direction of the disposable tip to insert it at its end.
  • Towards the lower part of the arm (94) it it has a division that ends as a rack (104), to transmit movement to the gear (102).
  • This has a shaft (105), which sits on one end in the miniature bearing, which is inside the cavity (103) that is part of the housing (75).
  • the shaft (107) allows connection to the internal mechanism of the box (85).
  • the disposable tips inside the box (85) are moved with a belt that moves through the shaft (107), which then transmits the rotation of the gear (102), held in position by tabs (111) that seat on said tape.
  • the nozzle (84) is a truncated cone-shaped cylinder, with an inner channel, and has a connection through the hose (112) with the pressure chamber (113). Air pressure variations are made on this assembly to allow the liquid to enter and exit into and from the disposable tip (84A), located at the end of the nozzle (84).
  • this system is operated with the button (78), which acts on a rod (93) that ends in the form of a piston inside the pressure chamber (113).
  • the stop (79) and its compression spring (91) allow the liquid to be expelled according to ISO 8655-1: 2002.
  • the position of the stop (92) is regulated from the knob (74), which transmits a movement to the spring rod (95), and thus moves linearly to the stop (92), which places a limit on the movement of the rod (93) and, consequently, to the piston that is inside the pressure chamber (113).
  • the volume of aspirated / dispensed can be varied manually by the user, and the mechanical counter (97) indicates the value of such volume.
  • the numbers are displayed in a window on the base of the cylinder (76), as can be seen in Fig. 1a.
  • EXAMPLE 2 Simple mechanical pipette, manually operated and with non-axial symmetry, with attached disposable tip container.
  • Fig. 8a the pipette can be seen, when viewed from B2, with the three parts that compose it (similar to the previous case).
  • the housing (122) is part of the body (119), which has an "L" shape and is the structural element that houses most of its components, being preferably made of plastic material (although not limited).
  • the container (118) is composed of a box (124), with a slot (130) that is the outlet through which the disposable tips are inserted in the nozzle (129), when it moves (round trip) in the direction of the double arrow R1.
  • the housing (124) can be separated from the housing (122) at the height of the joint (143).
  • the housing (122) is externally shaped like a handle with a wavy section (123) for the settlement of the fingers, providing a firm and comfortable grip of the pipette.
  • the thumb finger It is free for the activation of the replacement button (120) (of the disposable tip) and the index finger acts on the aspirated / dispensed button (121).
  • the cover (125) In the upper part of the body (119) the cover (125) is located, which covers the suction / dispensing subsystem, as well as the connection mechanisms for movement, of the nozzle (129) and of the ejector tube (128).
  • the disposable tip (129A) is inserted on the end of the nozzle (129), as indicated in the direction of the arrow F5, and can sit on the lower end of the ejector tube (128) which can push the disposable tip (129A ) when you want to separate it from the nozzle
  • the box (124) houses inside the tree (139) that holds the disposable tips, by means of flexible plastic tabs, and allows a certain number of these to be arranged for their replacement in each pipetting operation .
  • the shaft (139) is coupled to the shaft (141), which sits on the housing (124) since the central cylinder, which in turn sits on the base • (140), enters on said shaft (141).
  • the tree is fitted to the box (124) by a short thread that has the base (140). In this way the system is firm and can be moved according to the positions taken by the user with the hand that holds the pipette and box assembly (124), and the disposable tips on the shaft (139) can be positioned one by one. one over the slot
  • the movement of the shaft (139) is achieved through a revolver mechanism whose "L" shaped actuator is made up of a rod (137) that is attached by a bolt to the rod (138), and moves it so that this shock and propel splines of the tree (139) transmitting the movement of the button (120), for the change of disposable tip, towards a rotation of the tree (139).
  • the actuator (137) slides on two rails that are part of the housing (122), one of them is a horizontal rail (133), located below the cover (125), and the other is a vertical rail (135) , which holds the scion (137).
  • the length of the bar groove (131) is designed so that the button bolt (120) pushes the bar once it has traveled the length of the groove. This causes the actuator (137) to be displaced for a fraction of the distance traveled by the button (120). This movement transmits the movement necessary to rotate the shaft (139) and thus place a new disposable tip in position (147), in front of the groove (130).
  • the transmission (135) is only an extension link for transmitting the movement of the button (120) to the tip (117), and the transmission (135) is attached to the nozzle (129) that moves relative to the ejector tube ( 128) and both revolve around the axis (127).
  • the disposable tip replacement operation is the result of the synchronized action of two mechanisms: the movement of the tip (117) and the location of a new disposable tip (147) on the groove (130) of the container (118) .
  • the button (120) is fully extended outward, maintained by the action of a spring inside, connected to the actuator (137) that is in an upright position.
  • the actuator (137) When the button (120) is actuated, the rod (131) and bolt (132) move, the latter traveling a linear path within the groove of the bar (131), and when the bolt reaches the The end of this groove is still running the button to be completed, the actuator (137) is pushed receiving only a fraction of the movement of the button (120).
  • the nozzle (129) describes a combined rotation and translation movement with respect to the ejector tube (128) and is introduced therein as the ejector tube (128) rotates on the shaft (127).
  • the button (120) takes approximately 50% of its travel R1
  • the relative movement between the nozzle (129) and the ejector tube (128) causes it to push the disposable tip (129A) away from the nozzle (129).
  • the movement of the nozzle (129) continues in another way when the bolt (132) reaches the height of the ramp (134), since it continues to move on it, causing the nozzle (129) initially to rise a little more while going rotating in the direction R1.
  • the tabs (126) prevent the inertia of the bolt (132) to continue its movement and position the nozzle (129), and also to the ejector tube (128 ), in the axial direction of the disposable tip (147). This has been positioned in front of the groove (130). In such a vertical position of the nozzle (129), the bolt (132) is free and then the action of the spring that is located between the nozzle (129) and the ejector tube (128), and which has been tensioned along of the path R1, causes the nozzle (128) to be fired towards the tip disposable (147) inserting into it.
  • the bar (131) and its extension (131 A) move the nozzle (129) in the opposite direction to its previous path so that the nozzle assembly ( 129) and ejector tube (128) reach their original position, with the bolt (132) now moving below the ramp (134).
  • the rest of the components, such as the actuator (137), are also left in their initial position and the device ready for the aspiration / dispensing operation.
  • the suction / dispensing button (121) is activated with the index finger and operated on a plunger that is inside a pressure chamber. This is connected to the nozzle (129) by a flexible hose, the system being very similar to the previous example.
  • the suction / dispensing button (121) also has a spring that restores it to its initial position, after the aspiration / dispensing operation.
  • the volume adjustment is done by the knob (144), which when turning transmits the movement by means of two conical gears (145) at 90 degrees establishing a stop on the suction / dispensing button (121) thus changing the length of its travel and, consequently, the movement of the plunger inside the pressure chamber and finally the volume of aspirated / dispensed.

Abstract

Se presenta un sistema general, de operación manual, y ejemplos de pipetas (en las configuraciones axial y no axial) con propiedades ergonómicas. De tal manera, se muestra un tipo de sistema de pipeteo manual que cuenta con una boquilla móvil y un contenedor, con puntas desechables en su interior, que se puede acoplar sobre la carcasa de la pipeta. Entonces, el sistema puede configurarse en dos sentidos: uno para poder establecer y modificar el tipo de geometría entre axial y no axial, y otro para poder realizar la inserción/expulsión de las puntas desechables que se colocan en el extremo de la misma boquilla. Lo primero se logra con una boquilla que tiene diferentes posiciones a ángulos predefinidos (β), que están fijos, considerando que para β=0 es una geometría axial y para otros valores de β es una geometría no axial. Para lo segundo la boquilla tiene un movimiento de rotación y/o traslación que la ubican alineada con la punta desechable que está en el interior de un contenedor, y luego es insertada en el extremo de la boquilla.

Description

PIPETA CON BOQUILLA MOVIL
CAMPO DE LA INVENCION
Esta invención se refiere a sistemas de pipeteo, que al día de hoy están conformados por una pipeta y un contenedor de puntas desechables. En un sentido general, se refiere a aquellos sistemas, equipos y métodos que realizan operaciones de aspirado y dispensado, como es el caso de las pipetas de pistón, utilizando puntas desechables, e incluyendo las pipetas manuales (con uno o varios canales). También se incluyen las variantes y modificaciones en los sistemas y dispositivos que existen en el mercado.
OBJETO DE LA INVENCIÓN
Esta invención se refiere concretamente a una pipeta híbrida, con componentes fundamentalmente mecánicos pero que puede contener algunos componentes electrónicos también, y que es operada manualmente. Las propiedades fundamentales son dos: 1) se le puede acoplar un contenedor de puntas desechables, 2) tiene una boquilla móvil, para permitir la inserción y expulsión de la punta desechable así como para posicionarse a diferentes ángulos de pipeteo. Todo esto implica, sin embargo, una mayor complejidad en el sistema en su conjunto. Se, la muestra en tres niveles: diagrama de bloques, diagrama esquemático para algunas funciones y partes, y finalmente se muestran algunos ejemplos que son en realidad modalidades en que se pueden constituir.
ANTECEDENTES
Las pipetas de pistón son dispositivos que se utilizan en el trasvase y dispensad de líquidos (de manera precisa) en laboratorios de diferentes áreas especialidades, donde está involucrada la investigación científico-tecnológica, la metrología, las pruebas de rutina, el análisis forense, o el desarrollo de nuevos métodos o procedimientos, así como dispositivos y equipos. Esto se extiende a diversas áreas de la ciencia y la tecnología y a las industrias con ellas relacionadas, en especial las de alimentos, biotecnología, biología molecular, genética, salud, biomedicina, medio ambiente, química y farmacología, sin quedar acotada a las mismas.
Ya que la presente invención se encuadra dentro de lo que es el desarrollo ergonómico de los dispositivos de pipeteo, es importante poder aclarar bien el significado y los alcances de la ergonomía. Según la Asociación Internacional de Ergonomía (http://www.iea.cc), se define a la ergonomía como la disciplina científica relacionada con la comprensión de las interacciones entre los seres humanos y los elementos de un sistema, y la profesión que aplica los principios teóricos, datos y métodos de diseño para (en tal contexto) optimizar el bienestar humano y mejorar la interacción con el sistema. Es decir, que se busca la contribución en la planificación, diseño y evaluación de tareas, trabajos, productos, organizaciones, ambientes y sistemas en orden de hacerlos compatibles con las necesidades, capacidades y limitaciones de las personas. Entonces, considerando cuestiones ergonómicas podemos decir que el método de pipeteo y los sistemas manuales derivados tienen que ver con las siguientes características o se ubican según los siguientes puntos de vista:
1) Ergonomía en general. Esto es referido al esfuerzo realizado por el usuario para operar la pipeta o para la inserción y expulsión de las puntas desechables, en cuanto a la forma y diseño exterior de la pipeta para ser operada con la mano, y la ubicación de los botones de accionamiento. 2) Mecanismo interno. Distribución geométrica y estructural, en las cuales se tienen en cuenta los mecanismos de accionamiento y operación que favorezcan el empleo del dispositivo durante el proceso de pipeteo (aspirado/dispensado).
3) Puntas desechables. Incluye al material de que están hechas y geometría que poseen, además del sistema para la inserción de las mismas en la pipeta, materiales y geometría de la boquilla, donde se insertan tales puntas desechables, y elementos intermedios (como o-rings o empaques) que intervienen en el sellado.
4) Sistema de expulsión de puntas desechables. Mecanismos y sistemas que permiten realizar dicha función con una cierta fuerza, la cual es importante minimizar para evitar daños músculo esqueléticos en el usuario. Con el análisis ergonómico de una pipeta se busca establecer y optimizar la relación entre las fuerzas de inserción y de expulsión.
Figure imgf000005_0001
Tabla 1 - Padecimientos músculo esquelé icos debidos al proceso de pipeteo.
5) Contenedores de puntas desechables (racks, por su nombre en inglés). Se busca que estos también faciliten el almacenamiento, el transporte y la inserción de puntas desechables en la pipeta. Debido a los movimientos necesarios que realiza el usuario, con su brazo y mano, pueden aparecer padecimientos músculo esqueléticos. Ocurren por un efecto acumulativo cuando realiza varios trasvases y/o dispensados de líquidos, y aparecen debido a la fuerza y movimientos repetitivos que debe hacer sobre los botones de la pipeta y para el traslado y sostén de esta, siendo los más comunes los que se muestran en la Tabla 1.
En lo que hace a pipetas manuales, desde el punto de vista ergonómico existen varios ejemplos para mencionar (ver Tabla 2), que se refieren a la prevención de fatiga y de padecimientos músculo esqueléticos, así como a la disminución de los puntos de presión local en la mano del usuario. Una preocupación de los fabricantes es crear pipetas de pistón ergonómicas, que permitan la manipulación repetitiva sin provocar una fatiga excesiva en la mano y, particularmente, en el dedo pulgar del usuario. Se pone especial atención en pipetas de volumen variable, cuyo cuerpo o mango sea lo suficientemente compacto para acomodarse de manera confortable a la mano, sin importar el tamaño de la misma.
Figure imgf000006_0001
Tabla 2 - Patentes que hacen referencia a ergonomía y diseño. Al utilizar una pipeta se realizan dos funciones básicas y a la vez dobles:
1) Aspirado/dispensado: aspirado desde uno o más recipientes y dispensado en otro(s) recipiente(s). El volumen de aspirado de líquido se puede seleccionar dentro de un rango determinado y quedar fijo en el proceso, mientras que para el dispensado se pueden programar varios volúmenes.
2) Inserción/expulsión de puntas desechables: este es el proceso de recambio de las puntas desechables, y se hace para evitar la contaminación entre una y otra muestra en cada operación de pipeteo. En la bibliografía de patentes las operaciones de inserción y expulsión de puntas desechables se las encuentra formando parte de dos dispositivos o procesos bien diferenciados (uno de inserción y otro de expulsión). En cada caso hay dos fuerzas involucradas: fuerza de inserción y fuerza de expulsión, ambas aplicadas sobre las puntas desechables y sobre la boquilla de la pipeta. Para el caso de pipetas manuales, la relación de ambas fuerzas para una cierta pipeta es un gráfico característico presentado normalmente por los fabricantes, el cual representa una propiedad ergonómica importante.
NUMERO FECHA AUTOR(ES) CLASIFICACION
US 6,596,240 B2 07/2003 Taggart, et al. B01 L 3/02, 422/100
US 6,745,636 B2 06/2004 Rainin, et al. G01 N 1/00, 73/864.14
US 6,833,114 B1 12/2004 Christen, et al. B01 L 3/02, 422/100
US 6,967,004 B2 11/2005 Rainin, et al. B01 L 3/02, 422/100
US 6,955077 B2 05/2006 Blaszcak, et al. G01N 1/00, 73/73
US 7,047,828 B2 05/2006 Blaszcak, et al. G01 N 1/00, 73/864.01
US 7,320,259 B2 01/2008 Jessop B01L 3/02, 73/864.11
US 2008/0095665 04/2008 Smith B01 L 3/02, 422/58 Tabla 3 - Patentes referidas a geometría, componentes y materiales de puntas desechables y a sistemas para la inserción de las mismas.
En los sistemas de pipeteo manual la inserción de cada punta desechable se hace de forma manual, con intervención directa del usuario. En relación con esto, han sido desarrolladas varias patentes, algunas de las cuales están incluidas en la Tabla 3, que tienen que ver fundamentalmente con dos cuestiones: 1) facilidad en la inserción de la punta desechable de acuerdo a los materiales, componentes de empaque o sellado, y forma geométrica de la misma y de la boquilla de la pipeta en la zona de ajuste entre ambas, 2) charolas o contenedores, que facilitan el proceso de inserción de las puntas desechables en la boquilla de la pipeta.
Figure imgf000008_0001
Tabla 4 - Patentes que se refieren a sistemas de expulsión de puntas desechables.
La fuerza de expulsión que debe hacerse sobre la punta desechable tiene una relación directa con la fuerza de inserción, y el gráfico que las relaciona es un tema central en el desarrollo de pipetas manuales. Los fabricantes suelen incluirlo en folletos de presentación o en informes técnicos para destacar la ergonomía de su dispositivo. De tal manera, muchas de las consideraciones sobre ergonomía tienen que ver, entre otras cosas, con la relación de fuerzas que hay que hacer para insertar la punta desechable en el extremo de la pipeta y la correspondiente fuerza que hay que hacer para su expulsión. Se pueden ver las referencias de la Tabla 4 para encontrar ejemplos de sistemas de expulsión de puntas desechables.
Es posible montar un sistema experimental para caracterizar ergonómicamente una pipeta, utilizando varios sensores y sistemas bio-electrónicos, para estudiar la relación entre las fuerzas de inserción y de expulsión de las puntas desechables, así como los movimientos y posiciones del usuario durante la operación de pipeteo. En diferentes referencias bibliográficas e informes técnicos, incluidos en las referencias adicionales puede verse que esta relación de fuerzas se ha ido disminuyendo gracias a los materiales con que se fabrican las puntas desechables, así como el material del que está hecho el tubo de la pipeta donde se insertan tales puntas desechables. También se comparan pipetas de diferentes fabricantes, las cuales tienen cada una propiedades que las distinguen, y se busca una mejora continua en el diseño, en disminuir el peso y en ubicar adecuadamente el centro de gravedad del sistema respecto a la mano.
REFERENCIAS ADICIONALES
1- K. Zhao. L. Beralund. A. Blazeski. W. Tunq, and Kai-Nan An. "Method for auantifving pipette erqonomics", ASB Annual Meetinq 2009, p. 1039, http://www.asbweb.org/conferences/2009/asb authors.htm. 2- R. Bruder, "Ergonomic quality of Eppendorf piston-stroke Reference", Expertise Eppendorf Reference, 2006,
http://www.eppendorf.com/int/index.php?pb=0bfe97b9d9a466d9&action=products &contentid=43
3- R. S. Pozos, J. L. Agraz, "Forcé measuring device and method", pat. US6673026, 2001 ,
http://v\ww.google om.mx/patents/US6673026?hl=es&dq=patent+method+avoidi ng+injury+repetitive+work
4- J. Erickson, B. Woodard, "Smart Pipetting: Using Ergonomics to Prevent Injury", TR-2001-2,
http://publicpartner.mt.com/content/mailings/RAININ/Rainin%20Literature/Ergono mic%20Papers/tr2001_2.pdf
5- Rainin, "Pipetting, Ergonomics, and You", TR-2001 ,
http://publicpartner.mt.com/content/mailings/RAININ/Rainin%20Literature/Ergono mic%20Papers/tr2001_1.pdf
6- C. Burt , "Selection and use of pipettes", Workshop at ErgoExpo 2005, http://ergonomics.ucla.edu/articles/pipetting.pdf
7- G. David, P. Buckle, "A questionnaire survey of the ergonomie problems associated with pipettes and their usage with specific reference to work-related upper limb disorders", Applied Ergonomics Vol. 28(4), 1997, pp. 257-262, http://www.sciencedirect.com/science/article/pii/S0003687097000021
8- M. Lintula, N. Nevala, Testing the ergonomics and usability of liquid dosage pipettes, Final report for Thermo Labsystems Oy, Kuopio Regional Institute of Occupational Health, Ergonomics Unit, 2002,
http://www.pathtech.com.au/files/0R14087T9l9V3S3Z2L158P778P18/PipetteErgo nomics02.pdf 9- M. Lintula, N. Nevala, "Ergonomics and the usability of mechanical single- channel liquid dosage pipettes", International Journal of Industrial Ergonomics, Vol. 36(3), 2006, pp. 257-263,
http://www.sciencedirect.com/science/article/pii/S0169814105001745
10- Y. H. Lee, M. S. Jiang, "An ergonomic design and performance evaluation of pipettes", Applied Ergonomics, Vol. 30(6), 1999, pp. 487-493,
http.7/www.sciencedirect.com/science/article/pii/S0003687099000113
11- S. Mannonen, K. Syrjá, "Safety in pipetting", Liquid Handling Application Notes, Biohit, www.biohit.com/download. php?id=23
12- M. G. Lichty, I. L. Janowitz, D. M. Rempel, "Ergonomic evaluation of ten single-channel pipettes", Work: A Journal of Prevention, Assessment and Rehabilitation", Vol. 39(2), 2011 ,
http://ergo.berkeley.edu/dOcs/2011%20Lichty%20Work.pdf
13- J. Z. Wu, E. W. Sinsel, D. S. Gloekler, B. M. Wimer, K. D. Zhao, K. N. An, F. L. Buczek, "Inverse dynamic analysis of the biomechanics of the thumb while pipetting: A case study", Medical Engineering & Physics, Vol. 34(6), 2012, pp. 693-701, http://www.sciencedirect.com/science/article/pii/S1350453311002384
14- K. R. Asundi, J. M. Bach, D. M. Rempel, "Thumb Forcé and Muscle Loads Are Influenced by the Design of a Mechanical Pipette and by Pipetting Tasks", Proceedings of the Human Factors and Ergonomics Society Annual Meeting 47(1), pp. 67-76, 2005, http://ergo.berkeley.edu/docs/2005asundihumfac.pdf
15- M. L. Lúa, T. James, B. Lowea, M. Barreroc, Y. K. Kong, "An investigation of hand forces and postures for using selected mechanical pipettes", International Journal of Industrial Ergonomics 38 (2008) 18-29,
http://www.sciencedirect.com/science/article/pii/S0169814107001400 16- M. L. McKean, K. Costello, R. Scordato, "Pipette Design and Cumulative Stress Disorders: Radical Ergonomic Improvements Needed to Prevent Injury, presentation at PittCon 2002, http://www.vistalab.com/pdf/PittConPoster1.pdf
17- I. Janowitz, M. Lichty, "An Ergonomics Guide to Pipette Selection & Use", Ergonomics Program, Center for Occupational and Environmental Health,
University of California,
http://esd.lbl. gov/files/resources/health&safety/Pipette_Poster.pdf
18- J. G. Erickson, A. V. Smith, "A Biopharmaceutical Breakthrough", Occupational Health & Safety Magazine, Vol. 76(6), p. 141 ,
http://ohsonline.com/articles/2007/06/a-biopharmaceutical- breakthrough.aspx?sc_lang=en, www.biohit.com/download. php?id=10
19- K. J. Costello, "The Evolution and Ergonomics of Pipetting", Lab. Medicine 36(9), pp. 533-536, 2005, http://labmed.ascpiournals.Org/content/36/9.toc
20- Pipettes and Pipettors - Global Strategic Business Report, Global Industry Analysts, Inc, Oct 2010, Pages: 489,
http://www.researchandmarkets.com/reports/338908/pipettes_and_pipettors_glob al_strategic_business
21- Global Laboratory Glassware and Plasticware Industry, Global Industry Analysts, Inc, Aug 2010, Pages: 571 ,
http://www.reportlinker.com/p020756-summary/Laboratory-Glassware-and- Plasticware.html
PROBLEMA PLANTEADO Y ASPECTOS DE INNOVACION
La demanda de calidad de vida laboral es importante en nuestros días, sin embargo, este concepto implica el desarrollo de muchos estudios, y las mejoras en diseño de los dispositivos deben hacerse de manera gradual o por partes. De acuerdo con algunos estudios de mercado (ver referencias 20 y 21 de la sección anterior), hoy en día el usuario promedio realiza la selección de los dispositivos de pipeteo basado en los siguientes criterios: 1) propósito, 2) manipulación confortable, 3) exactitud y precisión en el dispensado, 4) posibilidad de esterilización, 5) calidad del sellado para el pipeteo. Dándole una calificación a cada criterio se muestra que el más importante actualmente es el relacionado con la ergonomía, o sea la manipulación confortable del dispositivo. Es lógico que esto suceda, ya que muchos de los otros criterios, especialmente lo que se refiere a exactitud, precisión y calidad del sellado cuentan con un gran número de desarrollos en patentes, y por lo tanto la mayoría de dispositivos de pipeteo tiene estas propiedades en un nivel aceptable para los usuarios y las instituciones certificadoras. Adicionalmente, hay otros criterios (menos relevantes) relacionados con la manufactura o el mercado en sí, como son la durabilidad, el costo, la robustez, la posibilidad de reemplazo de partes y los servicios asociados como descontaminación o calibración. Pero muchos de estos se dan en casos específicos o con aplicaciones y tipos de pipetas muy definidas.
El agrupamiento de funciones o una optimización en los movimientos del brazo del usuario es sin duda uno de los caminos para introducir mejoras en los sistemas de pipeteo, para otorgarles mayores propiedades ergonómicas.
Las dos funciones básicas y dobles, descriptas anteriormente, que realiza una pipeta dan lugar a dos sistemas: un sistema de aspirado/dispensado de líquido y un sistema de expulsión de punta desechable. Aquí, estamos fundamentalmente interesados en los sistemas de inserción/expulsión de puntas desechables en pipetas manuales, de modo de poder optimizar los movimientos y las fuerzas que realiza el usuario en el proceso de pipeteo. De esta manera se pueden disminuir también los padecimientos músculo esqueléticos y hacer más eficiente el desempeño de la persona. Es decir que buscamos que el sistema de expulsión sea reemplazado por un sistema de inserción/expulsión, para que el usuario realice menos esfuerzo y trabajo repetitivo, con su brazo y mano, y se tenga un desempeño más eficiente. Este tipo de sistema no se encuentra en ningún tipo de pipeta o sistema de pipeteo (de los conocidos).
A un nivel muy general se ha mantenido durante mucho tiempo el mismo diseño de pipetas, sin agregar grandes modificaciones que permitan otra forma de hacer tender hacia cero o hacer disminuir en gran medida la fuerza de inserción de las puntas desechables, para evitar lesiones en los usuarios. Es decir, que faltan aún modificaciones importantes en relación a la ergonomía y la operación de las pipetas, para que el usuario resulte altamente beneficiado cuando utiliza estos dispositivos.
Las boquillas móviles no existen en las pipetas, ya sea porque está en relación a un problema que no se ha detectado o porque el usuario no lo ha requerido. Hay un solo antecedente del que tenemos constancia, y es el caso de la patente US 7,416,704 B2 (R. E. Scordato et al., 2008). Pero en este caso, la boquilla tiene un movimiento angular sin que la pipeta cambie la geometría desde axial a no axial, ni tampoco tiene un contenedor de puntas desechables acoplado y, menos aún, cuenta con una boquilla móvil y un contenedor de puntas desechables para la inserción de las puntas desechables.
Entonces, a pesar de que han aparecido mejoras en los diseños de las puntas desechables y en los sistemas incluidos en las pipetas (en los casos de inserción y expulsión de la punta desechable), sigue quedando a criterio o apreciación del usuario la fuerza que debe ejercer en el proceso de inserción/expulsión para lograr un buen sellado entre la punta desechable y la boquilla de la pipeta. Podemos realizar otras observaciones con el objetivo de mejorar la ergonomía y el desempeño de los sistemas de pipeteo manuales. En primer lugar, como ya se ha mencionado, frecuentemente se tratan los dispositivos divididos de acuerdo al tipo de fuerza involucrada u operación desarrollada, esto es: inserción o expulsión. Es decir, los fabricantes de pipetas buscan establecer una relación entre ambas fuerzas pero no hacen una optimización ergonómica del dispositivo, y suelen tratar estas fuerzas por separado en lugar de desarrollar un sistema o dispositivo que actúe simultáneamente sobre los dos tipos de fuerzas. Un desarrollo que automatice (total o parcialmente) la inserción y la expulsión de puntas desechables, permite entonces optimizar la relación de fuerzas en la operación conjunta de inserción/expulsión de las mismas, disminuyendo también la cantidad de movimientos para la operación. Pero esto debe hacerse considerando el sistema de pipeteo en su conjunto (pipeta y contenedor de puntas desechables) y no sólo las pipetas o los contenedores por separado. Otra cuestión es que los fabricantes suelen concentrar su interés en disminuir el peso de la pipeta, en vez de pensar que también debe distribuirse su peso de manera que su centro de gravedad esté dentro de la mano, logrando un balance adecuado. En tal sentido, la estructura de diseño de la pipeta puede distribuirse hacia la zona palmar y dorsal de la mano, logrando así una menor fatiga en los músculos. Vemos también que se consideran cuestiones de diseño y materiales propios de las pipetas, que ayudan también en su ergonomía.
Nos interesamos especialmente en presentar un sistema general, de operación manual, y ejemplos de pipetas (en las configuraciones axial y no axial) con propiedades ergonómicas. De tal manera, se muestra un tipo de sistema de pipeteo manual que cuenta con una boquilla móvil y un contenedor, con puntas desechables en su interior, que se puede acoplar sobre la carcasa de la pipeta. Entonces, el sistema puede configurarse en dos sentidos: uno para poder establecer y modificar el tipo de geometría entre axial y no axial, y otro para poder realizar la inserción/expulsión de las puntas desechables que se colocan en el extremo de la misma boquilla. Lo primero se logra con una boquilla que tiene diferentes posiciones a ángulos predefinidos (β), que están fijos, considerando que para β=0 es una geometría axial y para otros valores de β es una geometría no axial. Para lo segundo la boquilla tiene un movimiento de rotación y/o traslación que la ubican alineada con la punta desechable que está en el interior de un contenedor, y luego es insertada en el extremo de la boquilla. En este caso, el movimiento que debe llevar a cabo la boquilla depende de su ubicación inicial (de acuerdo al valor de β correspondiente) y de la posición relativa que tiene el contenedor de puntas desechables dentro del sistema de pipeteo. Se incluyen también dos ejemplos concretos de pipetas con el contenedor de puntas desechables acoplado y con boquilla móvil, para ambos tipos de geometrías axial y no axial.
En un primer aspecto, la invención es en relación a un sistema de pipeteo, teniendo un cambio conceptual respecto a lo conocido, ya que a la pipeta se le puede acoplar un contenedor con puntas desechables.
En un segundo aspecto, esta invención tiene que ver con una boquilla que tiene un movimiento que puede hacerle cambiar la posición de pipeteo, llevándola incluso a convertirse desde un sistema axial hasta un sistema no axial.
En un tercer aspecto se refiere a un sistema de pipeteo donde la pipeta y el contenedor de puntas desechables forman parte del mismo sistema como un único dispositivo o equipo. De tal manera, las propiedades geométricas y funcionales, así como los componentes de las partes antes mencionadas deben concebirse como un conjunto, y no por separado. En un cuarto aspecto, la invención se refiere a la realización de un cambio funcional u operacional en los sistemas de pipeteo, de modo que la operación de expulsión se reemplaza por una operación de inserción/expulsión que se realizan de manera conjunta y/o paralela a toda otra función o movimiento del dispositivo (o dentro de este).
En un quinto aspecto, la invención es para mostrar ejemplos concretos sobre la estructura y los componentes contenidos en los sistemas de pipeteo manual, en relación a los primeros aspectos considerados.
En un sexto aspecto es establecer un sistema ergonómico y un procedimiento que actúe conjuntamente sobre las fuerzas de inserción y expulsión, el cual permita homogenizar y minimizar las mismas para el caso de una pipeta manual con un contenedor de puntas desechables acoplado.
En un séptimo aspecto se refiere a un mango ergonómico, que puede ser usado tanto en geometría axial como no axial, que le da mayor flexibilidad para que el usuario pueda elegir la posición más confortable para su mano y su brazo.
En un octavo aspecto, utilizando una boquilla móvil se busca evitar o disminuir los movimientos repetitivos del brazo y la mano del usuario. Esto significa una mayor complejidad en la tecnología involucrada, pero se consigue tener un sistema más confortable para el usuario.
BREVE DESCRIPCIÓN DE LAS FIGURAS
La Fig. 1 es un diagrama de bloques de una pipeta con una boquilla móvil y que puede moverse sobre G2 y tiene posiciones de pipeteo P1 , P2 y P3 a diferentes ángulos (β1 , β2, β3) que ya son fijos. Para la operación de inserción/expulsión tiene un contenedor de puntas desechables acoplado (21), y la boquilla se mueve sobre G1 entre la posición de pipeteo y C, expulsando la punta desechable (23A) ya utilizada en una posición intermedia B.
La Fig. 2a es un diagrama esquemático de la boquilla móvil, que permite la conversión entre simetría axial (β=0) y no axial (β≠0) al moverse sobre la guía G2, y muestra también el cambio de la guía G1 hacia H1 para poder guiar la operación de recambio de puntas desechables, estando fijo el contenedor.
La Fig. 2b es un diagrama esquemático de una boquilla móvil, igual que en la Fig. 2a, pero en este caso la guía G1 pasa a la posición H2 y el contenedor de puntas desechables se desplaza de la posición JO a la posición J1.
La Fig. 3 es un diagrama esquemático de una pipeta con boquilla móvil que tiene cuatro posiciones de pipeteo: en la dirección axial y sobre las cuñas (42A), (42B) y (42C), y se desplaza a posiciones fijas, como el ángulo (β), cuando el cabezal (43A) se desplaza linealmente en la dirección de la flecha V0.
La Fig. 4 muestra el diagrama esquemático de una boquilla flexible, sobre el eje de rotación (49), para permitirle quedar alineada axialmente con una de las puntas desechables dentro del contenedor (51) y permitir la inserción de una nueva punta desechable en su extremo, como indica la dirección de la flecha F3.
La Fig. 5 es un diagrama esquemático del cuerpo de la pipeta, exteriormente con forma de mango descentralizado tipo empuñadura, que permite el movimiento lineal hacia arriba y hacia abajo de la boquilla, según la Fig. 3, para poder tomar posiciones fijas a diferentes ángulos.
La Fig. 6 muestra una modalidad diferente a la Fig. 1 , ya que se cuenta ahora con cuatro bloques (2A, 2B, 2C y 2D) de interacción con el usuario debido a que los sistemas de inserción y expulsión están separados, y también quedan modificadas las interacciones entre algunos bloques del sistema. La Fig. 7a es un ejemplo de pipeta simple mecánica con simetría axial, que se opera manualmente y que tiene un contenedor de puntas desechables acoplado (71) sobre el cuerpo (72).
La Fig. 7b muestra el movimiento angular R1 que sigue la boquilla móvil, para el caso de la pipeta simple del ejemplo de la Fig. 6a, cuando se le aplica una fuerza F a uno de los botones de activación (77) y que sirve para alinearse axialmente en la dirección Z1. Esto permite realizar la operación de inserción de una nueva punta desechable sobre la boquilla (84), la cual está dentro de la caja (85).
La Fig. 7c es una vista en perspectiva con un corte transversal a la altura AA' para la pipeta simple de la Fig. 7a, junto con el contenedor de puntas desechables acoplado, que permita ver los componentes internos y la forma en que se acoplan tales componentes así como las tres partes en que se divide: contenedor (71), cuerpo (72) y punta (73).
La Fig. 8a es una vista en perspectiva, desde la posición B2, de un ejemplo de pipeta simple mecánica con simetría no axial, que se opera manualmente y que tiene un contenedor de puntas desechables acoplado (118). También cuenta con una punta (117), un cuerpo (119).
La Fig. 8b es una vista en perspectiva con un corte transversal a la altura BB', para el caso de la Fig. 7a, que permite ver los componentes en el interior de la pipeta y del contenedor con puntas desechables.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
En la Fig. 1 se muestra el diagrama de bloques del sistema de pipeteo en su conjunto, conformado por la pipeta manual, con la boquilla móvil, y el contenedor de puntas desechables. Hay una base D que es el cuerpo de la pipeta, y exteriormente tiene la forma de mango para poder sostenerla y operarla. Sobre este cuerpo asientan también los componentes externos que son la punta móvil y la caja con puntas desechables. La punta móvil de la pipeta está constituida por un módulo de expulsión (14), un módulo de movimiento interno de boquilla (12), dos módulos de deslizamiento (33) y (34), e incluye también la boquilla (13), el tubo expulsor (15) y la punta desechable (23A) que está insertada en la boquilla. Estos módulos son activados desde el conjunto de bloques S, que están dentro de la línea discontinua y representan las funciones fundamentales del sistema. Lo más destacable en la presente invención, que es el punto central en la diferencia con lo que podemos ver en otras patentes, es la existencia de las guías G1 y G2 que permiten el movimiento de la punta de la pipeta en dos sentidos diferentes. La guía G1 es para el movimiento de la punta de la pipeta en la operación de recambio de punta desechable, y la guía G2 es para el posicionamiento de la punta de la pipeta a diferentes ángulos de pipeteo.
Describimos a continuación cada uno de los bloques que constituyen el sistema, que hacen referencia a una función que se desempeña dentro del sistema:
• Bloque de visualización y programación (1): Desde aquí se programan las funciones del sistema de pipeteo, se establecen los volúmenes de aspirado/dispensado de líquido y se pueden ver estos volúmenes en un display mecánico o electrónico. Este bloque va conectado al bloque de aspirado/dispensado (4) porque permite visualizar también los volúmenes de líquido que entran y salen de la punta desechable (23A). Incluye componentes de tipo mecánicos, neumáticos, electrónicos y ópticos, sin quedar limitado.
• Conjunto de bloques de accionamiento (2A, 2B y 2C): Puede estar formado por botones o palancas de accionamiento manual, con transmisiones mecánicas, neumáticas, electrónicas o electromagnéticas. Es decir que estos bloques son encargados de interactuar con el usuario. El bloque de accionamiento angular (2A) es para activar el posicionamiento angular de la punta para una o más operaciones de pipeteo, correspondiente a las posiciones P1 , P2 o P3 (aunque puede haber más posiciones). Estas son posiciones fijas y discretas para cada operación de pipeteo. Este posicionamiento angular se determina en base a la dirección principal DPi (β1=0), que define al sistema como axial, y se logra a través de la conexión que tiene el bloque de accionamiento angular (2A) con el bloque de posicionamiento angular de punta de pipeta (11). El bloque de accionamiento del aspirado/dispensado (2B) es para activar el subsistema de aspirado/dispensado, y está conectado entonces con el bloque de aspirado/dispensado (4). El bloque de accionamiento para inserción/expulsión (2C) es para activar el subsistema de inserción/expulsión de punta desechable, y se conecta directamente al bloque intermedio de movimiento de boquilla e inserción/expulsión de punta desechable (6).
Bloque de aspirado/dispensado (4): A través del mismo el dispositivos de pipeteo lleva a cabo su función esencial, que es el trasvase de líquidos entre diferentes recipientes, vasos o contenedores. Esto es, mediante la succión o aspirado de un líquido de manera precisa, de acuerdo a un volumen determinado previamente por el usuario, que luego es dispensado (todo o en partes) con la misma precisión volumétrica en otro(s) recipiente(s). El bloque de aspirado/dispensado representa a los componentes básicos para hacer el vacío dentro de la punta desechable (23A) y permitir que entre líquido en ella, y luego presionar para que salga todo o en partes. Mediante la conexión (26) actúa sobre el módulo de conexión para presión (13A) y este sobre la boquilla (13), que se prolonga por dentro del tubo de expulsión (15), y que tiene insertada en su extremo a la punta desechable (23A). El subsistema de aspirado/dispensado suele estar compuesto por un pistón que desplaza aire dentro de una cámara de presión, que es accionado mediante un motor o de manera manual, transmitiendo los cambios de presión a la boquilla (13), la cual cuenta con un canal interior que se conecta directamente a la punta desechable en el extremo (23A).
Bloque de expulsión de punta desechable (3): La expulsión de la punta desechable (23A), insertada en el extremo de la boquilla (13), se hace una vez que ha sido utilizada con el fin de ser descartada y evitar la contaminación entre diferentes muestras. La boquilla (13) es un tubo de plástico de forma troncocónica, que va por dentro del tubo de expulsión (15). Se puede ver en la posición (B) que está fija respecto al tubo de expulsión, que se mueve para empujar la punta desechable (23A). Es decir que el tubo de expulsión (15) puede subir y bajar en relación a la dirección axial concéntrica que tiene con la boquilla (13), y su finalidad es transmitir la fuerza (que el usuario o el dispositivo ejerce) para expulsar la punta desechable (23A). En tal movimiento interviene el módulo (3) que, mediante la conexión (27), acciona sobre el módulo de expulsión (14) y este sobre el tubo de expulsión (15). Este movimiento del tubo de expulsión (15) está combinado con el movimiento del conjunto de la punta de la pipeta, que en una posición intermedia (B) expulsa finalmente a la punta desechable (23A).
Bloque de movimiento axial (5): Cuando la punta de la pipeta, ya sin punta desechable en el extremo de la boquilla (13), se posiciona en C alineada con la punta desechable apartada (23) en la dirección axial de ambas^el bloque de movimiento axial (5) activa al módulo de movimiento interno de boquilla (12) mediante la conexión (28), que entonces mueve a la boquilla (13) en dirección axial hacia la punta desechable (23) para facilitar la inserción de la misma, y que se mantengan unidas por fricción. Puede para esto emplearse elementos intermedios como o-rings o empaques, ya sean elásticos o inflables, así como bordes redondeados en la boquilla (13) y en la punta desechable (23) o estar estas construidas de materiales lo suficientemente flexibles para el ajuste. Bloque intermedio (6): Para efectuar el recambio de una punta desechable es necesario contar con un subsistema que inserte, de alguna manera, una punta desechable desde la caja (21) en el extremo de la boquilla (13). Esto se hace moviendo la boquilla (13) hacia la punta desechable (23), y se dice que es una pipeta de boquilla móvil. El bloque (6) es de importancia central en el subsistema de recambio de punta desechable combina los movimientos de la punta de la pipeta con los movimientos de posicionamiento del conjunto (22) y de apartado de la punta desechable (23) dentro de la caja (21). Es decir que la función del bloque (6) es la de ser intermediario entre el movimiento de la boquilla (13) y la función de inserción/expulsión de punta desechable (23). Estas funciones hacen que esté entonces conectado con varios bloques: de expulsión (3), de movimiento axial (5), de inserción de punta desechable (7), de ubicación de puntas desechables (8), y activa a su vez el bloque de movimiento para inserción de punta desechable (10).
Bloque de posicionamiento angular de punta de pipeta (11): Cuando el sistema de pipeteo es axial tiene el ángulo β=0 que es fijo, pero cuando es no axial β≠0 y puede tomar cualquier valor entre 0 y 90 grados, que también ya son fijos y en un cierto número. El bloque (11) dirige el movimiento de la punta de la pipeta accionando sobre el módulo de deslizamiento (33), mediante la conexión (30), y sobre la guía G2 mediante la conexión (29). De tal manera, la boquilla (13) con la punta desechable (23A) insertada en su extremo se ubica en diferentes posiciones (P1 , P2 y P3 en la Fig. 1), cambiando los ángulos desde β1=0 a β2 y β3, estableciendo diferentes direcciones de pipeteo (D L Dp2, Dp3). Estas posiciones son discretas, es decir que la punta de la pipeta se ubica sólo en ciertos lugares del recorrido desde P1 hasta P3. Los componentes que se emplean en la función del bloque (1 1) pueden ser motores, actuadores, con rieles, guías que están sobre el material de la carcasa, sin estar limitado en todos los casos.
Bloque de movimiento para inserción de punta desechable (10): Es activado desde el bloque intermedio (6), y su función es la de dirigir el movimiento de la punta de la pipeta accionando sobre el módulo de deslizamiento (34), mediante la conexión (31), y sobre la guía G1 mediante la conexión (32). Las posiciones que va tomando la punta de la pipeta en su recorrido desde P1 hasta C es un continuo, es decir que pasa sucesivamente por las posiciones intermedias A y B pero no tiene una posición fija por allí, sino sólo en P1 y C. En una posición intermedia entre estas los movimientos combinados de punta de la pipeta y tubo expulsor (15) hacen que la punta desechable (23A) sea expulsada de la boquilla (13). En la posición B se puede ver la ubicación relativa de la boquilla (13) y el tubo expulsor (15).
Bloque de ubicación de puntas desechables (8): Tiene conexión con el bloque intermedio (6), para poder coordinar los movimientos del conjunto de puntas desechables (22), ubicadas en el interior de la caja (21), con las otras funciones del sistema de pipeteo que se desarrollan fundamentalmente durante la operación de recambio. El bloque (8) actúa sobre el conjunto de puntas desechables (22), guía al conjunto mediante el módulo de ubicación (16), con el que tiene la conexión (35), y activa al módulo de apartado (17), con la conexión (36), para que una de las puntas desechables se separe del resto y se ubique en la posición de la punta desechable (23). Los componentes incluidos para tales funciones pueden contener elementos mecánicos como resortes y trabas, así como electrónicos, electromagnético o neumáticos, sin quedar limitado.
• Bloque de inserción de punta desechable (7): En la inserción de la punta desechable (23) sobre la boquilla (13) se debe asegurar que esta se inserte con la fuerza suficiente para garantizar un sellado que asegure la precisión del volumen de aspirado y dispensado, pero que a la vez demande del usuario (en el caso de sistema manual) la menor fuerza posible para realizar la expulsión de la punta desechable. Es decir que, en este sentido, se tiene una relación con el subsistema de expulsión de punta desechable, definido por el bloque de expulsión de punta desechable (3). El bloque de inserción de punta desechable (7) actúa, a través de la conexión (37), sobre el módulo de inserción (18) que se encarga de ajusfar y llevar la punta desechable apartada (23) en la dirección axial hacia la boquilla posicionada en C, para finalmente insertarla sobre esta.
• Bloque de acople de caja (9): Se encarga de unir el acople (20) de la caja (21) con el puente (19), que está sobre la base (D). Consiste de trabas flexibles, de material plástico, acoplamientos magnéticos, electromagnéticos o enganches mecánicos que permiten sostener firmemente la caja sobre la estructura base (D).
Destacamos entonces el conjunto de bloques y módulos que constituyen el subsistema de recambio de punta desechable que, junto con la posición angular de pipeteo a la que está la punta de la pipeta, constituye la novedad más importante de la presente invención. Entonces, el subsistema de recambio de punta desechable esta constituido por: • los bloques: de accionamiento para inserción/expulsión de la punta desechable (2C), de expulsión de punta desechable (3), de movimiento axial de la boquilla (5), intermedio (6), para el movimiento de la boquilla y la inserción/expulsión de punta desechable, de posicionamiento angular de la punta de la pipeta (11), de movimiento para inserción de punta desechable (10), de ubicación de puntas desechables (8), de inserción de punta desechable (7), de acople de caja (9),
• los módulos: de expulsión (14), de movimiento interno de boquilla (12), de conexión para presión (13A), de deslizamiento (33) y (34), de ubicación (16), de apartado (17), de inserción (18) sobre los que actúan los bloques antes mencionados,
• los componentes externos: caja con puntas desechables (21), boquilla (13) y tubo expulsor (15), sobre los que actúan los módulos anteriores. En las dos figuras siguientes (Figs. 2a y 2b) se muestran las posibles configuraciones o arquitecturas para el movimiento de la punta de la pipeta sobre las dos guías (G1 y G2) que tiene internamente la pipeta, para poder posicionarse en un cierto ángulo de pipeteo y para poder insertar una nueva punta desechable, previamente apartada (23), sobre la boquilla (13). También se observa cómo varía la geometría de las guías para movimiento cuando se realiza la conversión entre simetría axial (β=0) y no axial (β≠0), considerando el movimiento sobre la guía G2. La Fig. 2a muestra el diagrama esquemático de la boquilla móvil, para la configuración que llamamos de caja fija, que está anclada y fijada sobre la carcasa D, ya que la guía G1 se convierte en la guía H1 (como indica la flecha E1) cuando se cambia el ángulo de pipeteo desde la posición P1 a la posición P3. Se puede ver que sobre la guía H1 el movimiento angular de la punta de la pipeta a lo largo de R3 es más amplio, pero con menos esfuerzo ya que está más horizontal respecto a G1 , y el recorrido R1 y R3 son sobre la misma guía. En la Fig. 2b la guía G1 pasa a la posición H2, en la dirección de la flecha E2, y el contenedor de puntas desechables se desplaza de la posición JO a la J1. De esta manera, se conserva el ángulo al que está ubicado inicialmente la guía G1. En ambos casos hay un mayor desplazamiento angular desde la posición P3 que desde la posición P1 , y esto debe tenerse en cuenta a la hora de elegir y disponer el conjunto de componentes que van a realizar la función de movimiento. También se debe tener contemplado el movimiento que hace la caja hacia una posición diferente y que se mantenga acoplada a la pipeta. Para esto debe entonces contar con rieles o algún otro componente que le permita realizar dicho desplazamiento, trabándola en ambas posiciones para que quede fija respecto a todo el subsistema de inserción/expulsión. Para ambos casos se ve que la guía G2 siempre está fija sobre la carcasa D.
De las explicaciones anteriores se puede deducir que la pipeta con el contenedor acoplado tienen, respecto a las pipetas que hoy en día se encuentran en el mercado, dos propiedades distintivas: 1) contenedor con puntas desechables acoplado, 2) boquilla móvil con dos tipos de movimientos, uno para posicionamiento angular de pipeteo y otro para recambio de puntas desechables. En la Fig. 1 y las siguientes no se especifica que los dos movimientos de la boquilla deban estar juntos, es decir que pueden estarlo o no dependiendo de la arquitectura del sistema de pipeteo. En lo que sigue, y para una mejor comprensión consideramos los movimientos por separado, pero esto no significa que siempre deban estarlo. Pueden estar juntos, con las adecuaciones correspondientes en los módulos y componentes del sistema en su conjunto. La Fig. 3 es un diagrama esquemático para mostrar la forma en que se mueve la boquilla (45), con la punta desechable (46) insertada en su extremo, para posicionarse a diferentes ángulos de pipeteo como serían (por ejemplo) β1 , β2 y β3 en la Fig. 1. Se muestra más que nada la cavidad (40), ubicada en el interior de la carcasa de la pipeta, por la cual se desplaza la boquilla (45), a través de la guía de posicionamiento (41A), que es lineal y es un ejemplo de la guía G2. Los ángulos y la manera en que se ubica la boquilla (45) están de acuerdo a los componentes que intervienen en el proceso, que pueden tener cierto tipo de características para posicionar la boquilla (45). En la Fig. 3 se les da (a los componentes) forma de cuña, para mayor sencillez pero no está limitado a los mismos, y sobre ellos se puede apoyar la boquilla (45) para establecer una dirección de pipeteo. Entonces, para este ejemplo esquemático la boquilla (45) es móvil en la dirección axial, con cuatro posiciones de pipeteo: axial (con β1=0) y sobre las cuñas (42A), (42B) y (42C). Para la Fig. 3, el cabezal de posicionamiento (43A) se desplaza sobre la guía de posicionamiento (41A) linealmente (hacia arriba y abajo), y se cambia el ángulo (β) cuando el cabezal de posicionamiento (43A) se mueve en la dirección que indica la flecha V0, con la boquilla (45) sostenida por un eje transversal (44A). A medida que recorre una distancia d lineal, la boquilla (45) hace un movimiento de rotación sobre el eje transversal (44A) y se ubica sobre las cuñas mencionadas hasta llegar a la que se encuentra en la última posición (hacia arriba), habiendo recorrido angularmente la distancia R2 (ver también Fig. 2a), en una cierta dirección DPN para un ángulo βΝ. A la altura media de la boquilla (45) encontramos el pivote (49), que sirve para flexionar la boquilla (45) y realizar la operación de recambio de punta desechable, como se muestra en la Fig. 4. La vista presentada en la Fig. 3 es con un corte lateral, respecto al movimiento angular y lineal de la boquilla (45), el cual se realiza en el plano de la página, ya que la cavidad (40) tiene simetría circular, como se muestra en la parte superior de la figura con el círculo PR'P'R. El corte lateral de la Fig. 3 es entonces en la dirección paralela a la línea PP', esto es importante para poder ubicar los módulos presentados respecto a los de la figura siguiente (Fig. 4).
La Fig. 4 muestra un diagrama esquemático de la otra función que puede realizar la boquilla (45) móvil, siendo ahora flexible sobre el pivote (49), que muestra un movimiento de rotación sobre el eje del pivote (49). Esto le para permite quedar alineada axialmente con una de las puntas desechables (52A) dentro del contenedor (51) y posibilita la inserción de una nueva punta desechable en el extremo de la boquilla (45). Sobre la misma cavidad interior (40), y en la dirección de corte RR', se ubica la guía de recambio (41 B) que es un ejemplo esquemático de la guía G1 de la Fig. 2a. Se tiene el vástago expulsor (47), que desliza lateralmente hacia afuera por la saliente (47A), en la dirección de la flecha V2, para permitir el movimiento vertical del resto de componentes como el expulsor, que está conformado por dos secciones numeradas con (48) y (50). Ambas secciones se flexionan y la sección inferior (50) hace un movimiento de rotación alrededor del eje del pivote (49) junto con la porción inferior de la boquilla (45), para acompañar a esta cuando se ubica en la dirección axial de la punta desechable apartada (52A) del conjunto (52) que están dentro de la caja (51). El movimiento es llevado adelante por el cabezal (43B) en la dirección de la flecha V1 , el cual hace un movimiento lineal paralelo al del cabezal (43A). Este está conectado con la boquilla (45) mediante el asentamiento (44B), que es una traba que mantiene fija la boquilla (45) en el presente movimiento. Hacia la izquierda, la fuerza F1 es la ejercida en la dirección de la flecha para la expulsión de la punta desechable, cuando se aplica sobre el vástago expulsor (47). Cuando la boquilla (45) y la sección del expulsor (50) se flexionan para poder insertar una nueva punta desechable en el extremo de la boquilla (45), esta también puede realizar un movimiento hacia atrás e impulsarse luego con una fuerza F2 hacia la punta desechable (52A), a la cual también se le aplica una fuerza F3 (que en este caso es la mayor) desde algunos componentes ubicados en el interior de la caja (51). Igualmente al caso de la figura anterior, el recorrido angular R1 es el que se muestra en la Fig. 2a, para llegar a un ángulo de inserción (a). Si bien los dos movimientos de la punta de la pipeta se han mostrado por separado, es posible combinarlos en cuyo caso debe incluirse un movimiento de rotación del vástago expulsor (47) cuando se cambia la dirección angular de pipeteo (vista en la Fig. 3).
La Fig. 5 es un esquema de una carcasa que forma exteriormente un mango descentralizado tipo empuñadura, el cual se puede utilizar con los sistemas mostrados en los diagramas esquemáticos de las Figs. 3 y 4, de modo que permita el movimiento lineal hacia arriba y debajo de la boquilla (45), pero que también resulte confortable a la mano del usuario. Esto resulta en que se puede entonces seleccionar el ángulo adecuado de pipeteo, tal como se ve para cada caso: (a) es un ángulo β=0, y luego para los casos (b), (c) y (d) se tienen los sucesivos ángulos β2, β3, β4 respectivamente, que tienen un valor entre 0 y 90 grados. El conjunto está compuesto por dos o más botones como el (57), el panel de control (59), la carcasa (53) que es de plástico y sostiene todos los componentes, el módulo de aspirado/dispensado (54), el bloque de componentes electrónico/mecánicos (55), la traba (56), la boquilla (45) y la punta desechable (46) en su extremo. Sobre el interior del mango, que es la parte exterior de la carcasa está la forma ondulada (58), que es muy flexible para acomodarse a los dedos de la mano y permitir que el dispositivo quede ajustado sobre ellos. Para una mejor visualización, no se incluyeron las secciones del expulsor (48) y (50) y el vástago expulsor (47), pero sí pueden estar incluidos en el presente tipo de pipeta. Es importante destacar en esta configuración de la carcasa la misma se ubica por dentro de la palma de la mano y por fuera también, de manera simétrica o aproximadamente simétrica, ubicándose los componentes de la pipeta de la misma manera. La carcasa tiene una forma parecida a una letra "D", con los dedos de la mano entrando en el interior de la misma. Esto hace al sistema más ergonómico, ya que conserva un buen balance sin incrementar en gran medida el peso puesto que la carcasa puede hacerse muy liviana mediante métodos de termoformado de precisión.
MODALIDADES Y VARIANTES DE LA INVENCION
Una primera variante surge de combinar los tipos de movimientos de la punta de la pipeta, que se muestran en las Figs. 2a y 2b con lo mostrado, de manera más específica, en las Figs. 3, 4 y 5. En estos últimos casos se ha mostrado una punta de pipeta móvil que se mueve hacia una caja fija, correspondiendo entonces al caso (más general) de la Fig. 2a. En consecuencia, el caso de la caja móvil que se ubica en otra posición, como se muestra en la Fig. 2b, es otra de las posibilidades que pueden darse como variantes de lo explicado en relación a las Figs. 3, 4 y 5.
Otra modalidad es referida al diagrama de bloques de la Fig. 1, donde el conjunto de bloques de accionamiento, a través de la interacción con el usuario está compuesto por tres bloques: El bloque de accionamiento angular (2A), el bloque de accionamiento del aspirado/dispensado (2B) y el bloque de accionamiento para inserción/expulsión (2C). En la Fig. 6 este último bloque está dividido en dos, de modo que la inserción expulsión se hacen por separado y se tienen entonces dos subsistemas: uno para inserción y otro para expulsión, a través del bloque de accionamiento para expulsión (2D), conectado con el bloque de expulsión (3), y del bloque de accionamiento para inserción (2E), conectado con el bloque intermedio (6). Esta configuración puede ser muy útil en el sentido de simplificar los componentes del sistema de pipeteo, aunque el accionamiento y la interacción con el usuario debe hacerse con una mayor cantidad de componentes.
La modalidad respecto al funcionamiento, de acuerdo a la arquitectura elegida por el usuario, es que la pipeta se puede convertir desde una geometría axial a una geometría no axial, en relación al ángulo de pipeteo que se seleccione.
A continuación vamos a mostrar ejemplos concretos de pipetas con boquilla móvil y contenedor acoplado, que se refieren a las modalidades de geometría axial y no axial.
EJEMPLO 1. Pipeta simple mecánica, de operación manual y con simetría axial, con contenedor de puntas desechables acoplado.
La pipeta queda dividida básicamente en tres partes que se pueden observar en la Fig. 7a, que es una vista exterior en perspectiva (desde B1). Dichas partes son: el cuerpo (72), para la interacción con el usuario, la punta (73) que es móvil, para la interacción con el líquido, y el contenedor de puntas desechables (71), para el recambio de las mismas. Cada una de estas tiene en su interior los elementos mecánicos y/o electrónicos para el funcionamiento de la pipeta en su conjunto.
El cuerpo (72) está constituido por una carcasa (75) compuesta a su vez por dos partes no simétricas y hechas en material plástico, y en su interior están los mecanismos para las diferentes funciones de la pipeta. Se puede acceder a tales mecanismos desmontando las dos partes de la carcasa (75) a la altura de AA', indicada en la Fig. 7a. Exteriormente, la carcasa (75) tiene una forma de mango, adecuada para el asentamiento de los dedos sobre la empuñadura (81). En la parte superior del cuerpo hay dos botones (77) y (78), que permiten realizar las diferentes funciones por parte del usuario. Ambos tienen formas adecuadas para el asentamiento de los dedos de la mano: el botón (77) tiene forma de hongo y el botón (78) tiene forma levemente cóncava. El botón (77) realiza las operaciones de inserción y expulsión de la punta desechable (84A), que va insertada sobre el extremo de la boquilla (84), según la dirección de la flecha F4. El botón (78) es para realizar las operaciones de aspirado y dispensado, hacia y desde la punta desechable (84A), y consta de un tope (79) que forma parte del mecanismo de volumen variable. El volumen de aspirado/dispensado de líquido se regula a través de la perilla (74) y el valor del mismo se puede visualizar en la ventana incluida en el cilindro (76), el cual forma parte de la carcasa (75).
La punta de la pipeta (73) está ubicada hacia la parte de abajo de la pipeta, y constituye la terminación de la misma en contacto con el(los) líquido(s) que se desea trasvasar. Exteriormente, consta de una base (82), que puede pivotar sobre un eje asentado en la carcasa (75), como se puede verificar en la Fig. 7c, y un tubo expulsor (83), fijo sobre la base (82), que realiza la expulsión de la punta desechable (84A) una vez que ya ha sido utilizada. Por dentro del tubo expulsor (83), y de manera concéntrica, se ubica la boquilla (84) que tiene forma troncocónica. Sobre la boquilla (84) está asentada (por fricción) la punta desechable (84A), en la dirección que indica la flecha. De esta manera quedan conectados los mecanismos internos de aspirado/dispensado (dentro de la carcasa) con la punta desechable (84A). El contenedor (71) se compone de una caja (85), que lleva en su interior una cierta cantidad de puntas desechables similares a la (84A), así como de la tapa (88), los brazos (80) y (86) y los mecanismos de posicionamiento de las puntas desechables dentro de la caja (85). El contenedor (71) se acopla a la carcasa (75) a través de los brazos (80) y (86), que son de plástico y que pueden flexionarse levemente. Los brazos inferiores (86) entran con un ajuste forzado, a través de unas pestañas ubicadas sobre el extremo de los mismos, y sobre unas muescas hechas en la parte exterior de la base de la carcasa (75). Se puede acceder al interior de la caja (85) a través de una tapa (88) que entra de manera ajustada, pero que el usuario puede montar y desmontar sencillamente, y sirve para proteger el mecanismo interno así como la esterilidad de las puntas desechables que están en el interior de la caja. La conexión entre los mecanismos de accionamiento de la pipeta, ubicados en el interior de la carcasa (75), y los mecanismos dentro la caja (85) es a través del cilindro de conexión (87), que va unido al mango (75). Por dentro de este se acoplan componentes que pertenecen al cuerpo (72) y al contenedor (71), para coordinar los movimientos de la punta (73) con el posicionamiento de una punta desechable en el interior de la caja (85). Debemos observar que el conjunto carcasa (75) - caja (85) conforman una estructura similar a la guarda de una espada, que para la pipeta desempaña una función diferente ya que permite que el usuario pueda dejar de sostenerla desde el mango con la mano sin que la pipeta se caiga. Esto es importante desde el punto de vista ergonómico, ya que para el caso del empleo de la pipeta en varias pruebas el usuario puede abrir y cerrar la mano y evitar una fatiga. Puede que se piense incluso que el sistema se vuelve más pesado que lo que normalmente se ve en pipetas, sin embargo la caja (85) puede ser hecha de plástico con un proceso de termoformado de precisión y el conjunto (con las puntas desechables en su interior) no introduce mucho peso adicional. En este sentido, es digno mencionar que ya se ha demostrado que la propiedad importante no es la reducción de peso sino un mejor balance en el dispositivo, lo que se puede apreciar que tiene en este caso.
En la Fig. 7b, que es una vista lateral en base a la Fig. 7a, se observa la manera en que se hace el recambio de la punta desechable (84A) insertada en el extremo de la boquilla (84). Para esto, el usuario aplica un fuerza F (como indica la flecha) hacia abajo sobre el botón (77). En una posición intermedia del recorrido R1 la punta desechable (84A) es empujada por el tubo expulsor (83), ya que hay un movimiento relativo entre este y la boquilla (84), que hace que esta se introduzca dentro del tubo expulsor (83), mientras se hace el movimiento mencionado (en la dirección de la doble flecha R1) alrededor del eje en que asienta el cabezal (82). El objetivo final es que la boquilla (84) quede alineada en la dirección Z1 con la punta desechable que está en la misma dirección y dentro de la caja (85). Esta punta desechable (109) se puede ver mejor en la Fig. 7c. Cuando llega a la dirección Z1 , la boquilla (84) está introducida casi en su totalidad dentro del tubo expulsor, y entonces un mecanismo interno la libera para que se desplace sobre una guía y, por acción de un resorte, va hacia la corona (parte superior) de la punta desechable, cuyo eje está sobre Z1 , ubicada dentro de la caja (85) y se inserta en dicha punta desechable con la fuerza adecuada (que es mínima y homogénea para el proceso).
La Fig. 7c muestra una vista en perspectiva con el corte a la altura de AA', como se indicó en la Fig. 7a, que permite ver la mayoría de los elementos internos de la pipeta, incluido el contenedor. En el caso de la carcasa (75), este corte se logra físicamente desmontando una de las dos partes que lo componen; es decir, quitando los tornillos que se ubican en los postes (90A), (90B) y (90C). Como ya se mencionó, el contenedor (71) es desmontable y se acopla a la carcasa (75) mediante los brazos (80) y (86). Como se mencionó antes, el contenedor consta de un recipiente cerrado o caja (85) con una tapa (88) que entra a presión, y contiene en su interior las puntas desechables para que puedan ser intercambiadas hacia la punta de la pipeta (73), específicamente la boquilla (84). El intercambio de puntas desechables se logra a través de la cremallera (104), que forma parte del sistema mecánico que se activa con el botón (77), y el engrane (102) ubicado sobre el eje (105). Este último se acopla a su vez con su contraparte, que es el eje ( 07), que es un componente del contenedor (71), y que de esta forma permite desmontar el contenedor de la pipeta. Ambos ejes (105) y (107) se ubican por dentro del cilindro de conexión (87), que es una extensión de la carcasa (75). El sistema de aspirado/dispensado es activado por el botón (78), y cuenta con el tope (79) y el resorte de compresión (91), que restituye el botón (78) a su posición inicial.
En base a la Fig. 7c vamos a enumerar los componentes que constituyen cada subsistema incluido en la pipeta, como son: inserción/expulsión y aspirado/dispensado.
1) Componentes del mecanismo de inserción/expulsión de puntas desechables. Como ya mencionamos, comienza desde el botón de activación (77) que va conectado con el brazo (94), y cuenta con el resorte de compresión (110), que sirve para restituir el botón (77) a su posición inicial. El brazo (94) se conecta con la palanca (96) a través de una conexión con un perno en (108). Esta palanca (96) está ubicada en ángulo y con una forma adecuada para lograr un desplazamiento lateral de la punta de la pipeta (73), es decir que es un eslabón para transmitir el movimiento del botón (77) a la punta de la pipeta (73), y en especial a la boquilla (84). La palanca (96) se conecta con el cabezal de la boquilla (101) a través del perno en (100), para trasmitirle el movimiento a la boquilla (84), que termina en forma de cilindro troncocónico (ver también Fig. 7a) con su extremo redondeado, y sobre ella que se inserta por fricción la punta desechable (84A). En la Fig. 7c la boquilla (84) está por dentro del expulsor (83), y por eso no se la puede ver. El cabezal (82) y el tubo expulsor (83) están unidos y sólo desarrollan un movimiento de rotación alrededor del eje (99) y son impulsados por el movimiento del conjunto palanca (96) - boquilla (84). El cabezal de la boquilla (101) tiene el eje (98) que se mueve sobre unas guías que forman parte de la carcasa (75), lo cual le hace describir a la boquilla (84) un movimiento relativo hacia dentro del tubo expulsor (83), y dentro de este hay un resorte que, cuando llega al punto de alineación axial (eje Z1 en la Fig. 7b) con la punta desechable (109) posicionada en la parte inferior de la caja (85), impulsa la boquilla en la dirección de la punta desechable para insertarla en su extremo. Hacia la parte inferior del brazo (94) este tiene una división que termina como una cremallera (104), para transmitir movimiento al engrane (102). Este tiene un eje (105), que asienta sobre un extremo en el rodamiento miniatura, el cual se encuentra dentro de la cavidad (103) que forma parte de la carcasa (75). Hacia el otro extremo, el eje (107) permite la conexión con el mecanismo interno de la caja (85). Las puntas desechables dentro de la caja (85) se van desplazando con una cinta que se mueve a través del eje (107), que transmite entonces el giro del engrane (102), sostenidas en posición por unas pestañas (111) que asientan sobre dicha cinta.
2) Componentes del mecanismo de aspirado/dispensado de líquido. La boquilla (84) es un cilindro de forma troncocónica, con un canal interior, y tiene una conexión a través de la manguera (112) con la cámara de presión (113). Sobre este conjunto se hacen las variaciones de presión de aire para permitir que entre y salga el líquido en y desde la punta desechable (84A), ubicada en el extremo de la boquilla (84). Como ya mencionamos, este sistema se acciona con el botón (78), que actúa sobre un vástago (93) que termina en forma de émbolo por dentro de la cámara de presión (113). El tope (79) y su resorte de compresión (91) permiten expulsar el líquido de acuerdo a la norma ISO 8655-1 :2002. La posición del tope (92) se regula desde la perilla (74), que le transmite un movimiento a la varilla con resorte (95), y de esta manera mueve linealmente al tope (92), que pone un límite al movimiento del vástago (93) y, en consecuencia, al émbolo que está dentro de la cámara de presión (113). De esta manera el volumen de aspirado/dispensado se puede variar de manualmente por el usuario, y el contador mecánico (97) indica el valor de tal volumen. Los número se visualizan en una ventana sobre la base del cilindro (76), como se puede ver en la Fig. 1a.
EJEMPLO 2. Pipeta simple mecánica, de operación manual y con simetría no axial, con contenedor de puntas desechables acoplado.
En la Fig. 8a se puede apreciar la pipeta, cuando es vista desde B2, con las tres partes que la componen (similarmente al caso anterior). Se tiene entonces el contenedor (118), el cuerpo (119) y la punta (117). La carcasa (122) es parte del cuerpo (119), que tiene forma de "L" y es el elemento estructural que aloja la mayoría de los componentes en su interior, estando fabricada preferentemente de material plástico (aunque no limitado). El contenedor (118) está compuesto por una caja (124), con una ranura (130) que es la salida por donde se insertan las puntas desechables en la boquilla (129), cuando esta se mueve (ida y vuelta) en la dirección de la doble flecha R1. La caja (124) se puede separar de la carcasa (122) a la altura de la unión (143). La carcasa (122) tiene exteriormente forma de mango con un sector ondulado (123) para el asentamiento de los dedos de la mano, proporcionando un agarre firme y cómodo de la pipeta. El dedo pulgar queda libre para el accionamiento del botón de recambio (120) (de la punta desechable) y el dedo índice acciona sobre el botón de aspirado/dispensado (121). En la porción superior del cuerpo (119) se ubica la tapa (125), que cubre al subsistema de aspirado/dispensado, así como a los mecanismos de conexión para movimiento, de la boquilla (129) y del tubo expulsor (128). Estos dos últimos componentes son parte de la punta (117), junto con las pestañas (126) y el eje (127) sobre los que asienta la boquilla (129), que va por dentro (y de manera concéntrica) del tubo expulsor (128). Sobre el extremo de la boquilla (129) se inserta la punta desechable (129A), como se indica en la dirección de la flecha F5, y puede asentar sobre el extremo inferior del tubo expulsor (128) que puede empujar la punta desechable (129A) cuando se desea separarla de la boquilla
(129) .
En la Fig. 8b se puede ver, con el corte a la altura BB', que la carcasa (122) cuenta también con cavidades y protuberancias para alojar, acoplar y sostener a los elementos que conforman los mecanismos de funcionamiento de la pipeta. La caja (124) aloja en su interior al árbol (139) que sostiene en posición firme, mediante unas pestañas de plástico flexible, a las puntas desechables y permite disponer un cierto número de estas para el recambio de las mismas en cada operación de pipeteo. El árbol (139) queda acoplado al eje (141), que asienta sobre la caja (124) ya que el cilindro central, que asienta a su vez sobre la base (140), entra sobre dicho eje (141). Además, el árbol se ajusta a la caja (124) mediante una rosca corta que tiene la base (140). De esta manera el sistema queda firme y se puede mover de acuerdo a las posiciones que tome el usuario con la mano que sostiene el conjunto de pipeta y caja (124), y las puntas desechables en el árbol (139) se pueden posicionar una a una sobre la ranura
(130) para ser insertadas en el extremo de la boquilla (129). El movimiento del árbol (139) se logra a través de un mecanismo de revólver cuyo actuador en forma de "L" está conformado de un vástago (137) que se une mediante un perno a la barra (138), y la mueve para que esta choque e impulse unas estrías del árbol (139) transmitiendo el movimiento del botón (120), para el cambio de punta desechable, hacia una rotación del árbol (139). El actuador (137) desliza sobre dos rieles que forman parte de la carcasa (122), uno de ellos es un riel horizontal (133), ubicado por debajo de la tapa (125), y el otro es un riel vertical (135), que sostiene el vástagb (137). Hacia arriba se tiene otra barra (131) con un surco por donde corre el perno del botón (120) para el cambio de puntas desechables. La longitud del surco de la barra (131) esta diseñada para que el perno del botón (120) empuje la barra una vez que haya recorrido la longitud del surco. Esto hace que el actuador (137) sea desplazado durante una fracción de la distancia que recorre el botón (120). Este desplazamiento transmite el movimiento necesario para hacer girar al árbol (139) y así ubicar una nueva punta desechable en la posición (147), frente a la ranura (130). La transmisión (135) es únicamente un eslabón de extensión para transmitir el movimiento del botón (120) a la punta (117), y la transmisión (135) está unida a la boquilla (129) que se mueve en relación al tubo expulsor (128) y ambos giran en torno al eje (127).
La operación de recambio de punta desechable es el resultado de la acción sincronizada de dos mecanismos: el de movimiento de la punta (117) y el de ubicación de una nueva punta desechable (147) sobre la ranura (130) del contenedor (118). Inicialmente el botón (120) se encuentra totalmente extendido hacia afuera, mantenido por la acción de un resorte en su interior, conectado con el actuador (137) que está en posición vertical. Al momento de accionar el botón (120) el vástago (131) y el perno (132) se desplazan, recorriendo este último una trayectoria lineal dentro del surco de la barra (131), y cuando el perno llega al extremo de este surco aún queda recorrido del botón por completarse, el actuador (137) es empujado recibiendo solo una fracción del movimiento del botón (120). Este movimiento es homogéneo en todo el actuador (137), por lo tanto la barra de transmisión (138) recorre la misma distancia, haciendo que el árbol (139) gire. La fracción del movimiento del botón (120) que es transmitido al árbol (139) es tal que produce en este un movimiento para posicionar una nueva punta desechable sobre la rendija (130). El tubo expulsor (128) y la boquilla (129) comienzan a girar sobre el eje (127), pero la boquilla (129) no asienta sobre este eje y entonces se puede mover respecto al expulsor (128), pero sí tiene una ligadura sobre el riel horizontal (133). De esta manera, la boquilla (129) describe un movimiento combinado de rotación y traslación respecto al tubo expulsor (128) y se va introduciendo dentro de este a medida que el tubo expulsor (128) va rotando sobre el eje (127). Cuando el botón (120) lleva aproximadamente el 50% de su recorrido R1, el movimiento relativo entre la boquilla (129) y el tubo expulsor (128) hace que este empuje la punta desechable (129A) separándola de la boquilla (129). El movimiento de la boquilla (129) continúa de otra manera cuando el perno (132) llega a la altura de la rampa (134), ya que sigue moviéndose sobre esta, provocando que inicialmente la boquilla (129) suba un poco más mientras va rotando en la dirección R1. Cuando el perno (132) termina de recorrer la trayectoria sobre la rampa (134) las pestañas (126) evitan que la inercia del perno (132) haga continuar su movimiento y posiciona la boquilla (129), y también ai tubo expulsor (128), en la dirección axial de la punta desechable (147). Esta se ha posicionado frente a la ranura (130). En tal posición vertical de la boquilla (129), el perno (132) queda libre y entonces la acción del resorte que está ubicado entre la boquilla (129) y el tubo expulsor (128), y que se ha ido tensionando a lo largo de la trayectoria R1 , hace que la boquilla (128) salga despedida hacia la punta desechable (147) insertándose en esta. Cuando el usuario suelta el botón (120) este se desplaza en dirección opuesta, la barra (131) y su extensión (131 A) mueven a la boquilla (129) en la dirección opuesta a su trayectoria previa para que el conjunto de boquilla (129) y tubo expulsor (128) alcancen su posición original, con el perno (132) moviéndose ahora por debajo de la rampa (134). El resto de los componentes, como el actuador (137) también quedan en su posición inicial y el dispositivo listo para la operación de aspirado/dispensado.
El botón de aspirado/dispensado (121) se activa con el dedo índice y acciona sobre un émbolo que está dentro de una cámara de presión. Esta se conecta con la boquilla (129) mediante una manguera flexible, siendo el sistema muy similar al ejemplo anterior. El botón de aspirado/dispensado (121) también cuenta con un resorte que lo restituye a su posición inicial, luego de la operación de aspirado/dispensado. La regulación de volumen se hace mediante la perilla (144), que al girar transmite el movimiento mediante dos engranes cónicos (145) a 90 grados estableciendo un tope al botón de aspirado/dispensado (121) cambiando de esta manera la longitud de su recorrido y, en consecuencia, el movimiento del émbolo dentro de la cámara de presión y finalmente el volumen de aspirado/dispensado.

Claims

REIVINDICACIONES Habiendo descrito de manera suficiente y clara mi invención, considero como una novedad y por lo tanto reclamo como de mi exclusiva propiedad, lo contenido en las siguientes cláusulas:
1. Pipeta con boquilla móvil caracterizada porque:
• está conformada por un cuerpo, que exteriormente tiene forma de mango; un puente, que es una extensión del cuerpo y donde se acopla una caja con puntas desechables; una punta móvil, que se mueve al menos sobre dos guías que están dentro del cuerpo; un contenedor de puntas desechables, que incluye una caja con puntas desechables,
• el cuerpo cuenta con un bloque de visualización y programación (1); un bloque de accionamiento angular (2A), para cambiar el ángulo que forma la boquilla con la dirección axial; un bloque de accionamiento de aspirado/dispensado (2B); un bloque de accionamiento para inserción/expulsión de la punta desechable (2C); un bloque de aspirado/dispensado (4); un bloque de expulsión de punta desechable (3); un bloque de movimiento axial de la boquilla (5); un bloque intermedio (6), para el movimiento de la boquilla y la inserción/expulsión de punta desechable, que realiza el recambio de la punta desechable insertada en la boquilla; un bloque de posicionamiento angular de la punta de la pipeta (11); un bloque de movimiento para inserción de punta desechable (10), que mueve a la punta de la pipeta para el posicionamiento de la boquilla y la inserción de la punta desechable sobre el extremo de la boquilla; un bloque de ubicación de puntas desechables (8), que las mueve, posiciona y aparta una de ellas dentro de la caja; un bloque de inserción de punta desechable (7), que se encarga de ejercer una fuerza e insertar la punta desechable apartada en el extremo de la boquilla; un bloque de acople de caja (9), que permite que esta quede firmemente acoplada a la carcasa y formen un sistema en su conjunto,
• la caja forma parte del contenedor de puntas desechables, que puede contener también algunos bloques y módulos para la ubicación y el desplazamiento de las puntas desechables que están en el interior de la caja,
• la punta de la pipeta está constituida por un módulo de expulsión, un módulo de movimiento interno de boquilla, dos módulos de deslizamiento sobre las correspondientes guías, e incluye también una boquilla con terminación frustocónica, un tubo expulsor y la punta desechable que puede estar insertada en la boquilla,
• la punta de la pipeta se desplaza sobre dos guías, donde una de estas es para el movimiento de recambio (inserción/expulsión) de la punta desechable sobre el extremo de la boquilla, y la otra guía es para el posicionamiento de la punta de la pipeta a diferentes ángulos de pipeteo (prefijados en la arquitectura del sistema).
2. Pipeta con boquilla móvil, conforme a la cláusula 1 , caracterizada porque tiene un subsistema de recambio (inserción/expulsión) de punta desechable constituido por:
• los bloques: de accionamiento para inserción/expulsión de la punta desechable (2C), de expulsión de punta desechable (3), de movimiento axial de la boquilla (5), intermedio (6), para el movimiento de la boquilla y la inserción/expulsión de punta desechable, de posicionamiento angular de la punta de la pipeta (11), de movimiento para inserción de punta desechable (10), de ubicación de puntas desechables (8), de inserción de punta desechable (7), de acople de caja (9),
• los módulos: de expulsión (14), de movimiento interno de boquilla (12), de conexión para presión (13A), de deslizamiento (33) y (34), de ubicación (16), de apartado (17), de inserción (18) sobre los que actúan los bloques antes mencionados,
• los componentes externos: caja con puntas desechables (21), boquilla (13) y tubo expulsor (15), sobre los que actúan los módulos anteriores.
3. Pipeta con boquilla móvil, conforme a las cláusulas 1 y 2, caracterizada porque en el subsistema de recambio de punta desechable el bloque de accionamiento para inserción/expulsión es reemplazado por un bloque de accionamiento para expulsión (2D), conectado con el bloque de expulsión (3), y un bloque de accionamiento para inserción (2E), conectado con el bloque intermedio (6), de modo que se tienen las funciones de inserción y expulsión separadas por diferentes bloques de accionamiento.
4. Pipeta con boquilla móvil, conforme a las cláusulas 1 a 3, caracterizada porque: ^
• tiene una configuración de caja fija, que cuando se acopla queda anclada a la carcasa D,
• la guía para el movimiento de recambio de punta desechable G1 tiene una rotación sobre un eje cuando la punta de la pipeta cambia su dirección angular de pipeteo.
5. Pipeta con boquilla móvil, conforme a las cláusulas 1 a 4, caracterizada porque tiene una arquitectura convertible, pudiendo ser funcionalmente de geometría axial o no axial de acuerdo con el ángulo de pipeteo seleccionado.
6. Pipeta con boquilla móvil, conforme a las cláusulas 1 a 3, caracterizada porque:
• tiene una configuración de caja móvil, que le permite desplazarse entre posiciones fijas (JO y J1) que se corresponden con las direcciones angulares de pipeteo,
• la guía para el movimiento de recambio de punta desechable G1 se mueve hacia otra posición (H2) junto con la caja, permaneciendo paralela a su posición inicial.
7. Pipeta con boquilla móvil, conforme a las cláusulas 1 a 5, caracterizada porque la punta de la pipeta realiza solamente el movimiento de posicionamiento de la punta de la pipeta a diferentes ángulos de pipeteo, a lo largo de la guía G2.
8. Pipeta con boquilla móvil, conforme a la cláusula 6, caracterizada porque la boquilla:
• tiene un movimiento lineal, llevada por un cabezal de posicionamiento,
• tiene una rotación alrededor de un eje que está sobre dicho cabezal de posicionamiento,
• se ubica a diferentes ángulos de pipeteo sostenida por trabas o cuñas, ubicadas a lo largo del recorrido lineal.
9. Pipeta con boquilla móvil, conforme a las cláusulas 1 a 6, caracterizada porque la punta de la pipeta realiza solamente el movimiento de recambio de punta desechable, moviéndose a lo largo de la guía G1.
10. Pipeta con boquilla móvil, conforme a la cláusula 8, caracterizada porque: • la boquilla tiene un movimiento lineal, llevada por un cabezal de posicionamiento,
• la boquilla se flexiona alrededor de un pivote en dos secciones para que una de estas secciones se ubique en la misma dirección axial de la punta desechable apartada, que está dentro de la caja con puntas desechables,
• mediante una fuerza adecuada, la punta desechable pueda insertarse en el extremo flexionado de la boquilla.
11. Pipeta con boquilla móvil, conforme a las cláusulas 1 a 10, caracterizada porque:
• la carcasa tiene forma parecida a una D, preparada para que los dedos de la mano entren en el interior de la misma, y se ubica entonces por dentro y por fuera de la palma de la mano, de manera simétrica o aproximadamente simétrica, ubicándose los componentes de la pipeta de la misma manera, en el interior de la carcasa,
• la carcasa exteriormente tiene un doble mango, en forma de empuñadura,
• sobre el mango, y en el interior de la forma en D, hay un sector de material flexible que se ajusta a los dedos de la mano.
12. Pipeta con boquilla móvil, conforme a las cláusulas 1 a 8, caracterizada porque tiene una caja móvil que se mueve junto con la punta de la pipeta cuando esta se posiciona a diferentes direcciones de pipeteo.
13. Pipeta simple mecánica, de operación manual con contenedor de puntas desechables acoplado, conforme a la cláusula 9, caracterizada porque:
• se divide en las siguientes partes: un cuerpo, una punta que es móvil y un contenedor de puntas desechables, • el contenedor de puntas desechables tiene una caja, con puntas desechables en su interior, que se puede acoplar a la carcasa,
• tiene una punta de pipeta que se compone de una base, que realiza un movimiento de rotación sobre un eje, el tubo expulsor que está unido a la base, y la boquilla, que se puede mover en la dirección axial respecto al tubo expulsor a medida que el conjunto realiza un movimiento de rotación,
• tiene una conexión por dentro de la cual se conectan los mecanismos del interior de la carcasa y del interior de la caja,
• la operación de pipeteo se puede realizar igualmente con o sin la caja de puntas desechables acoplada a la carcasa,
• cuando el usuario aplica una fuerza sobre el botón de inserción/expulsión, la boquilla junto con el tubo expulsor y la base realizan un movimiento de rotación alrededor del eje de esta última,
• la boquilla también tiene un movimiento relativo respecto al tubo expulsor, que la hace desplazarse hacia el interior de este en la dirección axial de ambos, de esta manera el tubo expulsor empuja la punta desechable.
14. Pipeta simple mecánica, de operación manual y con simetría axial, con contenedor de puntas desechables acoplado, conforme a las cláusulas 9 y 13, caracterizada porque:
· tiene un mecanismo de inserción/expulsión que comienza desde el botón de activación (77), un brazo (94) y uní resorte de compresión (110), que sirve para restituir el botón (77) a su posición inicial,
• el brazo (94) se conecta con la palanca (96) a través una conexión con un perno en (108),
· la palanca (96) se conecta con el cabezal de la boquilla (101), • el cabezal (82) y el tubo expulsor (83) están unidos y sólo desarrollan un movimiento de rotación alrededor del eje (99) y son impulsados por el movimiento del conjunto palanca (96) - boquilla (84),
• el cabezal de la boquilla (101) tiene el eje (98) que se mueve sobre unas guías que forman parte de la carcasa (75), lo cual le hace describir a la boquilla (84) un movimiento relativo hacia dentro del tubo expulsor (83),
• cuando la boquilla (84) llega al punto de alineación axial con la punta desechable (109) un resorte impulsa la boquilla en la dirección de la punta desechable para insertarla en su extremo,
• el brazo (94) tiene una división que termina como una cremallera (104), para transmitir movimiento al engrane (102), que tiene un eje (105) que se conecta al eje (107), para transmitir movimiento hacia los componentes en el interior de la caja (85)
• las puntas desechables dentro de la caja (85) se van desplazando con una cinta que se mueve a través del eje (107), que transmite entonces el giro del engrane (102), sostenidas en posición por unas pestañas (111) que asientan sobre dicha cinta.
15. Pipeta simple mecánica, de operación manual y con simetría no axial, con contenedor de puntas desechables acoplado, conforme a la cláusula 9 y 13, caracterizada porque:
• la operación de recambio de punta desechable es el resultado de la acción sincronizada de dos mecanismos: el de movimiento de la punta (117) y el de ubicación de una nueva punta desechable (147) sobre la ranura (130) del contenedor (118), • inicialmente el botón (120) se encuentra totalmente extendido hacia afuera, conectado con el actuador (137),
• al momento de accionar el botón (120) el vástago ( 31) y el perno (132) se desplazan, recorriendo este último una trayectoria lineal dentro del surco de la barra (131),
• cuando el perno llega al extremo de este surco, el actuador (137) es empujado recibiendo solo una fracción del movimiento del botón (120),
• la barra de transmisión (138) recorre la misma distancia, haciendo que el árbol (139) gire y posicione una nueva punta desechable sobre la rendija (130),
• el tubo expulsor (128) y la boquilla (129) comienzan a girar sobre el eje (127),
• la boquilla (129) describe un movimiento combinado de rotación y traslación respecto al tubo expulsor (128) y se va introduciendo dentro de este a medida que el tubo expulsor (128) va rotando sobre el eje (127),
• el tubo expulsor (128) empuja la punta desechable (129A) separándola de la boquilla (129),
• el movimiento de la boquilla (129) es frenado cuando el perno (132) llega a la altura de la rampa (134), y cuando el perno (132) termina de recorrer la trayectoria sobre la rampa (134) las pestañas (126) evitan que continúe su movimiento y posiciona a la boquilla (129) en la dirección axial de la punta desechable (147),
• el perno (132) y la boquilla (129) quedan libres, y entonces la acción del resorte (tensionado) que está ubicado entre la boquilla (129) y el tubo expulsor (128), hace que la boquilla (128) salga despedida hacia la punta desechable (147) insertándose en esta,
• cuando el usuario suelta el botón (120) este se desplaza en dirección opuesta, la barra (131) y su extensión (131 A) mueven a la boquilla (129) en la dirección opuesta a su trayectoria previa para que el conjunto de boquilla (129) y tubo expulsor (128) alcancen su posición original, con el perno (132) moviéndose ahora por debajo de la rampa (134).
16. Método de pipeteo, conforme a las cláusulas 1 a 6, caracterizado porque comprende los siguientes pasos:
• el usuario posiciona la punta de la pipeta (y la boquilla) a un ángulo determinado de pipeteo, eligiendo de tal manera la simetría axial o no axial,
• el usuario activa el sistema de inserción/expulsión a través de los componentes de activación que se corresponden con el bloque de accionamiento de inserción/expulsión de punta desechable.
17. Método de pipeteo, conforme a las cláusulas 12 y 13, caracterizado porque comprende los siguientes pasos:
• El usuario acciona el botón de inserción expulsión de punta desechable para el recambio de la punta desechable insertada en la boquilla,
• Una vez que el sistema vuelve a su posición inicial el usuario realiza la operación de pipeteo.
PCT/MX2013/000110 2012-09-24 2013-09-24 Pipeta con boquilla móvil WO2014046534A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MXMX/A/2012/010987 2012-09-24
MX2012010987A MX2012010987A (es) 2012-09-24 2012-09-24 Pipeta con boquilla movil.

Publications (1)

Publication Number Publication Date
WO2014046534A1 true WO2014046534A1 (es) 2014-03-27

Family

ID=50341732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2013/000110 WO2014046534A1 (es) 2012-09-24 2013-09-24 Pipeta con boquilla móvil

Country Status (2)

Country Link
MX (1) MX2012010987A (es)
WO (1) WO2014046534A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019220148A1 (en) * 2018-05-18 2019-11-21 Loughborough University Device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020001545A1 (en) * 2000-06-26 2002-01-03 Cronenberg Richard A. Automatic pipette identification and detipping
EP1555067A2 (en) * 2004-01-16 2005-07-20 Heathrow Scientific LLC Pipette device with pivotable nozzle assembly
WO2008068605A1 (en) * 2006-12-07 2008-06-12 Gilson S.A.S. Tip mounting device for sampling device
US20080286157A1 (en) * 2006-10-24 2008-11-20 Gregory Mathus Locking pipette tip and mounting shaft

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020001545A1 (en) * 2000-06-26 2002-01-03 Cronenberg Richard A. Automatic pipette identification and detipping
EP1555067A2 (en) * 2004-01-16 2005-07-20 Heathrow Scientific LLC Pipette device with pivotable nozzle assembly
US20080286157A1 (en) * 2006-10-24 2008-11-20 Gregory Mathus Locking pipette tip and mounting shaft
WO2008068605A1 (en) * 2006-12-07 2008-06-12 Gilson S.A.S. Tip mounting device for sampling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019220148A1 (en) * 2018-05-18 2019-11-21 Loughborough University Device

Also Published As

Publication number Publication date
MX2012010987A (es) 2014-03-24

Similar Documents

Publication Publication Date Title
US20210079330A1 (en) Dynamic multi organ plate
ES2558360T3 (es) Distribuidor de producto fluido
CZ20032091A3 (cs) Injekční stříkačka a způsob jejího použití
WO2014046534A1 (es) Pipeta con boquilla móvil
CN106574652A (zh) 可动设备、可动片以及制造可动设备的方法
RU2015119685A (ru) Дозирующий механизм для введения лекарственных форм в естественные отверстия и содержащий его аппликатор
ES2782348T3 (es) Ensamblaje para almacenar y mezclar dos sustancias
KR101545159B1 (ko) 다중용기
CN107405622B (zh) 管支架工具
Runciman et al. Open Loop Position Control of Soft Hydraulic Actuators for Minimally Invasive Surgery
ES2734187T3 (es) Pipeta de muestreo con botón de control ergonómico
Leadbeater et al. Flagellates: Unity, Diversity and Evolution
US9180446B2 (en) Manual dosing device
CN103200923B (zh) 用于在医院容器之间传递和计量生物医学流体的装置
WO2015047066A1 (es) EQUIPO DE PIPETEO ESCALABLE DE (NxM)-CANALES
KR20200134133A (ko) 블로킹 링을 구비하여 회전 운동에 의해 밀봉 시트가 절개되도록 구성된 검체 용기 및 그 취급 방법
CN207287494U (zh) 一种可伸缩、可拆卸型吸管架
US20150314284A1 (en) Specimen container for biological materials
DeSimone et al. Biological fluid dynamics: swimming at low Reynolds numbers
EP3890811B1 (en) Large dose disposable inhaler and method of simple filling
ES2538408B1 (es) Dispositivo automático de posicionamiento para corte de tejido tridimensional en una muestra, vibrátomo que lo comprende y su uso
ES2368408B1 (es) Sistema para recogida de muestras
ES2870710B2 (es) Dispositivo de actuacion para el control de sistemas propulsados
Beneš et al. 39 Doplňková parenterální výživa v onkologii
WO2023085912A1 (es) Aparato automatizado para el procesamiento de muestras de cortes histológicos

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838485

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13838485

Country of ref document: EP

Kind code of ref document: A1