WO2014046256A1 - Metallic foil having carrier - Google Patents

Metallic foil having carrier Download PDF

Info

Publication number
WO2014046256A1
WO2014046256A1 PCT/JP2013/075557 JP2013075557W WO2014046256A1 WO 2014046256 A1 WO2014046256 A1 WO 2014046256A1 JP 2013075557 W JP2013075557 W JP 2013075557W WO 2014046256 A1 WO2014046256 A1 WO 2014046256A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal foil
carrier
resin
plate
resin coating
Prior art date
Application number
PCT/JP2013/075557
Other languages
French (fr)
Japanese (ja)
Inventor
晃正 森山
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to JP2014536944A priority Critical patent/JP6104260B2/en
Publication of WO2014046256A1 publication Critical patent/WO2014046256A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • H05K3/025Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates by transfer of thin metal foil formed on a temporary carrier, e.g. peel-apart copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0162Silicon containing polymer, e.g. silicone
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0097Processing two or more printed circuits simultaneously, e.g. made from a common substrate, or temporarily stacked circuit boards

Definitions

  • the present invention relates to a metal foil with a carrier. More specifically, the present invention relates to a metal foil with a carrier used in the production of a single-sided or two-layer multilayer board or an ultra-thin coreless substrate used for a printed wiring board.
  • a printed wiring board uses, as a basic constituent material, a dielectric material called “prepreg” obtained by impregnating a base material such as a synthetic resin plate, a glass plate, a glass nonwoven fabric, and paper with a synthetic resin. . Further, a sheet such as copper or copper alloy foil having electrical conductivity is bonded to the side facing the prepreg.
  • the laminated body thus assembled is generally called a CCL (CopperoppClad Laminate) material.
  • the surface of the copper foil in contact with the prepreg is usually a mat surface in order to increase the bonding strength.
  • a foil made of aluminum, nickel, zinc or the like may be used instead of the copper or copper alloy foil. Their thickness is about 5 to 200 ⁇ m. This commonly used CCL (Copper Clad Laminate) material is shown in FIG.
  • Patent Document 1 proposes a metal foil with a carrier composed of a synthetic resin plate-shaped carrier and a metal foil that is mechanically peelably adhered to at least one surface of the carrier. Describes that it can be used for the assembly of printed wiring boards. It was shown that the peel strength between the plate-like carrier and the metal foil is preferably 1 gf / cm to 1 kgf / cm. According to the metal foil with a carrier, since the copper foil is supported over the entire surface by the synthetic resin, generation of wrinkles on the copper foil during lamination can be prevented. In addition, since the metal foil with carrier is in close contact with the synthetic resin without gaps, when the surface of the metal foil is plated or etched, it can be put into the chemical solution for plating or etching. .
  • the linear expansion coefficient of the synthetic resin is at the same level as the copper foil that is a constituent material of the substrate and the prepreg after polymerization, the circuit is not misaligned, resulting in fewer defective products, It has the outstanding effect that a yield can be improved.
  • the metal foil with a carrier described in Patent Document 1 is an epoch-making invention that greatly contributes to reducing the manufacturing cost by simplifying the manufacturing process of the printed circuit board and increasing the yield, but the peel strength between the plate-like carrier and the metal foil.
  • a remarkable problem for the inventor is that the peel strength between the plate-like carrier and the metal foil becomes too high depending on the material of the plate-like carrier, and means for easily adjusting the peel strength is provided. It is desirable.
  • this invention makes it a subject to provide the metal foil with a carrier in which the peeling strength of resin-made plate-shaped carrier and metal foil was adjusted.
  • the present inventors combined at least one surface with a predetermined resin prior to bonding the resin plate and the metal foil.
  • the present invention was completed by finding the possibility of realizing a peel strength according to the desired application by coating with a resin coating.
  • the present invention is as follows.
  • the ten-point average roughness (Rz jis) of the surface of the metal foil that is not in contact with the carrier is 0.4 ⁇ m or more and 10.0 ⁇ m or less, according to any one of (1) to (9) Metal foil with carrier.
  • Metal foil with carrier (11) The metal foil with a carrier according to any one of (1) to (10), wherein the thickness of the metal foil is 1 ⁇ m or more and 400 ⁇ m or less.
  • the peel strength between the metal foil and the plate-like carrier after heating at 220 ° C. for 3 hours, 6 hours or 9 hours is 10 gf / cm or more and 200 gf / cm or less (1) to (11) Metal foil with a carrier as described in any one of.
  • the resin coating film contains a fluororesin in an amount of 0 to 50 parts by mass with respect to 100 parts by mass of silicone.
  • the ten-point average roughness (Rz jis) of the surface of the metal foil that is not in contact with the resin coating film is 0.4 ⁇ m or more and 10.0 ⁇ m or less.
  • Metal foil for printed wiring boards as described.
  • the resin coating is applied to the surface on which the resin coating film composed of the silicone and any one or a plurality of resins selected from an epoxy resin, a melamine resin, and a fluororesin is allowed to act.
  • the manufacturing method of the multilayer metal clad laminated board including this.
  • a resin is laminated on the metal foil side of the metal foil with a carrier according to any one of (1) to (13), and then a resin, a single-sided or double-sided metal-clad laminate, or (1) to (13)
  • a method for producing a multilayer metal-clad laminate comprising laminating a metal foil with a carrier according to any one of the above or a metal foil one or more times.
  • a manufacturing method of a board A manufacturing method of a board.
  • the method for producing a multilayer metal-clad laminate comprising the step of removing a part or all of the separated and separated metal foil by etching in the production method according to (37).
  • (39) A multilayer metal-clad laminate obtained by the production method according to any one of (35) to (38).
  • (40) A method for manufacturing a buildup substrate, comprising a step of forming one or more buildup wiring layers on the metal foil side of the metal foil with a carrier according to any one of (1) to (13).
  • (41) The buildup substrate manufacturing method according to (40), wherein the buildup wiring layer is formed by using at least one of a subtractive method, a full additive method, or a semi-additive method.
  • a resin is laminated on at least one metal foil side of the metal foil with a carrier according to any one of (1) to (13), and then resin, single-sided or double-sided wiring board, single-sided or double-sided metal-clad laminate , (1) to (13)
  • a method for producing a build-up substrate comprising laminating the metal foil with a carrier or the metal foil according to any one of the above one or more times.
  • a metal foil constituting the single-sided or double-sided wiring board a metal foil constituting a single-sided or double-sided metal-clad laminate, and a metal foil with a carrier
  • substrate which further includes performing the process of forming wiring in at least one of metal foil which comprises this, and at least 1 of metal foil.
  • a method for producing a printed circuit board comprising a step of producing a build-up wiring board by the production method according to (48) or (49).
  • the peel strength between the plate carrier and the metal foil can be easily adjusted. Therefore, for example, a metal foil with a carrier that has conventionally exhibited an excessively high peel strength is adjusted to a preferable peel strength, so that an advantage of improving the productivity of a printed wiring board using the metal foil with a carrier is obtained. .
  • CCL An example of the configuration of CCL is shown.
  • the structural example of the metal foil with a carrier which concerns on this invention is shown.
  • the assembly example of the multilayer CCL using the copper foil with a carrier which concerns on this invention (The form which copper foil joined to the single side
  • the assembly example of the multilayer CCL using the copper foil with a carrier which concerns on this invention (The form which copper foil joined on both surfaces of the resin board) is shown.
  • a metal foil with a carrier comprising a resin-made plate-like carrier and a metal foil that is detachably adhered to one or both sides, preferably both sides of the carrier.
  • a metal foil with a carrier according to the present invention is shown in FIGS.
  • the metal foil with carrier 11 in which the metal foil 11a is detachably adhered to both surfaces of a resin plate carrier 11c is shown at the beginning of FIG.
  • the plate-like carrier 11c and the metal foil 11a are bonded together using a resin coating film 11b having a specific structure to be described later.
  • the metal foil with a carrier of the present invention has a structure in which the metal foil and the resin are finally separated and can be easily peeled off. In this respect, since the CCL is not peeled off, the structure and function are completely different.
  • the metal foil with carrier used in the present invention must be peeled off eventually, it is inconvenient that the adhesiveness is excessively high, but the plate-like carrier and the metal foil are chemicals such as plating performed in the printed circuit board manufacturing process. Adhesiveness that does not peel in the processing step is necessary.
  • the peel strength between the metal foil provided by the resin coating film and the plate-like carrier is preferably 10 gf / cm or more, more preferably 30 gf / cm or more, and 50 gf / cm or more. Is more preferably 200 gf / cm or less, more preferably 150 gf / cm or less, and still more preferably 80 gf / cm or less.
  • the adjustment of the peel strength for realizing such adhesion is composed of silicone and any one or a plurality of resins selected from an epoxy resin, a melamine resin, and a fluororesin. This is done by using a resin coating. Such a resin coating film is baked under predetermined conditions as will be described later, and bonded between the plate-like carrier and the metal foil, whereby the adhesiveness is moderately lowered and the peel strength is described above. This is because the range can be adjusted.
  • Epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, brominated epoxy resin, amine type epoxy resin, flexible epoxy resin, hydrogenated bisphenol A type epoxy resin, phenoxy resin, Examples thereof include brominated phenoxy resin.
  • the melamine-based resin examples include methyl etherified melamine resin, butylated urea melamine resin, butylated melamine resin, methylated melamine resin, and butyl alcohol-modified melamine resin.
  • the melamine resin may be a mixed resin of the resin and a butylated urea resin, a butylated benzoguanamine resin, or the like.
  • the number average molecular weight of the epoxy resin is preferably 2000 to 3000, and the number average molecular weight of the melamine resin is preferably 500 to 1000.
  • the resin can be made into a paint and the adhesive strength of the resin coating film can be easily adjusted to a predetermined range.
  • examples of the fluororesin include polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, and polyvinyl fluoride.
  • silicone examples include methylphenyl polysiloxane, methyl hydropolysiloxane, dimethyl polysiloxane, modified dimethyl polysiloxane, and mixtures thereof.
  • the modification is, for example, epoxy modification, alkyl modification, amino modification, carboxyl modification, alcohol modification, fluorine modification, alkylaralkyl polyether modification, epoxy polyether modification, polyether modification, alkyl higher alcohol ester modification, polyester modification.
  • the resin coating film if the film thickness is too small, the resin coating film is too thin and difficult to form, so that the productivity is likely to decrease. Moreover, even if a film thickness exceeds a fixed magnitude
  • the total amount of epoxy resin and melamine resin is preferably contained in an amount of 10 to 1500 parts by weight, more preferably 20 to 800 parts by weight with respect to 100 parts by weight of silicone. Is preferred.
  • fluororesin functions as a release agent and has the effect of improving the heat resistance of the resin coating film. If the amount of fluororesin is too much compared to silicone, the aforementioned peel strength will be low, which may cause peeling during transport or processing of the metal foil with carrier, and it will be uneconomical because the temperature required for the baking process described later will increase. It becomes. From this viewpoint, the fluororesin is preferably 0 to 50 parts by mass, more preferably 0 to 40 parts by mass with respect to 100 parts by mass of silicone.
  • the resin coating film is selected from SiO 2 , MgO, Al 2 O 3 , BaSO 4 and Mg (OH) 2 in addition to silicone and epoxy resin and / or melamine resin and, if necessary, fluororesin 1 You may contain the surface roughening particle
  • the resin coating film contains surface roughening particles, the surface of the resin coating film becomes uneven. Due to the unevenness, the surface of the plate-like carrier or metal foil to which the resin coating film is applied becomes uneven and becomes a matte surface.
  • the content of the surface roughening particles is not particularly limited as long as the resin coating is roughened, but it is preferably 1 to 10 parts by mass with respect to 100 parts by mass of silicone.
  • the particle diameter of the surface roughened particles is preferably 15 nm to 4 ⁇ m.
  • the particle diameter means an average particle diameter (average value of the maximum particle diameter and the minimum particle diameter) measured from a scanning electron microscope (SEM) photograph or the like.
  • SEM scanning electron microscope
  • the amount of irregularities on the surface of the plate-like carrier or metal foil is about 4.0 ⁇ m in terms of the maximum height roughness Ry defined by JIS.
  • This metal foil with a carrier is obtained through a procedure having a step of applying the above-described resin coating to at least one surface of a plate-like carrier or metal foil and a baking step of curing the applied resin coating. .
  • each step will be described.
  • a resin coating consisting of silicone as the main agent, epoxy resin as the curing agent, melamine resin, and fluororesin as the release agent as required is applied to one or both sides of the plate-like carrier. And forming a resin coating film.
  • the resin paint is obtained by dissolving an epoxy resin, a melamine resin, a fluororesin, and silicone in an organic solvent such as alcohol.
  • the blending amount (addition amount) in the resin coating is preferably 10 to 1500 parts by mass of the total of the epoxy resin and the melamine resin with respect to 100 parts by mass of the silicone.
  • the fluororesin is preferably 0 to 50 parts by mass with respect to 100 parts by mass of silicone.
  • the coating method in the coating process is not particularly limited as long as a resin coating film can be formed, but a gravure coating method, a bar coating method, a roll coating method, a curtain flow coating method, a method using an electrostatic coating machine, etc. are used. In view of the uniformity of the resin coating film and the ease of work, the gravure coating method is preferred.
  • the coating amount is preferably 1.0 to 2.0 g / m 2 so that the resin coating film 3 has a preferable film thickness: 0.5 to 5 ⁇ m.
  • the gravure coating method is a method in which a resin coating film is formed on the surface of a plate-like carrier by transferring a resin coating filled in a recess (cell) provided on the roll surface to the plate-like carrier.
  • the lower part of the lower roll having cells provided on the surface is immersed in the resin paint, and the resin paint is pumped into the cell by the rotation of the lower roll.
  • the plate-like carrier is arranged between the lower roll and the upper roll arranged on the upper side of the lower roll, and the lower roll and the upper roll are held while pressing the plate-like carrier against the lower roll with the upper roll.
  • the plate-like carrier is conveyed, and the resin paint pumped into the cell is transferred (applied) to one side of the plate-like carrier.
  • a doctor blade on the side where the plate-shaped carrier is brought into contact with the surface of the lower roll, excess resin paint pumped up on the roll surface other than the cells is removed, and the surface of the plate-shaped carrier is removed. A predetermined amount of resin paint is applied to the substrate.
  • a smoothing roll may be disposed on the carry-out side of the plate carrier to maintain the smoothness of the resin coating film.
  • the baking step is a step of subjecting the resin coating film formed in the coating step to a baking treatment at 125 to 320 ° C. (baking temperature) for 0.5 to 60 seconds (baking time).
  • baking temperature is the ultimate temperature of the plate carrier.
  • a conventionally well-known apparatus is used as a heating means used for a baking process.
  • the baking is insufficient, for example, when the baking temperature is less than 125 ° C. or when the baking time is less than 0.5 seconds, the resin coating becomes insufficiently cured, and the peel strength exceeds 200 gf / cm, The peelability is reduced.
  • baking is an excessive condition, for example, when baking temperature exceeds 320 degreeC, a resin coating film deteriorates, the said peeling strength exceeds 200 gf / cm, and the workability
  • a plate-shaped carrier may change in quality by high temperature. Further, when the baking time exceeds 60 seconds, the productivity is deteriorated.
  • the resin coating in the coating step is made of silicone as a main agent, epoxy resin as a curing agent, melamine resin, fluororesin as a release agent, SiO 2 , MgO, Al It may be composed of one or more kinds of surface roughened particles selected from 2 O 3 , BaSO 4 and Mg (OH) 2 .
  • the resin paint is obtained by further adding surface roughening particles to the above-described silicone-added resin solution.
  • the surface of the resin coating film becomes uneven, and the unevenness makes the plate-like carrier or metal foil uneven, resulting in a matte surface.
  • the blending amount (addition amount) of surface roughening particles in the resin coating is 1 to 10 masses per 100 mass parts of silicone. Part. Further, it is more preferable that the surface roughened particles have a particle size of 15 nm to 4 ⁇ m.
  • the production method according to the present invention is as described above. However, in carrying out the present invention, other steps may be included between or before and after each step within a range that does not adversely affect each step. . For example, you may perform the washing
  • the resin after heating at least one of 3 hours, 6 hours, or 9 hours, for example, at 220 ° C., assuming heating conditions in the production process of the multilayer printed wiring board.
  • the peel strength between the metal foil provided by the coating film and the plate carrier is preferably 30 gf / cm or more, and more preferably 50 gf / cm or more.
  • the peel strength is preferably 200 gf / cm or less, more preferably 150 gf / cm or less, and even more preferably 80 gf / cm or less.
  • the peel strength after heating at 220 ° C. was described above in both 3 hours and 6 hours, or both 6 hours and 9 hours from the viewpoint of being able to cope with various lamination numbers. It is preferable to satisfy the range, and it is further preferable that all peel strengths after 3 hours, 6 hours, and 9 hours satisfy the above-described range.
  • the peel strength is measured in accordance with a 90 degree peel strength measuring method defined in JIS C6481.
  • the resin that serves as the plate-like carrier is not particularly limited, and phenol resin, polyimide resin, epoxy resin, natural rubber, pine resin, and the like can be used, but a thermosetting resin is preferable.
  • a prepreg can also be used. The prepreg before being bonded to the metal foil is preferably in a B-stage state.
  • the linear expansion coefficient of the prepreg (C stage) is 12 to 18 ( ⁇ 10 ⁇ 6 / ° C.), 16.5 ( ⁇ 10 ⁇ 6 / ° C.) of the copper foil as the constituent material of the substrate, or 17 of the SUS press plate .3 ( ⁇ 10 ⁇ 6 / ° C.) is advantageous in that it is difficult to cause circuit misalignment due to a phenomenon (scaling change) in which the substrate size before and after pressing differs from that at the time of design. Furthermore, as a synergistic effect of these merits, it becomes possible to produce a multilayer ultra-thin coreless substrate.
  • the prepreg used here may be the same as or different from the prepreg constituting the circuit board.
  • a metal plate has been used as a plate-shaped carrier of a metal foil with a carrier.
  • the plate-like carrier and the metal foil are adhered to each other by welding or adhesion.
  • an adhesive from the viewpoint of heat resistance, there are many things that are generally not suitable for build-up, and when closely contacting by welding, the peel strength is too high when using full-surface welding, It is difficult to peel off easily, and it becomes difficult to prevent the chemical solution from entering between the plate-shaped carrier and the metal foil when using partial welding. . Therefore, by using a resin-made plate-like carrier, an appropriate peel strength can be exhibited with the metal foil, and by using a heat-resistant resin, it can sufficiently withstand the heat history during build-up. be able to.
  • the plate-like carrier preferably has a high glass transition temperature Tg from the viewpoint of maintaining the peel strength after heating in an optimal range, for example, a glass transition temperature Tg of 120 to 320 ° C., preferably 170 to 240 ° C. It is.
  • the glass transition temperature Tg is a value measured by DSC (differential scanning calorimetry).
  • the thermal expansion coefficient of the resin is within + 10% and ⁇ 30% of the thermal expansion coefficient of the metal foil. As a result, it is possible to effectively prevent circuit misalignment due to the difference in thermal expansion between the metal foil and the resin, thereby reducing the occurrence of defective products and improving the yield.
  • the thickness of the plate-like carrier is not particularly limited and may be rigid or flexible. However, if it is too thick, it will adversely affect the heat distribution during hot pressing, while if it is too thin, it will bend and will not flow through the printed wiring board manufacturing process. Therefore, it is usually 5 ⁇ m or more and 1000 ⁇ m or less, preferably 50 ⁇ m or more and 900 ⁇ m or less, and more preferably 100 ⁇ m or more and 400 ⁇ m or less.
  • the metal foil copper or copper alloy foil is a typical one, but foil of aluminum, nickel, zinc or the like can also be used. In the case of copper or copper alloy foil, electrolytic foil or rolled foil can be used.
  • the metal foil generally has a thickness of 1 [mu] m or more, preferably 5 [mu] m or more, and 400 [mu] m or less, preferably 120 [mu] m or less, considering use as a wiring of a printed circuit board.
  • metal foils having the same thickness may be used, or metal foils having different thicknesses may be used.
  • the metal foil used may be subjected to various surface treatments.
  • metal plating for the purpose of imparting heat resistance Ni plating, Ni—Zn alloy plating, Cu—Ni alloy plating, Cu—Zn alloy plating, Zn plating, Cu—Ni—Zn alloy plating, Co—Ni alloy plating, etc.
  • Chromate treatment including the case where one or more alloy elements such as Zn, P, Ni, Mo, Zr, Ti, etc.
  • the chromate treatment liquid for imparting rust prevention and discoloration resistance, surface roughness (For example, copper electrodeposition grains, Cu—Ni—Co alloy plating, Cu—Ni—P alloy plating, Cu—Co alloy plating, Cu—Ni alloy plating, Cu—Co alloy plating, And copper alloy plating such as Cu—As alloy plating and Cu—As—W alloy plating).
  • the roughening treatment not only affects the peel strength between the metal foil and the plate carrier, but also the chromate treatment has a great influence. Chromate treatment is important from the viewpoint of rust prevention and discoloration resistance, but since it tends to significantly increase the peel strength, it is also meaningful as a means for adjusting the peel strength.
  • the matte surface (M surface) of the electrolytic copper foil is used as an adhesive surface with the resin, and surface treatment such as roughening treatment is performed.
  • the adhesive strength is improved by the chemical and physical anchoring effects.
  • various binders are added to increase the adhesive strength with the metal foil.
  • the surface roughness of the bonded surface is JIS B 0601: in order to adjust the peel strength between the metal foil and the plate-like carrier to the preferred range described above.
  • the ten-point average roughness (Rz jis) of the metal foil surface measured according to 2001 it is preferably 3.5 ⁇ m or less, more preferably 3.0 ⁇ m or less.
  • the surface roughness is preferably 0.1 ⁇ m or more, and more preferably 0.3 ⁇ m or more.
  • the metal foil When electrolytic copper foil is used as the metal foil, it is possible to use either a glossy surface (shiny surface, S surface) or a rough surface (matte surface, M surface) by adjusting to such a surface roughness. However, it is easier to adjust the surface roughness by using the S-plane. On the other hand, it is preferable that the ten-point average roughness (Rz jis) of the surface of the metal foil not contacting the carrier is 0.4 ⁇ m or more and 10.0 ⁇ m or less.
  • the surface treatment for improving the peel strength such as roughening treatment is not performed on the bonding surface of the metal foil with the resin.
  • the binder for improving the adhesive force with metal foil is not added in resin.
  • the present invention applies the above-mentioned coupling agent to at least one surface of the metal foil as described above, which serves as the adhesion surface, in order to allow the resinous plate-like carrier to adhere in a peelable manner.
  • the surface of the metal foil may be subjected to the chromate treatment as described above before applying the coupling agent.
  • the present invention provides a plate-like carrier having the above coupling agent on at least one surface of the plate-like carrier to be a close contact surface of the metal foil.
  • This plate-like carrier can be suitably used for applications in which the metal foil as described above is adhered in a peelable manner.
  • the present invention provides a metal foil for a coreless multilayer printed wiring board in which the above coupling agent is coated on the surface of the metal foil as described above. Further, the surface of the metal foil may be subjected to the chromate treatment as described above before being coated with the coupling agent.
  • the surface of the metal foil or resin was measured with a scanning electron microscope equipped with XPS (X-ray photoelectron spectrometer), EPMA (electron beam microanalyzer), EDX (energy dispersive X-ray analysis), Al, If Ti and Zr are detected, it can be assumed that the coupling agent is present on the surface of the metal foil or resin.
  • XPS X-ray photoelectron spectrometer
  • EPMA electron beam microanalyzer
  • EDX energy dispersive X-ray analysis
  • Al aluminum
  • this invention provides the use of the metal foil with a carrier mentioned above.
  • a multilayer metal comprising laminating a resin on at least one metal foil side of the above-described metal foil with carrier, and then laminating the resin or the metal foil repeatedly one or more times, for example, 1 to 10 times.
  • a method for producing a tension laminate is provided.
  • the resin is laminated on the metal foil side of the metal foil with carrier described above, and then the resin, single-sided or double-sided metal-clad laminate, or metal foil with carrier of the present invention, or metal foil once or more, for example, A method for producing a multilayer metal-clad laminate comprising repeatedly laminating 1 to 10 times is provided.
  • the lamination after the resin laminated on the first metal foil with carrier is performed as many times as desired.
  • a book different from the resin, single-sided or double-sided metal-clad laminate, and the first metal foil with carrier is used. It can be arbitrarily selected from the group consisting of the metal foil with carrier of the invention and the metal foil.
  • the above-described method for producing a multilayer metal-clad laminate can further include a step of peeling and separating the plate-like carrier and metal foil of the metal foil with carrier.
  • the method may further include a step of removing a part or the whole of the metal foil by etching after the plate-like carrier and the metal foil are separated from each other.
  • a resin is laminated on the metal foil side of the metal foil with carrier described above, and then resin, single-sided or double-sided wiring board, single-sided or double-sided metal-clad laminate, or metal foil with carrier of the present invention, or metal foil Is provided one or more times, for example, 1 to 10 times, and a buildup substrate manufacturing method is provided.
  • the lamination after the resin laminated on the first metal foil with carrier is performed as many times as desired.
  • the resin, the single-sided or double-sided wiring board, the single-sided or double-sided metal-clad laminate, the first metal with carrier It can be arbitrarily selected from the group consisting of the metal foil with a carrier of the present invention different from the foil and the metal foil.
  • a method for manufacturing a buildup board including a step of laminating one or more buildup wiring layers on the metal foil side of the metal foil with carrier described above.
  • the build-up wiring layer can be formed using at least one of a subtractive method, a full additive method, and a semi-additive method.
  • the subtractive method is a method of forming a conductor pattern by selectively removing unnecessary portions of metal foil on a metal-clad laminate or a wiring board (including a printed wiring board and a printed circuit board) by etching or the like. Point to.
  • the full additive method is a method of forming a conductor pattern by electroless plating and / or electrolytic plating without using a metal foil for the conductor layer.
  • the semi-additive method is an electroless method on a seed layer made of metal foil, for example. In this method, a conductor pattern is formed by using metal deposition and electrolytic plating, etching, or a combination thereof, and then an unnecessary seed layer is removed by etching.
  • a hole is formed in a single-sided or double-sided wiring board, a single-sided or double-sided metal-clad laminate, a metal foil with a carrier, a plate-like carrier with a metal foil with a carrier, a metal foil, or a resin.
  • the method may further include a step of opening and conducting conductive plating on a side surface and a bottom surface of the hole.
  • the step of forming wiring on at least one of the metal foil constituting the single-sided or double-sided wiring board, the metal foil constituting the single-sided or double-sided metal-clad laminate, and the metal foil constituting the metal foil with carrier is performed once. It can further include performing the above.
  • the manufacturing method of the build-up board may further include a step of bringing a metal foil into close contact with one surface on the surface on which the wiring is formed, and further laminating the carrier side of the metal foil with a carrier according to the present invention. . Moreover, it is possible to further include a step of laminating a metal foil with a carrier according to the present invention in which a resin is laminated on the surface on which the wiring is formed and the metal foil is adhered to both sides of the resin.
  • the “surface on which the wiring is formed” means a portion where wiring is formed on the surface that appears every time a buildup is performed, and the buildup substrate includes both a final product and an intermediate product.
  • the manufacturing method of the build-up substrate may further include a step of peeling and separating the plate-like carrier of the metal foil with carrier and the metal foil.
  • each layer can be laminated
  • This thermocompression bonding may be performed every time one layer is stacked, may be performed after being laminated to some extent, or may be performed collectively at the end.
  • the present invention provides a method for manufacturing a build-up board as described above, wherein a hole is made in a single-sided or double-sided wiring board, a single-sided or double-sided copper-clad laminate, a metal foil or a resin, and conductive plating is performed on the side and bottom surfaces of the hole. Further, the metal foil and circuit portion constituting the single-sided or double-sided wiring board, the metal foil constituting the single-sided or double-sided copper-clad laminate, and the method for producing a build-up board at least including the step of forming a circuit on the metal foil I will provide a.
  • the metal foil with carrier used here is the metal foil with carrier 11 in which the metal foil 11a is adhered to one surface of the plate-like carrier 11c.
  • a desired number of prepregs 12, then a two-layer printed circuit board or two-layer metal-clad laminate called an inner layer core 13, then a prepreg 12, and then a metal foil 11 with a carrier are sequentially stacked on the metal foil 11 with a carrier.
  • a set of four-layer CCL assembly units is completed.
  • the unit 14 (referred to as “page”) is repeated about 10 times to form a press assembly 15 (referred to as “book”) (FIG. 3).
  • the book 15 is sandwiched between the laminated molds 10 and set in a hot press machine, and a large number of four-layer CCLs can be manufactured simultaneously by press molding at a predetermined temperature and pressure.
  • a stainless plate can be used as the laminated mold 10.
  • the plate is not limited, for example, a thick plate of about 1 to 10 mm can be used.
  • CCL having four or more layers can be produced in the same process by increasing the number of inner core layers.
  • a resin as an insulating layer, a two-layer circuit board, a resin as an insulating layer are stacked in order, and the metal foil side is in contact with the resin plate on it, Furthermore, a buildup board
  • substrate can be manufactured by laminating
  • a resin or conductor layer as an insulating layer is provided on at least one metal foil side of the metal foil with a carrier in which the metal foil is adhered to both surfaces or one surface of the resinous plate-like carrier 11c. Are laminated in order.
  • a step of half-etching the entire surface of the metal foil to adjust the thickness may be included.
  • Electroless plating is performed on the entire surface or a part of the substrate to form an interlayer connection, and further electrolytic plating is performed as necessary.
  • a plating resist may be formed in advance on each portion of the metal foil where electroless plating or electrolytic plating is unnecessary before performing each plating.
  • the surface of the metal foil may be chemically roughened in advance.
  • the plating resist When a plating resist is used, the plating resist is removed after plating. Next, a circuit is formed by removing unnecessary portions of the metal foil and the electroless plating portion and the electrolytic plating portion by etching. Thereby, a build-up substrate is obtained.
  • the process from the lamination of the resin and metal foil to the circuit formation may be repeated a plurality of times to form a multilayer build-up substrate.
  • the resin side of the metal foil of the metal foil with a carrier in which the metal foil is adhered to one side of the present invention may be contacted and laminated, or a resin plate is once laminated. Later, one metal foil of the metal foil with a carrier in which the metal foil is adhered to both surfaces of the present invention may be brought into contact with each other and laminated.
  • a prepreg containing a thermosetting resin can be suitably used as the resin plate used for manufacturing the build-up substrate.
  • a resin as an insulating layer such as a prepreg or a photosensitive layer is formed on the exposed surface of a metal foil of a laminate obtained by laminating a metal foil such as a copper foil on one or both sides of the plate carrier of the present invention. Laminating resin. Thereafter, a via hole is formed at a predetermined position of the resin.
  • the via hole can be formed by laser processing. After the laser processing, desmear treatment for removing smear in the via hole is preferably performed.
  • the resin in the via hole forming portion can be removed by a photolithography method.
  • electroless plating is performed on the bottom and side surfaces of the via holes, the entire surface or a part of the resin to form interlayer connections, and further electrolytic plating is performed as necessary.
  • a plating resist may be formed in advance on each portion of the resin where electroless plating or electrolytic plating is unnecessary before performing each plating. Further, when the adhesion between electroless plating, electrolytic plating, plating resist and resin is insufficient, the surface of the resin may be chemically roughened in advance.
  • the plating resist is removed after plating. Next, an unnecessary portion of the electroless plating portion or the electrolytic plating portion is removed by etching to form a circuit. Thereby, a build-up substrate is obtained.
  • the steps from resin lamination to circuit formation may be repeated a plurality of times to form a multilayered build-up substrate. Further, the outermost surface of this build-up substrate is laminated by contacting the resin side of the laminate in which the metal foil is closely attached to one side of the present invention, or the resin side of the metal foil with a carrier having the metal foil closely attached to one side. Alternatively, after laminating the resin once, one metal foil of the laminate in which the metal foil is adhered to both surfaces of the present invention, or one metal foil of the metal foil with a carrier in which the metal foil is adhered to both surfaces May be laminated in contact with each other.
  • a wiring is formed on the surface through a plating process and / or an etching process, and further, build-up wiring is performed by separating and separating between the carrier resin and the metal foil.
  • the board is completed. Wiring may be formed on the peeling surface of the metal foil after peeling and separation, or the entire surface of the metal foil may be removed by etching to form a build-up wiring board.
  • a printed circuit board is completed by mounting electronic components on the build-up wiring board. Moreover, a printed circuit board can be obtained even if an electronic component is mounted directly on a coreless buildup substrate before resin peeling.
  • the copper foil with a carrier was produced.
  • Nickel-zinc alloy plating Ni concentration 17g / L (added as NiSO 4 ) Zn concentration 4g / L (added as ZnSO 4 ) pH 3.1 Liquid temperature 40 °C Current density 0.1-10A / dm 2 Plating time 0.1 to 10 seconds
  • the resin coating was applied using a gravure coating method, and then the thickness of the resin coating was adjusted to 2 to 4 ⁇ m using a doctor blade.
  • the epoxy resin shown in Table 1 is a bisphenol A type epoxy resin
  • the melamine resin is a methyl etherified melamine resin
  • the fluororesin is polytetrafluoroethylene
  • the dimethyl silicone resin is dimethyl Polysiloxane was used.
  • the applied resin coating film was baked by heating at 150 ° C. for 30 seconds.
  • the resin coating can be processed on the surface of the copper foil or the surface of the plate-like carrier (prepreg), and then the peel strength of the laminate, the peel strength after heating, and the peel It can be seen that the same results were obtained in workability.
  • a 100 ⁇ m diameter hole penetrating the copper foil on the surface of the four-layer copper-clad laminate and the insulating layer (cured prepreg) thereunder was drilled using a laser processing machine.
  • electroless copper plating on the copper foil surface on the copper foil with carrier exposed at the bottom of the hole, the side surface of the hole, and the copper foil on the surface of the four-layer copper-clad laminate, and copper plating by electrolytic copper plating The electrical connection was formed between the copper foil on the copper foil with a carrier and the copper foil on the surface of the four-layer copper-clad laminate.
  • a part of the copper foil on the surface of the four-layer copper-clad laminate was etched using a ferric chloride-based etchant to form a circuit. In this way, a four-layer buildup substrate was obtained.
  • the two-layer build-up wiring boards were obtained by peeling off and separating the plate-like carrier of the copper foil with carrier and the copper foil.
  • the copper foil that was in close contact with the plate-like carrier on the two sets of two-layer build-up wiring boards was etched to form a wiring to obtain two sets of two-layer build-up wiring boards.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

 Provided is a metallic foil having a carrier, wherein the peel strength of a resin sheet-shaped carrier and a metallic foil has been controlled. This metallic foil having a carrier, which comprises a sheet-shaped resin carrier and a metallic foil that has been detachably adhered to at least one surface of the carrier, is characterised in that the sheet-shaped carrier and the metallic foil are bonded using a resin coating comprising silicone and at least one resin selected from epoxy resin, melamine resin and fluororesin.

Description

キャリア付金属箔Metal foil with carrier
 本発明は、キャリア付金属箔に関する。より詳細には、プリント配線板に使用される片面若しくは2層以上の多層積層板又は極薄のコアレス基板の製造において用いられるキャリア付金属箔に関する。 The present invention relates to a metal foil with a carrier. More specifically, the present invention relates to a metal foil with a carrier used in the production of a single-sided or two-layer multilayer board or an ultra-thin coreless substrate used for a printed wiring board.
 一般に、プリント配線板は、合成樹脂板、ガラス板、ガラス不織布、紙などの基材に合成樹脂を含浸させて得た「プリプレグ(Prepreg)」と称する誘電材を、基本的な構成材料としている。また、プリプレグと相対する側には電気伝導性を持った銅又は銅合金箔等のシートが接合されている。このように組み立てられた積層物を、一般にCCL(Copper Clad Laminate)材と呼んでいる。銅箔のプリプレグと接する面は、接合強度を高めるためにマット面とすることが通常である。銅又は銅合金箔の代わりに、アルミニウム、ニッケル、亜鉛などの箔を使用する場合もある。これらの厚さは5~200μm程度である。この一般的に用いられるCCL(Copper Clad Laminate)材を図1に示す。 In general, a printed wiring board uses, as a basic constituent material, a dielectric material called “prepreg” obtained by impregnating a base material such as a synthetic resin plate, a glass plate, a glass nonwoven fabric, and paper with a synthetic resin. . Further, a sheet such as copper or copper alloy foil having electrical conductivity is bonded to the side facing the prepreg. The laminated body thus assembled is generally called a CCL (CopperoppClad Laminate) material. The surface of the copper foil in contact with the prepreg is usually a mat surface in order to increase the bonding strength. A foil made of aluminum, nickel, zinc or the like may be used instead of the copper or copper alloy foil. Their thickness is about 5 to 200 μm. This commonly used CCL (Copper Clad Laminate) material is shown in FIG.
 特許文献1には、合成樹脂製の板状キャリアと、該キャリアの少なくとも一方の面に、機械的に剥離可能に密着させた金属箔からなるキャリア付金属箔が提案され、このキャリア付金属箔はプリント配線板の組み立てに供することができる旨記載されている。そして、板状キャリアと金属箔の剥離強度は、1gf/cm~1kgf/cmであることが望ましいことを示した。当該キャリア付金属箔によれば、合成樹脂で銅箔を全面に亘って支持するので、積層中に銅箔に皺の発生を防止できる。また、このキャリア付金属箔は、金属箔と合成樹脂が隙間なく密着しているので、金属箔表面を鍍金又はエッチングする際に、これを鍍金又はエッチング用の薬液に投入することが可能となる。更に、合成樹脂の線膨張係数は、基板の構成材料である銅箔及び重合後のプリプレグと同等のレベルにあることから、回路の位置ずれを招くことがないので、不良品発生が少なくなり、歩留りを向上させることができるという優れた効果を有する。 Patent Document 1 proposes a metal foil with a carrier composed of a synthetic resin plate-shaped carrier and a metal foil that is mechanically peelably adhered to at least one surface of the carrier. Describes that it can be used for the assembly of printed wiring boards. It was shown that the peel strength between the plate-like carrier and the metal foil is preferably 1 gf / cm to 1 kgf / cm. According to the metal foil with a carrier, since the copper foil is supported over the entire surface by the synthetic resin, generation of wrinkles on the copper foil during lamination can be prevented. In addition, since the metal foil with carrier is in close contact with the synthetic resin without gaps, when the surface of the metal foil is plated or etched, it can be put into the chemical solution for plating or etching. . Furthermore, since the linear expansion coefficient of the synthetic resin is at the same level as the copper foil that is a constituent material of the substrate and the prepreg after polymerization, the circuit is not misaligned, resulting in fewer defective products, It has the outstanding effect that a yield can be improved.
特開2009-272589号公報JP 2009-272589 A
 特許文献1に記載のキャリア付き金属箔は、プリント回路板の製造工程を簡素化及び歩留まりアップにより製造コスト削減に大きく貢献する画期的な発明であるが、板状キャリアと金属箔の剥離強度の最適化及びその手段については未だ検討の余地が残されている。特に、本発明者にとって顕著な問題として、板状キャリアと金属箔の剥離強度が板状キャリアの材質によっては高くなりすぎるという点が挙げられ、当該剥離強度を簡便に調節できる手段が提供されることが望ましい。そこで本発明は、樹脂製の板状キャリアと金属箔の剥離強度が調節されたキャリア付き金属箔を提供することを課題とする。 The metal foil with a carrier described in Patent Document 1 is an epoch-making invention that greatly contributes to reducing the manufacturing cost by simplifying the manufacturing process of the printed circuit board and increasing the yield, but the peel strength between the plate-like carrier and the metal foil. There is still room for further study on the optimization and means of the above. In particular, a remarkable problem for the inventor is that the peel strength between the plate-like carrier and the metal foil becomes too high depending on the material of the plate-like carrier, and means for easily adjusting the peel strength is provided. It is desirable. Then, this invention makes it a subject to provide the metal foil with a carrier in which the peeling strength of resin-made plate-shaped carrier and metal foil was adjusted.
 本発明者等は、樹脂板と金属箔との間の剥離強度の調節の方法について鋭意検討した結果、樹脂板と金属箔との貼り合わせに先立って、少なくとも一方の表面を所定の樹脂を組み合わせた樹脂塗膜を用いて被覆処理することにより、所望の用途に応じた剥離強度を実現できる可能性を見出し、本発明を完成させた。 As a result of intensive studies on the method for adjusting the peel strength between the resin plate and the metal foil, the present inventors combined at least one surface with a predetermined resin prior to bonding the resin plate and the metal foil. The present invention was completed by finding the possibility of realizing a peel strength according to the desired application by coating with a resin coating.
 すなわち、本発明は、以下のとおりである。
(1)樹脂製の板状キャリアと、該キャリアの少なくとも一方の面に、剥離可能に密着させた金属箔からなるキャリア付金属箔であって、板状キャリアと金属箔とは、シリコーンと、エポキシ系樹脂、メラミン系樹脂およびフッ素樹脂から選択されるいずれか1つまたは複数の樹脂とで構成される樹脂塗膜を用いて貼り合わせてなるキャリア付金属箔。
(2)前記樹脂塗膜において、シリコーン100質量部に対して、エポキシ系樹脂、メラミン系樹脂の合計が10~1500質量部の量で含まれる(1)に記載のキャリア付金属箔。
(3)前記樹脂塗膜において、シリコーン100質量部に対して、フッ素樹脂が0~50質量部の量で含まれる(1)または(2)に記載のキャリア付金属箔。
(4)前記樹脂塗膜の厚みが0.1~10μmである(1)~(3)の何れかに記載のキャリア付金属箔。
(5)板状キャリアと金属箔の剥離強度が10gf/cm以上200gf/cm以下である(1)~(4)の何れかに記載のキャリア付金属箔。
(6)樹脂製の板状キャリアが熱硬化性樹脂を含む(1)~(5)の何れかに記載のキャリア付金属箔。
(7)樹脂製の板状キャリアがプリプレグである(1)~(6)の何れかに記載のキャリア付金属箔。
(8)前記樹脂製の板状キャリアは、120~320℃のガラス転移温度Tgを有する(6)又は(7)に記載のキャリア付金属箔。
(9)前記金属箔の前記キャリアと接する側表面の十点平均粗さ(Rz jis)が、3.5μm以下である(1)~(8)の何れかに記載のキャリア付金属箔。
(10)前記金属箔の前記キャリアと接しない側の表面の十点平均粗さ(Rz jis)が、0.4μm以上10.0μm以下である(1)~(9)の何れかに記載のキャリア付金属箔。
(11)前記金属箔の厚みが、1μm以上400μm以下である(1)~(10)の何れかに記載のキャリア付金属箔。
(12)220℃で3時間、6時間または9時間のうちの少なくとも一つの加熱後における、金属箔と板状キャリアとの剥離強度が、10gf/cm以上200gf/cm以下である(1)~(11)の何れか一項に記載のキャリア付金属箔。
(13)前記金属箔が、銅箔である(1)~(12)の何れかに記載のキャリア付金属箔。
(14)金属箔の表面に、シリコーンと、エポキシ系樹脂、メラミン系樹脂およびフッ素樹脂から選択されるいずれか1つまたは複数の樹脂とで構成される樹脂塗膜を有するプリント配線板用金属箔。
(15)前記樹脂塗膜において、シリコーン100質量部に対して、エポキシ系樹脂、メラミン系樹脂の合計が10~1500質量部の量で含まれる(14)に記載のプリント配線板用金属箔。
(16)前記樹脂塗膜において、シリコーン100質量部に対して、フッ素樹脂が0~50質量部の量で含まれる(14)または(15)に記載のプリント配線板用金属箔。
(17)前記樹脂塗膜の厚みが0.1~10μmである(14)~(16)の何れかに記載のプリント配線板用金属箔。
(18)前記シリコーンと、エポキシ系樹脂、メラミン系樹脂およびフッ素樹脂から選択されるいずれか1つまたは複数の樹脂とで構成される樹脂塗膜を作用させる側の表面に対して、当該樹脂塗膜を作用させる前に、クロメート処理をすることを特徴とする(14)~(17)の何れかに記載のプリント配線板用金属箔。
(19)前記金属箔の前記樹脂塗膜と接する側表面の十点平均粗さ(Rz jis)が、3.5μm以下である(14)~(18)の何れかに記載のプリント配線板用金属箔。
(20)前記金属箔の前記樹脂塗膜と接しない側の表面の十点平均粗さ(Rz jis)が、0.4μm以上10.0μm以下である(14)~(19)の何れかに記載のプリント配線板用金属箔。
(21)少なくとも一方の表面に、シリコーンと、エポキシ系樹脂、メラミン系樹脂およびフッ素樹脂から選択されるいずれか1つまたは複数の樹脂とで構成される樹脂塗膜を有する金属箔であって、当該表面にて樹脂製の板状キャリアを剥離可能に密着させる用途に用いられる金属箔。
(22)前記樹脂塗膜において、シリコーン100質量部に対して、エポキシ系樹脂、メラミン系樹脂の合計が10~1500質量部の量で含まれる(21)に記載の金属箔。
(23)前記樹脂塗膜において、シリコーン100質量部に対して、フッ素樹脂が0~50質量部の量で含まれる(21)または(22)に記載の金属箔。
(24)前記樹脂塗膜の厚みが0.1~10μmである(21)~(23)の何れか一項に記載の金属箔。
(25)前記シリコーンと、エポキシ系樹脂、メラミン系樹脂およびフッ素樹脂から選択されるいずれか1つまたは複数の樹脂とで構成される樹脂塗膜を作用させる側の表面に対して、当該樹脂塗膜を作用させる前に、クロメート処理をすることを特徴とする(21)~(24)の何れかに記載の金属箔。
(26)前記金属箔の前記樹脂塗膜と接する側表面の十点平均粗さ(Rz jis)が、3.5μm以下である(21)~(25)の何れかに記載の金属箔。
(27)少なくとも一方の表面に、シリコーンと、エポキシ系樹脂、メラミン系樹脂およびフッ素樹脂から選択されるいずれか1つまたは複数の樹脂とで構成される樹脂塗膜を有する樹脂製の板状キャリア。
(28)前記樹脂塗膜において、シリコーン100質量部に対して、エポキシ系樹脂、メラミン系樹脂の合計が10~1500質量部の量で含まれる(27)に記載の板状キャリア。
(29)前記樹脂塗膜において、シリコーン100質量部に対して、フッ素樹脂が0~50質量部の量で含まれる(27)または(28)に記載の板状キャリア。
(30)前記樹脂塗膜の厚みが0.1~10μmである(27)~(29)の何れかに記載の板状キャリア。
(31)少なくとも一方の表面に、シリコーンと、エポキシ系樹脂、メラミン系樹脂およびフッ素樹脂から選択されるいずれか1つまたは複数の樹脂とで構成される樹脂塗膜を有する樹脂製の板状キャリアであって、当該表面にて金属箔を剥離可能に密着させる用途に用いられる板状キャリア。
(32)前記樹脂塗膜において、シリコーン100質量部に対して、エポキシ系樹脂、メラミン系樹脂の合計が10~1500質量部の量で含まれる(31)に記載の板状キャリア。
(33)前記樹脂塗膜において、シリコーン100質量部に対して、フッ素樹脂が0~50質量部の量で含まれる(31)または(32)に記載の板状キャリア。
(34)前記樹脂塗膜の厚みが0.1~10μmである(31)~(33)の何れかに記載の板状キャリア。
(35)(1)~(13)のいずれかに記載のキャリア付金属箔の少なくとも一つの金属箔側に対して、樹脂を積層し、次いで、樹脂又は金属箔を1回以上繰り返して積層することを含む多層金属張積層板の製造方法。
(36)(1)~(13)のいずれかに記載のキャリア付金属箔の金属箔側に樹脂を積層し、次いで樹脂、片面あるいは両面金属張積層板、または(1)~(13)のいずれかに記載のキャリア付金属箔、または金属箔を1回以上繰り返して積層することを含む多層金属張積層板の製造方法。
(37)(35)または(36)に記載の多層金属張積層板の製造方法において、前記キャリア付金属箔の板状キャリアと金属箔とを剥離して分離する工程を更に含む多層金属張積層板の製造方法。
(38)(37)に記載の製造方法において、剥離して分離した金属箔の一部または全部をエッチングにより除去する工程を含む多層金属張積層板の製造方法。
(39)(35)~(38)の何れかに記載の製造方法により得られる多層金属張積層板。
(40)(1)~(13)の何れかに記載のキャリア付金属箔の金属箔側に、ビルドアップ配線層を一層以上形成する工程を含むビルドアップ基板の製造方法。
(41)ビルドアップ配線層はサブトラクティブ法又はフルアディティブ法又はセミアディティブ法の少なくとも一方を用いて形成される(40)に記載のビルドアップ基板の製造方法。
(42)(1)~(13)の何れかに記載のキャリア付金属箔の少なくとも一つの金属箔側に樹脂を積層し、次いで、樹脂、片面あるいは両面配線基板、片面あるいは両面金属張積層板、(1)~(13)の何れかに記載のキャリア付金属箔又は金属箔を1回以上繰り返して積層することを含むビルドアップ基板の製造方法。
(43)(42)に記載のビルドアップ基板の製造方法において、片面あるいは両面配線基板、片面あるいは両面金属張積層板、キャリア付金属箔の金属箔、キャリア付金属箔の板状キャリア、金属箔、または樹脂に穴を開け、当該穴の側面および底面に導通めっきをする工程を更に含むビルドアップ基板の製造方法。
(44)(42)または(43)に記載のビルドアップ基板の製造方法において、前記片面あるいは両面配線基板を構成する金属箔、片面あるいは両面金属張積層板を構成する金属箔、キャリア付金属箔を構成する金属箔、及び金属箔の少なくとも一つに配線を形成する工程を1回以上行うことを更に含むビルドアップ基板の製造方法。
(45)配線形成された表面の上に、片面に金属箔を密着させた(1)~(13)の何れかに記載のキャリア付金属箔の樹脂板側を接触させて積層する工程を更に含む(42)~(44)の何れかに記載のビルドアップ基板の製造方法。
(46)配線形成された表面の上に、樹脂を積層し、当該樹脂に両面に金属箔を密着させた(1)~(13)のいずれか一項に記載のキャリア付金属箔の一方の金属箔を接触させて積層する工程を更に含む(42)~(44)の何れかに記載のビルドアップ基板の製造方法。
(47)前記樹脂の少なくとも一つがプリプレグであることを特徴とする(42)~(46)の何れかに記載のビルドアップ基板の製造方法。
(48)(40)~(47)の何れかに記載のビルドアップ基板の製造方法において、前記キャリア付金属箔の板状キャリアと金属箔とを剥離して分離する工程を更に含むビルドアップ配線板の製造方法。
(49)(48)に記載のビルドアップ配線板の製造方法において、板状キャリアと密着していた金属箔の一部または全部をエッチングにより除去する工程を更に含むビルドアップ配線板の製造方法。
(50)(48)または(49)に記載の製造方法により得られるビルドアップ配線板。
(51)(40)~(47)の何れかに記載の製造方法によりビルドアップ基板を製造する工程を含むプリント回路板の製造方法。
(52)(48)または(49)に記載の製造方法によりビルドアップ配線板を製造する工程を含むプリント回路板の製造方法。
That is, the present invention is as follows.
(1) A metal foil with a carrier made of a resin-made plate-like carrier and a metal foil that is detachably adhered to at least one surface of the carrier, wherein the plate-like carrier and the metal foil are silicone, Metal foil with a carrier formed by bonding together using a resin coating film composed of any one or a plurality of resins selected from an epoxy resin, a melamine resin, and a fluororesin.
(2) The metal foil with a carrier according to (1), wherein the total amount of epoxy resin and melamine resin is included in the resin coating film in an amount of 10 to 1500 parts by mass with respect to 100 parts by mass of silicone.
(3) The metal foil with a carrier according to (1) or (2), wherein the resin coating film contains a fluororesin in an amount of 0 to 50 parts by mass with respect to 100 parts by mass of silicone.
(4) The metal foil with a carrier according to any one of (1) to (3), wherein the thickness of the resin coating film is 0.1 to 10 μm.
(5) The metal foil with a carrier according to any one of (1) to (4), wherein the peel strength between the plate-like carrier and the metal foil is 10 gf / cm or more and 200 gf / cm or less.
(6) The metal foil with a carrier according to any one of (1) to (5), wherein the resinous plate-like carrier contains a thermosetting resin.
(7) The metal foil with a carrier according to any one of (1) to (6), wherein the resin plate carrier is a prepreg.
(8) The metal foil with a carrier according to (6) or (7), wherein the resinous plate-shaped carrier has a glass transition temperature Tg of 120 to 320 ° C.
(9) The metal foil with a carrier according to any one of (1) to (8), wherein a ten-point average roughness (Rz jis) of a side surface in contact with the carrier of the metal foil is 3.5 μm or less.
(10) The ten-point average roughness (Rz jis) of the surface of the metal foil that is not in contact with the carrier is 0.4 μm or more and 10.0 μm or less, according to any one of (1) to (9) Metal foil with carrier.
(11) The metal foil with a carrier according to any one of (1) to (10), wherein the thickness of the metal foil is 1 μm or more and 400 μm or less.
(12) The peel strength between the metal foil and the plate-like carrier after heating at 220 ° C. for 3 hours, 6 hours or 9 hours is 10 gf / cm or more and 200 gf / cm or less (1) to (11) Metal foil with a carrier as described in any one of.
(13) The metal foil with a carrier according to any one of (1) to (12), wherein the metal foil is a copper foil.
(14) A metal foil for printed wiring board having a resin coating film composed of silicone and any one or a plurality of resins selected from an epoxy resin, a melamine resin, and a fluororesin on the surface of the metal foil .
(15) The metal foil for a printed wiring board according to (14), wherein the resin coating film includes a total of 10 to 1500 parts by mass of an epoxy resin and a melamine resin with respect to 100 parts by mass of silicone.
(16) The metal foil for printed wiring board according to (14) or (15), wherein the resin coating film contains a fluororesin in an amount of 0 to 50 parts by mass with respect to 100 parts by mass of silicone.
(17) The metal foil for printed wiring board according to any one of (14) to (16), wherein the resin coating film has a thickness of 0.1 to 10 μm.
(18) The resin coating is applied to the surface on which a resin coating film composed of the silicone and any one or a plurality of resins selected from an epoxy resin, a melamine resin, and a fluororesin is allowed to act. The metal foil for printed wiring board according to any one of (14) to (17), wherein a chromate treatment is performed before the film is applied.
(19) The printed wiring board according to any one of (14) to (18), wherein a ten-point average roughness (Rz jis) of a side surface in contact with the resin coating film of the metal foil is 3.5 μm or less. Metal foil.
(20) The ten-point average roughness (Rz jis) of the surface of the metal foil that is not in contact with the resin coating film is 0.4 μm or more and 10.0 μm or less. Metal foil for printed wiring boards as described.
(21) A metal foil having a resin coating film composed of at least one surface selected from silicone and an epoxy resin, a melamine resin, and a fluororesin on at least one surface, The metal foil used for the use which adheres the resin-made plate-shaped carrier in the said surface so that peeling is possible.
(22) The metal foil according to (21), wherein in the resin coating film, the total amount of epoxy resin and melamine resin is contained in an amount of 10 to 1500 parts by mass with respect to 100 parts by mass of silicone.
(23) The metal foil according to (21) or (22), wherein the resin coating film contains a fluororesin in an amount of 0 to 50 parts by mass with respect to 100 parts by mass of silicone.
(24) The metal foil according to any one of (21) to (23), wherein the resin coating film has a thickness of 0.1 to 10 μm.
(25) The resin coating is applied to the surface on which the resin coating film composed of the silicone and any one or a plurality of resins selected from an epoxy resin, a melamine resin, and a fluororesin is allowed to act. The metal foil according to any one of (21) to (24), wherein a chromate treatment is performed before the film is allowed to act.
(26) The metal foil according to any one of (21) to (25), wherein a ten-point average roughness (Rz jis) of a side surface in contact with the resin coating film of the metal foil is 3.5 μm or less.
(27) A resinous plate carrier having a resin coating film composed of silicone and any one or a plurality of resins selected from an epoxy resin, a melamine resin and a fluororesin on at least one surface .
(28) The plate-like carrier according to (27), wherein the resin coating film contains 10 to 1500 parts by mass of a total of epoxy resin and melamine resin with respect to 100 parts by mass of silicone.
(29) The plate carrier according to (27) or (28), wherein the resin coating film contains 0 to 50 parts by mass of a fluororesin with respect to 100 parts by mass of silicone.
(30) The plate-shaped carrier according to any one of (27) to (29), wherein the resin coating film has a thickness of 0.1 to 10 μm.
(31) A resinous plate-like carrier having a resin coating film composed of silicone and any one or a plurality of resins selected from epoxy resins, melamine resins and fluororesins on at least one surface And the plate-shaped carrier used for the use which adheres metal foil in the said surface so that peeling is possible.
(32) The plate-like carrier according to (31), wherein the resin coating film contains a total of 10 to 1500 parts by mass of epoxy resin and melamine resin with respect to 100 parts by mass of silicone.
(33) The plate-like carrier according to (31) or (32), wherein the resin coating film contains a fluororesin in an amount of 0 to 50 parts by mass with respect to 100 parts by mass of silicone.
(34) The plate-shaped carrier according to any one of (31) to (33), wherein the resin coating film has a thickness of 0.1 to 10 μm.
(35) A resin is laminated on at least one metal foil side of the metal foil with a carrier according to any one of (1) to (13), and then the resin or the metal foil is repeatedly laminated one or more times. The manufacturing method of the multilayer metal clad laminated board including this.
(36) A resin is laminated on the metal foil side of the metal foil with a carrier according to any one of (1) to (13), and then a resin, a single-sided or double-sided metal-clad laminate, or (1) to (13) A method for producing a multilayer metal-clad laminate comprising laminating a metal foil with a carrier according to any one of the above or a metal foil one or more times.
(37) The method for producing a multilayer metal-clad laminate according to (35) or (36), further comprising a step of peeling and separating the plate-like carrier and metal foil of the metal foil with carrier. A manufacturing method of a board.
(38) The method for producing a multilayer metal-clad laminate comprising the step of removing a part or all of the separated and separated metal foil by etching in the production method according to (37).
(39) A multilayer metal-clad laminate obtained by the production method according to any one of (35) to (38).
(40) A method for manufacturing a buildup substrate, comprising a step of forming one or more buildup wiring layers on the metal foil side of the metal foil with a carrier according to any one of (1) to (13).
(41) The buildup substrate manufacturing method according to (40), wherein the buildup wiring layer is formed by using at least one of a subtractive method, a full additive method, or a semi-additive method.
(42) A resin is laminated on at least one metal foil side of the metal foil with a carrier according to any one of (1) to (13), and then resin, single-sided or double-sided wiring board, single-sided or double-sided metal-clad laminate , (1) to (13) A method for producing a build-up substrate, comprising laminating the metal foil with a carrier or the metal foil according to any one of the above one or more times.
(43) In the method for manufacturing a build-up board according to (42), a single-sided or double-sided wiring board, a single-sided or double-sided metal-clad laminate, a metal foil with a carrier, a plate-like carrier with a metal foil with a carrier, a metal foil Or a method for manufacturing a build-up substrate, further comprising the steps of drilling a hole in the resin and conducting conductive plating on the side and bottom surfaces of the hole.
(44) In the method for manufacturing a build-up board according to (42) or (43), a metal foil constituting the single-sided or double-sided wiring board, a metal foil constituting a single-sided or double-sided metal-clad laminate, and a metal foil with a carrier The manufacturing method of the buildup board | substrate which further includes performing the process of forming wiring in at least one of metal foil which comprises this, and at least 1 of metal foil.
(45) A step of contacting and laminating the resin plate side of the metal foil with carrier according to any one of (1) to (13), wherein the metal foil is adhered to one surface on the surface on which the wiring is formed. A method for manufacturing a build-up substrate according to any one of (42) to (44).
(46) One of the metal foils with a carrier according to any one of (1) to (13), wherein a resin is laminated on the surface on which the wiring is formed, and a metal foil is adhered to both sides of the resin. The method for manufacturing a buildup substrate according to any one of (42) to (44), further comprising a step of bringing the metal foil into contact with each other and laminating.
(47) The method for manufacturing a buildup substrate according to any one of (42) to (46), wherein at least one of the resins is a prepreg.
(48) The buildup wiring according to any one of (40) to (47), further comprising a step of peeling and separating the plate-like carrier and the metal foil of the metal foil with carrier. A manufacturing method of a board.
(49) The method for manufacturing a buildup wiring board according to (48), further comprising a step of removing a part or all of the metal foil adhered to the plate carrier by etching.
(50) A build-up wiring board obtained by the production method according to (48) or (49).
(51) A method for producing a printed circuit board, comprising a step of producing a build-up board by the production method according to any one of (40) to (47).
(52) A method for producing a printed circuit board, comprising a step of producing a build-up wiring board by the production method according to (48) or (49).
 本発明によって、板状キャリアと金属箔の剥離強度が簡便に調節できる。そのため、例えば、従来では過剰に高い剥離強度を示していたキャリア付き金属箔が好ましい剥離強度に調節されるので、キャリア付き金属箔を利用したプリント配線板の生産性が向上するという利点が得られる。 According to the present invention, the peel strength between the plate carrier and the metal foil can be easily adjusted. Therefore, for example, a metal foil with a carrier that has conventionally exhibited an excessively high peel strength is adjusted to a preferable peel strength, so that an advantage of improving the productivity of a printed wiring board using the metal foil with a carrier is obtained. .
CCLの一構成例を示す。An example of the configuration of CCL is shown. 本発明に係るキャリア付き金属箔の一構成例を示す。The structural example of the metal foil with a carrier which concerns on this invention is shown. 本発明に係るキャリア付銅箔(樹脂板の片面に銅箔が接合した形態)を利用した多層CCLの組み立て例を示す。The assembly example of the multilayer CCL using the copper foil with a carrier which concerns on this invention (The form which copper foil joined to the single side | surface of the resin board) is shown. 本発明に係るキャリア付銅箔(樹脂板の両面に銅箔が接合した形態)を利用した多層CCLの組み立て例を示す。The assembly example of the multilayer CCL using the copper foil with a carrier which concerns on this invention (The form which copper foil joined on both surfaces of the resin board) is shown.
 本発明に係るキャリア付金属箔の一実施形態においては、樹脂製の板状キャリアと該キャリアの片面又は両面、好ましくは両面に剥離可能に密着させた金属箔とからなるキャリア付金属箔を準備する。本発明に係るキャリア付金属箔の一構成例を図2および図3に示す。特に、図3の最初のところには、樹脂製の板状キャリア11cの両面に、金属箔11aを剥離可能に密着させたキャリア付金属箔11が示されている。板状キャリア11cと金属箔11aとの間は、後述する特定の構造を有する樹脂塗膜11bを用いて貼り合わせられている。 In one embodiment of a metal foil with a carrier according to the present invention, a metal foil with a carrier comprising a resin-made plate-like carrier and a metal foil that is detachably adhered to one or both sides, preferably both sides of the carrier, is prepared. To do. One structural example of the metal foil with a carrier according to the present invention is shown in FIGS. In particular, the metal foil with carrier 11 in which the metal foil 11a is detachably adhered to both surfaces of a resin plate carrier 11c is shown at the beginning of FIG. The plate-like carrier 11c and the metal foil 11a are bonded together using a resin coating film 11b having a specific structure to be described later.
 構造的には、図1に示したCCLと類似しているが、本発明のキャリア付金属箔では、金属箔と樹脂が最終的に分離されるもので、容易に剥離できる構造を有する。この点、CCLは剥離させるものではないので、構造と機能は、全く異なるものである。 Although structurally similar to the CCL shown in FIG. 1, the metal foil with a carrier of the present invention has a structure in which the metal foil and the resin are finally separated and can be easily peeled off. In this respect, since the CCL is not peeled off, the structure and function are completely different.
 本発明で使用するキャリア付金属箔はいずれ剥がさなければならないので過度に密着性が高いのは不都合であるが、板状キャリアと金属箔とは、プリント回路板作製過程で行われるめっき等の薬液処理工程において剥離しない程度の密着性は必要である。 Since the metal foil with carrier used in the present invention must be peeled off eventually, it is inconvenient that the adhesiveness is excessively high, but the plate-like carrier and the metal foil are chemicals such as plating performed in the printed circuit board manufacturing process. Adhesiveness that does not peel in the processing step is necessary.
 ここで、樹脂塗膜により付与される金属箔と板状キャリアとの剥離強度は、10gf/cm以上であることが好ましく、30gf/cm以上であることがより好ましく、50gf/cm以上であることが一層好ましい一方で、200gf/cm以下であることが好ましく、150gf/cm以下であることがより好ましく、80gf/cm以下であることが一層好ましい。金属箔と板状キャリアの剥離強度をこのような範囲とすることによって、搬送時や加工時に剥離することない一方で、人手で容易に剥がす、すなわち機械的に剥がすことができるような剥離強度の調節が容易になる。 Here, the peel strength between the metal foil provided by the resin coating film and the plate-like carrier is preferably 10 gf / cm or more, more preferably 30 gf / cm or more, and 50 gf / cm or more. Is more preferably 200 gf / cm or less, more preferably 150 gf / cm or less, and still more preferably 80 gf / cm or less. By making the peel strength between the metal foil and the plate carrier in such a range, the peel strength is such that it can be easily peeled off by hand, that is, mechanically peeled off, without being peeled off during transport or processing. Easy to adjust.
 このような密着性を実現するための剥離強度の調節は、後述するようにシリコーンと、エポキシ系樹脂、メラミン系樹脂およびフッ素樹脂から選択されるいずれか1つまたは複数の樹脂とで構成される樹脂塗膜を使用することで行う。このような樹脂塗膜に後述するような所定条件の焼付け処理を行って、板状キャリアと金属箔との間に用いて貼り合わせることで、適度に密着性が低下し、剥離強度を上述した範囲に調節できるようになるからである。 As described later, the adjustment of the peel strength for realizing such adhesion is composed of silicone and any one or a plurality of resins selected from an epoxy resin, a melamine resin, and a fluororesin. This is done by using a resin coating. Such a resin coating film is baked under predetermined conditions as will be described later, and bonded between the plate-like carrier and the metal foil, whereby the adhesiveness is moderately lowered and the peel strength is described above. This is because the range can be adjusted.
 エポキシ系樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、臭素化エポキシ樹脂、アミン型エポキシ樹脂、可撓性エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、フェノキシ樹脂、臭素化フェノキシ樹脂等が挙げられる。 Epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, brominated epoxy resin, amine type epoxy resin, flexible epoxy resin, hydrogenated bisphenol A type epoxy resin, phenoxy resin, Examples thereof include brominated phenoxy resin.
 メラミン系樹脂としては、メチルエーテル化メラミン樹脂、ブチル化尿素メラミン樹脂、ブチル化メラミン樹脂、メチル化メラミン樹脂、ブチルアルコール変性メラミン樹脂等が挙げられる。また、メラミン系樹脂は、前記樹脂とブチル化尿素樹脂、ブチル化ベンゾグアナミン樹脂等との混合樹脂であってもよい。 Examples of the melamine-based resin include methyl etherified melamine resin, butylated urea melamine resin, butylated melamine resin, methylated melamine resin, and butyl alcohol-modified melamine resin. The melamine resin may be a mixed resin of the resin and a butylated urea resin, a butylated benzoguanamine resin, or the like.
 なお、エポキシ系樹脂の数平均分子量は2000~3000、メラミン系樹脂の数平均分子量は500~1000であることが好ましい。このような数平均分子量を有することによって、樹脂の塗料化が可能になると共に、樹脂塗膜の接着強度を所定範囲に調整し易くなる。 The number average molecular weight of the epoxy resin is preferably 2000 to 3000, and the number average molecular weight of the melamine resin is preferably 500 to 1000. By having such a number average molecular weight, the resin can be made into a paint and the adhesive strength of the resin coating film can be easily adjusted to a predetermined range.
 また、フッ素樹脂としては、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、ポリフッ化ビニル等が挙げられる。 Also, examples of the fluororesin include polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, and polyvinyl fluoride.
 シリコーンとしては、メチルフェニルポリシロキサン、メチルハイドロポリシロキサン、ジメチルポリシロキサン、変性ジメチルポリシロキサン、これらの混合物等が挙げられる。ここで、変性とは、例えば、エポキシ変性、アルキル変性、アミノ変性、カルボキシル変性、アルコール変性、フッ素変性、アルキルアラルキルポリエーテル変性、エポキシポリエーテル変性、ポリエーテル変性、アルキル高級アルコールエステル変性、ポリエステル変性、アシロキシアルキル変性、ハロゲン化アルキルアシロキシアルキル変性、ハロゲン化アルキル変性、アミノグリコール変性、メルカプト変性、水酸基含有ポリエステル変性等が挙げられる。 Examples of silicone include methylphenyl polysiloxane, methyl hydropolysiloxane, dimethyl polysiloxane, modified dimethyl polysiloxane, and mixtures thereof. Here, the modification is, for example, epoxy modification, alkyl modification, amino modification, carboxyl modification, alcohol modification, fluorine modification, alkylaralkyl polyether modification, epoxy polyether modification, polyether modification, alkyl higher alcohol ester modification, polyester modification. And acyloxyalkyl modification, halogenated alkylacyloxyalkyl modification, halogenated alkyl modification, aminoglycol modification, mercapto modification, hydroxyl group-containing polyester modification, and the like.
 樹脂塗膜において、膜厚が小さすぎると、樹脂塗膜が薄膜すぎて形成が困難であるため、生産性が低下し易い。また、膜厚が一定の大きさを超えても、樹脂塗膜の剥離性のさらなる向上は見られず、樹脂塗膜の製造コストが高くなり易い。このような観点から、樹脂塗膜は、その膜厚が0.1~10μmであることが好ましく、0.5~5μmであることがさらに好ましい。また、樹脂塗膜の膜厚は、後述する手順において、樹脂塗料を所定塗布量で塗布することによって達成される。 In the resin coating film, if the film thickness is too small, the resin coating film is too thin and difficult to form, so that the productivity is likely to decrease. Moreover, even if a film thickness exceeds a fixed magnitude | size, the further improvement of the peelability of a resin coating film is not seen, but the manufacturing cost of a resin coating film tends to become high. From such a viewpoint, the resin coating film preferably has a thickness of 0.1 to 10 μm, and more preferably 0.5 to 5 μm. Moreover, the film thickness of a resin coating film is achieved by apply | coating a resin coating material by the predetermined application amount in the procedure mentioned later.
 樹脂塗膜において、シリコーンは樹脂塗膜の剥離剤として機能する。そこで、エポキシ系樹脂、メラミン系樹脂の合計量がシリコーンに比べて多すぎると、板状キャリアと金属箔との間で樹脂塗膜が付与する剥離強度が大きくなるため、樹脂塗膜の剥離性が低下し、人手で容易に剥がせなくなることがある。一方で、エポキシ系樹脂、メラミン系樹脂の合計量が少なすぎると、前述の剥離強度が小さくなるため、キャリア付金属箔の搬送時や加工時に剥離することがある。この観点から、シリコーン100質量部に対して、エポキシ系樹脂、メラミン系樹脂の合計が10~1500質量部の量で含まれることが好ましく、さらに好ましくは20~800重量部の量で含まれることが好ましい。 In the resin coating, silicone functions as a release agent for the resin coating. Therefore, if the total amount of epoxy resin and melamine resin is too much compared to silicone, the peel strength imparted by the resin coating between the plate-like carrier and the metal foil increases, so that the peelability of the resin coating is increased. May decrease and may not be easily removed by hand. On the other hand, if the total amount of the epoxy resin and the melamine resin is too small, the above-mentioned peel strength becomes small, and therefore, the metal foil with a carrier may be peeled off during transport or processing. From this viewpoint, the total of the epoxy resin and the melamine resin is preferably contained in an amount of 10 to 1500 parts by weight, more preferably 20 to 800 parts by weight with respect to 100 parts by weight of silicone. Is preferred.
 また、フッ素樹脂は、シリコーンと同様、剥離剤として機能し、樹脂塗膜の耐熱性を向上させる効果がある。フッ素樹脂がシリコーンに比べて多すぎると、前述の剥離強度が小さくなるため、キャリア付金属箔の搬送時や加工時に剥離することがあるほか、後述する焼き付け工程に必要な温度が上がるため不経済となる。この観点から、フッ素樹脂は、シリコーン100質量部に対して、0~50質量部であることが好ましく、さらに好ましくは0~40質量部であることが好ましい。 Further, like silicone, fluororesin functions as a release agent and has the effect of improving the heat resistance of the resin coating film. If the amount of fluororesin is too much compared to silicone, the aforementioned peel strength will be low, which may cause peeling during transport or processing of the metal foil with carrier, and it will be uneconomical because the temperature required for the baking process described later will increase. It becomes. From this viewpoint, the fluororesin is preferably 0 to 50 parts by mass, more preferably 0 to 40 parts by mass with respect to 100 parts by mass of silicone.
 樹脂塗膜は、シリコーン、およびエポキシ樹脂および/またはメラミン樹脂、および必要に応じてフッ素樹脂に加えて、SiO2、MgO、Al23、BaSO4およびMg(OH)2から選択される1種以上の表面粗化粒子をさらに含有していてもよい。樹脂塗膜が表面粗化粒子を含有することによって、樹脂塗膜の表面が凹凸となる。その凹凸によって、樹脂塗膜が塗布された板状キャリアあるいは金属箔の表面が凹凸となり、艶消し表面となる。表面粗化粒子の含有量は、樹脂塗膜が凹凸化されれば特に限定されないが、シリコーン100質量部に対して、1~10質量部が好ましい。 The resin coating film is selected from SiO 2 , MgO, Al 2 O 3 , BaSO 4 and Mg (OH) 2 in addition to silicone and epoxy resin and / or melamine resin and, if necessary, fluororesin 1 You may contain the surface roughening particle | grains more than a seed | species. When the resin coating film contains surface roughening particles, the surface of the resin coating film becomes uneven. Due to the unevenness, the surface of the plate-like carrier or metal foil to which the resin coating film is applied becomes uneven and becomes a matte surface. The content of the surface roughening particles is not particularly limited as long as the resin coating is roughened, but it is preferably 1 to 10 parts by mass with respect to 100 parts by mass of silicone.
 表面粗化粒子の粒子径は、15nm~4μmであることが好ましい。ここで、粒子径は、走査電子顕微鏡(SEM)写真等から測定した平均粒子径(最大粒子径と最小粒子径の平均値)を意味する。表面粗化粒子の粒子径が前記範囲であることによって、樹脂塗膜の表面の凹凸量が調整し易くなり、結果的に板状キャリアあるいは金属箔の表面の凹凸量が調整し易くなる。具体的には、板状キャリアあるいは金属箔の表面の凹凸量は、JIS規定の最大高さ粗さRyで4.0μm程度となる。 The particle diameter of the surface roughened particles is preferably 15 nm to 4 μm. Here, the particle diameter means an average particle diameter (average value of the maximum particle diameter and the minimum particle diameter) measured from a scanning electron microscope (SEM) photograph or the like. When the particle diameter of the surface roughened particles is within the above range, the unevenness on the surface of the resin coating film can be easily adjusted, and as a result, the unevenness on the surface of the plate-like carrier or metal foil can be easily adjusted. Specifically, the amount of irregularities on the surface of the plate-like carrier or metal foil is about 4.0 μm in terms of the maximum height roughness Ry defined by JIS.
 ここで、キャリア付金属箔の製造方法について説明する。
 このキャリア付金属箔は、板状キャリアあるいは金属箔の少なくとも一方の表面に、上述した樹脂塗膜を塗布する工程と、この塗布した樹脂塗膜を硬化させる焼付け工程とを有する手順を経て得られる。以下、各工程について説明する。
Here, the manufacturing method of metal foil with a carrier is demonstrated.
This metal foil with a carrier is obtained through a procedure having a step of applying the above-described resin coating to at least one surface of a plate-like carrier or metal foil and a baking step of curing the applied resin coating. . Hereinafter, each step will be described.
(塗布工程)
 塗布工程は、板状キャリアの片面または両面に、主剤としてのシリコーンと、硬化剤としてのエポキシ系樹脂、メラミン系樹脂と、必要に応じて剥離剤としてのフッ素樹脂とからなる樹脂塗料を塗布して樹脂塗膜を形成する工程である。樹脂塗料は、アルコール等の有機溶媒にエポキシ系樹脂、メラミン系樹脂、フッ素樹脂およびシリコーンを溶解したものである。また、樹脂塗料における配合量(添加量)は、シリコーン100質量部に対して、エポキシ系樹脂、メラミン系樹脂の合計が10~1500質量部であることが好ましい。また、フッ素樹脂は、シリコーン100質量部に対して、0~50質量部であることが好ましい。
(Coating process)
In the coating process, a resin coating consisting of silicone as the main agent, epoxy resin as the curing agent, melamine resin, and fluororesin as the release agent as required is applied to one or both sides of the plate-like carrier. And forming a resin coating film. The resin paint is obtained by dissolving an epoxy resin, a melamine resin, a fluororesin, and silicone in an organic solvent such as alcohol. The blending amount (addition amount) in the resin coating is preferably 10 to 1500 parts by mass of the total of the epoxy resin and the melamine resin with respect to 100 parts by mass of the silicone. The fluororesin is preferably 0 to 50 parts by mass with respect to 100 parts by mass of silicone.
 塗布工程における塗布方法としては、樹脂塗膜が形成できれば特に限定されるものではないが、グラビアコート法、バーコート法、ロールコート法、カーテンフローコート法、静電塗装機を用いる方法等が用いられ、樹脂塗膜の均一性、および、作業の簡便性からグラビアコート法が好ましい。また、塗布量としては、樹脂塗膜3が好ましい膜厚:0.5~5μmとなるように、樹脂量として1.0~2.0g/m2が好ましい。 The coating method in the coating process is not particularly limited as long as a resin coating film can be formed, but a gravure coating method, a bar coating method, a roll coating method, a curtain flow coating method, a method using an electrostatic coating machine, etc. are used. In view of the uniformity of the resin coating film and the ease of work, the gravure coating method is preferred. The coating amount is preferably 1.0 to 2.0 g / m 2 so that the resin coating film 3 has a preferable film thickness: 0.5 to 5 μm.
 グラビアコート法は、ロール表面に設けられた凹部(セル)に満たされた樹脂塗料を板状キャリアに転写させることによって、板状キャリアの表面に樹脂塗膜を形成させる方法である。具体的には、表面にセルが設けられた下側ロールの下部を樹脂塗料中に浸漬し、下側ロールの回転によってセル内に樹脂塗料を汲み上げる。そして、下側ロールと、下側ロールの上側に配置された上側ロールとの間に板状キャリアを配置し、上側ロールで板状キャリアを下側ロールに押し付けながら、下側ロールおよび上側ロールを回転させることによって、板状キャリアが搬送されると共に、セル内に汲み上げられた樹脂塗料が板状キャリアの片面に転写(塗布)される。 The gravure coating method is a method in which a resin coating film is formed on the surface of a plate-like carrier by transferring a resin coating filled in a recess (cell) provided on the roll surface to the plate-like carrier. Specifically, the lower part of the lower roll having cells provided on the surface is immersed in the resin paint, and the resin paint is pumped into the cell by the rotation of the lower roll. Then, the plate-like carrier is arranged between the lower roll and the upper roll arranged on the upper side of the lower roll, and the lower roll and the upper roll are held while pressing the plate-like carrier against the lower roll with the upper roll. By rotating, the plate-like carrier is conveyed, and the resin paint pumped into the cell is transferred (applied) to one side of the plate-like carrier.
 また、板状キャリアの搬入側に、下側ロールの表面に接触するようにドクターブレードを配置することによって、セル以外のロール表面に汲み上げられた過剰な樹脂塗料が取り除かれ、板状キャリアの表面に所定量の樹脂塗料が塗布される。なお、セルの番手(大きさおよび深さ)が大きい場合、または、樹脂塗料の粘度が高い場合には、板状キャリアの片面に形成される樹脂塗膜が平滑になり難くなる。したがって、板状キャリアの搬出側にスムージングロールを配置して、樹脂塗膜の平滑度を維持してもよい。 In addition, by placing a doctor blade on the side where the plate-shaped carrier is brought into contact with the surface of the lower roll, excess resin paint pumped up on the roll surface other than the cells is removed, and the surface of the plate-shaped carrier is removed. A predetermined amount of resin paint is applied to the substrate. In addition, when the count (size and depth) of a cell is large, or when the viscosity of a resin coating is high, the resin coating film formed on one side of a plate-like carrier becomes difficult to become smooth. Therefore, a smoothing roll may be disposed on the carry-out side of the plate carrier to maintain the smoothness of the resin coating film.
 なお、板状キャリアの両面に樹脂塗膜を形成させる場合には、板状キャリアの片面に樹脂塗膜を形成させた後に、板状キャリアを裏返して、再度、下側ロールと上側ロールとの間に配置する。そして、前記と同様に、下側ロールのセル内の樹脂塗料を板状キャリアの裏面に転写(塗布)する。 In addition, when forming the resin coating film on both surfaces of the plate carrier, after forming the resin coating film on one surface of the plate carrier, turn over the plate carrier, and again between the lower roll and the upper roll. Place between. In the same manner as described above, the resin paint in the cell of the lower roll is transferred (applied) to the back surface of the plate-like carrier.
(焼付け工程)
 焼付け工程は、塗布工程で形成された樹脂塗膜に125~320℃(焼付け温度)で0.5~60秒間(焼付け時間)の焼付け処理を施す工程である。このように、所定配合量の樹脂塗料で形成された樹脂塗膜に所定条件の焼付け処理を施すことによって、樹脂塗膜により付与される板状キャリアと金属箔との間の剥離強度が所定範囲に制御される。本発明において、焼付け温度は板状キャリアの到達温度である。また、焼付け処理に使用される加熱手段としては、従来公知の装置を使用する。
(Baking process)
The baking step is a step of subjecting the resin coating film formed in the coating step to a baking treatment at 125 to 320 ° C. (baking temperature) for 0.5 to 60 seconds (baking time). In this way, by subjecting the resin coating formed with a predetermined amount of resin coating to a predetermined baking condition, the peel strength between the plate carrier and the metal foil provided by the resin coating is in a predetermined range. Controlled. In the present invention, the baking temperature is the ultimate temperature of the plate carrier. Moreover, a conventionally well-known apparatus is used as a heating means used for a baking process.
 焼き付けが不十分となる条件、例えば焼付け温度が125℃未満、または、焼付け時間が0.5秒未満である場合には、樹脂塗膜が硬化不足となり、上記剥離強度が200gf/cmを超え、剥離性が低下する。また、焼き付けが過度な条件、例えば焼付け温度が320℃を超える場合には、樹脂塗膜が劣化して、上記剥離強度が200gf/cmを超え、剥離時の作業性が悪化する。あるいは、板状キャリアが高温によって変質することがある。また、焼付け時間が60秒を超える場合には、生産性が悪化する。 When the baking is insufficient, for example, when the baking temperature is less than 125 ° C. or when the baking time is less than 0.5 seconds, the resin coating becomes insufficiently cured, and the peel strength exceeds 200 gf / cm, The peelability is reduced. Moreover, when baking is an excessive condition, for example, when baking temperature exceeds 320 degreeC, a resin coating film deteriorates, the said peeling strength exceeds 200 gf / cm, and the workability | operativity at the time of peeling deteriorates. Or a plate-shaped carrier may change in quality by high temperature. Further, when the baking time exceeds 60 seconds, the productivity is deteriorated.
 キャリア付金属箔の製造方法においては、前記塗布工程の樹脂塗料が、主剤としてのシリコーンと、硬化剤としてのエポキシ樹脂、メラミン系樹脂と、剥離剤としてのフッ素樹脂と、SiO2、MgO、Al23、BaSO4およびMg(OH)2から選択される1種以上の表面粗化粒子とからなるものであってもよい。 In the method for producing a metal foil with a carrier, the resin coating in the coating step is made of silicone as a main agent, epoxy resin as a curing agent, melamine resin, fluororesin as a release agent, SiO 2 , MgO, Al It may be composed of one or more kinds of surface roughened particles selected from 2 O 3 , BaSO 4 and Mg (OH) 2 .
 具体的には、樹脂塗料は、前記したシリコーン添加樹脂溶液に表面粗化粒子をさらに添加したものである。このような表面粗化粒子を樹脂塗料にさらに添加することによって、樹脂塗膜の表面が凹凸となり、この凹凸によって板状キャリアあるいは金属箔が凹凸となり、艶消し表面となる。そして、このような艶消し表面を有する板状キャリアあるいは金属箔を得るためには、樹脂塗料における表面粗化粒子の配合量(添加量)が、シリコーン100質量部に対して、1~10質量部であることが好ましい。また、表面粗化粒子の粒子径が15nm~4μmであることがさらに好ましい。 Specifically, the resin paint is obtained by further adding surface roughening particles to the above-described silicone-added resin solution. By further adding such surface-roughened particles to the resin coating, the surface of the resin coating film becomes uneven, and the unevenness makes the plate-like carrier or metal foil uneven, resulting in a matte surface. In order to obtain a plate-like carrier or metal foil having such a matte surface, the blending amount (addition amount) of surface roughening particles in the resin coating is 1 to 10 masses per 100 mass parts of silicone. Part. Further, it is more preferable that the surface roughened particles have a particle size of 15 nm to 4 μm.
 本発明に係る製造方法は、以上説明したとおりであるが、本発明を行うにあたり、前記各工程に悪影響を与えない範囲において、前記各工程の間あるいは前後に、他の工程を含めてもよい。例えば、塗布工程の前に板状キャリアの表面を洗浄する洗浄工程を行ってもよい。 The production method according to the present invention is as described above. However, in carrying out the present invention, other steps may be included between or before and after each step within a range that does not adversely affect each step. . For example, you may perform the washing | cleaning process which wash | cleans the surface of a plate-shaped carrier before an application | coating process.
 また、多層プリント配線板の製造過程では、積層プレス工程やデスミア工程で加熱処理することが多い。そのため、キャリア付き金属箔が受ける熱履歴は、積層数が多くなるほど厳しくなる。従って、特に多層プリント配線板への適用を考える上では、所要の熱履歴を経た後にも、樹脂塗膜により付与される金属箔と板状キャリアとの剥離強度が先述した範囲にあることが望ましい。 Also, in the process of manufacturing a multilayer printed wiring board, heat treatment is often performed in a lamination press process or a desmear process. Therefore, the heat history that the metal foil with a carrier receives becomes severer as the number of laminated layers increases. Therefore, when considering application to a multilayer printed wiring board in particular, it is desirable that the peel strength between the metal foil provided by the resin coating film and the plate-like carrier is in the above-mentioned range even after passing through the required thermal history. .
 従って、本発明の更に好ましい一実施形態においては、多層プリント配線板の製造過程における加熱条件を想定した、例えば220℃で3時間、6時間または9時間のうちの少なくとも一つの加熱後における、樹脂塗膜により付与される金属箔と板状キャリアの剥離強度が、30gf/cm以上であることが好ましく、50gf/cm以上であることがより好ましい。また、当該剥離強度が200gf/cm以下であることが好ましく、150gf/cm以下であることがより好ましく、80gf/cm以下であることが更により好ましい。 Accordingly, in a further preferred embodiment of the present invention, the resin after heating at least one of 3 hours, 6 hours, or 9 hours, for example, at 220 ° C., assuming heating conditions in the production process of the multilayer printed wiring board. The peel strength between the metal foil provided by the coating film and the plate carrier is preferably 30 gf / cm or more, and more preferably 50 gf / cm or more. The peel strength is preferably 200 gf / cm or less, more preferably 150 gf / cm or less, and even more preferably 80 gf / cm or less.
 220℃での加熱後の剥離強度については、多彩な積層数に対応可能であるという観点から、3時間後および6時間後の両方、または6時間および9時間後の両方において剥離強度が上述した範囲を満たすことが好ましく、3時間、6時間および9時間後の全ての剥離強度が上述した範囲を満たすことが更に好ましい。 Regarding the peel strength after heating at 220 ° C., the peel strength was described above in both 3 hours and 6 hours, or both 6 hours and 9 hours from the viewpoint of being able to cope with various lamination numbers. It is preferable to satisfy the range, and it is further preferable that all peel strengths after 3 hours, 6 hours, and 9 hours satisfy the above-described range.
 本発明において、剥離強度はJIS C6481に規定される90度剥離強度測定方法に準拠して測定する。 In the present invention, the peel strength is measured in accordance with a 90 degree peel strength measuring method defined in JIS C6481.
 以下、このような剥離強度を実現するための各材料の具体的構成要件について説明する。 Hereinafter, specific constituent requirements of each material for realizing such peel strength will be described.
 板状キャリアとなる樹脂としては、特に制限はないが、フェノール樹脂、ポリイミド樹脂、エポキシ樹脂、天然ゴム、松脂等を使用することができるが、熱硬化性樹脂であることが好ましい。また、プリプレグを使用することもできる。金属箔と貼り合わせ前のプリプレグはBステージの状態にあるものがよい。プリプレグ(Cステージ)の線膨張係数は12~18(×10-6/℃)と、基板の構成材料である銅箔の16.5(×10-6/℃)、またはSUSプレス板の17.3(×10-6/℃)とほぼ等しいことから、プレス前後の基板サイズが設計時のそれとは異なる現象(スケーリング変化)による回路の位置ずれが発生し難い点で有利である。更に、これらのメリットの相乗効果として多層の極薄コアレス基板の生産も可能になる。ここで使用するプリプレグは、回路基板を構成するプリプレグと同じ物であっても異なる物であってもよい。なお、従来は、キャリア付金属箔の板状キャリアとして金属板が用いられていた。この場合、板状キャリアと金属箔とを溶接や接着により密着させていた。接着剤を用いる場合、耐熱性の観点から、一般的にビルドアップに好適とは言えないものが多く、溶接により密着させる場合、全面溶接を用いると剥離強度が高すぎて、後段にて手で容易に剥がすことが困難となり、また部分溶接を用いると板状キャリアと金属箔との間の薬液の浸入を防ぐことが困難となり、いずれの場合であっても、ビルドアップに好適とは言えない。そこで、樹脂製の板状キャリアを用いることで、金属箔との間で適度な剥離強度を発揮し、かつ、耐熱性樹脂を用いることによりビルドアップ時の熱履歴に十分に耐えられるものとすることができる。 The resin that serves as the plate-like carrier is not particularly limited, and phenol resin, polyimide resin, epoxy resin, natural rubber, pine resin, and the like can be used, but a thermosetting resin is preferable. A prepreg can also be used. The prepreg before being bonded to the metal foil is preferably in a B-stage state. The linear expansion coefficient of the prepreg (C stage) is 12 to 18 (× 10 −6 / ° C.), 16.5 (× 10 −6 / ° C.) of the copper foil as the constituent material of the substrate, or 17 of the SUS press plate .3 (× 10 −6 / ° C.) is advantageous in that it is difficult to cause circuit misalignment due to a phenomenon (scaling change) in which the substrate size before and after pressing differs from that at the time of design. Furthermore, as a synergistic effect of these merits, it becomes possible to produce a multilayer ultra-thin coreless substrate. The prepreg used here may be the same as or different from the prepreg constituting the circuit board. Conventionally, a metal plate has been used as a plate-shaped carrier of a metal foil with a carrier. In this case, the plate-like carrier and the metal foil are adhered to each other by welding or adhesion. When using an adhesive, from the viewpoint of heat resistance, there are many things that are generally not suitable for build-up, and when closely contacting by welding, the peel strength is too high when using full-surface welding, It is difficult to peel off easily, and it becomes difficult to prevent the chemical solution from entering between the plate-shaped carrier and the metal foil when using partial welding. . Therefore, by using a resin-made plate-like carrier, an appropriate peel strength can be exhibited with the metal foil, and by using a heat-resistant resin, it can sufficiently withstand the heat history during build-up. be able to.
 したがって、この板状キャリアは、高いガラス転移温度Tgを有することが加熱後の剥離強度を最適な範囲に維持する観点で好ましく、例えば120~320℃、好ましくは170~240℃のガラス転移温度Tgである。なお、ガラス転移温度Tgは、DSC(示差走査熱量測定法)により測定される値とする。 Therefore, the plate-like carrier preferably has a high glass transition temperature Tg from the viewpoint of maintaining the peel strength after heating in an optimal range, for example, a glass transition temperature Tg of 120 to 320 ° C., preferably 170 to 240 ° C. It is. The glass transition temperature Tg is a value measured by DSC (differential scanning calorimetry).
 また、樹脂の熱膨張率が、金属箔の熱膨張率の+10%、-30%以内であることが望ましい。これによって、金属箔と樹脂との熱膨張差に起因する回路の位置ずれを効果的に防止することができ、不良品発生を減少させ、歩留りを向上させることができる。 Also, it is desirable that the thermal expansion coefficient of the resin is within + 10% and −30% of the thermal expansion coefficient of the metal foil. As a result, it is possible to effectively prevent circuit misalignment due to the difference in thermal expansion between the metal foil and the resin, thereby reducing the occurrence of defective products and improving the yield.
 板状キャリアの厚みは特に制限はなく、リジッドでもフレキシブルでもよいが、厚すぎるとホットプレス中の熱分布に悪影響がでる一方で、薄すぎると撓んでしまいプリント配線板の製造工程を流れなくなることから、通常5μm以上1000μm以下であり、50μm以上900μm以下が好ましく、100μm以上400μm以下がより好ましい。 The thickness of the plate-like carrier is not particularly limited and may be rigid or flexible. However, if it is too thick, it will adversely affect the heat distribution during hot pressing, while if it is too thin, it will bend and will not flow through the printed wiring board manufacturing process. Therefore, it is usually 5 μm or more and 1000 μm or less, preferably 50 μm or more and 900 μm or less, and more preferably 100 μm or more and 400 μm or less.
 金属箔としては、銅又は銅合金箔が代表的なものであるが、アルミニウム、ニッケル、亜鉛などの箔を使用することもできる。銅又は銅合金箔の場合、電解箔又は圧延箔を使用することができる。金属箔は、限定的ではないが、プリント回路基板の配線としての使用を考えると、1μm以上、好ましくは5μm以上、および400μ以下、好ましくは120μm以下の厚みを有するのが一般的である。板状キャリアの両面に金属箔を貼り付ける場合、同じ厚みの金属箔を用いても良いし、異なる厚みの金属箔を用いても良い。 As the metal foil, copper or copper alloy foil is a typical one, but foil of aluminum, nickel, zinc or the like can also be used. In the case of copper or copper alloy foil, electrolytic foil or rolled foil can be used. Although not limited, the metal foil generally has a thickness of 1 [mu] m or more, preferably 5 [mu] m or more, and 400 [mu] m or less, preferably 120 [mu] m or less, considering use as a wiring of a printed circuit board. When metal foil is affixed on both surfaces of the plate-like carrier, metal foils having the same thickness may be used, or metal foils having different thicknesses may be used.
 使用する金属箔には各種の表面処理が施されていてもよい。例えば、耐熱性付与を目的とした金属めっき(Niめっき、Ni-Zn合金めっき、Cu-Ni合金めっき、Cu-Zn合金めっき、Znめっき、Cu-Ni-Zn合金めっき、Co-Ni合金めっきなど)、防錆性や耐変色性を付与するためのクロメート処理(クロメート処理液中にZn、P、Ni、Mo、Zr、Ti等の合金元素を1種以上含有させる場合を含む)、表面粗度調整のための粗化処理(例:銅電着粒やCu-Ni-Co合金めっき、Cu-Ni-P合金めっき、Cu-Co合金めっき、Cu-Ni合金めっき、Cu-Co合金めっき、Cu-As合金めっき、Cu-As-W合金めっき等の銅合金めっきによるもの)が挙げられる。粗化処理が金属箔と板状キャリアの剥離強度に影響を与えることはもちろん、クロメート処理も大きな影響を与える。クロメート処理は防錆性や耐変色性の観点から重要であるが、剥離強度を有意に上昇させる傾向が見られるので、剥離強度の調整手段としても意義がある。 The metal foil used may be subjected to various surface treatments. For example, metal plating for the purpose of imparting heat resistance (Ni plating, Ni—Zn alloy plating, Cu—Ni alloy plating, Cu—Zn alloy plating, Zn plating, Cu—Ni—Zn alloy plating, Co—Ni alloy plating, etc. ), Chromate treatment (including the case where one or more alloy elements such as Zn, P, Ni, Mo, Zr, Ti, etc. are contained in the chromate treatment liquid) for imparting rust prevention and discoloration resistance, surface roughness (For example, copper electrodeposition grains, Cu—Ni—Co alloy plating, Cu—Ni—P alloy plating, Cu—Co alloy plating, Cu—Ni alloy plating, Cu—Co alloy plating, And copper alloy plating such as Cu—As alloy plating and Cu—As—W alloy plating). The roughening treatment not only affects the peel strength between the metal foil and the plate carrier, but also the chromate treatment has a great influence. Chromate treatment is important from the viewpoint of rust prevention and discoloration resistance, but since it tends to significantly increase the peel strength, it is also meaningful as a means for adjusting the peel strength.
 従来のCCLでは、樹脂と銅箔のピール強度が高いことが望まれるので、例えば、電解銅箔のマット面(M面)を樹脂との接着面とし、粗化処理等の表面処理を施すことによって化学的および物理的アンカー効果による接着力向上が図られている。また、樹脂側においても、金属箔との接着力をアップするために各種バインダーが添加される等している。前述したように、本発明においてはCCLとは異なり、金属箔と樹脂は最終的に剥離する必要があるので、過度に剥離強度が高いのは不利である。 In conventional CCL, since it is desired that the peel strength between the resin and the copper foil is high, for example, the matte surface (M surface) of the electrolytic copper foil is used as an adhesive surface with the resin, and surface treatment such as roughening treatment is performed. Thus, the adhesive strength is improved by the chemical and physical anchoring effects. On the resin side, various binders are added to increase the adhesive strength with the metal foil. As described above, in the present invention, unlike the CCL, since the metal foil and the resin need to be finally peeled, it is disadvantageous that the peel strength is excessively high.
 そこで、本発明に係るキャリア付金属箔の好ましい一実施形態においては、金属箔と板状キャリアの剥離強度を先述した好ましい範囲に調節するため、貼り合わせ面の表面粗度を、JIS B 0601:2001に準拠して測定した金属箔表面の十点平均粗さ(Rz jis)で表して、3.5μm以下、更に3.0μm以下とすることが好ましい。但し、表面粗度を際限なく小さくするのは手間がかかりコスト上昇の原因となるので、0.1μm以上とするのが好ましく、0.3μm以上とすることがより好ましい。金属箔として電解銅箔を使用する場合、このような表面粗度に調整すれば、光沢面(シャイニー面、S面)及び粗面(マット面、M面)の何れを使用することも可能であるが、S面を用いた方が上記表面粗度への調整が容易である。一方で、前記金属箔の前記キャリアと接しない側の表面の十点平均粗さ(Rz jis)は、0.4μm以上10.0μm以下であることが好ましい。 Therefore, in a preferred embodiment of the metal foil with a carrier according to the present invention, the surface roughness of the bonded surface is JIS B 0601: in order to adjust the peel strength between the metal foil and the plate-like carrier to the preferred range described above. Expressed by the ten-point average roughness (Rz jis) of the metal foil surface measured according to 2001, it is preferably 3.5 μm or less, more preferably 3.0 μm or less. However, reducing the surface roughness indefinitely takes time and causes an increase in cost. Therefore, the surface roughness is preferably 0.1 μm or more, and more preferably 0.3 μm or more. When electrolytic copper foil is used as the metal foil, it is possible to use either a glossy surface (shiny surface, S surface) or a rough surface (matte surface, M surface) by adjusting to such a surface roughness. However, it is easier to adjust the surface roughness by using the S-plane. On the other hand, it is preferable that the ten-point average roughness (Rz jis) of the surface of the metal foil not contacting the carrier is 0.4 μm or more and 10.0 μm or less.
 また、本発明に係るキャリア付金属箔の好ましい一実施形態においては、金属箔の樹脂との貼り合わせ面に対しては、粗化処理等剥離強度向上のための表面処理は行わない。また、本発明に係るキャリア付金属箔の好ましい一実施形態においては、樹脂中には、金属箔との接着力をアップするためのバインダーは添加されていない。 In a preferred embodiment of the metal foil with a carrier according to the present invention, the surface treatment for improving the peel strength such as roughening treatment is not performed on the bonding surface of the metal foil with the resin. Moreover, in preferable one Embodiment of metal foil with a carrier which concerns on this invention, the binder for improving the adhesive force with metal foil is not added in resin.
 キャリア付金属箔を製造するためのホットプレスの条件としては、板状キャリアとしてプリプレグを使用する場合、圧力30~40kg/cm2、プリプレグのガラス転移温度よりも高い温度でホットプレスすることが好ましい。 As conditions for hot pressing for producing a metal foil with a carrier, when a prepreg is used as a plate-like carrier, it is preferable to perform hot pressing at a pressure of 30 to 40 kg / cm 2 and a temperature higher than the glass transition temperature of the prepreg. .
 以上の観点から、本発明は、樹脂製の板状キャリアを剥離可能に密着させるために、当該密着面となる、上述したような金属箔の少なくとも一方の表面に、上記のカップリング剤を塗工した金属箔を提供する。また、この金属箔の表面は、カップリング剤を塗工する前に、前述したようなクロメート処理等を行ってもよい。 From the above viewpoints, the present invention applies the above-mentioned coupling agent to at least one surface of the metal foil as described above, which serves as the adhesion surface, in order to allow the resinous plate-like carrier to adhere in a peelable manner. Provide crafted metal foil. Further, the surface of the metal foil may be subjected to the chromate treatment as described above before applying the coupling agent.
 別の観点から、本発明は、金属箔の密着面となる板状キャリアの少なくとも一方の表面に、上記のカップリング剤を有する板状キャリアを提供する。この板状キャリアは、上述したような金属箔を剥離可能に密着させる用途に好適に用いることができる。 From another viewpoint, the present invention provides a plate-like carrier having the above coupling agent on at least one surface of the plate-like carrier to be a close contact surface of the metal foil. This plate-like carrier can be suitably used for applications in which the metal foil as described above is adhered in a peelable manner.
 さらに別の観点から、本発明は、上述したような金属箔の表面に、上記のカップリング剤を塗工したコアレス多層プリント配線板用金属箔を提供する。また、この金属箔の表面は、カップリング剤にて被覆する前に、前述したようなクロメート処理等を行ってもよい。 From still another viewpoint, the present invention provides a metal foil for a coreless multilayer printed wiring board in which the above coupling agent is coated on the surface of the metal foil as described above. Further, the surface of the metal foil may be subjected to the chromate treatment as described above before being coated with the coupling agent.
 なお、金属箔または樹脂の表面をXPS(X線光電子分光装置)、EPMA(電子線マイクロアナライザ)、EDX(エネルギー分散型X線分析)を備えた走査電子顕微鏡等の機器で測定し、Al、Ti、Zrが検出されれば、金属箔または樹脂の表面に、上記カップリング剤が存在すると推察することができる。 The surface of the metal foil or resin was measured with a scanning electron microscope equipped with XPS (X-ray photoelectron spectrometer), EPMA (electron beam microanalyzer), EDX (energy dispersive X-ray analysis), Al, If Ti and Zr are detected, it can be assumed that the coupling agent is present on the surface of the metal foil or resin.
 さらに、別の観点から、本発明は、上述したキャリア付金属箔の用途を提供する。
 第一に、上述したキャリア付金属箔の少なくとも一つの金属箔側に対して、樹脂を積層し、次いで樹脂又は金属箔を1回以上、例えば1~10回繰り返して積層することを含む多層金属張積層板の製造方法が提供される。
Furthermore, from another viewpoint, this invention provides the use of the metal foil with a carrier mentioned above.
First, a multilayer metal comprising laminating a resin on at least one metal foil side of the above-described metal foil with carrier, and then laminating the resin or the metal foil repeatedly one or more times, for example, 1 to 10 times. A method for producing a tension laminate is provided.
 第二に、上述したキャリア付金属箔の金属箔側に樹脂を積層し、次いで、樹脂、片面あるいは両面金属張積層板、または本発明のキャリア付金属箔、または金属箔を1回以上、例えば1~10回繰り返して積層することを含む多層金属張積層板の製造方法が提供される。なお、最初のキャリア付金属箔に積層した樹脂以降の積層は、所望する回数だけ行われ、各積層回とも、樹脂、片面あるいは両面金属張積層板、最初のキャリア付金属箔とは別の本発明のキャリア付金属箔、および金属箔からなる群から任意に選択することができる。 Second, the resin is laminated on the metal foil side of the metal foil with carrier described above, and then the resin, single-sided or double-sided metal-clad laminate, or metal foil with carrier of the present invention, or metal foil once or more, for example, A method for producing a multilayer metal-clad laminate comprising repeatedly laminating 1 to 10 times is provided. In addition, the lamination after the resin laminated on the first metal foil with carrier is performed as many times as desired. In each lamination, a book different from the resin, single-sided or double-sided metal-clad laminate, and the first metal foil with carrier is used. It can be arbitrarily selected from the group consisting of the metal foil with carrier of the invention and the metal foil.
 上記の多層金属張積層板の製造方法においては、前記キャリア付金属箔の板状キャリアと金属箔を剥離して分離する工程を更に含むことができる。 The above-described method for producing a multilayer metal-clad laminate can further include a step of peeling and separating the plate-like carrier and metal foil of the metal foil with carrier.
 さらに、前記板状キャリアと金属箔を剥離して分離した後、金属箔の一部または全部をエッチングにより除去する工程を更に含むことができる。 Further, the method may further include a step of removing a part or the whole of the metal foil by etching after the plate-like carrier and the metal foil are separated from each other.
 第三に、上述したキャリア付金属箔の金属箔側に樹脂を積層し、次いで、樹脂、片面あるいは両面配線基板、片面あるいは両面金属張積層板、または本発明のキャリア付金属箔、または金属箔を1回以上、例えば1~10回繰り返して積層することを含むビルドアップ基板の製造方法が提供される。なお、最初のキャリア付金属箔に積層した樹脂以降の積層は、所望する回数だけ行われ、各積層回とも、樹脂、片面あるいは両面配線基板、片面あるいは両面金属張積層板、最初のキャリア付金属箔とは別の本発明のキャリア付金属箔、および金属箔からなる群から任意に選択することができる。 Thirdly, a resin is laminated on the metal foil side of the metal foil with carrier described above, and then resin, single-sided or double-sided wiring board, single-sided or double-sided metal-clad laminate, or metal foil with carrier of the present invention, or metal foil Is provided one or more times, for example, 1 to 10 times, and a buildup substrate manufacturing method is provided. In addition, the lamination after the resin laminated on the first metal foil with carrier is performed as many times as desired. In each lamination, the resin, the single-sided or double-sided wiring board, the single-sided or double-sided metal-clad laminate, the first metal with carrier It can be arbitrarily selected from the group consisting of the metal foil with a carrier of the present invention different from the foil and the metal foil.
 第四に、上述したキャリア付金属箔の金属箔側に、ビルドアップ配線層を一層以上積層する工程を含むビルドアップ基板の製造方法が提供される。この際、ビルドアップ配線層はサブトラクティブ法又はフルアディティブ法又はセミアディティブ法の少なくとも一方を用いて形成することができる。 Fourth, there is provided a method for manufacturing a buildup board including a step of laminating one or more buildup wiring layers on the metal foil side of the metal foil with carrier described above. At this time, the build-up wiring layer can be formed using at least one of a subtractive method, a full additive method, and a semi-additive method.
 サブトラクティブ法とは、金属張積層板や配線基板(プリント配線板、プリント回路板を含む)上の金属箔の不要部分を、エッチングなどによって、選択的に除去して、導体パターンを形成する方法を指す。フルアディティブ法とは、導体層に金属箔を使用せず、無電解めっき又は/および電解めっきにより導体パターンを形成する方法であり、セミアディティブ法は、例えば金属箔からなるシード層上に無電解金属析出と、電解めっき、エッチング、又はその両者を併用して導体パターンを形成した後、不要なシード層をエッチングして除去することで導体パターンを得る方法である。 The subtractive method is a method of forming a conductor pattern by selectively removing unnecessary portions of metal foil on a metal-clad laminate or a wiring board (including a printed wiring board and a printed circuit board) by etching or the like. Point to. The full additive method is a method of forming a conductor pattern by electroless plating and / or electrolytic plating without using a metal foil for the conductor layer. The semi-additive method is an electroless method on a seed layer made of metal foil, for example. In this method, a conductor pattern is formed by using metal deposition and electrolytic plating, etching, or a combination thereof, and then an unnecessary seed layer is removed by etching.
 上記のビルドアップ基板の製造方法においては、片面あるいは両面配線基板、片面あるいは両面金属張積層板、キャリア付金属箔の金属箔、キャリア付金属箔の板状キャリア、金属箔、又は樹脂に穴を開け、当該穴の側面および底面に導通めっきをする工程を更に含むことができる。また、前記片面あるいは両面配線基板を構成する金属箔、片面あるいは両面金属張積層板を構成する金属箔、及びキャリア付金属箔を構成する金属箔の少なくとも一つに配線を形成する工程を1回以上行うことを更に含むこともできる。 In the manufacturing method of the above build-up board, a hole is formed in a single-sided or double-sided wiring board, a single-sided or double-sided metal-clad laminate, a metal foil with a carrier, a plate-like carrier with a metal foil with a carrier, a metal foil, or a resin. The method may further include a step of opening and conducting conductive plating on a side surface and a bottom surface of the hole. In addition, the step of forming wiring on at least one of the metal foil constituting the single-sided or double-sided wiring board, the metal foil constituting the single-sided or double-sided metal-clad laminate, and the metal foil constituting the metal foil with carrier is performed once. It can further include performing the above.
 上記のビルドアップ基板の製造方法においては、配線形成された表面の上に、片面に金属箔を密着させ、更に本発明に係るキャリア付金属箔のキャリア側を積層する工程を更に含むこともできる。また、配線形成された表面の上に、樹脂を積層し、当該樹脂に両面に金属箔を密着させた本発明に係るキャリア付金属箔を積層する工程を更に含むこともできる。
 なお、「配線形成された表面」とは、ビルドアップを行う過程で都度現れる表面に配線形成された部分を意味し、ビルドアップ基板としては最終製品のものも、その途中のものも包含する。
The manufacturing method of the build-up board may further include a step of bringing a metal foil into close contact with one surface on the surface on which the wiring is formed, and further laminating the carrier side of the metal foil with a carrier according to the present invention. . Moreover, it is possible to further include a step of laminating a metal foil with a carrier according to the present invention in which a resin is laminated on the surface on which the wiring is formed and the metal foil is adhered to both sides of the resin.
The “surface on which the wiring is formed” means a portion where wiring is formed on the surface that appears every time a buildup is performed, and the buildup substrate includes both a final product and an intermediate product.
 上記のビルドアップ基板の製造方法においては、前記キャリア付金属箔の板状キャリアと金属箔とを剥離して分離する工程を更に含むこともできる。 The manufacturing method of the build-up substrate may further include a step of peeling and separating the plate-like carrier of the metal foil with carrier and the metal foil.
 さらに、上記の板状キャリアと金属箔とを剥離して分離した後、金属箔の一部または全面をエッチングにより除去する工程を更に含むこともできる。 Furthermore, it is possible to further include a step of removing a part or the whole surface of the metal foil by etching after peeling and separating the plate-like carrier and the metal foil.
 なお、上述の多層金属張積層板の製造方法およびビルドアップ基板の製造方法において、各層同士は熱圧着を行うことにより積層させることができる。この熱圧着は、一層一層積層するごとに行ってもよいし、ある程度積層させてからまとめて行ってもよいし、最後に一度にまとめて行ってもよい。 In addition, in the manufacturing method of the above-mentioned multilayer metal-clad laminate and the manufacturing method of a buildup board, each layer can be laminated | stacked by performing thermocompression bonding. This thermocompression bonding may be performed every time one layer is stacked, may be performed after being laminated to some extent, or may be performed collectively at the end.
 特に、本発明は、上記のビルドアップ基板の製造方法において、片面あるいは両面配線基板、片面あるいは両面銅張積層板、金属箔または樹脂に穴を開け、当該穴の側面および底面に導通めっきをし、更に前記片面あるいは両面配線基板を構成する金属箔および回路部分、片面あるいは両面銅張積層板を構成する金属箔、金属箔に回路を形成する工程を少なくとも1回以上行うビルドアップ基板の製造方法を提供する。 In particular, the present invention provides a method for manufacturing a build-up board as described above, wherein a hole is made in a single-sided or double-sided wiring board, a single-sided or double-sided copper-clad laminate, a metal foil or a resin, and conductive plating is performed on the side and bottom surfaces of the hole. Further, the metal foil and circuit portion constituting the single-sided or double-sided wiring board, the metal foil constituting the single-sided or double-sided copper-clad laminate, and the method for producing a build-up board at least including the step of forming a circuit on the metal foil I will provide a.
 以下、上述した用途の具体例として、本発明に係るキャリア付金属箔を利用した4層CCLの製法を説明する。ここで使用するキャリア付金属箔は、板状キャリア11cの片面に金属箔11aを密着させたキャリア付金属箔11である。このキャリア付金属箔11に、所望枚数のプリプレグ12、次に内層コア13と称する2層プリント回路基板または2層金属張積層板、次にプリプレグ12、更にキャリア付金属箔11を順に重ねることで1組の4層CCLの組み立てユニットが完成する。次に、このユニット14(通称「ページ」と言う)を10回程度繰り返し、プレス組み立て物15(通称「ブック」と言う)を構成する(図3)。その後、このブック15を積層金型10で挟んでホットプレス機にセットし、所定の温度及び圧力で加圧成型することにより多数の4層CCLを同時に製造することができる。積層金型10としては例えばステンレス製プレートを使用することができる。プレートは、限定的ではないが、例えば1~10mm程度の厚板を使用することができる。4層以上のCCLについても、一般的には内層コアの層数を上げることで、同様の工程で生産することが可能である。 Hereinafter, as a specific example of the above-described application, a method for producing a four-layer CCL using the metal foil with a carrier according to the present invention will be described. The metal foil with carrier used here is the metal foil with carrier 11 in which the metal foil 11a is adhered to one surface of the plate-like carrier 11c. A desired number of prepregs 12, then a two-layer printed circuit board or two-layer metal-clad laminate called an inner layer core 13, then a prepreg 12, and then a metal foil 11 with a carrier are sequentially stacked on the metal foil 11 with a carrier. A set of four-layer CCL assembly units is completed. Next, the unit 14 (referred to as “page”) is repeated about 10 times to form a press assembly 15 (referred to as “book”) (FIG. 3). Thereafter, the book 15 is sandwiched between the laminated molds 10 and set in a hot press machine, and a large number of four-layer CCLs can be manufactured simultaneously by press molding at a predetermined temperature and pressure. As the laminated mold 10, for example, a stainless plate can be used. Although the plate is not limited, for example, a thick plate of about 1 to 10 mm can be used. In general, CCL having four or more layers can be produced in the same process by increasing the number of inner core layers.
 以下、上述した用途の具体例として、本発明に係る樹脂板の板状キャリア11cの両面に金属箔を密着させたキャリア付金属箔11を利用したコアレスビルドアップ基板の製法を例示的に説明する。この方法では、キャリア付き金属箔11の両側にビルドアップ層16を必要数積層した後、キャリア付金属箔11から両面の金属箔を剥離する(図4参照)。 Hereinafter, as a specific example of the above-described application, a method for producing a coreless buildup substrate using the metal foil with carrier 11 in which the metal foil is in close contact with both surfaces of the plate-like carrier 11c of the resin plate according to the present invention will be described. . In this method, after a required number of buildup layers 16 are laminated on both sides of the metal foil with carrier 11, the metal foils on both sides are peeled from the metal foil with carrier 11 (see FIG. 4).
 例えば、本発明のキャリア付金属箔の金属箔側に、絶縁層としての樹脂、2層回路基板、絶縁層としての樹脂を順に重ね、その上に金属箔側が樹脂板と接触するようにして、更に本発明のキャリア付金属箔の金属箔を順に重ねることでビルドアップ基板を製造することができる。 For example, on the metal foil side of the metal foil with a carrier of the present invention, a resin as an insulating layer, a two-layer circuit board, a resin as an insulating layer are stacked in order, and the metal foil side is in contact with the resin plate on it, Furthermore, a buildup board | substrate can be manufactured by laminating | stacking the metal foil of the metal foil with a carrier of this invention in order.
 また、別の方法としては、樹脂製の板状キャリア11cの両面または片面に金属箔を密着させたキャリア付金属箔の少なくともの一つの金属箔側に対して、絶縁層としての樹脂、導体層としての金属箔を順に積層する。次に、必要に応じて金属箔の全面を、ハーフエッチングして厚みを調整する工程を含めてもよい。次に、積層した金属箔の所定位置にレーザー加工を施して金属箔と樹脂を貫通するビアホールを形成し、ビアホールの中のスミアを除去するデスミア処理を施した後、ビアホール底部、側面および金属箔の全面または一部に無電解めっきを施して層間接続を形成して、必要に応じて更に電解めっきを行う。金属箔上の無電解めっきまたは電解めっきが不要な部分にはそれぞれのめっきを行う前までに予めめっきレジストを形成おいてもよい。また、無電解めっき、電解めっき、めっきレジストと金属箔の密着性が不十分である場合には予め金属箔の表面を化学的に粗化しておいてもよい。めっきレジストを使用した場合、めっき後にめっきレジストを除去する。次に、金属箔および、無電解めっき部、電解めっき部の不要部分をエッチングにより除去することで回路を形成する。これによりビルドアップ基板が得られる。樹脂、金属箔の積層から回路形成までの工程を複数回繰り返し行ってさらに多層のビルドアップ基板としてもよい。
 さらに、このビルドアップ基板の最表面には、本発明の片面に金属箔を密着させたキャリア付金属箔の金属箔の樹脂側を接触させて積層してもよいし、一旦樹脂板を積層した後に、本発明の両面に金属箔を密着させたキャリア付金属箔の一方の金属箔を接触させて積層してもよい。
As another method, a resin or conductor layer as an insulating layer is provided on at least one metal foil side of the metal foil with a carrier in which the metal foil is adhered to both surfaces or one surface of the resinous plate-like carrier 11c. Are laminated in order. Next, if necessary, a step of half-etching the entire surface of the metal foil to adjust the thickness may be included. Next, laser processing is performed at a predetermined position of the laminated metal foil to form a via hole penetrating the metal foil and the resin, and after applying a desmear process for removing smear in the via hole, the bottom of the via hole, the side surface and the metal foil Electroless plating is performed on the entire surface or a part of the substrate to form an interlayer connection, and further electrolytic plating is performed as necessary. A plating resist may be formed in advance on each portion of the metal foil where electroless plating or electrolytic plating is unnecessary before performing each plating. In addition, when the electroless plating, the electrolytic plating, or the adhesion between the plating resist and the metal foil is insufficient, the surface of the metal foil may be chemically roughened in advance. When a plating resist is used, the plating resist is removed after plating. Next, a circuit is formed by removing unnecessary portions of the metal foil and the electroless plating portion and the electrolytic plating portion by etching. Thereby, a build-up substrate is obtained. The process from the lamination of the resin and metal foil to the circuit formation may be repeated a plurality of times to form a multilayer build-up substrate.
Furthermore, on the outermost surface of this buildup substrate, the resin side of the metal foil of the metal foil with a carrier in which the metal foil is adhered to one side of the present invention may be contacted and laminated, or a resin plate is once laminated. Later, one metal foil of the metal foil with a carrier in which the metal foil is adhered to both surfaces of the present invention may be brought into contact with each other and laminated.
 ここで、ビルドアップ基板作製に用いる樹脂板としては、熱硬化性樹脂を含有するプリプレグを好適に用いることができる。 Here, a prepreg containing a thermosetting resin can be suitably used as the resin plate used for manufacturing the build-up substrate.
 また、別の方法としては、本発明の板状キャリアの片面または両面に金属箔、例えば銅箔を貼り合わせて得られる積層体の金属箔の露出表面に、絶縁層としての樹脂例えばプリプレグまたは感光性樹脂を積層する。その後、樹脂の所定位置にビアホールを形成する。樹脂として例えばプリプレグを用いる場合、ビアホールはレーザー加工により行うことができる。レーザー加工の後、このビアホールの中のスミアを除去するデスミア処理を施すとよい。また、樹脂として感光性樹脂を用いた場合、フォトリソグラフィ法によりビアホールを形成部の樹脂を除去することができる。次に、ビアホール底部、側面および樹脂の全面または一部に無電解めっきを施して層間接続を形成して、必要に応じて更に電解めっきを行う。樹脂上の無電解めっきまたは電解めっきが不要な部分にはそれぞれのめっきを行う前までに予めめっきレジストを形成おいてもよい。また、無電解めっき、電解めっき、めっきレジストと樹脂の密着性が不十分である場合には予め樹脂の表面を化学的に粗化しておいてもよい。めっきレジストを使用した場合、めっき後にめっきレジストを除去する。次に、無電解めっき部または電解めっき部の不要部分をエッチングにより除去することで回路を形成する。これによりビルドアップ基板が得られる。樹脂の積層から回路形成までの工程を複数回繰り返し行ってさらに多層のビルドアップ基板としてもよい。
 さらに、このビルドアップ基板の最表面には、本発明の片面に金属箔を密着させた積層体の樹脂側、または片面に金属箔を密着させたキャリア付金属箔の樹脂側を接触させて積層してもよいし、一旦樹脂を積層した後に、本発明の両面に金属箔を密着させた積層体の一方の金属箔、または両面に金属箔を密着させたキャリア付金属箔の一方の金属箔を接触させて積層してもよい。
As another method, a resin as an insulating layer such as a prepreg or a photosensitive layer is formed on the exposed surface of a metal foil of a laminate obtained by laminating a metal foil such as a copper foil on one or both sides of the plate carrier of the present invention. Laminating resin. Thereafter, a via hole is formed at a predetermined position of the resin. For example, when a prepreg is used as the resin, the via hole can be formed by laser processing. After the laser processing, desmear treatment for removing smear in the via hole is preferably performed. When a photosensitive resin is used as the resin, the resin in the via hole forming portion can be removed by a photolithography method. Next, electroless plating is performed on the bottom and side surfaces of the via holes, the entire surface or a part of the resin to form interlayer connections, and further electrolytic plating is performed as necessary. A plating resist may be formed in advance on each portion of the resin where electroless plating or electrolytic plating is unnecessary before performing each plating. Further, when the adhesion between electroless plating, electrolytic plating, plating resist and resin is insufficient, the surface of the resin may be chemically roughened in advance. When a plating resist is used, the plating resist is removed after plating. Next, an unnecessary portion of the electroless plating portion or the electrolytic plating portion is removed by etching to form a circuit. Thereby, a build-up substrate is obtained. The steps from resin lamination to circuit formation may be repeated a plurality of times to form a multilayered build-up substrate.
Further, the outermost surface of this build-up substrate is laminated by contacting the resin side of the laminate in which the metal foil is closely attached to one side of the present invention, or the resin side of the metal foil with a carrier having the metal foil closely attached to one side. Alternatively, after laminating the resin once, one metal foil of the laminate in which the metal foil is adhered to both surfaces of the present invention, or one metal foil of the metal foil with a carrier in which the metal foil is adhered to both surfaces May be laminated in contact with each other.
 このようにして作製されたコアレスビルドアップ基板に対しては、めっき工程及び/又はエッチング工程を経て表面に配線を形成し、更にキャリア樹脂と金属箔の間で、剥離分離させることでビルドアップ配線板が完成する。剥離分離後に金属箔の剥離面に対して、配線を形成してもよいし、金属箔全面をエッチングにより除去してビルドアップ配線板としてもよい。更に、ビルドアップ配線板に電子部品類を搭載することで、プリント回路板が完成する。また、樹脂剥離前のコアレスビルドアップ基板に直接、電子部品を搭載してもプリント回路板を得ることができる。 For the coreless build-up substrate manufactured in this way, a wiring is formed on the surface through a plating process and / or an etching process, and further, build-up wiring is performed by separating and separating between the carrier resin and the metal foil. The board is completed. Wiring may be formed on the peeling surface of the metal foil after peeling and separation, or the entire surface of the metal foil may be removed by etching to form a build-up wiring board. Furthermore, a printed circuit board is completed by mounting electronic components on the build-up wiring board. Moreover, a printed circuit board can be obtained even if an electronic component is mounted directly on a coreless buildup substrate before resin peeling.
 以下に本発明の実施例および比較例として実験例を示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 Experimental examples are shown below as examples and comparative examples of the present invention, but these examples are provided for better understanding of the present invention and its advantages, and are intended to limit the invention. is not.
(キャリア付金属箔)
<実験例1~10>
 複数の電解銅箔(厚さ12μm、粗面表面粗さRz jis 3.7μm)を準備し、それぞれの電解銅箔のシャイニー(光沢)面に対して、下記の条件によるニッケル-亜鉛(Ni-Zn)合金めっき処理およびクロメート(Cr-Znクロメート)処理を施し、貼り合わせ面(ここではS面)の十点平均粗さ(Rz jis:JIS B 0601:2001に準拠して測定)を1.5μmとした後、樹脂としてナンヤプラスティック社製のプリプレグ(FR-4レジン:ガラス転移温度Tg=140℃;厚み200μm)を当該電解銅箔のS面と貼り合わせ、170℃で100分ホットプレス加工を行って、キャリア付銅箔を作製した。
(Metal foil with carrier)
<Experimental Examples 1 to 10>
A plurality of electrolytic copper foils (thickness 12 μm, rough surface roughness Rz jis 3.7 μm) were prepared, and nickel-zinc (Ni—) according to the following conditions was applied to the shiny (glossy) surface of each electrolytic copper foil. Zn) alloy plating treatment and chromate (Cr—Zn chromate) treatment were performed, and the ten-point average roughness (Rz cis: measured in accordance with JIS B 0601: 2001) of the bonded surface (here, S surface) was 1. After setting the thickness to 5 μm, a prepreg (FR-4 resin: glass transition temperature Tg = 140 ° C .; thickness 200 μm) manufactured by Nanya Plastic Co., Ltd. was bonded to the S surface of the electrolytic copper foil as a resin and hot pressed at 170 ° C. for 100 minutes. The copper foil with a carrier was produced.
 (ニッケル-亜鉛合金めっき)
  Ni濃度 17g/L(NiSO4として添加)
  Zn濃度  4g/L(ZnSO4として添加)
  pH    3.1
  液温    40℃
  電流密度  0.1~10A/dm2
  めっき時間 0.1~10秒
(Nickel-zinc alloy plating)
Ni concentration 17g / L (added as NiSO 4 )
Zn concentration 4g / L (added as ZnSO 4 )
pH 3.1
Liquid temperature 40 ℃
Current density 0.1-10A / dm 2
Plating time 0.1 to 10 seconds
 (クロメート処理)
  Cr濃度    1.4g/L(CrO3またはK2CrO7として添加)
  Zn濃度    0.01~1.0g/L(ZnSO4として添加)
  Na2SO4濃度 10g/L
  pH      4.8
  液温      55℃
  電流密度    0.1~10A/dm2
  めっき時間   0.1~10秒
(Chromate treatment)
Cr concentration 1.4g / L (added as CrO 3 or K 2 CrO 7 )
Zn concentration 0.01 to 1.0 g / L (added as ZnSO 4 )
Na 2 SO 4 concentration 10 g / L
pH 4.8
Liquid temperature 55 ℃
Current density 0.1-10A / dm 2
Plating time 0.1 to 10 seconds
 なお、実験例1~10では、当該光沢面または前記板状キャリア(プリプレグ)に表1で示した構成の樹脂塗膜を塗布し、焼き付けを行った後、プリプレグと銅箔の貼り合わせを行った。 In Experimental Examples 1 to 10, the glossy surface or the plate-like carrier (prepreg) was coated with a resin coating film having the structure shown in Table 1 and baked, and then the prepreg and copper foil were bonded together. It was.
 樹脂塗膜の塗布は、グラビアコート法を用いて塗布した後、ドクターブレードを用いて樹脂塗膜の厚みを2~4μmに調節した。なお、表1で示したエポキシ系樹脂としてはビスフェノールA型エポキシ樹脂を用い、メラミン系樹脂としてはメチルエーテル化メラミン樹脂を用い、フッ素樹脂としてはポリテトラフルオロエチレンを用い、ジメチルシリコーンレジンとしてはジメチルポリシロキサンを用いた。
 また、塗布した樹脂塗膜は、150℃で、30秒間加熱して焼き付け処理を行った。
The resin coating was applied using a gravure coating method, and then the thickness of the resin coating was adjusted to 2 to 4 μm using a doctor blade. The epoxy resin shown in Table 1 is a bisphenol A type epoxy resin, the melamine resin is a methyl etherified melamine resin, the fluororesin is polytetrafluoroethylene, and the dimethyl silicone resin is dimethyl Polysiloxane was used.
Moreover, the applied resin coating film was baked by heating at 150 ° C. for 30 seconds.
 また、キャリア付銅箔のうちのいくつかを、当該キャリア付銅箔に対して回路形成などのさらなる加熱処理の際に熱履歴がかかることを想定して、表1に記載の条件(ここでは、220℃で3時間、6時間、9時間)の熱処理を行った。 Further, assuming that some of the copper foils with a carrier have a thermal history during further heat treatment such as circuit formation on the copper foil with a carrier, the conditions described in Table 1 (here , 220 ° C. for 3 hours, 6 hours, and 9 hours).
 ホットプレスにより得られたキャリア付銅箔、およびその後3時間、6時間、9時間のそれぞれの熱処理を行った後のキャリア付銅箔における、銅箔と板状キャリア(加熱後の樹脂)との剥離強度を測定した。それぞれの結果を表1に示す。 The copper foil with a carrier obtained by hot pressing, and the copper foil with a carrier after the respective heat treatments for 3 hours, 6 hours, and 9 hours, and the plate-like carrier (resin after heating) The peel strength was measured. The results are shown in Table 1.
 また、剥離作業性を評価するため、それぞれ単位個数当たりの人手による作業時間(時間/個)を評価した。結果を表2に示す。 Also, in order to evaluate the peeling workability, the work time (hour / piece) by hand per unit number was evaluated. The results are shown in Table 2.
<実験例11>
 実験例1において、銅箔とプリプレグとを貼り合わせる際に、当該銅箔の光沢面、プリプレグの何れにも樹脂塗膜を処理しなかった以外は、実験例1と同じ条件で、キャリア付銅箔を作製して、各段階での剥離強度と、作業時間とを評価した。それぞれの結果を、表1および表2に示す。
<Experimental example 11>
In Experimental Example 1, when the copper foil and the prepreg were bonded together, the carrier-coated copper was used under the same conditions as in Experimental Example 1, except that neither the glossy surface of the copper foil nor the prepreg was treated with a resin coating film. A foil was prepared, and the peel strength at each stage and the working time were evaluated. The respective results are shown in Table 1 and Table 2.
 表によれば、樹脂塗膜は、銅箔の表面にて処理しても、板状キャリア(プリプレグ)の表面に処理しても、その後の積層体の剥離強度、加熱後の剥離強度、剥離作業性において、同等の結果が得られたことがわかる。 According to the table, the resin coating can be processed on the surface of the copper foil or the surface of the plate-like carrier (prepreg), and then the peel strength of the laminate, the peel strength after heating, and the peel It can be seen that the same results were obtained in workability.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(ビルドアップ配線板)
 このようにして作製したキャリア付銅箔の両側に、FR-4プリプレグ(南亜プラスティック社製)、銅箔(JX日鉱日石金属(株)製、JTC12μm(製品名))を順に重ね、3MPaの圧力で各表に示した加熱条件にてホットプレスを行い、4層銅張積層板を作製した。
(Build-up wiring board)
FR-4 prepreg (manufactured by Nanya Plastic Co., Ltd.) and copper foil (manufactured by JX Nippon Mining & Metals Co., Ltd., JTC 12 μm (product name)) are sequentially stacked on both sides of the copper foil with a carrier thus produced. A four-layer copper clad laminate was produced by hot pressing under the heating conditions shown in each table under the pressure of.
 次に、前記4層銅張積層板表面の銅箔とその下の絶縁層(硬化したプリプレグ)を貫通する直径100μmの孔をレーザー加工機を用いて空けた。続いて、前記孔の底部に露出したキャリア付き銅箔上の銅箔表面と、前記孔の側面、前記4層銅張積層板表面の銅箔上に無電解銅めっき、電気銅めっきにより銅めっきを行い、キャリア付銅箔上の銅箔と、4層銅張積層板表面の銅箔との間に電気的接続を形成した。次に、4層銅張積層板表面の銅箔の一部を塩化第二鉄系のエッチング液を用いてエッチングし、回路を形成した。このようにして、4層ビルドアップ基板を得た。 Next, a 100 μm diameter hole penetrating the copper foil on the surface of the four-layer copper-clad laminate and the insulating layer (cured prepreg) thereunder was drilled using a laser processing machine. Subsequently, electroless copper plating on the copper foil surface on the copper foil with carrier exposed at the bottom of the hole, the side surface of the hole, and the copper foil on the surface of the four-layer copper-clad laminate, and copper plating by electrolytic copper plating The electrical connection was formed between the copper foil on the copper foil with a carrier and the copper foil on the surface of the four-layer copper-clad laminate. Next, a part of the copper foil on the surface of the four-layer copper-clad laminate was etched using a ferric chloride-based etchant to form a circuit. In this way, a four-layer buildup substrate was obtained.
 続いて、前記4層ビルドアップ基板において、前記キャリア付銅箔の板状キャリアと銅箔とを剥離して分離することにより、2組の2層ビルドアップ配線板を得た。 Subsequently, in the 4-layer build-up board, the two-layer build-up wiring boards were obtained by peeling off and separating the plate-like carrier of the copper foil with carrier and the copper foil.
 続いて、前記の2組の2層ビルドアップ配線板上の、板状キャリアと密着していた方の銅箔をエッチングし配線を形成して、2組の2層ビルドアップ配線板を得た。 Subsequently, the copper foil that was in close contact with the plate-like carrier on the two sets of two-layer build-up wiring boards was etched to form a wiring to obtain two sets of two-layer build-up wiring boards. .
 各実験例とも複数の4層ビルドアップ基板を作製し、それぞれについて、ビルドアップ基板製作工程におけるキャリア付銅箔を構成するプリプレグと銅箔との密着具合を目視にて確認したところ、表1において剥離強度および加熱後の剥離強度が「G」と評価された条件にて作製したキャリア付銅箔を用いたビルドアップ配線板では、ビルドアップに際してキャリア付銅箔の樹脂(板状キャリア)が破壊されずに剥離できた。
 また、「N」と評価された条件については、ビルドアップに際してキャリア付銅箔における銅箔の剥離操作のときに樹脂が破壊されたか、あるいは剥がれず銅箔表面に樹脂が残った。
 また、「-」と評価された条件については、ビルドアップに際してキャリア付銅箔における銅箔の剥離操作のときに樹脂が破壊されることなく剥がれたが、中には剥離操作なしで銅箔が剥がれることがあった。
In each experimental example, a plurality of four-layer build-up substrates were produced, and for each, the degree of contact between the prepreg and the copper foil constituting the copper foil with carrier in the build-up substrate manufacturing process was confirmed visually. In a build-up wiring board using a copper foil with a carrier manufactured under conditions where the peel strength and the peel strength after heating are evaluated as “G”, the resin (plate carrier) of the copper foil with a carrier is destroyed during the build-up. It was able to peel without being.
As for the condition evaluated as “N”, the resin was destroyed at the time of build-up during the peeling operation of the copper foil in the carrier-attached copper foil, or the resin remained on the copper foil surface without being peeled off.
As for the conditions evaluated as “-”, the resin was peeled off without being destroyed during the copper foil peeling operation in the carrier-added copper foil during build-up, but the copper foil was removed without peeling operation. Sometimes peeled off.
10  積層金型
11  キャリア付き金属箔
11a 金属箔
11b 樹脂塗膜
11c 板状キャリア
12  プリプレグ
13  内層コア
14  ページ
15  ブック
16  ビルドアップ層
DESCRIPTION OF SYMBOLS 10 Laminated metal mold 11 Metal foil 11a with a carrier Metal foil 11b Resin coating film 11c Plate carrier 12 Prepreg 13 Inner core 14 Page 15 Book 16 Build-up layer

Claims (52)

  1.  樹脂製の板状キャリアと、該キャリアの少なくとも一方の面に、剥離可能に密着させた金属箔からなるキャリア付金属箔であって、板状キャリアと金属箔とは、シリコーンと、エポキシ系樹脂、メラミン系樹脂およびフッ素樹脂から選択されるいずれか1つまたは複数の樹脂とで構成される樹脂塗膜を用いて貼り合わせてなるキャリア付金属箔。 A metal foil with a carrier made of a resin-made plate-like carrier and a metal foil that is releasably adhered to at least one surface of the carrier, wherein the plate-like carrier and the metal foil are made of silicone, epoxy resin Metal foil with a carrier formed by bonding using a resin coating film composed of any one or a plurality of resins selected from melamine resins and fluororesins.
  2.  前記樹脂塗膜において、シリコーン100質量部に対して、エポキシ系樹脂、メラミン系樹脂の合計が10~1500質量部の量で含まれる請求項1に記載のキャリア付金属箔。 The metal foil with a carrier according to claim 1, wherein in the resin coating film, the total amount of epoxy resin and melamine resin is contained in an amount of 10 to 1500 parts by mass with respect to 100 parts by mass of silicone.
  3.  前記樹脂塗膜において、シリコーン100質量部に対して、フッ素樹脂が0~50質量部の量で含まれる請求項1または2に記載のキャリア付金属箔。 The metal foil with a carrier according to claim 1 or 2, wherein the resin coating contains 0 to 50 parts by mass of a fluororesin with respect to 100 parts by mass of silicone.
  4.  前記樹脂塗膜の厚みが0.1~10μmである請求項1~3の何れか一項に記載のキャリア付金属箔。 The metal foil with a carrier according to any one of claims 1 to 3, wherein the thickness of the resin coating film is 0.1 to 10 µm.
  5.  板状キャリアと金属箔の剥離強度が10gf/cm以上200gf/cm以下である請求項1~4の何れか一項に記載のキャリア付金属箔。 The metal foil with a carrier according to any one of claims 1 to 4, wherein the peel strength between the plate-like carrier and the metal foil is 10 gf / cm or more and 200 gf / cm or less.
  6.  樹脂製の板状キャリアが熱硬化性樹脂を含む請求項1~5の何れか一項に記載のキャリア付金属箔。 The metal foil with a carrier according to any one of claims 1 to 5, wherein the resinous plate-like carrier contains a thermosetting resin.
  7.  樹脂製の板状キャリアがプリプレグである請求項1~6の何れか一項に記載のキャリア付金属箔。 The metal foil with a carrier according to any one of claims 1 to 6, wherein the resinous plate-like carrier is a prepreg.
  8.  前記樹脂製の板状キャリアは、120~320℃のガラス転移温度Tgを有する請求項6又は7に記載のキャリア付金属箔。 The metal foil with a carrier according to claim 6 or 7, wherein the resinous plate-like carrier has a glass transition temperature Tg of 120 to 320 ° C.
  9.  前記金属箔の前記キャリアと接する側表面の十点平均粗さ(Rz jis)が、3.5μm以下である請求項1~8の何れか一項に記載のキャリア付金属箔。 The metal foil with a carrier according to any one of claims 1 to 8, wherein a ten-point average roughness (Rz jis) of a side surface in contact with the carrier of the metal foil is 3.5 µm or less.
  10.  前記金属箔の前記キャリアと接しない側の表面の十点平均粗さ(Rz jis)が、0.4μm以上10.0μm以下である請求項1~9の何れか一項に記載のキャリア付金属箔。 The metal with a carrier according to any one of claims 1 to 9, wherein a ten-point average roughness (Rz jis) of a surface of the metal foil not contacting the carrier is 0.4 μm or more and 10.0 μm or less. Foil.
  11.  前記金属箔の厚みが、1μm以上400μm以下である請求項1~9の何れか一項に記載のキャリア付金属箔。 The metal foil with a carrier according to any one of claims 1 to 9, wherein the thickness of the metal foil is 1 µm or more and 400 µm or less.
  12.  220℃で3時間、6時間または9時間のうちの少なくとも一つの加熱後における、金属箔と板状キャリアとの剥離強度が、10gf/cm以上200gf/cm以下である請求項1~10の何れか一項に記載のキャリア付金属箔。 The peel strength between the metal foil and the plate-like carrier after heating at 220 ° C. for 3 hours, 6 hours or 9 hours is 10 gf / cm or more and 200 gf / cm or less. A metal foil with a carrier according to claim 1.
  13.  前記金属箔が、銅箔である請求項1~12の何れか一項に記載のキャリア付金属箔。 The metal foil with a carrier according to any one of claims 1 to 12, wherein the metal foil is a copper foil.
  14.  金属箔の表面に、シリコーンと、エポキシ系樹脂、メラミン系樹脂およびフッ素樹脂から選択されるいずれか1つまたは複数の樹脂とで構成される樹脂塗膜を有するプリント配線板用金属箔。 Metal foil for printed wiring board having a resin coating film composed of silicone and any one or a plurality of resins selected from epoxy resins, melamine resins and fluororesins on the surface of the metal foil.
  15.  前記樹脂塗膜において、シリコーン100質量部に対して、エポキシ系樹脂、メラミン系樹脂の合計が10~1500質量部の量で含まれる請求項14に記載のプリント配線板用金属箔。 The metal foil for a printed wiring board according to claim 14, wherein the resin coating film includes 10 to 1500 parts by mass of a total of epoxy resin and melamine resin with respect to 100 parts by mass of silicone.
  16.  前記樹脂塗膜において、シリコーン100質量部に対して、フッ素樹脂が0~50質量部の量で含まれる請求項14または15に記載のプリント配線板用金属箔。 The metal foil for printed wiring board according to claim 14 or 15, wherein the resin coating film contains 0 to 50 parts by mass of a fluororesin with respect to 100 parts by mass of silicone.
  17.  前記樹脂塗膜の厚みが0.1~10μmである請求項14~16の何れか一項に記載のプリント配線板用金属箔。 The metal foil for printed wiring boards according to any one of claims 14 to 16, wherein the resin coating film has a thickness of 0.1 to 10 µm.
  18.  前記シリコーンと、エポキシ系樹脂、メラミン系樹脂およびフッ素樹脂から選択されるいずれか1つまたは複数の樹脂とで構成される樹脂塗膜を作用させる側の表面に対して、当該樹脂塗膜を作用させる前に、クロメート処理をすることを特徴とする請求項14~17の何れか一項に記載のプリント配線板用金属箔。 The resin coating acts on the surface on which the resin coating composed of the silicone and any one or a plurality of resins selected from an epoxy resin, a melamine resin, and a fluororesin is allowed to act. The metal foil for a printed wiring board according to any one of claims 14 to 17, wherein the metal foil is subjected to a chromate treatment before being made.
  19.  前記金属箔の前記樹脂塗膜と接する側表面の十点平均粗さ(Rz jis)が、3.5μm以下である請求項14~18の何れか一項に記載のプリント配線板用金属箔。 The metal foil for printed wiring board according to any one of claims 14 to 18, wherein a ten-point average roughness (Rz jis) of a side surface in contact with the resin coating film of the metal foil is 3.5 µm or less.
  20.  前記金属箔の前記樹脂塗膜と接しない側の表面の十点平均粗さ(Rz jis)が、0.4μm以上10.0μm以下である請求項14~19の何れか一項に記載のプリント配線板用金属箔。 The print according to any one of claims 14 to 19, wherein a ten-point average roughness (Rz jis) of a surface of the metal foil not contacting the resin coating is 0.4 μm or more and 10.0 μm or less. Metal foil for wiring boards.
  21.  少なくとも一方の表面に、シリコーンと、エポキシ系樹脂、メラミン系樹脂およびフッ素樹脂から選択されるいずれか1つまたは複数の樹脂とで構成される樹脂塗膜を有する金属箔であって、当該表面にて樹脂製の板状キャリアを剥離可能に密着させる用途に用いられる金属箔。 At least one surface is a metal foil having a resin coating film composed of silicone and any one or a plurality of resins selected from an epoxy resin, a melamine resin and a fluororesin, A metal foil used for the purpose of releasably attaching a resinous plate carrier.
  22.  前記樹脂塗膜において、シリコーン100質量部に対して、エポキシ系樹脂、メラミン系樹脂の合計が10~1500質量部の量で含まれる請求項21に記載の金属箔。 The metal foil according to claim 21, wherein in the resin coating film, the total amount of epoxy resin and melamine resin is contained in an amount of 10 to 1500 parts by mass with respect to 100 parts by mass of silicone.
  23.  前記樹脂塗膜において、シリコーン100質量部に対して、フッ素樹脂が0~50質量部の量で含まれる請求項21または22に記載の金属箔。 The metal foil according to claim 21 or 22, wherein the resin coating film contains a fluororesin in an amount of 0 to 50 parts by mass with respect to 100 parts by mass of silicone.
  24.  前記樹脂塗膜の厚みが0.1~10μmである請求項21~23の何れか一項に記載の金属箔。 The metal foil according to any one of claims 21 to 23, wherein the thickness of the resin coating film is 0.1 to 10 µm.
  25.  前記シリコーンと、エポキシ系樹脂、メラミン系樹脂およびフッ素樹脂から選択されるいずれか1つまたは複数の樹脂とで構成される樹脂塗膜を作用させる側の表面に対して、当該樹脂塗膜を作用させる前に、クロメート処理をすることを特徴とする請求項21~24の何れか一項に記載の金属箔。 The resin coating acts on the surface on which the resin coating composed of the silicone and any one or a plurality of resins selected from an epoxy resin, a melamine resin, and a fluororesin is allowed to act. The metal foil according to any one of claims 21 to 24, wherein the metal foil is subjected to a chromate treatment before being made.
  26.  前記金属箔の前記樹脂塗膜と接する側表面の十点平均粗さ(Rz jis)が、3.5μm以下である請求項21~25の何れか一項に記載の金属箔。 The metal foil according to any one of claims 21 to 25, wherein a ten-point average roughness (Rz jis) of a side surface in contact with the resin coating film of the metal foil is 3.5 µm or less.
  27.  少なくとも一方の表面に、シリコーンと、エポキシ系樹脂、メラミン系樹脂およびフッ素樹脂から選択されるいずれか1つまたは複数の樹脂とで構成される樹脂塗膜を有する樹脂製の板状キャリア。 A resinous plate carrier having a resin coating film composed of silicone and any one or a plurality of resins selected from an epoxy resin, a melamine resin and a fluororesin on at least one surface.
  28.  前記樹脂塗膜において、シリコーン100質量部に対して、エポキシ系樹脂、メラミン系樹脂の合計が10~1500質量部の量で含まれる請求項27に記載の板状キャリア。 The plate-shaped carrier according to claim 27, wherein the resin coating film contains a total of 10 to 1500 parts by mass of an epoxy resin and a melamine resin with respect to 100 parts by mass of silicone.
  29.  前記樹脂塗膜において、シリコーン100質量部に対して、フッ素樹脂が0~50質量部の量で含まれる請求項27または28に記載の板状キャリア。 29. The plate carrier according to claim 27 or 28, wherein the resin coating film contains a fluororesin in an amount of 0 to 50 parts by mass with respect to 100 parts by mass of silicone.
  30.  前記樹脂塗膜の厚みが0.1~10μmである請求項27~29の何れか一項に記載の板状キャリア。 The plate-like carrier according to any one of claims 27 to 29, wherein the resin coating film has a thickness of 0.1 to 10 µm.
  31.  少なくとも一方の表面に、シリコーンと、エポキシ系樹脂、メラミン系樹脂およびフッ素樹脂から選択されるいずれか1つまたは複数の樹脂とで構成される樹脂塗膜を有する樹脂製の板状キャリアであって、当該表面にて金属箔を剥離可能に密着させる用途に用いられる板状キャリア。 A resinous plate-like carrier having, on at least one surface, a resin coating film composed of silicone and any one or a plurality of resins selected from an epoxy resin, a melamine resin, and a fluororesin A plate-like carrier used for applications in which the metal foil is peelably adhered on the surface.
  32.  前記樹脂塗膜において、シリコーン100質量部に対して、エポキシ系樹脂、メラミン系樹脂の合計が10~1500質量部の量で含まれる請求項31に記載の板状キャリア。 The plate-like carrier according to claim 31, wherein the resin coating film contains a total of 10 to 1500 parts by mass of an epoxy resin and a melamine resin with respect to 100 parts by mass of silicone.
  33.  前記樹脂塗膜において、シリコーン100質量部に対して、フッ素樹脂が0~50質量部の量で含まれる請求項31または32に記載の板状キャリア。 The plate-shaped carrier according to claim 31 or 32, wherein the resin coating contains a fluororesin in an amount of 0 to 50 parts by mass with respect to 100 parts by mass of silicone.
  34.  前記樹脂塗膜の厚みが0.1~10μmである請求項31~33の何れか一項に記載の板状キャリア。 The plate carrier according to any one of claims 31 to 33, wherein the thickness of the resin coating film is 0.1 to 10 µm.
  35.  請求項1~13のいずれか一項に記載のキャリア付金属箔の少なくとも一つの金属箔側に対して、樹脂を積層し、次いで樹脂又は金属箔を1回以上繰り返して積層することを含む多層金属張積層板の製造方法。 A multilayer comprising laminating a resin on at least one metal foil side of the metal foil with a carrier according to any one of claims 1 to 13, and then repeatedly laminating the resin or the metal foil one or more times. A method for producing a metal-clad laminate.
  36.  請求項1~13のいずれか一項に記載のキャリア付金属箔の金属箔側に樹脂を積層し、次いで、樹脂、片面あるいは両面金属張積層板、または請求項1~13のいずれか一項に記載のキャリア付金属箔、または金属箔を1回以上繰り返して積層することを含む多層金属張積層板の製造方法。 A resin is laminated on the metal foil side of the metal foil with a carrier according to any one of claims 1 to 13, and then a resin, a single-sided or double-sided metal-clad laminate, or any one of claims 1 to 13. A method for producing a multilayer metal-clad laminate comprising laminating a metal foil with a carrier as described in 1 or a metal foil one or more times.
  37.  請求項35または36に記載の多層金属張積層板の製造方法において、前記キャリア付金属箔の板状キャリアと金属箔とを剥離して分離する工程を更に含む多層金属張積層板の製造方法。 37. The method for producing a multilayer metal-clad laminate according to claim 35 or 36, further comprising a step of peeling and separating the plate-like carrier and metal foil of the metal foil with carrier.
  38.  請求項37に記載の製造方法において、剥離して分離した金属箔の一部または全部をエッチングにより除去する工程を含む多層金属張積層板の製造方法。 38. The method for producing a multilayer metal-clad laminate according to claim 37, comprising a step of removing a part or all of the separated and separated metal foil by etching.
  39.  請求項35~38の何れか一項に記載の製造方法により得られる多層金属張積層板。 A multilayer metal-clad laminate obtained by the production method according to any one of claims 35 to 38.
  40.  請求項1~13のいずれか一項に記載のキャリア付金属箔の金属箔側に、ビルドアップ配線層を一層以上形成する工程を含むビルドアップ基板の製造方法。 A method for manufacturing a buildup board, comprising a step of forming one or more buildup wiring layers on the metal foil side of the metal foil with a carrier according to any one of claims 1 to 13.
  41.  ビルドアップ配線層はサブトラクティブ法又はフルアディティブ法又はセミアディティブ法の少なくとも一方を用いて形成される請求項40に記載のビルドアップ基板の製造方法。 41. The method for manufacturing a build-up board according to claim 40, wherein the build-up wiring layer is formed by using at least one of a subtractive method, a full additive method, and a semi-additive method.
  42.  請求項1~13の何れか一項に記載のキャリア付金属箔の少なくとも一つの金属箔側に樹脂を積層し、次いで、樹脂、片面あるいは両面配線基板、片面あるいは両面金属張積層板、請求項1~13のいずれか一項に記載のキャリア付金属箔又は金属箔を1回以上繰り返して積層することを含むビルドアップ基板の製造方法。 A resin is laminated on at least one metal foil side of the metal foil with a carrier according to any one of claims 1 to 13, and then a resin, a single-sided or double-sided wiring board, a single-sided or double-sided metal-clad laminate, 14. A method for producing a build-up substrate, comprising: laminating the metal foil with a carrier according to any one of 1 to 13 or the metal foil repeatedly one or more times.
  43.  請求項42に記載のビルドアップ基板の製造方法において、片面あるいは両面配線基板、片面あるいは両面金属張積層板、キャリア付金属箔の金属箔、キャリア付金属箔の板状キャリア、金属箔、または樹脂に穴を開け、当該穴の側面および底面に導通めっきをする工程を更に含むビルドアップ基板の製造方法。 43. The build-up board manufacturing method according to claim 42, wherein the single-sided or double-sided wiring board, the single-sided or double-sided metal-clad laminate, the metal foil of the metal foil with carrier, the plate carrier of the metal foil with carrier, the metal foil, or the resin The manufacturing method of the buildup board | substrate which further includes the process of drilling a hole in and carrying out conductive plating to the side and bottom face of the said hole.
  44.  請求項42または43に記載のビルドアップ基板の製造方法において、前記片面あるいは両面配線基板を構成する金属箔、片面あるいは両面金属張積層板を構成する金属箔、キャリア付金属箔を構成する金属箔、及び金属箔の少なくとも一つに配線を形成する工程を1回以上行うことを更に含むビルドアップ基板の製造方法。 44. The method of manufacturing a build-up board according to claim 42 or 43, wherein the metal foil constituting the single-sided or double-sided wiring board, the metal foil constituting the single-sided or double-sided metal-clad laminate, or the metal foil constituting the metal foil with carrier And the manufacturing method of the buildup board | substrate which further includes performing the process of forming wiring in at least one of metal foil once or more.
  45.  配線形成された表面の上に、片面に金属箔を密着させた請求項1~13のいずれか一項に記載のキャリア付金属箔の樹脂板側を接触させて積層する工程を更に含む請求項42~44の何れか一項に記載のビルドアップ基板の製造方法。 14. The method according to claim 1, further comprising the step of contacting and laminating the resin plate side of the metal foil with a carrier according to any one of claims 1 to 13, wherein the metal foil is adhered to one surface on the surface on which the wiring is formed. 45. A method of manufacturing a build-up substrate according to any one of 42 to 44.
  46.  配線形成された表面の上に、樹脂を積層し、当該樹脂に両面に金属箔を密着させた請求項1~13のいずれか一項に記載のキャリア付金属箔の一方の金属箔を接触させて積層する工程を更に含む請求項42~44の何れか一項に記載のビルドアップ基板の製造方法。 The metal foil with carrier according to any one of claims 1 to 13, wherein a resin is laminated on the surface on which the wiring is formed, and the metal foil is adhered to both sides of the resin. The method for producing a build-up substrate according to any one of claims 42 to 44, further comprising a step of laminating the layers.
  47.  前記樹脂の少なくとも一つがプリプレグであることを特徴とする請求項42~46の何れか一項に記載のビルドアップ基板の製造方法。 The method for manufacturing a buildup substrate according to any one of claims 42 to 46, wherein at least one of the resins is a prepreg.
  48.  請求項40~47のいずれか一項に記載のビルドアップ基板の製造方法において、前記キャリア付金属箔の板状キャリアと金属箔とを剥離して分離する工程を更に含むビルドアップ配線板の製造方法。 The buildup wiring board manufacturing method according to any one of claims 40 to 47, further comprising a step of peeling and separating the plate-like carrier of the metal foil with carrier and the metal foil. Method.
  49.  請求項48に記載のビルドアップ配線板の製造方法において、板状キャリアと密着していた金属箔の一部または全部をエッチングにより除去する工程を更に含むビルドアップ配線板の製造方法。 49. The method for manufacturing a buildup wiring board according to claim 48, further comprising a step of removing a part or all of the metal foil adhered to the plate carrier by etching.
  50.  請求項48または49に記載の製造方法により得られるビルドアップ配線板。 A build-up wiring board obtained by the manufacturing method according to claim 48 or 49.
  51.  請求項40~47のいずれか一項に記載の製造方法によりビルドアップ基板を製造する工程を含むプリント回路板の製造方法。 A method for producing a printed circuit board, comprising a step of producing a build-up substrate by the production method according to any one of claims 40 to 47.
  52.  請求項48または49に記載の製造方法によりビルドアップ配線板を製造する工程を含むプリント回路板の製造方法。 A method for manufacturing a printed circuit board, comprising a step of manufacturing a build-up wiring board by the manufacturing method according to claim 48 or 49.
PCT/JP2013/075557 2012-09-20 2013-09-20 Metallic foil having carrier WO2014046256A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014536944A JP6104260B2 (en) 2012-09-20 2013-09-20 Metal foil with carrier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012207431 2012-09-20
JP2012-207431 2012-09-20

Publications (1)

Publication Number Publication Date
WO2014046256A1 true WO2014046256A1 (en) 2014-03-27

Family

ID=50341555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075557 WO2014046256A1 (en) 2012-09-20 2013-09-20 Metallic foil having carrier

Country Status (3)

Country Link
JP (1) JP6104260B2 (en)
TW (1) TWI615271B (en)
WO (1) WO2014046256A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186589A1 (en) * 2014-06-03 2015-12-10 三井金属鉱業株式会社 Metal foil with releasing resin layer, and printed wiring board
WO2017098969A1 (en) * 2015-12-07 2017-06-15 三井金属鉱業株式会社 Method for manufacturing layered body, and metal foil provided with resin layer
WO2020196222A1 (en) * 2019-03-26 2020-10-01 リンテック株式会社 Release sheet
JP2021074913A (en) * 2019-11-06 2021-05-20 日本タングステン株式会社 Copper-clad laminate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63145022A (en) * 1986-12-10 1988-06-17 三菱瓦斯化学株式会社 Manufacture of multilayer printed wiring board
JPH0590740A (en) * 1991-04-26 1993-04-09 Nitto Boseki Co Ltd Sheet for transferring conductor circuit, its manufacture, printed wiring body utilizing it, and its manufacture
JP2002033581A (en) * 2000-07-13 2002-01-31 Mitsui Mining & Smelting Co Ltd Manufacturing method for copper-clad laminate
JP2004249641A (en) * 2003-02-21 2004-09-09 Sumitomo Bakelite Co Ltd Manufacturing method for laminate
WO2007135972A1 (en) * 2006-05-19 2007-11-29 Mitsui Mining & Smelting Co., Ltd. Copper foil provided with carrier sheet, method for fabricating copper foil provided with carrier sheet, surface-treated copper foil provided with carrier sheet, and copper-clad laminate using the surface-treated copper foil provided with carrier sheet
JP2009272589A (en) * 2008-05-12 2009-11-19 Nippon Mining & Metals Co Ltd Metal foil with carrier
WO2012108070A1 (en) * 2011-02-10 2012-08-16 フリージア・マクロス株式会社 Metal foil with carrier and method for producing laminated substrate using same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3649892A (en) * 1970-07-13 1972-03-14 Mallory & Co Inc P R Capacitors utilizing bonded discrete polymeric film dielectrics
KR20090018032A (en) * 2006-04-25 2009-02-19 아사히 가라스 가부시키가이샤 Mold release film for semiconductor resin mold

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63145022A (en) * 1986-12-10 1988-06-17 三菱瓦斯化学株式会社 Manufacture of multilayer printed wiring board
JPH0590740A (en) * 1991-04-26 1993-04-09 Nitto Boseki Co Ltd Sheet for transferring conductor circuit, its manufacture, printed wiring body utilizing it, and its manufacture
JP2002033581A (en) * 2000-07-13 2002-01-31 Mitsui Mining & Smelting Co Ltd Manufacturing method for copper-clad laminate
JP2004249641A (en) * 2003-02-21 2004-09-09 Sumitomo Bakelite Co Ltd Manufacturing method for laminate
WO2007135972A1 (en) * 2006-05-19 2007-11-29 Mitsui Mining & Smelting Co., Ltd. Copper foil provided with carrier sheet, method for fabricating copper foil provided with carrier sheet, surface-treated copper foil provided with carrier sheet, and copper-clad laminate using the surface-treated copper foil provided with carrier sheet
JP2009272589A (en) * 2008-05-12 2009-11-19 Nippon Mining & Metals Co Ltd Metal foil with carrier
WO2012108070A1 (en) * 2011-02-10 2012-08-16 フリージア・マクロス株式会社 Metal foil with carrier and method for producing laminated substrate using same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186589A1 (en) * 2014-06-03 2015-12-10 三井金属鉱業株式会社 Metal foil with releasing resin layer, and printed wiring board
JP5936794B2 (en) * 2014-06-03 2016-06-22 三井金属鉱業株式会社 Metal foil with release resin layer and printed wiring board
KR20160111530A (en) * 2014-06-03 2016-09-26 미쓰이금속광업주식회사 Metal foil with releasing resin layer, and printed wiring board
KR101676804B1 (en) 2014-06-03 2016-11-17 미쓰이금속광업주식회사 Metal foil with releasing resin layer, and printed wiring board
US20170071059A1 (en) * 2014-06-03 2017-03-09 Mitsui Mining & Smelting Co., Ltd. Metal foil with releasing resin layer, and printed wiring board
US10863621B2 (en) 2014-06-03 2020-12-08 Mitsui Mining & Smelting Co., Ltd. Metal foil with releasing resin layer, and printed wiring board
WO2017098969A1 (en) * 2015-12-07 2017-06-15 三井金属鉱業株式会社 Method for manufacturing layered body, and metal foil provided with resin layer
JPWO2017098969A1 (en) * 2015-12-07 2018-09-27 三井金属鉱業株式会社 Manufacturing method of laminate and metal foil with resin layer
CN113825316A (en) * 2015-12-07 2021-12-21 三井金属矿业株式会社 Method for producing laminate and metal foil with resin layer
CN113825316B (en) * 2015-12-07 2024-06-11 三井金属矿业株式会社 Method for producing laminate and resin layer-attached metal foil
WO2020196222A1 (en) * 2019-03-26 2020-10-01 リンテック株式会社 Release sheet
JP2021074913A (en) * 2019-11-06 2021-05-20 日本タングステン株式会社 Copper-clad laminate

Also Published As

Publication number Publication date
TWI615271B (en) 2018-02-21
TW201420332A (en) 2014-06-01
JPWO2014046256A1 (en) 2016-08-18
JP6104260B2 (en) 2017-03-29

Similar Documents

Publication Publication Date Title
JP3612594B2 (en) Composite foil with resin, method for producing the same, multilayer copper-clad laminate using the composite foil, and method for producing multilayer printed wiring board
JP6276371B2 (en) Manufacturing method of multilayer printed wiring board
JP6687765B2 (en) Metal foil with carrier
JP6013475B2 (en) Metal foil with carrier
JP6013474B2 (en) Metal foil with carrier
JP6373189B2 (en) Metal foil with carrier
WO2014024878A1 (en) Metal foil with carrier
KR20150063471A (en) Metallic foil having carrier, layered product comprising resin sheet-shaped carrier and metallic foil, and uses for same
JP6104260B2 (en) Metal foil with carrier
JP6104261B2 (en) Metal foil with carrier
JP6327840B2 (en) Resin composition comprising a thermosetting resin and a release agent
JP6306865B2 (en) Laminate with resin substrates in close contact with each other in a peelable manner
JP2010108984A (en) Method of manufacturing printed circuit board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838183

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014536944

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13838183

Country of ref document: EP

Kind code of ref document: A1