WO2014046242A1 - Temperature gauge, substrate treatment device, temperature control method, and method for manufacturing semiconductor device - Google Patents

Temperature gauge, substrate treatment device, temperature control method, and method for manufacturing semiconductor device Download PDF

Info

Publication number
WO2014046242A1
WO2014046242A1 PCT/JP2013/075479 JP2013075479W WO2014046242A1 WO 2014046242 A1 WO2014046242 A1 WO 2014046242A1 JP 2013075479 W JP2013075479 W JP 2013075479W WO 2014046242 A1 WO2014046242 A1 WO 2014046242A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
substrate
gas
housing chamber
main body
Prior art date
Application number
PCT/JP2013/075479
Other languages
French (fr)
Japanese (ja)
Inventor
山口 天和
原 大介
周平 西堂
立野 秀人
正導 谷内
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Publication of WO2014046242A1 publication Critical patent/WO2014046242A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring

Definitions

  • the present invention relates to a temperature measuring device, a substrate processing apparatus, a temperature control method, and a semiconductor device manufacturing method.
  • SiC Silicon carbide
  • SiC is particularly attracting attention as an element material for power devices because it has higher withstand voltage and higher thermal conductivity than silicon (Si).
  • SiC is difficult to manufacture a crystal substrate and a semiconductor device (semiconductor device) as compared with Si because of a small impurity diffusion coefficient.
  • the epitaxial film formation temperature of Si is about 900 ° C to 1200 ° C
  • the epitaxial film formation temperature of SiC is 1500 ° C to 1800 ° C, which is a technology for suppressing the heat-resistant structure of devices and the decomposition of materials. Creative ingenuity is required.
  • it is required to accurately control the temperature in the substrate storage chamber (deposition processing chamber) in order to improve the yield by suppressing the occurrence of variations in crystal substrates and semiconductor devices as products.
  • the temperature in the substrate storage chamber is high, and a reaction gas is introduced into the substrate storage chamber. Since it is necessary to spread evenly, it must be ensured that an airtight state can be maintained. In other words, it is difficult to install the temperature measuring instrument across the substrate storage chamber, and if the airtight state cannot be maintained, for example, the concentration distribution of the reaction gas in the substrate storage chamber will vary, and as a result There will be variations in the film formation state of the product.
  • the temperature inside the substrate storage chamber and the temperature outside the substrate storage chamber are measured, and calibration data is obtained based on each temperature data. Then, during the film formation process, the temperature measuring device inside the substrate housing chamber is removed and only the temperature measuring device outside the substrate housing chamber is used, and the outdoor temperature data obtained by the temperature measuring device outside the substrate housing chamber is used as calibration data obtained in advance. The temperature is calibrated based on the above, and the temperature in the substrate housing chamber is obtained (estimated), thereby enabling heating with high accuracy.
  • a temperature measuring device used for obtaining such calibration data for example, the one described in Patent Document 1 is known.
  • the temperature measuring device described in Patent Document 1 uses silicon carbide (SiC) or alumina (Al 2 O 3 ) as a material for the protective tube so that it can withstand high temperatures in the substrate housing chamber.
  • An object of the present invention is to accurately measure the temperature in the substrate housing chamber even when the temperature in the substrate housing chamber during the film forming process is higher, and to control the temperature in the substrate housing chamber with high accuracy. It is an object of the present invention to provide a temperature measuring device, a substrate processing apparatus, a temperature control method, and a method for manufacturing a semiconductor device.
  • the temperature measuring device is provided integrally with the main body portion that is mounted in the mounting hole of the closing member that closes the opening side of the substrate housing chamber, A protective tube disposed inside, a thermocouple element provided inside the protective tube and provided with a contact; provided in the main body; and the mounting hole and the main body outside the substrate housing chamber And a cooling mechanism that cools the sealing member that maintains the airtightness between the two.
  • the temperature in the substrate housing chamber during the film forming process is higher, the temperature in the substrate housing chamber can be accurately measured, and as a result, the temperature in the substrate housing chamber can be accurately controlled.
  • (A), (b), (c) is the temperature distribution figure which compared the temperature measuring device of FIG. 6 with the temperature measuring device of each comparative example (two types). It is explanatory drawing explaining the detailed structure of the temperature measuring device which concerns on 2nd Embodiment of the substrate processing apparatus used suitably by embodiment of this invention. It is explanatory drawing explaining the arrangement
  • FIG. 1 is a perspective view showing an outline of a substrate processing apparatus in which the temperature measuring device of the present invention is used.
  • the substrate processing apparatus for forming a SiC epitaxial film (crystal film) using the temperature measuring device according to the first embodiment of the present invention and a semiconductor device manufacturing process. A method for manufacturing a substrate on which a certain SiC epitaxial film is formed will be described.
  • a semiconductor manufacturing apparatus 10 as a substrate processing apparatus is a batch type vertical heat treatment apparatus, and includes a casing 12 that houses a plurality of mechanisms.
  • a pod (or also called a FOUP) 16 as a substrate container for storing a wafer 14 as a substrate made of Si or SiC is used as a wafer carrier.
  • a pod stage 18 is disposed on the front side of the housing 12, and a plurality of pods 16 are conveyed from the outside to the pod stage 18.
  • Each pod 16 contains, for example, 25 wafers 14 and is set on the pod stage 18 with the lid 16a closed.
  • a pod transfer device 20 is provided on the front side of the housing 12 and facing the pod stage 18.
  • a pod storage shelf 22, a pod opener 24, and a substrate number detector 26 are provided in the vicinity of the pod transfer device 20.
  • the pod storage shelf 22 is provided above the pod opener 24 and is configured to hold a plurality of pods 16 (five in the drawing) mounted thereon.
  • the substrate number detector 26 is provided adjacent to the pod opener 24, and the pod transfer device 20 is configured to transfer the pods 16 one after another between the pod stage 18, the pod storage shelf 22 and the pod opener 24. Yes.
  • the pod opener 24 opens the lid 16a of the pod 16, and the substrate number detector 26 detects the number of wafers 14 in the pod 16 with the lid 16a opened.
  • the substrate transfer device 28 includes a plurality of arms (tweezers) 32 and has a structure that can be moved up and down and rotated by a driving means (not shown). Each arm 32 can take out, for example, five wafers 14 at a time. By moving each arm 32, the wafer 14 is transferred between the pod 16 and the boat 30 placed at the position of the pod opener 24. It is like that.
  • the boat 30 is formed of, for example, a heat resistant material such as carbon graphite or SiC, and is configured to stack and hold a plurality of wafers 14 in a horizontal posture and in a state where their centers are aligned with each other in the vertical direction. It is configured.
  • a boat heat insulating portion 34 on which a plurality of substantially cylindrical or disk-shaped heat insulating plates as heat insulating members made of a heat resistant material such as quartz or SiC is placed. It is provided and configured so that heat from the heating body 48 described later is not easily transmitted to the lower side of the processing furnace 40 (see FIGS. 2 and 3).
  • a processing furnace 40 is provided on the back side and the upper side in the housing 12. Inside the processing furnace 40, a boat 30 loaded so as to stack a plurality of wafers 14 is carried in, and a heat treatment (film formation process) is performed on each wafer 14.
  • FIG. 2 is a cross-sectional view showing the internal structure of the processing furnace together with the gas system
  • FIG. 3 is a cross-sectional view showing the internal structure of the processing furnace together with the temperature measurement system.
  • the processing furnace 40 includes a first gas supply nozzle (gas nozzle) 60 having a first gas supply port 68, a second gas supply nozzle (gas nozzle) 70 having a second gas supply port 72, and gas supply nozzles 60, 70.
  • a first gas exhaust port 90 for exhausting the reaction gas from the outside to the outside is provided.
  • a third gas supply port 360 that supplies an inert gas and a second gas exhaust port 390 that exhausts the inert gas to the outside are provided.
  • the processing furnace 40 includes a reaction tube 42 that forms a cylindrical reaction chamber 44.
  • the reaction tube 42 is made of a heat-resistant material such as quartz or SiC, and is formed in a cylindrical shape having a closed upper end and an opened lower end.
  • a manifold 36 is arranged concentrically with the reaction tube 42 on the opening side (lower side) of the reaction tube 42.
  • the manifold 36 is made of, for example, stainless steel and is formed in a cylindrical shape having an upper side and a lower side opened.
  • the manifold 36 supports the reaction tube 42, and a seal ring (not shown) is provided between the manifold 36 and the reaction tube 42.
  • the manifold 36 is supported by a holding body (not shown), so that the reaction tube 42 is installed vertically.
  • the processing furnace 40 includes a heating body 48 that is induction-heated and an induction coil 50 as a magnetic field generation unit.
  • the heating body 48 is formed in a cylindrical shape and is disposed in the reaction chamber 44, and a substrate housing chamber 49 is formed inside the heating body 48.
  • the substrate accommodation chamber 49 can accommodate the wafer 14 as a substrate made of Si, SiC, or the like in a horizontal posture and aligned in a state where the centers are aligned with each other, stacked in the vertical direction, and held in a held state. It is configured.
  • the heating body 48 is induction heated by a magnetic field generated by an induction coil 50 provided outside the reaction tube 42. Thereby, when the induction coil 50 is energized, the heating body 48 generates heat, and as a result, the inside of the reaction chamber 44 (inside the substrate housing chamber 49) is heated.
  • a heat insulating material 54 formed of carbon felt or the like that is difficult to be induction-heated is provided between the reaction tube 42 and the heating body 48.
  • a heat insulating material 54 formed of carbon felt or the like that is difficult to be induction-heated.
  • an outer heat insulating wall 55 having, for example, a water cooling structure is provided outside the induction coil 50 in order to suppress the heat in the reaction chamber 44 from being transmitted to the outside.
  • the outer heat insulating wall 55 is provided so as to surround the reaction chamber 44 and the induction coil 50.
  • a magnetic seal 58 is provided outside the outer heat insulating wall 55 to prevent a magnetic field generated by energizing the induction coil 50 from leaking outside.
  • the 2nd gas supply nozzle 70 for doing is arrange
  • a first gas exhaust port 90 is disposed between the heating body 48 and the wafer 14 on the opposite side of the gas supply nozzles 60 and 70, and a third gas exhaust port 90 is interposed between the reaction tube 42 and the heat insulating material 54.
  • a gas supply port 360 and a second gas exhaust port 390 are arranged.
  • reaction gas supplied from the gas supply nozzles 60 and 70 described above is an example given for explaining the semiconductor manufacturing apparatus 10, and details of these reaction gases will be described later. Further, in the present embodiment, as shown in FIG. 5, two first gas supply nozzles 60 and three second gas supply nozzles 70 are alternately provided along the circumferential direction of the substrate housing chamber 49. However, the number and arrangement of the gas supply nozzles 60 and 70 can be arbitrarily set according to the specifications of the semiconductor manufacturing apparatus 10.
  • the first gas supply nozzle 60 is made of, for example, carbon graphite, and the base end portion 60a penetrates the manifold 36 and is attached to the manifold 36 by welding or the like.
  • a plurality of first gas supply ports 68 are provided along the longitudinal direction of the first gas supply nozzle 60, and each of the first gas supply ports 68 has at least Si (for example, monosilane (hereinafter referred to as SiH 4 ) gas as a gas containing silicon) and hydrogen chloride (hereinafter referred to as HCl) gas as a Cl (chlorine) atom-containing gas are applied to the wafer 14 in the substrate accommodation chamber 49. It is designed to supply towards.
  • SiH 4 monosilane
  • HCl hydrogen chloride
  • Cl chlorine
  • the first gas supply nozzle 60 is connected to the first gas line 222.
  • the first gas line 222 is connected to, for example, the gas pipes 213a and 213b.
  • the gas pipes 213a and 213b are mass flow controllers (flow rate control means) for SiH 4 gas and HCl gas, respectively.
  • the first gas supply source 210a for supplying SiH 4 gas and the second gas supply source 210b for supplying HCl gas are connected via 211a and 211b and valves 212a and 212b.
  • each valve 212a, 212b and each MFC 211a, 211b are electrically connected to a gas flow rate control unit 78 (see FIG. 4) of the controller 152, and a predetermined flow rate is set so that the flow rate of the supplied gas becomes a predetermined flow rate. It is controlled by timing.
  • the first and second gas supply sources 210a and 210b, the valves 212a and 212b, the MFCs 211a and 211b, the gas pipes 213a and 213b, the first gas line 222, the first gas supply nozzle 60, and the first gas supply port 68 forms a first gas supply system.
  • the second gas supply nozzle 70 is made of, for example, carbon graphite, and the base end portion 70a penetrates the manifold 36 and is attached to the manifold 36 by welding or the like.
  • the second gas supply nozzle 70 is provided with a plurality of second gas supply ports 72 along the longitudinal direction, and each of the second gas supply ports 72 has at least C ( For example, propane (hereinafter referred to as C 3 H 8 ) gas as the carbon) atom-containing gas and hydrogen (single H atom or H 2 molecule; hereinafter referred to as H 2 ) as the reducing gas, for example, in the substrate housing chamber 49. Is supplied toward the wafer 14.
  • C 3 H 8 propane
  • H 2 single H atom or H 2 molecule
  • the second gas supply nozzle 70 is connected to the second gas line 260.
  • the second gas line 260 is connected to, for example, the gas pipes 213c and 213d, and the gas pipes 213c and 213d are used as flow controllers for, for example, C 3 H 8 gas as C (carbon) atom-containing gas.
  • a fourth gas supply source 210d for supplying H 2 gas.
  • each valve 212c, 212d and each MFC 211c, 211d are electrically connected to a gas flow rate control unit 78 (see FIG. 4) of the controller 152, and a predetermined flow rate is set so that the flow rate of the supplied gas becomes a predetermined flow rate. It is controlled by timing.
  • the third and fourth gas supply sources 210c and 210d, the valves 212c and 212d, the MFCs 211c and 211d, the gas pipes 213c and 213d, the second gas line 260, the second gas supply nozzle 70, and the second gas supply port 72 forms a second gas supply system.
  • an arbitrary number of the gas supply ports 68 and 72 provided in the gas supply nozzles 60 and 70 may be provided in the stacked region (product region) of the wafer 14 or in the stacked region of the wafer 14. A number corresponding to the number of stacked wafers 14 may be provided.
  • the first gas exhaust port 90 is disposed so as to face the positions of the gas supply nozzles 60 and 70.
  • a gas exhaust pipe 230 connected to the first gas exhaust port 90 passes through the manifold 36 and is attached by welding or the like.
  • a gas cooler 215 for cooling the reaction gas (exhaust gas) that has passed through the substrate housing chamber 49 is provided on the downstream side of the gas exhaust pipe 230. Further downstream of the gas cooler 215 is a vacuum exhaust device 220 such as a vacuum pump via a pressure sensor (not shown) as a pressure detector and an APC (Auto Pressure Controller) valve 214 as a pressure regulator. It is connected.
  • An exhaust system that is, an exhaust line, is configured mainly by the gas exhaust pipe 230, the APC valve 214, and the pressure sensor. In addition, you may consider including the vacuum exhaust apparatus 220 and the gas cooler 215.
  • FIG. A pressure control unit 98 (see FIG. 4) of the controller 152 is electrically connected to the pressure sensor and the APC valve 214, and the pressure control unit 98 is based on the pressure detected by the pressure sensor. Is adjusted at a predetermined timing so that the pressure in the processing furnace 40 becomes a predetermined pressure.
  • At least Si (silicon) atom-containing gas and Cl (chlorine) atom-containing gas are supplied from the first gas supply ports 68 into the substrate housing chamber 49, and at least C (
  • the reaction gas supplied into the substrate housing chamber 49 is directed to the wafer 14 made of Si or SiC as shown by the solid line arrow in FIG.
  • the air flows in parallel on the surface of the wafer 14 and is exhausted from the first gas exhaust port 90. Therefore, the entire film formation surface of the wafer 14 is exposed to the reaction gas efficiently and uniformly.
  • the third gas supply port 360 is disposed between the reaction tube 42 and the heat insulating material 54, and the base end side (lower side) penetrates the manifold 36 and is attached to the manifold 36 by welding or the like. . Further, the second gas exhaust port 390 is disposed between the reaction tube 42 and the heat insulating material 54 so as to face the third gas supply port 360, and the second gas exhaust port 390 is connected to the gas exhaust tube 230. It is connected.
  • the third gas supply port 360 is connected to the third gas line 240, and the third gas line 240 is connected to the fifth gas supply source 210e via the valve 212e and the MFC 211e.
  • the inert gas for example, a rare gas Ar (argon) gas or N2 (nitrogen) gas is supplied from the fifth gas supply source 210e and contributes to the growth of the SiC epitaxial film, for example, Si (silicon).
  • a rare gas Ar (argon) gas or N2 (nitrogen) gas is supplied from the fifth gas supply source 210e and contributes to the growth of the SiC epitaxial film, for example, Si (silicon).
  • Atom-containing gas, C (carbon) atom-containing gas, Cl (chlorine) atom-containing gas, or a mixed gas thereof is prevented from entering between the reaction tube 42 and the heat insulating material 54. Unnecessary products are prevented from adhering to the inner wall or the outer wall of the heat insulating material 54.
  • each of the valve 212e and each MFC 211e is also electrically connected to the gas flow rate control unit 78 (see FIG. 4) of the controller 152 and controlled at a predetermined timing so that the Ar gas flow rate becomes a predetermined flow rate. It is like that.
  • the inert gas supplied between the reaction tube 42 and the heat insulating material 54 is evacuated through the second gas exhaust port 390 and the gas cooler 215 and the APC valve 214 on the downstream side of the gas exhaust tube 230.
  • the apparatus 220 is evacuated.
  • first, second, and third temperature control blocks (temperature measurement chips) 53 a, 53 b, and 53 c are provided between the heating body 48 and the heat insulating material 54.
  • Each of the temperature control blocks 53a to 53c is formed in a substantially rectangular parallelepiped shape with the same material as the heating body 48, and thereby generates heat at substantially the same temperature as the heating body 48 when the induction coil 50 is energized. It has become.
  • the temperature control blocks 53a to 53c are arranged at predetermined intervals along the circumferential direction of the heating body 48, and are disposed at height positions corresponding to the lower, middle, and upper stages of the boat 30, respectively. Accordingly, by measuring the temperature of each of the temperature control blocks 53a to 53c, the temperature distribution (heating state) of each wafer 14 stacked on the boat 30 in the substrate accommodation chamber 49 can be known.
  • the manifold 36 is provided with three viewports 56 (only one is shown in the drawing) so that each of the temperature control blocks 53a to 53c can be viewed from the outside.
  • the viewports 56 are provided corresponding to the temperature control blocks 53a to 53c, respectively, and are arranged at predetermined intervals along the circumferential direction of the manifold 36.
  • three reflecting mirrors 57 are provided at portions of the manifold 36 facing the viewports 56 so as to correspond to the viewports 56, respectively, and the reflecting mirrors 57 are directed toward the outer peripheral side of the manifold 36. It is inclined at an inclination angle of about 45 °.
  • each radiation thermometer 59 measures the temperature of each temperature control block 53a to 53c via each reflection mirror 57.
  • each of the temperature control blocks 53a to 53c, each of the reflection mirrors 57, and each of the radiation thermometers 59 constitutes an outdoor temperature measuring device (heater temperature measuring device) in the present invention, and these are the substrate storage chamber 49.
  • the temperature in the vicinity of the heating body 48 is measured outside.
  • the temperature inside the substrate storage chamber 49 is indirectly measured (estimated) by the above-described outdoor temperature measurement device without providing a temperature measurement device (profile temperature measurement device) inside the substrate storage chamber 49. can do.
  • Each of the temperature control blocks 53a to 53c is attached to the inside of the heat insulating material 54 (between the heating body 48 and the heat insulating material 54), and the height dimensions h1, h2, h3 from the respective reflecting mirrors 57 are attached. Are height dimensions corresponding to the lower, middle and upper stages of the boat 30, respectively.
  • Each radiation thermometer 59 is electrically connected to the temperature control unit 52 of the controller 152, and the temperature data of each temperature control block 53 a to 53 c measured by each radiation thermometer 59 is stored in the substrate storage chamber 49. It is sent to the temperature control unit 52 as outdoor temperature data indicating the external temperature.
  • the induction coil 50 is also electrically connected to the temperature control unit 52 (see FIG. 4) of the controller 152, and based on the outdoor temperature data measured by each radiation thermometer 59, the induction coil 50 is thereby connected. As a result, the power supply state is adjusted, and as a result, the temperature in the substrate housing chamber 49 is controlled at a predetermined timing so as to have a desired temperature distribution.
  • a seal cap 101 as a closing member that hermetically closes the opening side of the reaction tube 42 (manifold 36) is provided below the processing furnace 40.
  • a temperature measuring device 103 arranged so as to straddle the inside and outside of the substrate housing chamber 49 is attached to the seal cap 101, and the seal cap 101 heat-treats (film-formation treatment) each wafer 14. In the previous stage, it is used to measure the temperature in the heated substrate storage chamber 49 and obtain room temperature data in advance.
  • the seal cap 101 is configured to close the opening side of the substrate housing chamber 49 and is formed in a disk shape from a metal such as stainless steel.
  • a seal ring (not shown) is provided between the upper surface of the seal cap 101 and the lower surface of the manifold 36 in an airtight manner. Further, the rotation shaft 106 of the rotation mechanism 104 passes through the seal cap 101, and the rotation shaft 106 is connected to the boat heat insulating portion 34. Note that when the room temperature data is obtained in advance, the rotating mechanism 104 is in a stopped state.
  • the seal cap 101 is driven up and down in the vertical direction by an elevating mechanism (not shown) provided outside the processing furnace 40. Thereby, the boat 30 can be carried into and out of the substrate storage chamber 49. However, a plurality of wafers 14 are stacked on the boat 30 only when the heat treatment is actually performed. Further, the drive mechanism 108 (see FIG. 4) of the controller 152 is electrically connected to the rotation mechanism 104 and the lifting mechanism, and the rotation mechanism 104 and the lifting mechanism are controlled at a predetermined timing so as to perform a predetermined operation. It has become so.
  • the seal cap 101 is provided with a mounting hole 101 a for attaching the temperature measuring device 103.
  • An adapter 101b formed in a substantially cylindrical shape for attaching the temperature measuring device 103 to the seal cap 101 is firmly fixed to the mounting hole 101a so as to be kept airtight by welding or the like.
  • the adapter 101b is formed of a metal such as stainless steel like the seal cap 101, and an O-ring (seal member) 107 for maintaining airtightness between the adapter 101b and the temperature measuring device 103 is formed on the radially inner side thereof.
  • the O-ring 107 is formed of heat-resistant rubber (fluorine rubber, silicone rubber, or the like) that can withstand high temperatures so that it can be elastically deformed and kept airtight between the adapter 101b and the temperature measuring device 103. Further, the O-ring 107 is disposed on the lower side of the adapter 101b so as to be separated from the substrate housing chamber 49 (heat source). As described above, the O-ring 107 keeps the airtightness between the mounting hole 101 a of the seal cap 101 and the main body 200 of the temperature measuring device 103 outside the substrate housing chamber 49.
  • An annular first cooling water circulation chamber 101c is formed around the mounting hole 101a of the seal cap 101 so as to surround the mounting hole 101a.
  • a cooling water supply device 105 (see FIG. 3) including a storage tank, a pump, etc. (not shown) is connected to the first cooling water circulation chamber 101c via a flowing water pipe 105a. Then, the cooling water supply device 105 is driven and controlled by the temperature control unit 52, whereby the cooled cooling water CW is supplied into the first cooling water circulation chamber 101c as shown by the solid line arrow in FIG. As shown by the broken line arrows, the cooling water HW circulated and heated in the first cooling water circulation chamber 101c is discharged to the outside.
  • the temperature measuring device 103 includes a main body portion 200 made of stainless steel and a protective tube 300 made of silicon carbide provided integrally with the main body portion 200.
  • the main body 200 includes a mounting cylinder portion 201 that is mounted in the mounting hole 101a of the seal cap 101 via the adapter 101b.
  • An O-ring 107 provided on the inner side in the radial direction of the adapter 101b is fitted to the mounting cylinder portion 201, thereby maintaining an airtight state between the adapter 101b and the mounting cylinder portion 201.
  • the pressure in the substrate accommodating chamber 49 can be maintained at a predetermined pressure.
  • a cooling portion 203 that forms a second cooling water circulation chamber (cooling water circulation chamber) 202 is integrally provided on the O-ring 107 side (downward side) along the axial direction of the mounting cylinder portion 201.
  • the cooling part 203 is formed to have a larger diameter than the mounting cylinder part 201, thereby forming a stepped part 204 between the cooling part 203 and the mounting cylinder part 201.
  • the step portion 204 has a function of positioning the temperature measuring device 103 with respect to the adapter 101b.
  • a protective tube fitting recess 201a to which a proximal end portion of the protective tube 300 is fitted and fixed is formed on the protective tube 300 side (upper side) along the axial direction of the mounting cylinder portion 201.
  • the protective tube 300 can be installed straight and coaxially with the main body 200 by fitting and fixing the proximal end portion of the protective tube 300 to the protective tube fitting recess 201a.
  • the second cooling water circulation chamber 202 constitutes a cooling mechanism in the present invention, and is arranged so as to be close to the O-ring 107 immediately below the O-ring 107.
  • the second cooling water circulation chamber 202 is formed in an annular shape so as to follow the shape of the O-ring 107, and is connected to the cooling water supply device 105 via the flowing water pipe 105a, similarly to the first cooling water circulation chamber 101c.
  • the cooled cooling water CW is supplied into the second cooling water circulation chamber 202 as shown by the solid line arrows in FIG. 6 and circulates in the second cooling water circulation chamber 202 as shown by the broken arrows in FIG.
  • the heated cooling water HW is discharged to the outside.
  • the protective tube 300 is formed in a cylindrical shape, the closed top portion side of the protective tube 300 is disposed on the upper side opposite to the main body portion 200 side, and the base end portion serving as the opening side is the main body portion 200. Are fitted and fixed to the protective tube fitting recess 201a.
  • the protective tube 300 is arranged inside the substrate housing chamber 49, and three sets of first, second, and third thermocouple wires 301a, 301b, and 301c are provided inside the protective tube 300. (See FIG. 3).
  • the thermocouple wires 301a to 301c are insulated from each other via insulating members (not shown), and have different lengths.
  • first, second, and third contacts 302a, 302b, and 302c are provided at the ends of the thermocouple wires 301a to 301c that are disposed in the protective tube 300, respectively. . That is, the contacts 302 a to 302 c of the thermocouple wires 301 a to 301 c are arranged at different positions along the longitudinal direction of the protective tube 300.
  • the first contact 302a of the first thermocouple wire 301a is provided at a height position (h1) corresponding to the first temperature control block 53a constituting the outdoor temperature measuring device.
  • the second contact 302b of the second thermocouple strand 301b is provided at a height position (h2) corresponding to the second temperature control block 53b constituting the outdoor temperature measuring device, and the third thermocouple strand
  • the third contact 302c of 301c is provided at a height position (h3) corresponding to the third temperature control block 53c constituting the outdoor temperature measuring device.
  • first contact 302a of the first thermocouple wire 301a measures the temperature near the lower stage portion of the boat 30, and the second contact 302b of the second thermocouple wire 301b is the temperature near the middle step portion of the boat 30.
  • the third contact 302c of the third thermocouple wire 301c measures the temperature near the upper portion of the boat 30.
  • thermocouple wires 301a to 301c and the contacts 302a to 302c, the temperature control blocks 53a to 53c, the reflection mirrors 57, and the radiation thermometers 59 are not necessarily provided in groups of three.
  • One set or two sets may be provided, or four or more sets may be provided.
  • the sets may be provided separately according to the heating body 48 that is divided and controlled for each divided part. .
  • the required number of sets may be determined according to the accuracy (specifications) of temperature control required for the semiconductor manufacturing apparatus 10.
  • thermocouple strands 301a to 301c opposite to the contact points 302a to 302c pass through the insertion holes 200a formed in the main body 200 forming the temperature measuring device 103, so that the substrate accommodating chamber 49
  • the first, second, and third connectors 303a, 303b, and 303c are provided at the ends of the connectors.
  • the temperature measuring device 103 is electrically connected to the temperature control unit 52 (see FIGS. 3 and 4) of the controller 152 via the connectors 303a to 303c.
  • the change in voltage from each of the contacts 302 a to 302 c that is, the room temperature data of the substrate housing chamber 49 is sent to the temperature controller 52.
  • the insertion hole 200a of the main body 200 is closed by a sealing part 200b filled with a heat-resistant epoxy resin or the like, so that the pressure in the substrate housing chamber 49 can be maintained at a predetermined pressure. It has become.
  • controller 152 that controls each part (various valves, driving parts, etc.) constituting the semiconductor manufacturing apparatus 10 for forming a SiC epitaxial film will be described.
  • the controller 152 includes a temperature control unit 52, a gas flow rate control unit 78, a pressure control unit 98, and a drive control unit 108.
  • the temperature control unit 52, the gas flow rate control unit 78, the pressure control unit 98, and the drive control unit 108 constitute an operation unit and an input / output unit, and are electrically connected to the main control unit 150 that controls the entire semiconductor manufacturing apparatus 10, respectively. Connected.
  • a reaction gas composed of at least a Si (silicon) atom-containing gas and a C (carbon) atom-containing gas is supplied to the reaction chamber, whereby SiC It is necessary to form an epitaxial film.
  • the supply of the reaction gas to each wafer 14 is made uniform.
  • the gas supply nozzles 60 and 70 are provided in the substrate accommodating chamber 49 and along the longitudinal direction of the boat 30 in order to supply reaction gases from the vicinity of the wafers 14. Accordingly, the conditions in the gas supply nozzles 60 and 70 are the same as those in the substrate storage chamber 49.
  • the reaction gases react with each other and are consumed, and the reaction gas is insufficient on the downstream side of the substrate housing chamber 49.
  • the gas supply port of the gas supply nozzle is blocked, the reaction gas supply becomes unstable, and particles are generated. Will occur.
  • the Si atom-containing gas is supplied from the first gas supply nozzle 60, and the C atom-containing gas is supplied from the second gas supply nozzle 70.
  • the Si atom-containing gas and the C atom-containing gas are supplied from different gas supply nozzles, it is possible to prevent the SiC film from being deposited in the gas supply nozzle.
  • the carrier gas is just to supply appropriate carrier gas, respectively, when adjusting the density
  • a reducing gas such as hydrogen gas may be used.
  • the reducing gas is desirably supplied from the second gas supply nozzle 70 that supplies the C atom-containing gas.
  • the reducing gas is supplied together with the C atom-containing gas and mixed with the Si atom-containing gas in the substrate accommodating chamber 49, so that the reducing gas is reduced. Therefore, the deposition of the Si film in the first gas supply nozzle 60 can be suppressed.
  • the reducing gas can be used as a carrier gas for the C atom-containing gas.
  • an inert gas particularly a rare gas
  • Ar gas as the carrier of the Si atom-containing gas.
  • a chlorine atom-containing gas such as HCl
  • SiH 4 gas and HCl gas are supplied to the first gas supply nozzle 60, and C 3 H 8 gas and H 2 gas are supplied to the second gas supply nozzle 70.
  • C 3 H 8 gas and H 2 gas are supplied to the second gas supply nozzle 70.
  • the Si (silicon) atom-containing gas and the Cl (chlorine) atom-containing gas are separately supplied.
  • a gas containing atoms such as tetrachlorosilane (hereinafter referred to as SiCl 4 ) gas, trichlorosilane (hereinafter referred to as SiHCl 3 ) gas, or dichlorosilane (hereinafter referred to as SiH 2 Cl 2 ) gas may be supplied.
  • the gas containing Si atoms and Cl atoms is also a Si atom-containing gas or a mixed gas of Si atom-containing gas and Cl atom-containing gas.
  • SiCl 4 is desirable from the viewpoint of suppressing consumption of Si in the nozzle because the temperature at which pyrolysis is relatively high.
  • C 3 H 8 gas is used as the C (carbon) atom-containing gas
  • C 2 H 2 gas may be used.
  • H 2 gas used as the reducing gas
  • the present invention is not limited to this, and other H (hydrogen) atom-containing gas may be used.
  • the carrier gas at least one of rare gases such as Ar (argon) gas, He (helium) gas, Ne (neon) gas, Kr (krypton) gas, and Xe (xenon) gas may be used.
  • rare gases such as Ar (argon) gas, He (helium) gas, Ne (neon) gas, Kr (krypton) gas, and Xe (xenon) gas may be used.
  • a mixed gas in which these rare gases are arbitrarily combined may be used.
  • the Si atom-containing gas is supplied from the first gas supply nozzle 60 and the C atom-containing gas is supplied from the second gas supply nozzle 70, thereby suppressing the deposition of the SiC film in the gas supply nozzle.
  • a method of separating and supplying the Si atom-containing gas and the C atom-containing gas is referred to as a “separate method”.
  • the Si atom-containing gas and the C atom-containing gas are allowed to reach the wafers 14 from the gas supply ports 68 and 72. It is necessary to mix well between.
  • the Si atom-containing gas and the C atom-containing gas are mixed in advance and supplied from the first gas supply nozzle 60 (hereinafter referred to as “the first gas supply nozzle 60”)
  • a method of supplying the Si atom-containing gas and the C atom-containing gas from the same gas supply nozzle is referred to as a “premix method”.
  • this premix method there is a possibility that the SiC film is deposited in the gas supply nozzle.
  • the opening side of the substrate accommodation chamber 49 is closed by the seal cap 101 before the heat treatment (film formation treatment) of each wafer 14, and the temperature inside the heated substrate accommodation chamber 49 is set. taking measurement. Thereby, temperature data in the substrate storage chamber 49, that is, room temperature data is obtained.
  • the induction coil 50 is energized by the temperature control unit 52, and the energization state at this time is adjusted based on the temperature data from the temperature measuring device 103.
  • the temperature measuring device 103 is disposed in the vicinity of the wafer 14 in the substrate accommodating chamber 49, the temperature in the substrate accommodating chamber 49 is the same high temperature (1500 ° C.) as when each wafer 14 is actually heat-treated. To 1800 ° C) with high accuracy.
  • the cooling water supply device 105 When the room temperature data is obtained in advance by the temperature measuring device 103, the cooling water supply device 105 is driven and controlled by the temperature control unit 52 at the same time. Then, by the cooling control of the cooling water supply device 105, the cooled cooling water CW (approximately 15 ° C. at room temperature) is supplied to the first cooling water circulation chamber 101 c of the seal cap 101 and the second cooling water circulation chamber 202 of the temperature measuring device 103. ) Is supplied. That is, the second cooling water circulation chamber 202 as a cooling mechanism operates.
  • the high temperature in the substrate housing chamber 49 is transmitted to the rubber parts and resin parts forming the temperature measuring device 103, that is, the O-ring 107 and the sealing portion 200b, and degassing and the like from the constituent materials of these parts. This prevents the impurities from diffusing into the semiconductor manufacturing apparatus 10.
  • FIG. 7A shows a temperature distribution diagram of the temperature measuring device 103.
  • the cooled cooling water CW circulating in the first cooling water circulation chamber 101c and the second provided integrally with the temperature measuring device 103 are shown in FIG. It can be seen that the periphery of the O-ring 107 and the sealing portion 200b is effectively cooled by the cooled cooling water CW circulating in the cooling water circulation chamber 202.
  • the periphery of the O-ring 107 is cooled to “15 ° C. to 200 ° C.”, which is much lower than the melting temperature (about 300 ° C.) of the O-ring 107 made of heat-resistant rubber. Therefore, the O-ring 107 is melted to cause a sealing failure and the pressure in the substrate housing chamber 49 is prevented from becoming unstable (opened), and accurate indoor temperature data is obtained. Can do.
  • FIG. 7B shows “Comparative example 1” of the temperature measuring device 103.
  • the comparative example 1 in the vicinity of the O-ring 107 of the main body 200 forming the temperature measuring device 103, FIG. The case where the cooling mechanism CD comprised as a different body from the main-body part 200 is attached is shown.
  • the temperature measurement according to the present embodiment is performed even when the cooled cooling water CW is circulated through the first cooling water circulation chamber 101c of the seal cap 101 and the second cooling water circulation chamber CR of the cooling mechanism CD. It can be seen that the cooling efficiency is lower than that of the vessel 103 (see FIG. 7A).
  • the periphery of the O-ring 107 is “200 ° C.
  • FIG. 7C shows a “comparative example 2” of the temperature measuring device 103.
  • the comparative example 2 the case where the cooling mechanism is eliminated from the main body 200 forming the temperature measuring device 103 is shown. Yes.
  • the cooling is performed only by the cooled cooling water CW circulating in the first cooling water circulation chamber 101c of the seal cap 101. Therefore, a sufficient cooling effect cannot be obtained.
  • the periphery of the O-ring 107 is “400 ° C. to 500 ° C.” exceeding the melting temperature of the O-ring 107.
  • the opening side of the substrate storage chamber 49 is closed by the seal cap 101 before the heat treatment (film formation processing) of each wafer 14, and the temperature inside the heated substrate storage chamber 49 is measured by the temperature measuring device 103.
  • the step of measuring and obtaining the room temperature data of the substrate housing chamber 49 constitutes the room temperature measuring step in the temperature control method and semiconductor device manufacturing method of the present invention.
  • each radiation thermometer 59 measures the external temperature of the substrate housing chamber 49 to obtain outdoor temperature data.
  • each radiation thermometer 59 measures the temperature of each temperature control block 53a to 53c via each reflection mirror 57.
  • the process of obtaining the outdoor temperature data by the outdoor temperature measuring device including the radiation thermometers 59, the reflection mirrors 57, and the temperature control blocks 53a to 53c is the manufacturing method of the temperature control method and the semiconductor device of the present invention. This constitutes an outdoor temperature measuring step in the method.
  • the temperature control unit 52 of the controller 152 calculates temperature calibration data based on each temperature data (indoor temperature data and outdoor temperature data) obtained in the indoor temperature measurement process and the outdoor temperature measurement process.
  • the temperature calibration data is obtained from, for example, outdoor temperature data when the inside of the substrate housing chamber 49 is at a desired room temperature and the amount of current supplied to the induction coil 50 at this time.
  • the wafer 14 is actually heat-treated by energizing the induction coil 50 and adjusting the outdoor temperature based on the above, the substrate housing chamber 49 is brought to a desired room temperature without using the temperature measuring device 103. Can be controlled.
  • the step of calculating the temperature calibration data based on the indoor temperature data and the outdoor temperature data constitutes the temperature calibration data calculation step in the temperature control method and the semiconductor device manufacturing method of the present invention.
  • the process proceeds to a process of actually heat-treating each wafer 14.
  • the temperature measuring device 103 is removed by a manual operation by an operator or an automatic operation by an elevating mechanism.
  • the pod 16 is transferred from the pod stage 18 to the pod storage shelf 22 by the pod transfer device 20.
  • the pod 16 stocked on the pod storage shelf 22 is transported and set to the pod opener 24 by the pod transport device 20, the lid 16 a of the pod 16 is opened by the pod opener 24, and the pod 16 is detected by the substrate number detector 26.
  • the number of wafers 14 housed in is detected.
  • the wafer transfer unit 28 takes out the wafer 14 from the pod 16 at the position of the pod opener 24, and transfers the taken out wafer 14 to the boat 30.
  • the boat 30 holding the wafers 14 is loaded into the substrate storage chamber 49, that is, boat loaded, by the lifting drive of the lifting mechanism.
  • a series of steps up to this point, that is, a step until the temperature measuring device 103 is removed and a plurality of wafers 14 stacked on the boat 30 are transferred into the substrate accommodating chamber 49 constitutes a substrate transfer step.
  • the seal cap 101 is brought into contact with the lower surface of the manifold 36, whereby the opening side of the substrate housing chamber 49 is closed.
  • the substrate evacuation chamber 220 reaction chamber 44
  • a predetermined pressure degree of vacuum
  • the heating body 48 is heated so that the inside of the wafer 14 and the substrate housing chamber 49 is at a predetermined temperature.
  • the temperature control unit 52 measures the temperature calibration data obtained in the temperature calibration data calculation process and each radiation thermometer 59 (outdoor temperature measuring device) so that the inside of the substrate housing chamber 49 has a predetermined temperature distribution.
  • the energization amount to the induction coil 50 is controlled based on the current outdoor temperature data.
  • the temperature of the heating body 48 is adjusted so that the inside of the substrate housing chamber 49 becomes a desired temperature (1500 ° C. to 1800 ° C.).
  • the boat 30 is rotated by the rotating mechanism 104, and thereby the wafer 14 is also rotated.
  • the step of closing the opening side of the substrate housing chamber 49 with the seal cap 101 and adjusting the temperature of the heating body 48 using the temperature calibration data is performed in the temperature control method and the semiconductor device manufacturing method of the present invention.
  • the heating body temperature adjustment process is comprised.
  • Si (silicon) atom-containing gas and Cl (chlorine) atom-containing gas contributing to the growth of the SiC epitaxial film are respectively supplied into the substrate housing chamber 49 heated to a desired temperature, respectively, as the first and second gas supply sources.
  • the gas is supplied from 210 a and 210 b and is injected into the substrate storage chamber 49 from the first gas supply port 68.
  • the valves 212c and 212d are opened, and the respective reactions are performed.
  • the gas flows through the second gas line 260 and is injected into the substrate housing chamber 49 through the second gas supply nozzle 70 and the second gas supply port 72.
  • the reaction gas injected from the first gas supply port 68 and the second gas supply port 72 flows inside the heating body 48 in the substrate housing chamber 49 and is exhausted from the first gas exhaust port 90 through the gas exhaust pipe 230.
  • the reaction gas injected from the first gas supply port 68 and the second gas supply port 72 passes through the substrate housing chamber 49, the reaction gas comes into contact with the wafer 14 made of SiC or the like, and the film formation surface of the wafer 14.
  • a SiC epitaxial film (crystal film) is formed on top.
  • the valve 212e is opened, and the third gas line 240 is opened. It circulates and is supplied into the reaction chamber 44 from the third gas supply port 360. Ar gas as an inert gas supplied from the third gas supply port 360 passes between the heat insulating material 54 and the reaction tube 42 in the reaction chamber 44 and is exhausted from the second gas exhaust port 390. Thereafter, the reaction gas is exposed to each wafer 14 as described above, and when a preset time has elapsed, the supply control of each reaction gas is stopped.
  • the series of steps so far that is, the step of forming the SiC epitaxial film on the film forming surface of each wafer 14 by supplying the reaction gas constitutes the substrate processing step in the method for manufacturing a semiconductor device of the present invention. .
  • an inert gas is supplied from an inert gas supply source (not shown), the inside of the substrate storage chamber 49 is replaced with an inert gas, and the pressure in the substrate storage chamber 49 (reaction chamber 44) is restored to normal pressure. .
  • the seal cap 101 is lowered by the lifting drive of the lifting mechanism, and the opening side of the substrate storage chamber 49 is opened. Thereafter, the raising / lowering drive of the raising / lowering mechanism is continued, and each heat-treated (film-formed) wafer 14 is carried out from the lower side of the manifold 36 to the outside of the substrate housing chamber 49 while being held by the boat 30, that is, Boat unloaded. Each wafer 14 held in the boat 30 is in a standby state inside a load lock chamber (not shown) until it cools.
  • each wafer 14 is taken out from the boat 30 by the operation of the substrate transfer device 28 and transferred to the empty pod 16 set in the pod opener 24.
  • the pod 16 storing the wafers 14 is transferred to the pod storage shelf 22 or the pod stage 18 by the operation of the pod transfer device 20. In this way, a series of operations of the semiconductor manufacturing apparatus 10 is completed.
  • the temperature measuring device 103 that measures the temperature in the substrate housing chamber 49 holds the airtightness between the mounting hole 101 a and the main body 200 outside the substrate housing chamber 49. Since the second cooling water circulation chamber 202 for cooling the O-ring 107 is provided, the O-ring 107 can be prevented from melting and the internal pressure of the substrate housing chamber 49 can be reliably maintained at a predetermined value. Therefore, it is possible to accurately measure the high temperature in the substrate storage chamber 49 in which the SiC epitaxial film is formed, and as a result, the temperature in the substrate storage chamber 49 can be accurately controlled.
  • the second cooling water circulation chamber 202 is formed in an annular shape following the shape of the O-ring 107, and is disposed close to the O-ring 107. Can be effectively cooled. Therefore, high temperature is prevented from being transmitted to the O-ring 107, and the O-ring 107 can be reliably prevented from melting.
  • the contacts 302a to 302c of the thermocouple wires 301a to 301c forming the temperature measuring device 103 are placed at different positions (h1 to h3) along the longitudinal direction of the protective tube 300. Therefore, the temperature in the vicinity of the lower part to the upper part of the boat 30 can be measured without unevenness. Therefore, it is possible to control the temperature in the substrate storage chamber 49 with high accuracy.
  • the temperature measuring device 103 described in the first embodiment is used in the substrate processing step in the substrate manufacturing method for forming a SiC epitaxial film.
  • the plurality of effects one or more effects are achieved.
  • FIG. 8 is an explanatory view illustrating the detailed structure of the temperature measuring device according to the second embodiment.
  • the temperature measuring device 400 according to the second embodiment is different from the temperature measuring device 103 according to the first embodiment described above only in that a heat-resistant cover 410 is attached to the protective tube 300.
  • the heat-resistant cover 410 is made of sapphire having a melting point higher than that of the protective tube 300 (made of silicon carbide) and excellent in heat resistance, and is formed in a bottomed cylindrical shape like the protective tube 300.
  • the heat-resistant cover 410 is formed with a larger diameter than the protective tube 300 and covers the periphery of the protective tube 300 with a predetermined gap S therebetween.
  • a fitting step portion 210 to which the base end portion of the heat-resistant cover 410 is fitted and fixed is provided on the outer peripheral side of the protective tube fitting recess 201a of the main body portion 200. Accordingly, the heat-resistant cover 410 can be installed straight along with the protective tube 300 on the same axis as the main body 200 by fitting and fixing the base end portion of the heat-resistant cover 410 to the fitting stepped portion 210. Since the heat-resistant cover 410 is provided, a protective tube made of other materials such as quartz can be used instead of the protective tube 300 made of silicon carbide. However, the heat resistant cover 410 is not limited to sapphire, and may be made of silicon carbide or the like according to the specifications of the temperature measuring device 400.
  • the heat-resistant cover 410 since the heat-resistant cover 410 is provided, it is possible to provide the temperature measuring device 400 with more excellent heat resistance and to improve the reliability.
  • the protective tube and thermocouple wire inside the cover can be made of an inexpensive one with reduced heat resistance.
  • FIG. 9 is an explanatory diagram for explaining an arrangement state of the temperature measuring device according to the third embodiment in the processing furnace.
  • the first, second, and third temperature measuring devices 500, 510, and 520 are provided in place of the one temperature measuring device 103 as compared with the first embodiment described above. Only the point is different. Specifically, each temperature measuring device is associated with the first, second, and third temperature control blocks 53a, 53b, and 53c provided between the heating body 48 and the heat insulating material 54 (see FIG. 3). 500, 510, and 520 have different length dimensions. That is, the first temperature measuring device 500 includes a first thermocouple wire 301a and a first contact 302a whose height position corresponds to h1 in correspondence with the first temperature control block 53a.
  • the second temperature measuring device 510 includes a second thermocouple wire 301b and a second contact 302b whose height position corresponds to h2 corresponding to the second temperature control block 53b.
  • the third temperature measuring device 520 includes a third thermocouple element 301c and a third contact 302c whose height position corresponds to h3, corresponding to the third temperature control block 53c.
  • a heat resistant cover may be provided in the same manner as in the second embodiment.
  • the first, second, and third temperature measuring devices 500, 510 are associated with the first, second, and third temperature control blocks 53a, 53b, and 53c. , 520, the contacts 302a to 302c can be arranged at a uniform distance from the temperature control blocks 53a to 53c. Therefore, it is possible to obtain temperature calibration data with higher accuracy and control the temperature in the substrate storage chamber 49 (see FIG. 3) with higher accuracy.
  • the “cooling mechanism” of the present invention is the second cooling water circulation chamber 202 in which the cooling water circulates.
  • the present invention is not limited to this, and for example, a heat pump It is also possible to use a cooling mechanism using the like.
  • the film forming apparatus for forming the SiC epitaxial film has been described as an example.
  • the present invention is not limited to this, and is injected (supplied) from the gas supply port.
  • the present invention can also be applied to other substrate processing apparatuses in which the reactive gas supply direction (horizontal direction) differs from the exhausted reactive gas ejection direction (vertical direction).
  • the processing temperature in the SiC annealing apparatus is 1500 ° C. to 2000 ° C., which is a high temperature region, and therefore the present invention is applied. Therefore, more accurate temperature control is possible.
  • the present invention includes at least the following embodiments.
  • a temperature measuring device for measuring a temperature in a substrate housing chamber of a substrate processing apparatus for processing a substrate, A main body mounted in a mounting hole of a closing member for closing the opening side of the substrate housing chamber; A protective tube provided integrally with the main body, and disposed inside the substrate housing chamber; A thermocouple wire provided inside the protective tube and provided with a contact; A cooling mechanism that is provided in the main body portion and cools a seal member that maintains airtightness between the mounting hole and the main body portion outside the substrate housing chamber; Having a temperature measuring device.
  • Appendix 3 The temperature measuring instrument according to appendix 1 or 2, wherein a heat-resistant cover is attached to the protective tube.
  • Appendix 5 Any one of appendices 1 to 4, wherein a plurality of sets of the thermocouple wires are provided inside the protective tube, and the contacts of the thermocouple wires are arranged at different positions along the longitudinal direction of the protective tube.
  • the temperature measuring device according to one.
  • a temperature measuring device for measuring a temperature in a substrate housing chamber of a substrate processing apparatus for processing a substrate, A main body mounted in a mounting hole of a closing member for closing the opening side of the substrate housing chamber; A protective tube provided integrally with the main body, and disposed inside the substrate housing chamber; A thermocouple element provided inside the protective tube and provided with a contact; A temperature measuring device in which a heat-resistant cover is attached to the protective tube.
  • Appendix 8 The temperature measuring instrument according to appendix 6 or 7, wherein a cooling mechanism is provided in the main body portion for cooling a sealing member that maintains airtightness between the mounting hole and the main body portion outside the substrate housing chamber.
  • Appendix 9 Any one of appendixes 6 to 8, wherein a plurality of sets of the thermocouple wires are provided inside the protective tube, and the contacts of the thermocouple wires are respectively arranged at different positions along the longitudinal direction of the protective tube.
  • the temperature measuring device according to one.
  • a temperature control method for performing temperature control in a substrate housing chamber of a substrate processing apparatus for processing a substrate by adjusting a temperature of a heating body by a controller A main body portion that is mounted in a mounting hole of a closing member that closes the opening side of the substrate housing chamber, a protective tube that is provided integrally with the main body portion and disposed inside the substrate housing chamber, and inside the protective tube
  • a thermocouple element provided with a contact, provided in the main body, and having a cooling mechanism that cools a seal member that maintains an airtightness between the mounting hole and the main body outside the substrate housing chamber
  • a heating body temperature adjustment step of adjusting the temperature of the heating body based on
  • the sealing member is an O-ring that fits into the main body, the cooling mechanism is formed in an annular shape along the shape of the O-ring, and a cooling water circulation chamber in which cooling water circulates is formed, and the indoor temperature measuring step Then, the temperature control method according to appendix 10, wherein the cooling water is circulated to the cooling water circulation chamber.
  • Appendix 12 The temperature control method according to appendix 10 or 11, wherein a heat-resistant cover is attached to the protective tube.
  • Appendix 14 Any one of appendixes 10 to 13, wherein a plurality of sets of the thermocouple wires are provided inside the protective tube, and the contacts of the thermocouple wires are arranged at different positions along the longitudinal direction of the protective tube.
  • the temperature control method according to one.
  • a semiconductor device manufacturing method for manufacturing a semiconductor device using a substrate processing apparatus for processing a substrate A main body portion mounted in a mounting hole of a closing member that closes the opening side of the substrate storage chamber for storing the substrate, a protective tube provided integrally with the main body portion and disposed inside the substrate storage chamber, the protection A thermocouple wire provided inside the tube and provided with a contact, and a seal member provided in the main body portion and for maintaining an airtightness between the mounting hole and the main body portion outside the substrate housing chamber are cooled.
  • An indoor temperature measuring step of measuring the temperature in the substrate housing chamber using a temperature measuring device having a cooling mechanism Using an outdoor temperature measuring device provided outside the substrate housing chamber, an outdoor temperature measuring step for measuring the temperature outside the substrate housing chamber; A temperature calibration data calculation step for calculating temperature calibration data based on each temperature data obtained in the indoor temperature measurement step and the outdoor temperature measurement step; Based on the temperature calibration data obtained in the temperature calibration data calculation step and the current outdoor temperature data measured by the outdoor temperature measuring device, the heating body temperature for adjusting the temperature of the heating body for heating the substrate housing chamber The adjustment process; A substrate processing step of supplying a reaction gas from a gas supply source into the substrate housing chamber and processing the substrate.
  • the sealing member is an O-ring that fits into the main body, the cooling mechanism is formed in an annular shape along the shape of the O-ring, and a cooling water circulation chamber in which cooling water circulates is formed, and the indoor temperature measuring step Then, the manufacturing method of the semiconductor device of Additional remark 15 which circulates the said cooling water to the said cooling water circulation chamber.
  • Appendix 17 18. The method for manufacturing a semiconductor device according to appendix 15 or 16, wherein a heat-resistant cover is attached to the protective tube.
  • Appendix 18 18. The method for manufacturing a semiconductor device according to appendix 17, wherein the heat resistant cover is made of sapphire.
  • Appendix 19 Any one of appendixes 15 to 19, wherein a plurality of sets of the thermocouple wires are provided inside the protective tube, and the contacts of the thermocouple wires are arranged at different positions along the longitudinal direction of the protective tube. A method of manufacturing a semiconductor device according to one of the above.
  • a substrate processing apparatus for processing a substrate A substrate storage chamber for storing the substrate; An outdoor temperature measuring device that is provided outside the substrate housing chamber and measures the temperature outside the substrate housing chamber; A gas nozzle that is provided inside the substrate storage chamber and supplies a reactive gas toward the substrate; A closing member for closing the opening side of the substrate housing chamber; A temperature measuring device mounted on the closing member and measuring the temperature in the substrate housing chamber, The temperature measuring device includes a main body portion that is attached to the attachment hole of the closing member; A protective tube provided integrally with the main body, and disposed inside the substrate housing chamber; A thermocouple wire provided inside the protective tube and provided with a contact; A substrate processing apparatus, comprising: a cooling mechanism that cools a sealing member that is provided in the main body portion and maintains an airtightness between the mounting hole and the main body portion outside the substrate housing chamber.
  • appendix 21 The substrate according to appendix 20, wherein the sealing member is an O-ring that fits into the main body, the cooling mechanism is formed in an annular shape that follows the shape of the O-ring, and a cooling water circulation chamber in which cooling water circulates is formed. Processing equipment.
  • Appendix 22 The substrate processing apparatus according to appendix 20 or 21, wherein a heat-resistant cover is attached to the protective tube.
  • Appendix 24 Any one of appendixes 20 to 23, wherein a plurality of sets of the thermocouple wires are provided inside the protective tube, and the contacts of the thermocouple wires are arranged at different positions along the longitudinal direction of the protective tube.
  • the substrate processing apparatus as described in one.
  • a substrate manufacturing method for manufacturing a substrate using a substrate processing apparatus for processing a substrate A main body portion mounted in a mounting hole of a closing member that closes the opening side of the substrate storage chamber for storing the substrate, a protective tube provided integrally with the main body portion and disposed inside the substrate storage chamber, the protection A thermocouple wire provided inside the tube and provided with a contact, and a seal member provided in the main body portion and for maintaining an airtightness between the mounting hole and the main body portion outside the substrate housing chamber are cooled.
  • An indoor temperature measuring step of measuring the temperature in the substrate housing chamber using a temperature measuring device having a cooling mechanism Using an outdoor temperature measuring device provided outside the substrate housing chamber, an outdoor temperature measuring step for measuring the temperature outside the substrate housing chamber; A temperature calibration data calculation step for calculating temperature calibration data based on each temperature data obtained in the indoor temperature measurement step and the outdoor temperature measurement step; Based on the temperature calibration data obtained in the temperature calibration data calculation step and the current outdoor temperature data measured by the outdoor temperature measuring device, the heating body temperature for adjusting the temperature of the heating body for heating the substrate housing chamber The adjustment process; A substrate processing step of supplying a reaction gas from a gas supply source into the substrate chamber and processing the substrate.
  • the present invention can be widely used in manufacturing industries for manufacturing semiconductor devices (semiconductor devices), substrates for forming SiC epitaxial films, and the like.
  • SYMBOLS 10 Semiconductor manufacturing apparatus (substrate processing apparatus), 12 ... Housing, 14 ... Wafer (substrate), 16 ... Pod, 16a ... Lid, 18 ... Pod stage, 20 ... Pod transfer device, 22 ... Pod storage shelf, 24 ... Pod opener, 26 ... substrate number detector, 28 ... substrate transfer machine, 30 ... boat, 32 ... arm, 34 ... boat insulation, 36 ... manifold, 40 ... processing furnace, 42 ... reaction tube, 44 ... reaction chamber, 48 ... heating body, 49 ... substrate housing chamber, 50 ... induction coil, 52 ... temperature controller, 53a ... first temperature control block (outdoor temperature measuring device), 53b ...
  • second temperature control block (outdoor temperature) Measuring device), 53c ... third temperature control block (outdoor temperature measuring device), 54 ... heat insulating material, 55 ... outer heat insulating wall, 56 ... viewport, 57 ... reflection mirror (outdoor temperature measuring device), 58 ... Magnetic sea 59 ... Radiation thermometer (outdoor temperature measuring device), 60 ... first gas supply nozzle (gas nozzle), 60a ... base end portion, 68 ... first gas supply port, 70 ... second gas supply nozzle (gas nozzle), 70a ... Base end portion, 72 ... Second gas supply port, 78 ... Gas flow rate control unit, 90 ... First gas exhaust port, 98 ... Pressure control unit, 101 ... Seal cap (blocking member), 101a ...

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

The temperature in a substrate accommodating chamber can be accurately measured even when the temperature in the substrate accommodating chamber is a higher temperature during a film-forming treatment, and the temperature in the substrate accommodating chamber is therefore controlled with precision. A temperature gauge for measuring the temperature in the substrate accommodating chamber is provided with a second cooling-water circulation chamber for cooling an O-ring that maintains airtightness between a mounting hole and a main body section in the exterior of the substrate accommodating chamber, melting of the O-ring can be forestalled, and the internal pressure of the substrate accommodating chamber can be reliably maintained at a predetermined value. Therefore, the temperature in the substrate accommodating chamber for forming an SiC epitaxial film can be accurately measured, and the temperature in the substrate accommodating chamber can therefore be controlled with precision.

Description

温度測定器および基板処理装置ならびに温度制御方法および半導体装置の製造方法Temperature measuring instrument, substrate processing apparatus, temperature control method, and semiconductor device manufacturing method
 本発明は、温度測定器および基板処理装置ならびに温度制御方法および半導体装置の製造方法に関するものである。 The present invention relates to a temperature measuring device, a substrate processing apparatus, a temperature control method, and a semiconductor device manufacturing method.
 炭化ケイ素(SiC)は、ケイ素(Si)に比して、絶縁耐圧や熱伝導性が高いこと等から、特にパワーデバイス用素子材料として注目されている。その一方でSiCは、不純物拡散係数が小さいこと等から、Siに比して結晶基板や半導体装置(半導体デバイス)の製造が難しいことが知られている。例えば、Siのエピタキシャル成膜温度が900℃~1200℃程度であるのに対し、SiCのエピタキシャル成膜温度は1500℃~1800℃の高温となっており、装置の耐熱構造や材料の分解抑制等に技術的な工夫が必要となる。さらには、製品としての結晶基板や半導体装置のバラツキの発生を抑制して歩留まりを良くするために、基板収容室(成膜処理室)内の温度を正確に制御することが要求されている。 Silicon carbide (SiC) is particularly attracting attention as an element material for power devices because it has higher withstand voltage and higher thermal conductivity than silicon (Si). On the other hand, it is known that SiC is difficult to manufacture a crystal substrate and a semiconductor device (semiconductor device) as compared with Si because of a small impurity diffusion coefficient. For example, the epitaxial film formation temperature of Si is about 900 ° C to 1200 ° C, whereas the epitaxial film formation temperature of SiC is 1500 ° C to 1800 ° C, which is a technology for suppressing the heat-resistant structure of devices and the decomposition of materials. Creative ingenuity is required. Furthermore, it is required to accurately control the temperature in the substrate storage chamber (deposition processing chamber) in order to improve the yield by suppressing the occurrence of variations in crystal substrates and semiconductor devices as products.
 基板収容室内の温度を正確に制御するには、当該基板収容室内に温度測定器を直接設置するのが望ましいが、上述のように基板収容室内は高温となり、しかも基板収容室内には反応ガスを満遍なく行き渡らせる必要があるため、確実に気密状態を保持できるようにしなければならない。つまり、基板収容室の内外で温度測定器を跨ぐよう設置するのは困難であり、仮に、気密状態が保持できなくなると、例えば基板収容室内の反応ガスの濃度分布にバラツキが生じてしまい、ひいては製品の成膜状態にバラツキが生じることになる。 In order to accurately control the temperature in the substrate storage chamber, it is desirable to install a temperature measuring device directly in the substrate storage chamber. However, as described above, the temperature in the substrate storage chamber is high, and a reaction gas is introduced into the substrate storage chamber. Since it is necessary to spread evenly, it must be ensured that an airtight state can be maintained. In other words, it is difficult to install the temperature measuring instrument across the substrate storage chamber, and if the airtight state cannot be maintained, for example, the concentration distribution of the reaction gas in the substrate storage chamber will vary, and as a result There will be variations in the film formation state of the product.
 そこで、実際に成膜処理を行う前の段階で、基板収容室内の温度と基板収容室外の温度とを測定し、各温度データに基づいて校正データを求めることが行われている。そして、成膜処理時には、基板収容室内の温度測定器を取り外して基板収容室外の温度測定器のみを用い、当該基板収容室外の温度測定器で得た室外温度データを、事前に求めた校正データに基づいて校正し、基板収容室内の温度を求めて(推定して)これにより精度良く加熱できるようにしている。このような校正データを得るために用いられる温度測定器としては、例えば、特許文献1に記載されたものが知られている。特許文献1に記載された温度測定器は、基板収容室内の高温に耐え得るように、保護管の材料に炭化ケイ素(SiC)やアルミナ(Al)を用いている。 Therefore, in a stage before the actual film forming process is performed, the temperature inside the substrate storage chamber and the temperature outside the substrate storage chamber are measured, and calibration data is obtained based on each temperature data. Then, during the film formation process, the temperature measuring device inside the substrate housing chamber is removed and only the temperature measuring device outside the substrate housing chamber is used, and the outdoor temperature data obtained by the temperature measuring device outside the substrate housing chamber is used as calibration data obtained in advance. The temperature is calibrated based on the above, and the temperature in the substrate housing chamber is obtained (estimated), thereby enabling heating with high accuracy. As a temperature measuring device used for obtaining such calibration data, for example, the one described in Patent Document 1 is known. The temperature measuring device described in Patent Document 1 uses silicon carbide (SiC) or alumina (Al 2 O 3 ) as a material for the protective tube so that it can withstand high temperatures in the substrate housing chamber.
特開平8-261844号公報JP-A-8-261844
 SiCのエピタキシャル成膜に対応するには、前述のように基板収容室内の温度をより高温の1500℃~1800℃とする必要がある。そのため、校正データを得るために用いられる温度測定器においても、従前の特許文献1に記載された温度測定器よりも、さらに高温に耐えられるようその構造を見直し、より高い信頼性を得るための工夫が必要となっていた。 In order to cope with the epitaxial film formation of SiC, it is necessary to set the temperature in the substrate housing chamber to a higher temperature of 1500 ° C. to 1800 ° C. as described above. Therefore, in the temperature measuring device used for obtaining the calibration data, the structure is reviewed so that it can withstand a higher temperature than the temperature measuring device described in Patent Document 1 so as to obtain higher reliability. Ingenuity was necessary.
 本発明の目的は、成膜処理時における基板収容室内の温度がより高温であっても、基板収容室内の温度を正確に測定することができ、ひいては基板収容室内の温度を精度良く制御することが可能な温度測定器および基板処理装置ならびに温度制御方法および半導体装置の製造方法を提供することにある。 An object of the present invention is to accurately measure the temperature in the substrate housing chamber even when the temperature in the substrate housing chamber during the film forming process is higher, and to control the temperature in the substrate housing chamber with high accuracy. It is an object of the present invention to provide a temperature measuring device, a substrate processing apparatus, a temperature control method, and a method for manufacturing a semiconductor device.
 本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。 Of the inventions disclosed in this application, the outline of typical ones will be briefly described as follows.
 すなわち、本発明の一態様に係る温度測定器は、基板収容室の開口側を閉塞する閉塞部材の装着孔に装着される本体部と、前記本体部に一体に設けられ、前記基板収容室の内部に配置される保護管と、前記保護管の内部に設けられ、接点を備えた熱電対素線と、前記本体部に設けられ、前記基板収容室の外部で前記装着孔と前記本体部との間の気密を保持するシール部材を冷却する冷却機構とを備えている。 That is, the temperature measuring device according to one aspect of the present invention is provided integrally with the main body portion that is mounted in the mounting hole of the closing member that closes the opening side of the substrate housing chamber, A protective tube disposed inside, a thermocouple element provided inside the protective tube and provided with a contact; provided in the main body; and the mounting hole and the main body outside the substrate housing chamber And a cooling mechanism that cools the sealing member that maintains the airtightness between the two.
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下の通りである。 Among the inventions disclosed in the present application, effects obtained by typical ones will be briefly described as follows.
 すなわち、成膜処理時における基板収容室内の温度がより高温であっても、基板収容室内の温度を正確に測定することができ、ひいては基板収容室内の温度を精度良く制御することができる。 That is, even if the temperature in the substrate housing chamber during the film forming process is higher, the temperature in the substrate housing chamber can be accurately measured, and as a result, the temperature in the substrate housing chamber can be accurately controlled.
本発明の実施形態で好適に用いられる温度測定器が用いられる基板処理装置の概要を示した斜視図である。It is the perspective view which showed the outline | summary of the substrate processing apparatus with which the temperature measuring device used suitably by embodiment of this invention is used. 本発明の実施形態で好適に用いられる基板処理装置の処理炉の内部構造をガス系統とともに示した断面図である。It is sectional drawing which showed the internal structure of the processing furnace of the substrate processing apparatus used suitably by embodiment of this invention with the gas system | strain. 本発明の実施形態で好適に用いられる基板処理装置の処理炉の内部構造を温度測定系統とともに示した断面図である。It is sectional drawing which showed the internal structure of the processing furnace of the substrate processing apparatus used suitably by embodiment of this invention with the temperature measurement system | strain. 本発明の実施形態で好適に用いられる基板処理装置の制御系統を説明するブロック図である。It is a block diagram explaining the control system of the substrate processing apparatus used suitably by embodiment of this invention. 本発明の実施形態で好適に用いられる基板処理装置の処理炉内のガスノズルの配置状態を説明する横断面図である。It is a cross-sectional view explaining the arrangement | positioning state of the gas nozzle in the processing furnace of the substrate processing apparatus used suitably by embodiment of this invention. 本発明の実施形態で好適に用いられる基板処理装置の第1実施の形態に係る温度測定器の詳細構造を説明する説明図である。It is explanatory drawing explaining the detailed structure of the temperature measuring device which concerns on 1st Embodiment of the substrate processing apparatus used suitably by embodiment of this invention. (a),(b),(c)は、図6の温度測定器と各比較例(2種類)の温度測定器とを比較した温度分布図である。(A), (b), (c) is the temperature distribution figure which compared the temperature measuring device of FIG. 6 with the temperature measuring device of each comparative example (two types). 本発明の実施形態で好適に用いられる基板処理装置の第2実施の形態に係る温度測定器の詳細構造を説明する説明図である。It is explanatory drawing explaining the detailed structure of the temperature measuring device which concerns on 2nd Embodiment of the substrate processing apparatus used suitably by embodiment of this invention. 本発明の実施形態で好適に用いられる基板処理装置の第3実施の形態に係る温度測定器の処理炉への配置状態を説明する説明図である。It is explanatory drawing explaining the arrangement | positioning state to the processing furnace of the temperature measuring device which concerns on 3rd Embodiment of the substrate processing apparatus used suitably by embodiment of this invention.
 [第1実施の形態] 
 以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の実施の形態においては、基板処理装置の一例であるSiCエピタキシャル成長装置において、高さ方向にSiCウェーハを並べた、所謂バッチ式縦型SiCエピタキシャル成長装置を挙げて説明する。なお、バッチ式縦型SiCエピタキシャル成長装置とすることで、一度に処理できるSiCウェーハの数が多くなりスループットを向上できる。
[First Embodiment]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, a so-called batch type vertical SiC epitaxial growth apparatus in which SiC wafers are arranged in the height direction in an SiC epitaxial growth apparatus which is an example of a substrate processing apparatus will be described. In addition, by using a batch-type vertical SiC epitaxial growth apparatus, the number of SiC wafers that can be processed at a time increases, and throughput can be improved.
 <全体の構成>
 図1は本発明の温度測定器が用いられる基板処理装置の概要を示した斜視図を表している。まず、この図1を用いて、本発明の第1実施の形態に係る温度測定器が用いられるSiCエピタキシャル膜(結晶膜)を成膜する基板処理装置、および半導体デバイスの製造工程の一つであるSiCエピタキシャル膜を成膜する基板の製造方法について説明する。
<Overall configuration>
FIG. 1 is a perspective view showing an outline of a substrate processing apparatus in which the temperature measuring device of the present invention is used. First, referring to FIG. 1, in one of the substrate processing apparatus for forming a SiC epitaxial film (crystal film) using the temperature measuring device according to the first embodiment of the present invention, and a semiconductor device manufacturing process. A method for manufacturing a substrate on which a certain SiC epitaxial film is formed will be described.
 基板処理装置(成膜装置)としての半導体製造装置10は、バッチ式縦型熱処理装置であり、複数の機構を収容した筐体12を備えている。半導体製造装置10には、例えばSiまたはSiC等で構成された基板としてのウェーハ14を収納する基板収容器としてのポッド(またはフープ(FOUP)とも言う)16が、ウェーハキャリアとして使用される。筐体12の正面側には、ポッドステージ18が配置され、当該ポッドステージ18には、複数のポッド16が外部から搬送されるようになっている。各ポッド16には、例えば、25枚のウェーハ14が収納され、蓋16aが閉じられた状態のもとで、ポッドステージ18にセットされる。 A semiconductor manufacturing apparatus 10 as a substrate processing apparatus (film forming apparatus) is a batch type vertical heat treatment apparatus, and includes a casing 12 that houses a plurality of mechanisms. In the semiconductor manufacturing apparatus 10, for example, a pod (or also called a FOUP) 16 as a substrate container for storing a wafer 14 as a substrate made of Si or SiC is used as a wafer carrier. A pod stage 18 is disposed on the front side of the housing 12, and a plurality of pods 16 are conveyed from the outside to the pod stage 18. Each pod 16 contains, for example, 25 wafers 14 and is set on the pod stage 18 with the lid 16a closed.
 筐体12内の正面側であって、ポッドステージ18と対向する部分には、ポッド搬送装置20が設けられている。また、ポッド搬送装置20の近傍には、ポッド収納棚22,ポッドオープナ24および基板枚数検知器26が設けられている。ポッド収納棚22は、ポッドオープナ24の上方側に設けられ、ポッド16を複数個(図示では5個)搭載した状態で保持するよう構成されている。基板枚数検知器26は、ポッドオープナ24に隣接して設けられ、ポッド搬送装置20は、ポッドステージ18,ポッド収納棚22およびポッドオープナ24の間で、次々とポッド16を搬送するようになっている。ポッドオープナ24は、ポッド16の蓋16aを開けるものであり、基板枚数検知器26は、蓋16aが開けられたポッド16内のウェーハ14の枚数を検知するようになっている。 A pod transfer device 20 is provided on the front side of the housing 12 and facing the pod stage 18. A pod storage shelf 22, a pod opener 24, and a substrate number detector 26 are provided in the vicinity of the pod transfer device 20. The pod storage shelf 22 is provided above the pod opener 24 and is configured to hold a plurality of pods 16 (five in the drawing) mounted thereon. The substrate number detector 26 is provided adjacent to the pod opener 24, and the pod transfer device 20 is configured to transfer the pods 16 one after another between the pod stage 18, the pod storage shelf 22 and the pod opener 24. Yes. The pod opener 24 opens the lid 16a of the pod 16, and the substrate number detector 26 detects the number of wafers 14 in the pod 16 with the lid 16a opened.
 筐体12内には、基板移載機28,基板保持具としてのボート30が設けられている。基板移載機28は、複数のアーム(ツイーザ)32を備え、図示しない駆動手段により昇降可能かつ回転可能な構造となっている。各アーム32は、例えば、5枚のウェーハ14を一度に取り出すことができ、各アーム32を動かすことで、ポッドオープナ24の位置に置かれたポッド16およびボート30間で、ウェーハ14を搬送するようになっている。 In the housing 12, a substrate transfer machine 28 and a boat 30 as a substrate holder are provided. The substrate transfer device 28 includes a plurality of arms (tweezers) 32 and has a structure that can be moved up and down and rotated by a driving means (not shown). Each arm 32 can take out, for example, five wafers 14 at a time. By moving each arm 32, the wafer 14 is transferred between the pod 16 and the boat 30 placed at the position of the pod opener 24. It is like that.
 ボート30は、例えば、カーボングラファイトやSiC等の耐熱性材料により形成されており、複数枚のウェーハ14を水平姿勢で、かつ互いに中心を揃えた状態で整列させて縦方向に積上げ、保持するよう構成されている。なお、ボート30の下方側には、例えば、石英やSiC等の耐熱性材料で構成された断熱部材としての略円筒形状、または円盤形状の複数の断熱板が載置されるボート断熱部34が設けられ、後述する加熱体48からの熱が処理炉40の下方側に伝わり難くなるよう構成されている(図2,3参照)。 The boat 30 is formed of, for example, a heat resistant material such as carbon graphite or SiC, and is configured to stack and hold a plurality of wafers 14 in a horizontal posture and in a state where their centers are aligned with each other in the vertical direction. It is configured. On the lower side of the boat 30, for example, a boat heat insulating portion 34 on which a plurality of substantially cylindrical or disk-shaped heat insulating plates as heat insulating members made of a heat resistant material such as quartz or SiC is placed. It is provided and configured so that heat from the heating body 48 described later is not easily transmitted to the lower side of the processing furnace 40 (see FIGS. 2 and 3).
 筐体12内の背面側でかつ上方側には処理炉40が設けられている。この処理炉40の内部には、複数枚のウェーハ14を積層するよう装填したボート30が搬入され、各ウェーハ14に対する熱処理(成膜処理)が行われる。 A processing furnace 40 is provided on the back side and the upper side in the housing 12. Inside the processing furnace 40, a boat 30 loaded so as to stack a plurality of wafers 14 is carried in, and a heat treatment (film formation process) is performed on each wafer 14.
 <処理炉の構成>
 図2は処理炉の内部構造をガス系統とともに示した断面図を、図3は処理炉の内部構造を温度測定系統とともに示した断面図をそれぞれ表している。次に、これらの図2,3を用いて、SiCエピタキシャル膜を成膜する半導体製造装置10の処理炉40について説明する。
<Processing furnace configuration>
FIG. 2 is a cross-sectional view showing the internal structure of the processing furnace together with the gas system, and FIG. 3 is a cross-sectional view showing the internal structure of the processing furnace together with the temperature measurement system. Next, the processing furnace 40 of the semiconductor manufacturing apparatus 10 for forming a SiC epitaxial film will be described with reference to FIGS.
 処理炉40には、第1ガス供給口68を有する第1ガス供給ノズル(ガスノズル)60,第2ガス供給口72を有する第2ガス供給ノズル(ガスノズル)70および、各ガス供給ノズル60,70からの反応ガスを外部に排気する第1ガス排気口90が設けられている。また、不活性ガスを供給する第3ガス供給口360および、当該不活性ガスを外部に排気する第2ガス排気口390が設けられている。 The processing furnace 40 includes a first gas supply nozzle (gas nozzle) 60 having a first gas supply port 68, a second gas supply nozzle (gas nozzle) 70 having a second gas supply port 72, and gas supply nozzles 60, 70. A first gas exhaust port 90 for exhausting the reaction gas from the outside to the outside is provided. Further, a third gas supply port 360 that supplies an inert gas and a second gas exhaust port 390 that exhausts the inert gas to the outside are provided.
 処理炉40は、円筒形状の反応室44を形成する反応管42を備えている。この反応管42は、石英またはSiC等の耐熱性材料からなり、上端が閉塞し下端が開口した円筒形状に形成されている。反応管42の開口側(下方側)には、当該反応管42と同心円状にマニホールド36が配設されている。このマニホールド36は、例えばステンレス等からなり、上方側および下方側が開口した円筒形状に形成されている。マニホールド36は反応管42を支持し、マニホールド36と反応管42との間には、シールリング(図示せず)が設けられている。マニホールド36が保持体(図示せず)に支持されることにより、反応管42は垂直に据付けられた状態となっている。 The processing furnace 40 includes a reaction tube 42 that forms a cylindrical reaction chamber 44. The reaction tube 42 is made of a heat-resistant material such as quartz or SiC, and is formed in a cylindrical shape having a closed upper end and an opened lower end. A manifold 36 is arranged concentrically with the reaction tube 42 on the opening side (lower side) of the reaction tube 42. The manifold 36 is made of, for example, stainless steel and is formed in a cylindrical shape having an upper side and a lower side opened. The manifold 36 supports the reaction tube 42, and a seal ring (not shown) is provided between the manifold 36 and the reaction tube 42. The manifold 36 is supported by a holding body (not shown), so that the reaction tube 42 is installed vertically.
 処理炉40は、誘導加熱される加熱体48および磁場発生部としての誘導コイル50を備えている。加熱体48は、有天筒状に形成されるとともに反応室44内に配置され、加熱体48の内部には基板収容室49が形成されている。基板収容室49は、SiまたはSiC等で構成された基板としてのウェーハ14をボート30によって水平姿勢で、かつ互いに中心を揃えた状態で整列させて縦方向に積上げ、保持した状態で収容可能に構成されている。また、加熱体48は、反応管42の外側に設けられた誘導コイル50が発生する磁場により誘導加熱されるようになっている。これにより、誘導コイル50を通電することで加熱体48が発熱し、ひいては反応室44内(基板収容室49内)が加熱されるようになっている。 The processing furnace 40 includes a heating body 48 that is induction-heated and an induction coil 50 as a magnetic field generation unit. The heating body 48 is formed in a cylindrical shape and is disposed in the reaction chamber 44, and a substrate housing chamber 49 is formed inside the heating body 48. The substrate accommodation chamber 49 can accommodate the wafer 14 as a substrate made of Si, SiC, or the like in a horizontal posture and aligned in a state where the centers are aligned with each other, stacked in the vertical direction, and held in a held state. It is configured. The heating body 48 is induction heated by a magnetic field generated by an induction coil 50 provided outside the reaction tube 42. Thereby, when the induction coil 50 is energized, the heating body 48 generates heat, and as a result, the inside of the reaction chamber 44 (inside the substrate housing chamber 49) is heated.
 反応管42と加熱体48との間には、例えば、誘導加熱され難いカーボンフェルト等で形成された断熱材54が設けられている。このように断熱材54を設けることで、加熱体48の熱が、反応管42あるいは反応管42の外部に伝達されるのを抑制している。また、誘導コイル50の外側には、反応室44内の熱が外部に伝達されるのを抑制するために、例えば、水冷構造である外側断熱壁55が設けられている。この外側断熱壁55は、反応室44および誘導コイル50を囲むように設けられている。さらに、外側断熱壁55の外側には、誘導コイル50への通電により発生した磁場が外部に漏洩するのを防止する磁気シール58が設けられている。 Between the reaction tube 42 and the heating body 48, for example, a heat insulating material 54 formed of carbon felt or the like that is difficult to be induction-heated is provided. By providing the heat insulating material 54 in this way, the heat of the heating body 48 is suppressed from being transmitted to the reaction tube 42 or the outside of the reaction tube 42. In addition, an outer heat insulating wall 55 having, for example, a water cooling structure is provided outside the induction coil 50 in order to suppress the heat in the reaction chamber 44 from being transmitted to the outside. The outer heat insulating wall 55 is provided so as to surround the reaction chamber 44 and the induction coil 50. Further, a magnetic seal 58 is provided outside the outer heat insulating wall 55 to prevent a magnetic field generated by energizing the induction coil 50 from leaking outside.
 加熱体48とウェーハ14との間には、少なくともSi(シリコン)原子含有ガスとCl(塩素)原子含有ガス(何れも第1反応ガス)とをウェーハ14に供給するための第1ガス供給ノズル60が配置されている。また、加熱体48とウェーハ14との間の第1ガス供給ノズル60とは異なる箇所には、少なくともC(炭素)原子含有ガスと還元ガス(何れも第2反応ガス)とをウェーハ14に供給するための第2ガス供給ノズル70が配置されている(図5参照)。さらに、加熱体48とウェーハ14との間で各ガス供給ノズル60,70の反対側には、第1ガス排気口90が配置され、反応管42と断熱材54との間には、第3ガス供給口360および第2ガス排気口390が配置されている。 A first gas supply nozzle for supplying at least Si (silicon) atom-containing gas and Cl (chlorine) atom-containing gas (both first reaction gases) to the wafer 14 between the heating body 48 and the wafer 14. 60 is arranged. Further, at least a C (carbon) atom-containing gas and a reducing gas (both of the second reaction gas) are supplied to the wafer 14 at a location different from the first gas supply nozzle 60 between the heating body 48 and the wafer 14. The 2nd gas supply nozzle 70 for doing is arrange | positioned (refer FIG. 5). Furthermore, a first gas exhaust port 90 is disposed between the heating body 48 and the wafer 14 on the opposite side of the gas supply nozzles 60 and 70, and a third gas exhaust port 90 is interposed between the reaction tube 42 and the heat insulating material 54. A gas supply port 360 and a second gas exhaust port 390 are arranged.
 上述した各ガス供給ノズル60,70から供給される反応ガスは、半導体製造装置10を説明するために挙げた一例であって、これらの反応ガスの詳細については後述する。また、本実施の形態においては、図5に示すように、第1ガス供給ノズル60を2本および第2ガス供給ノズル70を3本、それぞれ基板収容室49の周方向に沿って交互に設けているが、各ガス供給ノズル60,70の本数や配置の仕方等については、半導体製造装置10の仕様に応じて任意に設定することができる。 The reaction gas supplied from the gas supply nozzles 60 and 70 described above is an example given for explaining the semiconductor manufacturing apparatus 10, and details of these reaction gases will be described later. Further, in the present embodiment, as shown in FIG. 5, two first gas supply nozzles 60 and three second gas supply nozzles 70 are alternately provided along the circumferential direction of the substrate housing chamber 49. However, the number and arrangement of the gas supply nozzles 60 and 70 can be arbitrarily set according to the specifications of the semiconductor manufacturing apparatus 10.
 第1ガス供給ノズル60は、例えば、カーボングラファイトで形成され、その基端部60aはマニホールド36を貫通し、当該マニホールド36に溶接等により取り付けられている。第1ガス供給ノズル60には、その長手方向に沿うよう複数の第1ガス供給口68が設けられ、各第1ガス供給口68からは、SiCエピタキシャル膜を成膜する際に、少なくともSi(シリコン)原子含有ガスとして、例えばモノシラン(以下SiHとする)ガスと、Cl(塩素)原子含有ガスとして、例えば塩化水素(以下HClとする)ガスとを、基板収容室49内のウェーハ14に向けて供給するようになっている。 The first gas supply nozzle 60 is made of, for example, carbon graphite, and the base end portion 60a penetrates the manifold 36 and is attached to the manifold 36 by welding or the like. A plurality of first gas supply ports 68 are provided along the longitudinal direction of the first gas supply nozzle 60, and each of the first gas supply ports 68 has at least Si ( For example, monosilane (hereinafter referred to as SiH 4 ) gas as a gas containing silicon) and hydrogen chloride (hereinafter referred to as HCl) gas as a Cl (chlorine) atom-containing gas are applied to the wafer 14 in the substrate accommodation chamber 49. It is designed to supply towards.
 第1ガス供給ノズル60は、第1ガスライン222に接続されている。第1ガスライン222は、例えば、各ガス配管213a,213bに接続され、各ガス配管213a,213bは、それぞれSiHガス,HClガスに対して流量制御器(流量制御手段)としてのマスフローコントローラ(以下MFCとする)211a,211bおよびバルブ212a,212bを介して、例えば、SiHガスを供給する第1ガス供給源210a,HClガスを供給する第2ガス供給源210bに接続されている。 The first gas supply nozzle 60 is connected to the first gas line 222. The first gas line 222 is connected to, for example, the gas pipes 213a and 213b. The gas pipes 213a and 213b are mass flow controllers (flow rate control means) for SiH 4 gas and HCl gas, respectively. For example, the first gas supply source 210a for supplying SiH 4 gas and the second gas supply source 210b for supplying HCl gas are connected via 211a and 211b and valves 212a and 212b.
 この構成により、例えばSiHガス,HClガスのそれぞれの供給流量,濃度,分圧,供給タイミングを、基板収容室49内において制御することができる。各バルブ212a,212bおよび各MFC211a,211bは、コントローラ152のガス流量制御部78(図4参照)に電気的に接続されており、供給するガスの流量がそれぞれ所定流量となるように、所定のタイミングで制御されるようになっている。なお、第1,第2ガス供給源210a,210b、各バルブ212a,212b、各MFC211a,211b、各ガス配管213a,213b、第1ガスライン222、第1ガス供給ノズル60および第1ガス供給口68により、第1ガス供給系を形成している。 With this configuration, for example, the supply flow rate, concentration, partial pressure, and supply timing of SiH 4 gas and HCl gas can be controlled in the substrate storage chamber 49. Each valve 212a, 212b and each MFC 211a, 211b are electrically connected to a gas flow rate control unit 78 (see FIG. 4) of the controller 152, and a predetermined flow rate is set so that the flow rate of the supplied gas becomes a predetermined flow rate. It is controlled by timing. The first and second gas supply sources 210a and 210b, the valves 212a and 212b, the MFCs 211a and 211b, the gas pipes 213a and 213b, the first gas line 222, the first gas supply nozzle 60, and the first gas supply port 68 forms a first gas supply system.
 第2ガス供給ノズル70は、例えば、カーボングラファイトで構成され、その基端部70aはマニホールド36を貫通し、当該マニホールド36に溶接等により取り付けられている。第2ガス供給ノズル70には、その長手方向に沿うよう複数の第2ガス供給口72が設けられ、各第2ガス供給口72からは、SiCエピタキシャル膜を成膜する際に、少なくともC(炭素)原子含有ガスとして、例えばプロパン(以下Cとする)ガスと、還元ガスとして、例えば水素(H原子単体もしくはH分子。以下Hとする)とを、基板収容室49内のウェーハ14に向けて供給するようになっている。 The second gas supply nozzle 70 is made of, for example, carbon graphite, and the base end portion 70a penetrates the manifold 36 and is attached to the manifold 36 by welding or the like. The second gas supply nozzle 70 is provided with a plurality of second gas supply ports 72 along the longitudinal direction, and each of the second gas supply ports 72 has at least C ( For example, propane (hereinafter referred to as C 3 H 8 ) gas as the carbon) atom-containing gas and hydrogen (single H atom or H 2 molecule; hereinafter referred to as H 2 ) as the reducing gas, for example, in the substrate housing chamber 49. Is supplied toward the wafer 14.
 第2ガス供給ノズル70は、第2ガスライン260に接続されている。第2ガスライン260は、例えば、各ガス配管213c,213dに接続され、各ガス配管213c,213dは、それぞれC(炭素)原子含有ガスとしての例えばCガスに対して流量制御器としてのMFC211cおよびバルブ212cを介して、Cガスを供給する第3ガス供給源210cに接続され、還元ガスとしての例えばHガスに対して流量制御器としてのMFC211dおよびバルブ212dを介して、Hガスを供給する第4ガス供給源210dに接続されている。 The second gas supply nozzle 70 is connected to the second gas line 260. The second gas line 260 is connected to, for example, the gas pipes 213c and 213d, and the gas pipes 213c and 213d are used as flow controllers for, for example, C 3 H 8 gas as C (carbon) atom-containing gas. Is connected to a third gas supply source 210c for supplying C 3 H 8 gas via an MFC 211c and a valve 212c, and is connected to a reducing gas, for example, H 2 gas via an MFC 211d and a valve 212d as a flow rate controller. , it is connected to the fourth gas supply source 210d for supplying H 2 gas.
 この構成により、例えばCガス,Hガスのそれぞれの供給流量,濃度,分圧,供給タイミングを、基板収容室49内において制御することができる。各バルブ212c,212dおよび各MFC211c,211dは、コントローラ152のガス流量制御部78(図4参照)に電気的に接続されており、供給するガスの流量がそれぞれ所定流量となるように、所定のタイミングで制御されるようになっている。なお、第3,第4ガス供給源210c,210d、各バルブ212c,212d、各MFC211c,211d、各ガス配管213c,213d、第2ガスライン260、第2ガス供給ノズル70および第2ガス供給口72により、第2ガス供給系を形成している。 With this configuration, for example, the supply flow rate, concentration, partial pressure, and supply timing of C 3 H 8 gas and H 2 gas can be controlled in the substrate storage chamber 49. Each valve 212c, 212d and each MFC 211c, 211d are electrically connected to a gas flow rate control unit 78 (see FIG. 4) of the controller 152, and a predetermined flow rate is set so that the flow rate of the supplied gas becomes a predetermined flow rate. It is controlled by timing. The third and fourth gas supply sources 210c and 210d, the valves 212c and 212d, the MFCs 211c and 211d, the gas pipes 213c and 213d, the second gas line 260, the second gas supply nozzle 70, and the second gas supply port 72 forms a second gas supply system.
 ここで、各ガス供給ノズル60,70に設ける複数の各ガス供給口68,72は、ウェーハ14の積層領域(プロダクト領域)内に任意の数を設けても良いし、ウェーハ14の積層領域内に当該ウェーハ14の積層枚数に合わせた数を設けても良い。 Here, an arbitrary number of the gas supply ports 68 and 72 provided in the gas supply nozzles 60 and 70 may be provided in the stacked region (product region) of the wafer 14 or in the stacked region of the wafer 14. A number corresponding to the number of stacked wafers 14 may be provided.
 <排気系の構成> 
 第1ガス排気口90は、各ガス供給ノズル60,70の位置に対して対向するよう配置されている。マニホールド36には、第1ガス排気口90に接続されたガス排気管230が貫通して溶接等により取り付けられている。ガス排気管230の下流側には、基板収容室49内を通過した反応ガス(排気ガス)を冷却するガスクーラー215が設けられている。ガスクーラー215のさらに下流側には、圧力検出器としての圧力センサ(図示せず)および、圧力調整器としてのAPC(Auto Pressure Controller)バルブ214を介して、真空ポンプ等の真空排気装置220が接続されている。主にガス排気管230、APCバルブ214、圧力センサにより排気系、すなわち排気ラインが構成される。なお、真空排気装置220やガスクーラー215を含めて考えても良い。圧力センサおよびAPCバルブ214には、コントローラ152の圧力制御部98(図4参照)が電気的に接続されており、当該圧力制御部98は、圧力センサにより検出された圧力に基づいてAPCバルブ214の開度を調整し、処理炉40内の圧力が所定の圧力となるよう所定のタイミングで制御するよう構成されている。
<Exhaust system configuration>
The first gas exhaust port 90 is disposed so as to face the positions of the gas supply nozzles 60 and 70. A gas exhaust pipe 230 connected to the first gas exhaust port 90 passes through the manifold 36 and is attached by welding or the like. A gas cooler 215 for cooling the reaction gas (exhaust gas) that has passed through the substrate housing chamber 49 is provided on the downstream side of the gas exhaust pipe 230. Further downstream of the gas cooler 215 is a vacuum exhaust device 220 such as a vacuum pump via a pressure sensor (not shown) as a pressure detector and an APC (Auto Pressure Controller) valve 214 as a pressure regulator. It is connected. An exhaust system, that is, an exhaust line, is configured mainly by the gas exhaust pipe 230, the APC valve 214, and the pressure sensor. In addition, you may consider including the vacuum exhaust apparatus 220 and the gas cooler 215. FIG. A pressure control unit 98 (see FIG. 4) of the controller 152 is electrically connected to the pressure sensor and the APC valve 214, and the pressure control unit 98 is based on the pressure detected by the pressure sensor. Is adjusted at a predetermined timing so that the pressure in the processing furnace 40 becomes a predetermined pressure.
 このように基板収容室49内に、各第1ガス供給口68から少なくともSi(シリコン)原子含有ガスとCl(塩素)原子含有ガスとを供給し、各第2ガス供給口72から少なくともC(炭素)原子含有ガスと還元ガスとを供給することで、基板収容室49内に供給された反応ガスは、図5の実線矢印に示すように、SiまたはSiCで構成されたウェーハ14に向けられて、その後、ウェーハ14の表面を平行に流れて、第1ガス排気口90から排気される。したがって、ウェーハ14の成膜面全体が、効率的かつ均一に反応ガスに曝されるようになっている。 In this manner, at least Si (silicon) atom-containing gas and Cl (chlorine) atom-containing gas are supplied from the first gas supply ports 68 into the substrate housing chamber 49, and at least C ( By supplying the carbon) atom-containing gas and the reducing gas, the reaction gas supplied into the substrate housing chamber 49 is directed to the wafer 14 made of Si or SiC as shown by the solid line arrow in FIG. Thereafter, the air flows in parallel on the surface of the wafer 14 and is exhausted from the first gas exhaust port 90. Therefore, the entire film formation surface of the wafer 14 is exposed to the reaction gas efficiently and uniformly.
 また、第3ガス供給口360は、反応管42と断熱材54との間に配置され、その基端側(下方側)がマニホールド36を貫通し、当該マニホールド36に溶接等により取り付けられている。さらに、第2ガス排気口390は、反応管42と断熱材54との間で、かつ第3ガス供給口360に対して対向するよう配置され、第2ガス排気口390はガス排気管230に接続されている。 The third gas supply port 360 is disposed between the reaction tube 42 and the heat insulating material 54, and the base end side (lower side) penetrates the manifold 36 and is attached to the manifold 36 by welding or the like. . Further, the second gas exhaust port 390 is disposed between the reaction tube 42 and the heat insulating material 54 so as to face the third gas supply port 360, and the second gas exhaust port 390 is connected to the gas exhaust tube 230. It is connected.
 第3ガス供給口360は第3ガスライン240に接続され、第3ガスライン240は、バルブ212e,MFC211eを介して第5ガス供給源210eに接続されている。この第5ガス供給源210eからは不活性ガスとして、例えば、希ガスのAr(アルゴン)ガスや、N2(窒素)ガスが供給され、SiCエピタキシャル膜の成長に寄与するガス、例えば、Si(シリコン)原子含有ガスまたはC(炭素)原子含有ガスまたはCl(塩素)原子含有ガスまたはそれらの混合ガスが、反応管42と断熱材54との間に進入するのを防ぎ、これにより反応管42の内壁または断熱材54の外壁に不要な生成物が付着するのを防止している。 The third gas supply port 360 is connected to the third gas line 240, and the third gas line 240 is connected to the fifth gas supply source 210e via the valve 212e and the MFC 211e. As the inert gas, for example, a rare gas Ar (argon) gas or N2 (nitrogen) gas is supplied from the fifth gas supply source 210e and contributes to the growth of the SiC epitaxial film, for example, Si (silicon). ) Atom-containing gas, C (carbon) atom-containing gas, Cl (chlorine) atom-containing gas, or a mixed gas thereof is prevented from entering between the reaction tube 42 and the heat insulating material 54. Unnecessary products are prevented from adhering to the inner wall or the outer wall of the heat insulating material 54.
 ここで、バルブ212eおよび各MFC211eにおいても、コントローラ152のガス流量制御部78(図4参照)に電気的に接続され、Arガスの流量が所定流量となるように、所定のタイミングで制御されるようになっている。また、反応管42と断熱材54との間に供給された不活性ガスは、第2ガス排気口390およびガス排気管230の下流側にあるガスクーラー215,APCバルブ214を介して、真空排気装置220から排気されるようになっている。 Here, each of the valve 212e and each MFC 211e is also electrically connected to the gas flow rate control unit 78 (see FIG. 4) of the controller 152 and controlled at a predetermined timing so that the Ar gas flow rate becomes a predetermined flow rate. It is like that. The inert gas supplied between the reaction tube 42 and the heat insulating material 54 is evacuated through the second gas exhaust port 390 and the gas cooler 215 and the APC valve 214 on the downstream side of the gas exhaust tube 230. The apparatus 220 is evacuated.
 図3に示すように、加熱体48と断熱材54との間には、第1,第2,第3の温度制御用ブロック(温度測定用チップ)53a,53b,53cが設けられている。各温度制御用ブロック53a~53cは、加熱体48と同じ材料によって略直方体形状に形成されており、これにより誘導コイル50への通電に伴って、加熱体48と略同じ温度で発熱するようになっている。各温度制御用ブロック53a~53cは、加熱体48の周方向に沿って所定間隔で並び、かつボート30の下段部,中段部,上段部のそれぞれに対応する高さ位置に配置されている。これにより、各温度制御用ブロック53a~53cの温度をそれぞれ測定することで、基板収容室49内にあるボート30に積層した各ウェーハ14の温度分布(加熱状態)を知ることができる。 As shown in FIG. 3, first, second, and third temperature control blocks (temperature measurement chips) 53 a, 53 b, and 53 c are provided between the heating body 48 and the heat insulating material 54. Each of the temperature control blocks 53a to 53c is formed in a substantially rectangular parallelepiped shape with the same material as the heating body 48, and thereby generates heat at substantially the same temperature as the heating body 48 when the induction coil 50 is energized. It has become. The temperature control blocks 53a to 53c are arranged at predetermined intervals along the circumferential direction of the heating body 48, and are disposed at height positions corresponding to the lower, middle, and upper stages of the boat 30, respectively. Accordingly, by measuring the temperature of each of the temperature control blocks 53a to 53c, the temperature distribution (heating state) of each wafer 14 stacked on the boat 30 in the substrate accommodation chamber 49 can be known.
 マニホールド36には、各温度制御用ブロック53a~53cを外部からそれぞれ覗き見ることができるように、3つのビューポート56(図示では1つのみ示す)が設けられている。各ビューポート56は、各温度制御用ブロック53a~53cのそれぞれに対応して設けられ、マニホールド36の周方向に沿って所定間隔で並んで設けられている。また、マニホールド36の各ビューポート56と対向する部分には、各ビューポート56に対応するよう3つの反射ミラー57がそれぞれ設けられており、各反射ミラー57は、マニホールド36の外周側に向けておよそ45°の傾斜角度で傾斜している。さらに、マニホールド36の外周部分には、各温度制御用ブロック53a~53cのそれぞれに対応して3つの放射温度計59(図示では1つのみ示す)が設けられている。つまり、各放射温度計59は、各反射ミラー57を介して、各温度制御用ブロック53a~53cの温度をそれぞれ測定するようになっている。 The manifold 36 is provided with three viewports 56 (only one is shown in the drawing) so that each of the temperature control blocks 53a to 53c can be viewed from the outside. The viewports 56 are provided corresponding to the temperature control blocks 53a to 53c, respectively, and are arranged at predetermined intervals along the circumferential direction of the manifold 36. In addition, three reflecting mirrors 57 are provided at portions of the manifold 36 facing the viewports 56 so as to correspond to the viewports 56, respectively, and the reflecting mirrors 57 are directed toward the outer peripheral side of the manifold 36. It is inclined at an inclination angle of about 45 °. Further, three radiation thermometers 59 (only one is shown in the figure) are provided on the outer peripheral portion of the manifold 36 corresponding to each of the temperature control blocks 53a to 53c. That is, each radiation thermometer 59 measures the temperature of each temperature control block 53a to 53c via each reflection mirror 57.
 ここで、各温度制御用ブロック53a~53c,各反射ミラー57および各放射温度計59は、本発明における室外用温度測定器(ヒータ温度測定器)を構成しており、これらは基板収容室49の外部で加熱体48の近傍における温度を測定するようになっている。これにより、基板収容室49の内部に温度測定器(プロファイル用温度測定器)を設けなくても、上述の室外用温度測定器により基板収容室49の内部の温度を間接的に測定(推定)することができる。なお、各温度制御用ブロック53a~53cは、断熱材54の内側(加熱体48と断熱材54との間)にそれぞれ取り付けられており、各反射ミラー57からの高さ寸法h1,h2,h3は、それぞれボート30の下段部,中段部,上段部に対応した高さ寸法となっている。 Here, each of the temperature control blocks 53a to 53c, each of the reflection mirrors 57, and each of the radiation thermometers 59 constitutes an outdoor temperature measuring device (heater temperature measuring device) in the present invention, and these are the substrate storage chamber 49. The temperature in the vicinity of the heating body 48 is measured outside. Thus, the temperature inside the substrate storage chamber 49 is indirectly measured (estimated) by the above-described outdoor temperature measurement device without providing a temperature measurement device (profile temperature measurement device) inside the substrate storage chamber 49. can do. Each of the temperature control blocks 53a to 53c is attached to the inside of the heat insulating material 54 (between the heating body 48 and the heat insulating material 54), and the height dimensions h1, h2, h3 from the respective reflecting mirrors 57 are attached. Are height dimensions corresponding to the lower, middle and upper stages of the boat 30, respectively.
 各放射温度計59は、コントローラ152の温度制御部52に電気的に接続されており、各放射温度計59で測定された各温度制御用ブロック53a~53cの温度データは、基板収容室49の外部温度を示す室外温度データとして、温度制御部52に送出されるようになっている。また、誘導コイル50についても、コントローラ152の温度制御部52(図4参照)に電気的に接続されており、これにより各放射温度計59によって測定した各室外温度データに基づいて、誘導コイル50への通電具合が調節されて、ひいては基板収容室49内の温度が所望の温度分布となるよう所定のタイミングで制御されるようになっている。 Each radiation thermometer 59 is electrically connected to the temperature control unit 52 of the controller 152, and the temperature data of each temperature control block 53 a to 53 c measured by each radiation thermometer 59 is stored in the substrate storage chamber 49. It is sent to the temperature control unit 52 as outdoor temperature data indicating the external temperature. In addition, the induction coil 50 is also electrically connected to the temperature control unit 52 (see FIG. 4) of the controller 152, and based on the outdoor temperature data measured by each radiation thermometer 59, the induction coil 50 is thereby connected. As a result, the power supply state is adjusted, and as a result, the temperature in the substrate housing chamber 49 is controlled at a predetermined timing so as to have a desired temperature distribution.
 <処理炉周辺の構成>
 図3に示すように、処理炉40の下方側には、反応管42(マニホールド36)の開口側を気密に閉塞する閉塞部材としてのシールキャップ101が設けられている。ここで、シールキャップ101には、基板収容室49の内外を跨ぐようにして配置される温度測定器103が取り付けられており、このシールキャップ101は、各ウェーハ14を熱処理(成膜処理)する前の段階で、加熱した基板収容室49内の温度を測定し、室内温度データを事前に得るために用いられるものである。
<Configuration around the processing furnace>
As shown in FIG. 3, a seal cap 101 as a closing member that hermetically closes the opening side of the reaction tube 42 (manifold 36) is provided below the processing furnace 40. Here, a temperature measuring device 103 arranged so as to straddle the inside and outside of the substrate housing chamber 49 is attached to the seal cap 101, and the seal cap 101 heat-treats (film-formation treatment) each wafer 14. In the previous stage, it is used to measure the temperature in the heated substrate storage chamber 49 and obtain room temperature data in advance.
 シールキャップ101は、基板収容室49の開口側を閉塞するようになっており、例えばステンレス等の金属により円盤状に形成されている。シールキャップ101の上面とマニホールド36の下面との間には、両者を気密に接続するシールリング(図示せず)が設けられている。また、シールキャップ101には、回転機構104の回転軸106が貫通するようになっており、回転軸106はボート断熱部34に接続されている。なお、室内温度データを事前に得る際には、回転機構104は停止した状態となっている。 The seal cap 101 is configured to close the opening side of the substrate housing chamber 49 and is formed in a disk shape from a metal such as stainless steel. A seal ring (not shown) is provided between the upper surface of the seal cap 101 and the lower surface of the manifold 36 in an airtight manner. Further, the rotation shaft 106 of the rotation mechanism 104 passes through the seal cap 101, and the rotation shaft 106 is connected to the boat heat insulating portion 34. Note that when the room temperature data is obtained in advance, the rotating mechanism 104 is in a stopped state.
 シールキャップ101は、処理炉40の外部に設けられた昇降機構(図示せず)により、垂直方向に昇降駆動されるようになっている。これにより、ボート30を基板収容室49に搬入搬出できるようにしている。ただし、実際に熱処理をするときのみに、ボート30には複数枚の各ウェーハ14が積層された状態となる。また、回転機構104および昇降機構には、コントローラ152の駆動制御部108(図4参照)が電気的に接続され、回転機構104および昇降機構は、所定の動作をするよう所定のタイミングで制御されるようになっている。 The seal cap 101 is driven up and down in the vertical direction by an elevating mechanism (not shown) provided outside the processing furnace 40. Thereby, the boat 30 can be carried into and out of the substrate storage chamber 49. However, a plurality of wafers 14 are stacked on the boat 30 only when the heat treatment is actually performed. Further, the drive mechanism 108 (see FIG. 4) of the controller 152 is electrically connected to the rotation mechanism 104 and the lifting mechanism, and the rotation mechanism 104 and the lifting mechanism are controlled at a predetermined timing so as to perform a predetermined operation. It has become so.
 図6に示すように、シールキャップ101には、温度測定器103を取り付けるための装着孔101aが設けられている。装着孔101aには、温度測定器103をシールキャップ101に取り付けるための略円筒形状に形成されたアダプタ101bが、溶接等により気密保持可能に強固に固定されている。 As shown in FIG. 6, the seal cap 101 is provided with a mounting hole 101 a for attaching the temperature measuring device 103. An adapter 101b formed in a substantially cylindrical shape for attaching the temperature measuring device 103 to the seal cap 101 is firmly fixed to the mounting hole 101a so as to be kept airtight by welding or the like.
 アダプタ101bは、シールキャップ101と同様にステンレス等の金属によって形成され、その径方向内側には、アダプタ101bと温度測定器103との間において気密を保持するためのOリング(シール部材)107が設けられている。Oリング107は、アダプタ101bと温度測定器103との間で弾性変形して気密保持可能なように高温に耐え得る耐熱性ゴム(フッ素ゴムやシリコーンゴム等)によって形成されている。また、Oリング107は、基板収容室49(熱源)から離間させるために、アダプタ101bの下方側に配置されている。このように、Oリング107は、基板収容室49の外部において、シールキャップ101の装着孔101aと温度測定器103の本体部200との間の気密を保持するようになっている。 The adapter 101b is formed of a metal such as stainless steel like the seal cap 101, and an O-ring (seal member) 107 for maintaining airtightness between the adapter 101b and the temperature measuring device 103 is formed on the radially inner side thereof. Is provided. The O-ring 107 is formed of heat-resistant rubber (fluorine rubber, silicone rubber, or the like) that can withstand high temperatures so that it can be elastically deformed and kept airtight between the adapter 101b and the temperature measuring device 103. Further, the O-ring 107 is disposed on the lower side of the adapter 101b so as to be separated from the substrate housing chamber 49 (heat source). As described above, the O-ring 107 keeps the airtightness between the mounting hole 101 a of the seal cap 101 and the main body 200 of the temperature measuring device 103 outside the substrate housing chamber 49.
 シールキャップ101の装着孔101aの周囲には、当該装着孔101aを取り囲むようにして環状の第1冷却水循環室101cが形成されている。第1冷却水循環室101cには、貯留タンクやポンプ等(図示せず)よりなる冷却水供給装置105(図3参照)が、流水パイプ105aを介して接続されている。そして、冷却水供給装置105は温度制御部52によって駆動制御され、これにより図6の実線矢印に示すように、第1冷却水循環室101c内に冷えた冷却水CWが供給されるとともに、図6の破線矢印に示すように、第1冷却水循環室101c内を循環して熱せられた冷却水HWが外部に排出されるようになっている。このように、装着孔101aの周囲を冷却することで、温度測定器103とシールキャップ101との間の接続部分に高温が伝達されるのを抑制して、両者間に設けられるゴム部品や樹脂部品(Oリング107等)へのダメージを軽減するようにしている。 An annular first cooling water circulation chamber 101c is formed around the mounting hole 101a of the seal cap 101 so as to surround the mounting hole 101a. A cooling water supply device 105 (see FIG. 3) including a storage tank, a pump, etc. (not shown) is connected to the first cooling water circulation chamber 101c via a flowing water pipe 105a. Then, the cooling water supply device 105 is driven and controlled by the temperature control unit 52, whereby the cooled cooling water CW is supplied into the first cooling water circulation chamber 101c as shown by the solid line arrow in FIG. As shown by the broken line arrows, the cooling water HW circulated and heated in the first cooling water circulation chamber 101c is discharged to the outside. In this way, by cooling the periphery of the mounting hole 101a, it is possible to suppress high temperature from being transmitted to the connecting portion between the temperature measuring device 103 and the seal cap 101, and to provide a rubber component or resin provided between the two. Damage to parts (O-ring 107 etc.) is reduced.
 温度測定器103は、ステンレス製の本体部200と、当該本体部200に一体に設けられる炭化ケイ素製の保護管300とを備えている。本体部200は、シールキャップ101の装着孔101aにアダプタ101bを介して装着される装着筒部201を備えている。この装着筒部201には、アダプタ101bの径方向内側に設けられたOリング107が嵌合するようになっており、これによりアダプタ101bと装着筒部201との間の気密状態を保持して、ひいては基板収容室49内の圧力を所定圧力に保持できるようにしている。 The temperature measuring device 103 includes a main body portion 200 made of stainless steel and a protective tube 300 made of silicon carbide provided integrally with the main body portion 200. The main body 200 includes a mounting cylinder portion 201 that is mounted in the mounting hole 101a of the seal cap 101 via the adapter 101b. An O-ring 107 provided on the inner side in the radial direction of the adapter 101b is fitted to the mounting cylinder portion 201, thereby maintaining an airtight state between the adapter 101b and the mounting cylinder portion 201. As a result, the pressure in the substrate accommodating chamber 49 can be maintained at a predetermined pressure.
 装着筒部201の軸方向に沿うOリング107側(下方側)には、第2冷却水循環室(冷却水循環室)202を形成する冷却部203が一体に設けられている。この冷却部203は、装着筒部201よりも大径に形成されており、これにより冷却部203と装着筒部201との間には段差部204が形成されている。この段差部204は、アダプタ101bに対する温度測定器103の位置決めをする機能を備えている。装着筒部201の軸方向に沿う保護管300側(上方側)には、保護管300の基端部が嵌合固定される保護管嵌合凹部201aが形成されている。これにより、保護管300の基端部を保護管嵌合凹部201aに嵌合固定することで、保護管300を本体部200に対して同軸上に真っ直ぐに設置できるようにしている。 A cooling portion 203 that forms a second cooling water circulation chamber (cooling water circulation chamber) 202 is integrally provided on the O-ring 107 side (downward side) along the axial direction of the mounting cylinder portion 201. The cooling part 203 is formed to have a larger diameter than the mounting cylinder part 201, thereby forming a stepped part 204 between the cooling part 203 and the mounting cylinder part 201. The step portion 204 has a function of positioning the temperature measuring device 103 with respect to the adapter 101b. A protective tube fitting recess 201a to which a proximal end portion of the protective tube 300 is fitted and fixed is formed on the protective tube 300 side (upper side) along the axial direction of the mounting cylinder portion 201. Thus, the protective tube 300 can be installed straight and coaxially with the main body 200 by fitting and fixing the proximal end portion of the protective tube 300 to the protective tube fitting recess 201a.
 第2冷却水循環室202は、本発明における冷却機構を構成しており、Oリング107の直下でOリング107に近接するよう配置されている。第2冷却水循環室202は、Oリング107の形状に沿うよう環状に形成され、第1冷却水循環室101cと同様に、流水パイプ105aを介して冷却水供給装置105に接続されている。これにより図6の実線矢印に示すように、第2冷却水循環室202内に冷えた冷却水CWが供給されるとともに、図6の破線矢印に示すように、第2冷却水循環室202内を循環して熱せられた冷却水HWが外部に排出されるようになっている。このように、Oリング107の近傍をOリング107の形状に倣って環状に冷却することで、Oリング107に高温が伝達されるのを効果的に抑制して、Oリング107が溶融するのを未然に防いでいる。 The second cooling water circulation chamber 202 constitutes a cooling mechanism in the present invention, and is arranged so as to be close to the O-ring 107 immediately below the O-ring 107. The second cooling water circulation chamber 202 is formed in an annular shape so as to follow the shape of the O-ring 107, and is connected to the cooling water supply device 105 via the flowing water pipe 105a, similarly to the first cooling water circulation chamber 101c. As a result, the cooled cooling water CW is supplied into the second cooling water circulation chamber 202 as shown by the solid line arrows in FIG. 6 and circulates in the second cooling water circulation chamber 202 as shown by the broken arrows in FIG. Then, the heated cooling water HW is discharged to the outside. Thus, by cooling the vicinity of the O-ring 107 in an annular shape following the shape of the O-ring 107, high temperature is effectively prevented from being transmitted to the O-ring 107, and the O-ring 107 is melted. Is prevented in advance.
 保護管300は有天筒状に形成され、保護管300の閉塞されている天部側は本体部200側とは反対側の上方側に配置され、開口側となる基端部は本体部200の保護管嵌合凹部201aに嵌合固定されて一体化されている。保護管300は、基板収容室49の内部に配置されるようになっており、保護管300の内部には、3つの組の第1,第2,第3熱電対素線301a,301b,301c(図3参照)が設けられている。各熱電対素線301a~301cは、絶縁部材(図示せず)を介してそれぞれ互いに絶縁されており、さらには長さ寸法をそれぞれ異ならせている。また、各熱電対素線301a~301cの保護管300内に配置される端部には、それぞれ第1,第2,第3接点302a,302b,302c(図中黒点部分)が設けられている。つまり、各熱電対素線301a~301cの各接点302a~302cは、保護管300の長手方向に沿う異なる位置にそれぞれ配置されている。 The protective tube 300 is formed in a cylindrical shape, the closed top portion side of the protective tube 300 is disposed on the upper side opposite to the main body portion 200 side, and the base end portion serving as the opening side is the main body portion 200. Are fitted and fixed to the protective tube fitting recess 201a. The protective tube 300 is arranged inside the substrate housing chamber 49, and three sets of first, second, and third thermocouple wires 301a, 301b, and 301c are provided inside the protective tube 300. (See FIG. 3). The thermocouple wires 301a to 301c are insulated from each other via insulating members (not shown), and have different lengths. In addition, first, second, and third contacts 302a, 302b, and 302c (black dot portions in the figure) are provided at the ends of the thermocouple wires 301a to 301c that are disposed in the protective tube 300, respectively. . That is, the contacts 302 a to 302 c of the thermocouple wires 301 a to 301 c are arranged at different positions along the longitudinal direction of the protective tube 300.
 ここで、図3に示すように、第1熱電対素線301aの第1接点302aは、室外用温度測定器を構成する第1温度制御用ブロック53aに対応する高さ位置(h1)に設けられ、第2熱電対素線301bの第2接点302bは、室外用温度測定器を構成する第2温度制御用ブロック53bに対応する高さ位置(h2)に設けられ、第3熱電対素線301cの第3接点302cは、室外用温度測定器を構成する第3温度制御用ブロック53cに対応する高さ位置(h3)に設けられている。つまり、第1熱電対素線301aの第1接点302aは、ボート30の下段部近傍の温度を測定し、第2熱電対素線301bの第2接点302bは、ボート30の中段部近傍の温度を測定し、第3熱電対素線301cの第3接点302cは、ボート30の上段部近傍の温度を測定するようになっている。 Here, as shown in FIG. 3, the first contact 302a of the first thermocouple wire 301a is provided at a height position (h1) corresponding to the first temperature control block 53a constituting the outdoor temperature measuring device. The second contact 302b of the second thermocouple strand 301b is provided at a height position (h2) corresponding to the second temperature control block 53b constituting the outdoor temperature measuring device, and the third thermocouple strand The third contact 302c of 301c is provided at a height position (h3) corresponding to the third temperature control block 53c constituting the outdoor temperature measuring device. That is, the first contact 302a of the first thermocouple wire 301a measures the temperature near the lower stage portion of the boat 30, and the second contact 302b of the second thermocouple wire 301b is the temperature near the middle step portion of the boat 30. The third contact 302c of the third thermocouple wire 301c measures the temperature near the upper portion of the boat 30.
 ただし、各熱電対素線301a~301cおよび各接点302a~302cと、各温度制御用ブロック53a~53c,各反射ミラー57および各放射温度計59とは、それぞれ3組ずつ設けなくても、1組ずつまたは2組ずつ設けても良いし、4組以上ずつ設けても良く、例えば、分割して設置され、分割された部位ごとに制御される加熱体48に合わせて設けるようにしても良い。要は、半導体製造装置10に必要とされる温度制御の精度(仕様)に応じて、必要な組数に決めれば良い。 However, the thermocouple wires 301a to 301c and the contacts 302a to 302c, the temperature control blocks 53a to 53c, the reflection mirrors 57, and the radiation thermometers 59 are not necessarily provided in groups of three. One set or two sets may be provided, or four or more sets may be provided. For example, the sets may be provided separately according to the heating body 48 that is divided and controlled for each divided part. . In short, the required number of sets may be determined according to the accuracy (specifications) of temperature control required for the semiconductor manufacturing apparatus 10.
 各熱電対素線301a~301cの各接点302a~302c側とは反対側の端部は、温度測定器103を形成する本体部200に形成された挿通孔200aを貫通して、基板収容室49の外部に導かれており、その端部にはそれぞれ第1,第2,第3コネクタ303a,303b,303cが設けられている。そして、温度測定器103は、各コネクタ303a~303cを介してコントローラ152の温度制御部52(図3,4参照)に電気的に接続されるようになっている。これにより、各接点302a~302cからの電圧の変化、つまり基板収容室49の室内温度データが、温度制御部52に送出される。ここで、本体部200の挿通孔200aは、耐熱性を有するエポキシ樹脂等を充填してなる封止部200bにより閉塞されており、したがって、基板収容室49内の圧力を所定圧力に保持できるようになっている。 The ends of the thermocouple strands 301a to 301c opposite to the contact points 302a to 302c pass through the insertion holes 200a formed in the main body 200 forming the temperature measuring device 103, so that the substrate accommodating chamber 49 The first, second, and third connectors 303a, 303b, and 303c are provided at the ends of the connectors. The temperature measuring device 103 is electrically connected to the temperature control unit 52 (see FIGS. 3 and 4) of the controller 152 via the connectors 303a to 303c. As a result, the change in voltage from each of the contacts 302 a to 302 c, that is, the room temperature data of the substrate housing chamber 49 is sent to the temperature controller 52. Here, the insertion hole 200a of the main body 200 is closed by a sealing part 200b filled with a heat-resistant epoxy resin or the like, so that the pressure in the substrate housing chamber 49 can be maintained at a predetermined pressure. It has become.
 <制御部>
 次に、SiCエピタキシャル膜を成膜する半導体製造装置10を構成する各部(種々のバルブや駆動部等)を制御するコントローラ152について説明する。
<Control unit>
Next, the controller 152 that controls each part (various valves, driving parts, etc.) constituting the semiconductor manufacturing apparatus 10 for forming a SiC epitaxial film will be described.
 図4に示すように、コントローラ152は、温度制御部52,ガス流量制御部78,圧力制御部98,駆動制御部108を備えている。これらの温度制御部52,ガス流量制御部78,圧力制御部98,駆動制御部108は、操作部および入出力部を構成し、半導体製造装置10の全体を制御する主制御部150にそれぞれ電気的に接続されている。 As shown in FIG. 4, the controller 152 includes a temperature control unit 52, a gas flow rate control unit 78, a pressure control unit 98, and a drive control unit 108. The temperature control unit 52, the gas flow rate control unit 78, the pressure control unit 98, and the drive control unit 108 constitute an operation unit and an input / output unit, and are electrically connected to the main control unit 150 that controls the entire semiconductor manufacturing apparatus 10, respectively. Connected.
 <反応ガスの詳細>
 次に、第1ガス供給系および第2ガス供給系を設けた理由について詳細に説明する。
<Details of reaction gas>
Next, the reason why the first gas supply system and the second gas supply system are provided will be described in detail.
 SiCエピタキシャル膜を成膜する半導体製造装置においては、少なくともSi(シリコン)原子含有ガスとC(炭素)原子含有ガスとで構成される反応ガス(原料ガス)を反応室に供給することで、SiCエピタキシャル膜を成膜する必要がある。また、本実施の形態のように、複数積層した各ウェーハ14を水平姿勢で多段に整列させてボート30に保持させるようにした場合においては、各ウェーハ14への反応ガスの供給を均一化させるために、各ウェーハ14の近傍から反応ガスをそれぞれ供給すべく、基板収容室49内でかつボート30の長手方向に沿うよう各ガス供給ノズル60,70を設けている。したがって、各ガス供給ノズル60,70内も基板収容室49と同じ条件となる。 In a semiconductor manufacturing apparatus for forming a SiC epitaxial film, a reaction gas (raw material gas) composed of at least a Si (silicon) atom-containing gas and a C (carbon) atom-containing gas is supplied to the reaction chamber, whereby SiC It is necessary to form an epitaxial film. Further, in the case where the plurality of stacked wafers 14 are arranged in multiple stages in a horizontal posture and held on the boat 30 as in the present embodiment, the supply of the reaction gas to each wafer 14 is made uniform. For this purpose, the gas supply nozzles 60 and 70 are provided in the substrate accommodating chamber 49 and along the longitudinal direction of the boat 30 in order to supply reaction gases from the vicinity of the wafers 14. Accordingly, the conditions in the gas supply nozzles 60 and 70 are the same as those in the substrate storage chamber 49.
 ここで、仮に、Si原子含有ガスとC原子含有ガスとを同じガス供給ノズルで供給すると、反応ガス同士が反応して当該反応ガスが消費され、基板収容室49の下流側で反応ガスが不足するだけでなく、ガス供給ノズル内で反応し堆積したSiC膜等の堆積物がガス供給ノズルのガス供給口を閉塞し、反応ガスの供給が不安定になるとともに、パーティクルを発生させる等の問題を生じてしまう。 Here, if the Si atom-containing gas and the C atom-containing gas are supplied by the same gas supply nozzle, the reaction gases react with each other and are consumed, and the reaction gas is insufficient on the downstream side of the substrate housing chamber 49. In addition to the deposition of the SiC film and the like that reacts and accumulates in the gas supply nozzle, the gas supply port of the gas supply nozzle is blocked, the reaction gas supply becomes unstable, and particles are generated. Will occur.
 そこで、本実施の形態においては、第1ガス供給ノズル60からSi原子含有ガスを供給し、第2ガス供給ノズル70からC原子含有ガスを供給している。このように、Si原子含有ガスとC原子含有ガスとを異なるガス供給ノズルから供給することにより、ガス供給ノズル内では、SiC膜を堆積させないようにすることができる。なお、Si原子含有ガスおよびC原子含有ガスの濃度や流速を調整したい場合は、それぞれ適切なキャリアガスを供給すればよい。 Therefore, in the present embodiment, the Si atom-containing gas is supplied from the first gas supply nozzle 60, and the C atom-containing gas is supplied from the second gas supply nozzle 70. In this way, by supplying the Si atom-containing gas and the C atom-containing gas from different gas supply nozzles, it is possible to prevent the SiC film from being deposited in the gas supply nozzle. In addition, what is necessary is just to supply appropriate carrier gas, respectively, when adjusting the density | concentration and flow velocity of Si atom containing gas and C atom containing gas.
 さらに、Si原子含有ガスをより効率的に使用するために、水素ガスのような還元ガスを用いる場合がある。この場合の還元ガスは、C原子含有ガスを供給する第2ガス供給ノズル70から供給することが望ましい。このように還元ガスをC原子含有ガスとともに供給し、基板収容室49内でSi原子含有ガスと混合させることにより、還元ガスが少ない状態となるためSi原子含有ガスの分解を成膜時と比較して抑制することができ、第1ガス供給ノズル60内におけるSi膜の堆積を抑制することが可能となる。この場合、還元ガスをC原子含有ガスのキャリアガスとして用いることが可能となる。なお、Si原子含有ガスのキャリアとしては、Arガスのような不活性ガス(特に希ガス)を用いることにより、Si膜の堆積を抑制することが可能となる。 Furthermore, in order to use the Si atom-containing gas more efficiently, a reducing gas such as hydrogen gas may be used. In this case, the reducing gas is desirably supplied from the second gas supply nozzle 70 that supplies the C atom-containing gas. In this way, the reducing gas is supplied together with the C atom-containing gas and mixed with the Si atom-containing gas in the substrate accommodating chamber 49, so that the reducing gas is reduced. Therefore, the deposition of the Si film in the first gas supply nozzle 60 can be suppressed. In this case, the reducing gas can be used as a carrier gas for the C atom-containing gas. In addition, it is possible to suppress deposition of the Si film by using an inert gas (particularly a rare gas) such as Ar gas as the carrier of the Si atom-containing gas.
 また、第1ガス供給ノズル60には、HClのような塩素原子含有ガスを供給することが望ましい。このようにすると、Si原子含有ガスが熱により分解されて、第1ガス供給ノズル60内に堆積可能な状態となったとしても、塩素によりエッチングモードとすることが可能となり、第1ガス供給ノズル60内へのSi膜の堆積をより抑制することが可能になる。 Further, it is desirable to supply a chlorine atom-containing gas such as HCl to the first gas supply nozzle 60. In this way, even if the Si atom-containing gas is decomposed by heat and can be deposited in the first gas supply nozzle 60, it becomes possible to enter the etching mode with chlorine, and the first gas supply nozzle It is possible to further suppress the deposition of the Si film in the 60.
 なお、本実施の形態においては、図2に示すように、第1ガス供給ノズル60にSiHガスおよびHClガスを供給し、第2ガス供給ノズル70にCガスおよびHガスを供給する構成で説明したが、これらの反応ガスの組み合わせは、上述の通り最も良いと考えられる組み合わせであって、これらに限定されることは無い。 In the present embodiment, as shown in FIG. 2, SiH 4 gas and HCl gas are supplied to the first gas supply nozzle 60, and C 3 H 8 gas and H 2 gas are supplied to the second gas supply nozzle 70. Although explained in the configuration of supplying, the combination of these reaction gases is considered to be the best combination as described above, and is not limited to these.
 また、本実施の形態においては、図2に示すように、SiCエピタキシャル膜を成膜する際に供給するCl(塩素)原子含有ガスとして、HClガスを用いた場合を示したが、これに限らず塩素ガスを用いても良い。 In the present embodiment, as shown in FIG. 2, the case where HCl gas is used as the Cl (chlorine) atom-containing gas supplied when the SiC epitaxial film is formed is shown, but the present invention is not limited to this. Chlorine gas may be used.
 さらに、本実施の形態においては、SiCエピタキシャル膜を成膜する際に、Si(シリコン)原子含有ガスとCl(塩素)原子含有ガスとを個別に供給したが、これに限らずSi原子とCl原子を含むガス、例えばテトラクロロシラン(以下SiClとする)ガス、トリクロロシラン(以下SiHCl)ガス、ジクロロシラン(以下SiHCl)ガスを供給しても良い。また、言うまでもないが、これらのSi原子およびCl原子を含むガスは、Si原子含有ガスでも有り、または、Si原子含有ガスおよびCl原子含有ガスの混合ガスとも言える。特に、SiClは、熱分解される温度が比較的高いため、ノズル内のSi消費抑制の観点から望ましい。 Further, in the present embodiment, when the SiC epitaxial film is formed, the Si (silicon) atom-containing gas and the Cl (chlorine) atom-containing gas are separately supplied. A gas containing atoms such as tetrachlorosilane (hereinafter referred to as SiCl 4 ) gas, trichlorosilane (hereinafter referred to as SiHCl 3 ) gas, or dichlorosilane (hereinafter referred to as SiH 2 Cl 2 ) gas may be supplied. Needless to say, the gas containing Si atoms and Cl atoms is also a Si atom-containing gas or a mixed gas of Si atom-containing gas and Cl atom-containing gas. In particular, SiCl 4 is desirable from the viewpoint of suppressing consumption of Si in the nozzle because the temperature at which pyrolysis is relatively high.
 さらに、本実施の形態においては、C(炭素)原子含有ガスとしてCガスを用いた場合を示したが、これに限らずエチレン(以下Cとする)ガス、アセチレン(以下Cとする)ガスを用いても良い。 Furthermore, in the present embodiment, the case where C 3 H 8 gas is used as the C (carbon) atom-containing gas is shown, but not limited thereto, ethylene (hereinafter referred to as C 2 H 4 ) gas, acetylene (hereinafter referred to as “C 3 H 8 gas”). C 2 H 2 gas may be used.
 また、本実施の形態においては、還元ガスとしてHガスを用いた場合を示したが、これに限らず他のH(水素)原子含有ガスを用いても良い。さらには、キャリアガスとしては、Ar(アルゴン)ガス,He(ヘリウム)ガス,Ne(ネオン)ガス,Kr(クリプトン)ガス,Xe(キセノン)ガス等の希ガスのうち少なくとも1つを用いても良いし、これらの希ガスを任意に組み合わせた混合ガスを用いても良い。 In the present embodiment, the case where H 2 gas is used as the reducing gas has been described, but the present invention is not limited to this, and other H (hydrogen) atom-containing gas may be used. Further, as the carrier gas, at least one of rare gases such as Ar (argon) gas, He (helium) gas, Ne (neon) gas, Kr (krypton) gas, and Xe (xenon) gas may be used. A mixed gas in which these rare gases are arbitrarily combined may be used.
 本実施の形態においては、第1ガス供給ノズル60からSi原子含有ガスを供給し、第2ガス供給ノズル70からC原子含有ガスを供給することで、ガス供給ノズル内のSiC膜の堆積を抑制している(以下、Si原子含有ガスとC原子含有ガスとを分離して供給する方式を「セパレート方式」と呼ぶ)。しかしながら、このセパレート方式においては、ガス供給ノズル内でのSiC膜の堆積を抑制できるものの、Si原子含有ガスとC原子含有ガスとを、各ガス供給口68,72から各ウェーハ14に到達するまでの間で充分に混合させる必要がある。 In the present embodiment, the Si atom-containing gas is supplied from the first gas supply nozzle 60 and the C atom-containing gas is supplied from the second gas supply nozzle 70, thereby suppressing the deposition of the SiC film in the gas supply nozzle. (Hereinafter, a method of separating and supplying the Si atom-containing gas and the C atom-containing gas is referred to as a “separate method”). However, in this separate method, although deposition of the SiC film in the gas supply nozzle can be suppressed, the Si atom-containing gas and the C atom-containing gas are allowed to reach the wafers 14 from the gas supply ports 68 and 72. It is necessary to mix well between.
 したがって、各ウェーハ14への反応ガスの均一化の観点から見れば、Si原子含有ガスとC原子含有ガスとを予め混合しておき、第1ガス供給ノズル60から供給するのが望ましい(以下、Si原子含有ガスとC原子含有ガスとを同一のガス供給ノズルから供給する方式を「プレミックス方式」と呼ぶ)。しかしながら、このプレミックス方式によれば、ガス供給ノズル内にSiC膜が堆積してしまう恐れがある。一方で、Si原子含有ガスは、エッチングガスである塩素と還元ガスである水素との比(Cl/H)を大きくすると塩素によるエッチング効果の方が大きくなり、Si原子含有ガスの反応を抑えることが可能である。よって、一方のガス供給ノズルにSi原子含有ガス,C原子含有ガスおよび塩素含有ガスを供給し、還元反応に用いられる還元ガス(例えば、水素ガス)を他方のガス供給ノズルから供給することで、ガス供給ノズル内のCl/Hが大きくなり、SiC膜の堆積を抑制することが可能である。 Therefore, from the viewpoint of uniforming the reaction gas to each wafer 14, it is desirable that the Si atom-containing gas and the C atom-containing gas are mixed in advance and supplied from the first gas supply nozzle 60 (hereinafter referred to as “the first gas supply nozzle 60”) A method of supplying the Si atom-containing gas and the C atom-containing gas from the same gas supply nozzle is referred to as a “premix method”. However, according to this premix method, there is a possibility that the SiC film is deposited in the gas supply nozzle. On the other hand, when the ratio of chlorine (etching gas) to hydrogen (reducing gas) (Cl / H) is increased in the Si atom-containing gas, the etching effect by chlorine increases, and the reaction of the Si atom-containing gas is suppressed. Is possible. Therefore, by supplying the Si atom-containing gas, the C atom-containing gas, and the chlorine-containing gas to one gas supply nozzle, and supplying the reducing gas (for example, hydrogen gas) used for the reduction reaction from the other gas supply nozzle, Cl / H in the gas supply nozzle becomes large, and it is possible to suppress the deposition of the SiC film.
 <SiCエピタキシャル膜の成膜方法>
 次に、以上のように形成した半導体製造装置10を用い、半導体デバイスの製造工程の一工程として、SiC等で構成されるウェーハ14等の基板上に、例えばSiCエピタキシャル膜を成膜する基板の処理方法について説明する。尚、以下の説明において半導体製造装置10を構成する各部の動作は、コントローラ152により制御される。
<Method for Forming SiC Epitaxial Film>
Next, using the semiconductor manufacturing apparatus 10 formed as described above, as a step of a semiconductor device manufacturing process, for example, a substrate on which a SiC epitaxial film is formed on a substrate such as a wafer 14 made of SiC or the like. A processing method will be described. In the following description, the operation of each part constituting the semiconductor manufacturing apparatus 10 is controlled by the controller 152.
 まず、各ウェーハ14を熱処理(成膜処理)する前の段階において、図3に示すように、シールキャップ101により基板収容室49の開口側を閉塞し、加熱した基板収容室49内の温度を測定する。これにより、基板収容室49内の温度データ、つまり室内温度データを得る。このとき、温度制御部52により誘導コイル50が通電され、このときの通電具合は、温度測定器103からの温度データに基づいて調節される。ここで、温度測定器103は、基板収容室49内でウェーハ14の近傍に配置されているので、基板収容室49内の温度は、実際に各ウェーハ14を熱処理するときと同じ高温(1500℃~1800℃)に精度良く調節される。 First, as shown in FIG. 3, the opening side of the substrate accommodation chamber 49 is closed by the seal cap 101 before the heat treatment (film formation treatment) of each wafer 14, and the temperature inside the heated substrate accommodation chamber 49 is set. taking measurement. Thereby, temperature data in the substrate storage chamber 49, that is, room temperature data is obtained. At this time, the induction coil 50 is energized by the temperature control unit 52, and the energization state at this time is adjusted based on the temperature data from the temperature measuring device 103. Here, since the temperature measuring device 103 is disposed in the vicinity of the wafer 14 in the substrate accommodating chamber 49, the temperature in the substrate accommodating chamber 49 is the same high temperature (1500 ° C.) as when each wafer 14 is actually heat-treated. To 1800 ° C) with high accuracy.
 温度測定器103により事前に室内温度データを得るときには、これと同時に、温度制御部52によって冷却水供給装置105が駆動制御される。そして、冷却水供給装置105の駆動制御により、シールキャップ101の第1冷却水循環室101cと、温度測定器103の第2冷却水循環室202とに、それぞれ冷えた冷却水CW(常温の約15℃)が供給される。つまり、冷却機構としての第2冷却水循環室202が作動することになる。これにより、基板収容室49内の高温が、温度測定器103を形成するゴム部品や樹脂部品、つまりOリング107や封止部200bに伝達されてしまい、これら部品の構成物質から脱ガス等が生じ、不純物が半導体製造装置10内に拡散されてしまうことを抑制する。 When the room temperature data is obtained in advance by the temperature measuring device 103, the cooling water supply device 105 is driven and controlled by the temperature control unit 52 at the same time. Then, by the cooling control of the cooling water supply device 105, the cooled cooling water CW (approximately 15 ° C. at room temperature) is supplied to the first cooling water circulation chamber 101 c of the seal cap 101 and the second cooling water circulation chamber 202 of the temperature measuring device 103. ) Is supplied. That is, the second cooling water circulation chamber 202 as a cooling mechanism operates. As a result, the high temperature in the substrate housing chamber 49 is transmitted to the rubber parts and resin parts forming the temperature measuring device 103, that is, the O-ring 107 and the sealing portion 200b, and degassing and the like from the constituent materials of these parts. This prevents the impurities from diffusing into the semiconductor manufacturing apparatus 10.
 ここで、図7(a)は温度測定器103の温度分布図を示しており、第1冷却水循環室101c内を循環する冷えた冷却水CWと、温度測定器103に一体に設けた第2冷却水循環室202内を循環する冷えた冷却水CWとにより、Oリング107や封止部200bの周辺が効果的に冷却されていることが判る。具体的には、Oリング107の周辺は「15℃~200℃」にまで冷却されており、耐熱性ゴムよりなるOリング107の溶融温度(約300℃)を大きく下回っている。したがって、Oリング107が溶融してシール不良を起こし、基板収容室49内の圧力が不安定になるようなこと(開放されるようなこと)が抑制されて、正確な室内温度データを得ることができる。 Here, FIG. 7A shows a temperature distribution diagram of the temperature measuring device 103. The cooled cooling water CW circulating in the first cooling water circulation chamber 101c and the second provided integrally with the temperature measuring device 103 are shown in FIG. It can be seen that the periphery of the O-ring 107 and the sealing portion 200b is effectively cooled by the cooled cooling water CW circulating in the cooling water circulation chamber 202. Specifically, the periphery of the O-ring 107 is cooled to “15 ° C. to 200 ° C.”, which is much lower than the melting temperature (about 300 ° C.) of the O-ring 107 made of heat-resistant rubber. Therefore, the O-ring 107 is melted to cause a sealing failure and the pressure in the substrate housing chamber 49 is prevented from becoming unstable (opened), and accurate indoor temperature data is obtained. Can do.
 これに対し、図7(b)は温度測定器103の「比較例1」を示しており、当該比較例1においては、温度測定器103を形成する本体部200のOリング107の近傍に、本体部200とは別体として構成された冷却機構CDを取り付けた場合を示している。この比較例1においては、シールキャップ101の第1冷却水循環室101cと、冷却機構CDの第2冷却水循環室CRとに冷えた冷却水CWを循環させても、本実施の形態に係る温度測定器103(図7(a)参照)に比して、冷却効率が低下していることが判る。具体的には、Oリング107の周辺は「200℃~300℃」となっており、Oリング107の溶融温度に近い状態となっている。したがって、Oリング107が溶融してシール不良を起こす可能性があることが判る。このように、別体の冷却機構CDを本体部200に取り付けたのでは、両者間の微小隙間が断熱材となって冷却効率を低下させるため、SiCエピタキシャル膜の成膜には望ましい構造とは言えない。 On the other hand, FIG. 7B shows “Comparative example 1” of the temperature measuring device 103. In the comparative example 1, in the vicinity of the O-ring 107 of the main body 200 forming the temperature measuring device 103, FIG. The case where the cooling mechanism CD comprised as a different body from the main-body part 200 is attached is shown. In the comparative example 1, the temperature measurement according to the present embodiment is performed even when the cooled cooling water CW is circulated through the first cooling water circulation chamber 101c of the seal cap 101 and the second cooling water circulation chamber CR of the cooling mechanism CD. It can be seen that the cooling efficiency is lower than that of the vessel 103 (see FIG. 7A). Specifically, the periphery of the O-ring 107 is “200 ° C. to 300 ° C.”, which is close to the melting temperature of the O-ring 107. Therefore, it can be seen that the O-ring 107 may melt and cause a sealing failure. As described above, when the separate cooling mechanism CD is attached to the main body portion 200, the minute gap between the two becomes a heat insulating material to reduce the cooling efficiency. I can not say.
 また、図7(c)は温度測定器103の「比較例2」を示しており、当該比較例2においては、温度測定器103を形成する本体部200から冷却機構を無くした場合を示している。この場合においては、シールキャップ101の第1冷却水循環室101cを循環する冷えた冷却水CWのみによって冷却される。そのため、充分な冷却効果が得られず、具体的にはOリング107の周辺は、当該Oリング107の溶融温度を超える「400℃~500℃」となっている。このように、冷却効果を比較すると、図7(a)に示す本実施の形態のように、温度測定器103に第2冷却水循環室202を一体に設けることが望ましいことが判った。 FIG. 7C shows a “comparative example 2” of the temperature measuring device 103. In the comparative example 2, the case where the cooling mechanism is eliminated from the main body 200 forming the temperature measuring device 103 is shown. Yes. In this case, the cooling is performed only by the cooled cooling water CW circulating in the first cooling water circulation chamber 101c of the seal cap 101. Therefore, a sufficient cooling effect cannot be obtained. Specifically, the periphery of the O-ring 107 is “400 ° C. to 500 ° C.” exceeding the melting temperature of the O-ring 107. Thus, comparing the cooling effects, it was found that it is desirable to integrally provide the second cooling water circulation chamber 202 in the temperature measuring device 103 as in the present embodiment shown in FIG.
 以上のように、各ウェーハ14を熱処理(成膜処理)する前の段階においてシールキャップ101により基板収容室49の開口側を閉塞し、加熱した基板収容室49内の温度を温度測定器103で測定し、基板収容室49の室内温度データを得る工程が、本発明の温度制御方法および半導体装置の製造方法における、室内温度測定工程を構成している。 As described above, the opening side of the substrate storage chamber 49 is closed by the seal cap 101 before the heat treatment (film formation processing) of each wafer 14, and the temperature inside the heated substrate storage chamber 49 is measured by the temperature measuring device 103. The step of measuring and obtaining the room temperature data of the substrate housing chamber 49 constitutes the room temperature measuring step in the temperature control method and semiconductor device manufacturing method of the present invention.
 次に、基板収容室49を加熱した状態のもとで、各放射温度計59により、基板収容室49の外部温度を測定して室外温度データを得る。ここで、各放射温度計59は、各反射ミラー57を介して各温度制御用ブロック53a~53cの温度を測定する。このように、各放射温度計59,各反射ミラー57,各温度制御用ブロック53a~53cよりなる室外用温度測定器により室外温度データを得る工程が、本発明の温度制御方法および半導体装置の製造方法における、室外温度測定工程を構成している。 Next, with the substrate housing chamber 49 heated, each radiation thermometer 59 measures the external temperature of the substrate housing chamber 49 to obtain outdoor temperature data. Here, each radiation thermometer 59 measures the temperature of each temperature control block 53a to 53c via each reflection mirror 57. As described above, the process of obtaining the outdoor temperature data by the outdoor temperature measuring device including the radiation thermometers 59, the reflection mirrors 57, and the temperature control blocks 53a to 53c is the manufacturing method of the temperature control method and the semiconductor device of the present invention. This constitutes an outdoor temperature measuring step in the method.
 その後、コントローラ152の温度制御部52では、室内温度測定工程および室外温度測定工程で得た各温度データ(室内温度データおよび室外温度データ)に基づいて、温度校正データを算出する。ここで、温度校正データは、例えば、基板収容室49内が所望の室内温度となるときの室外温度データと、そのときの誘導コイル50への通電量とによって得られるもので、この温度校正データに基づいて誘導コイル50を通電し、室外温度を調節することにより、実際に各ウェーハ14を熱処理する際には、温度測定器103を用いなくとも、基板収容室49内を所望の室内温度に制御することができる。このように、室内温度データおよび室外温度データに基づいて、温度校正データを算出する工程が、本発明の温度制御方法および半導体装置の製造方法における、温度校正データ算出工程を構成している。 Thereafter, the temperature control unit 52 of the controller 152 calculates temperature calibration data based on each temperature data (indoor temperature data and outdoor temperature data) obtained in the indoor temperature measurement process and the outdoor temperature measurement process. Here, the temperature calibration data is obtained from, for example, outdoor temperature data when the inside of the substrate housing chamber 49 is at a desired room temperature and the amount of current supplied to the induction coil 50 at this time. When the wafer 14 is actually heat-treated by energizing the induction coil 50 and adjusting the outdoor temperature based on the above, the substrate housing chamber 49 is brought to a desired room temperature without using the temperature measuring device 103. Can be controlled. As described above, the step of calculating the temperature calibration data based on the indoor temperature data and the outdoor temperature data constitutes the temperature calibration data calculation step in the temperature control method and the semiconductor device manufacturing method of the present invention.
 温度校正データ算出工程を終えた後は、実際に各ウェーハ14を熱処理する工程に移行する。まず、作業者によるマニュアル動作あるいは昇降機構によるオート動作により、温度測定器103が取り外される。 After completing the temperature calibration data calculation process, the process proceeds to a process of actually heat-treating each wafer 14. First, the temperature measuring device 103 is removed by a manual operation by an operator or an automatic operation by an elevating mechanism.
 その後、図1に示すように、ポッドステージ18に複数枚のウェーハ14を収納したポッド16がセットされると、ポッド搬送装置20によりポッド16をポッドステージ18からポッド収納棚22へ搬送し、ストックする。次に、ポッド搬送装置20により、ポッド収納棚22にストックされたポッド16をポッドオープナ24に搬送してセットし、ポッドオープナ24によりポッド16の蓋16aを開き、基板枚数検知器26によりポッド16に収納されているウェーハ14の枚数を検知する。次いで、基板移載機28により、ポッドオープナ24の位置にあるポッド16からウェーハ14を取り出し、取り出したウェーハ14をボート30に移載する。 Thereafter, as shown in FIG. 1, when the pod 16 storing a plurality of wafers 14 is set on the pod stage 18, the pod 16 is transferred from the pod stage 18 to the pod storage shelf 22 by the pod transfer device 20. To do. Next, the pod 16 stocked on the pod storage shelf 22 is transported and set to the pod opener 24 by the pod transport device 20, the lid 16 a of the pod 16 is opened by the pod opener 24, and the pod 16 is detected by the substrate number detector 26. The number of wafers 14 housed in is detected. Next, the wafer transfer unit 28 takes out the wafer 14 from the pod 16 at the position of the pod opener 24, and transfers the taken out wafer 14 to the boat 30.
 複数枚のウェーハ14がボート30に装填され積層されると、昇降機構の昇降駆動により、ウェーハ14を保持したボート30が基板収容室49内に搬入、つまりボートローディングされる。ここまでの一連の工程、つまり温度測定器103を取り外し、ボート30に複数積層された各ウェーハ14を基板収容室49内に搬送するまでの工程が、基板搬送工程を構成している。 When a plurality of wafers 14 are loaded and stacked in the boat 30, the boat 30 holding the wafers 14 is loaded into the substrate storage chamber 49, that is, boat loaded, by the lifting drive of the lifting mechanism. A series of steps up to this point, that is, a step until the temperature measuring device 103 is removed and a plurality of wafers 14 stacked on the boat 30 are transferred into the substrate accommodating chamber 49 constitutes a substrate transfer step.
 その後、さらに昇降機構を昇降駆動させることで、シールキャップ101をマニホールド36の下面に当接させ、これにより基板収容室49の開口側が閉塞された状態となる。次いで、基板収容室49(反応室44)内が所定の圧力(真空度)となるように真空排気装置220によって真空排気される。このとき、基板収容室49内の圧力は圧力センサによって測定され、測定された圧力に基づいて第1ガス排気口90および第2ガス排気口390に連通するAPCバルブ214がフィードバック制御される。 Thereafter, by further raising and lowering the lifting mechanism, the seal cap 101 is brought into contact with the lower surface of the manifold 36, whereby the opening side of the substrate housing chamber 49 is closed. Next, the substrate evacuation chamber 220 (reaction chamber 44) is evacuated by the evacuation device 220 so that a predetermined pressure (degree of vacuum) is obtained. At this time, the pressure in the substrate housing chamber 49 is measured by the pressure sensor, and the APC valve 214 communicating with the first gas exhaust port 90 and the second gas exhaust port 390 is feedback controlled based on the measured pressure.
 また、ウェーハ14および基板収容室49内が所定の温度となるよう加熱体48が加熱される。このとき、温度制御部52では、基板収容室49内が所定の温度分布となるよう、温度校正データ算出工程で得た温度校正データと、各放射温度計59(室外用温度測定器)で測定した現在の室外温度データとに基づいて、誘導コイル50への通電量を制御する。これにより基板収容室49内が所望の温度(1500℃~1800℃)となるよう加熱体48の温度が調節される。 Further, the heating body 48 is heated so that the inside of the wafer 14 and the substrate housing chamber 49 is at a predetermined temperature. At this time, the temperature control unit 52 measures the temperature calibration data obtained in the temperature calibration data calculation process and each radiation thermometer 59 (outdoor temperature measuring device) so that the inside of the substrate housing chamber 49 has a predetermined temperature distribution. The energization amount to the induction coil 50 is controlled based on the current outdoor temperature data. Thus, the temperature of the heating body 48 is adjusted so that the inside of the substrate housing chamber 49 becomes a desired temperature (1500 ° C. to 1800 ° C.).
 続いて、回転機構104によりボート30が回転されて、これによりウェーハ14も回転される。このように、基板収容室49の開口側をシールキャップ101によって閉塞し、温度校正データを用いて加熱体48の温度を調節する工程が、本発明の温度制御方法および半導体装置の製造方法における、加熱体温度調節工程を構成している。 Subsequently, the boat 30 is rotated by the rotating mechanism 104, and thereby the wafer 14 is also rotated. Thus, the step of closing the opening side of the substrate housing chamber 49 with the seal cap 101 and adjusting the temperature of the heating body 48 using the temperature calibration data is performed in the temperature control method and the semiconductor device manufacturing method of the present invention. The heating body temperature adjustment process is comprised.
 その後、所望の温度に加熱された基板収容室49内に、SiCエピタキシャル膜の成長に寄与するSi(シリコン)原子含有ガスおよびCl(塩素)原子含有ガスを、それぞれ第1,第2ガス供給源210a,210bから供給し、第1ガス供給口68から基板収容室49内に噴射する。また、C(炭素)原子含有ガスおよび還元ガスであるHガスを、所定の流量となるように対応するMFC211c,211dの開度を調整した後、バルブ212c,212dが開かれ、それぞれの反応ガスが第2ガスライン260に流通し、第2ガス供給ノズル70および第2ガス供給口72を介して基板収容室49内に噴射される。第1ガス供給口68および第2ガス供給口72から噴射した反応ガスは、基板収容室49内の加熱体48の内側を流れ、第1ガス排気口90からガス排気管230を通って排気される。第1ガス供給口68および第2ガス供給口72から噴射された反応ガスは、基板収容室49内を通過する際に、SiC等で構成されるウェーハ14と接触し、ウェーハ14の成膜面上にSiCエピタキシャル膜(結晶膜)が成膜されていく。 Thereafter, Si (silicon) atom-containing gas and Cl (chlorine) atom-containing gas contributing to the growth of the SiC epitaxial film are respectively supplied into the substrate housing chamber 49 heated to a desired temperature, respectively, as the first and second gas supply sources. The gas is supplied from 210 a and 210 b and is injected into the substrate storage chamber 49 from the first gas supply port 68. Further, after adjusting the opening degree of the corresponding MFCs 211c and 211d so that the C (carbon) atom-containing gas and the reducing gas H 2 gas have a predetermined flow rate, the valves 212c and 212d are opened, and the respective reactions are performed. The gas flows through the second gas line 260 and is injected into the substrate housing chamber 49 through the second gas supply nozzle 70 and the second gas supply port 72. The reaction gas injected from the first gas supply port 68 and the second gas supply port 72 flows inside the heating body 48 in the substrate housing chamber 49 and is exhausted from the first gas exhaust port 90 through the gas exhaust pipe 230. The When the reaction gas injected from the first gas supply port 68 and the second gas supply port 72 passes through the substrate housing chamber 49, the reaction gas comes into contact with the wafer 14 made of SiC or the like, and the film formation surface of the wafer 14. A SiC epitaxial film (crystal film) is formed on top.
 また、第5ガス供給源210eから不活性ガスとしてのArガス(希ガス)が所定の流量となるよう対応するMFC211eの開度を調整した後、バルブ212eが開かれ、第3ガスライン240に流通し、第3ガス供給口360から反応室44内に供給される。第3ガス供給口360から供給された不活性ガスとしてのArガスは、反応室44内の断熱材54と反応管42との間を通過し、第2ガス排気口390から排気される。その後、上述のように反応ガスを各ウェーハ14に曝して、予め設定された時間が経過すると、各反応ガスの供給制御が停止される。ここまでの一連の工程、つまり反応ガスの供給により各ウェーハ14の成膜面上にSiCエピタキシャル膜を成膜する工程が、本発明の半導体装置の製造方法における、基板処理工程を構成している。 Further, after adjusting the opening of the corresponding MFC 211e so that Ar gas (rare gas) as an inert gas has a predetermined flow rate from the fifth gas supply source 210e, the valve 212e is opened, and the third gas line 240 is opened. It circulates and is supplied into the reaction chamber 44 from the third gas supply port 360. Ar gas as an inert gas supplied from the third gas supply port 360 passes between the heat insulating material 54 and the reaction tube 42 in the reaction chamber 44 and is exhausted from the second gas exhaust port 390. Thereafter, the reaction gas is exposed to each wafer 14 as described above, and when a preset time has elapsed, the supply control of each reaction gas is stopped. The series of steps so far, that is, the step of forming the SiC epitaxial film on the film forming surface of each wafer 14 by supplying the reaction gas constitutes the substrate processing step in the method for manufacturing a semiconductor device of the present invention. .
 次いで、図示しない不活性ガス供給源から不活性ガスが供給され、基板収容室49内が不活性ガスで置換され、さらに基板収容室49(反応室44)内の圧力が常圧に復帰される。そして、基板収容室49内が常圧に復帰した後は、昇降機構の昇降駆動によりシールキャップ101が下降し、基板収容室49の開口側が開口する。その後、さらに昇降機構の昇降駆動が継続されて、熱処理済み(成膜処理済み)の各ウェーハ14がボート30に保持された状態でマニホールド36の下方側から基板収容室49の外部に搬出、つまりボートアンローディングされる。ボート30に保持された各ウェーハ14は、冷えるまでロードロック室(図示せず)の内部で待機状態となる。 Next, an inert gas is supplied from an inert gas supply source (not shown), the inside of the substrate storage chamber 49 is replaced with an inert gas, and the pressure in the substrate storage chamber 49 (reaction chamber 44) is restored to normal pressure. . After the inside of the substrate storage chamber 49 returns to normal pressure, the seal cap 101 is lowered by the lifting drive of the lifting mechanism, and the opening side of the substrate storage chamber 49 is opened. Thereafter, the raising / lowering drive of the raising / lowering mechanism is continued, and each heat-treated (film-formed) wafer 14 is carried out from the lower side of the manifold 36 to the outside of the substrate housing chamber 49 while being held by the boat 30, that is, Boat unloaded. Each wafer 14 held in the boat 30 is in a standby state inside a load lock chamber (not shown) until it cools.
 その後、各ウェーハ14が所定の温度にまで冷却されると、基板移載機28の動作により、各ウェーハ14がボート30から取り出され、ポッドオープナ24にセットされている空のポッド16に搬送されて収納される。その後、ポッド搬送装置20の動作により、各ウェーハ14を収納したポッド16が、ポッド収納棚22またはポッドステージ18に搬送される。このようにして、半導体製造装置10の一連の動作が完了する。 Thereafter, when each wafer 14 is cooled to a predetermined temperature, each wafer 14 is taken out from the boat 30 by the operation of the substrate transfer device 28 and transferred to the empty pod 16 set in the pod opener 24. Stored. Thereafter, the pod 16 storing the wafers 14 is transferred to the pod storage shelf 22 or the pod stage 18 by the operation of the pod transfer device 20. In this way, a series of operations of the semiconductor manufacturing apparatus 10 is completed.
 <第1実施の形態の代表的効果>
 以上、第1実施の形態で説明した技術的思想によれば、少なくとも、以下に記載する複数の効果のうち、1つ以上の効果を奏する。
<Typical effects of the first embodiment>
As described above, according to the technical idea described in the first embodiment, at least one of the plurality of effects described below is produced.
 (1)第1実施の形態によれば、基板収容室49内の温度を測定する温度測定器103に、基板収容室49の外部で装着孔101aと本体部200との間の気密を保持するOリング107を冷却する第2冷却水循環室202を設けたので、Oリング107が溶融するのを未然に防いで、基板収容室49の内部圧力を確実に所定値に保持できる。したがって、SiCエピタキシャル膜を成膜する基板収容室49内の高温を正確に測定することができ、ひいては基板収容室49内の温度を精度良く制御することが可能となる。 (1) According to the first embodiment, the temperature measuring device 103 that measures the temperature in the substrate housing chamber 49 holds the airtightness between the mounting hole 101 a and the main body 200 outside the substrate housing chamber 49. Since the second cooling water circulation chamber 202 for cooling the O-ring 107 is provided, the O-ring 107 can be prevented from melting and the internal pressure of the substrate housing chamber 49 can be reliably maintained at a predetermined value. Therefore, it is possible to accurately measure the high temperature in the substrate storage chamber 49 in which the SiC epitaxial film is formed, and as a result, the temperature in the substrate storage chamber 49 can be accurately controlled.
 (2)第1実施の形態によれば、第2冷却水循環室202を、Oリング107の形状に倣って環状に形成するとともに、Oリング107の直下に近接して配置したので、Oリング107の近傍を効果的に冷却することができる。したがって、Oリング107に高温が伝達されるのを抑制して、Oリング107が溶融するのを確実に防止できる。 (2) According to the first embodiment, the second cooling water circulation chamber 202 is formed in an annular shape following the shape of the O-ring 107, and is disposed close to the O-ring 107. Can be effectively cooled. Therefore, high temperature is prevented from being transmitted to the O-ring 107, and the O-ring 107 can be reliably prevented from melting.
 (3)第1実施の形態によれば、温度測定器103を形成する各熱電対素線301a~301cの各接点302a~302cを、保護管300の長手方向に沿う異なる位置(h1~h3)にそれぞれ配置したので、ボート30の下段部~上段部の近傍の温度をムラ無く測定することができる。したがって、基板収容室49内の温度を精度良く制御することが可能となる。 (3) According to the first embodiment, the contacts 302a to 302c of the thermocouple wires 301a to 301c forming the temperature measuring device 103 are placed at different positions (h1 to h3) along the longitudinal direction of the protective tube 300. Therefore, the temperature in the vicinity of the lower part to the upper part of the boat 30 can be measured without unevenness. Therefore, it is possible to control the temperature in the substrate storage chamber 49 with high accuracy.
 (4)第1実施の形態で説明した温度測定器103を、半導体装置の製造方法における基板の処理工程において用いることにで、半導体装置の製造方法において、上述した複数の効果のうち、1つ以上の効果を奏する。 (4) By using the temperature measuring device 103 described in the first embodiment in the substrate processing step in the semiconductor device manufacturing method, one of the above-described effects can be obtained in the semiconductor device manufacturing method. There are the above effects.
 (5)第1実施の形態で説明した温度測定器103を、SiCエピタキシャル膜を形成する基板の製造方法における基板の処理工程において用いることで、SiCエピタキシャル膜を形成する基板の製造方法において、上述した複数の効果のうち、1つ以上の効果を奏する。 (5) In the substrate manufacturing method for forming a SiC epitaxial film, the temperature measuring device 103 described in the first embodiment is used in the substrate processing step in the substrate manufacturing method for forming a SiC epitaxial film. Among the plurality of effects, one or more effects are achieved.
 [第2実施の形態] 
 次に、本発明の第2実施の形態について、図面を参照しつつ詳細に説明する。なお、上述した第1実施の形態と同様の機能を有する部分については同一の記号を付し、その詳細な説明を省略する。図8は第2実施の形態に係る温度測定器の詳細構造を説明する説明図を表している。
[Second Embodiment]
Next, a second embodiment of the present invention will be described in detail with reference to the drawings. Note that portions having the same functions as those of the first embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted. FIG. 8 is an explanatory view illustrating the detailed structure of the temperature measuring device according to the second embodiment.
 第2実施の形態に係る温度測定器400は、上述した第1実施の形態に係る温度測定器103に比して、保護管300に耐熱カバー410を装着した点のみが異なっている。耐熱カバー410は、保護管300(炭化ケイ素製)よりも融点が高く耐熱性に優れたサファイア製であり、保護管300と同様に有底筒状に形成されている。耐熱カバー410は、保護管300よりも大径に形成され、保護管300の周囲を所定の隙間Sを介して覆っている。一方、本体部200の保護管嵌合凹部201aの外周側には、耐熱カバー410の基端部が嵌合固定される嵌合段差部210が設けられている。これにより、耐熱カバー410の基端部を嵌合段差部210に嵌合固定することで、耐熱カバー410を保護管300とともに、本体部200に対して同軸上に真っ直ぐに設置することができる。なお、耐熱カバー410を設けたので、炭化ケイ素製の保護管300に換えて石英製など他の材質の保護管を用いることもできる。ただし、耐熱カバー410はサファイア製に限らず、温度測定器400の仕様に応じて炭化ケイ素製等にしても構わない。 The temperature measuring device 400 according to the second embodiment is different from the temperature measuring device 103 according to the first embodiment described above only in that a heat-resistant cover 410 is attached to the protective tube 300. The heat-resistant cover 410 is made of sapphire having a melting point higher than that of the protective tube 300 (made of silicon carbide) and excellent in heat resistance, and is formed in a bottomed cylindrical shape like the protective tube 300. The heat-resistant cover 410 is formed with a larger diameter than the protective tube 300 and covers the periphery of the protective tube 300 with a predetermined gap S therebetween. On the other hand, a fitting step portion 210 to which the base end portion of the heat-resistant cover 410 is fitted and fixed is provided on the outer peripheral side of the protective tube fitting recess 201a of the main body portion 200. Accordingly, the heat-resistant cover 410 can be installed straight along with the protective tube 300 on the same axis as the main body 200 by fitting and fixing the base end portion of the heat-resistant cover 410 to the fitting stepped portion 210. Since the heat-resistant cover 410 is provided, a protective tube made of other materials such as quartz can be used instead of the protective tube 300 made of silicon carbide. However, the heat resistant cover 410 is not limited to sapphire, and may be made of silicon carbide or the like according to the specifications of the temperature measuring device 400.
 <第2実施の形態の代表的効果>
 以上、第2実施の形態で説明した技術的思想においても、上述した第1実施の形態と同様の作用効果を奏することができる。これに加え、第2実施の形態においては、少なくとも、以下に記載する複数の効果のうち、1つ以上の効果を奏する。
<Typical effects of the second embodiment>
As mentioned above, also in the technical idea demonstrated in 2nd Embodiment, there can exist an effect similar to 1st Embodiment mentioned above. In addition to this, in the second embodiment, at least one of the plurality of effects described below is produced.
 (1)第2実施の形態によれば、耐熱カバー410を設けたので、より耐熱性に優れた温度測定器400を提供することができ、信頼性の向上が図れる。 (1) According to the second embodiment, since the heat-resistant cover 410 is provided, it is possible to provide the temperature measuring device 400 with more excellent heat resistance and to improve the reliability.
 (2)第2実施の形態によれば、耐熱カバー410を設けたので、その内側にある保護管や熱電対素線を、耐熱性を落とした安価なもので構成することもできる。 (2) According to the second embodiment, since the heat-resistant cover 410 is provided, the protective tube and thermocouple wire inside the cover can be made of an inexpensive one with reduced heat resistance.
 [第3実施の形態] 
 次に、本発明の第3実施の形態について、図面を参照しつつ詳細に説明する。なお、上述した第1実施の形態と同様の機能を有する部分については同一の記号を付し、その詳細な説明を省略する。図9は第3実施の形態に係る温度測定器の処理炉への配置状態を説明する説明図を表している。
[Third Embodiment]
Next, a third embodiment of the present invention will be described in detail with reference to the drawings. Note that portions having the same functions as those of the first embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted. FIG. 9 is an explanatory diagram for explaining an arrangement state of the temperature measuring device according to the third embodiment in the processing furnace.
 第3実施の形態においては、上述した第1実施の形態に比して、1つの温度測定器103に換えて、第1,第2,第3の温度測定器500,510,520を設けた点のみが異なっている。具体的には、加熱体48と断熱材54(図3参照)との間に設けた第1,第2,第3の温度制御用ブロック53a,53b,53cに対応させて、各温度測定器500,510,520の長さ寸法を異ならせている。つまり、第1温度測定器500は、第1温度制御用ブロック53aに対応させて、第1熱電対素線301aと、高さ位置がh1に相当する第1接点302aとを備えている。第2温度測定器510は、第2温度制御用ブロック53bに対応させて、第2熱電対素線301bと、高さ位置がh2に相当する第2接点302bとを備えている。第3温度測定器520は、第3温度制御用ブロック53cに対応させて、第3熱電対素線301cと、高さ位置がh3に相当する第3接点302cとを備えている。 In the third embodiment, the first, second, and third temperature measuring devices 500, 510, and 520 are provided in place of the one temperature measuring device 103 as compared with the first embodiment described above. Only the point is different. Specifically, each temperature measuring device is associated with the first, second, and third temperature control blocks 53a, 53b, and 53c provided between the heating body 48 and the heat insulating material 54 (see FIG. 3). 500, 510, and 520 have different length dimensions. That is, the first temperature measuring device 500 includes a first thermocouple wire 301a and a first contact 302a whose height position corresponds to h1 in correspondence with the first temperature control block 53a. The second temperature measuring device 510 includes a second thermocouple wire 301b and a second contact 302b whose height position corresponds to h2 corresponding to the second temperature control block 53b. The third temperature measuring device 520 includes a third thermocouple element 301c and a third contact 302c whose height position corresponds to h3, corresponding to the third temperature control block 53c.
 ただし、第3実施の形態における各温度測定器500,510,520においても、第2実施の形態と同様に耐熱カバーを設けるようにしても良い。 However, in each of the temperature measuring devices 500, 510, and 520 in the third embodiment, a heat resistant cover may be provided in the same manner as in the second embodiment.
 <第3実施の形態の代表的効果>
 以上、第3実施の形態で説明した技術的思想においても、上述した第1実施の形態と同様の作用効果を奏することができる。これに加え、第3実施の形態においては、少なくとも、以下に記載する複数の効果のうち、1つ以上の効果を奏する。
<Typical effects of the third embodiment>
As mentioned above, also in the technical idea demonstrated in 3rd Embodiment, there can exist an effect similar to 1st Embodiment mentioned above. In addition to this, in the third embodiment, at least one of the plurality of effects described below is produced.
 (1)第3実施の形態によれば、第1,第2,第3の温度制御用ブロック53a,53b,53cに対応させて、第1,第2,第3の温度測定器500,510,520を設けたので、各接点302a~302cを各温度制御用ブロック53a~53cに対して、それぞれ均一の距離に配置することができる。したがって、より高精度の温度校正データを得て、基板収容室49(図3参照)内の温度をより精度良く制御することが可能となる。 (1) According to the third embodiment, the first, second, and third temperature measuring devices 500, 510 are associated with the first, second, and third temperature control blocks 53a, 53b, and 53c. , 520, the contacts 302a to 302c can be arranged at a uniform distance from the temperature control blocks 53a to 53c. Therefore, it is possible to obtain temperature calibration data with higher accuracy and control the temperature in the substrate storage chamber 49 (see FIG. 3) with higher accuracy.
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は上述した各実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。例えば、上記各実施の形態においては、本発明の「冷却機構」として、内部を冷却水が循環する第2冷却水循環室202としたものを示したが、本発明はこれに限らず、例えばヒートポンプ等を用いた冷却機構を用いることもできる。 As mentioned above, the invention made by the present inventor has been specifically described based on the embodiments. However, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention. Needless to say. For example, in each of the above embodiments, the “cooling mechanism” of the present invention is the second cooling water circulation chamber 202 in which the cooling water circulates. However, the present invention is not limited to this, and for example, a heat pump It is also possible to use a cooling mechanism using the like.
 また、上記各実施の形態においては、SiCエピタキシャル膜を成膜する成膜装置(基板処理装置)を例示して説明したが、本発明はこれに限らず、ガス供給口から噴射(供給)される反応ガスの供給方向(水平方向)と、噴射された反応ガスの排気方向(垂直方向)とが異なる他の基板処理装置にも適用することができる。 In each of the above embodiments, the film forming apparatus (substrate processing apparatus) for forming the SiC epitaxial film has been described as an example. However, the present invention is not limited to this, and is injected (supplied) from the gas supply port. The present invention can also be applied to other substrate processing apparatuses in which the reactive gas supply direction (horizontal direction) differs from the exhausted reactive gas ejection direction (vertical direction).
 例えば、SiCエピタキシャル膜をアニールする熱処理装置(以下、SiCアニール装置)に適用した場合、SiCアニール装置における処理温度は1500℃~2000℃であり、さらに高温領域であるため、本発明を適用することによって、より正確な温度制御が可能となる。 For example, when applied to a heat treatment apparatus (hereinafter referred to as SiC annealing apparatus) for annealing a SiC epitaxial film, the processing temperature in the SiC annealing apparatus is 1500 ° C. to 2000 ° C., which is a high temperature region, and therefore the present invention is applied. Therefore, more accurate temperature control is possible.
 本発明は少なくとも以下の実施の形態を含む。 The present invention includes at least the following embodiments.
 〔付記1〕
 基板を処理する基板処理装置の基板収容室内における温度を測定する温度測定器であって、
 前記基板収容室の開口側を閉塞する閉塞部材の装着孔に装着される本体部と、
 前記本体部に一体に設けられ、前記基板収容室の内部に配置される保護管と、
 前記保護管の内部に設けられ、接点を備えた熱電対素線と、
 前記本体部に設けられ、前記基板収容室の外部で前記装着孔と前記本体部との間の気密を保持するシール部材を冷却する冷却機構と、
 を有する温度測定器。
[Appendix 1]
A temperature measuring device for measuring a temperature in a substrate housing chamber of a substrate processing apparatus for processing a substrate,
A main body mounted in a mounting hole of a closing member for closing the opening side of the substrate housing chamber;
A protective tube provided integrally with the main body, and disposed inside the substrate housing chamber;
A thermocouple wire provided inside the protective tube and provided with a contact;
A cooling mechanism that is provided in the main body portion and cools a seal member that maintains airtightness between the mounting hole and the main body portion outside the substrate housing chamber;
Having a temperature measuring device.
 〔付記2〕
 前記シール部材を、前記本体部に嵌合するOリングとし、前記冷却機構を、前記Oリングの形状に沿う環状に形成し、内部に冷却水が循環する冷却水循環室とする付記1記載の温度測定器。
[Appendix 2]
The temperature according to supplementary note 1, wherein the sealing member is an O-ring that fits into the main body, the cooling mechanism is formed in an annular shape along the shape of the O-ring, and a cooling water circulation chamber in which cooling water circulates is formed. Measuring instrument.
 〔付記3〕
 前記保護管に耐熱カバーを装着する付記1または2記載の温度測定器。
[Appendix 3]
The temperature measuring instrument according to appendix 1 or 2, wherein a heat-resistant cover is attached to the protective tube.
 〔付記4〕
 前記耐熱カバーをサファイア製とする付記3記載の温度測定器。
[Appendix 4]
The temperature measuring instrument according to appendix 3, wherein the heat-resistant cover is made of sapphire.
 〔付記5〕
 前記保護管の内部に複数組の前記熱電対素線を設け、前記各熱電対素線の前記各接点を、前記保護管の長手方向に沿う異なる位置にそれぞれ配置する付記1~4のいずれか1つに記載の温度測定器。
[Appendix 5]
Any one of appendices 1 to 4, wherein a plurality of sets of the thermocouple wires are provided inside the protective tube, and the contacts of the thermocouple wires are arranged at different positions along the longitudinal direction of the protective tube. The temperature measuring device according to one.
 〔付記6〕
 基板を処理する基板処理装置の基板収容室内における温度を測定する温度測定器であって、
 前記基板収容室の開口側を閉塞する閉塞部材の装着孔に装着される本体部と、
 前記本体部に一体に設けられ、前記基板収容室の内部に配置される保護管と、
 前記保護管の内部に設けられ、接点を備えた熱電対素線と、を有し、
 前記保護管に耐熱カバーを装着する温度測定器。
[Appendix 6]
A temperature measuring device for measuring a temperature in a substrate housing chamber of a substrate processing apparatus for processing a substrate,
A main body mounted in a mounting hole of a closing member for closing the opening side of the substrate housing chamber;
A protective tube provided integrally with the main body, and disposed inside the substrate housing chamber;
A thermocouple element provided inside the protective tube and provided with a contact;
A temperature measuring device in which a heat-resistant cover is attached to the protective tube.
 〔付記7〕
 前記耐熱カバーをサファイア製とする付記6記載の温度測定器。
[Appendix 7]
The temperature measuring instrument according to appendix 6, wherein the heat-resistant cover is made of sapphire.
 〔付記8〕
 前記本体部に、前記基板収容室の外部で前記装着孔と前記本体部との間の気密を保持するシール部材を冷却する冷却機構を設ける付記6または7記載の温度測定器。
[Appendix 8]
The temperature measuring instrument according to appendix 6 or 7, wherein a cooling mechanism is provided in the main body portion for cooling a sealing member that maintains airtightness between the mounting hole and the main body portion outside the substrate housing chamber.
 〔付記9〕 
 前記保護管の内部に複数組の前記熱電対素線を設け、前記各熱電対素線の前記各接点を、前記保護管の長手方向に沿う異なる位置にそれぞれ配置する付記6~8のいずれか1つに記載の温度測定器。
[Appendix 9]
Any one of appendixes 6 to 8, wherein a plurality of sets of the thermocouple wires are provided inside the protective tube, and the contacts of the thermocouple wires are respectively arranged at different positions along the longitudinal direction of the protective tube. The temperature measuring device according to one.
 〔付記10〕 
 基板を処理する基板処理装置の基板収容室内における温度制御を、コントローラにより加熱体の温度を調節して行う温度制御方法であって、
 前記基板収容室の開口側を閉塞する閉塞部材の装着孔に装着される本体部、前記本体部に一体に設けられ、前記基板収容室の内部に配置される保護管、前記保護管の内部に設けられ、接点を備えた熱電対素線、前記本体部に設けられ、前記基板収容室の外部で前記装着孔と前記本体部との間の気密を保持するシール部材を冷却する冷却機構を有する温度測定器を用いて前記基板収容室内の温度を測定する室内温度測定工程と、
 前記基板収容室の外部に設けられた室外用温度測定器を用い、前記基板収容室外の温度を測定する室外温度測定工程と、
 前記室内温度測定工程および前記室外温度測定工程で得た各温度データに基づき、温度校正データを算出する温度校正データ算出工程と、
 前記温度校正データ算出工程で得た前記温度校正データと、前記室外用温度測定器で測定した現在の室外温度データとに基づき、前記加熱体の温度を調節する加熱体温度調節工程と、を有する温度制御方法。
[Appendix 10]
A temperature control method for performing temperature control in a substrate housing chamber of a substrate processing apparatus for processing a substrate by adjusting a temperature of a heating body by a controller,
A main body portion that is mounted in a mounting hole of a closing member that closes the opening side of the substrate housing chamber, a protective tube that is provided integrally with the main body portion and disposed inside the substrate housing chamber, and inside the protective tube A thermocouple element provided with a contact, provided in the main body, and having a cooling mechanism that cools a seal member that maintains an airtightness between the mounting hole and the main body outside the substrate housing chamber An indoor temperature measuring step of measuring the temperature in the substrate housing chamber using a temperature measuring device;
Using an outdoor temperature measuring device provided outside the substrate housing chamber, an outdoor temperature measuring step for measuring the temperature outside the substrate housing chamber;
A temperature calibration data calculation step for calculating temperature calibration data based on each temperature data obtained in the indoor temperature measurement step and the outdoor temperature measurement step;
A heating body temperature adjustment step of adjusting the temperature of the heating body based on the temperature calibration data obtained in the temperature calibration data calculation step and the current outdoor temperature data measured by the outdoor temperature measuring device. Temperature control method.
 〔付記11〕 
 前記シール部材を、前記本体部に嵌合するOリングとし、前記冷却機構を、前記Oリングの形状に沿う環状に形成し、内部に冷却水が循環する冷却水循環室とし、前記室内温度測定工程では、前記冷却水を前記冷却水循環室に循環させる付記10記載の温度制御方法。
[Appendix 11]
The sealing member is an O-ring that fits into the main body, the cooling mechanism is formed in an annular shape along the shape of the O-ring, and a cooling water circulation chamber in which cooling water circulates is formed, and the indoor temperature measuring step Then, the temperature control method according to appendix 10, wherein the cooling water is circulated to the cooling water circulation chamber.
 〔付記12〕 
 前記保護管に耐熱カバーを装着する付記10または11記載の温度制御方法。
[Appendix 12]
The temperature control method according to appendix 10 or 11, wherein a heat-resistant cover is attached to the protective tube.
 〔付記13〕 
 前記耐熱カバーをサファイア製とする付記12記載の温度制御方法。
[Appendix 13]
The temperature control method according to appendix 12, wherein the heat-resistant cover is made of sapphire.
 〔付記14〕 
 前記保護管の内部に複数組の前記熱電対素線を設け、前記各熱電対素線の前記各接点を、前記保護管の長手方向に沿う異なる位置にそれぞれ配置する付記10~13のいずれか1つに記載の温度制御方法。
[Appendix 14]
Any one of appendixes 10 to 13, wherein a plurality of sets of the thermocouple wires are provided inside the protective tube, and the contacts of the thermocouple wires are arranged at different positions along the longitudinal direction of the protective tube. The temperature control method according to one.
 〔付記15〕 
 基板を処理する基板処理装置を用いて半導体装置を製造する半導体装置の製造方法であって、
 前記基板を収容する基板収容室の開口側を閉塞する閉塞部材の装着孔に装着される本体部、前記本体部に一体に設けられ、前記基板収容室の内部に配置される保護管、前記保護管の内部に設けられ、接点を備えた熱電対素線、前記本体部に設けられ、前記基板収容室の外部で前記装着孔と前記本体部との間の気密を保持するシール部材を冷却する冷却機構を有する温度測定器を用いて前記基板収容室内の温度を測定する室内温度測定工程と、
 前記基板収容室の外部に設けられた室外用温度測定器を用い、前記基板収容室外の温度を測定する室外温度測定工程と、
 前記室内温度測定工程および前記室外温度測定工程で得た各温度データに基づき、温度校正データを算出する温度校正データ算出工程と、
 前記温度校正データ算出工程で得た前記温度校正データと、前記室外用温度測定器で測定した現在の室外温度データとに基づき、前記基板収容室内を加熱する加熱体の温度を調節する加熱体温度調節工程と、
 前記基板収容室の内部にガス供給源から反応ガスを供給し、前記基板を処理する基板処理工程と、を有する半導体装置の製造方法。
[Appendix 15]
A semiconductor device manufacturing method for manufacturing a semiconductor device using a substrate processing apparatus for processing a substrate,
A main body portion mounted in a mounting hole of a closing member that closes the opening side of the substrate storage chamber for storing the substrate, a protective tube provided integrally with the main body portion and disposed inside the substrate storage chamber, the protection A thermocouple wire provided inside the tube and provided with a contact, and a seal member provided in the main body portion and for maintaining an airtightness between the mounting hole and the main body portion outside the substrate housing chamber are cooled. An indoor temperature measuring step of measuring the temperature in the substrate housing chamber using a temperature measuring device having a cooling mechanism;
Using an outdoor temperature measuring device provided outside the substrate housing chamber, an outdoor temperature measuring step for measuring the temperature outside the substrate housing chamber;
A temperature calibration data calculation step for calculating temperature calibration data based on each temperature data obtained in the indoor temperature measurement step and the outdoor temperature measurement step;
Based on the temperature calibration data obtained in the temperature calibration data calculation step and the current outdoor temperature data measured by the outdoor temperature measuring device, the heating body temperature for adjusting the temperature of the heating body for heating the substrate housing chamber The adjustment process;
A substrate processing step of supplying a reaction gas from a gas supply source into the substrate housing chamber and processing the substrate.
 〔付記16〕 
 前記シール部材を、前記本体部に嵌合するOリングとし、前記冷却機構を、前記Oリングの形状に沿う環状に形成し、内部に冷却水が循環する冷却水循環室とし、前記室内温度測定工程では、前記冷却水を前記冷却水循環室に循環させる付記15記載の半導体装置の製造方法。
[Appendix 16]
The sealing member is an O-ring that fits into the main body, the cooling mechanism is formed in an annular shape along the shape of the O-ring, and a cooling water circulation chamber in which cooling water circulates is formed, and the indoor temperature measuring step Then, the manufacturing method of the semiconductor device of Additional remark 15 which circulates the said cooling water to the said cooling water circulation chamber.
 〔付記17〕 
 前記保護管に耐熱カバーを装着する付記15または16記載の半導体装置の製造方法。
[Appendix 17]
18. The method for manufacturing a semiconductor device according to appendix 15 or 16, wherein a heat-resistant cover is attached to the protective tube.
 〔付記18〕 
 前記耐熱カバーをサファイア製とする付記17記載の半導体装置の製造方法。
[Appendix 18]
18. The method for manufacturing a semiconductor device according to appendix 17, wherein the heat resistant cover is made of sapphire.
 〔付記19〕 
 前記保護管の内部に複数組の前記熱電対素線を設け、前記各熱電対素線の前記各接点を、前記保護管の長手方向に沿う異なる位置にそれぞれ配置する付記15~19のいずれか1つに記載の半導体装置の製造方法。
[Appendix 19]
Any one of appendixes 15 to 19, wherein a plurality of sets of the thermocouple wires are provided inside the protective tube, and the contacts of the thermocouple wires are arranged at different positions along the longitudinal direction of the protective tube. A method of manufacturing a semiconductor device according to one of the above.
 〔付記20〕 
 基板を処理する基板処理装置であって、
 前記基板を収容する基板収容室と、
 前記基板収容室の外部に設けられ、前記基板収容室外の温度を測定する室外用温度測定器と、
 前記基板収容室の内部に設けられ、前記基板に向けて反応ガスを供給するガスノズルと、
 前記基板収容室の開口側を閉塞する閉塞部材と、
 前記閉塞部材に装着され、前記基板収容室内の温度を測定する温度測定器と、を備え、
 前記温度測定器は、前記閉塞部材の装着孔に装着される本体部と、
 前記本体部に一体に設けられ、前記基板収容室の内部に配置される保護管と、
 前記保護管の内部に設けられ、接点を備えた熱電対素線と、
 前記本体部に設けられ、前記基板収容室の外部で前記装着孔と前記本体部との間の気密を保持するシール部材を冷却する冷却機構と、を有する基板処理装置。
[Appendix 20]
A substrate processing apparatus for processing a substrate,
A substrate storage chamber for storing the substrate;
An outdoor temperature measuring device that is provided outside the substrate housing chamber and measures the temperature outside the substrate housing chamber;
A gas nozzle that is provided inside the substrate storage chamber and supplies a reactive gas toward the substrate;
A closing member for closing the opening side of the substrate housing chamber;
A temperature measuring device mounted on the closing member and measuring the temperature in the substrate housing chamber,
The temperature measuring device includes a main body portion that is attached to the attachment hole of the closing member;
A protective tube provided integrally with the main body, and disposed inside the substrate housing chamber;
A thermocouple wire provided inside the protective tube and provided with a contact;
A substrate processing apparatus, comprising: a cooling mechanism that cools a sealing member that is provided in the main body portion and maintains an airtightness between the mounting hole and the main body portion outside the substrate housing chamber.
 〔付記21〕 
 前記シール部材を、前記本体部に嵌合するOリングとし、前記冷却機構を、前記Oリングの形状に沿う環状に形成し、内部に冷却水が循環する冷却水循環室とする付記20記載の基板処理装置。
[Appendix 21]
The substrate according to appendix 20, wherein the sealing member is an O-ring that fits into the main body, the cooling mechanism is formed in an annular shape that follows the shape of the O-ring, and a cooling water circulation chamber in which cooling water circulates is formed. Processing equipment.
 〔付記22〕 
 前記保護管に耐熱カバーを装着する付記20または21記載の基板処理装置。
[Appendix 22]
The substrate processing apparatus according to appendix 20 or 21, wherein a heat-resistant cover is attached to the protective tube.
 〔付記23〕 
 前記耐熱カバーをサファイア製とする付記22記載の基板処理装置。
[Appendix 23]
The substrate processing apparatus according to appendix 22, wherein the heat resistant cover is made of sapphire.
 〔付記24〕 
 前記保護管の内部に複数組の前記熱電対素線を設け、前記各熱電対素線の前記各接点を、前記保護管の長手方向に沿う異なる位置にそれぞれ配置する付記20~23のいずれか1つに記載の基板処理装置。
[Appendix 24]
Any one of appendixes 20 to 23, wherein a plurality of sets of the thermocouple wires are provided inside the protective tube, and the contacts of the thermocouple wires are arranged at different positions along the longitudinal direction of the protective tube. The substrate processing apparatus as described in one.
 〔付記25〕 
 基板を処理する基板処理装置を用いて基板を製造する基板の製造方法であって、
 前記基板を収容する基板収容室の開口側を閉塞する閉塞部材の装着孔に装着される本体部、前記本体部に一体に設けられ、前記基板収容室の内部に配置される保護管、前記保護管の内部に設けられ、接点を備えた熱電対素線、前記本体部に設けられ、前記基板収容室の外部で前記装着孔と前記本体部との間の気密を保持するシール部材を冷却する冷却機構を有する温度測定器を用いて前記基板収容室内の温度を測定する室内温度測定工程と、
 前記基板収容室の外部に設けられた室外用温度測定器を用い、前記基板収容室外の温度を測定する室外温度測定工程と、
 前記室内温度測定工程および前記室外温度測定工程で得た各温度データに基づき、温度校正データを算出する温度校正データ算出工程と、
 前記温度校正データ算出工程で得た前記温度校正データと、前記室外用温度測定器で測定した現在の室外温度データとに基づき、前記基板収容室内を加熱する加熱体の温度を調節する加熱体温度調節工程と、
 前記基板収容室の内部にガス供給源から反応ガスを供給し、前記基板を処理する基板処理工程と、を有する基板の製造方法。
[Appendix 25]
A substrate manufacturing method for manufacturing a substrate using a substrate processing apparatus for processing a substrate,
A main body portion mounted in a mounting hole of a closing member that closes the opening side of the substrate storage chamber for storing the substrate, a protective tube provided integrally with the main body portion and disposed inside the substrate storage chamber, the protection A thermocouple wire provided inside the tube and provided with a contact, and a seal member provided in the main body portion and for maintaining an airtightness between the mounting hole and the main body portion outside the substrate housing chamber are cooled. An indoor temperature measuring step of measuring the temperature in the substrate housing chamber using a temperature measuring device having a cooling mechanism;
Using an outdoor temperature measuring device provided outside the substrate housing chamber, an outdoor temperature measuring step for measuring the temperature outside the substrate housing chamber;
A temperature calibration data calculation step for calculating temperature calibration data based on each temperature data obtained in the indoor temperature measurement step and the outdoor temperature measurement step;
Based on the temperature calibration data obtained in the temperature calibration data calculation step and the current outdoor temperature data measured by the outdoor temperature measuring device, the heating body temperature for adjusting the temperature of the heating body for heating the substrate housing chamber The adjustment process;
A substrate processing step of supplying a reaction gas from a gas supply source into the substrate chamber and processing the substrate.
 本発明は、半導体装置(半導体デバイス)やSiCエピタキシャル膜を形成する基板などを製造する製造業等に幅広く利用することができる。 The present invention can be widely used in manufacturing industries for manufacturing semiconductor devices (semiconductor devices), substrates for forming SiC epitaxial films, and the like.
 10…半導体製造装置(基板処理装置)、12…筐体、14…ウェーハ(基板)、16…ポッド、16a…蓋、18…ポッドステージ、20…ポッド搬送装置、22…ポッド収納棚、24…ポッドオープナ、26…基板枚数検知器、28…基板移載機、30…ボート、32…アーム、34…ボート断熱部、36…マニホールド、40…処理炉、42…反応管、44…反応室、48…加熱体、49…基板収容室、50…誘導コイル、52…温度制御部、53a…第1温度制御用ブロック(室外用温度測定器)、53b…第2温度制御用ブロック(室外用温度測定器)、53c…第3温度制御用ブロック(室外用温度測定器)、54…断熱材、55…外側断熱壁、56…ビューポート、57…反射ミラー(室外用温度測定器)、58…磁気シール、59…放射温度計(室外用温度測定器)、60…第1ガス供給ノズル(ガスノズル)、60a…基端部、68…第1ガス供給口、70…第2ガス供給ノズル(ガスノズル)、70a…基端部、72…第2ガス供給口、78…ガス流量制御部、90…第1ガス排気口、98…圧力制御部、101…シールキャップ(閉塞部材)、101a…装着孔、101b…アダプタ、101c…第1冷却水循環室、103…温度測定器、104…回転機構、105…冷却水供給装置、105a…流水パイプ、106…回転軸、107…Oリング(シール部材)、108…駆動制御部、150…主制御部、152…コントローラ、200…本体部、200a…挿通孔、200b…封止部、201…装着筒部、201a…保護管嵌合凹部、202…第2冷却水循環室(冷却機構,冷却水循環室)、203…冷却部、204…段差部、210…嵌合段差部、210a…第1ガス供給源、210b…第2ガス供給源、210c…第3ガス供給源、210d…第4ガス供給源、210e…第5ガス供給源、211a~211e…MFC、212a~212e…バルブ、213a~213d…ガス配管、214…APCバルブ、215…ガスクーラー、220…真空排気装置、222…第1ガスライン、230…ガス排気管、240…第3ガスライン、260…第2ガスライン、300…保護管、301a…第1熱電対素線、301b…第2熱電対素線、301c…第3熱電対素線、302a…第1接点、302b…第2接点、302c…第3接点、303a…第1コネクタ、303b…第2コネクタ、303c…第3コネクタ、360…第3ガス供給口、390…第2ガス排気口、400…温度測定器、410…耐熱カバー、500…第1温度測定器、510…第2温度測定器、520…第3温度測定器 DESCRIPTION OF SYMBOLS 10 ... Semiconductor manufacturing apparatus (substrate processing apparatus), 12 ... Housing, 14 ... Wafer (substrate), 16 ... Pod, 16a ... Lid, 18 ... Pod stage, 20 ... Pod transfer device, 22 ... Pod storage shelf, 24 ... Pod opener, 26 ... substrate number detector, 28 ... substrate transfer machine, 30 ... boat, 32 ... arm, 34 ... boat insulation, 36 ... manifold, 40 ... processing furnace, 42 ... reaction tube, 44 ... reaction chamber, 48 ... heating body, 49 ... substrate housing chamber, 50 ... induction coil, 52 ... temperature controller, 53a ... first temperature control block (outdoor temperature measuring device), 53b ... second temperature control block (outdoor temperature) Measuring device), 53c ... third temperature control block (outdoor temperature measuring device), 54 ... heat insulating material, 55 ... outer heat insulating wall, 56 ... viewport, 57 ... reflection mirror (outdoor temperature measuring device), 58 ... Magnetic sea 59 ... Radiation thermometer (outdoor temperature measuring device), 60 ... first gas supply nozzle (gas nozzle), 60a ... base end portion, 68 ... first gas supply port, 70 ... second gas supply nozzle (gas nozzle), 70a ... Base end portion, 72 ... Second gas supply port, 78 ... Gas flow rate control unit, 90 ... First gas exhaust port, 98 ... Pressure control unit, 101 ... Seal cap (blocking member), 101a ... Mounting hole, 101b DESCRIPTION OF SYMBOLS ... Adapter, 101c ... 1st cooling water circulation chamber, 103 ... Temperature measuring device, 104 ... Rotation mechanism, 105 ... Cooling water supply apparatus, 105a ... Flowing water pipe, 106 ... Rotating shaft, 107 ... O-ring (seal member), 108 Drive control unit, 150 ... main control unit, 152 ... controller, 200 ... main body, 200a ... insertion hole, 200b ... sealing part, 201 ... mounting cylinder part, 201a ... protective tube fitting recess, 202 ... second cooling Circulation chamber (cooling mechanism, cooling water circulation chamber), 203 ... cooling section, 204 ... stepped portion, 210 ... fitting stepped portion, 210a ... first gas supply source, 210b ... second gas supply source, 210c ... third gas supply 210d ... fourth gas supply source, 210e ... fifth gas supply source, 211a to 211e ... MFC, 212a to 212e ... valve, 213a to 213d ... gas piping, 214 ... APC valve, 215 ... gas cooler, 220 ... vacuum Exhaust device 222 ... first gas line 230 ... gas exhaust pipe 240 ... third gas line 260 ... second gas line 300 ... protection pipe 301a ... first thermocouple wire 301b ... second thermocouple Element wire 301c 3rd thermocouple element 302a 1st contact 302b 2nd contact 302c 3rd contact 303a 1st connector 303b 2nd connector 30 3c ... 3rd connector, 360 ... 3rd gas supply port, 390 ... 2nd gas exhaust port, 400 ... Temperature measuring device, 410 ... Heat-resistant cover, 500 ... 1st temperature measuring device, 510 ... 2nd temperature measuring device, 520 ... Third temperature measuring device

Claims (14)

  1.  基板を処理する基板処理装置の基板収容室内における温度を測定する温度測定器であって、
     前記基板収容室の開口側を閉塞する閉塞部材の装着孔に装着される本体部と、
     前記本体部に一体に設けられ、前記基板収容室の内部に配置される保護管と、
     前記保護管の内部に設けられ、接点を備えた熱電対素線と、
     前記本体部に設けられ、前記基板収容室の外部で前記装着孔と前記本体部との間の気密を保持するシール部材を冷却する冷却機構と、
    を有することを特徴とする温度測定器。
    A temperature measuring device for measuring a temperature in a substrate housing chamber of a substrate processing apparatus for processing a substrate,
    A main body mounted in a mounting hole of a closing member for closing the opening side of the substrate housing chamber;
    A protective tube provided integrally with the main body, and disposed inside the substrate housing chamber;
    A thermocouple wire provided inside the protective tube and provided with a contact;
    A cooling mechanism that is provided in the main body portion and cools a seal member that maintains airtightness between the mounting hole and the main body portion outside the substrate housing chamber;
    A temperature measuring device comprising:
  2.  前記シール部材を、前記本体部に嵌合するOリングとし、前記冷却機構を、前記Oリングの形状に沿う環状に形成し、内部に冷却水が循環する冷却水循環室とする請求項1に記載の温度測定器。 The seal member is an O-ring that fits into the main body, and the cooling mechanism is formed in an annular shape along the shape of the O-ring, and is a cooling water circulation chamber in which cooling water circulates. Temperature measuring instrument.
  3.  前記保護管に耐熱カバーを装着する請求項1に記載の温度測定器。 The temperature measuring instrument according to claim 1, wherein a heat-resistant cover is attached to the protective tube.
  4.  前記耐熱カバーをサファイア製とする請求項3に記載の温度測定器。 The temperature measuring device according to claim 3, wherein the heat-resistant cover is made of sapphire.
  5.  前記保護管の内部に複数組の前記熱電対素線を設け、前記各熱電対素線の前記各接点を、前記保護管の長手方向に沿う異なる位置にそれぞれ配置する請求項1に記載の温度測定器。 2. The temperature according to claim 1, wherein a plurality of sets of the thermocouple wires are provided inside the protective tube, and the contacts of the thermocouple wires are arranged at different positions along the longitudinal direction of the protective tube. Measuring instrument.
  6.  基板を処理する基板処理装置であって、
     前記基板を収容する基板収容室と、
     前記基板収容室の外部に設けられ、前記基板収容室外の温度を測定する室外用温度測定器と、
     前記基板収容室の内部に設けられ、前記基板に向けて反応ガスを供給するガスノズルと、
     前記基板収容室の開口側を閉塞する閉塞部材と、
     前記閉塞部材に装着され、前記基板収容室内の温度を測定する温度測定器と、を備え、
     前記温度測定器は、
     前記閉塞部材の装着孔に装着される本体部と、
     前記本体部に一体に設けられ、前記基板収容室の内部に配置される保護管と、
     前記保護管の内部に設けられ、接点を備えた熱電対素線と、
     前記本体部に設けられ、前記基板収容室の外部で前記装着孔と前記本体部との間の気密を保持するシール部材を冷却する冷却機構と、
    を有することを特徴とする基板処理装置。
    A substrate processing apparatus for processing a substrate,
    A substrate storage chamber for storing the substrate;
    An outdoor temperature measuring device that is provided outside the substrate housing chamber and measures the temperature outside the substrate housing chamber;
    A gas nozzle that is provided inside the substrate storage chamber and supplies a reactive gas toward the substrate;
    A closing member for closing the opening side of the substrate housing chamber;
    A temperature measuring device mounted on the closing member and measuring the temperature in the substrate housing chamber,
    The temperature measuring instrument is
    A main body mounted in the mounting hole of the closing member;
    A protective tube provided integrally with the main body, and disposed inside the substrate housing chamber;
    A thermocouple wire provided inside the protective tube and provided with a contact;
    A cooling mechanism that is provided in the main body portion and cools a seal member that maintains airtightness between the mounting hole and the main body portion outside the substrate housing chamber;
    A substrate processing apparatus comprising:
  7.  前記シール部材を、前記本体部に嵌合するOリングとし、前記冷却機構を、前記Oリングの形状に沿う環状に形成し、内部に冷却水が循環する冷却水循環室とする請求項5に記載の基板処理装置。 The said sealing member is made into the O-ring fitted to the said main-body part, the said cooling mechanism is formed in the cyclic | annular form along the shape of the said O-ring, and it is set as the cooling water circulation chamber which circulates a cooling water inside. Substrate processing equipment.
  8.  前記保護管に耐熱カバーを装着する請求項5に記載の基板処理装置。 6. The substrate processing apparatus according to claim 5, wherein a heat-resistant cover is attached to the protective tube.
  9.  前記耐熱カバーをサファイア製とする請求項7に記載の基板処理装置。 The substrate processing apparatus according to claim 7, wherein the heat-resistant cover is made of sapphire.
  10.  前記保護管の内部に複数組の前記熱電対素線を設け、前記各熱電対素線の前記各接点を、前記保護管の長手方向に沿う異なる位置にそれぞれ配置する請求項5に記載の基板処理装置。 The substrate according to claim 5, wherein a plurality of sets of the thermocouple wires are provided inside the protective tube, and the contacts of the thermocouple wires are arranged at different positions along the longitudinal direction of the protective tube. Processing equipment.
  11.  基板を処理する基板処理装置の基板収容室内における温度制御を、コントローラにより加熱体の温度を調節して行う温度制御方法であって、
     前記基板収容室の開口側を閉塞する閉塞部材の装着孔に装着される本体部、前記本体部に一体に設けられ、前記基板収容室の内部に配置される保護管、前記保護管の内部に設けられ、接点を備えた熱電対素線、前記本体部に設けられ、前記基板収容室の外部で前記装着孔と前記本体部との間の気密を保持するシール部材を冷却する冷却機構を有する温度測定器を用いて前記基板収容室内の温度を測定する室内温度測定工程と、
     前記基板収容室の外部に設けられた室外用温度測定器を用い、前記基板収容室外の温度を測定する室外温度測定工程と、
     前記室内温度測定工程および前記室外温度測定工程で得た各温度データに基づき、温度校正データを算出する温度校正データ算出工程と、
     前記温度校正データ算出工程で得た前記温度校正データと、前記室外用温度測定器で測定した現在の室外温度データとに基づき、前記加熱体の温度を調節する加熱体温度調節工程と、
    を備えることを特徴とする温度制御方法。
    A temperature control method for performing temperature control in a substrate housing chamber of a substrate processing apparatus for processing a substrate by adjusting a temperature of a heating body by a controller,
    A main body portion that is mounted in a mounting hole of a closing member that closes the opening side of the substrate housing chamber, a protective tube that is provided integrally with the main body portion and disposed inside the substrate housing chamber, and inside the protective tube A thermocouple element provided with a contact, provided in the main body, and having a cooling mechanism that cools a seal member that maintains an airtightness between the mounting hole and the main body outside the substrate housing chamber An indoor temperature measuring step of measuring the temperature in the substrate housing chamber using a temperature measuring device;
    Using an outdoor temperature measuring device provided outside the substrate housing chamber, an outdoor temperature measuring step for measuring the temperature outside the substrate housing chamber;
    A temperature calibration data calculation step for calculating temperature calibration data based on each temperature data obtained in the indoor temperature measurement step and the outdoor temperature measurement step;
    Based on the temperature calibration data obtained in the temperature calibration data calculation step and the current outdoor temperature data measured by the outdoor temperature measuring device, a heating body temperature adjustment step of adjusting the temperature of the heating body,
    A temperature control method comprising:
  12.  前記シール部材を、前記本体部に嵌合するOリングとし、前記冷却機構を、前記Oリングの形状に沿う環状に形成し、内部に冷却水が循環する冷却水循環室とし、前記室内温度測定工程では、前記冷却水を前記冷却水循環室に循環させる請求項11に記載の半導体装置の製造方法。 The sealing member is an O-ring that fits into the main body, the cooling mechanism is formed in an annular shape along the shape of the O-ring, and a cooling water circulation chamber in which cooling water circulates is formed, and the indoor temperature measuring step The method for manufacturing a semiconductor device according to claim 11, wherein the cooling water is circulated through the cooling water circulation chamber.
  13.  前記保護管の内部に複数組の前記熱電対素線を設け、前記各熱電対素線の前記各接点を、前記保護管の長手方向に沿う異なる位置にそれぞれ配置する請求項11に記載の半導体装置の製造方法。 The semiconductor according to claim 11, wherein a plurality of sets of the thermocouple wires are provided inside the protective tube, and the contact points of the thermocouple wires are respectively arranged at different positions along the longitudinal direction of the protective tube. Device manufacturing method.
  14.  基板を処理する基板処理装置を用いて、半導体装置を製造する半導体装置の製造方法であって、
     前記基板を収容する基板収容室の開口側を閉塞する閉塞部材の装着孔に装着される本体部、前記本体部に一体に設けられ、前記基板収容室の内部に配置される保護管、前記保護管の内部に設けられ、接点を備えた熱電対素線、前記本体部に設けられ、前記基板収容室の外部で前記装着孔と前記本体部との間の気密を保持するシール部材を冷却する冷却機構を有する温度測定器を用いて前記基板収容室内の温度を測定する室内温度測定工程と、
     前記基板収容室の外部に設けられた室外用温度測定器を用い、前記基板収容室外の温度を測定する室外温度測定工程と、
     前記室内温度測定工程および前記室外温度測定工程で得た各温度データに基づき、温度校正データを算出する温度校正データ算出工程と、
     前記温度校正データ算出工程で得た前記温度校正データと、前記室外用温度測定器で測定した現在の室外温度データとに基づき、前記基板収容室内を加熱する加熱体の温度を調節する加熱体温度調節工程と、
     前記基板収容室の内部にガス供給源から反応ガスを供給し、前記基板を処理する基板処理工程と、
    を備えることを特徴とする半導体装置の製造方法。
    A semiconductor device manufacturing method for manufacturing a semiconductor device using a substrate processing apparatus for processing a substrate,
    A main body portion mounted in a mounting hole of a closing member that closes the opening side of the substrate storage chamber for storing the substrate, a protective tube provided integrally with the main body portion and disposed inside the substrate storage chamber, the protection A thermocouple wire provided inside the tube and provided with a contact, and a seal member provided in the main body portion and for maintaining an airtightness between the mounting hole and the main body portion outside the substrate housing chamber are cooled. An indoor temperature measuring step of measuring the temperature in the substrate housing chamber using a temperature measuring device having a cooling mechanism;
    Using an outdoor temperature measuring device provided outside the substrate housing chamber, an outdoor temperature measuring step for measuring the temperature outside the substrate housing chamber;
    A temperature calibration data calculation step for calculating temperature calibration data based on each temperature data obtained in the indoor temperature measurement step and the outdoor temperature measurement step;
    Based on the temperature calibration data obtained in the temperature calibration data calculation step and the current outdoor temperature data measured by the outdoor temperature measuring device, the heating body temperature for adjusting the temperature of the heating body for heating the substrate housing chamber The adjustment process;
    A substrate processing step of supplying a reactive gas from a gas supply source into the substrate storage chamber and processing the substrate;
    A method for manufacturing a semiconductor device, comprising:
PCT/JP2013/075479 2012-09-24 2013-09-20 Temperature gauge, substrate treatment device, temperature control method, and method for manufacturing semiconductor device WO2014046242A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-210106 2012-09-24
JP2012210106 2012-09-24

Publications (1)

Publication Number Publication Date
WO2014046242A1 true WO2014046242A1 (en) 2014-03-27

Family

ID=50341543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075479 WO2014046242A1 (en) 2012-09-24 2013-09-20 Temperature gauge, substrate treatment device, temperature control method, and method for manufacturing semiconductor device

Country Status (1)

Country Link
WO (1) WO2014046242A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113272940A (en) * 2019-01-07 2021-08-17 株式会社国际电气 Substrate processing apparatus, method of manufacturing semiconductor device, and heater unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05206030A (en) * 1992-01-27 1993-08-13 Ngk Insulators Ltd Heating device
JPH07273050A (en) * 1994-03-29 1995-10-20 Tokyo Electron Ltd Temperature measuring apparatus for vacuum heat treatment device
JP2000031062A (en) * 1998-07-09 2000-01-28 Kokusai Electric Co Ltd Furnace temperature measuring instrument
JP2005209754A (en) * 2004-01-21 2005-08-04 Hitachi Kokusai Electric Inc Substrate-treating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05206030A (en) * 1992-01-27 1993-08-13 Ngk Insulators Ltd Heating device
JPH07273050A (en) * 1994-03-29 1995-10-20 Tokyo Electron Ltd Temperature measuring apparatus for vacuum heat treatment device
JP2000031062A (en) * 1998-07-09 2000-01-28 Kokusai Electric Co Ltd Furnace temperature measuring instrument
JP2005209754A (en) * 2004-01-21 2005-08-04 Hitachi Kokusai Electric Inc Substrate-treating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113272940A (en) * 2019-01-07 2021-08-17 株式会社国际电气 Substrate processing apparatus, method of manufacturing semiconductor device, and heater unit
CN113272940B (en) * 2019-01-07 2024-03-26 株式会社国际电气 Substrate processing apparatus, method for manufacturing semiconductor device, and heater unit

Similar Documents

Publication Publication Date Title
JP5734081B2 (en) Substrate processing apparatus, temperature control method for substrate processing apparatus, and heating method for substrate processing apparatus
JP5730496B2 (en) Heat treatment apparatus, semiconductor device manufacturing method, and substrate processing method
JP5529634B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and substrate manufacturing method
JP5564311B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and substrate manufacturing method
JP5881956B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and wafer holder
US20120214317A1 (en) Substrate processing apparatus and method, and semiconductor device manufacturing method
US20100151682A1 (en) Method of manufacturing semiconductor device and substrate processing apparatus
JP2012069635A (en) Deposition device, wafer holder and deposition method
JP2012178492A (en) Substrate processing device, gas nozzle, and method of manufacturing substrate or semiconductor device
JP2013197474A (en) Substrate processing method, semiconductor device manufacturing method and substrate processing apparatus
JP2012193985A (en) Substrate processing device and manufacturing method for substrate
JP5632190B2 (en) Semiconductor device manufacturing method, substrate manufacturing method, and substrate processing apparatus
JP2013197507A (en) Substrate processing apparatus, substrate processing method, and semiconductor device manufacturing method
WO2014046242A1 (en) Temperature gauge, substrate treatment device, temperature control method, and method for manufacturing semiconductor device
JP2013207057A (en) Substrate processing apparatus, substrate manufacturing method, and substrate processing apparatus cleaning method
JP2012195355A (en) Substrate processing device and substrate manufacturing method
JP5783859B2 (en) Substrate processing apparatus and temperature control method for substrate processing apparatus
JP2011199214A (en) Thermal processing apparatus, method of manufacturing semiconductor device and method of manufacturing substrate
JP2012175077A (en) Substrate processing device, method of manufacturing substrate, and method of manufacturing semiconductor device
JP2012054408A (en) Substrate treatment apparatus and method for manufacturing substrate to be treated
JP2012019081A (en) Substrate treatment apparatus, semiconductor device manufacturing method and substrate manufacturing method
JP2012069724A (en) Substrate processing apparatus and substrate processing method
JP2011204945A (en) Substrate treatment apparatus and method of manufacturing semiconductor device
JP2011082326A (en) Method of manufacturing semiconductor device, method of manufacturing substrate, and substrate processing apparatus
KR20240042452A (en) Support device, substrate processing device, temperature measurement method, semiconductor device manufacturing method, and recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13839166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13839166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP