WO2014046146A1 - Co2回収装置 - Google Patents

Co2回収装置 Download PDF

Info

Publication number
WO2014046146A1
WO2014046146A1 PCT/JP2013/075197 JP2013075197W WO2014046146A1 WO 2014046146 A1 WO2014046146 A1 WO 2014046146A1 JP 2013075197 W JP2013075197 W JP 2013075197W WO 2014046146 A1 WO2014046146 A1 WO 2014046146A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
unit
absorption
regeneration
tower
Prior art date
Application number
PCT/JP2013/075197
Other languages
English (en)
French (fr)
Inventor
浩次 中山
隆仁 米川
乾 正幸
達也 辻内
修 宮本
美樹 反町
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP13838785.7A priority Critical patent/EP2910293B1/en
Priority to CA2885342A priority patent/CA2885342C/en
Priority to AU2013319045A priority patent/AU2013319045B2/en
Priority to JP2014536886A priority patent/JP5968450B2/ja
Publication of WO2014046146A1 publication Critical patent/WO2014046146A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/65Employing advanced heat integration, e.g. Pinch technology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention is intended to absorb liquid thereby absorbing CO 2 to remove CO 2 contained in the exhaust gas, and, to a CO 2 recovery apparatus for reproducing absorbing liquid while releasing CO 2 from the absorbent solution that has absorbed CO 2 It is.
  • the CO 2 recovery device recovers carbon dioxide (CO 2 ) generated when fossil fuel is burned in a thermal power plant or the like.
  • the CO 2 recovery device makes an aqueous solution of an amine compound (hereinafter referred to as “absorbing liquid”) contact with combustion exhaust gas discharged from a boiler, removes CO 2 contained in the combustion exhaust gas, and stores it without releasing it to the atmosphere.
  • CO 2 recovery apparatus includes an absorption tower for contacting the absorption liquid and flue gas, by heating the absorbent solution that has absorbed CO 2, while releasing CO 2, and a regenerator to regenerate the absorbing solution. The regenerated absorption liquid is transported to the absorption tower and reused.
  • a liquid dispersion part for lowering an absorption liquid (hereinafter referred to as “rich absorption liquid”) in which CO 2 has been absorbed, and the absorption liquid falling from the liquid dispersion part are in counterflow contact with steam.
  • a packed portion for heating, and a tray portion for storing an absorption liquid (hereinafter referred to as “semi-lean absorption liquid”) partially containing the absorption liquid from which CO 2 has been removed (hereinafter referred to as “semi-lean absorption liquid”).
  • the regeneration unit may be installed in a plurality of stages (for example, two stages or three stages) in the regeneration tower.
  • the absorbent stored in the tray section of the upper regeneration section passes through the heat exchanger and is heated, and then supplied to the lower regeneration section via the liquid dispersion section. Thereby, an absorption liquid can be efficiently regenerated.
  • a packed bed is configured in three stages in a regeneration tower.
  • a reflux line is provided for extracting a semi-lean solution from which CO 2 has been partially removed in the regeneration tower from the upstream side of the regeneration tower and returning it to the downstream side.
  • a heat exchanger for heating the semi-lean solution in the reflux line.
  • the present invention was made in view of such circumstances, to provide the transport of the absorption liquid regeneration unit, while reducing the equipment cost, the CO 2 recovery system capable of reducing power With the goal.
  • the CO 2 recovery apparatus of the present invention employs the following means. That is, the CO 2 recovery apparatus according to the present invention includes an absorption tower that absorbs CO 2 in exhaust gas into an absorption liquid, and a regeneration tower that releases CO 2 from the absorption liquid that has absorbed CO 2 in the absorption tower.
  • a CO 2 recovery device for reusing the absorption liquid released CO 2 in the regeneration tower in the absorption tower, wherein the regeneration tower includes a first regeneration section having a tray section for storing the absorption liquid, A second regeneration unit that is provided below the first regeneration unit and includes a liquid dispersion unit that supplies the absorption liquid, and connects the tray unit and the liquid dispersion unit, and the absorption liquid stored in the tray unit is
  • a supply pipe for supplying to the liquid dispersion part the supply pipe is provided with a heating part for heating the absorption liquid, and the density difference between the absorption liquid upstream of the heating part and the absorption liquid downstream is provided.
  • the absorbent is circulated as a driving force.
  • the first regeneration unit and the second regeneration unit are provided in the regeneration tower so as to be continuous in the height direction, and the absorbing liquid is supplied through the supply pipe to the tray unit installed at the lower portion of the first regeneration unit.
  • the heating unit is, for example, a heat exchanger.
  • the supply pipe is not provided with a pumping device for pumping the absorbing liquid or a control unit for controlling the flow rate of the absorbing liquid. According to this configuration, the configuration of the heat recovery system is simplified, there is no equipment cost, and power consumption due to power (pump drive) is reduced.
  • the water head difference generated by the pressure loss in the pipe and the heating unit with respect to the liquid dispersion unit of the second regeneration unit may be greater than the difference in height between the tray unit and the liquid dispersion unit.
  • the absorbing liquid is liquid from the tray part through the pipe due to the height difference. Guided to the dispersion section.
  • the water head difference generated by the pressure loss in the piping and the heating unit with respect to the liquid dispersion part is greater than or equal to the height difference between the tray part and the liquid dispersion part, the height of the absorption liquid is not heated by the heating part. With the difference, the absorbing liquid cannot be guided from the tray part to the liquid dispersion part.
  • the absorption liquid that passes through the supply pipe is partly CO 2 in the absorption liquid in the gaseous state by the heating unit, resulting in a density difference before and after the heating unit, and a thermosiphon effect is obtained. Even if the water head difference caused by the pressure loss in the piping and the heating unit with respect to the liquid dispersion part is greater than the difference in height between the tray part and the liquid dispersion part, the liquid dispersion part is not provided without providing a pumping device such as a pump. An absorbent can be supplied.
  • the driving force for circulating the absorbing liquid may be generated by gaseous CO 2 and water vapor generated from the absorbing liquid in the heating unit. According to this configuration, the driving force for circulating the absorbing liquid is generated by gaseous CO 2 and water vapor generated from the absorbing liquid in the heating unit.
  • the supply pipe does not have a section in which gas is accumulated. According to this configuration, since no section for storing gas is provided in the supply pipe, the absorbing liquid is smoothly guided from the tray section to the liquid dispersion section without being obstructed by the stored gas.
  • the absorption liquid passing through the supply pipe is heated by the heating unit, a part of CO 2 in the absorption liquid becomes gaseous, and a density difference occurs before and after the heating unit, and the thermosiphon effect Is obtained.
  • the absorbing liquid can be transported without providing a pumping device for pumping the absorbing liquid, the power can be reduced while reducing the equipment cost.
  • regenerator of the CO 2 recovery apparatus is a schematic diagram showing. It is a schematic diagram showing a regeneration tower of a conventional CO 2 recovery apparatus.
  • CO 2 (carbon dioxide) collecting apparatus 1 according to an embodiment of the present invention will be described with reference to the drawings.
  • the CO 2 recovery device 1 recovers carbon dioxide (CO 2 ) generated when fossil fuel is burned at a thermal power plant or the like.
  • the CO 2 recovery apparatus 1 brings an aqueous solution of an amine compound (hereinafter referred to as “absorbing liquid”) into contact with exhaust gas 60 discharged from a boiler, a gas turbine (not shown) or the like, and converts CO 2 contained in the exhaust gas 60. Remove and store without release to the atmosphere.
  • CO 2 recovery apparatus 1 includes an absorption tower 4 contacting with the exhaust gas 60 absorbs liquid, heating the absorbent solution that has absorbed CO 2, while releasing CO 2, and a regeneration tower 7 for reproducing the absorption liquid.
  • the regenerated absorption liquid is transported to the absorption tower 4 and reused.
  • exhaust gas 60 containing CO 2 discharged from a boiler, a gas turbine (not shown), etc. installed in a thermal power plant or the like is cooled by a blower (not shown). 2 is supplied.
  • the exhaust gas 60 supplied to the cooling tower 2 is cooled by the circulating cooling water 61.
  • the circulating cooling water 61 used for cooling the exhaust gas 60 is supplied again to the cooling tower 2 through the cooler 32 by the pump 31 and injected in the tower.
  • the cooler 32 uses cooling water 62 for cooling the circulating cooling water 61 supplied to the cooling tower 2.
  • the cooled exhaust gas 60 containing CO 2 is supplied to the lower part of the absorption tower 4 through the exhaust gas line 3.
  • the absorbing liquid is supplied from the upper part of the absorption tower 4 and supplied to the lower packed bed 20.
  • the absorption liquid is brought into counterflow contact with the exhaust gas 60 while passing through the packed bed 20.
  • CO 2 in the exhaust gas 60 is absorbed by the absorption liquid, and CO 2 is removed from the exhaust gas 60.
  • the exhaust gas 60 from which CO 2 has been removed is referred to as a purified gas 50.
  • the purified gas 50 from which the CO 2 has been removed is discharged from the tower top 4 a of the absorption tower 4.
  • the purified gas 50 may contain water vapor and the like.
  • the water vapor in the purified gas 50 condenses by being cooled in counterflow contact with the cooling water on the packed bed 20 above the absorption tower 4.
  • the mist eliminator 21 is provided above the packed bed 20 and collects mist in the purified gas 50.
  • a cooler 22 and a pump 23 that circulates a part of the condensed water between the cooler 22 and the absorption tower 4 are provided.
  • the absorption liquid that has absorbed CO 2 in the absorption tower 4 (hereinafter referred to as “rich absorption liquid”) is stored in the tower bottom 4b.
  • the rich absorbent is supplied to the regeneration tower 7 by a pump 6 via a liquid feed line L 1 that connects the tower bottom 4 b of the absorption tower 4 and the upper part of the regeneration tower 7. In the regeneration tower 7, the rich absorbent is injected toward the packed bed 41.
  • liquid feed line L 1 heat exchange is performed between the rich absorbent and the absorbent from which CO 2 has been removed by the regeneration tower 7 (hereinafter referred to as “lean absorbent”) at the intersection with the liquid feed line L 2 .
  • a heat exchanger 9 is provided. In the heat exchanger 9, the rich absorbent liquid flowing through the feed line L 1 is heated, the lean absorbent liquid flowing through the feed line L 2 is cooled.
  • the rich absorbing liquid comes into counter-flow contact with high-temperature steam while passing through the packed beds 41 and 42, and CO 2 is released by an endothermic reaction.
  • the absorbent reaches the tower bottom 7b of the regeneration tower 7, most of the CO 2 is removed and regenerated as a lean absorbent.
  • the regenerated lean absorbing liquid is pumped by the pump 8 through the liquid feeding line L 2 , passes through the heat exchanger 9 and the cooler 5, and is cooled. Thereby, the lean absorbent is sufficiently cooled to a temperature suitable for CO 2 absorption in the absorption tower 4. Then, the lean absorbent is supplied again to the upper part of the packed bed 20 in the lower stage of the absorption tower 4 and reused.
  • the CO 2 discharge line L 3 connects the tower top 7 a of the regeneration tower 7 and the gas-liquid separator 11.
  • the CO 2 released from the absorption liquid in the regeneration tower 7 passes through the CO 2 discharge line L 3 and is sufficiently cooled through the cooler 15 using the cooling water 62, and then to the gas-liquid separator 11. Sent.
  • the CO 2 sent to the gas-liquid separator 11 contains moisture and is separated into CO 2 and condensed water by the gas-liquid separator 11.
  • the CO 2 from which the moisture has been separated is supplied to a CO 2 compressor (not shown). Thereafter, the recovered CO 2 is compressed by a CO 2 compression device to become high-pressure CO 2 .
  • the condensed water collected by the gas-liquid separator 11 is returned to the upper part of the regeneration tower 7 by the pump 12.
  • the refluxed condensed water cools the condensing unit 43 provided in the regeneration tower 7. Thereby, discharge
  • a circulation line L 4 for circulating the lean absorbent to the outside of the tower is provided at the bottom 7 b of the regeneration tower 7, and a reboiler 30 is installed in the circulation line L 4 .
  • the reboiler 30 heats the lean absorbent with high-temperature steam supplied through the steam pipe 33.
  • Some of the absorption liquid column bottom 7b is supplied to the reboiler 30 through a circulation line L 4, after being heated by heat exchange with the high temperature steam, it is refluxed to the regeneration tower 7.
  • CO 2 is released from the absorption liquid at the tower bottom 7b.
  • the packed beds 41 and 42 are indirectly heated, and the release of CO 2 from the absorbing liquid is promoted.
  • a portion of the regeneration tower 7 in which the absorbing solution is heated and regenerated is divided into an upper regeneration unit 51 and a lower regeneration unit 52.
  • the upper reproduction unit 51 includes a liquid dispersion unit 44, a packed bed 41, and a tray unit 45.
  • the liquid dispersion unit 44 is provided above the packed bed 41 and supplies the rich absorbent to the packed bed 41.
  • the tray unit 45 is provided below the filling layer 41 and includes, for example, a chimney tray and a seal pan.
  • the rich absorbent introduced from the liquid dispersion part 44 of the upper regenerator 51 comes into contact with the high-temperature steam rising from below in the process of flowing down the packed bed 41 and releases CO 2 by an endothermic reaction. To do.
  • the absorbing solution from which CO 2 has been released falls onto the chimney tray of the tray unit 45, and is then collected and stored in a seal pan. Absorbing liquid stored in sealed pan tray section 45 is supplied to the supply line L 5.
  • the lower regeneration unit 52 includes a liquid dispersion unit 46, a packed bed 42, and a tray unit 47.
  • Liquid dispersion unit 46 is provided above the packed bed 42, and supplies the introduced from the supply line L 5 absorption liquid to the filling layer 42.
  • the tray portion 47 is provided below the filling layer 42 and includes, for example, a chimney tray and a seal pan.
  • the semi-lean absorbent introduced from the liquid dispersion unit 46 of the lower regeneration unit 52 comes into contact with the high-temperature steam rising from below in the process of flowing down the packed bed 42 and releases CO 2 by an endothermic reaction. To do.
  • the absorbing solution from which the CO 2 has been released falls on the chimney tray of the tray unit 47, and is then collected and stored in a seal pan. Some of the lean absorbent liquid stored in the sealed pan tray unit 47 is supplied to the circulation line L 4 described above.
  • the lean absorbent supplied to the circulation line L 4 is heated by the reboiler 30, then introduced below the tray portion 47 of the lower regeneration portion 52 of the regeneration tower 7, and stored in the tower bottom 7 b of the regeneration tower 7.
  • the absorbing liquid generates steam by heating, and the generated steam passes through the chimney trays of the tray portions 47 and 45 and rises in the regeneration tower 7.
  • the supply line L 5 has one end connected to the tray unit 45 of the upper regeneration unit 51 and the other end connected to the liquid dispersion unit 46 of the lower regeneration unit 52.
  • the supply line L 5 represents a heat exchanger 53 is installed.
  • the heat exchanger 53 is supplied fluid heating source, and the absorption liquid flowing through the supply line L 5 and fluid heating source heat exchanger. As a result, the absorption liquid flowing through the supply line which L 5 is heated.
  • Examples of the fluid of the heating source that passes through the heat exchanger 53 include a lean absorbing liquid, steam condensed water, exhaust gas, and CO 2 in the CO 2 recovery apparatus 1.
  • Supply line L 5 represents a connection port of the tray portion 45 of the upper regeneration section 51, except the opening of the liquid distributor 46 of the lower playback unit 52 is a semi-sealed space that is hermetically sealed.
  • the liquid dispersion unit 46 of the lower regeneration unit 52 is located at a position lower than the connection port with the tray unit 45 of the upper regeneration unit 51.
  • the pipe of the supply line L 5 or the heat exchanger 53 has a portion arranged at a position higher than the liquid level of the absorbent stored in the seal pan of the tray unit 45. That is, the water head difference generated by the pressure loss in the pipe and the heat exchanger 53 with respect to the liquid dispersion part 46 of the lower regeneration part 52 is equal to or greater than the height difference between the tray part 45 and the liquid dispersion part 46.
  • the portion is heated by the heat exchanger 53 is maintained at a higher temperature than the regeneration tower 7 side.
  • absorption liquid is supplied to the supply line L 5, it is heated in the heat exchanger 53.
  • CO 2 partially becomes gaseous.
  • the heated absorption liquid the density is reduced as compared with the state before the heating is before passing through the heat exchanger 53, exiting the heat exchanger 53, from the heat exchanger 53 in the supply line L 5 also rises to a higher position.
  • the absorption liquid according to the pipe of the supply line L 5 represents, is supplied to the liquid distributor 46 of the lower regeneration section 52.
  • the absorption liquid is heated in the heat exchanger 53, and by heating, a part of CO 2 in the absorption liquid becomes gaseous, and the upstream side and the downstream side of the heat exchanger 53 A density difference occurs.
  • the pipe or the heat exchanger 53 in the supply line L 5 even if there is a withdrawal part higher than the position of the upper read section 51 of the regeneration tower 7, the supply line L 5, high absorption liquid without using a pump
  • the absorbent can be finally introduced into the liquid dispersion section 46 of the lower regeneration section 52 of the regeneration tower 7.
  • the pump 71 for boosting the absorption liquid and the flow rate adjusting valve 73 for adjusting the flow rate of the increased absorption liquid are not required, and the equipment cost is reduced. And the amount of power generated by power can be reduced.
  • the absorbing liquid is passed through the heat exchanger 72 and the pipe in the absorption liquid at a high position
  • the pump 71 was necessary in consideration of pressure loss and water head.
  • the supply line connecting the tray part 45 of the upper regeneration unit 51 and the liquid dispersion part 46 of the lower regeneration unit 52 of the regeneration tower 7 can convey the absorbing liquid without power. Knowledge was obtained.
  • absorption liquid is conveyed in the supply line L 5 represents, because it contains CO 2 became gaseous telescopic bending pipes or swivel joint pocket shape in the height direction in line Etc., there is a risk of gas accumulation.
  • conduit is formed such that it has no section where the gas is accumulated. For example, by forming a pocket-shaped pipeline in the horizontal direction, a structure that can absorb the expansion and contraction of the pipe without forming a pocket-shaped pipeline, or a pipe that does not need to absorb the expansion and contraction of the pipe, Do not allow gas to accumulate in the piping. As a result, the absorption liquid is smoothly guided from the tray unit 45 to the liquid dispersion unit 46 without being disturbed by the accumulated gas.
  • the playback unit may be divided into three such as an upper playback unit, a middle playback unit, and a lower playback unit, or may be divided into four or more.
  • the supply line L 5 as described above, it is possible to place between the reproduction unit vertically adjacent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)

Abstract

CO回収装置の再生塔7は、トレイ部45を有する上部再生部51と、上部再生部51の下方に設けられて液分散部46を有する下部再生部52と、トレイ部45に貯留された吸収液を液分散部46に供給する供給ラインLとを備え、供給ラインLは、熱交換器53が設けられ、熱交換器53の前流の吸収液及び後流の吸収液の密度差を駆動力として吸収液を循環させる。これにより、再生部の吸収液の搬送において、設備費を低減しつつ、動力を低減する。

Description

CO2回収装置
 本発明は、吸収液にCOを吸収させて排ガスに含まれるCOを除去し、かつ、COを吸収した吸収液からCOを放出させつつ吸収液を再生するCO回収装置に関するものである。
 CO回収装置は、火力発電所等で化石燃料を燃焼したときに発生する二酸化炭素(CO)を回収する。CO回収装置は、アミン化合物の水溶液(以下「吸収液」という。)をボイラから排出された燃焼排ガスと接触させ、燃焼排ガスに含まれるCOを除去し、大気に放出することなく貯蔵する。
 CO回収装置は、燃焼排ガスと吸収液を接触させる吸収塔と、COを吸収した吸収液を加熱し、COを放出すると共に、吸収液を再生する再生塔とを備える。再生された吸収液は、吸収塔に搬送されて、再使用される。
日本国特開2007-284273号公報(段落[0036]~[0039]など)
 CO回収装置の再生塔には、COが吸収された吸収液(以下「リッチ吸収液」という。)を降下させる液分散部と、液分散部から降下する吸収液を蒸気と対向流接触させて加熱する充填層と、COが除去された吸収液(以下「リーン吸収液」という。)を一部含む吸収液(以下「セミリーン吸収液」という。)を貯留するトレイ部とを有する再生部が内蔵される。
 再生部は、再生塔内に複数段(例えば、2段又は3段等)設置される場合がある。上側の再生部のトレイ部に貯留された吸収液は、熱交換器を通過して加熱された後、下側の再生部に液分散部を介して供給される。これにより、吸収液を効率良く再生させることができる。特許文献1では、再生塔内で充填層が3段で構成され、例えば、再生塔内でCOを一部除去したセミリーン溶液を再生塔の上流側から抜き出して下流側に戻す還流ラインが設けられ、還流ライン中のセミリーン溶液を加熱する熱交換器を備えることが記載されている。
 従来、上側の再生部のトレイ部に貯留された吸収液を下側の再生部に搬送する際、ポンプによる昇圧や、流量調整弁による流量の調節を行っていた。しかし、この場合、ポンプや流量調整弁の設置するため、CO回収装置の構成が複雑になり設備費がかかる上に、動力(ポンプの駆動)による電力消費によってコストも上昇する。
 本発明は、このような事情に鑑みてなされたものであって、再生部の吸収液の搬送において、設備費を低減しつつ、動力を低減することが可能なCO回収装置を提供することを目的とする。
 上記課題を解決するために、本発明のCO回収装置は以下の手段を採用する。
 すなわち、本発明に係るCO回収装置は、排ガス中のCOを吸収液に吸収させる吸収塔と、前記吸収塔においてCOを吸収した吸収液からCOを放出させる再生塔とを有し、前記再生塔でCOを放出した吸収液を前記吸収塔で再使用するCO回収装置であって、前記再生塔は、前記吸収液を貯留するトレイ部を有する第1再生部と、前記第1再生部の下方に設けられ、前記吸収液を供給する液分散部を有する第2再生部と、前記トレイ部と前記液分散部を結び、前記トレイ部に貯留された前記吸収液を前記液分散部に供給する供給管とを備え、前記供給管は、前記吸収液を加熱する加熱部が設けられ、前記加熱部の前流の前記吸収液及び後流の前記吸収液の密度差を駆動力として前記吸収液を循環させる。
 この構成によれば、再生塔に第1再生部と第2再生部が高さ方向に連なって設けられており、吸収液は、供給管を通じて、第1再生部の下部に設置されたトレイ部から第2再生部の上部に設置された液分散部に導かれる。供給管を通過する吸収液は、加熱部で加熱されることから、吸収液中の一部のCOがガス状となり、加熱部の前後で密度差が生じ、サーモサイホン効果が得られる。その結果、加熱部で圧力損失が生じたり、又は、高い位置にある配管に吸収液を搬送したりするなどして水頭差がある場合でも、ポンプ等の圧送装置を設けることなく吸収液を供給できる。加熱部は、例えば熱交換器である。
 上記発明において、前記供給管には、前記吸収液を圧送する圧送装置又は前記吸収液の流量を制御する制御部を設けないことが好ましい。この構成によれば、熱回収システムの構成が単純化し、設備費がかからず、動力(ポンプの駆動)による電力消費も低減する。
 上記発明において、前記第2再生部の液分散部に対する前記配管及び前記加熱部における圧力損失で発生する水頭差が、前記トレイ部と前記液分散部との高さの差以上でもよい。
 液分散部に対する配管及び加熱部における圧力損失で発生する水頭差が、トレイ部と液分散部との高さの差よりも小さい場合、吸収液は、高低差によって、配管を通じて、トレイ部から液分散部に導かれる。一方、液分散部に対する配管及び加熱部における圧力損失で発生する水頭差が、トレイ部と液分散部との高さの差以上であるとき、吸収液が加熱部によって加熱されていない場合、高低差では、吸収液をトレイ部から液分散部に導くことはできない。この構成によれば、供給管を通過する吸収液は、加熱部によって吸収液中の一部のCOがガス状となり、加熱部の前後で密度差が生じ、サーモサイホン効果が得られることから、液分散部に対する配管及び加熱部における圧力損失で発生する水頭差が、トレイ部と液分散部との高さの差以上であっても、ポンプ等の圧送装置を設けることなく、液分散部に吸収液を供給できる。
 上記発明において、前記加熱部で前記吸収液から発生したガス状のCO及び水蒸気によって、前記吸収液の循環の駆動力を生じさせてもよい。
 この構成によれば、吸収液の循環の駆動力は、加熱部で吸収液から発生したガス状のCO及び水蒸気によって生じる。
 上記発明において、前記供給管は、ガスが溜まる区間を有さないことが望ましい。
 この構成によれば、供給管にはガスが溜まる区間が設けられないことから、吸収液は、溜まったガスによって妨げられることなく、トレイ部から液分散部までスムーズに導かれる。
 本発明によれば、供給管を通過する吸収液は、加熱部で加熱される際、吸収液中の一部のCOがガス状となり、加熱部の前後で密度差が生じ、サーモサイホン効果が得られる。その結果、吸収液を圧送する圧送装置が設けられることなく、吸収液を搬送することができるため、設備費を低減しつつ、動力を低減することができる。
本発明の一実施形態に係るCO回収装置を示す概略図である。 本発明の一実施形態に係るCO回収装置の再生塔を示す概略図である。 従来のCO回収装置の再生塔を示す概略図である。
 以下に、本発明の一実施形態に係るCO(二酸化炭素)回収装置1について、図面を参照して説明する。
 まず、本実施形態に係るCO2回収装置の構成及び動作について、図2を参照して説明する。
 CO回収装置1は、火力発電所等で化石燃料を燃焼したときに発生する二酸化炭素(CO)を回収する。CO回収装置1は、アミン化合物の水溶液(以下「吸収液」という。)をボイラやガスタービン(図示せず。)等から排出された排ガス60と接触させ、排ガス60に含まれるCOを除去し、大気に放出することなく貯蔵する。
 CO回収装置1は、排ガス60と吸収液を接触させる吸収塔4と、COを吸収した吸収液を加熱し、COを放出すると共に、吸収液を再生する再生塔7とを備える。再生された吸収液は、吸収塔4に搬送されて、再使用される。
 CO回収装置1では、例えば火力発電所等に設置されたボイラやガスタービン(図示せず。)等から排出されたCOを含有する排ガス60が、ブロワ(図示せず。)によって冷却塔2へと供給されている。冷却塔2へと供給された排ガス60は、循環冷却水61によって冷却される。排ガス60を冷却するのに用いられた循環冷却水61は、ポンプ31によって、冷却器32を通り再び冷却塔2へと供給されて塔内で噴射されている。なお、冷却器32では、冷却塔2へと供給される循環冷却水61を冷やすための冷却水62が用いられる。
 冷却されたCOを含有する排ガス60は、排ガスライン3を介して吸収塔4の下部に供給される。吸収液は、吸収塔4の上部から供給されて下部の充填層20へと供給されている。吸収塔4において、吸収液は、充填層20を通過する間に排ガス60と対向流接触される。これによって、排ガス60中のCOは、吸収液に吸収され、排ガス60からCOが除去される。ここで、COが除去された排ガス60を浄化ガス50という。この、COが除去された浄化ガス50は、吸収塔4の塔頂部4aから排出される。
 吸収液にCOが吸収されることによって、吸収液は発熱して液温が上昇するため、浄化ガス50には水蒸気等が含まれ得る。浄化ガス50中の水蒸気は、吸収塔4上部の充填層20上で冷却水と対向流接触で冷却されることで凝縮する。ミストエリミネータ21は、充填層20の上方に設けられ、浄化ガス50中のミストを捕集する。吸収塔4外には、冷却器22と、凝縮水の一部を冷却器22と吸収塔4内との間で循環させるポンプ23とが設けられている。
 吸収塔4でCOを吸収した吸収液(以下「リッチ吸収液」という。)は、塔底部4bに貯溜される。そして、リッチ吸収液は、吸収塔4の塔底部4bと再生塔7の上部とを接続する送液ラインLを介して再生塔7へポンプ6によって供給される。再生塔7内で、リッチ吸収液は、充填層41へ向けて噴射される。
 送液ラインLには、送液ラインLとの交差部分において、リッチ吸収液と、再生塔7でCOが除去された吸収液(以下「リーン吸収液」という。)とを熱交換する熱交換器9が設けられている。熱交換器9において、送液ラインLを流れるリッチ吸収液は加熱され、送液ラインLを流れるリーン吸収液は冷却される。
 再生塔7において、リッチ吸収液は、充填層41,42を通過する間に高温の蒸気と対向流接触し、吸熱反応によってCOが放出される。吸収液は、再生塔7の塔底部7bに到達するまでに、大部分のCOが除去され、リーン吸収液として再生される。再生されたリーン吸収液は、送液ラインLを通じてポンプ8によって圧送され、熱交換器9と冷却器5を通過して冷却される。これにより、リーン吸収液は、吸収塔4でのCOの吸収に適した温度まで充分に冷却される。そして、リーン吸収液は、再び吸収塔4の下段の充填層20の上部に供給され、再利用される。
 CO排出ラインLは、再生塔7の塔頂部7aと気液分離器11とを結ぶ。再生塔7で吸収液から放出されたCOは、CO排出ラインLを通過して、冷却水62を用いた冷却器15を介して充分に冷却された後、気液分離器11へと送られる。気液分離器11に送られるCOは、水分を含んでおり、気液分離器11にてCOと凝縮水とに分離される。水分が分離されたCOは、CO圧縮装置(図示せず。)へ供給される。その後、回収されたCOは、CO圧縮装置によって圧縮されて、高圧COとなる。気液分離器11で集められた凝縮水は、ポンプ12によって再生塔7上部に還流される。還流された凝縮水は、再生塔7内部に設けられた凝縮部43を冷却する。これにより、再生塔7からの吸収液等の放出が抑制される。
 再生塔7の塔底部7bには、リーン吸収液を塔外に循環させる循環ラインLが設けられ、循環ラインLには、リボイラ30が設置される。リボイラ30は、蒸気管33によって供給される高温蒸気によって、リーン吸収液を加熱する。塔底部7bの吸収液の一部は、循環ラインLを介してリボイラ30に供給され、高温蒸気との熱交換によって加熱された後、再生塔7内へ還流される。この加熱によって、塔底部7bの吸収液からCOが放出される。また、再生塔7が高温化することから、充填層41,42が間接的に加熱され、吸収液からのCOの放出が促進される。
 次に、図1を参照して、本実施形態に係るCO回収装置1の再生塔7の構成及び動作について説明する。
 再生塔7のうち吸収液が加熱されて再生される部分は、上部再生部51と、下部再生部52とに分割される。
 上部再生部51は、液分散部44と、充填層41と、トレイ部45とを有する。液分散部44は、充填層41の上方に設けられ、リッチ吸収液を充填層41へ供給する。トレイ部45は、充填層41の下方に設けられ、例えば、チムニートレイとシールパンなどからなる。
 上部再生部51の液分散部44から導入されたリッチ吸収液は、充填層41を流下している過程で、下方から上昇してくる高温の蒸気と接触して、吸熱反応によってCOを放出する。COが放出された吸収液は、トレイ部45のチムニートレイ上に落下し、その後シールパンに集められ貯留される。トレイ部45のシールパンに貯留された吸収液は、供給ラインLへ供給される。
 下部再生部52は、上部再生部51と同様に、液分散部46と、充填層42と、トレイ部47とを有する。液分散部46は、充填層42の上方に設けられ、供給ラインLから導入された吸収液を充填層42へ供給する。トレイ部47は、充填層42の下方に設けられ、例えば、チムニートレイとシールパンなどからなる。
 下部再生部52の液分散部46から導入されたセミリーン吸収液は、充填層42を流下している過程で、下方から上昇してくる高温の蒸気と接触して、吸熱反応によってCOを放出する。COが放出された吸収液は、トレイ部47のチムニートレイ上に落下し、その後シールパンに集められ貯留される。トレイ部47のシールパンに貯留されたリーン吸収液の一部は、上述した循環ラインLへ供給される。
 循環ラインLへ供給されたリーン吸収液は、リボイラ30で加熱された後、再生塔7の下部再生部52のトレイ部47よりも下方に導入され、再生塔7の塔底部7bに貯留される。また、吸収液は、加熱によって蒸気を発生し、発生した蒸気はトレイ部47,45のチムニートレイを通り抜けて、再生塔7内を上昇する。
 次に、再生塔7に設けられた吸収液の供給ラインLについて説明する。
 供給ラインLは、一端が上部再生部51のトレイ部45に接続され、他端が下部再生部52の液分散部46に接続される。供給ラインLには、熱交換器53が設置される。熱交換器53は、加熱源の流体が供給されて、加熱源の流体と供給ラインLを流れる吸収液とが熱交換する。その結果、供給ラインLを流れる吸収液が加熱される。熱交換器53を通過する加熱源の流体には、CO回収装置1におけるリーン吸収液、蒸気凝縮水、排ガス、CO等がある。
 供給ラインLは、上部再生部51のトレイ部45との接続口、下部再生部52の液分散部46の開口以外は密閉された半密閉空間である。下部再生部52の液分散部46は、上部再生部51のトレイ部45との接続口よりも低い位置にある。また、供給ラインLの配管又は熱交換器53には、トレイ部45のシールパンに貯留された吸収液の液面よりも高い位置に配置された部分がある。すなわち、下部再生部52の液分散部46に対する配管及び熱交換器53における圧力損失で発生する水頭差が、トレイ部45と液分散部46との高さの差以上である。
 供給ラインLでは、熱交換器53によって加熱される部分が、再生塔7側に比べて高温で維持される。上部再生部51のトレイ部45のシールパンに貯留された吸収液は、供給ラインLへ供給され、熱交換器53にて加熱される。吸収液は、熱交換器53で温度が上昇すると、COが一部ガス状となる。したがって、加熱された吸収液は、熱交換器53を通過する前である加熱前の状態に比べて密度が小さくなり、熱交換器53を出ると、供給ラインL内において熱交換器53よりも高い位置に上昇する。その後、供給ラインLの管路に従って吸収液は、下部再生部52の液分散部46へ供給される。
 以上、本実施形態によれば、熱交換器53で吸収液が加熱され、加熱されることによって吸収液中のCOの一部がガス状となり、熱交換器53の上流側と下流側とで密度差が生じる。したがって、供給ラインLにおける配管又は熱交換器53において、再生塔7の上部再生部51の抜き出し位置よりも高い部分がある場合でも、供給ラインLは、ポンプを用いることなく吸収液を高い位置へ供給でき、最終的に再生塔7の下部再生部52の液分散部46に吸収液を導入できる。
 よって、本実施形態では、図3に示すような従来のCO2回収装置と異なり、吸収液を昇圧するポンプ71や、昇圧された吸収液の流量を調整する流量調節弁73が不要となり、設備費や動力による電力量を低減できる。
 従来、上部再生部51のトレイ部45と下部再生部52の液分散部46を結ぶ供給ラインLにおいて、吸収液を熱交換器72に通過させ、かつ、吸収液を高い位置にある配管に搬送するためには、圧力損失や水頭を考慮して、ポンプ71が必要であると考えられていた。ところが、CO回収装置を実運転させたところ、再生塔7の上部再生部51のトレイ部45と下部再生部52の液分散部46を結ぶ供給ラインは、動力なしで吸収液を搬送できるという知見が得られた。このように動力なしでCOを搬送できる理由は、熱交換器53による加熱によって吸収液中の一部のCOがガス状となり、熱交換器53の前後で密度差が生じ、サーモサイホン効果が得られるためである。そこで、本実施形態では、熱交換器53を介して上部再生部51のトレイ部45から下部再生部52の液分散部46に吸収液を供給する際、ポンプ71を設けることなく、吸収液を供給することとした。
 熱交換器53で加熱された後、供給ラインLにおいて搬送される吸収液は、ガス状となったCOが含まれるため、管路で高さ方向にポケット形状の伸縮曲げ管又はスイベル継手等が形成されていると、ガスが溜まるおそれがある。本実施形態の供給ラインLでは、ガスが溜まる区間を有さないように管路が形成される。例えば、水平方向にポケット形状の管路を形成したり、ポケット形状の管路を形成せずに配管の伸縮を吸収できる構造、又は配管の伸縮の吸収が不要な管路としたりすることで、配管内にガスを溜まらせない。その結果、吸収液は、溜まったガスによって妨げられることなく、トレイ部45から液分散部46までスムーズに導かれる。
 なお、本実施形態では、再生部が2分割される場合について説明したが、本発明はこの例に限定されない。例えば、再生部が上部再生部、中部再生部、下部再生部といったように3分割されてもよいし、4分割以上されてもよい。この場合でも、上述した供給ラインLは、上下に隣接する再生部間に設置することが可能である。
1 CO回収装置
4 吸収塔
7 再生塔
11 気液分離器
20 充填層
21 ミストエリミネータ
30 リボイラ
41,42 充填層
43 凝縮部
44,46 液分散部
45,47 トレイ部
51 上部再生部(第1再生部)
52 下部再生部(第2再生部)
53 熱交換器(加熱部)
71 ポンプ
72 熱交換器
73 流量調節弁
,L 送液ライン
 CO排出ライン
 循環ライン
 供給ライン(供給管)
 供給ライン

Claims (5)

  1.  排ガス中のCOを吸収液に吸収させる吸収塔と、前記吸収塔においてCOを吸収した吸収液からCOを放出させる再生塔とを有し、前記再生塔でCOを放出した吸収液を前記吸収塔で再使用するCO回収装置であって、
     前記再生塔は、
     前記吸収液を貯留するトレイ部を有する第1再生部と、
     前記第1再生部の下方に設けられ、前記吸収液を供給する液分散部を有する第2再生部と、
     前記トレイ部と前記液分散部を結び、前記トレイ部に貯留された前記吸収液を前記液分散部に供給する供給管と、
    を備え、
     前記供給管は、前記吸収液を加熱する加熱部が設けられ、前記加熱部の前流の前記吸収液及び後流の前記吸収液の密度差を駆動力として前記吸収液を循環させるCO回収装置。
  2.  前記供給管には、前記吸収液を圧送する圧送装置又は前記吸収液の流量を制御する制御部を設けない請求項1に記載のCO回収装置。
  3.  前記第2再生部の液分散部に対する前記供給管及び前記加熱部における圧力損失で発生する水頭差が、前記トレイ部と前記液分散部との高さの差以上である請求項1に記載のCO回収装置。
  4.  前記加熱部で前記吸収液から発生したガス状のCO及び水蒸気によって、前記吸収液の循環の駆動力を生じさせる請求項1に記載のCO回収装置。
  5.  前記供給管は、ガスが溜まる区間を有さない請求項1に記載のCO回収装置。
PCT/JP2013/075197 2012-09-20 2013-09-18 Co2回収装置 WO2014046146A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13838785.7A EP2910293B1 (en) 2012-09-20 2013-09-18 Co2 recovery device
CA2885342A CA2885342C (en) 2012-09-20 2013-09-18 Co2 recovery unit
AU2013319045A AU2013319045B2 (en) 2012-09-20 2013-09-18 CO2 recovery device
JP2014536886A JP5968450B2 (ja) 2012-09-20 2013-09-18 Co2回収装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/623,448 US9233337B2 (en) 2012-09-20 2012-09-20 CO2 recovery device
US13/623,448 2012-09-20

Publications (1)

Publication Number Publication Date
WO2014046146A1 true WO2014046146A1 (ja) 2014-03-27

Family

ID=50273104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075197 WO2014046146A1 (ja) 2012-09-20 2013-09-18 Co2回収装置

Country Status (6)

Country Link
US (1) US9233337B2 (ja)
EP (1) EP2910293B1 (ja)
JP (1) JP5968450B2 (ja)
AU (1) AU2013319045B2 (ja)
CA (1) CA2885342C (ja)
WO (1) WO2014046146A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10005019B2 (en) * 2014-02-21 2018-06-26 Sharp Kabushiki Kaisha Carbon dioxide concentration-controlling device and electronic apparatus
CN106659962B (zh) 2014-08-20 2019-06-21 夏普株式会社 二氧化碳浓度控制系统和二氧化碳浓度控制装置
JP6639918B2 (ja) 2016-01-14 2020-02-05 三菱重工エンジニアリング株式会社 Co2回収装置及び回収方法
KR102189717B1 (ko) * 2018-12-05 2020-12-14 한국과학기술연구원 흡수탑과 탈거탑이 하나의 탑으로 구성된 가스 포집장치 및 이를 이용한 가스 포집방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284273A (ja) 2006-04-13 2007-11-01 Mitsubishi Heavy Ind Ltd Co2回収装置及びco2回収方法
JP2010022986A (ja) * 2008-07-23 2010-02-04 Mitsubishi Heavy Ind Ltd 排ガス中の二酸化炭素回収装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4690659B2 (ja) * 2004-03-15 2011-06-01 三菱重工業株式会社 Co2回収装置
JP4745682B2 (ja) * 2005-02-23 2011-08-10 関西電力株式会社 Co2回収装置および方法
JP5021917B2 (ja) * 2005-09-01 2012-09-12 三菱重工業株式会社 Co2回収装置及び方法
JP5737844B2 (ja) 2010-02-08 2015-06-17 三菱重工業株式会社 Co2回収装置の熱回収設備および熱回収方法
JP5351816B2 (ja) 2010-04-08 2013-11-27 三菱重工業株式会社 排ガス中の二酸化炭素回収装置及び方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284273A (ja) 2006-04-13 2007-11-01 Mitsubishi Heavy Ind Ltd Co2回収装置及びco2回収方法
JP2010022986A (ja) * 2008-07-23 2010-02-04 Mitsubishi Heavy Ind Ltd 排ガス中の二酸化炭素回収装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2910293A4

Also Published As

Publication number Publication date
EP2910293A4 (en) 2016-05-18
US20140076165A1 (en) 2014-03-20
AU2013319045B2 (en) 2016-05-12
AU2013319045A1 (en) 2015-04-02
JPWO2014046146A1 (ja) 2016-08-18
JP5968450B2 (ja) 2016-08-10
US9233337B2 (en) 2016-01-12
CA2885342A1 (en) 2014-03-27
EP2910293B1 (en) 2020-11-04
CA2885342C (en) 2017-07-18
EP2910293A1 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
US9492783B2 (en) Carbon dioxide gas recovery device
EP2722097B1 (en) Combustion exhaust gas treatment system and combustion exhaust gas treatment method
JP5495520B2 (ja) 排ガス中の二酸化炭素回収装置
JP5922451B2 (ja) Co2回収装置
JP5655593B2 (ja) 二酸化炭素の回収方法及び回収装置
JP5402842B2 (ja) 二酸化炭素の回収方法及び回収装置
US9383101B2 (en) CO2 recovery unit and CO2 recovery method
CA2877852C (en) Exhaust gas treatment system
JP5968450B2 (ja) Co2回収装置
AU2014220048B2 (en) System and method for recovering gas containing CO2 and H2S
JP2008307520A (ja) Co2又はh2s除去システム、co2又はh2s除去方法
WO2012073553A1 (ja) Co2回収システム
EP2644250B1 (en) Exhaust gas treatment system
JPWO2014038412A1 (ja) 熱回収システム及び熱回収方法
JP5897142B2 (ja) 蒸気供給システム及びこれを備えたco2回収設備
JP6225574B2 (ja) 二酸化炭素の回収方法及び回収装置
EP2481470A1 (en) Process gas treatment system
JP2011125824A (ja) 二酸化炭素分離回収システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838785

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014536886

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2885342

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2013838785

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013319045

Country of ref document: AU

Date of ref document: 20130918

Kind code of ref document: A