WO2014045924A1 - 軟組織軟骨境界面検出方法、軟組織軟骨境界面検出装置、および軟組織軟骨境界面検出プログラム - Google Patents
軟組織軟骨境界面検出方法、軟組織軟骨境界面検出装置、および軟組織軟骨境界面検出プログラム Download PDFInfo
- Publication number
- WO2014045924A1 WO2014045924A1 PCT/JP2013/074305 JP2013074305W WO2014045924A1 WO 2014045924 A1 WO2014045924 A1 WO 2014045924A1 JP 2013074305 W JP2013074305 W JP 2013074305W WO 2014045924 A1 WO2014045924 A1 WO 2014045924A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- soft tissue
- cartilage
- echo signal
- state
- region
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/52—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/5215—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
- A61B8/5223—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Detecting organic movements or changes, e.g. tumours, cysts, swellings
- A61B8/0858—Detecting organic movements or changes, e.g. tumours, cysts, swellings involving measuring tissue layers, e.g. skin, interfaces
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
Definitions
- the present invention relates to a soft tissue cartilage boundary detection method for detecting a boundary surface between cartilage and soft tissue with an ultrasonic wave from the outside.
- the cartilage surface is detected from the difference between the echo signal level of soft tissue (muscle or skin) and the echo signal level of cartilage. Therefore, if there is no difference in the level of the echo signal between soft tissue and cartilage, the cartilage surface cannot be detected accurately.
- conventional ultrasonic signals have no significant difference in echo signal level between soft tissue and cartilage surface. For this reason, the conventional method cannot accurately detect the cartilage surface.
- An object of the present invention is to provide a soft tissue cartilage boundary surface detection apparatus that can accurately detect a soft tissue / cartilage boundary surface in a non-invasive manner.
- the present invention relates to a soft tissue cartilage interface detecting method for detecting a soft tissue / cartilage interface and has the following features.
- this soft tissue cartilage boundary surface detection method the first surface is brought into contact with the surface of the detection object, the ultrasonic signal is transmitted into the detection object, the echo signal of the ultrasonic signal is received, and the first signal is received.
- the first echo signal transmitting / receiving step for outputting the echo signal and the second state in which the positional relationship between the soft tissue and the cartilage is different from the first state are brought into contact with the surface of the object to be detected and receive the ultrasonic signal.
- a second echo signal transmitting / receiving step for transmitting into the detection body, receiving an echo signal of the ultrasonic signal and outputting a second echo signal; and a soft tissue based on the first echo signal and the second echo signal;
- a boundary surface detection step of detecting a boundary surface of the cartilage.
- This method utilizes the fact that echo signals received in two states where the positional relationship between cartilage and soft tissue are different have different waveforms. By detecting changes in the waveform in two states, it is possible to discriminate between cartilage and soft tissue, and the boundary surface between cartilage and soft tissue can be detected from this discrimination result.
- the boundary surface detection step of the soft tissue cartilage boundary surface detection method of the present invention includes a similar region detection step for detecting a similar region having the most similar waveforms of the first echo signal and the second echo signal, and a boundary from the similar region. And a boundary surface specifying step of specifying a surface.
- the similar region detection step of the soft tissue cartilage boundary surface detection method of the present invention detects a similar region based on the correlation coefficient between the waveform of the first echo signal and the waveform of the second echo signal.
- the similar region detection step of the soft tissue cartilage boundary surface detection method of the present invention calculates a norm for each region from the waveform of the first echo signal and the waveform of the second echo signal, and the similar region is determined based on the norm. To detect.
- the norm in the similar region detection step is calculated based on the sum of absolute values of signal level differences at the respective depth positions of the first echo signal and the second echo signal. Is done.
- the norm in the similar region detection step is calculated based on the sum of the squares of the signal level differences at the respective depth positions of the first echo signal and the second echo signal. Is done.
- sampled echo data is used for the waveform of the first echo signal and the waveform of the second echo signal.
- the waveform of the first echo signal and the waveform of the second echo signal are envelopes of sampled echo data.
- the boundary between two regions where the positional change of the similar region is different from the position where the ultrasonic signal is transmitted and received is detected as the boundary surface between the soft tissue and the cartilage.
- the boundary surface specifying step of the soft tissue cartilage boundary surface detection method of the present invention includes a change mode in which the position where the ultrasonic signal is transmitted and received changes between the reception state of the first echo signal and the reception state of the second echo signal.
- a region having the same change mode is determined to be soft tissue
- a region having a different change mode is determined to be cartilage
- a boundary between the region determined to be soft tissue and the region determined to be cartilage is defined as a boundary surface between soft tissue and cartilage.
- the position where the ultrasonic signal is transmitted and received changes in the subchondral bone depending on the reception state of the first echo signal and the reception state of the second echo signal.
- a region having the same change mode as the aspect is determined as cartilage, a region having a different change mode is determined as soft tissue, and the boundary between the region determined as soft tissue and the region determined as cartilage is defined as a boundary surface between soft tissue and cartilage.
- the boundary surface specifying step of the soft tissue cartilage boundary surface detection method of the present invention includes a moving direction and a movement of a similar region of each region when transitioning from the reception state of the first echo signal to the reception state of the second echo signal.
- a movement vector consisting of a quantity is detected, and the boundary where the movement vector changes is defined as the boundary surface between soft tissue and cartilage.
- the attention area is set in the first echo signal
- the comparison target area is set in the second echo signal
- the first echo of the attention area is set.
- a comparison target area is detected by a second echo signal having a waveform most similar to the signal.
- This method shows a specific method for detecting similar regions.
- the similar region detection step of the soft tissue cartilage boundary surface detection method of the present invention sets a range wider than the target region as a search region with respect to the second echo signal with reference to the target region, Set the comparison target area.
- This method shows a more specific method for detecting similar regions.
- the setting range of the comparison target area can be effectively limited based on the position of the attention area.
- the region of interest is set in a region extending over a plurality of echo signals.
- This method can increase the number of echo data in the scanning direction. As a result, the similar region can be detected with higher accuracy.
- the transmission / reception positions are different in the first state and the second state.
- the state of the to-be-detected body transmitted and received in the first state and the second state is different.
- the first echo signal and the second echo signal are set so that a part of the scanning region in the first state and the second state overlap.
- the first echo signal and the second echo signal are set so that a part of the region overlaps in the scanning direction from the first state to the second state. Has been.
- the present invention it is possible to accurately detect the cartilage surface while transmitting an ultrasonic signal from the outside of the detected body such as the knee and receiving the echo signal outside the detected body.
- the echo from the cartilage can be accurately detected, and can be effectively used for diagnosis of cartilage.
- FIG. 1 is a block diagram showing a configuration of a soft tissue cartilage boundary detection device 10 according to an embodiment of the present invention. It is a figure which shows the installation aspect with respect to the to-be-detected body of the vibrator
- the positional relationship change between the comparison regions Z T2 region of interest Z T1 de first state [T1] and the second state [T2], is a diagram showing an example of the relationship between the correlation coefficient. It is a wave form diagram which shows the concept which discriminate
- FIG. 6 is a waveform diagram of echo signals SWT11 to SWT15 in a first state [T1] for explaining the concept of setting a region of interest over a plurality of sweeps of echo data. It is a flowchart of a soft tissue cartilage boundary detection process using an envelope of an echo signal. It is a wave form diagram for demonstrating the concept of the soft tissue cartilage boundary detection using an envelope.
- FIG. 1 is a block diagram showing a configuration of a soft tissue cartilage boundary detection apparatus 10 according to an embodiment of the present invention.
- the present invention can be applied to a case where the probe 100 is brought into contact with and fixed to the knee, which is the detection target, and the knee is bent and stretched.
- the knee which is the detection target
- any method and configuration that can change the positional relationship between soft tissue and cartilage in the first state [T1] and the second state [T2] can be applied.
- FIG. 3 is a diagram for explaining the detection concept of the soft tissue cartilage boundary surface according to the present embodiment.
- FIG. 3 is a view in which the surface of an area where an ultrasonic signal is transmitted and the area in the vicinity thereof are replaced with a flat plane.
- the soft tissue cartilage boundary surface detection apparatus 10 includes an operation unit 11, a transmission control unit 12, an echo signal reception unit 13, a data analysis unit 14, and a probe 100.
- the transmission control unit 12, the echo signal receiving unit 13, and the probe 100 correspond to “transmission / reception means” of the present invention.
- the operation unit 11 receives a user operation input.
- the operation unit 11 includes a plurality of operation elements (not shown), and instructs the transmission control unit 12 to start execution of processing for detecting the cartilage surface from a user operation on the operation elements.
- the transmission control unit 12 generates an ultrasonic signal obtained by shaping a carrier wave having an ultrasonic frequency into a pulse shape.
- the transmission control unit 12 generates an ultrasonic signal in each of the first state [T1] and the second state [T2].
- the transmission control unit 12 outputs an ultrasonic signal to the probe 100.
- the probe 100 includes a plurality of transducers arranged in a direction parallel to the transmission / reception surface (see FIG. 3 described later). The direction in which the transducers are arranged is the scanning direction. Each transducer transmits an ultrasonic signal having a predetermined transmission beam angle toward the body to be detected. Each transducer transmits an ultrasonic signal at a predetermined time interval and receives the reflected echo signal.
- the probe 100 is arranged such that the end surface on the wave transmitting / receiving surface side is in contact with the surface of the soft tissue 903 of the knee, which is the detection target.
- the soft tissue 903 is a part of the body including skin and muscles, and is a part that is present on the surface side of the body to be detected with respect to the cartilage 901.
- the cartilage 901 is attached to the subchondral bone 911, and the subchondral bone 911 is a tissue connected to the bone (cancellous bone) 902.
- the probe 100 while moving the probe 100 in contact with the surface of the soft tissue 903 as shown in FIG. 2A, the probe 100 is moved along the surface as shown in FIG. Thereby, as shown in FIG. 2, the soft tissue 903 moves according to the probe 100 while sliding on the surface of the cartilage 901.
- the probe 100 is moved along the arrangement direction (scanning direction) of the transducers.
- Each transducer transmits an ultrasonic signal toward the body to be detected in each of the first state [T1] and the second state [T1]. At this time, each transducer of the probe 100 transmits an ultrasonic signal so that the direction orthogonal to the surface of the soft tissue 903 is the direction of the central axis of the transmission beam.
- Each transducer of the probe 100 receives an echo signal in which the ultrasonic signal is reflected by the soft tissue 903 or the cartilage 902 in the body to be detected, and outputs the echo signal to the echo signal receiving unit 13.
- the probe 100 includes a first echo group SW [T1] composed of echo signals obtained by each transducer in the first state [T1] and a first echo group SW [T1] composed of echo signals obtained by each transducer in the second state [T2].
- the two echo signal groups SW [T2] are output to the echo signal receiving unit 13, respectively.
- the echo signal receiving unit 13 performs a predetermined amplification process on each echo signal and outputs it to the data analyzing unit 14.
- the echo signal receiving unit 13 individually amplifies each echo signal of the first echo group SW [T1] and each echo signal of the second echo group SW [T2], and outputs the amplified signal to the data analysis unit 14.
- the data analysis unit 14 includes an AD conversion unit 141, a storage unit 142, and a determination unit 143.
- the AD conversion unit 141 converts the echo signal into discrete data by sampling at predetermined time intervals.
- the echo signal converted into discrete data becomes echo data. Thereby, echo data sampled at predetermined intervals in the depth direction can be obtained.
- the AD conversion unit 141 outputs the echo data to the storage unit 142.
- the storage unit 142 has a capacity for storing a plurality of echo data obtained in the first state and a plurality of echo data obtained in the second state.
- the storage unit 142 stores each echo data output from the AD conversion unit 141.
- the determination unit 143 performs the waveform (sweep echo data string) of each region of interest in the first state [T1] and the waveform (sweep echo data of each comparison target region in the second state). Column). Based on the comparison result, the determination unit 143 detects which position in the second state the selected region of interest corresponds to.
- the determination unit 143 detects the comparison target region in the second state [T2] that is most similar to the attention region in the first state [T1].
- the determination unit 143 detects how the region (or the representative position of the region) with the most similar waveform is displaced in the first state [T1] and the second state [T2] (has not been displaced). .
- the determination unit 143 discriminates the soft tissue region and the cartilage region from the difference in displacement tendency of the position of the region, and detects the surface position of the cartilage 901, that is, the boundary surface between the soft tissue 903 and the cartilage 901.
- a cartilage diagnosis information generation unit (not shown) can be used for diagnosis of cartilage degeneration based on the cartilage 901 partial echo data. Generate information. Specifically, the information generation unit for cartilage diagnosis acquires a set of echo data near the cartilage surface and echo data of the subchondral bone at a plurality of different times. The cartilage diagnosis information generation unit may detect the amount of change due to the degeneration of the cartilage surface from the transition of the composition of these echo data sets in the time period. The cartilage diagnosis information generation unit outputs the detection result as information that can be used for diagnosis of cartilage degeneration.
- the movement distance ⁇ x of the probe 100 (each transducer) between the first state [T1] and the second state [T2] matches the arrangement interval of the transducers. Will be described.
- the probe 100 is brought into contact with the surface of the knee in a state where the knee that is the detection target is bent at the first angle. In other words, the probe 100 is brought into contact with the surface of the soft tissue 903. This is the state of FIG.
- Each transducer placed on the probe 100 with a predetermined interval transmits an ultrasonic signal in a direction parallel to the surface of the soft tissue 903 (scanning direction parallel to the wave transmitting / receiving surface).
- five transducers are arranged at equal intervals along the scanning direction in the probe 100, and as shown in FIG.
- the vibrator transmits an ultrasonic signal in a direction orthogonal to the surface of the soft tissue 903.
- the ultrasonic signals at the respective arrangement positions are reflected and scattered at respective depth positions of the soft tissue 903, the cartilage 901, and the subchondral bone 911, so that echo signals SWT11 at respective positions (scanning direction positions) spaced in the scanning direction are obtained.
- SWT12, SWT13, SWT14, SWT15 are obtained.
- Each transducer receives an echo signal.
- the echo signal group of the echo signals SWT11, SWT12, SWT13, SWT14, and SWT15 obtained by each transducer becomes the first echo group SW [T1].
- the probe 100 is moved by a distance ⁇ x in a direction parallel to the surface of the soft tissue 903 and in a direction parallel to the scanning direction.
- This state is the second state [T2], which is the state shown in FIG.
- the soft tissue 903 moves following the movement of the probe 100. Therefore, the relative positional relationship between the wave transmitting / receiving surface of the probe 100 and each position in the scanning direction of the soft tissue 903 does not change without depending on the movement of the probe 100.
- the cartilage 901 is fixed to the bone 902 through the subchondral bone 911, the cartilage 901 does not move even if the probe 100 moves. Therefore, the relative positional relationship between the wave transmitting / receiving surface of the probe 100 and each position in the scanning direction of the cartilage 901 changes according to the movement of the probe 100.
- an ultrasonic signal is transmitted from each transducer of the probe 100 in a direction parallel to the surface of the soft tissue 903 (a scanning direction parallel to the transmission / reception surface). .
- the ultrasonic signals at the respective scanning positions are reflected and scattered at the respective depth positions of the soft tissue 903, the cartilage 901, and the subchondral bone 911, so that echo signals SWT21, SWT22, SWT23, SWT24 and SWT25 are obtained.
- Each transducer receives an echo signal.
- the echo signal group of the echo signals SWT21, SWT22, SWT23, SWT24, and SWT25 obtained by each transducer is the second echo group SW [T2].
- the first echo group SW [T1] including the plurality of echo signals SWT11, SWT12, SWT13, SWT14, and SWT15 is acquired before the probe 100 is moved.
- a second echo group SW [T2] including a plurality of echo signals SWT21, SWT22, SWT23, SWT24, and SWT25 is acquired.
- FIG. 4 is a diagram illustrating waveform examples of echo signals in the first state [T1] and the second state [T2].
- the distance ⁇ x that the probe 100 has moved is equal to the interval between the transducers, that is, the scanning position. In the following, detection of the soft tissue cartilage boundary surface will be described under this condition.
- the soft tissue of the echo signal SWT11 in the first echo group SW [T1] As shown in the waveform of each echo signal in the first state [T1] and the waveform of each echo signal in the second state [T2] in FIG. 4, the soft tissue of the echo signal SWT11 in the first echo group SW [T1].
- the waveform of the echo signal is substantially the same in the region 903 and the region of the soft tissue 903 of the echo signal SWT21 of the second echo group SW [T2].
- the waveform of the echo signal substantially coincides between the soft tissue 903 region of the echo signal SWT12 and the soft tissue 903 region of the echo signal SWT22.
- the waveform of the echo signal substantially matches between the soft tissue 903 region of the echo signal SWT13 and the soft tissue 903 region of the echo signal SWT23.
- the waveform of the echo signal substantially coincides with the region of the soft tissue 903 of the echo signal SWT14 and the region of the soft tissue 903 of the echo signal SWT24.
- the waveform of the echo signal substantially coincides with the area of the soft tissue 903 of the echo signal SWT15 and the area of the soft tissue 903 of the echo signal SWT25.
- the echo signals at the respective scanning positions substantially coincide with each other in the first state [T1] and the second state [T2] along the scanning direction with respect to the probe 100.
- the cartilage of the echo signal SWT11 of the first echo group SW [T1] does not match between the region 901 and the region of the cartilage 901 of the echo signal SWT21 of the second echo group SW [T2], and the cartilage 901 of the echo signal SWT22 of the second echo group SW [T2]
- the waveform of the echo signal substantially matches the area.
- the waveform of the echo signal substantially coincides with the region of the cartilage 901 of the echo signal SWT12 and the region of the cartilage 901 of the echo signal SWT23.
- the waveform of the echo signal substantially coincides with the region of the cartilage 901 of the echo signal SWT13 and the region of the cartilage 901 of the echo signal SWT24.
- the waveform of the echo signal substantially matches the region of the cartilage 901 of the echo signal SWT14 and the region of the cartilage 901 of the echo signal SWT25.
- the echo signals at the respective scanning positions substantially coincide with each other in the first state [T1] and the second state [T2] with the scanning position shifted by one by the transducer arrangement interval.
- the echo data from the soft tissue 903 and the echo data from the cartilage 901 show different behaviors in the first state [T1] and the second state [T2]. Therefore, by detecting this behavior (change in the relative position of the point of interest in the first state and the second state), the soft tissue 903 region and the cartilage 901 region can be identified. Then, a cartilage surface that is a boundary surface between the soft tissue 903 and the cartilage 901 can be detected.
- the surface of the cartilage 901 can be accurately detected non-invasively.
- FIG. 5 is a flowchart of the soft tissue cartilage boundary surface detection process according to the embodiment of the present invention.
- transmission control is performed in the first state [T1], and echo data of each sweep (for example, SWT11, SWT12, SWT13, SWT14, and SWT15 in FIG. 4) of the first echo data group SW [T1] is acquired (S101).
- state transition control is performed from the first state [T1] to the second state [T2] (S102).
- transmission control is performed in the second state [T2], and echo data of each sweep (for example, SWT21, SWT22, SWT23, SWT24, SWT25 in FIG. 4) of the second echo data group SW [T2] is acquired (S103). ).
- the echo data group Dz T1 of the attention area Z T1 with respect to the first echo data group SW [T1] in the first state [T1] is extracted.
- the echo data group Dz T2 of the comparison target area Z T2 with respect to the second echo data group SW [T2] in the second state [T2] is extracted.
- the echo data group Dz T2 echo data group Dz T1 and comparison regions Z T2 of the region of interest Z T1 and correlation processing the correlation coefficient is calculated.
- the soft tissue cartilage boundary surface is discriminated from the correlation coefficient calculated for each of the entire regions defined in two dimensions in the depth direction and the scanning direction (S104).
- FIG. 6 is a flowchart of the correlation process between the echo data group in the first state and the echo data group in the second state and the soft tissue cartilage boundary surface determination process based on the correlation coefficient according to the embodiment of the present invention.
- FIG. 7 is a waveform diagram of the echo signal SWT11 for explaining a method for selecting the first echo data group Dz T1 to be correlated and a method for determining the search range Z R1 .
- FIG. 8 is a waveform diagram of echo signals SWT21 and SWT22 for explaining a method of selecting the second echo data group Dz T2 to be correlated.
- FIG. 9 is a waveform diagram of the echo signal SWT21 for explaining a method of acquiring the first echo data group Dz T1 .
- an attention area Z T1 is set for the first echo data group SW [T1] acquired in the first state [T1] (S401).
- the attention area Z T1 is defined by the length in the depth direction (time direction). Specifically, for example, as shown in FIG. 7, the scanning direction determined by each of the echo signals SWT11 to SWT15 is in the depth direction (time direction) of one echo signal with respect to a two-dimensional region composed of the depth direction. A predetermined range along is set as the attention area ZT1 .
- echo data included in the attention area Z T1 is extracted to generate an echo data group Dz T1 (S402). This, in turn, corresponds to a clipped region of interest Z T1 echo signal waveform.
- the search area ZR1 is set for the second echo data group SW [T2] acquired in the second state [T2] (S403).
- the search area Z R1 is determined so as to include echo data in a wider range than the attention area Z T1 with the position of the attention area Z T1 as a reference.
- the same position as the region of interest ZT1 is set with respect to the probe 100 by a region expanded by a predetermined range in both the depth direction and the scanning direction with the center in the depth direction and the scanning direction. Is done.
- the search is performed at the depth position A of the echo signal SWT22 in the second state [T2].
- the center of the region Z R1 is set.
- a range longer than the depth direction length of the region of interest is set as the depth direction range of the search region ZR1 . Note that if the depth position A is shallow, shallow side distances depth the depth position A relative to the search area Z R1 may be shorter.
- the search area Z R1 is included so as to include the echo signals SWT21, SWT22, and SWT23 so that the center in the scanning direction is the echo signal SWT22. Set the range in the scanning direction.
- the comparison target area Z T2 is set for the second echo data group SW [T2] acquired in the second state [T2].
- the comparison target region ZT2 selects one echo signal and sets it as a region having a predetermined length in the depth direction.
- the length in the depth direction of the comparison target region ZT2 is set to match the length in the depth direction of the attention region ZT1 .
- Comparison regions Z T2 is set to span the entire search area Z R1 which is set as described above.
- the echo data group Dz T2 is acquired for each comparison target region Z T2 set in this way (S404).
- the region of interest Z T1 echo signal SWT12 is set within the range of the search area Z R1 of the echo signal SWT21,22,23, depthwise, scanning
- the echo data group Dz T2 is acquired for each comparison target region Z T2 while sequentially changing the comparison target region Z T2 along the direction.
- attention and echo data group Dz T1 region Z T1 compared to correlation processing and echo data group Dz T2 of the target region Z T2 by calculating a correlation coefficient (S405), the echo data group in the target region Z T1 and dz T1, stores the correlation coefficients associated with the combination of the echo data group dz T2 of the comparison regions Z T2 (S406).
- An echo data group Dz T1 of the region of interest Z T1 storage of the correlation process and the correlation coefficient between the echo data group Dz T2 of comparison regions Z T2, while sequentially changing the position of the comparison area Z T2, the search area performed over the entire Z R1. And the correlation coefficient for every comparison object area
- region ZT2 is memorize
- the region of interest Z T1 is set while sequentially shifting in the depth direction from the surface side of the probe 100 with respect to the echo signal SWT11 in the first state [T1] Sequential echo data groups Dz T11 (1), Dz T11 (2), ..., Dz T11 (m), Dz T11 (m + 1), ..., Dz T11 (n), ..., Dz T11 (nn ) To get.
- m, n, and nn shown here are not variables serving as indexes, but have different sizes and indicate integers in the middle of ascending order from 1, where m ⁇ n ⁇ nn.
- a search region Z T2 is set, and a correlation coefficient for each comparison target region Z T2 is acquired and stored.
- Similar processing is executed for the echo signals SWT12, SWT13, SWT14, and SWT15 in the first state [T1]. Then, in respect of all the echo signals SWT11 ⁇ SWT15 the first state [T1], the echo data group Dz T1 of each region of interest Z T1, the second echo data group SW [T2] of the second state [T2] performs correlation processing of echo data group Dz T2 of the region of interest Z T1 the comparison regions Z T2 were distributed search area Z R1 corresponding to stores a correlation coefficient.
- the comparison target area Z T2 having the maximum correlation coefficient is detected for each attention area Z T1 (408). This corresponds to the most similar region. Then, the combination of the attention area Z T1 and the comparison target area Z T2 having the maximum correlation coefficient is stored. This process is executed for all the attention areas ZT1 .
- the relative position with respect to the probe 100 in the region where the echo data groups match changes between the first state [T1] and the second state [T2]. do not do. That is, the relative positions of the attention area Z T1 and the comparison target area Z T2 with respect to the probe 100 hardly change.
- the relative position with respect to the probe 100 of the region where the echo data groups match changes between the first state [T1] and the second state [T2]. That is, the relative positions of the attention area Z T1 and the comparison target area Z T2 with respect to the probe 100 change at least along the scanning direction.
- FIG. 10 is a diagram illustrating an example of the relationship between the change in the positional relationship between the attention area Z T1 in the first state [T1] and the comparison target area Z T2 in the second state [T2] and the correlation coefficient.
- FIG. 10 shows a case where the position is shifted by one transducer arrangement in the scanning direction between the first state [T1] and the second state [T2].
- the attention area Z T1 and the comparison target area Z T2 having the maximum correlation coefficient are both present on the echo signal SWT12, and the positions in the depth direction also match. That is, the relative position with respect to the probe 100 does not change between the first state [T1] and the second state [T2] of the target point.
- the attention area Z T1 and the comparison target area Z T2 having the maximum correlation coefficient exist on different echo signals.
- the region of interest Z T1 is present on the echo signal SWT11
- comparison regions Z T2 is present on the echo signal SWT12.
- FIG. 11 is a waveform diagram showing the concept of discriminating between soft tissue and cartilage.
- Dz T21 (1), Dz T21 (2),..., Dz T21 (m) are in the first state [T1].
- Dz T11 (1), Dz T11 (2),..., Dz T11 (m) have high correlation coefficients, and are determined to be in the same region.
- Dz T22 (1), Dz T22 (2),..., Dz T22 (m) are Dz of the echo signal SWT12 in the first state [T1].
- T12 (1), Dz T12 (2),..., Dz T12 (m) have high correlation results, and are determined to be in the same region.
- Dz T21 (2),..., Dz T21 (m) have the same relative position with respect to the probe 100. That is, the attention area Z T1 in the first state [T1] and the comparison target area Z T2 in the second state [T2] determined to be similar to the attention area have a relative position with respect to the probe 100. It is the same without changing in the second state. Therefore, these regions are determined as soft tissue 903.
- Dz T22 (n),..., Dz T22 (nn) are Dz of the echo signal SWT11 in the first state [T1].
- T11 (n),..., Dz T11 (nn) have high correlation coefficients, and are determined to be in the same region.
- Dz T11 (n),..., Dz T11 (nn) of the echo signal SWT11 and Dz T22 (n),..., Dz T22 (n) of the echo signal SWT22 have relative positions with respect to the probe 100, respectively.
- the first state is moved to the second state by an interval between adjacent transducers in the scanning direction. That is, the attention area Z T1 and the comparison area Z T2 that are determined to be the same area in the first state [T1] and the second state [T2] are changed from the first state [T1] to the second state [T2].
- the relative position with respect to the probe 100 changes with the change to. Therefore, these areas are determined as cartilage 901.
- FIG. 12 is a waveform diagram of the echo signals SWT11 to SWT15 in the first state [T1] for explaining the concept of setting a region of interest over a plurality of sweeps of echo data.
- the example shown in FIG. 12 shows a case where the attention area Dz T1M is set in an area extending over three sweeps (echo signals) arranged in the scanning direction.
- the number of sweeps included in the attention area Dz T1M is not limited to three, and may be two or other numbers.
- the comparison target area in the second state [T2] may be set to have the same number of sweeps as the attention area.
- the search area may be expanded in accordance with the expansion of the attention area. For example, if the region of interest is for three sweeps in the scanning direction, the search region may be set for five sweeps in the scanning direction.
- the number of echo data in the attention area can be increased.
- the region of interest and the comparison target region are set in two dimensions in the depth direction and the scanning direction, they are less susceptible to measurement variations than in the one-dimensional case in the depth direction. As a result, the region can be identified with higher accuracy. Thereby, the area
- the norm Norm can be defined by the following equation.
- Ddzt1 (i) is the echo data value at the point in the depth direction position i of the region of interest Z T1.
- Ddzt2 (i) is the echo data value at the point in the depth direction position i comparison regions Z T2.
- k corresponds to the resolution of the region of interest Z T1 and comparison regions Z T2, indicating the total number of echo data included in the target region Z T1 and comparison regions Z T2.
- n is an appropriately set constant.
- the norm Norm multiplies the absolute value of the difference between echo data at the same position in the vibration direction of the attention area Z T1 and the comparison target area Z T2, and adds the n-th power value over the entire area. 1 / nth power. Therefore, the norm Norm decreases as the similarity between the attention area Z T1 and the comparison target area Z T2 increases, and the norm Norm increases as the similarity decreases.
- the comparison target region Z T2 having the smallest norm with respect to the attention region Z T1 can be detected as the comparison target region Z T2 that is most similar to the attention region Z T1 .
- the signal to be used may be the received echo data itself or an envelope obtained by performing envelope detection processing on the received echo data.
- the case where an envelope is used is shown as an example.
- FIG. 13 is a flowchart of the soft tissue cartilage boundary surface detection process using the difference in the envelope of the echo signal.
- FIG. 14 is a waveform diagram for explaining the concept of soft tissue cartilage boundary surface detection using an envelope difference.
- the method of setting the attention area Z T1 , the search area Z R1 , and the comparison target area Z T2 is the same as that when the correlation coefficient is used. Further, the method for obtaining the echo data group Dz T2 echo data group Dz T1, and comparison regions Z T2 of the region of interest Z T1 is also the same. That is, steps S501 to S504 shown in FIG. 13 are the same as steps S401 to S404 shown in FIG. Therefore, the description of the processing up to step S504 is omitted.
- the envelope of the echo data group Dz T1 of the attention region Z T1 target domain envelope
- comparison regions Z T2 envelope of the echo data group Dz T2 compare domain envelope
- S505 a difference between the attention area envelope and the comparison area envelope.
- the envelope difference calculated here is obtained by adding the absolute value of the difference between the attention area envelope and the comparison target area envelope for each depth position. This corresponds to a primary norm for the echo data of the attention area Z T1 and the echo data of the comparison area Z T2 .
- the calculated envelope difference is stored in association with the combination of the attention area Z T1 and the comparison area Z T2 (S506).
- An echo data group Dz T1 of the region of interest Z T1 the memory of the difference of the envelope of the echo data group Dz T2 of comparison regions Z T2, while sequentially changing the position of the comparison area Z T2, the search area Z R1 Perform over the entire area.
- the difference of an envelope is memorize
- the comparison target area Z T2 having the smallest envelope difference is detected for each attention area Z T1 (S508). Then, the combination of the attention area Z T1 and the comparison target area Z T2 that minimize the envelope difference is stored. This process is executed for all the attention areas ZT1 .
- step S409 in the flow of the method using the correlation coefficient described above, and the region where the relative position does not change is discriminated as the soft tissue 903.
- the region where the relative position changes is determined as cartilage 901 (S509).
- the soft tissue 903 and the cartilage 901 can be distinguished, and the cartilage surface can be detected.
- FIG. 15 is a flowchart of the soft tissue cartilage boundary surface detection process based on the subchondral bone.
- the method of setting the attention area Z T1 , the search area Z R1 , and the comparison target area Z T2 is the same as that using the probe reference. Further, the method for obtaining the echo data group Dz T2 echo data group Dz T1, and comparison regions Z T2 of the region of interest Z T1 is also the same.
- the echo data of the subchondral bone in the first state [T1] is detected from the echo data group Dz T1 in the first state [T1] (S601).
- the echo data of the subchondral bone in the second state [T2] is detected from the echo data group Dz T2 in the second state [T2] (S602).
- a range having an amplitude greater than or equal to a predetermined threshold is detected after a range having a low amplitude in the depth direction continues for a predetermined distance, a range having an amplitude greater than or equal to the predetermined threshold Is determined to be subchondral bone.
- the first state [T1] and the second state [T2] using a correlation coefficient or a norm (hereinafter, the case of the correlation coefficient is representatively shown).
- a similar region is detected at.
- the movement vector (movement direction, movement amount) of the echo data of the subchondral bone from the first state [T1] to the second state [T2] is detected (S603).
- FIG. 16 is a diagram showing the definition of the movement vector.
- FIG. 16 shows a case where the attention area and the comparison target area are used.
- Moving vector v m is defined from the position of the representative point of the comparison regions the representative point of the region of interest is determined to be most similar to each other.
- the movement vector v m is a vector having a representative point of the attention area as a start point and a representative point of the comparison target area as an end point, and is defined by a movement direction and a movement amount.
- the representative point of the region of interest exists at a predetermined depth position on the echo signal SWT11, that is, in the scanning direction position P1.
- the representative point of the comparison target region exists at a predetermined depth position on the echo signal SWT22, that is, the scanning direction position P2.
- the depth position of the representative point of the attention area and the depth position of the representative point of the comparison target area are the same.
- the movement vector v m is a vector in which the scanning direction is the movement direction and the distance ⁇ x between the scanning positions P1 and P2 is the movement amount.
- the attention area of the same movement vector as that of the subchondral bone is determined as cartilage, and the attention area of the movement vector different from that of the subchondral bone is determined as soft tissue (S605).
- FIG. 17 is a waveform diagram for explaining the concept of soft tissue cartilage boundary surface detection based on the subchondral bone.
- the movement vector at each position of the lower bone is a vector of the movement amount ⁇ x along the scanning direction. Since the cartilage 901 is connected to the subchondral bone, the movement vector of the cartilage 901 is also a vector of the movement amount ⁇ x along the scanning direction. Since the soft tissue 903 moves along with the probe 100 on the surface of the cartilage 901, the movement vector of the soft tissue 903 becomes zero.
- FIG. 18 is a diagram showing the distribution state of the movement vector. As shown in FIG. 18, a movement vector is stored for each scanning direction position and depth direction position.
- the region of the same movement vector as that of the subchondral bone is distinguished from the region of the movement vector different from that of the subchondral bone from the movement vector of each position in this distribution.
- a region having the same movement vector as the subchondral bone is determined as the cartilage 901
- a region having a movement vector different from the subchondral bone is determined as the soft tissue 903. Then, the boundary between the area determined to be cartilage 901 and the area determined to be soft tissue 903 is detected as a soft tissue cartilage boundary surface.
- soft tissue and cartilage can be discriminated without being affected by variations in the movement of the probe 100. For example, when the probe 100 is moved in the scanning direction, even if the probe slides to some extent on the soft tissue surface, it is not influenced by the subchondral bone reference.
- each process for cartilage surface detection is realized by a plurality of functional blocks.
- the above-described cartilage surface detection process may be programmed and stored, and the program may be read and executed by a computer.
- the attention area is set for the echo signal group in the first state [T1] and the comparison target area is set in the echo signal group in the second state [T2] is shown.
- the region may be set for the echo signal group in the second state [T2]
- the comparison target region may be set in the echo signal group in the first state [T1].
- the search area is set.
- the comparison target area can be set for all the echo signal areas without setting the search area.
- the search area by setting the search area as described above, it is possible to effectively limit the range of calculation of the correlation result and the calculation of the envelope difference. Accordingly, it is possible to speed up the process of discriminating cartilage and soft tissue and save resources.
- the relative positional relationship between the probe 100, the soft tissue 903, and the cartilage 901 may be changed by fixing the probe 100 and bending the knee with a jig or the like.
- transducers are arranged and arranged along only one direction of the scanning direction.
- the transducers may be arranged at a predetermined interval in a two-dimensional region of the scanning direction and the direction orthogonal to the scanning direction and the depth direction.
- FIG. 19 is a diagram showing a detection configuration by mechanical scanning for moving a transducer.
- the mechanical scan type probe 100A includes a transducer having a vibrator.
- the transducer is installed so as to be movable along the scanning axis.
- the transducer moves along the scan axis.
- the transducer of the transducer transmits an ultrasonic signal in a direction orthogonal to the scanning direction. While moving this transducer in the scanning direction, it stops at a plurality of scanning positions, transmits an ultrasonic signal, and receives the echo signal, thereby obtaining the same echo signal as the probe 100 having a plurality of transducers. be able to.
- the movement vector of the subchondral bone is compared with the movement vector at each position, and an example in which soft tissue and cartilage are detected based on whether or not the movement vector of the subchondral bone matches is shown.
- a movement vector may be simply calculated at each point, and a boundary where the movement vector changes may be detected as a boundary surface (cartilage surface) between soft tissue and cartilage.
- the combination of the selection between the case of using the raw data and the case of using the envelope and the selection of the case of using the correlation coefficient and the case of using the norm is not limited to the above example, and can be appropriately combined. Good.
- the first echo data group acquired in the first state and the second echo data group acquired in the second state partially overlap along the scanning direction. Since the ultrasonic echo signal has a predetermined spread, the first echo data group acquired in the first state and the second echo data group acquired in the second state are not limited to the scanning direction. It can also be set to overlap.
- the method of detecting the soft tissue cartilage boundary surface has been described. However, a time obtained by halving the time difference from the time when the probe transmits the ultrasonic signal to the time when the probe receives the echo data of the boundary surface. ) Multiplied by the speed of sound, the distance (depth) from the probe surface (contact surface between the probe and skin to the soft tissue cartilage interface) can be calculated.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Surgery (AREA)
- Molecular Biology (AREA)
- Veterinary Medicine (AREA)
- Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Heart & Thoracic Surgery (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Physiology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
【課題】非侵襲で軟組織と軟骨の境界面を正確に検出する。 【解決手段】軟組織軟骨境界面検出装置10は、送信制御部12、エコー信号受信部13、データ解析部14およびプローブ100を備える。送信制御部12、プローブ100、エコー信号受信部13は、第1状態と第2状態とでプローブ100の位置を異ならせた状態で、それぞれに複数のスイープのエコーデータを取得する。データ解析部14は、第1状態の第1エコーデータ群SW[T1]における注目領域のエコーデータ群DZT1と、第2状態の第2エコーデータ群SW[T2]における所定領域のエコーデータ群DZT2とを相関処理する。データ解析部14、相関処理結果からプローブ100に対する第1状態と第2状態での各領域の相対位置変化を検出して、相対位置変化から軟組織と軟骨とを判別する。
Description
本発明は、軟骨と軟組織との境界面を、外部からの超音波で検出する軟組織軟骨境界検出方法に関する。
従来、軟骨の状態を診断するための情報を生成する装置が、各種考案されている。例えば、特許文献1の超音波診断装置では、超音波を送受波するプローブを、膝の表面に当接させ、当該プローブで得た膝内部からのエコー信号で、軟骨の状態を診断している。すなわち、特許文献1の超音波診断装置は、非侵襲で軟骨の状態を診断している。そして、特許文献1の超音波診断装置では、深度方向のエコー信号のレベル(強度)の差から、軟骨を検出している。
しかしながら、特許文献1の装置および方法では、軟組織(筋肉や皮膚)のエコー信号レベルと軟骨のエコー信号レベルとの差から、軟骨表面を検出している。したがって、軟組織と軟骨とで、エコー信号のレベルに差が無ければ、軟骨表面を正確に検出することができない。そして、概ね従来の超音波信号では、軟組織と軟骨表面との間で、エコー信号レベルに大きな差が無い。このため、従来の方法では、軟骨表面を正確に検出することができない。
本発明の目的は、非侵襲で軟組織と軟骨の境界面を正確に検出できる軟組織軟骨境界面検出装置を提供することにある。
この発明は、軟組織と軟骨の境界面を検出する軟組織軟骨境界面検出方法に関するものであり、次の特徴を有する。この軟組織軟骨境界面検出方法では、第1の状態で被検知体の表面に当接され、超音波信号を前記被検知体内に送信し、該超音波信号のエコー信号を受信して第1のエコー信号を出力する第1のエコー信号送受信工程と、第1の状態とは軟組織と軟骨との位置関係が異なる第2の状態で、被検知体の表面に当接され、超音波信号を被検知体内に送信し、該超音波信号のエコー信号を受信して第2のエコー信号を出力する第2のエコー信号送受信工程と、第1のエコー信号と第2のエコー信号に基づいて軟組織と軟骨の境界面を検出する境界面検出工程と、を含む。
この方法では、軟骨と軟組織との位置関係が異なる2つの状態で受信したエコー信号は波形が異なることを利用している。2つの状態での波形の変化を検出することで、軟骨と軟組織とを判別可能であり、この判別結果から、軟骨と軟組織の境界面を検出することができる。
また、この発明の軟組織軟骨境界面検出方法の境界面検出工程は、第1のエコー信号と第2のエコー信号の最も波形が類似する類似領域を検出する類似領域検出工程と、類似領域から境界面を特定する境界面特定工程と、を含む。
この方法では、境界面検出工程の具体的な工程例を示しており、第1の状態と第2の状態で波形が類似する類似領域の第1の状態から第2の状態への位置変化から軟組織と軟骨の境界面を検出している。
また、この発明の軟組織軟骨境界面検出方法の類似領域検出工程は、第1のエコー信号の波形と第2のエコー信号の波形の相関係数に基づいて類似領域を検出する。
また、この発明の軟組織軟骨境界面検出方法の類似領域検出工程は、第1のエコー信号の波形と第2のエコー信号の波形から領域毎のノルムを算出し、当該ノルムに基づいて類似領域を検出する。
これらの方法では、類似領域の具体的な検出方法例を示している。
また、この発明の軟組織軟骨境界面検出方法では、類似領域検出工程におけるノルムは、第1のエコー信号と第2のエコー信号の各深度位置における信号レベルの差の絶対値の総和に基づいて算出される。
また、この発明の軟組織軟骨境界面検出方法では、類似領域検出工程におけるノルムは、第1のエコー信号と第2のエコー信号の各深度位置における信号レベルの差の二乗値の総和に基づいて算出される。
これらの方法では、ノルムの具体的な算出方法について示している。
また、この発明の軟組織軟骨境界面検出方法では、第1のエコー信号の波形と第2のエコー信号の波形は、サンプリングされたエコーデータを用いる。
また、この発明の軟組織軟骨境界面検出方法では、第1のエコー信号の波形と第2のエコー信号の波形は、サンプリングされたエコーデータのエンベロープである。
これらの方法では、第1、第2のエコー信号の具体的な波形の取得方法を示している。
また、この発明の軟組織軟骨境界面検出方法の境界面特定工程は、超音波信号を送受信する位置に対する類似領域の位置変化が異なる2つの領域の境界を、軟組織と軟骨の境界面として検出する。
また、この発明の軟組織軟骨境界面検出方法の境界面特定工程は、超音波信号を送受信する位置が第1のエコー信号の受信状態と第2のエコー信号の受信状態とで変化する変化態様と同じ変化態様の領域を軟組織と判断し、異なる変化態様の領域を軟骨と判断して、軟組織と判断した領域と軟骨と判断した領域との境界を、軟組織と軟骨の境界面とする。
また、この発明の軟組織軟骨境界面検出方法の境界面特定工程は、超音波信号を送受信する位置が第1のエコー信号の受信状態と第2のエコー信号の受信状態とで軟骨下骨の変化態様と同じ変化態様の領域を軟骨と判断し、異なる変化態様の領域を軟組織と判断して、軟組織と判断した領域と軟骨と判断した領域との境界を、軟組織と軟骨の境界面とする。
また、この発明の軟組織軟骨境界面検出方法の境界面特定工程は、第1のエコー信号の受信状態から第2のエコー信号の受信状態に遷移する時の各領域の類似領域の移動方向および移動量からなる移動ベクトルを検出し、移動ベクトルの変化する境界を軟組織と軟骨の境界面とする。
これらの方法では、具体的な軟組織軟骨境界面の検出方法を示している。
また、この発明の軟組織軟骨境界面検出方法の類似領域検出工程は、第1のエコー信号に注目領域を設定し、第2のエコー信号に比較対象領域を設定し、注目領域の第1のエコー信号に対して最も波形が類似する第2のエコー信号による比較対象領域を検出する。
この方法では、具体的な類似領域の検出方法について示している。
また、この発明の軟組織軟骨境界面検出方法の類似領域検出工程は、第2のエコー信号に対して注目領域を基準にして該注目領域よりも広い範囲を探索領域として設定し、該探索領域内に比較対象領域を設定する。
この方法では、さらに具体的な類似領域の検出方法について示している。そして、この方法では、比較対象領域の設定範囲を、注目領域の位置に基づいて効果的に制限することができる。
また、この発明の軟組織軟骨境界面検出方法では、注目領域は、複数のエコー信号に亘る領域で設定されている。
この方法では、走査方向にエコーデータ数を増加させることができる。これにより、類似領域を、さらに高精度に検出することができる。
また、この発明の軟組織軟骨境界面検出方法では、第1の状態と第2の状態で送受信する位置が異なる。また、この発明の軟組織軟骨境界面検出方法では、第1の状態と第2の状態で送受信される被検知体の状態が異なる。
また、この発明の軟組織軟骨境界面検出方法では、第1のエコー信号と第2のエコー信号とは、第1の状態と第2の状態の走査領域の一部が重なるように設定されている。
また、この発明の軟組織軟骨境界面検出方法では、第1のエコー信号と第2のエコー信号とは、第1の状態から第2の状態への走査方向において一部の領域が重なるように設定されている。
この発明によれば、膝等の被検知体の外部から超音波信号を送信し、そのエコー信号を被検知体の外部で受診しながら、軟骨表面を正確に検出することができる。これにより、軟骨からのエコーを正確に検出することができ、軟骨の診断に効果的に利用することができる。
本発明の実施形態に係る軟組織軟骨境界検出方法および軟組織軟骨境界検出装置について、図を参照して説明する。図1は本発明の実施形態に係る軟組織軟骨境界検出装置10の構成を示すブロック図である。図2は、本実施形態に係る軟組織軟骨境界検出装置10の振動子100の被検知体に対する設置態様を示す図であり、図2(A)は第1状態(t=T1)の場合を示し、図2(B)は第2状態(t=T2)の場合を示す。なお、以下の説明では、プローブ100を移動させる例を示したが、被検知体を動かす場合にも、以下の方法や構成を適用できる。例えば、被検知体である膝にプローブ100を当接して固定し、膝を屈伸させるような場合であっても、適用できる。すなわち、第1状態[T1]と第2状態[T2]とにおいて、軟組織と軟骨との位置関係が変化するような方法および構成であれば適用できる。
図3は、本実施形態に係る軟組織軟骨境界面の検出概念を説明するための図であり、図3(A)は第1状態[T1](t=T1)を示し、図3(B)は第2状態[T2](t=T2)を示す。図3は、超音波信号が送信される領域およびその近傍領域の表面を平坦な平面に置き換えて見たものである。
軟組織軟骨境界面検出装置10は、操作部11、送信制御部12、エコー信号受信部13、データ解析部14、およびプローブ100を備える。送信制御部12、エコー信号受信部13およびプローブ100が、本発明の「送受信手段」に相当する。
操作部11は、ユーザの操作入力を受け付ける。例えば、操作部11は、複数の操作子(図示せず)を備え、操作子に対するユーザの操作から、軟骨表面を検出する処理の実行開始を送信制御部12へ指示する。
送信制御部12は、超音波の周波数からなる搬送波をパルス状に波形成形した超音波信号を生成する。送信制御部12は、第1状態[T1]と第2状態[T2]のそれぞれで、超音波信号を生成する。
送信制御部12は、超音波信号をプローブ100へ出力する。プローブ100は、送受波面に平行な方向へ配列された複数の振動子を備える(後述の図3参照)。この振動子の配列方向が走査方向となる。各振動子は、所定の送信ビーム角からなる超音波信号を、被検知体内に向けて送信する。各振動子は、所定の時間間隔で超音波信号を送信し、その反射エコー信号を受信する。
プローブ100は、具体的には、図2に示すように、被検知体である膝の軟組織903の表面に、送受波面側の端面が当接するように配置される。ここで、図3に示すように、軟組織903とは、皮膚および筋肉を含む体内部分であり、軟骨901よりも被検知体の表面側に存在する部位である。軟骨901は、軟骨下骨911に付着しており、軟骨下骨911は、骨(海綿骨)902に結合した組織である。
図2(A)に示すようにプローブ100を軟組織903の表面に接触させながら、図2(B)に示すようにプローブ100を表面に沿って移動させる。これにより、図2に示すように、軟組織903は、軟骨901の表面を滑りながら、プローブ100に従って移動する。このプローブ100を移動させる前の図2(A)の状態が第1状態(t=T1)であり、プローブ100を移動させた後の図2(B)の状態が第2状態(t=T2)である。この際、プローブ100は振動子の配列方向(走査方向)に沿って移動させる。
各振動子は、第1状態[T1]と第2状態[T1]のそれぞれにおいて、超音波信号を被検知体内に向けて送信する。この際、プローブ100の各振動子は、軟組織903の表面に対して直交する方向が送信ビームの中心軸の方向となるように、超音波信号を送信する。
プローブ100の各振動子は、超音波信号が被検知体内の軟組織903や軟骨902で反射したエコー信号を受信し、エコー信号受信部13へ出力する。プローブ100は、第1状態[T1]において各振動子で得られたエコー信号からなる第1エコー群SW[T1]と、第2状態[T2]において各振動子で得られたエコー信号から第2エコー信号群SW[T2]を、それぞれエコー信号受信部13へ出力する。
エコー信号受信部13は、各エコー信号に対して所定の増幅処理を行い、データ解析部14へ出力する。エコー信号受信部13は、第1エコー群SW[T1]の各エコー信号と、第2エコー群SW[T2]の各エコー信号を、個別に増幅処理して、データ解析部14へ出力する。
データ解析部14は、AD変換部141、記憶部142、判定部143を備える。AD変換部141は、エコー信号を所定の時間間隔でサンプリングすることで、離散データ化する。この離散データ化されたエコー信号がエコーデータとなる。これにより、深度方向に所定間隔でデータサンプリングされたエコーデータを得ることができる。AD変換部141は、エコーデータを記憶部142へ出力する。
記憶部142は、第1状態で得られた複数のエコーデータと、第2状態で得られた複数のエコーデータとを記憶する容量を備える。記憶部142は、AD変換部141から出力された各エコーデータを記憶する。
判定部143は、具体的な処理は後述するが、第1状態[T1]の各注目領域の波形(スイープのエコーデータ列)と、第2状態の各比較対象領域の波形(スイープのエコーデータ列)とを比較する。判定部143は、この比較結果に基づいて、選択した注目領域が、第2状態のどの位置の比較対象領域に対応するかを検出する。
判定部143は、第1状態[T1]の注目領域に対して最も類似する第2状態[T2]の比較対象領域を検出する。判定部143は、当該波形が最も類似する領域(もしくは当該領域の代表位置)が第1状態[T1]と第2状態[T2]でどのように変位したか(変位しなかったか)を検出する。判定部143は、この領域の位置の変位傾向の違いから、軟組織の領域と軟骨の領域とを判別し、軟骨901の表面位置、すなわち軟組織903と軟骨901との境界面を検出する。
なお、軟骨901の表面(軟組織903と軟骨901との境界面)が検出されると、図示しない軟骨診断用情報生成部は、軟骨901部分エコーデータに基づいて、軟骨変性の診断に利用可能な情報を生成する。具体的には、軟骨診断用情報生成部は、軟骨表面付近のエコーデータと軟骨下骨のエコーデータとの組を、異なる複数の時期に取得する。軟骨診断用情報生成部は、これらのエコーデータの組の組成の時期間における遷移から、軟骨表面の変性に起因する変化量を検出するなどしてもよい。軟骨診断用情報生成部は、この検出結果を、軟骨変性の診断に利用可能な情報として出力する。
次に、データ解析部14で実行される、より具体的な軟組織軟骨境界面の検出方法について、図3を参照して説明する。なお、説明を簡単にするために、第1状態[T1]と第2状態[T2]との間でのプローブ100(各振動子)の移動距離Δxは、振動子の配置間隔に一致したものとして説明する。
まず、第1状態[T1]として、例えば、被検知体である膝を第1の角度で曲げた状態で、プローブ100を膝の表面に当接させる。言い換えれば、プローブ100を軟組織903の表面に当接させる。これは、図3(A)の状態である。
所定間隔を空けてプローブ100に配置された各振動子は、それぞれ軟組織903の表面に平行な方向(送受波面に平行な走査方向)へ超音波信号を送信する。図3の例であれば、プローブ100には、五個の振動子が走査方向に沿って等間隔で配置されており、図3(A)に示すように、それぞれの位置に配置された各振動子は、軟組織903の表面に直交する方向へ超音波信号を送信する。この各配置位置の超音波信号が軟組織903や軟骨901、軟骨下骨911の各深度位置で反射および散乱することで、走査方向に所定間隔をおいた各位置(走査方向位置)のエコー信号SWT11,SWT12,SWT13,SWT14,SWT15が得られる。各振動子は、それぞれにエコー信号を受信する。この各振動子で得られたエコー信号SWT11,SWT12,SWT13,SWT14,SWT15のエコー信号群が第1エコー群SW[T1]となる。
次に、プローブ100を軟組織903に当接させたままの状態で、プローブ100を軟組織903の表面に平行な方向で且つ走査方向に平行な方向へ、距離Δxだけ移動させる。この状態が第2状態[T2]であり、図3(B)の状態である。この時、軟組織903は、プローブ100の移動に追随して移動する。したがって、プローブ100の送受波面と軟組織903の走査方向の各位置との相対的な位置関係は、プローブ100の移動に応じることなく変化しない。一方、軟骨901は、軟骨下骨911を介して骨902に固着しているので、プローブ100の移動があっても移動しない。したがって、プローブ100の送受波面と軟骨901の走査方向の各位置との相対的な位置関係は、プローブ100の移動に応じて変化する。
第2状態になった後、図3(B)に示すように、プローブ100の各振動子から、軟組織903の表面に平行な方向(送受波面に平行な走査方向)へ超音波信号を送信する。この各走査位置の超音波信号が軟組織903や軟骨901、軟骨下骨911の各深度位置で反射および散乱することで、走査方向に所定間隔をおいた各位置のエコー信号SWT21,SWT22,SWT23,SWT24,SWT25が得られる。各振動子は、それぞれにエコー信号を受信する。この各振動子で得られたエコー信号SWT21,SWT22,SWT23,SWT24,SWT25のエコー信号群が第2エコー群SW[T2]となる。
このように、プローブ100の移動前に、複数のエコー信号SWT11,SWT12,SWT13,SWT14,SWT15からなる第1エコー群SW[T1]を取得する。そして、プローブ100の移動後に、複数のエコー信号SWT21,SWT22,SWT23,SWT24,SWT25からなる第2エコー群SW[T2]を取得する。
図4は、第1状態[T1]と第2状態[T2]とでの各エコー信号の波形例を示す図である。なお、図4では本願発明の特徴を分かりやすく図示するために、プローブ100が移動した距離Δxと、各振動子の間隔、すなわち走査位置の間隔が等しいものとしている。また、以下では、この条件において軟組織軟骨境界面の検出の説明を行う。
(i)軟組織903 上述のように、プローブ100は軟組織903の表面に当接しており、軟組織903は軟骨901の表面に固定されていない。したがって、プローブ100が距離Δxだけ移動すると、軟組織903も、プローブ100の移動に追随して、距離Δxだけ移動する。
この場合、図4の第1状態[T1]の各エコー信号の波形および第2状態[T2]の各エコー信号の波形に示すように、第1エコー群SW[T1]のエコー信号SWT11の軟組織903の領域と、第2エコー群SW[T2]のエコー信号SWT21の軟組織903の領域とで、エコー信号の波形が略一致する。
同様に、エコー信号SWT12の軟組織903の領域とエコー信号SWT22の軟組織903の領域とで、エコー信号の波形が略一致する。エコー信号SWT13の軟組織903の領域とエコー信号SWT23の軟組織903の領域とで、エコー信号の波形が略一致する。エコー信号SWT14の軟組織903の領域とエコー信号SWT24の軟組織903の領域とで、エコー信号の波形が略一致する。エコー信号SWT15の軟組織903の領域とエコー信号SWT25の軟組織903の領域とで、エコー信号の波形が略一致する。
したがって、軟組織903内では、各走査位置のエコー信号は、第1状態[T1]と第2状態[T2]とで、プローブ100に対する走査方向に沿った位置が略一致する。
(ii)軟骨901 プローブ100が移動しても、軟骨901は移動しない。したがって、プローブ100が距離Δxだけ移動すると、プローブ100の各振動子の位置(各走査位置)と軟骨901の各位置との位置関係が、走査方向に沿って距離Δxだけずれる。
この場合、図4の第1状態[T1]の各エコー信号の波形および第2状態[T2]の各エコー信号の波形に示すように、第1エコー群SW[T1]のエコー信号SWT11の軟骨901の領域と、第2エコー群SW[T2]のエコー信号SWT21の軟骨901の領域とで、エコー信号の波形が一致せず、第2エコー群SW[T2]のエコー信号SWT22の軟骨901の領域とで、エコー信号の波形が略一致する。
同様に、エコー信号SWT12の軟骨901の領域とエコー信号SWT23の軟骨901の領域とで、エコー信号の波形が略一致する。エコー信号SWT13の軟骨901の領域とエコー信号SWT24の軟骨901の領域とで、エコー信号の波形が略一致する。エコー信号SWT14の軟骨901の領域とエコー信号SWT25の軟骨901の領域とで、エコー信号の波形が略一致する。
したがって、軟骨901内では、各走査位置のエコー信号は、第1状態[T1]と第2状態[T2]とで、走査位置が振動子の配置間隔で一つ分ずれた状態で略一致する。
このように、軟組織903からのエコーデータと軟骨901からのエコーデータは、第1状態[T1]と第2状態[T2]とで異なる挙動を示す。したがって、この挙動(第1状態と第2状態での注目点の相対位置の変化)を検出することで、軟組織903の領域と、軟骨901の領域を識別できる。そして、軟組織903と軟骨901との境界面である軟骨表面を検出することができる。
以上のように、本実施形態の構成を用いれば、非侵襲で、軟骨901の表面を正確に検出することができる。
次に、より具体的な軟骨表面の検出方法について説明する。図5は、本発明の実施形態に係る軟組織軟骨境界面検出処理のフローチャートである。
まず、第1状態[T1]で送信制御を行い、第1エコーデータ群SW[T1]の各スイープ(例えば図4のSWT11,SWT12,SWT13,SWT14,SWT15)のエコーデータを取得する(S101)。次に、第1状態[T1]から第2状態[T2]へ状態遷移制御を行う(S102)。
次に、第2状態[T2]で送信制御を行い、第2エコーデータ群SW[T2]の各スイープ(例えば図4のSWT21,SWT22,SWT23,SWT24,SWT25)のエコーデータを取得する(S103)。
次に、第1状態[T1]の第1エコーデータ群SW[T1]に対する注目領域ZT1のエコーデータ群DzT1を抽出する。また、第2状態[T2]の第2エコーデータ群SW[T2]に対する比較対象領域ZT2のエコーデータ群DzT2を抽出する。そして、注目領域ZT1のエコーデータ群DzT1と比較対象領域ZT2のエコーデータ群DzT2とを相関処理して、相関係数を算出する。そして、深度方向と走査方向の二次元で定義される全領域の各領域に対して算出された相関係数から軟組織軟骨境界面を判別する(S104)。
次に、第1状態[T1]のエコーデータと第2状態[T2]のエコーデータとの相関処理、および、軟骨表面の判別処理について、図6から図11を用いて、より詳細に説明する。図6は、本発明の実施形態に係る第1状態のエコーデータ群と第2状態のエコーデータ群との相関処理と相関係数に基づく軟組織軟骨境界面の判別処理のフローチャートである。
図7は、相関処理する第1エコーデータ群DzT1の選択方法および探索範囲ZR1の決定方法を説明するためのエコー信号SWT11の波形図である。図8は、相関処理する第2エコーデータ群DzT2の選択方法を説明するためのエコー信号SWT21,SWT22の波形図である。図9は、第1エコーデータ群DzT1の取得方法を説明するためのエコー信号SWT21の波形図である。
まず、第1状態[T1]で取得した第1エコーデータ群SW[T1]に対して、注目領域ZT1を設定する(S401)。この場合、注目領域ZT1は、深度方向(時間方向)の長さで規定されている。具体的には、例えば、図7に示すように、各エコー信号SWT11~SWT15によって決まる走査方向を深度方向とからなる二次元領域に対して、1本のエコー信号の深度方向(時間方向)に沿った所定の範囲を注目領域ZT1に設定する。次に、当該注目領域ZT1内に含まれるエコーデータを抽出し、エコーデータ群DzT1を生成する(S402)。これは、言い換えれば、注目領域ZT1で切り取られたエコー信号波形に相当する。
次に、第2状態[T2]で取得した第2エコーデータ群SW[T2]に対して、探索領域ZR1を設定する(S403)。探索領域ZR1は、注目領域ZT1の位置を基準として、注目領域ZT1よりも広い範囲のエコーデータを含むように決定される。
具体的には、第2状態[T2]においてプローブ100に対して注目領域ZT1と同じ位置を、深度方向および走査方向の中心として、深度方向および走査方向の両方に所定範囲拡張した領域によって設定される。例えば、図7に示すように、深度方向において、エコー信号SWT12の深度位置Aに注目領域ZT1の中心が設定されている場合、第2状態[T2]のエコー信号SWT22の深度位置Aに探索領域ZR1の中心を設定する。そして、注目領域の深度方向の長さよりも長い範囲を探索領域ZR1の深度方向の範囲に設定する。なお、深度位置Aが浅い場合には、当該深度位置Aを探索領域ZR1に対して深度の浅い側の距離は短くてもよい。
また、走査方向においてエコー信号SWT12に注目領域ZT1が設定されている場合、走査方向の中心がエコー信号SWT22となるように、エコー信号SWT21,SWT22,SWT23を含むように、探索領域ZR1の走査方向の範囲を設定する。
次に、第2状態[T2]で取得した第2エコーデータ群SW[T2]に対して、比較対象領域ZT2を設定する。この際、図7に示すように、比較対象領域ZT2は、1本のエコー信号を選択し、深度方向に所定長さの領域とする。比較対象領域ZT2の深度方向の長さは、注目領域ZT1の深度方向の長さと一致するように設定されている。
比較対象領域ZT2は、上述のように設定した探索領域ZR1の全域に亘るように設定されている。このように設定された比較対象領域ZT2毎に、エコーデータ群DzT2を取得する(S404)。
具体的には、例えば、図8に示すように、エコー信号SWT12に注目領域ZT1が設定されている場合、エコー信号SWT21,22,23の探索領域ZR1の範囲内で、深度方向、走査方向に沿って、比較対象領域ZT2を順次変化させながら、比較対象領域ZT2毎に、エコーデータ群DzT2を取得する。
次に、注目領域ZT1のエコーデータ群DzT1と、比較対象領域ZT2のエコーデータ群DzT2とを相関処理して相関係数を算出し(S405)、注目領域ZT1のエコーデータ群DzT1と、比較対象領域ZT2のエコーデータ群DzT2との組合せに関連付けして相関係数を記憶する(S406)。
注目領域ZT1のエコーデータ群DzT1と、比較対象領域ZT2のエコーデータ群DzT2との相関処理と相関係数の記憶は、比較対象領域ZT2の位置を順次変更させながら、探索領域ZR1の全域に亘って行う。そして、比較対象領域ZT2毎の相関係数を記憶する。
このような一つの注目領域ZT1に対する相関係数の算出を、第1状態[T1]で取得した第1エコーデータ群SW[T1]の全域に対して行っていなければ(S407:No)、注目領域ZT1の位置を変化させながら、ステップS401からステップS406の処理を順次行う。全ての注目領域ZT1に対して相関係数の算出を行うと、次の処理に移行する(S407:YES)。
具体的には、例えば、図9に示すように、第1状態[T1]のエコー信号SWT11に対して、プローブ100の表面側から、注目領域ZT1を深度方向に順次シフトさせながら設定し、順次エコーデータ群DzT11(1),DzT11(2),・・・,DzT11(m),DzT11(m+1),・・・,DzT11(n),・・・,DzT11(nn)を取得する。なお、ここで示す、m、n、nnはインデックスとなる変数ではなく、それぞれに大きさが異なり、1から昇順で続く途中の整数を示し、m<n<nnである。
そして、各エコーデータ群DzT11(1),DzT11(2),・・・,DzT11(m),DzT11(m+1),・・・,DzT11(n),・・・,DzT11(nn)毎に、探索領域ZT2を設定し、比較対象領域ZT2毎の相関係数を取得し、記憶する。
同様の処理を、第1状態[T1]のエコー信号SWT12,SWT13,SWT14,SWT15に対しても実行する。そして、第1状態[T1]の全てのエコー信号SWT11~SWT15に対して、各注目領域ZT1のエコーデータ群DzT1と、第2状態[T2]の第2エコーデータ群SW[T2]における注目領域ZT1に対応した探索領域ZR1に分布した各比較対象領域ZT2のエコーデータ群DzT2との相関処理を行い、相関係数を記憶する。
次に、注目領域ZT1毎に相関係数が最大となる比較対象領域ZT2を検出する(408)。これが最も類似する領域に相当する。そして、相関係数が最大となる注目領域ZT1と比較対象領域ZT2との組合せを記憶する。この処理は、全ての注目領域ZT1に対して実行される。
次に、この相関係数が最大となる注目領域ZT1と比較対象領域ZT2とのプローブ100に対する相対位置が、変化しているかどうかを判定する(S409)。
上述のように、軟組織903はプローブ100の移動に追随して移動するので、エコーデータ群が一致する領域のプローブ100に対する相対位置は、第1状態[T1]と第2状態[T2]で変化しない。すなわち、注目領域ZT1と比較対象領域ZT2のプローブ100に対する相対位置は、殆ど変化しない。
一方、軟骨901はプローブ100の移動に追随しないので、エコーデータ群が一致する領域のプローブ100に対する相対位置は、第1状態[T1]と第2状態[T2]で変化する。すなわち、注目領域ZT1と比較対象領域ZT2のプローブ100に対する相対位置は、少なくとも走査方向に沿って変化する。
図10は、第1状態[T1]の注目領域ZT1と第2状態[T2]の比較対象領域ZT2との位置関係の変化と、相関係数との関係の一例を示す図である。図10では、第1状態[T1]と第2状態[T2]とで、走査方向に振動子の配置1つ分だけ位置がシフトした場合を示している。
図10に示すように、軟組織903では、相関係数が最大となる注目領域ZT1と比較対象領域ZT2は、ともにエコー信号SWT12上に存在し、深度方向位置も一致する。すなわち、注目点の第1状態[T1]と第2状態[T2]とでプローブ100に対する相対位置は変化しない。
また、図10に示すように、軟骨901では、相関係数が最大となる注目領域ZT1と比較対象領域ZT2は、異なるエコー信号上に存在する。この場合では、注目領域ZT1がエコー信号SWT11上に存在し、比較対象領域ZT2がエコー信号SWT12上に存在する。
このような結果から、第1状態[T1]と第2状態[T2]でプローブ100に対する位置変化が無い領域を軟組織903の領域と判断し、変化が有る領域を軟骨901の領域として判断することができる。図11は、軟組織と軟骨とを判別する概念を示す波形図である。
例えば、図11に示すように、第2状態[T2]のエコー信号SWT21では、DzT21(1),DzT21(2),・・・,DzT21(m)が、第1状態[T1]のエコー信号SWT11のDzT11(1),DzT11(2),・・・,DzT11(m)とそれぞれ相関係数が高く、同じ領域であると判断される。
同様に、第2状態[T2]のエコー信号SWT22では、DzT22(1),DzT22(2),・・・,DzT22(m)が、第1状態[T1]のエコー信号SWT12のDzT12(1),DzT12(2),・・・,DzT12(m)とそれぞれ相関結果が高く、同じ領域であると判断される。
第1状態[T1]のエコー信号SWT11のDzT11(1),DzT11(2),・・・,DzT11(m)と、第2状態[T2]のエコー信号SWT21のDzT21(1),DzT21(2),・・・,DzT21(m)は、プローブ100に対する相対位置がそれぞれ同じである。すなわち、第1状態[T1]の注目領域ZT1と、該注目領域に類似すると判断された第2状態[T2]の比較対象領域ZT2とは、プローブ100に対する相対位置が、第1状態と第2状態で変化せず同じである。したがって、これらの領域は、軟組織903と判断される。
一方、図11に示すように、第2状態[T2]のエコー信号SWT22では、DzT22(n),・・・,DzT22(nn)が、第1状態[T1]のエコー信号SWT11のDzT11(n),・・・,DzT11(nn)とそれぞれ相関係数が高く、同じ領域であると判断される。
エコー信号SWT11のDzT11(n),・・・,DzT11(nn)と、エコー信号SWT22のDzT22(n),・・・,DzT22(n)は、プローブ100に対する相対位置がそれぞれ、第1状態から第2状態へ走査方向に隣り合う振動子の間隔分だけ移動している。すなわち、第1状態[T1]と第2状態[T2]とで、同じ領域と判断された注目領域ZT1と比較対象領域ZT2とは、第1状態[T1]から第2状態[T2]への変化に伴って、プローブ100に対する相対位置が変化している。したがって、これらの領域は、軟骨901と判断される。
そして、深度方向に沿って、軟組織903と判断された領域と、軟骨901と判断された領域とを判別する。そして、この境界を軟組織軟骨境界面と判別する(S409)。
なお、上述の説明では、注目領域および比較対象領域を一つのスイープのエコーデータ毎に設定する例を示したが、図12に示すように、複数のスイープのエコーデータに亘るように注目領域DzT1Mを設定してもよい。図12は、複数スイープのエコーデータに亘って注目領域を設定する概念を説明するための第1状態[T1]のエコー信号SWT11~SWT15の波形図である。
図12に示す例では、走査方向に並ぶ三本のスイープ(エコー信号)に亘る領域で注目領域DzT1Mを設定する場合を示している。なお、注目領域DzT1Mに含むスイープ数は三本に限るものでなく、二本であっても他の本数であってもよい。
この場合、第2状態[T2]の比較対象領域も、注目領域と同じスイープ数で構成されるように設定すればよい。
また、探索領域も、注目領域の拡大に応じて、拡大すればよい。例えば、注目領域が走査方向に3本のスイープ分であれば、探索領域を走査方向に5本のスイープ分等に設定すればよい。
このように、深度方向と走査方向に広がりを有するように注目領域および比較対象領域を設定することで、注目領域内のエコーデータ数を増加させることができる。また、深度方向と走査方向の二次元で注目領域および比較対象領域が設定されることで、深度方向の一次元の場合よりも測定バラツキの影響を受けにくい。これにより、さらに高精度に領域の同定を行うことができる。これにより、軟組織903の領域と軟骨901の領域とを、より正確に判別することができ、軟骨表面を正確に検出することができる。
また、上述の説明では、注目領域のエコーデータ群と比較対象領域のエコーデータ群との相関係数から軟組織および軟骨を判別する例を示した。しかしながら、第1状態[T1]の各スイープのエコー信号の波形と、第2状態[T2]の各スイープのエコー信号の波形との類似度を、別の方法で検出し、この類似度から軟組織および軟骨を判別してもよい。
具体的な一例としては、ノルムを用いる方法がある。ノルムNormは、次に示す式により定義することができる。
ここで、Ddzt1(i)は、注目領域ZT1の深度方向位置iの点のエコーデータ値である。Ddzt2(i)は、比較対象領域ZT2の深度方向位置iの点のエコーデータ値である。kは、注目領域ZT1および比較対象領域ZT2の分解能に相当し、注目領域ZT1および比較対象領域ZT2に含まれるエコーデータの総数を示す。nは適宜設定した定数である。
このように、ノルムNormは、注目領域ZT1と比較対象領域ZT2との振動方向の同一位置のエコーデータの差分の絶対値をn乗し、このn乗値を領域全体で加算して、1/n乗した値である。したがって、注目領域ZT1と比較対象領域ZT2とが類似度が高いほどノルムNormは小さくなり、類似度が低いほどノルムNormは大きくなる。
これにより、注目領域ZT1に対して最もノルムが小さい比較対象領域ZT2を、当該注目領域ZT1に最も類似する比較対象領域ZT2として検出することができる。
このようなノルムを用いた方法として、次数が1次で、エンベロープの差から軟組織軟骨境界を検出する例を、次に示す。なお、用いる信号は、受信したエコーデータそのものであってもよい、受信したエコーデータに包絡検波処理を施して得られるエンベロープであってもよい。ここでは、エンベロープを用いる場合を例に示す。
図13は、エコー信号のエンベロープの差を用いた軟組織軟骨境界面検出処理のフローチャートである。図14は、エンベロープの差を用いた軟組織軟骨境界面検出の概念を説明するための波形図である。
ノルムを用いて類似度を評価する場合でも、注目領域ZT1、探索領域ZR1、および比較対象領域ZT2の設定方法は、相関係数を用いる場合と同じである。また、注目領域ZT1のエコーデータ群DzT1、および比較対象領域ZT2のエコーデータ群DzT2の取得方法も同じである。すなわち、図13に示すステップS501からステップS504は、図6に示したステップS401からステップS404と同じである。したがって、ステップS504までの処理の説明は省略する。
注目領域ZT1のエコーデータ群DzT1、および比較対象領域ZT2のエコーデータ群DzT2を取得すると、注目領域ZT1のエコーデータ群DzT1のエンベロープ(注目領域エンベロープ)と、比較対象領域ZT2のエコーデータ群DzT2のエンベロープ(比較対象領域エンベロープ)とを検出する。そして、注目領域エンベロープと比較対象領域エンベロープとの差を算出する(S505)。ここで算出されるエンベロープの差とは、注目領域エンベロープと比較対象領域エンベロープとの差の絶対値を深度位置毎に取得し、加算したものである。これは、注目領域ZT1のエコーデータと比較対象領域ZT2のエコーデータとに対する一次のノルムに相当する。
次に、算出されたエンベロープの差は、注目領域ZT1と比較対象領域ZT2との組合せに関連付けして記憶される(S506)。
注目領域ZT1のエコーデータ群DzT1と、比較対象領域ZT2のエコーデータ群DzT2とのエンベロープの差の記憶は、比較対象領域ZT2の位置を順次変更させながら、探索領域ZR1の全域に亘って行う。そして、比較対象領域ZT2毎にエンベロープの差を記憶する。
このような一つの注目領域ZT1に対するエンベロープの差の算出を、第1状態[T1]で取得した第1エコーデータ群SW[T1]の全域に対して行っていなければ(S507:No)、注目領域ZT1の位置を変化させながら、ステップS501からステップS506の処理を順次行う。全ての注目領域ZT1に対してエンベロープの差の算出を行うと、次の処理に移行する(S507:YES)。
次に、注目領域ZT1毎にエンベロープの差が最小となる比較対象領域ZT2を検出する(S508)。そして、エンベロープの差が最小となる注目領域ZT1と比較対象領域ZT2との組合せを記憶する。この処理は、全ての注目領域ZT1に対して実行される。
次に、このエンベロープの差が最小となる注目領域ZT1と比較対象領域ZT2とのプローブ100に対する相対位置が、変化しているかどうかを判定する。このプローブ100に対する相対位置の変化による軟組織903と軟骨901との判別は、上述の相関係数を用いる方法のフローのステップS409と同じであり、相対位置が変化しない領域を軟組織903と判別し、相対位置が変化する領域を軟骨901と判別する(S509)。
このようにエンベロープの差を用いても、軟組織903と軟骨901とを判別でき、軟骨表面を検出することができる。
また、上述の各方法では、プローブ100に対する各点の相対位置の違いから軟組織903と軟骨901を検出する例を示したが、軟骨下骨911を基準にして、軟組織903と軟骨901を検出することもできる。
図15は、軟骨下骨を基準にした軟組織軟骨境界面検出処理のフローチャートである。
軟骨下骨を基準にした場合でも、注目領域ZT1、探索領域ZR1、および比較対象領域ZT2の設定方法は、プローブ基準を用いる場合と同じである。また、注目領域ZT1のエコーデータ群DzT1、および比較対象領域ZT2のエコーデータ群DzT2の取得方法も同じである。
第1状態[T1]のエコーデータ群DzT1から、第1状態[T1]での軟骨下骨のエコーデータを検出する(S601)。第2状態[T2]のエコーデータ群DzT2から、第2状態[T2]での軟骨下骨のエコーデータを検出する(S602)。
軟骨下骨の検出方法としては、例えば、深度方向に振幅の低い範囲が所定距離だけ連続した後に、所定閾値以上の振幅を有する範囲が検出された場合に、当該所定閾値以上の振幅を有する範囲を軟骨下骨と判断する。
次に、軟骨下骨の領域内において、例えば、相関係数もしくノルム(以下では代表して相関係数の場合を示す。)を用いて第1状態[T1]と第2状態[T2]とで類似する領域を検出する。そして、第1状態[T1]から第2状態[T2]への軟骨下骨のエコーデータの移動ベクトル(移動方向、移動量)を検出する(S603)。
ここで、移動ベクトルとは、次のように定義することができる。図16は移動ベクトルの定義を示す図である。なお、図16では注目領域と比較対象領域を用いた場合を示す。移動ベクトルvmは、互いに最も類似すると判断された注目領域の代表点と比較対象領域の代表点の位置から定義される。移動ベクトルvmは、注目領域の代表点を始点として、比較対象領域の代表点を終点とするベクトルであり、移動方向と移動量とによって定義される。
具体的に、例えば、図16の例では、注目領域の代表点は、エコー信号SWT11上すなわち走査方向位置P1で、所定の深度位置に存在する。また、比較対象領域の代表点は、エコー信号SWT22上すなわち走査方向位置P2で、所定の深度位置に存在する。注目領域の代表点の深度位置と比較対象領域の代表点の深度位置は、同じである。
この場合、移動ベクトルvmは、走査方向を移動方向とし、走査位置P1,P2の間隔Δxを移動量とするベクトルとなる。
次に、上述の相関結果が高い組合せの注目領域ZT1と比較対象領域ZT2において、第1状態[T1]から第2状態[T2]への注目領域ZT1の移動ベクトル(移動方向、移動量)を検出する(S604)。
次に、軟骨下骨と同じ移動ベクトルの注目領域を軟骨と判別し、軟骨下骨と異なる移動ベクトルの注目領域を軟組織と判別する(S605)。
具体的には、次に示すように軟骨と軟組織を判別して、軟組織軟骨境界面を検出する。図17は、軟骨下骨を基準にした軟組織軟骨境界面検出の概念を説明するための波形図である。
例えば、治具等により膝の屈曲角を変化させ、軟骨下骨の位置を振動子の配置間隔分(Δx)だけ、走査方向に沿って変化させた場合は、図17に示すように、軟骨下骨の各位置の移動ベクトルは、走査方向に沿った移動量Δxのベクトルとなる。軟骨901は、軟骨下骨と繋がっているので、軟骨901の移動ベクトルも、走査方向に沿った移動量Δxのベクトルとなる。軟組織903は、プローブ100とともに、軟骨901の表面を移動するため、軟組織903の移動ベクトルは0となる。
このような概念を利用し、各位置での移動ベクトルを算出して、例えば、図18に示すような移動ベクトルの分布を取得する。図18は、移動ベクトルの分布状態を示す図である。図18に示すように、走査方向位置、深度方向位置毎に移動ベクトルが記憶される。
この分布の各位置の移動ベクトルから、軟骨下骨の移動ベクトルと同じ移動ベクトルの領域と、軟骨下骨と異なる移動ベクトルの領域とを区別する。軟骨下骨と同じ移動ベクトルとなる領域が軟骨901と判断され、軟骨下骨と異なる移動ベクトルとなる領域が軟組織903と判断される。そして、軟骨901と判断された領域と、軟組織903と判断された領域との境界を、軟組織軟骨境界面として検出する。
このように軟骨下骨の移動状態を基準にすることで、プローブ100の動きのばらつきに影響されることなく、軟組織と軟骨とを判別することができる。例えば、プローブ100を走査方向に移動させる際に、軟組織表面をプローブがある程度滑っても、軟骨下骨基準であるため、その影響を受けない。
なお、上述の説明では、軟骨表面検出のための各処理を複数の機能ブロックで実現する例を示した。しかしながら、上述の軟骨表面検出処理をプログラム化して記憶しておき、コンピュータで当該プログラムを読み出して実行するようにしてもよい。
また、上述の説明では、注目領域を第1状態[T1]のエコー信号群に対して設定し、比較対象領域を第2状態[T2]のエコー信号群に設定する例を示したが、注目領域を第2状態[T2]のエコー信号群に対して設定し、比較対象領域を第1状態[T1]のエコー信号群に設定するようにしてもよい。
また、上述の説明では、探索領域を設定する場合を示したが、探索領域を設定することなく、全てのエコー信号の領域に対して比較対象領域を設定することもできる。ただし、上述のように探索領域を設定することで、相関結果の算出やエンベロープ差の算出の範囲を、効果的に制限することができる。したがって、軟骨および軟組織の判別処理を高速化することができ、リソースを節約することもできる。
また、上述の説明では、被検知体である膝の軟組織903の表面にプローブ100を当接し、当該プローブ100を走査方向に移動させる例を示した。しかしながら、プローブ100を固定し、膝を治具等で屈曲させることで、プローブ100と軟組織903および軟骨901との相対位置関係を変化させてもよい。
また、上述の説明のプローブは、振動子を走査方向の一方向のみに沿って配列設置したものである。しかしながら、走査方向と、走査方向および深度方向に直交する方向との二次元領域において所定間隔をおいて振動子を配列するようにしてもよい。
また、振動子を1つにして、当該振動子を走査方向に移動させる構成であってもよい。図19は、振動子を移動させるメカニカルスキャンによる検出構成を示す図である。
メカニカルスキャン型のプローブ100Aは、振動子を有する送受波器を備える。送受波器は、走査軸に沿って移動可能に設置されている。送受波器は、走査軸に沿って移動する。送受波器の振動子は、走査方向に直交する方向に超音波信号を送信する。この送受波器を、走査方向に移動させながら、複数の走査位置で停止して超音波信号を送信し、そのエコー信号を受信することで、振動子を複数有するプローブ100と同じエコー信号を得ることができる。
また、上述の説明では、軟骨下骨の移動ベクトルと各位置の移動ベクトルとを比較して、軟骨下骨の移動ベクトルと一致するかどうかを基準に軟組織と軟骨を検出する例を示した。しかしながら、軟骨下骨を基準とすることなく、単に各点に移動ベクトルを算出して、移動ベクトルが変化する境界を軟組織と軟骨の境界面(軟骨表面)として検出してもよい。
また、上述の生データを用いる場合とエンベロープを用いる場合との選択と、相関係数を用いる場合とノルムを用いる場合との選択の組合せは、上述の例に限るものでなく、適宜組み合わせればよい。
また、上述の説明では、第1の状態で取得される第1エコーデータ群と第2の状態で取得される第2エコーデータ群とが走査方向に沿って部分的に重なる例を示したが、超音波エコー信号は所定の広がりを有するため、走査方向に限ることなく、第1の状態で取得される第1エコーデータ群と第2の状態で取得される第2エコーデータ群とが部分的に重なるように設定することもできる。
また、上述の説明では、軟組織軟骨境界面を検出する方法を示したが、プローブが超音波信号を送信した時刻からプローブが境界面のエコーデータを受信した時刻までの時間差を1/2した時間)に、音速を乗算することで、プローブの表面(プローブと皮膚の接触面から軟組織軟骨境界面までの距離(深度)を算出することができる。
10:軟組織軟骨境界面検出装置、
11:操作部、
12:送信制御部、
13:エコー信号受信部、
14:データ解析部、
100,100A:プローブ、
141:AD変換部、
142:記憶部、
143:判定部、
901:軟骨、
902:骨、
903:軟組織、
911:軟骨下骨
11:操作部、
12:送信制御部、
13:エコー信号受信部、
14:データ解析部、
100,100A:プローブ、
141:AD変換部、
142:記憶部、
143:判定部、
901:軟骨、
902:骨、
903:軟組織、
911:軟骨下骨
Claims (25)
- 軟組織と軟骨の境界面を検出する軟組織軟骨境界面検出方法であって、
第1の状態で被検知体の表面に当接され、超音波信号を前記被検知体内に送信し、該超音波信号のエコー信号を受信して第1のエコー信号を出力する第1のエコー信号送受信工程と、
前記第1の状態とは軟組織と軟骨との位置関係が異なる第2の状態で、前記被検知体の表面に当接され、超音波信号を前記被検知体内に送信し、該超音波信号のエコー信号を受信して第2のエコー信号を出力する第2のエコー信号送受信工程と、
前記第1のエコー信号と前記第2のエコー信号に基づいて、前記軟組織と前記軟骨の境界面を検出する境界面検出工程と、
を含むことを特徴とする軟組織軟骨境界面検出方法。 - 請求項1に記載の軟組織軟骨境界面検出方法であって、
前記境界面検出工程は、
前記第1のエコー信号と前記第2のエコー信号の最も波形が類似する類似領域を検出する類似領域検出工程と、
前記類似領域から前記境界面を特定する境界面特定工程と、
を含む軟組織軟骨境界面検出方法。 - 請求項2に記載の軟組織軟骨境界面検出方法であって、
前記類似領域検出工程は、前記第1のエコー信号の波形と前記第2のエコー信号の波形の相関係数に基づいて前記類似領域を検出する、
軟組織軟骨境界面検出方法。 - 請求項2に記載の軟組織軟骨境界面検出方法であって、
前記類似領域検出工程は、前記第1のエコー信号の波形と前記第2のエコー信号の波形から領域毎のノルムを算出し、当該ノルムに基づいて前記類似領域を検出する、
軟組織軟骨境界面検出方法。 - 請求項4に記載の軟組織軟骨境界面検出方法であって、
前記類似領域検出工程におけるノルムは、前記第1のエコー信号と前記第2のエコー信号の各深度位置における信号レベルの差の絶対値の総和に基づいて算出される、
軟組織軟骨境界面検出方法。 - 請求項4に記載の軟組織軟骨境界面検出方法であって、
前記類似領域検出工程におけるノルムは、前記第1のエコー信号と前記第2のエコー信号の各深度位置における信号レベルの差の二乗値の総和に基づいて算出される、
軟組織軟骨境界面検出方法。 - 請求項2乃至請求項6のいずれか1項に記載の軟組織軟骨境界面検出方法であって、
前記第1のエコー信号の波形と前記第2のエコー信号の波形は、サンプリングされたエコーデータを用いる、
軟組織軟骨境界面検出方法。 - 請求項2乃至請求項6のいずれか1項に記載の軟組織軟骨境界面検出方法であって、
前記第1のエコー信号の波形と前記第2のエコー信号の波形は、サンプリングされたエコーデータのエンベロープである、
軟組織軟骨境界面検出方法。 - 請求項2乃至請求項8のいずれか1項に記載の軟組織軟骨境界面検出方法であって、
前記境界面特定工程は、
前記超音波信号を送受信する位置に対する前記類似領域の位置変化が異なる2つの領域の境界を、前記軟組織と軟骨の境界面として検出する、
軟組織軟骨境界面検出方法。 - 請求項9に記載の軟組織軟骨境界面検出方法であって、
前記境界面特定工程は、
前記超音波信号を送受信する位置が前記第1のエコー信号の受信状態と前記第2のエコー信号の受信状態とで変化する変化態様と同じ変化態様の領域を軟組織と判断し、異なる変化態様の領域を軟骨と判断して、
軟組織と判断した領域と軟骨と判断した領域との境界を、前記軟組織と軟骨の境界面とする、
軟組織軟骨境界面検出方法。 - 請求項9に記載の軟組織軟骨境界面検出方法であって、
前記境界面特定工程は、
前記超音波信号を送受信する位置が前記第1のエコー信号の受信状態と前記第2のエコー信号の受信状態とで軟骨下骨の変化態様と同じ変化態様の領域を軟骨と判断し、異なる変化態様の領域を軟組織と判断して、
軟組織と判断した領域と軟骨と判断した領域との境界を、前記軟組織と軟骨の境界面とする、
軟組織軟骨境界面検出方法。 - 請求項9に記載の軟組織軟骨境界面検出方法であって、
前記境界面特定工程は、
前記第1のエコー信号の受信状態から前記第2のエコー信号の受信状態に遷移する時の各領域の前記類似領域の移動方向および移動量からなる移動ベクトルを検出し、
前記移動ベクトルの変化する境界を、前記軟組織と軟骨の境界面とする、
軟組織軟骨境界面検出方法。 - 請求項2乃至請求項12のいずれか1項に記載の軟骨表面検出方法であって、
前記類似領域検出工程は、
前記第1のエコー信号に注目領域を設定し、前記第2のエコー信号に比較対象領域を設定し、前記注目領域の前記第1のエコー信号に対して最も波形が類似する前記第2のエコー信号による前記比較対象領域を検出する、
軟組織軟骨境界面検出方法。 - 請求項13に記載の軟組織軟骨境界面検出方法であって、
前記類似領域検出工程は、
前記第2のエコー信号に対して、前記注目領域を基準にして該注目領域よりも広い範囲を探索領域として設定し、
該探索領域内に前記比較対象領域を設定する、
軟組織軟骨境界面検出方法。 - 請求項13または請求項14に記載の軟組織軟骨境界面検出方法であって、
前記注目領域は、複数のエコー信号に亘る領域で設定されている、
軟組織軟骨境界面検出方法。 - 請求項1乃至請求項15のいずれかに記載の軟組織軟骨境界面検出方法であって、
前記第1の状態と前記第2の状態で送受信する位置が異なる、
軟組織軟骨境界面検出方法。 - 請求項1乃至請求項16のいずれかに記載の軟組織軟骨境界面検出方法であって、
前記第1の状態と前記第2の状態で送受信される被検知体の状態が異なる、
軟組織軟骨境界面検出方法。 - 請求項1乃至請求項17のいずれかに記載の軟組織軟骨境界面検出方法であって、
第1のエコー信号と第2のエコー信号とは、第1の状態と第2の状態の走査領域の一部が重なるように設定されている、
軟組織軟骨境界面検出方法。 - 請求項18に記載の軟組織軟骨境界面検出方法であって、
第1のエコー信号と第2のエコー信号とは、第1の状態から第2の状態への走査方向において一部の領域が重なるように設定されている、
軟組織軟骨境界面検出方法。 - 軟組織と軟骨の境界面を検出する軟組織軟骨境界面検出装置であって、
第1の状態で被検知体の表面に当接され、超音波信号を前記被検知体内に送信し、該超音波信号のエコー信号を受信して第1のエコー信号を出力し、前記第1の状態とは軟組織と軟骨との位置関係が異なる第2の状態で、前記被検知体の表面に当接され、超音波信号を前記被検知体内に送信し、該超音波信号のエコー信号を受信して第2のエコー信号を出力する送受信部と、
前記第1のエコー信号と前記第2のエコー信号に基づいて、前記軟組織と前記軟骨の境界面を検出するデータ解析部と、
を備えることを特徴とする軟組織軟骨境界面検出装置。 - 請求項20に記載の軟組織軟骨境界面検出装置であって、
前記送受信部は、走査方向に沿って配列された複数の振動子を備える、
軟骨表面検出装置。 - 請求項20に記載の軟組織軟骨境界面検出装置であって、
前記送受信部は、前記走査方向と、該走査方向と前記超音波信号の送信方向に直交する方向とから規定される領域に二次元的に配列された複数の振動子を備える、
軟組織軟骨境界面検出装置。 - 請求項20に記載の軟組織軟骨境界面検出装置であって、
前記送受信部は、単一の振動子と、該振動子を走査方向に移動させる移動機構とを備える、
軟組織軟骨境界面検出装置。 - 請求項21乃至請求項23のいずれかに記載の軟組織軟骨境界面検出装置であって、
前記走査方向は、前記軟組織と前記軟骨の相対位置を変化させる方向である、
軟組織軟骨境界面検出装置。 - 軟組織と軟骨の境界面を検出する処理をコンピュータに実行させる軟組織軟骨境界面検出プログラムであって、
前記コンピュータは、
第1の状態で被検知体の表面に当接され、超音波信号を前記被検知体内に送信し、該超音波信号のエコー信号を受信して第1のエコー信号を出力する第1のエコー信号送受信処理と、
前記第1の状態とは軟組織と軟骨との位置関係が異なる第2の状態で、前記被検知体の表面に当接され、超音波信号を前記被検知体内に送信し、該超音波信号のエコー信号を受信して第2のエコー信号を出力する第2のエコー信号送受信処理と、
前記第1のエコー信号と前記第2のエコー信号に基づいて、前記軟組織と前記軟骨の境界面を検出する境界面検出処理と、
を実行することを特徴とする軟組織軟骨境界面検出プログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014536759A JP6190374B2 (ja) | 2012-09-19 | 2013-09-10 | 軟組織軟骨境界面検出方法、軟組織軟骨境界面検出装置、および軟組織軟骨境界面検出プログラム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-205214 | 2012-09-19 | ||
JP2012205214 | 2012-09-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014045924A1 true WO2014045924A1 (ja) | 2014-03-27 |
Family
ID=50341238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/074305 WO2014045924A1 (ja) | 2012-09-19 | 2013-09-10 | 軟組織軟骨境界面検出方法、軟組織軟骨境界面検出装置、および軟組織軟骨境界面検出プログラム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6190374B2 (ja) |
WO (1) | WO2014045924A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015053007A1 (ja) * | 2013-10-07 | 2015-04-16 | 古野電気株式会社 | 超音波診断装置、超音波診断方法、及び超音波診断プログラム |
CN106102591A (zh) * | 2014-03-12 | 2016-11-09 | 古野电气株式会社 | 超声波诊断装置、以及超声波诊断方法 |
WO2017110361A1 (ja) * | 2015-12-25 | 2017-06-29 | 古野電気株式会社 | 超音波解析装置、超音波解析方法、および超音波解析プログラム |
JPWO2017094397A1 (ja) * | 2015-12-04 | 2018-09-20 | 古野電気株式会社 | 超音波解析装置、超音波解析方法及び超音波解析プログラム |
JP7447637B2 (ja) | 2020-04-01 | 2024-03-12 | コニカミノルタ株式会社 | 超音波診断装置、超音波診断装置の制御方法、及び超音波診断装置の制御プログラム |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010000126A (ja) * | 2008-06-18 | 2010-01-07 | Aloka Co Ltd | 超音波診断装置 |
JP2010017530A (ja) * | 2008-06-13 | 2010-01-28 | Canon Inc | 超音波装置及びその制御方法 |
JP2010094422A (ja) * | 2008-10-20 | 2010-04-30 | National Institute Of Advanced Industrial Science & Technology | 組織境界判別装置、組織境界判別方法、組織境界判別プログラムおよび当該プログラムを記録した記録媒体 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5377166B2 (ja) * | 2009-09-01 | 2013-12-25 | 古野電気株式会社 | 超音波骨解析装置 |
-
2013
- 2013-09-10 JP JP2014536759A patent/JP6190374B2/ja active Active
- 2013-09-10 WO PCT/JP2013/074305 patent/WO2014045924A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010017530A (ja) * | 2008-06-13 | 2010-01-28 | Canon Inc | 超音波装置及びその制御方法 |
JP2010000126A (ja) * | 2008-06-18 | 2010-01-07 | Aloka Co Ltd | 超音波診断装置 |
JP2010094422A (ja) * | 2008-10-20 | 2010-04-30 | National Institute Of Advanced Industrial Science & Technology | 組織境界判別装置、組織境界判別方法、組織境界判別プログラムおよび当該プログラムを記録した記録媒体 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015053007A1 (ja) * | 2013-10-07 | 2015-04-16 | 古野電気株式会社 | 超音波診断装置、超音波診断方法、及び超音波診断プログラム |
JP6038338B2 (ja) * | 2013-10-07 | 2016-12-07 | 古野電気株式会社 | 超音波診断装置、超音波診断方法、及び超音波診断プログラム |
US11020088B2 (en) | 2013-10-07 | 2021-06-01 | Furuno Electric Co., Ltd. | Program, method and device for ultrasonic diagnosis |
CN106102591A (zh) * | 2014-03-12 | 2016-11-09 | 古野电气株式会社 | 超声波诊断装置、以及超声波诊断方法 |
US10568604B2 (en) | 2014-03-12 | 2020-02-25 | Furuno Electric Co., Ltd. | Method and device for ultrasonic diagnosis |
JPWO2017094397A1 (ja) * | 2015-12-04 | 2018-09-20 | 古野電気株式会社 | 超音波解析装置、超音波解析方法及び超音波解析プログラム |
WO2017110361A1 (ja) * | 2015-12-25 | 2017-06-29 | 古野電気株式会社 | 超音波解析装置、超音波解析方法、および超音波解析プログラム |
JPWO2017110361A1 (ja) * | 2015-12-25 | 2018-10-04 | 古野電気株式会社 | 超音波解析装置、超音波解析方法、および超音波解析プログラム |
JP7447637B2 (ja) | 2020-04-01 | 2024-03-12 | コニカミノルタ株式会社 | 超音波診断装置、超音波診断装置の制御方法、及び超音波診断装置の制御プログラム |
Also Published As
Publication number | Publication date |
---|---|
JP6190374B2 (ja) | 2017-08-30 |
JPWO2014045924A1 (ja) | 2016-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6266537B2 (ja) | 軟組織軟骨境界面検出方法、軟組織軟骨境界面検出装置 | |
KR101922522B1 (ko) | 전단파들을 사용하는 사운드 스피드 이미징 | |
KR102321918B1 (ko) | 의료용 초음파 영상의 전단파 검출 | |
CN103269639B (zh) | 利用质心估计剪切波速度 | |
JP6190374B2 (ja) | 軟組織軟骨境界面検出方法、軟組織軟骨境界面検出装置、および軟組織軟骨境界面検出プログラム | |
EP2759817B1 (en) | Ultrasonic holography imaging system and method | |
CN103505243A (zh) | 测量超声波的声吸收或衰减 | |
CN109717899A (zh) | 超声医学成像中根据剪切速率的组织粘弹性估计 | |
JP5692079B2 (ja) | 変位推定方法、変位推定装置 | |
JPWO2009118798A1 (ja) | 超音波診断装置 | |
JP6134323B2 (ja) | 厚み測定装置及び厚み測定方法 | |
CN111735526B (zh) | 超声弹性成像装置和用于弹性测量的剪切波波速测量方法 | |
KR20170115964A (ko) | 의료 진단 초음파 점탄성 이미징에서의 디프랙션 소스 보상 | |
JP6038338B2 (ja) | 超音波診断装置、超音波診断方法、及び超音波診断プログラム | |
CN108338808B (zh) | 使用相干的剪切速度成像 | |
JP5801956B2 (ja) | 伝播速度測定装置、伝播速度測定プログラム、及び伝播速度測定方法 | |
KR102206496B1 (ko) | 증가된 펄스 반복 인터벌을 갖는 초음파에 기반한 전단파 이미징 | |
JP4632517B2 (ja) | 送受信波の整相方法及び超音波診断装置 | |
US10492762B2 (en) | Ultrasound diagnostic device, ultrasound diagnostic method, and program | |
JP5234545B2 (ja) | 物質の硬さ分布表示システム及び物質の硬さ分布表示方法 | |
JP5854929B2 (ja) | 超音波診断装置、設定音速の信頼性判定方法およびプログラム | |
JP5925599B2 (ja) | 超音波診断装置、音速導出方法およびプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13839961 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014536759 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13839961 Country of ref document: EP Kind code of ref document: A1 |