WO2014045782A1 - Ultraviolet curable urethane acrylate composition, thin film molded body, optical film and method for manufacturing thin film molded body - Google Patents

Ultraviolet curable urethane acrylate composition, thin film molded body, optical film and method for manufacturing thin film molded body Download PDF

Info

Publication number
WO2014045782A1
WO2014045782A1 PCT/JP2013/072188 JP2013072188W WO2014045782A1 WO 2014045782 A1 WO2014045782 A1 WO 2014045782A1 JP 2013072188 W JP2013072188 W JP 2013072188W WO 2014045782 A1 WO2014045782 A1 WO 2014045782A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
urethane acrylate
ultraviolet curable
film
curable urethane
Prior art date
Application number
PCT/JP2013/072188
Other languages
French (fr)
Japanese (ja)
Inventor
大地 樋口
保 坂元
優子 瀧川
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2014513384A priority Critical patent/JP5633768B2/en
Priority to KR1020147036294A priority patent/KR101508706B1/en
Priority to CN201380046785.XA priority patent/CN104619735B/en
Publication of WO2014045782A1 publication Critical patent/WO2014045782A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/06Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyurethanes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/067Polyurethanes; Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/06Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyurethanes
    • C08F299/065Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyurethanes from polyurethanes with side or terminal unsaturations
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4269Lactones
    • C08G18/4277Caprolactone and/or substituted caprolactone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C08L75/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09D175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/12Polyurethanes from compounds containing nitrogen and active hydrogen, the nitrogen atom not being part of an isocyanate group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S525/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S525/92Polyurethane having terminal ethylenic unsaturation

Definitions

  • the present invention relates to an ultraviolet curable urethane acrylate composition, a thin film molded article, an optical film using the same, and a method for producing a thin film molded article.
  • the ultraviolet curable urethane acrylate composition of the present invention does not use a photopolymerization initiator at all unlike the conventional ultraviolet curable composition, and contains a specific organic solvent as a diluent solvent, Excellent ultraviolet curability can be expressed.
  • the thin film molded body for example, a film, a sheet, etc.
  • the thin film molded body of the present invention can exhibit excellent performance such as “self-repairing”, yellowing resistance, transparency, etc., in which a scratch once attached is quickly recovered.
  • the thin film molded body of the present invention does not contain any photopolymerization initiator, so that the degree of yellowing due to ultraviolet irradiation is extremely small, there is no yellowing over time, and the photopolymerization initiator Excellent effects such as no contamination of the contact product of the molded product due to unreacted components and decomposition products, such as optical members (for example, optical films, optical sheets, etc.), optical coating materials, It is useful in a wide range of fields that require advanced performance such as yellowing resistance, flexibility, and transparency, such as fibers, electronic electrical materials, food packages, cosmetic packages, and decorative films.
  • a touch panel has a multilayer structure, and a hard coat layer is provided on the outermost layer for the purpose of preventing damage (improving durability) and maintaining aesthetics.
  • the hard coat layer is hard to be scratched, but once it has been scratched, the scratch is not restored, and there is a tendency for the dirt to adhere to the scratch and to spread the contamination starting from the scratch. It was a cause of damage.
  • a resin coating is applied to the surface of an article such as a plastic member or a metal member.
  • a hard coating layer having a higher hardness is provided on the surface of a transparent plastic film such as a touch panel, and further measures for preventing scratches are taken.
  • the hard coating layer with high hardness as described above is hard and brittle, so that (1) cracks and scratches are likely to occur on long-term use, and (2) scratches on the surface are restored once. (3)
  • the base material to be coated is made of a soft material such as polycarbonate, the target level of high hardness does not appear and the durability on the outermost layer cannot be secured. There were problems such as.
  • thermosetting composition having a self-healing property having a function of recovering a scratch once attached to the surface naturally (hereinafter referred to as “self-healing property”) has been proposed.
  • self-healing property a thermosetting composition having self-healing properties having a function of recovering a scratch once attached to the surface naturally.
  • Such a conventional thermosetting composition having self-healing properties is flexible and elastic, and can be restored to its original state after a few seconds to several minutes even if it has a dent like a scratch. There was an advantage that good initial scratch resistance could be maintained over a period of time.
  • thermosetting compositions having self-healing properties are (1) extremely inferior in productivity because heating for 30 minutes or more is indispensable for curing during processing, (2) When the substrate is vulnerable to heat, there are problems such as difficulty in use by heating.
  • UV curable an ultraviolet curable (hereinafter also referred to as “UV curable”) composition having a self-repairing property has been proposed with respect to the thermosetting composition.
  • Adoption of the ultraviolet curable composition has advantages such as shortening the curing time and energy cost.
  • a photocurable composition having a self-healing property containing 0.1 to 10 parts by mass of a photopolymerization initiator with respect to 100 parts by mass of a reactive polymer having a (meth) acryloyl group represented by a specific general formula, Is known (for example, see Patent Document 1).
  • the photocurable composition described in Patent Document 1 introduces a (meth) acryloyl group into a rubber component through a urethane bond with a diisocyanate compound, and combines it with a photopolymerization initiator to impart photocurability. In addition to good self-healing properties, it is possible to form a coating film that imparts a coating film appearance excellent in processability and warpage resistance.
  • the photocurable composition described in Patent Document 1 is (1) self-healing property is still insufficient, and it is difficult to recover the original state of a dent such as a scratch in a short time. 2) Since it contains an essential photopolymerization initiator, the resulting cured product has a high yellowness at the initial stage of molding, and (3) it is further yellowed after heat and ultraviolet resistance tests, resulting in poor yellowing resistance. There was a problem such as that.
  • the ultraviolet curable urethane acrylate composition containing a photopolymerization initiator as in Patent Document 1 unreacted components and decomposition products of the photopolymerization initiator migrate to the surface of the coating film or molded product, and the thin film molded product.
  • laminating for example, a film, a sheet, etc.
  • an article in contact with the thin film molded body is contaminated, or the decomposed photopolymerization initiator is changed to a yellow substance to deteriorate the yellowness of the molded body. It was.
  • the yellowing phenomenon induced by such a photopolymerization initiator changes to a yellow substance when the decomposed photopolymerization initiator recombines and promotes yellowing of the cured product, resulting in high-grade transparency. It is considered to be a main cause of reducing the performance of optical members (for example, films, sheets, fibers, paints, etc.) used for required optical applications.
  • photopolymerization initiators having an aromatic skeleton are commonly used because the aromatic ring absorbs light energy and efficiently generates radicals. However, it becomes a quinoid structure due to the aromatic ring during recombination. , Has the disadvantage of forming a yellow chromophore.
  • the purpose of the present invention is that, unlike the prior art, an excellent ultraviolet curability can be expressed without containing a photopolymerization initiator, and an excellent self-repairing property, yellowing resistance, transparency, and appropriate flexibility are expressed.
  • An object of the present invention is to provide a possible ultraviolet curable urethane acrylate composition, a thin film molded article, an optical film using the composition, and a method for producing the thin film molded article.
  • the present inventors contain a urethane acrylate oligomer having a (meth) acryloyl group at the molecular terminal and an organic solvent having no aromatic skeleton as a diluting solvent.
  • the urethane acrylate oligomer has a (meth) acrylic equivalent in a specific range, and a thickness of 100 ⁇ m prepared by the ultraviolet curable urethane acrylate composition.
  • Tan ⁇ (loss factor) peak temperature measured by dynamic viscoelasticity analysis in accordance with JIS K 0129 using a specific film, so that excellent self-repairing property, yellowing resistance, transparency, and moderate To obtain an ultraviolet curable urethane acrylate composition capable of exhibiting excellent flexibility As a result, the present invention has been completed.
  • the present invention provides a urethane prepolymer (C) having an isocyanate group at the molecular end obtained by reacting a polyol (A) having no aromatic skeleton with a polyisocyanate (B) having no aromatic skeleton.
  • an ultraviolet curable urethane acrylate composition containing a urethane acrylate oligomer (E) having a (meth) acryloyl group at a molecular end obtained by addition reaction of a (meth) acrylic compound (D) having a hydroxyl group.
  • an organic solvent having at least one aromatic skeleton selected from the group consisting of ketone solvents, amide solvents, and alkyl halide solvents.
  • It is an ultraviolet curable urethane acrylate composition containing no initiator, and is a (meta) of the urethane acrylate oligomer (E).
  • the tan ⁇ peak temperature measured by dynamic viscoelasticity analysis in accordance with JIS K 0129 using a 100 ⁇ m thick film having an acrylic equivalent in the range of 450 to 1100 g / equivalent and made from the ultraviolet curable urethane acrylate composition.
  • the present invention relates to an ultraviolet curable urethane acrylate composition having a temperature range of ⁇ 8 to 45 ° C.
  • the present invention relates to a thin film molded article having a cured coating film of the ultraviolet curable urethane acrylate composition on a substrate.
  • the present invention relates to a thin film molded article obtained by applying the ultraviolet curable urethane acrylate composition onto a substrate and curing it, and having a thickness in the range of 10 to 800 ⁇ m.
  • the present invention also provides an optical film having a cured coating film of the ultraviolet curable urethane acrylate composition, wherein the cured film has a total light transmission measured in accordance with JIS K7361-1 in a film thickness of 50 to 200 ⁇ m.
  • the present invention relates to an optical film characterized in that the rate is 92% or more.
  • the present invention is characterized in that the ultraviolet curable urethane acrylate composition is applied onto a substrate, irradiated with ultraviolet rays, and then the organic solvent (F) is volatilized to form a cured coating film.
  • the present invention relates to a method for manufacturing a thin film molded body.
  • the ultraviolet curable urethane acrylate composition of the present invention can exhibit excellent photocurability without containing any photopolymerization initiator, and has excellent self-repairing property and yellowing resistance. Therefore, for example, optical members (for example, optical films, optical sheets, etc.), optical coating materials, fibers, electronic electrical materials, food packaging materials, cosmetic packages, decorations. Useful for a wide range of applications such as film.
  • the ultraviolet curable urethane acrylate composition of the present invention does not contain any photopolymerization initiator.
  • the ultraviolet curable urethane acrylate composition of the present invention has an isocyanate group at a molecular terminal obtained by reacting a polyol (A) having no aromatic skeleton with a polyisocyanate (B) having no aromatic skeleton.
  • a urethane acrylate oligomer (E) having a (meth) acryloyl group at the molecular end obtained by addition reaction of a (meth) acrylic compound (D) having a hydroxyl group with respect to the urethane prepolymer (C), and a specific one described later Essentially contains an organic solvent (F).
  • the ultraviolet curable urethane acrylate composition of the present invention is completely different from an ultraviolet curable composition containing a conventional photopolymerization initiator, and has no aromatic skeleton even if it does not contain any photopolymerization initiator.
  • an ultraviolet curing reaction can be carried out. It is possible to proceed normally and quickly.
  • the UV curable urethane acrylate composition of the present invention is completely different from the UV curable composition using a conventional photopolymerization initiator, and has excellent self-healing properties, yellowing resistance, transparency, and moderate flexibility. Sex can be expressed.
  • (A) Polyol having no aromatic skeleton The above (A) to (F) constituting the ultraviolet curable urethane acrylate composition of the present invention will be described in detail below.
  • Examples of the polyol (A) having no aromatic skeleton used in the present invention include aliphatic polyols and alicyclic polyols, and examples thereof include polyester polyols, polyether polyols, polycarbonate polyols, and low molecular weight glycols.
  • the polyester polyol is usually produced from dicarboxylic acid and diol as raw materials.
  • the dicarboxylic acid used for the production of the polyester polyol is a dicarboxylic acid having no aromatic skeleton, such as succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, maleic anhydride, fumaric acid, 1 1,3-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid and the like. These may be used alone or in combination of two or more.
  • dicarboxylic acid derivatives thereof can also be used, and examples thereof include lower alkyl esters such as methyl ester, acid anhydrides, acid halides, and the like.
  • the diol used in the production of the polyester polyol is a diol having no aromatic skeleton, such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1, 4-butanediol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, trimethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, 3-methyl-1 , 5-pentanediol, 2-butyl-2-ethyl-1,3-propanediol, aliphatic diol such as 2-methyl-1,3-propanediol, or 1,4-cyclohexanediol, 1,4-cyclohexane Dimethanol, hydrogen An alicyclic diol such as pressurized bisphenol A and the like.
  • a trifunctional or higher functional hydroxyl group-containing compound such as glycerin, trimethylol ethane, trimethylol propane, sorbitol, sucrose, aconite sugar, etc., as long as the object of the present invention is not impaired together with the diol. May be used in combination.
  • polyester polyol obtained by ring-opening addition polymerization of a lactone (eg, ⁇ -caprolactone, ⁇ -butyrolactone, etc.) can also be used.
  • a lactone eg, ⁇ -caprolactone, ⁇ -butyrolactone, etc.
  • the number average molecular weight (hereinafter also referred to as “Mn”) of the polyester polyol is determined when the urethane prepolymer (C) having an isocyanate group at the molecular terminal (hereinafter referred to as “isocyanate group-terminated urethane prepolymer (C)”) is used.
  • the target melt viscosity is desirably set in consideration of the above, preferably in the range of 300 to 5000, more preferably in the range of 500 to 3500.
  • the reaction can be controlled normally, and a urethane prepolymer having an appropriate melt viscosity can be obtained. Can do.
  • polyester polyol examples include polyester diols and polyamide polyester diols obtained by using dicarboxylic acids, diols, diamines and the like other than the above.
  • polyether polyol examples include polyethylene glycol (PEG), polypropylene glycol (PPG), polyethylene propylene glycol (PEPG), polytetramethylene glycol (PTMG), glycerin, trimethylolpropane, pentaerythritol, sorbitol and the like.
  • examples thereof include poly (oxyalkylene) glycols obtained by addition polymerization of alkylene oxides such as ethylene oxide, propylene oxide, and butylene oxide using a compound having at least three hydroxyl groups as a starting material.
  • the polyether polyol may have any structure of linear, branched and cyclic.
  • Mn of the polyether polyol is preferably in the range of 500 to 3500, more preferably in the range of 600 to 3000, and still more preferably in the range of 650 to 2000. If the Mn of the polyether polyol is within such a range, an abnormal viscosity increase of the isocyanate group-terminated urethane prepolymer (C) does not occur, and a urethane prepolymer having an appropriate melt viscosity can be obtained.
  • polycarbonate polyol for example, a polyol obtained by an esterification reaction of carbonic acid and an aliphatic polyol can be used.
  • diols such as 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, polyethylene glycol, polypropylene glycol or polytetramethylene glycol (PTMG), and dimethyl carbonate And reaction products with phosgene and the like. These may be used alone or in combination of two or more.
  • Examples of the low molecular weight glycol include ethylene glycol (EG), 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and 1,5-pentane.
  • EG ethylene glycol
  • 1,2-propanediol 1,3-propanediol
  • 1,3-butanediol 1,4-butanediol
  • 1,5-pentane 1,5-pentane.
  • the low molecular weight glycol may have a linear, branched, or cyclic structure.
  • the molecular weight of the low molecular weight glycol is preferably in the range of 62 to 300, more preferably in the range of 62 to 200.
  • the molecular weight of the low molecular weight glycol is within such a range, when used as a polyol (A) having no aromatic skeleton, the reactivity can be controlled more easily and the moldability (yield, molding unevenness) can be controlled. ) Is preferable.
  • polyol (A) having no aromatic skeleton for example, acrylic polyol, polyolefin polyol, castor oil-based polyol, and the like can be used.
  • Polyamines can also be used in combination.
  • examples of the polyamine that can be used include ethylenediamine, isophoronediamine, 4,4'-dicyclohexylmethanediamine, diaminocyclohexane, methyldiaminocyclohexane, piperazine, norbornenediamine, and the like.
  • polyisocyanate in the present invention refers to a compound having two or more isocyanate groups (hereinafter also referred to as “NCO groups”) in the molecule.
  • polyisocyanate (B) having no aromatic skeleton any of known aliphatic polyisocyanates and alicyclic polyisocyanates can be used. These may be used alone or in combination of two or more.
  • aliphatic polyisocyanate examples include hexamethylene diisocyanate (HDI), dimer acid diisocyanate, and lysine diisocyanate. Although it does not specifically limit in a commercial item, For example, all are the Duranate TSA-100, TSS-100, TSE-100, TSR-100, THA-100, D101, A201H, TKA-100 etc. by Asahi Kasei Corporation. It is done.
  • alicyclic polyisocyanate examples include isophorone diisocyanate (IPDI), hydrogenated diphenylmethane diisocyanate (H 12 MDI), hydrogenated xylylene diisocyanate, cyclohexane diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, norbornene diisocyanate. Etc.
  • polyisocyanates (B ′) having an aromatic skeleton such as diphenylmethane diisocyanate (MDI), tolylene diisocyanate (TDI), tetramethylxylylene diisocyanate, etc. in the presence of a photopolymerization initiator as in the past.
  • aromatic polyisocyanate when the isocyanate group-terminated urethane prepolymer is produced, the absorbance of the aromatic structure possessed by the aromatic polyisocyanate becomes too high, and the curing reaction caused by ultraviolet irradiation. Does not proceed sufficiently, and the aromatic polyisocyanate itself turns yellow during ultraviolet irradiation. For this reason, it is very difficult to obtain an ultraviolet curable urethane acrylate composition suitable for applications such as optical members (eg, films, sheets, etc.), fibers, paints, packaging materials, etc. that require particularly high-quality transparency. It was.
  • the present invention does not use an aromatic polyisocyanate, uses an aliphatic polyisocyanate or an alicyclic polyisocyanate as a polyisocyanate (B) having no aromatic skeleton, and has an aromatic skeleton as a diluent solvent.
  • a polyisocyanate B having no aromatic skeleton
  • an aromatic skeleton as a diluent solvent.
  • F essentially no specific organic solvent
  • the ultraviolet curing reaction can proceed without any trouble without yellowing during ultraviolet irradiation, and the resulting composition has excellent yellowing resistance. Therefore, it does not change color for a long time.
  • the isocyanate group-terminated urethane prepolymer (C) reacts according to a known method using the polyol (A) having no aromatic skeleton and the polyisocyanate (B) having no aromatic skeleton as essential.
  • the reaction method and reaction conditions are not particularly limited.
  • the isocyanate group (hereinafter referred to as “NCO group”) of the polyisocyanate (B) is also referred to as a hydroxyl group (hereinafter referred to as “OH group”) of the polyol (A). ) Can be reacted by a known method with an excess amount in an equivalent ratio.
  • NCO equivalent the isocyanate equivalent of the polyisocyanate (B)
  • OH equivalent the hydroxyl equivalent of the polyol (A).
  • Ie, [NCO / OH equivalent ratio] may be set in consideration of target physical properties, product quality, reaction behavior, and the like, and preferably 1.5 / 1.0 to 10.0 / A range of 1.0 equivalent ratio, more preferably a range of 2.0 / 1.0 to 5.0 / 1.0 equivalent ratio.
  • the method for synthesizing the isocyanate group-terminated urethane prepolymer (C) is not particularly limited.
  • [Method 1] The polyol (A) from which water has been removed is dropped into the polyisocyanate (B) charged in the reaction vessel.
  • the polyol (A) is charged by an appropriate means such as splitting or batch, and the reaction is carried out until the hydroxyl group of the polyol (A) substantially disappears, or [Method 2] to the polyol (A) from which the water charged in the reaction vessel has been removed.
  • the polyisocyanate (B) is charged by an appropriate means such as dropping, splitting, or batch, and reacted until the hydroxyl group of the polyol (A) is substantially eliminated.
  • the production of the isocyanate group-terminated urethane prepolymer (C) is usually carried out in the absence of a solvent, but may be carried out by reacting in a solvent.
  • a solvent When making it react in a solvent, what is necessary is just to use the solvent which does not inhibit reaction, and the kind is not specifically limited. It is desirable to remove the solvent used in the reaction by an appropriate method such as heating under reduced pressure or distilling off the thin film during or after the reaction.
  • the reaction conditions (temperature, time, pressure, etc.) of the isocyanate group-terminated urethane prepolymer (C) may be set within a range that can be normally controlled in consideration of reaction behavior (safety, stability), product quality, etc. There is no particular limitation. Usually, the reaction is preferably performed at a reaction temperature of 50 to 90 ° C. and a reaction time of 2 to 24 hours.
  • the pressure may be normal pressure, pressurization, or reduced pressure.
  • the reaction method can be selected from known reaction methods such as batch, semi-continuous, and continuous, and is not particularly limited.
  • a urethanization catalyst can be used as necessary.
  • the said catalyst can be suitably added in the arbitrary steps of a raw material preparation process and a reaction process.
  • the addition method of a catalyst is not specifically limited, such as lump, division
  • urethanization catalyst known catalysts can be used, for example, nitrogen-containing compounds such as triethylamine, tributylamine, benzyldibutylamine, triethylenediamine, N-methylmorpholine; or titanium tetrabutoxide, dibutyltin oxide, dibutyltin dilaurate, Organometallic compounds such as tin 2-ethylcaproate, zinc naphthenate, cobalt naphthenate, zinc 2-ethylcaproate, molybdenum glycolate, potassium acetate, zinc stearate, tin octylate, dibutyltin dilaurate; or iron chloride, Examples include inorganic compounds such as zinc chloride.
  • the reaction is preferably carried out in an inert gas atmosphere such as nitrogen or argon, but it may be carried out in a dry air atmosphere or in a condition not containing moisture such as sealed conditions.
  • an inert gas atmosphere such as nitrogen or argon
  • the isocyanate equivalent (hereinafter also referred to as “NCO equivalent”) of the isocyanate group-terminated urethane prepolymer (C) is preferably in the range of 100 to 10,000, more preferably in the range of 200 to 1,000. If the NCO equivalent of (C) is within such a range, an abnormal viscosity increase does not occur and a urethane prepolymer excellent in workability can be obtained.
  • the “isocyanate equivalent” (unit: g / eq, ie g / equivalent) in the present invention is a value measured according to JIS K 7301 described later.
  • a part or all of the isocyanate groups in the isocyanate group-terminated urethane prepolymer (C) is subjected to an addition reaction with the (meth) acrylic compound (D) having a hydroxyl group, and a (meth) acryloyl group is present at the molecular end.
  • the urethane acrylate oligomer (E) having
  • Examples of the (meth) acrylic compound (D) having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) ) Acrylate, pentaerythritol triacrylate, etc.
  • 2-hydroxyethyl acrylate (2HEA) 4 is excellent in that it is excellent in rapid curability by ultraviolet irradiation and particularly improves mechanical strength.
  • -Hydroxybutyl acrylate (4HBA) is preferred. These may be used alone or in combination of two or more.
  • urethane acrylate oligomer (E) Urethane acrylate oligomer having a (meth) acryloyl group at the molecular end
  • a urethane acrylate oligomer (E) having a (meth) acryloyl group at the molecular end used in the present invention hereinafter referred to as “urethane acrylate oligomer (E)”.
  • the urethane acrylate oligomer (E) is a (meth) acrylic compound (D) having a hydroxyl group, preferably in the range of 0.5 to 300 parts by mass with respect to 100 parts by mass of the isocyanate group-terminated urethane prepolymer (C). More preferably, in the range of 1.0 to 100 parts by mass, the total number of isocyanate groups in the isocyanate group-terminated urethane prepolymer (C) is preferably in the range of 5 to 100%, more preferably 10 to 100%. The range is reacted with the (meth) acrylic compound (D) having a hydroxyl group.
  • the isocyanate group of the isocyanate group-terminated urethane prepolymer (C) is allowed to react with the (meth) acrylic compound (D) having the hydroxyl group within such a range, excellent curability and retention after coating on the substrate are achieved. Performances such as moldability, mechanical strength, durability, and substrate adhesion can be expressed.
  • the urethane acrylate oligomer (E) has a (meth) acrylic equivalent in the range of 450 to 1100 g / equivalent (hereinafter abbreviated as a unit), preferably in the range of 500 to 900, more preferably in the range of 500 to 750. It is a range. If the (meth) acrylic equivalent of (E) is within such a range, both excellent self-repairing property and good ultraviolet curability can be exhibited.
  • the (meth) acrylic equivalent of the urethane acrylate oligomer (E) is less than 450, the hardness of the resulting thin film molded article becomes too high, and there is a possibility that self-repairing property will not be exhibited due to insufficient elasticity. is there.
  • the (meth) acrylic equivalent of (E) exceeds 1100, the curing reaction due to ultraviolet irradiation tends to be insufficient, and stickiness may remain on the surface of the thin film molded article, or self-repairability may not be exhibited. There is.
  • the (meth) acryl equivalent of the urethane acrylate oligomer (E) is a molecular weight per mole of (meth) acryloyl groups, and in the composition, (meth) acryloyl group concentration (mol / g) It is a value represented by the reciprocal of.
  • the melt viscosity of the urethane acrylate oligomer (E) measured at 50 ° C. according to JIS Z 8803 is preferably in the range of 500 to 200,000 mPa ⁇ s, more preferably in the range of 500 to 100,000. If the melt viscosity at 50 ° C. of (E) is within such a range, it is preferable because workability and productivity are improved, the amount of solvent used can be reduced, and the environmental load can be reduced.
  • the urethane prepolymer which has an isocyanate group in the unreacted molecular terminal which was not addition-reacted with the (meth) acrylic compound (D) which has the said hydroxyl group, and the molecular terminal which is a product of addition reaction A mixture with the urethane acrylate oligomer (E) having a (meth) acryloyl group may be used.
  • the isocyanate group-terminated urethane prepolymer (C) and the (meth) acrylic compound (D) having a hydroxyl group are subjected to a urethanation reaction, there may be no catalyst or the presence of a urethanization catalyst, and there is no particular limitation.
  • the urethanization catalyst When using the urethanization catalyst, it can be added as appropriate at any stage in the initial stage or midway of the urethanization reaction.
  • urethanization catalyst known catalysts can be used.
  • nitrogen-containing compounds such as triethylamine, triethylenediamine, N-methylmorpholine, or organic metals such as potassium acetate, zinc stearate, stannous octylate, etc.
  • organic metals such as potassium acetate, zinc stearate, stannous octylate, etc.
  • salts and organometallic compounds such as dioctyltin dilaurate and dibutyltin dilaurate.
  • the amount of the urethanization catalyst used is not particularly limited as long as it does not adversely affect the safety during the reaction, the stability of the intermediate or product, the quality, etc.
  • the urethanization reaction is preferably carried out until the isocyanate equivalent (unit: g / eq, ie g / equivalent) becomes substantially constant.
  • a known catalyst deactivator may be added to deactivate or suppress the activity of the urethanization catalyst, thereby stabilizing the reaction surface, storage surface, quality surface, etc. Good.
  • an ultraviolet curable urethane acrylate composition using a conventional photopolymerization initiator can be used without using any photopolymerization initiator.
  • excellent ultraviolet curability can be imparted, non-yellowing when irradiated with ultraviolet light, and excellent effects such as hardly causing yellowing over time can be exhibited.
  • the organic solvent (F) having no aromatic skeleton used in the present invention is at least one selected from the group consisting of ketone solvents, amide solvents, and alkyl halide solvents.
  • ketone solvents methyl ethyl ketone, acetone, methyl isobutyl ketone, cyclohexanone, diisobutyl ketone, and isophorone are preferable because they can exhibit more excellent effects such as ultraviolet curability and yellowing resistance.
  • amide solvent examples include aliphatic amide solvents such as dimethylformamide, N, N-dimethylacetamide, alkoxy-N-isopropyl-propionamide, and hydroxyalkylamide, or N-methyl-2-pyrrolidone, N- Examples thereof include alicyclic amide solvents such as ethyl-pyrrolidone.
  • dimethylformamide is preferable because it can exhibit more excellent effects such as ultraviolet curability and yellowing resistance.
  • the halogenated alkyl-based solvent is an organic solvent such as fluorine-based, chlorine-based, bromine-based, and iodine-based solvents, and among them, it is possible to express more excellent effects such as UV curability and yellowing resistance. Chlorinated organic solvents are preferred.
  • chlorinated organic solvent examples include methylene chloride, chloroform, trichloroethylene, tetrachloroethylene, carbon tetrachloride, 1,2-dichloroethane, 1,1,1-trichloroethane, and preferably methylene chloride and chloroform.
  • ketone solvents are more preferable because they act more effectively by improving ultraviolet curability and yellowing resistance.
  • the ultraviolet curable urethane acrylate composition of the present invention is obtained by mixing the urethane acrylate oligomer (E) and the organic solvent (F) having no aromatic skeleton, and the content of the organic solvent (F). Is in the range of 0.2 to 80% by weight.
  • the content rate of the organic solvent (F) in the ultraviolet curable urethane acrylate composition of the present invention is within such a range, the ultraviolet curable urethane acrylate composition can be efficiently and normally cured at the time of ultraviolet irradiation. Thus, a flat and beautiful coating can be achieved without causing uneven curing.
  • photopolymerization initiators having an aromatic structure for example, 1-hydroxycyclohexyl phenyl ketone
  • the decomposed photopolymerization initiator is recombined. At that time, it is known that the quinoid structure has a high yellowness.
  • no photopolymerization initiator is used, and by using an organic solvent (F) having no aromatic skeleton, an ultraviolet curing reaction is allowed to proceed as in the case of using the photopolymerization initiator.
  • an organic solvent (F) having no aromatic skeleton an ultraviolet curing reaction is allowed to proceed as in the case of using the photopolymerization initiator.
  • a quinoid structure is not formed, so that the cured product is not yellowed, is non-yellowing and has excellent transparency. It is estimated that a coating film etc. can be obtained.
  • the ultraviolet curable urethane acrylate composition of the present invention is a product of an addition reaction and a urethane prepolymer having an isocyanate group at an unreacted molecular terminal that has not undergone an addition reaction with the (meth) acrylic compound (D) having a hydroxyl group.
  • the reactivity having a functional group without an aromatic skeleton as a curing agent at any stage of the production process A compound can be blended.
  • curing agent examples include aliphatic polyols, alicyclic polyols, aliphatic polyamines, and alicyclic polyamines.
  • the equivalent ratio of the hydroxyl group of the polyol used as the curing agent to the isocyanate group in the ultraviolet curable urethane acrylate composition is preferably in the range of 0.7 to 20, more The range is preferably from 0.7 to 10, more preferably from 0.9 to 5.0, and most preferably from 0.9 to 1.1. If the [NCO / OH equivalent ratio] is within such a range, the curing reaction can be efficiently and satisfactorily advanced.
  • an acrylic monomer having no aromatic skeleton can be used in the ultraviolet curable urethane acrylate composition of the present invention within a range not departing from the object of the present invention.
  • the acrylic monomer include (meth) acrylic acid; methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, and sec-butyl (meth) acrylate.
  • various additives can be used in the ultraviolet curable urethane acrylate composition of the present invention at any stage of the production process within a range not departing from the object of the present invention.
  • additives examples include foam stabilizers, antioxidants, defoamers, abrasive grains, fillers, pigments, dyes, colorants, thickeners, surfactants, flame retardants, plasticizers, lubricants, charging agents.
  • agents such as an inhibitor, a heat stabilizer, a tackifier, a curing catalyst, a stabilizer, a silane coupling agent, and a wax can be used.
  • thermoplastic resins, thermosetting resins, and the like can be appropriately selected and used as the blending resin within a range not impairing the object of the present invention.
  • the said additive is only an example, As long as the objective of this invention is not inhibited, the kind and usage-amount are not specifically limited.
  • tackifier examples include rosin resins, rosin ester resins, hydrogenated rosin ester resins, terpene resins, terpene phenol resins, hydrogenated terpene resins, and C 5 aliphatics as petroleum resins. Resins, C 9 aromatic resins, C 5 and C 9 copolymer resins, and the like can be used.
  • plasticizer examples include dibutyl phthalate, dioctyl phthalate, dicyclohexyl phthalate, diisooctyl phthalate, diisodecyl phthalate, dibenzyl phthalate, butyl benzyl phthalate, trioctyl phosphate, epoxy plasticizer, toluene-sulfoamide, chloroparaffin, adipine Acid esters, castor oil, and the like can be used. Examples include methyl acid phosphate (AP-1) and acrylic surface conditioner (BYK-361N).
  • hindered phenol compounds for example, hindered phenol compounds, benzotriazole compounds, hindered amine compounds and the like can be used.
  • filler for example, silicic acid derivatives, talc, metal powder, calcium carbonate, clay, carbon black and the like can be used.
  • the ultraviolet curable urethane acrylate composition of the present invention does not use a photopolymerization initiator at all, and can exhibit excellent ultraviolet curability by containing a specific organic solvent as a diluent solvent.
  • the ultraviolet curable urethane acrylate composition of the present invention is cured by ultraviolet irradiation, for example, a mercury lamp (low pressure, high pressure, ultrahigh pressure, etc.), hydrogen lamp, deuterium lamp, halogen lamp, xenon lamp, carbon arc lamp.
  • a mercury lamp low pressure, high pressure, ultrahigh pressure, etc.
  • hydrogen lamp deuterium lamp
  • halogen lamp xenon lamp
  • carbon arc lamp a mercury lamp (low pressure, high pressure, ultrahigh pressure, etc.), hydrogen lamp, deuterium lamp, halogen lamp, xenon lamp, carbon arc lamp.
  • Various light sources such as a fluorescent lamp and a He—Cd laser can be used, and among them, a high-pressure mercury lamp is preferable.
  • the tan ⁇ peak temperature (loss coefficient peak temperature) measured by dynamic viscoelasticity analysis in accordance with JIS K 0129 using a film prepared according to the method described later using the ultraviolet curable urethane acrylate composition of the present invention is ⁇
  • the range is from 8 to 45 ° C, preferably from -5 to 40 ° C, more preferably from 0 to 35 ° C. If the tan ⁇ peak temperature of the film is within such a range, it is possible to express a function of quickly recovering a scratch once attached and returning it to its original state, that is, excellent self-repairability.
  • the tan ⁇ peak temperature of the film exceeds 45 ° C.
  • the thin film molded article has poor elasticity, and it may take a long time to recover the scratch, or the scratch once attached may not be sufficiently recovered.
  • the tan ⁇ peak temperature of the film is less than ⁇ 8 ° C., the strength of the cured product is insufficient, so that the self-repairing property is insufficient, or the surface of the thin film molded article tends to become sticky. There is a possibility that it cannot be used in contact with the surface.
  • the thin film molded article of the present invention has a cured coating film of the ultraviolet curable urethane acrylate composition on a substrate.
  • the thin film molded body of the present invention can be obtained by coating the ultraviolet curable urethane acrylate composition on a substrate to form an outermost layer having self-healing properties, and then curing the outermost layer with ultraviolet rays. .
  • the outermost layer can exhibit excellent self-repairing properties, transparency, yellowing resistance, viscoelasticity and other performances.
  • the ultraviolet curable urethane acrylate composition does not contain any photopolymerization initiator, it can exhibit excellent ultraviolet curability by ultraviolet irradiation, and the coating film or cured product obtained can be yellowed over time. Since there is no contamination to contact objects and it has excellent performance such as coating property, moldability, and transparency, for example, in addition to optical members (for example, films and sheets), fibers, coating materials, electronic electrical materials It is useful for a wide range of applications such as food packaging, cosmetic packaging, and decorative films.
  • the thickness of the cured coating film is preferably in the range of 10 to 800 ⁇ m.
  • a member having a thickness of 200 ⁇ m or less is defined as a “film” and a member having a thickness exceeding 200 ⁇ m is defined as a “sheet” in accordance with a standard generally called in Japan.
  • Examples of the thin film molded body include self-repairing films, self-repairing paints, light guide films (light guide films), optical films, surface protective films, light guide sheets, and light guide fibers.
  • the optical film of the present invention is a film having a cured coating film of the ultraviolet curable urethane acrylate composition, and the thickness of the cured coating film is preferably in the range of 10 to 200 ⁇ m, more preferably 50 to
  • the total light transmittance measured in accordance with JIS K7361-1 is 92.0% or more in the range of 200 ⁇ m. As long as the film thickness and the total light transmittance are within the range, excellent light transmittance can be exhibited.
  • a light guide film for a flat display panel
  • an antireflection film antiglare film
  • alignment film polarizing film
  • polarizing layer protective film retardation film
  • viewing angle improving film wide view film
  • brightness improving film electromagnetic shielding film
  • electromagnetic shielding film light shielding film, specific frequency
  • optical materials such as a selective blocking film (transparent radio wave blocking film, infrared blocking film, ultraviolet blocking film), optical low pass filter (OLPF) film, lens filter and the like.
  • the ultraviolet curable urethane acrylate composition of the present invention is applied onto a release substrate, and after irradiation with ultraviolet rays and curing, it does not have the aromatic skeleton.
  • the organic solvent (F) is volatilized to form a cured coating film, preferably in the range of 10 to 1000 ⁇ m, more preferably in the range of 10 to 800 ⁇ m, still more preferably in the range of 50 to 800 ⁇ m, most preferably in the range of 10 to 200 ⁇ m. Examples thereof include a method for obtaining a thin-film molded body (for example, a film, a sheet, etc.) having a small thickness.
  • Examples of the substrate include metals (plates, foils, etc.), plastics (plates, sheets, films, etc.), papers (release papers, etc.), glass, ceramics, wood plates (decorative plates, etc.), ceramics, cloths, and the like. There is no particular limitation.
  • the ultraviolet curable urethane acrylate composition of the present invention is a mixture of the isocyanate group-terminated urethane prepolymer (C) and the urethane acrylate oligomer (E) having a (meth) acryloyl group, as a curing agent in advance
  • the organic solvent (F) can be volatilized by blending a reactive compound having a functional group having no aromatic skeleton and heating and curing in a range of 80 to 140 ° C., for example.
  • Step 1 Preparation of UV-curable urethane acrylate composition
  • a reaction vessel is charged with a polyol (A) having no molten aromatic skeleton, and stirring is started.
  • a predetermined amount of polyisocyanate (B) having no aromatic skeleton was charged while paying attention to heat generation, the internal temperature was raised to a predetermined temperature, and the mixture was stirred at the temperature for a predetermined time to obtain an isocyanate group-terminated urethane prepolymer. (C) is obtained.
  • a predetermined amount of a polymerization inhibitor and a (meth) acrylic compound (D) having a hydroxyl group are added and the reaction is continued for a predetermined time, and then the target urethane acrylate oligomer (E) is obtained.
  • the organic solvent (F) which does not have an aromatic skeleton is added as a dilution solvent, and melt viscosity is adjusted, and the ultraviolet curable urethane acrylate composition of this invention is obtained.
  • Step 2 Manufacture of Thin Film Molded Object
  • the target thin film molded body is formed on the polyethylene terephthalate (PET) film subjected to the mold release treatment by the knife coater from the ultraviolet curable urethane acrylate composition obtained in [Step 1].
  • PET polyethylene terephthalate
  • the film is a film, it is applied with a thickness of 200 ⁇ m or less, or when the thin film molded body is a sheet, it is applied with a thickness exceeding 200 ⁇ m.
  • the substrate is cured by irradiating with ultraviolet rays with an ultraviolet irradiation device (for example, a high-pressure mercury lamp) while purging with nitrogen.
  • an ultraviolet irradiation device for example, a high-pressure mercury lamp
  • the film which is the thin film molded body of the present invention can be obtained by heating and curing at 60 ° C. for a predetermined time to volatilize the organic solvent (F).
  • the isocyanate equivalent (unit: g / eq, that is, g / equivalent) of the isocyanate group-terminated urethane prepolymer (C) used in the present invention is a value measured according to JIS K 7301. Specifically, the obtained urethane prepolymer sample was precisely weighed in an Erlenmeyer flask, dissolved in dry toluene, added with 10 ml of a di-n-butylamine solution, homogenized, and allowed to stand. Quantified by neutralization titration using bromcresol green as an indicator with a standard solution of 5N hydrochloric acid.
  • the (meth) acrylic equivalent described in the present invention is the molecular weight (g / eq) of the urethane acrylate oligomer (E) that is calculated from the material balance of the raw material and contains 1 mol of (meth) acryloyl groups.
  • the value is represented by the reciprocal of the (meth) acryloyl group concentration (mol / g).
  • UV curable urethane acrylate compositions obtained in the examples and comparative examples were coated on a polyethylene terephthalate (PET) film subjected to a release treatment with a knife coater to form a coating film, and a high pressure of 120 w / cm mercury lamp 1 lamp, an ultraviolet irradiation apparatus "N UV irradiation apparatus with purge conveyor” having a nitrogen purge device light quantity 0.8 J / cm 2 at (Co., Ltd. GS Yuasa), under a nitrogen atmosphere (oxygen concentration of 1%)
  • the coating film was cured by irradiating ultraviolet rays under conditions.
  • the used organic solvent was further volatilized by heating at a temperature of 60 ⁇ 5 ° C. for 10 minutes to obtain a film (thickness of 100 ⁇ m) as a thin film molded body having a cured coating film on the substrate.
  • the presence or absence of stickiness on the surface (outermost layer) of the film was confirmed by touch and evaluated according to the following criteria. Criteria for UV Curing (Tack Free) ⁇ : No stickiness and excellent UV curability when no liquid adheres to the finger. X: There is stickiness, and when the liquid adheres to the finger, it is inferior in ultraviolet curability.
  • Viscoelasticity was evaluated by measuring tan ⁇ peak temperature (loss coefficient peak temperature) by dynamic viscoelasticity analysis according to JIS K 0129 using the films prepared in Examples and Comparative Examples according to the following procedure.
  • the compositions obtained in the above Examples and Comparative Examples were coated on a release polyethylene terephthalate plate or polycarbonate plate with a knife coater to form a coating film.
  • the coating film was cured by irradiating the coating film with ultraviolet rays under a nitrogen atmosphere using an ultraviolet irradiator. Thereafter, the used organic solvent was further volatilized by heating at a temperature of 60 ⁇ 5 ° C.
  • the viscoelasticity was evaluated according to Criteria for judging viscoelasticity of film ⁇ : When tan ⁇ peak temperature is 0 to 35 ° C. X: When tan-delta peak temperature is less than 0 degreeC or exceeds 35 degreeC.
  • the “self-repairing property” as used in the present invention is a characteristic that a scratch generated on the surface (outermost layer) of a thin film molded body (for example, a film, a sheet, etc.) can be restored over time, and was evaluated and determined by the following method.
  • a constant temperature and humidity chamber adjusted to a temperature of 23 ° C. and a relative humidity of 50%, immediately after the surface (outermost layer) of the obtained film was scratched with a brass brush weighted to 500 g (straight line 0.1 mm), The recovery time (seconds) until scratches could not be confirmed was measured, and self-repairability was determined according to the following criteria.
  • Judgment criteria for self-repairability When the recovery time is within 20 seconds, the self-repairability is excellent. X: When recovery time exceeds 20 seconds, it is inferior to self-repair property. XX: When not recovering, there is no self-repairing property.
  • HDI hexamethylene diisocyanate
  • the mixture was stirred for 3 hours while maintaining the temperature to obtain a urethane prepolymer (C1) having an isocyanate group at the molecular end.
  • Synthesis Examples 2 to 9 The same as Synthesis Example 1 except that the types and amounts of the polyol (A), polyisocyanate (B), and (meth) acrylic compound (D) having a hydroxyl group used were changed as shown in Table 1. Under the reaction conditions, urethane acrylate oligomers (E2) to (E9) were obtained.
  • PTMG-1000 Polyoxytetramethylene glycol (Trademark: manufactured by Mitsubishi Chemical Corporation, number average molecular weight 1000)
  • PCL polycaprolactone polyol (number average molecular weight 520)
  • 2HEA 2-hydroxyethyl acrylate 4HBA: 4-hydroxybutyl acrylate
  • HDI 1,6-hexamethylene diisocyanate
  • MDI 4,4'-dicyclohexylmethane diisocyanate
  • IPDI isophorone diisocyanate
  • MDI 4,4'-diphenylmethane diisocyanate
  • Example 1 100 parts by mass of the urethane acrylate oligomer (E1) obtained in Synthesis Example 1 and 20 parts by mass of methyl ethyl ketone (hereinafter referred to as “MEK”) as an organic solvent (F) having no aromatic skeleton are weighed in a mixing container. And it mixed until it became uniform at room temperature, and prepared the ultraviolet curable urethane acrylate composition (X1) of this invention.
  • the ultraviolet curable urethane acrylate composition (X1) prepared above was coated on a polyethylene terephthalate (PET) release film with a knife coater to form a coating film on the outermost layer.
  • PET polyethylene terephthalate
  • a 120w / cm high-pressure mercury lamp and an ultraviolet irradiation device having a nitrogen purging device were irradiated with ultraviolet rays in an irradiation light amount of 0.8 J / cm 2 in a nitrogen atmosphere (oxygen concentration of 1% or less).
  • the film was cured. Furthermore, it heated at 60 degreeC for 10 minute (s) in oven, the organic solvent was volatilized, and the film (P1) (thickness of 100 micrometers) which is a thin film molded object was produced.
  • Examples 2 to 9 and Comparative Examples 1 to 10 The ultraviolet curable urethane acrylate compositions (X2) to (X19) were respectively the same as in Example 1 except that the prepolymer used, the type of organic solvent, and the amount used were changed as shown in Tables 2 and 3. ) To prepare films (P2) to (P19) having a thickness of 100 ⁇ m.
  • PTMG-1000 Polyoxytetramethylene glycol (Trademark: manufactured by Mitsubishi Chemical Corporation, number average molecular weight 1000)
  • PCL polycaprolactone polyol (number average molecular weight 520)
  • 1,4PBD 1,4-polybutadienediol (number average molecular weight 1200)
  • 2HEA 2-hydroxyethyl acrylate 4HBA: 4-hydroxybutyl acrylate
  • HDI 1,6-hexamethylene diisocyanate H 12
  • MDI 4,4'-dicyclohexylmethane diisocyanate
  • IPDI isophorone diisocyanate
  • MDI 4,4'-diphenylmethane diisocyanate
  • MEK methyl ethyl ketone
  • MIBK methyl isobutyl ketone
  • Irgacure 184 Irgacure 184 (trademark: manufactured by Nagase Sangyo
  • the ultraviolet curable urethane acrylate composition of the present invention can exhibit excellent ultraviolet curability even if it does not contain any photopolymerization initiator, and the obtained thin film molded article is , Having excellent performance such as self-healing property, yellowing resistance, transparency, and moderate flexibility, for example, optical members (for example, optical films, optical sheets, etc.), optical coating materials, It is useful in a wide range of fields such as textiles, electronic materials, food packages, cosmetic packages, and decorative films.

Abstract

The present invention is ultraviolet curable without comprising a photoinitiator and exhibits excellent self-healing property, yellowing resistance, transparency and adequate flexibility. An ultraviolet curable urethane acrylate composition which comprises an urethane acrylate oligomer (E) having a (meth)acryloyl group at the molecular terminals which is obtained by the addition reaction of a (meth)acrylic compound (D) having a hydroxyl group with respect to an urethane prepolymer (C) having an NCO group at the molecular terminals which is obtained by reacting a polyol (A) without an aromatic backbone and a polyisocyanate (B) without an aromatic backbone. This composition further comprises 0.2 to 80 parts by mass of an organic solvent (F) without a specific aromatic backbone and does not comprise a photoinitiator. The (meth)acrylic equivalent of (E) is 450 to 1100 g/equivalent and a tanδ peak temperature measured by dynamic viscoelasticity analysis in accordance with JIS K 0129 using a 100 μm thick film produced with the composition is -8 to 45°C.

Description

紫外線硬化性ウレタンアクリレート組成物、薄膜成形体、光学フィルム、及び薄膜成形体の製造方法Ultraviolet curable urethane acrylate composition, thin film molded article, optical film, and method for producing thin film molded article
 本発明は、紫外線硬化性ウレタンアクリレート組成物、それを用いた薄膜成形体、光学フィルム、及び薄膜成形体の製造方法に関する。 The present invention relates to an ultraviolet curable urethane acrylate composition, a thin film molded article, an optical film using the same, and a method for producing a thin film molded article.
 更に詳しくは、本発明の紫外線硬化性ウレタンアクリレート組成物は、従来の紫外線硬化性組成物と異なり光重合開始剤を全く使用せず、且つ、希釈溶剤として特定の有機溶剤を含有することにより、優れた紫外線硬化性を発現することができる。 More specifically, the ultraviolet curable urethane acrylate composition of the present invention does not use a photopolymerization initiator at all unlike the conventional ultraviolet curable composition, and contains a specific organic solvent as a diluent solvent, Excellent ultraviolet curability can be expressed.
 また、本発明の薄膜成形体(例えばフィルム、シートなど)は、一度ついた傷が速やかに回復するという「自己修復性」や耐黄変性、透明性などの優れた性能を発現できる。 In addition, the thin film molded body (for example, a film, a sheet, etc.) of the present invention can exhibit excellent performance such as “self-repairing”, yellowing resistance, transparency, etc., in which a scratch once attached is quickly recovered.
 更に、本発明の薄膜成形体は、従来技術と異なり、光重合開始剤を全く含まないので、紫外線照射による黄変の度合いが極めて小さいこと、経時的な黄変がないこと、光重合開始剤の未反応成分や分解物による成形物の接触物への汚染などがないこと、などの優れた効果が得られ、例えば、光学用部材(例えば光学フィルム、光学シートなど)、光学用コーティング材料、繊維、電子電機材料、食品パッケージ、化粧品パッケージ、加飾フィルムなど、特に耐黄変性、柔軟性、透明性などの高度な性能が求められる広範囲の分野に有用である。 Furthermore, unlike the prior art, the thin film molded body of the present invention does not contain any photopolymerization initiator, so that the degree of yellowing due to ultraviolet irradiation is extremely small, there is no yellowing over time, and the photopolymerization initiator Excellent effects such as no contamination of the contact product of the molded product due to unreacted components and decomposition products, such as optical members (for example, optical films, optical sheets, etc.), optical coating materials, It is useful in a wide range of fields that require advanced performance such as yellowing resistance, flexibility, and transparency, such as fibers, electronic electrical materials, food packages, cosmetic packages, and decorative films.
 最近では、職場でも家庭でも様々な環境で、例えば、パソコン、コピー機、携帯電話、スマートフォン、タブレット型コンピュータなど、高性能・高機能・小型化の多様なIT機器が急速に普及している。特に操作が簡単で高機能が図りやすいため、タッチパネル方式は利用分野の大きな拡大と伸長が今後も期待されている。 Recently, various IT devices with high performance, high functionality, and miniaturization, such as personal computers, copiers, mobile phones, smartphones, and tablet computers, are rapidly spreading in various environments at work and at home. In particular, since the operation is easy and high functionality is easy to achieve, the touch panel system is expected to greatly expand and expand the application field.
 一般にタッチパネルは多層構造であり、その最表層には傷つき防止(耐久性の向上)や美観の維持を目的にハードコート層が設けられている。しかしながら、ハードコート層は傷が付きにくい反面、いったん傷が付いてしまうと傷が復元されず、その傷に汚れが付着して、傷を起点にして汚染が拡がる傾向があり、物品の美観を損ねる原因となっていた。 Generally, a touch panel has a multilayer structure, and a hard coat layer is provided on the outermost layer for the purpose of preventing damage (improving durability) and maintaining aesthetics. However, the hard coat layer is hard to be scratched, but once it has been scratched, the scratch is not restored, and there is a tendency for the dirt to adhere to the scratch and to spread the contamination starting from the scratch. It was a cause of damage.
 そのため、最近では、例えば、プラスチック部材、金属部材等の物品の表面には、樹脂コーティングがなされている。特にタッチパネル等の透明プラスチック製フィルムの表面にはより高硬度なハードコート層が設けられており、一層の傷つき防止の処置がなされている。 Therefore, recently, for example, a resin coating is applied to the surface of an article such as a plastic member or a metal member. In particular, a hard coating layer having a higher hardness is provided on the surface of a transparent plastic film such as a touch panel, and further measures for preventing scratches are taken.
 しかしながら、上記のような高硬度のハードコート層は硬くて脆いという性質のため、(1)長期間の使用により表面に割れや傷が生じやすいこと、(2)一度表面についた傷が復元されず、物品の美観を損ねてしまうこと、(3)塗工される基材がポリカーボネート等の柔らかい材質の場合には目標レベルの高硬度が発現せず、最表層での耐久性が確保できないこと、などの問題があった。 However, the hard coating layer with high hardness as described above is hard and brittle, so that (1) cracks and scratches are likely to occur on long-term use, and (2) scratches on the surface are restored once. (3) When the base material to be coated is made of a soft material such as polycarbonate, the target level of high hardness does not appear and the durability on the outermost layer cannot be secured. There were problems such as.
 一方、表面に一度ついた傷が自然に回復する機能(以下、「自己修復性」という。)を有する自己修復性を有する熱硬化性組成物が提案されている。このような、従来の自己修復性を有する熱硬化性組成物は、柔軟で弾性に富み、いったん擦り傷のような凹みが付いても数秒から数分後には元の状態に回復可能なため、長期間にわたり初期の良好な耐擦り傷性を維持できるという利点があった。 On the other hand, a thermosetting composition having a self-healing property having a function of recovering a scratch once attached to the surface naturally (hereinafter referred to as “self-healing property”) has been proposed. Such a conventional thermosetting composition having self-healing properties is flexible and elastic, and can be restored to its original state after a few seconds to several minutes even if it has a dent like a scratch. There was an advantage that good initial scratch resistance could be maintained over a period of time.
 しかしながら、従来の自己修復性を有する熱硬化性組成物には、(1)加工時に硬化のために30分以上も長時間の加熱が不可欠であるため、生産性に極めて劣ること、(2)基材が熱に弱い場合には、加熱による使用が困難であること、などの問題があった。 However, conventional thermosetting compositions having self-healing properties are (1) extremely inferior in productivity because heating for 30 minutes or more is indispensable for curing during processing, (2) When the substrate is vulnerable to heat, there are problems such as difficulty in use by heating.
 また、前記熱硬化性組成物に対して、自己修復性を有する紫外線硬化性(以下「UV硬化性」ともいう。)組成物が提案されている。紫外線硬化性組成物の採用は、硬化時間の短縮化やエネルギーコストの削減などの利点があった。 Further, an ultraviolet curable (hereinafter also referred to as “UV curable”) composition having a self-repairing property has been proposed with respect to the thermosetting composition. Adoption of the ultraviolet curable composition has advantages such as shortening the curing time and energy cost.
 しかしながら、従来の自己修復性を有する紫外線硬化性組成物は、(1)基材上に薄く塗工した場合に自己修復性が十分に発現せず、硬化塗膜の最表層の強度を確保できないこと、(2)光重合開始剤を必須に含有するため、初期の黄色度が高いこと(黄色度が高い場合には、特に物品のコーナー部で黄色味が目立つため商品価値を損なう)、(3)耐久性試験後の耐黄変性が2液硬化型樹脂組成物よりも劣ること、などの実用上大きな問題があった。 However, conventional ultraviolet curable compositions having self-healing properties (1) are not sufficiently self-healing when coated thinly on a substrate, and the strength of the outermost layer of the cured coating film cannot be secured. (2) Since the photopolymerization initiator is essential, the initial yellowness is high (when the yellowness is high, the yellowness is particularly noticeable at the corners of the article, which impairs the commercial value), ( 3) There were large practical problems such as yellowing resistance after the durability test being inferior to that of the two-part curable resin composition.
 かかる問題を改良するために、種々の提案がなされてきた。
 例えば、特定の一般式で表される(メタ)アクリロイル基を有する反応性ポリマー100質量部に対し、光重合開始剤0.1~10質量部を含む自己修復性を有する光硬化性組成物、が知られている(例えば、特許文献1参照。)。
Various proposals have been made to improve such problems.
For example, a photocurable composition having a self-healing property containing 0.1 to 10 parts by mass of a photopolymerization initiator with respect to 100 parts by mass of a reactive polymer having a (meth) acryloyl group represented by a specific general formula, Is known (for example, see Patent Document 1).
 特許文献1記載の光硬化性組成物は、ゴム成分に(メタ)アクリロイル基をジイソシアネート化合物によるウレタン結合を介して導入し、それを光重合開始剤と組み合わせて光硬化性を付与することにより、良好な自己修復性だけでなく、加工性や耐反り性などに優れた塗膜外観を付与する塗膜を形成することができるという。 The photocurable composition described in Patent Document 1 introduces a (meth) acryloyl group into a rubber component through a urethane bond with a diisocyanate compound, and combines it with a photopolymerization initiator to impart photocurability. In addition to good self-healing properties, it is possible to form a coating film that imparts a coating film appearance excellent in processability and warpage resistance.
 しかしながら、特許文献1記載の光硬化性組成物は、(1)自己修復性が未だ不充分であり、擦り傷のような凹みの短時間での元の状態への回復が困難であること、(2)光重合開始剤を必須に含有するため、得られる硬化物の成形初期の黄色度が高いこと、(3)耐熱試験や耐紫外線試験後に更に著しく黄変してしまい、耐黄変性に劣ること、などの問題があった。 However, the photocurable composition described in Patent Document 1 is (1) self-healing property is still insufficient, and it is difficult to recover the original state of a dent such as a scratch in a short time. 2) Since it contains an essential photopolymerization initiator, the resulting cured product has a high yellowness at the initial stage of molding, and (3) it is further yellowed after heat and ultraviolet resistance tests, resulting in poor yellowing resistance. There was a problem such as that.
 また、特許文献1の如き、光重合開始剤を含有する紫外線硬化性ウレタンアクリレート組成物では、塗膜や成形体の表面に光重合開始剤の未反応成分や分解物がマイグレーションし、薄膜成形体(例えばフィルム、シートなど)を積層した場合に、該薄膜成形体と接する物品を汚染したり、あるいは分解した光重合開始剤が黄色物質へ変化して成形体の黄色度を悪化させたりしていた。特に美観や透明性を重視する食品パッケージや化粧品パッケージなどの分野では、このような未反応成分や分解物は除去すべき不純物であり、品質面(衛生面、意匠面など)からも大変重要な問題であった。 In addition, in the ultraviolet curable urethane acrylate composition containing a photopolymerization initiator as in Patent Document 1, unreacted components and decomposition products of the photopolymerization initiator migrate to the surface of the coating film or molded product, and the thin film molded product. When laminating (for example, a film, a sheet, etc.), an article in contact with the thin film molded body is contaminated, or the decomposed photopolymerization initiator is changed to a yellow substance to deteriorate the yellowness of the molded body. It was. Especially in fields such as food packaging and cosmetic packaging where emphasis is placed on aesthetics and transparency, such unreacted components and degradation products are impurities that should be removed, and are very important from the standpoint of quality (hygiene, design, etc.). It was a problem.
 このような光重合開始剤により誘発される黄変現象は、分解した光重合開始剤が再結合する際に黄色物質へと変化して硬化物の黄色化を促進させ、高品位な透明性が要求される光学用途に使用される光学用部材(例えば、フィルム、シート、繊維、塗料など)の性能を低下させる主原因と考えられている。特に芳香族骨格を有する光重合開始剤は、芳香環が光エネルギーを吸収して効率的にラジカルを発生することから一般に多用されているが、再結合時に芳香環に起因するキノイド構造となるため、黄色の発色団を形成するという欠点がある。 The yellowing phenomenon induced by such a photopolymerization initiator changes to a yellow substance when the decomposed photopolymerization initiator recombines and promotes yellowing of the cured product, resulting in high-grade transparency. It is considered to be a main cause of reducing the performance of optical members (for example, films, sheets, fibers, paints, etc.) used for required optical applications. In particular, photopolymerization initiators having an aromatic skeleton are commonly used because the aromatic ring absorbs light energy and efficiently generates radicals. However, it becomes a quinoid structure due to the aromatic ring during recombination. , Has the disadvantage of forming a yellow chromophore.
 以上のように、従来の紫外線硬化性ウレタンアクリレート組成物では、(1)自己修復性が未だ不充分であること、(2)光重合開始剤を含有するため、黄変してしまうこと、(3)光重合開始剤の未反応成分や分解物がマイグレーションして薄膜成形体(例えば、フィルム、シートなど)を積層した場合に塗膜や成形体と接する物品を汚染してしまうこと、(4)光重合開始剤の分解物が黄色物質へと変化して薄膜成形体の色調を悪化させること、などの未だ解決すべき問題があった。 As described above, in the conventional ultraviolet curable urethane acrylate composition, (1) the self-healing property is still insufficient, (2) the photopolymerization initiator is contained, and therefore yellowing occurs. 3) When an unreacted component or decomposition product of the photopolymerization initiator migrates and a thin film molded body (for example, a film, a sheet, etc.) is laminated, an article in contact with the coating film or the molded body is contaminated. ) There were still problems to be solved, such as degradation of the photopolymerization initiator to a yellow substance and deterioration of the color tone of the thin film molded article.
特開2010-260905号公報JP 2010-260905 A
 本発明の目的は、従来技術と異なり光重合開始剤を含有しなくても優れた紫外線硬化性を発現でき、且つ優れた自己修復性、耐黄変性、透明性、及び適度な柔軟性を発現可能な紫外線硬化性ウレタンアクリレート組成物、それを用いた薄膜成形体、光学フィルム、及び薄膜成形体の製造方法を提供することにある。 The purpose of the present invention is that, unlike the prior art, an excellent ultraviolet curability can be expressed without containing a photopolymerization initiator, and an excellent self-repairing property, yellowing resistance, transparency, and appropriate flexibility are expressed. An object of the present invention is to provide a possible ultraviolet curable urethane acrylate composition, a thin film molded article, an optical film using the composition, and a method for producing the thin film molded article.
 本発明者らは、上記課題を解決すべく、鋭意検討を進めた結果、分子末端に(メタ)アクリロイル基を有するウレタンアクリレートオリゴマーと、希釈溶剤として芳香族骨格を有さない有機溶剤を含有し、光重合開始剤を含有しない紫外線硬化性ウレタンアクリレート組成物において、前記ウレタンアクリレートオリゴマーの(メタ)アクリル当量が特定の範囲であり、且つ、前記紫外線硬化性ウレタンアクリレート組成物により作製した厚さ100μmのフィルムを用いてJIS K 0129に準拠し動的粘弾性分析により測定したtanδ(損失係数)ピーク温度が特定の範囲であることにより、優れた自己修復性、耐黄変性、透明性、及び適度な柔軟性を発現可能な紫外線硬化性ウレタンアクリレート組成物を得ることができることを見出し、本発明を完成するに到った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors contain a urethane acrylate oligomer having a (meth) acryloyl group at the molecular terminal and an organic solvent having no aromatic skeleton as a diluting solvent. In the ultraviolet curable urethane acrylate composition containing no photopolymerization initiator, the urethane acrylate oligomer has a (meth) acrylic equivalent in a specific range, and a thickness of 100 μm prepared by the ultraviolet curable urethane acrylate composition. Tan δ (loss factor) peak temperature measured by dynamic viscoelasticity analysis in accordance with JIS K 0129 using a specific film, so that excellent self-repairing property, yellowing resistance, transparency, and moderate To obtain an ultraviolet curable urethane acrylate composition capable of exhibiting excellent flexibility As a result, the present invention has been completed.
 即ち、本発明は、芳香族骨格を有さないポリオール(A)と芳香族骨格を有さないポリイソシアネート(B)とを反応させて得られる分子末端にイソシアネート基を有するウレタンプレポリマー(C)に対して、水酸基を有する(メタ)アクリル化合物(D)を付加反応させて得られる分子末端に(メタ)アクリロイル基を有するウレタンアクリレートオリゴマー(E)を含有する紫外線硬化性ウレタンアクリレート組成物であって、ケトン系溶剤、アミド系溶剤、及びハロゲン化アルキル系溶剤からなる群より選ばれる少なくとも一種の芳香族骨格を有さない有機溶剤(F)を0.2~80質量%含有し、光重合開始剤を含有しない紫外線硬化性ウレタンアクリレート組成物であり、前記ウレタンアクリレートオリゴマー(E)の(メタ)アクリル当量が450~1100g/当量の範囲であり、前記紫外線硬化性ウレタンアクリレート組成物により作製した厚さ100μmのフィルムを用いてJIS K 0129に準拠し動的粘弾性分析により測定したtanδピーク温度が-8~45℃の範囲であることを特徴とする紫外線硬化性ウレタンアクリレート組成物に関するものである。 That is, the present invention provides a urethane prepolymer (C) having an isocyanate group at the molecular end obtained by reacting a polyol (A) having no aromatic skeleton with a polyisocyanate (B) having no aromatic skeleton. In contrast, an ultraviolet curable urethane acrylate composition containing a urethane acrylate oligomer (E) having a (meth) acryloyl group at a molecular end obtained by addition reaction of a (meth) acrylic compound (D) having a hydroxyl group. And 0.2 to 80% by mass of an organic solvent (F) having at least one aromatic skeleton selected from the group consisting of ketone solvents, amide solvents, and alkyl halide solvents. It is an ultraviolet curable urethane acrylate composition containing no initiator, and is a (meta) of the urethane acrylate oligomer (E). The tan δ peak temperature measured by dynamic viscoelasticity analysis in accordance with JIS K 0129 using a 100 μm thick film having an acrylic equivalent in the range of 450 to 1100 g / equivalent and made from the ultraviolet curable urethane acrylate composition. The present invention relates to an ultraviolet curable urethane acrylate composition having a temperature range of −8 to 45 ° C.
 本発明は、基材上に前記紫外線硬化性ウレタンアクリレート組成物の硬化塗膜を有することを特徴とする薄膜成形体に関するものである。 The present invention relates to a thin film molded article having a cured coating film of the ultraviolet curable urethane acrylate composition on a substrate.
 本発明は、前記紫外線硬化性ウレタンアクリレート組成物を基材上に塗工し硬化させて得られ、膜厚10~800μmの範囲であることを特徴とする薄膜成形体に関するものである。 The present invention relates to a thin film molded article obtained by applying the ultraviolet curable urethane acrylate composition onto a substrate and curing it, and having a thickness in the range of 10 to 800 μm.
 また、本発明は、前記紫外線硬化性ウレタンアクリレート組成物の硬化塗膜を有する光学フィルムであって、前記硬化塗膜の膜厚50~200μmにおけるJIS K7361-1に準拠して測定した全光線透過率が92%以上であることを特徴とする光学フィルムに関するものである。 The present invention also provides an optical film having a cured coating film of the ultraviolet curable urethane acrylate composition, wherein the cured film has a total light transmission measured in accordance with JIS K7361-1 in a film thickness of 50 to 200 μm. The present invention relates to an optical film characterized in that the rate is 92% or more.
 更に、本発明は、基材上に前記紫外線硬化性ウレタンアクリレート組成物を塗工し、紫外線を照射した後、前記有機溶剤(F)を揮発させて硬化塗膜を形成させることを特徴とする薄膜成形体の製造方法に関するものである。 Furthermore, the present invention is characterized in that the ultraviolet curable urethane acrylate composition is applied onto a substrate, irradiated with ultraviolet rays, and then the organic solvent (F) is volatilized to form a cured coating film. The present invention relates to a method for manufacturing a thin film molded body.
 本発明の紫外線硬化性ウレタンアクリレート組成物は、従来の紫外線硬化性組成物と異なり光重合開始剤を全く含有しなくても優れた光硬化性を発現でき、優れた自己修復性、耐黄変性、透明性、及び適度な柔軟性を発現できるので、例えば、光学用部材(例えば、光学フィルム、光学シートなど)、光学用コーティング材料、繊維、電子電機材料、食品パッケージ材料、化粧品パッケージ、加飾フィルムなどの広範囲の用途に有用である。 Unlike the conventional ultraviolet curable composition, the ultraviolet curable urethane acrylate composition of the present invention can exhibit excellent photocurability without containing any photopolymerization initiator, and has excellent self-repairing property and yellowing resistance. Therefore, for example, optical members (for example, optical films, optical sheets, etc.), optical coating materials, fibers, electronic electrical materials, food packaging materials, cosmetic packages, decorations. Useful for a wide range of applications such as film.
<紫外線硬化性ウレタンアクリレート組成物>
 本発明の紫外線硬化性ウレタンアクリレート組成物は、従来の紫外線硬化性組成物と異なり、光重合開始剤を全く含有しない。
<Ultraviolet curable urethane acrylate composition>
Unlike the conventional ultraviolet curable composition, the ultraviolet curable urethane acrylate composition of the present invention does not contain any photopolymerization initiator.
 本発明の紫外線硬化性ウレタンアクリレート組成物は、芳香族骨格を有さないポリオール(A)と芳香族骨格を有さないポリイソシアネート(B)とを反応させて得られる分子末端にイソシアネート基を有するウレタンプレポリマー(C)に対して、水酸基を有する(メタ)アクリル化合物(D)を付加反応させて得られる分子末端に(メタ)アクリロイル基を有するウレタンアクリレートオリゴマー(E)と、後述する特定の有機溶剤(F)とを必須に含有する。 The ultraviolet curable urethane acrylate composition of the present invention has an isocyanate group at a molecular terminal obtained by reacting a polyol (A) having no aromatic skeleton with a polyisocyanate (B) having no aromatic skeleton. A urethane acrylate oligomer (E) having a (meth) acryloyl group at the molecular end obtained by addition reaction of a (meth) acrylic compound (D) having a hydroxyl group with respect to the urethane prepolymer (C), and a specific one described later Essentially contains an organic solvent (F).
 本発明の紫外線硬化性ウレタンアクリレート組成物は、従来の光重合開始剤を含む紫外線硬化性組成物と全く異なり、光重合開始剤を一切含有しなくても、芳香族骨格を有さない反応性原料を用いて得られる分子末端に(メタ)アクリロイル基を有するウレタンアクリレートオリゴマー(E)と、芳香族骨格を有さない特定の有機溶剤(F)を必須に含有することにより、紫外線硬化反応を正常且つ迅速に進行させることができる。 The ultraviolet curable urethane acrylate composition of the present invention is completely different from an ultraviolet curable composition containing a conventional photopolymerization initiator, and has no aromatic skeleton even if it does not contain any photopolymerization initiator. By containing a urethane acrylate oligomer (E) having a (meth) acryloyl group at the molecular end obtained from the raw material and a specific organic solvent (F) having no aromatic skeleton, an ultraviolet curing reaction can be carried out. It is possible to proceed normally and quickly.
 しかも、本発明の紫外線硬化性ウレタンアクリレート組成物は、従来の光重合開始剤を使用した紫外線硬化性組成物と全く異なり、優れた自己修復性と共に、耐黄変性、透明性、及び適度な柔軟性が発現可能である。 Moreover, the UV curable urethane acrylate composition of the present invention is completely different from the UV curable composition using a conventional photopolymerization initiator, and has excellent self-healing properties, yellowing resistance, transparency, and moderate flexibility. Sex can be expressed.
(A)芳香族骨格を有さないポリオール
 以下に本発明の紫外線硬化性ウレタンアクリレート組成物を構成する前記(A)~(F)について詳細に説明する。
 本発明で用いる前記芳香族骨格を有さないポリオール(A)としては、脂肪族ポリオールと脂環族ポリオールがあり、例えば、ポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオール、低分子量グリコールなどが挙げられる。
(A) Polyol having no aromatic skeleton The above (A) to (F) constituting the ultraviolet curable urethane acrylate composition of the present invention will be described in detail below.
Examples of the polyol (A) having no aromatic skeleton used in the present invention include aliphatic polyols and alicyclic polyols, and examples thereof include polyester polyols, polyether polyols, polycarbonate polyols, and low molecular weight glycols.
 前記ポリエステルポリオールは、通常、ジカルボン酸とジオールを原料にして製造される。 The polyester polyol is usually produced from dicarboxylic acid and diol as raw materials.
 前記ポリエステルポリオールの製造に使用するジカルボン酸は、芳香族骨格を有さないジカルボン酸であり、例えば、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、無水マレイン酸、フマル酸、1,3-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸等が挙げられる。これらは、単独使用でも2種以上を併用してもよい。 The dicarboxylic acid used for the production of the polyester polyol is a dicarboxylic acid having no aromatic skeleton, such as succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, maleic anhydride, fumaric acid, 1 1,3-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid and the like. These may be used alone or in combination of two or more.
 前記ジカルボン酸の他にも、その誘導体を使用することも可能であり、例えば、メチルエステル体など低級アルキルエステル、酸無水物、酸ハロゲン化物などが挙げられる。 In addition to the dicarboxylic acid, derivatives thereof can also be used, and examples thereof include lower alkyl esters such as methyl ester, acid anhydrides, acid halides, and the like.
 前記ポリエステルポリオールの製造に使用するジオールは、芳香族骨格を有さないジオールであり、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、トリメチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、3-メチル-1,5-ペンタンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、2-メチル-1,3-プロパンジオール等の脂肪族ジオール、あるいは1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、水素添加ビスフェノールA等の脂環族ジオールなどが挙げられる。これらは、単独使用でも2種以上を併用してもよい。 The diol used in the production of the polyester polyol is a diol having no aromatic skeleton, such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1, 4-butanediol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, trimethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, 3-methyl-1 , 5-pentanediol, 2-butyl-2-ethyl-1,3-propanediol, aliphatic diol such as 2-methyl-1,3-propanediol, or 1,4-cyclohexanediol, 1,4-cyclohexane Dimethanol, hydrogen An alicyclic diol such as pressurized bisphenol A and the like. These may be used alone or in combination of two or more.
 また、前記ポリエステルポリオールの製造時に、前記ジオールと共に、本発明の目的を阻害しない範囲で、例えば、グリセリン、トリメチロールエタン、トリメチロールプロパン、ソルビトール、しょ糖、アコニット糖等の3官能以上の水酸基含有化合物を併用してもよい。 Further, at the time of production of the polyester polyol, a trifunctional or higher functional hydroxyl group-containing compound such as glycerin, trimethylol ethane, trimethylol propane, sorbitol, sucrose, aconite sugar, etc., as long as the object of the present invention is not impaired together with the diol. May be used in combination.
 本発明では、前記ポリエステルポリオールの他にも、ラクトン(例えばε-カプロラクトン、γ-ブチロラクトンなど)が開環付加重合したポリエステルポリオールなども使用できる。 In the present invention, in addition to the polyester polyol, a polyester polyol obtained by ring-opening addition polymerization of a lactone (eg, ε-caprolactone, γ-butyrolactone, etc.) can also be used.
 前記ポリエステルポリオールの数平均分子量(以下「Mn」ともいう。)は、分子末端にイソシアネート基を有するウレタンプレポリマー(C)(以下「イソシアネート基末端ウレタンプレポリマー(C)」という。)の使用時の目標溶融粘度を考慮して設定することが望ましく、好ましくは300~5000の範囲、より好ましくは500~3500の範囲である。前記ポリエステルポリオールのMnがかかる範囲であるならば、前記イソシアネート基末端ウレタンプレポリマー(C)の異常な粘度上昇が起こらず、反応を正常に制御でき、適度な溶融粘度のウレタンプレポリマーを得ることができる。 The number average molecular weight (hereinafter also referred to as “Mn”) of the polyester polyol is determined when the urethane prepolymer (C) having an isocyanate group at the molecular terminal (hereinafter referred to as “isocyanate group-terminated urethane prepolymer (C)”) is used. The target melt viscosity is desirably set in consideration of the above, preferably in the range of 300 to 5000, more preferably in the range of 500 to 3500. If the Mn of the polyester polyol is within such a range, an abnormal viscosity increase of the isocyanate group-terminated urethane prepolymer (C) does not occur, the reaction can be controlled normally, and a urethane prepolymer having an appropriate melt viscosity can be obtained. Can do.
 前記ポリエステルポリオールとして、上記以外のジカルボン酸、ジオール、ジアミン等を併用して得られるポリエステルジオール、ポリアミドポリエステルジオールなども挙げられる。 Examples of the polyester polyol include polyester diols and polyamide polyester diols obtained by using dicarboxylic acids, diols, diamines and the like other than the above.
 また、前記ポリエーテルポリオールとしては、例えば、ポリエチレングリコール(PEG)、ポリプロピレングリコール(PPG)、ポリエチレンプロピレングリコール(PEPG)、ポリテトラメチレングリコール(PTMG)、あるいはグリセリン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール等の少なくとも3個以上の水酸基を有する化合物を出発原料にエチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド等のアルキレンオキサイドを付加重合して得られるポリ(オキシアルキレン)グリコール等が挙げられる。これらの中でも、ポリテトラメチレングリコール(PTMG、Mn=650~2000のもの)が好ましい。前記ポリエーテルポリオールは、直鎖、分岐、環状の何れの構造を有していてもよい。 Examples of the polyether polyol include polyethylene glycol (PEG), polypropylene glycol (PPG), polyethylene propylene glycol (PEPG), polytetramethylene glycol (PTMG), glycerin, trimethylolpropane, pentaerythritol, sorbitol and the like. Examples thereof include poly (oxyalkylene) glycols obtained by addition polymerization of alkylene oxides such as ethylene oxide, propylene oxide, and butylene oxide using a compound having at least three hydroxyl groups as a starting material. Among these, polytetramethylene glycol (PTMG, Mn = 650 to 2000) is preferable. The polyether polyol may have any structure of linear, branched and cyclic.
 前記ポリエーテルポリオールのMnは、好ましくは500~3500の範囲、より好ましくは600~3000の範囲、更に好ましくは650~2000の範囲である。前記ポリエーテルポリオールのMnがかかる範囲であるならば、前記イソシアネート基末端ウレタンプレポリマー(C)の異常な粘度上昇が起こらず、適度な溶融粘度のウレタンプレポリマーを得ることができる。 Mn of the polyether polyol is preferably in the range of 500 to 3500, more preferably in the range of 600 to 3000, and still more preferably in the range of 650 to 2000. If the Mn of the polyether polyol is within such a range, an abnormal viscosity increase of the isocyanate group-terminated urethane prepolymer (C) does not occur, and a urethane prepolymer having an appropriate melt viscosity can be obtained.
 また、前記ポリカーボネートポリオールとしては、例えば、炭酸と脂肪族ポリオールとをエステル化反応して得られるポリオールなども使用することができる。具体的には、1,3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール又はポリテトラメチレングリコール(PTMG)等のようなジオールと、ジメチルカーボネートやホスゲン等との反応生成物などが挙げられる。これらは単独使用でも2種以上を併用してもよい。 Further, as the polycarbonate polyol, for example, a polyol obtained by an esterification reaction of carbonic acid and an aliphatic polyol can be used. Specifically, diols such as 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, polyethylene glycol, polypropylene glycol or polytetramethylene glycol (PTMG), and dimethyl carbonate And reaction products with phosgene and the like. These may be used alone or in combination of two or more.
 また、前記低分子量グリコールとしては、例えば、エチレングリコール(EG)、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、3-メチル-1,5-ペンタンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、2-メチル-1,3-プロパンジオール等の脂肪族ジオール、あるいは1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、水素添加ビスフェノールA等の脂環族ジオール、あるいはグリセリン、トリメチロールプロパン、ペンタエリスリトール等の3官能以上の水酸基含有化合物などが挙げられ、これらの中でも1,4-ブタンジオール、トリメチロールプロパンが好ましい。前記低分子量グリコールは、直鎖、分岐、環状の何れの構造を有していてもよい。 Examples of the low molecular weight glycol include ethylene glycol (EG), 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and 1,5-pentane. Diol, 1,6-hexanediol, neopentyl glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, 3-methyl-1,5-pentanediol, 2-butyl-2-ethyl- Aliphatic diols such as 1,3-propanediol and 2-methyl-1,3-propanediol, or alicyclic diols such as 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol and hydrogenated bisphenol A, Or glycerin, trimethyl Rupuropan and trifunctional or more hydroxyl group-containing compound such as pentaerythritol. Among these 1,4-butanediol, trimethylol propane is preferred. The low molecular weight glycol may have a linear, branched, or cyclic structure.
 前記低分子量グリコールの分子量は、好ましくは62~300の範囲であり、より好ましくは62~200の範囲である。前記低分子量グリコールの分子量がかかる範囲であるならば、芳香族骨格を有さないポリオール(A)として併用した場合に、反応性の制御がより容易にでき、且つ、成形性(歩留まり、成形ムラ)がより良好になるので好ましい。 The molecular weight of the low molecular weight glycol is preferably in the range of 62 to 300, more preferably in the range of 62 to 200. When the molecular weight of the low molecular weight glycol is within such a range, when used as a polyol (A) having no aromatic skeleton, the reactivity can be controlled more easily and the moldability (yield, molding unevenness) can be controlled. ) Is preferable.
 前記芳香族骨格を有さないポリオール(A)として、例えば、アクリルポリオール、ポリオレフィンポリオール、ひまし油系ポリオールなども使用できる。 As the polyol (A) having no aromatic skeleton, for example, acrylic polyol, polyolefin polyol, castor oil-based polyol, and the like can be used.
 また、ポリアミンも併用することができる。前記ポリアミンとしては、例えばエチレンジアミンや、イソホロンジアミン、4,4’-ジシクロヘキシルメタンジアミン、ジアミノシクロヘキサン、メチルジアミノシクロヘキサン、ピペラジン、ノルボルネンジアミン等を使用することができる。 Polyamines can also be used in combination. Examples of the polyamine that can be used include ethylenediamine, isophoronediamine, 4,4'-dicyclohexylmethanediamine, diaminocyclohexane, methyldiaminocyclohexane, piperazine, norbornenediamine, and the like.
(B)芳香族骨格を有さないポリイソシアネート
 次に、本発明で用いる芳香族骨格を有さないポリイソシアネート(B)について、以下に説明する。
(B) Polyisocyanate not having aromatic skeleton Next, the polyisocyanate (B) having no aromatic skeleton used in the present invention will be described below.
 尚、本発明でいう「ポリイソシアネート」とは、分子中に2個以上のイソシアネート基(以下、「NCO基」ともいう。)を有する化合物をいう。 The “polyisocyanate” in the present invention refers to a compound having two or more isocyanate groups (hereinafter also referred to as “NCO groups”) in the molecule.
 本発明では、前記芳香族骨格を有さないポリイソシアネート(B)として、公知の脂肪族ポリイソシアネート、脂環式ポリイソシアネートの何れも用いることができる。これらは単独使用でも2種以上を併用してもよい。 In the present invention, as the polyisocyanate (B) having no aromatic skeleton, any of known aliphatic polyisocyanates and alicyclic polyisocyanates can be used. These may be used alone or in combination of two or more.
 前記脂肪族ポリイソシアネートとしては、例えば、ヘキサメチレンジイソシアネート(HDI)、ダイマー酸ジイソシアネート、リジンジイソシアネートなどが挙げられる。市販品では、特に限定しないが、例えば、いずれも旭化成工業株式会社製のデュラネートTSA-100、TSS-100、TSE-100、TSR-100、THA-100、D101、A201H、TKA-100などが挙げられる。 Examples of the aliphatic polyisocyanate include hexamethylene diisocyanate (HDI), dimer acid diisocyanate, and lysine diisocyanate. Although it does not specifically limit in a commercial item, For example, all are the Duranate TSA-100, TSS-100, TSE-100, TSR-100, THA-100, D101, A201H, TKA-100 etc. by Asahi Kasei Corporation. It is done.
 前記脂環族ポリイソシアネートとしては、例えば、イソホロンジイソシアネート(IPDI)、水添ジフェニルメタンジイソシアネート(H12MDI)、水添キシリレンジイソシアネート、シクロヘキサンジイソシアネート、1,3-ビス(イソシアナートメチル)シクロヘキサン、ノルボルネンジイソシアネートなどが挙げられる。 Examples of the alicyclic polyisocyanate include isophorone diisocyanate (IPDI), hydrogenated diphenylmethane diisocyanate (H 12 MDI), hydrogenated xylylene diisocyanate, cyclohexane diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, norbornene diisocyanate. Etc.
 しかしながら、従来のように光重合開始剤の存在下で、単にジフェニルメタンジイソシアネート(MDI)やトリレンジイソシアネ-ト(TDI)、テトラメチルキシリレンジイソシアネート等の芳香族骨格を有するポリイソシアネート(B’)(以下「芳香族ポリイソシアネート」ともいう。)を用いてイソシアネート基末端ウレタンプレポリマーを製造した場合では、前記芳香族ポリイソシアネートが有する芳香族構造の吸光度が高くなりすぎて、紫外線照射による硬化反応が充分に進行せず、且つ前記芳香族ポリイソシアネート自身が紫外線照射中に黄変してしまうという問題があった。そのため、特に高品質な透明性が要求される光学用部材(例えばフィルム、シートなど)、繊維、塗料、包装材料などの用途に適した紫外線硬化性ウレタンアクリレート組成物を得ることが大変困難であった。 However, polyisocyanates (B ′) having an aromatic skeleton such as diphenylmethane diisocyanate (MDI), tolylene diisocyanate (TDI), tetramethylxylylene diisocyanate, etc. in the presence of a photopolymerization initiator as in the past. (Hereinafter also referred to as “aromatic polyisocyanate”), when the isocyanate group-terminated urethane prepolymer is produced, the absorbance of the aromatic structure possessed by the aromatic polyisocyanate becomes too high, and the curing reaction caused by ultraviolet irradiation. Does not proceed sufficiently, and the aromatic polyisocyanate itself turns yellow during ultraviolet irradiation. For this reason, it is very difficult to obtain an ultraviolet curable urethane acrylate composition suitable for applications such as optical members (eg, films, sheets, etc.), fibers, paints, packaging materials, etc. that require particularly high-quality transparency. It was.
 本発明は、芳香族ポリイソシアネートを使用せず、芳香族骨格を有さないポリイソシアネート(B)として脂肪族ポリイソシアネート又は脂環族ポリイソシアネートを用いて、且つ、希釈溶剤として芳香族骨格を有さない特定の有機溶剤(F)を必須に用いることにより、紫外線照射中に黄変させることなく紫外線硬化反応を支障なく進行させることができ、得られる組成物は優れた耐黄変性を有しているので、長期間変色することもない。 The present invention does not use an aromatic polyisocyanate, uses an aliphatic polyisocyanate or an alicyclic polyisocyanate as a polyisocyanate (B) having no aromatic skeleton, and has an aromatic skeleton as a diluent solvent. By using essentially no specific organic solvent (F), the ultraviolet curing reaction can proceed without any trouble without yellowing during ultraviolet irradiation, and the resulting composition has excellent yellowing resistance. Therefore, it does not change color for a long time.
(C)分子末端にイソシアネート基を有するウレタンプレポリマー
 次いで、本発明で用いる分子末端にイソシアネート基を有するウレタンプレポリマー(C)(以下「イソシアネート基末端ウレタンプレポリマー(C)」という。)について、説明する。
(C) Urethane Prepolymer Having an Isocyanate Group at the Molecular Terminal Next, the urethane prepolymer (C) having an isocyanate group at the molecular terminal used in the present invention (hereinafter referred to as “isocyanate group-terminated urethane prepolymer (C)”). explain.
 前記イソシアネート基末端ウレタンプレポリマー(C)は、前記芳香族骨格を有さないポリオール(A)と前記芳香族骨格を有さないポリイソシアネート(B)とを必須に用いて、公知の方法に従い反応させて得ることができ、その反応方法、反応条件は、特に限定しない。 The isocyanate group-terminated urethane prepolymer (C) reacts according to a known method using the polyol (A) having no aromatic skeleton and the polyisocyanate (B) having no aromatic skeleton as essential. The reaction method and reaction conditions are not particularly limited.
 前記イソシアネート基末端ウレタンプレポリマー(C)は、前記ポリイソシアネート(B)の有するイソシアネート基(以下「NCO基」という。)が、前記ポリオール(A)の有する水酸基(以下「OH基」ともいう。)に対して、当量比で過剰となる仕込量にて、公知の方法により反応させ得ることができる。 In the isocyanate group-terminated urethane prepolymer (C), the isocyanate group (hereinafter referred to as “NCO group”) of the polyisocyanate (B) is also referred to as a hydroxyl group (hereinafter referred to as “OH group”) of the polyol (A). ) Can be reacted by a known method with an excess amount in an equivalent ratio.
 前記イソシアネート基末端ウレタンプレポリマー(C)の合成において、前記ポリイソシアネート(B)のイソシアネート当量(以下「NCO当量」という。)と前記ポリオール(A)の水酸基当量(以下「OH当量」という。)との比(即ち[NCO/OH当量比])としては、目標とする物性、製品品質、反応挙動などを考慮して設定すればよく、好ましくは1.5/1.0~10.0/1.0当量比の範囲、より好ましくは2.0/1.0~5.0/1.0当量比の範囲である。 In the synthesis of the isocyanate group-terminated urethane prepolymer (C), the isocyanate equivalent (hereinafter referred to as “NCO equivalent”) of the polyisocyanate (B) and the hydroxyl equivalent (hereinafter referred to as “OH equivalent”) of the polyol (A). (Ie, [NCO / OH equivalent ratio]) may be set in consideration of target physical properties, product quality, reaction behavior, and the like, and preferably 1.5 / 1.0 to 10.0 / A range of 1.0 equivalent ratio, more preferably a range of 2.0 / 1.0 to 5.0 / 1.0 equivalent ratio.
 前記イソシアネート基末端ウレタンプレポリマー(C)の合成方法としては、特に限定しないが、例えば、〔方法1〕反応容器中に仕込んだポリイソシアネート(B)に、水分を除去したポリオール(A)を滴下、分割、一括など適当な手段にて仕込み、前記ポリオール(A)の有する水酸基が実質的に無くなるまで反応させる方法、あるいは〔方法2〕反応容器中に仕込んだ水分を除去したポリオール(A)に、ポリイソシアネート(B)を滴下、分割、一括など適当な手段にて仕込み、前記ポリオール(A)の有する水酸基が実質的に無くなるまで反応させる方法、などを挙げることができる。 The method for synthesizing the isocyanate group-terminated urethane prepolymer (C) is not particularly limited. For example, [Method 1] The polyol (A) from which water has been removed is dropped into the polyisocyanate (B) charged in the reaction vessel. In a method in which the polyol (A) is charged by an appropriate means such as splitting or batch, and the reaction is carried out until the hydroxyl group of the polyol (A) substantially disappears, or [Method 2] to the polyol (A) from which the water charged in the reaction vessel has been removed. And a method in which the polyisocyanate (B) is charged by an appropriate means such as dropping, splitting, or batch, and reacted until the hydroxyl group of the polyol (A) is substantially eliminated.
 反応中の発熱を穏やかに制御しながら安全且つ正常に反応を進行させるためには、滴下あるいは分割による仕込方法が、好ましい。 In order to allow the reaction to proceed safely and normally while gently controlling the exotherm during the reaction, a charging method by dropping or dividing is preferred.
 前記イソシアネート基末端ウレタンプレポリマー(C)の製造は、通常、無溶剤で行なうが、溶剤中で反応させ製造してもよい。溶剤中で反応させる場合には、反応を阻害しない溶剤を使用すればよく、その種類は特に限定しない。反応に使用した溶剤は、反応途中又は反応終了後に、減圧加熱や薄膜留去等の適当な方法により除去することが望ましい。 The production of the isocyanate group-terminated urethane prepolymer (C) is usually carried out in the absence of a solvent, but may be carried out by reacting in a solvent. When making it react in a solvent, what is necessary is just to use the solvent which does not inhibit reaction, and the kind is not specifically limited. It is desirable to remove the solvent used in the reaction by an appropriate method such as heating under reduced pressure or distilling off the thin film during or after the reaction.
 前記イソシアネート基末端ウレタンプレポリマー(C)の反応条件(温度、時間、圧力など)は、反応挙動(安全性、安定性)や製品品質などを考慮して正常に制御できる範囲で設定すればよく、特に限定しない。通常は、反応温度50~90℃で、反応時間2~24時間の条件にて行うことが好ましい。圧力は、常圧、加圧、減圧の何れでもよい。 The reaction conditions (temperature, time, pressure, etc.) of the isocyanate group-terminated urethane prepolymer (C) may be set within a range that can be normally controlled in consideration of reaction behavior (safety, stability), product quality, etc. There is no particular limitation. Usually, the reaction is preferably performed at a reaction temperature of 50 to 90 ° C. and a reaction time of 2 to 24 hours. The pressure may be normal pressure, pressurization, or reduced pressure.
 反応方式は、例えば、バッチ、半連続、連続など、公知の反応方式を選択することができ、特に限定しない。 The reaction method can be selected from known reaction methods such as batch, semi-continuous, and continuous, and is not particularly limited.
 また、前記イソシアネート基末端ウレタンプレポリマー(C)を製造する際には、必要に応じてウレタン化触媒を使用することができる。前記触媒は、原料仕込工程、反応工程の任意の段階で適宜加えることができる。また、触媒の添加方法は、一括、分割、連続など特に限定しない。 Further, when the isocyanate group-terminated urethane prepolymer (C) is produced, a urethanization catalyst can be used as necessary. The said catalyst can be suitably added in the arbitrary steps of a raw material preparation process and a reaction process. Moreover, the addition method of a catalyst is not specifically limited, such as lump, division | segmentation, and continuous.
 前記ウレタン化触媒としては、公知のものが使用でき、例えば、トリエチルアミン、トリブチルアミン、ベンジルジブチルアミン、トリエチレンジアミン、N-メチルモルホリン等の含窒素化合物;あるいはチタンテトラブトキシド、ジブチルスズオキシド、ジラウリン酸ジブチルスズ、2-エチルカプロン酸スズ、ナフテン酸亜鉛、ナフテン酸コバルト、2-エチルカプロン酸亜鉛、グリコール酸モリブデン、酢酸カリウム、ステアリン酸亜鉛、オクチル酸錫、ジブチル錫ジラウレート等の有機金属化合物;あるいは塩化鉄、塩化亜鉛等の無機化合物などが挙げられる。 As the urethanization catalyst, known catalysts can be used, for example, nitrogen-containing compounds such as triethylamine, tributylamine, benzyldibutylamine, triethylenediamine, N-methylmorpholine; or titanium tetrabutoxide, dibutyltin oxide, dibutyltin dilaurate, Organometallic compounds such as tin 2-ethylcaproate, zinc naphthenate, cobalt naphthenate, zinc 2-ethylcaproate, molybdenum glycolate, potassium acetate, zinc stearate, tin octylate, dibutyltin dilaurate; or iron chloride, Examples include inorganic compounds such as zinc chloride.
 通常、反応は、窒素やアルゴンなどの不活性ガス雰囲気下で行うことが好ましいが、乾燥空気雰囲気下又は密閉条件下などの水分が混入しない条件下で行ってもよい。 Usually, the reaction is preferably carried out in an inert gas atmosphere such as nitrogen or argon, but it may be carried out in a dry air atmosphere or in a condition not containing moisture such as sealed conditions.
 前記イソシアネート基末端ウレタンプレポリマー(C)のイソシアネート当量(以下「NCO当量」ともいう。)は、好ましくは100~10000の範囲であり、より好ましくは200~1000の範囲である。前記(C)のNCO当量がかかる範囲であるならば、異常な粘度上昇も起こらず、作業性に優れるウレタンプレポリマーを得ることができる。 The isocyanate equivalent (hereinafter also referred to as “NCO equivalent”) of the isocyanate group-terminated urethane prepolymer (C) is preferably in the range of 100 to 10,000, more preferably in the range of 200 to 1,000. If the NCO equivalent of (C) is within such a range, an abnormal viscosity increase does not occur and a urethane prepolymer excellent in workability can be obtained.
 尚、本発明でいう「イソシアネート当量」(単位:g/eq、即ち、g/当量)とは、後記したJIS K 7301に従い測定した値である。 The “isocyanate equivalent” (unit: g / eq, ie g / equivalent) in the present invention is a value measured according to JIS K 7301 described later.
(D)水酸基を有する(メタ)アクリル化合物
 次に、前記イソシアネート基末端ウレタンプレポリマー(C)に付加反応させる、水酸基を有する(メタ)アクリル化合物(D)について説明する。
(D) (Meth) acrylic compound having a hydroxyl group Next, the (meth) acrylic compound (D) having a hydroxyl group, which is added to the isocyanate group-terminated urethane prepolymer (C), will be described.
 本発明では、前記イソシアネート基末端ウレタンプレポリマー(C)中のイソシアネート基の一部又は全量を、水酸基を有する(メタ)アクリル化合物(D)と付加反応させて、分子末端に(メタ)アクリロイル基を有するウレタンアクリレートオリゴマー(E)に変性させる。 In the present invention, a part or all of the isocyanate groups in the isocyanate group-terminated urethane prepolymer (C) is subjected to an addition reaction with the (meth) acrylic compound (D) having a hydroxyl group, and a (meth) acryloyl group is present at the molecular end. The urethane acrylate oligomer (E) having
 前記イソシアネート基末端ウレタンプレポリマー(C)に対する前記水酸基を有する(メタ)アクリル化合物(D)による変性による二重結合の導入により、紫外線照射による二重結合部位での硬化反応が迅速に起こり、光重合開始剤を全く含有していなくとも、優れた紫外線硬化性、基材への塗布後の保型性、機械的強度、耐久性、透明性などの従来にない性能を発現できる。 By introducing a double bond by modification with the (meth) acrylic compound (D) having the hydroxyl group to the isocyanate group-terminated urethane prepolymer (C), a curing reaction at a double bond site by ultraviolet irradiation occurs rapidly, and light Even if it does not contain any polymerization initiator, unprecedented performance such as excellent UV curability, shape retention after application to a substrate, mechanical strength, durability, and transparency can be expressed.
 前記水酸基を有する(メタ)アクリル化合物(D)としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ペンタエリスリトールトリアクリレートなどが挙げられ、これらの中でも、例えば、紫外線照射による速硬化性に優れ、且つ、特に、機械的強度が向上する点から、2-ヒドロキシエチルアクリレート(2HEA)、4-ヒドロキシブチルアクリレート(4HBA)が好ましい。これらは単独使用でも2種以上を併用してもよい。 Examples of the (meth) acrylic compound (D) having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) ) Acrylate, pentaerythritol triacrylate, etc. Among them, for example, 2-hydroxyethyl acrylate (2HEA), 4 is excellent in that it is excellent in rapid curability by ultraviolet irradiation and particularly improves mechanical strength. -Hydroxybutyl acrylate (4HBA) is preferred. These may be used alone or in combination of two or more.
(E)分子末端に(メタ)アクリロイル基を有するウレタンアクリレートオリゴマー
 次いで、本発明で用いる、分子末端に(メタ)アクリロイル基を有するウレタンアクリレートオリゴマー(E)(以下「ウレタンアクリレートオリゴマー(E)」という。)について説明する。
(E) Urethane acrylate oligomer having a (meth) acryloyl group at the molecular end Next, a urethane acrylate oligomer (E) having a (meth) acryloyl group at the molecular end used in the present invention (hereinafter referred to as “urethane acrylate oligomer (E)”) .).
 前記ウレタンアクリレートオリゴマー(E)は、前記イソシアネート基末端ウレタンプレポリマー(C)100質量部に対して、水酸基を有する(メタ)アクリル化合物(D)を、好ましくは0.5~300質量部の範囲、より好ましくは1.0~100質量部の範囲で加えて、前記イソシアネート基末端ウレタンプレポリマー(C)中のイソシアネート基総数の好ましくは5~100%の範囲、より好ましくは10~100%の範囲を、前記水酸基を有する(メタ)アクリル化合物(D)により反応させたものである。 The urethane acrylate oligomer (E) is a (meth) acrylic compound (D) having a hydroxyl group, preferably in the range of 0.5 to 300 parts by mass with respect to 100 parts by mass of the isocyanate group-terminated urethane prepolymer (C). More preferably, in the range of 1.0 to 100 parts by mass, the total number of isocyanate groups in the isocyanate group-terminated urethane prepolymer (C) is preferably in the range of 5 to 100%, more preferably 10 to 100%. The range is reacted with the (meth) acrylic compound (D) having a hydroxyl group.
 前記イソシアネート基末端ウレタンプレポリマー(C)のイソシアネート基をかかる範囲内で前記水酸基を有する(メタ)アクリル化合物(D)と反応させるならば、優れた硬化性、基材への塗工後の保型性、機械的強度、耐久性、基材密着性などの性能を発現できる。 If the isocyanate group of the isocyanate group-terminated urethane prepolymer (C) is allowed to react with the (meth) acrylic compound (D) having the hydroxyl group within such a range, excellent curability and retention after coating on the substrate are achieved. Performances such as moldability, mechanical strength, durability, and substrate adhesion can be expressed.
 前記ウレタンアクリレートオリゴマー(E)の(メタ)アクリル当量としては、450~1100g/当量(以下単位を略す。)の範囲であり、好ましくは500~900の範囲であり、より好ましくは500~750の範囲である。前記(E)の(メタ)アクリル当量がかかる範囲であれば、優れた自己修復性と良好な紫外線硬化性を共に発現できる。 The urethane acrylate oligomer (E) has a (meth) acrylic equivalent in the range of 450 to 1100 g / equivalent (hereinafter abbreviated as a unit), preferably in the range of 500 to 900, more preferably in the range of 500 to 750. It is a range. If the (meth) acrylic equivalent of (E) is within such a range, both excellent self-repairing property and good ultraviolet curability can be exhibited.
 しかしながら、前記ウレタンアクリレートオリゴマー(E)の(メタ)アクリル当量が450未満の場合には、得られる薄膜成形体の硬度が高くなり過ぎて、弾性が不足するために自己修復性が発現しないおそれがある。また、前記(E)の(メタ)アクリル当量が1100を超える場合には、紫外線照射による硬化反応が不十分となり易く、薄膜成形体の表面でベタツキが残存したり、自己修復性が発現しないおそれがある。 However, when the (meth) acrylic equivalent of the urethane acrylate oligomer (E) is less than 450, the hardness of the resulting thin film molded article becomes too high, and there is a possibility that self-repairing property will not be exhibited due to insufficient elasticity. is there. Moreover, when the (meth) acrylic equivalent of (E) exceeds 1100, the curing reaction due to ultraviolet irradiation tends to be insufficient, and stickiness may remain on the surface of the thin film molded article, or self-repairability may not be exhibited. There is.
 なお、本発明において、ウレタンアクリレートオリゴマー(E)の(メタ)アクリル当量とは、(メタ)アクリロイル基1モル当たりの分子量であり、組成物においては、(メタ)アクリロイル基濃度(mol/g)の逆数で表される値である。 In the present invention, the (meth) acryl equivalent of the urethane acrylate oligomer (E) is a molecular weight per mole of (meth) acryloyl groups, and in the composition, (meth) acryloyl group concentration (mol / g) It is a value represented by the reciprocal of.
 前記ウレタンアクリレートオリゴマー(E)のJIS Z 8803に準拠し測定した50℃での溶融粘度は、好ましくは500~200000mPa・sの範囲であり、より好ましくは500~100000の範囲である。前記(E)の50℃での溶融粘度がかかる範囲であるならば、作業性と生産性が向上し、且つ溶剤の使用量を削減でき、環境負荷低減に寄与できるので、好ましい。 The melt viscosity of the urethane acrylate oligomer (E) measured at 50 ° C. according to JIS Z 8803 is preferably in the range of 500 to 200,000 mPa · s, more preferably in the range of 500 to 100,000. If the melt viscosity at 50 ° C. of (E) is within such a range, it is preferable because workability and productivity are improved, the amount of solvent used can be reduced, and the environmental load can be reduced.
 また、本発明では、前記水酸基を有する(メタ)アクリル化合物(D)に付加反応しなかった未反応の分子末端にイソシアネート基を有するウレタンプレポリマーと、付加反応の生成物である分子末端に(メタ)アクリロイル基を有するウレタンアクリレートオリゴマー(E)との混合物を用いてもよい。 Moreover, in this invention, the urethane prepolymer which has an isocyanate group in the unreacted molecular terminal which was not addition-reacted with the (meth) acrylic compound (D) which has the said hydroxyl group, and the molecular terminal which is a product of addition reaction ( A mixture with the urethane acrylate oligomer (E) having a (meth) acryloyl group may be used.
 前記イソシアネート基末端ウレタンプレポリマー(C)と水酸基を有する(メタ)アクリル化合物(D)とをウレタン化反応させる際には、無触媒でもよくウレタン化触媒存在下でもよく、特に限定しない。 When the isocyanate group-terminated urethane prepolymer (C) and the (meth) acrylic compound (D) having a hydroxyl group are subjected to a urethanation reaction, there may be no catalyst or the presence of a urethanization catalyst, and there is no particular limitation.
 前記ウレタン化触媒を使用する場合は、ウレタン化反応の初期あるいは途中の任意の段階で適宜加えることができる。 When using the urethanization catalyst, it can be added as appropriate at any stage in the initial stage or midway of the urethanization reaction.
 前記ウレタン化触媒としては、公知のものが使用可能であり、例えば、トリエチルアミン、トリエチレンジアミン、N-メチルモルホリンなどの含窒素化合物、あるいは酢酸カリウム、ステアリン酸亜鉛、オクチル酸第一錫などの有機金属塩、あるいはジオクチル錫ジラウレート、ジブチル錫ジラウレートなどの有機金属化合物が挙げられる。 As the urethanization catalyst, known catalysts can be used. For example, nitrogen-containing compounds such as triethylamine, triethylenediamine, N-methylmorpholine, or organic metals such as potassium acetate, zinc stearate, stannous octylate, etc. Examples thereof include salts, and organometallic compounds such as dioctyltin dilaurate and dibutyltin dilaurate.
 前記ウレタン化触媒の使用量は、反応時の安全性、中間体あるいは製品の安定性、品質などに悪影響を与えなければ、特に限定しない。 The amount of the urethanization catalyst used is not particularly limited as long as it does not adversely affect the safety during the reaction, the stability of the intermediate or product, the quality, etc.
 前記ウレタン化反応は、イソシアネート当量(単位:g/eq、即ち、g/当量)が実質的に一定になるまで行なうことが好ましい。 The urethanization reaction is preferably carried out until the isocyanate equivalent (unit: g / eq, ie g / equivalent) becomes substantially constant.
 また、反応終了後又は反応途中において、公知の触媒失活剤を添加し、前記ウレタン化触媒の活性を失活あるいは抑制させて、反応面、貯蔵面、品質面などの安定化を図ってもよい。 In addition, after completion of the reaction or in the middle of the reaction, a known catalyst deactivator may be added to deactivate or suppress the activity of the urethanization catalyst, thereby stabilizing the reaction surface, storage surface, quality surface, etc. Good.
(F)芳香族骨格を有さない有機溶剤
 次に、本発明において、希釈溶剤として必須に用いる、芳香族骨格を有さない有機溶剤(F)について、以下に述べる。
(F) Organic solvent having no aromatic skeleton Next, the organic solvent (F) having no aromatic skeleton, which is essential as a diluting solvent in the present invention, will be described below.
 本発明では、芳香族骨格を有さない有機溶剤(F)を用いることにより、光重合開始剤を全く使用しなくても、従来の光重合開始剤を用いた紫外線硬化性ウレタンアクリレート組成物のように、優れた紫外線硬化性を付与でき、紫外線照射時に無黄変であり、経時的な黄変を起こし難い、などの優れた効果を発現できる。 In the present invention, by using an organic solvent (F) having no aromatic skeleton, an ultraviolet curable urethane acrylate composition using a conventional photopolymerization initiator can be used without using any photopolymerization initiator. As described above, excellent ultraviolet curability can be imparted, non-yellowing when irradiated with ultraviolet light, and excellent effects such as hardly causing yellowing over time can be exhibited.
 光重合開始剤を全く使用せず、前記芳香族骨格を有さない有機溶剤(F)を用いずに、芳香族骨格を有する有機溶剤のみを用いた場合には、紫外線硬化性、耐黄変性、塗工面でのタックフリーなどの性能を満足に発現できず、本発明の目的を達成できない。 In the case of using only an organic solvent having an aromatic skeleton without using a photopolymerization initiator at all, and without using the organic solvent (F) having no aromatic skeleton, ultraviolet curable, yellowing resistance Further, performance such as tack-free on the coated surface cannot be satisfactorily exhibited, and the object of the present invention cannot be achieved.
 本発明で用いる芳香族骨格を有さない有機溶剤(F)とは、ケトン系溶剤、アミド系溶剤、及びハロゲン化アルキル系溶剤からなる群より選ばれる少なくとも一種である。 The organic solvent (F) having no aromatic skeleton used in the present invention is at least one selected from the group consisting of ketone solvents, amide solvents, and alkyl halide solvents.
 前記ケトン系溶剤としては、例えば、メチルエチルケトン、アセトン、メチルイソブチルケトン、シクロヘキサノン、ジイソブチルケトン、イソホロン、2,3-ヘキサンジオン、4-メチル2,3ペンタンジオン、5-メチル-2,3-ヘキサンジオン、2,3-ペンタンジオン、2-ヘキサノン、シクロヘプタノン、シクロペンタノン、3-デカノン、2-ドデカノン、4-ヒドロキシ-4-メチル-2-ペンタノン(ジアセトンアルコール)、ジアセチル、2,4-ジメチル-3-ペンタノン、3,4-ジメチル-1、2-シクロペンタンジオン、3,5-ジメチル-1、2-シクロペンタンジオン、2-ヒドロキシ-6-イソプロピル-3-メチル-2-シクロヘキセノン、4-ヘプタノン、3-オクタノン、3-ヘプタノン、3-エチル-2-ヒドロキシ-2-シクロペンテノン、3-ノナノン、3-ヘキサノン、1-ペンテン-3-オン、2-ヘプタデカノン、2,3-ヘプタンジオン、3,4-ヘキサンジオン、6,10,14-トリメチル-2-ペンタデカノン、5-ヘキセン-2-オン、4-ヘキセン-3-オン、1-ヘキセン-3-オン、2-ヘキシルシクロペンタノン、1-ヒドロキシ-2-ブタノン、4-ヒドロキシ-2-ブタノン、2-ヒドロキシ-2-シクロヘキセノン、1-ヒドロキシ-2-ヘプタノン、3-ヒドロキシ-2-オクタノン、2-ヒドロキシ-3,4-ジメチル-2-シクロペンテノン、2-ヒドロキシ-3-ペンタノン、1-ヒドロキシ-4-メチル-2-ペンタノン、1-ヒドロキシ-5-メチル-2-ヘキサノン、3-ヒドロキシ-2-ペンタノン、6-メチル-3-ヘプタノン、2-メチル-3-(2-ペンテニル)-2-シクロペンテノン、4-イソプロピル-2-シクロヘキセノン、5-イソプロピル-3-ノネン-2,8-ジオン、5-イソプロピル-8-メチル-6,8-ノナジエン-2-オン、3-メチル-2-(cis-2-ペンテニル)-2-シクロペンテノン、3-メチル-2-(trans-2-ペンテニル)-2-シクロペンテノン、p-メンタン-2-オン、メントン、4-メチル-3-ペンテン-2-オン、2-ヘプタノン、2-ノナノン、2-オクタノン、メチルイオノン、5-メチル-2-ヘキサノン、3-メチル-2-ブタノン、2-ウンデカノン、2-デカノン、2-ペンタノン、2-トリデカノン、3-ブテン-2-オン、3-メチル-2-シクロペンテノン、6-メチル-2-ヘプタノン、5-メチル-2-ヘプテン-4-オン、3-メチル-2-ヘキサノン、3-メチル-2-ペンタノン、α-メチルイオノン、3-メチル-1,2-シクロヘキサンジオン、3-メチルシクロヘキサノン、3-メチルシクロペンタデカノン、6-メチル-3,5-ヘプタジエン-2-オン、6-メチル-5-ヘプテン-2-オン、3-メチル-2,4-ノナンジオン、4-ノナノン、3-ノネン-2-オン、3,5-オクタジエン-2-オン、1,5-オクタジエン-3-オン、3-オクテン-2-オン、1-オクテン-3-オン、2-オクテン-4-オン、4-オキソイソホロン、2-ペンタデカノン、3-ペンタノン、3-ペンテン-2-オン、4-ヒドロキシヘキサン-3-オン、1-(1-p-メンテン-6-イル)-1-プロパノン、2-プロピオニルピロール、ラズベリーケトン、4-tert-ブチルシクロヘキサノン、4-tert-アミルシクロヘキサノン、2-テトラデカノン、テトラメチルエチルシクロヘキセノン、12-トリデセン-2-オン、3,5,5-トリメチル-1,2-シクロヘキサンジオン、1-(2,4,4-トリメチル-2-シクロヘキセニル)-trans-2-ブテン-1-オン、2-ヒドロキシ-2,6,6-トリメチルシクロヘキサノン、2,2,6-トリメチルシクロヘキサノン、3,3,5-トリメチルシクロヘキサノン、2,3-ウンデカンジオン、6-ヒドロキシ-5-デカノン、ベルベノン、1,10-ウンデセン-2-オン、2,2,6-トリメチル-1,4-シクロヘキサンジオン、2,3-オクタンジオン、2,5-ヘキサンジオン、2-シクロヘキセノン、2-ヘプテン-4-オン、2-ヘキシリデンシクロペンタノン、2-メチル-3-ペンタノン、3,5,5-トリメチル-4-メチレン-2-シクロヘキセノン、4-(2,3,6-トリメチルフェニル)-3-ブテン-2-オン、4,5-オクタンジオン、4,7-ジメチル-6-オクテン-3-オン、5,6-デカンジオン、5-メチル-5-ヘキセン-2-オン、6-メチル-4,5-ヘプタジエン-2-オン、6-ヒドロキシカルボン、7-オクテン-2-オン、8-ノネン-2-オン、3-エチル-2-ヒドロキシ-4-メチル-2-シクロペンテノン、2-ヘキシル-2-シクロペンテノン、8-ヒドロキシ-4-p-メンテン-3-オン、5-ノナノンなどが挙げられる。これらケトン系溶剤の中でも、より優れた紫外線硬化性、耐黄変性などの効果を発現可能なことから、メチルエチルケトン、アセトン、メチルイソブチルケトン、シクロヘキサノン、ジイソブチルケトン、イソホロンが好ましい。 Examples of the ketone solvent include methyl ethyl ketone, acetone, methyl isobutyl ketone, cyclohexanone, diisobutyl ketone, isophorone, 2,3-hexanedione, 4-methyl-2,3-pentanedione, 5-methyl-2,3-hexanedione. 2,3-pentanedione, 2-hexanone, cycloheptanone, cyclopentanone, 3-decanone, 2-dodecanone, 4-hydroxy-4-methyl-2-pentanone (diacetone alcohol), diacetyl, 2,4 -Dimethyl-3-pentanone, 3,4-dimethyl-1,2-cyclopentanedione, 3,5-dimethyl-1,2-cyclopentanedione, 2-hydroxy-6-isopropyl-3-methyl-2-cyclohex Senon, 4-heptanone, 3-octanone, 3-heptanone, 3 Ethyl-2-hydroxy-2-cyclopentenone, 3-nonanone, 3-hexanone, 1-penten-3-one, 2-heptadecanone, 2,3-heptanedione, 3,4-hexanedione, 6,10, 14-trimethyl-2-pentadecanone, 5-hexen-2-one, 4-hexen-3-one, 1-hexen-3-one, 2-hexylcyclopentanone, 1-hydroxy-2-butanone, 4-hydroxy -2-butanone, 2-hydroxy-2-cyclohexenone, 1-hydroxy-2-heptanone, 3-hydroxy-2-octanone, 2-hydroxy-3,4-dimethyl-2-cyclopentenone, 2-hydroxy- 3-pentanone, 1-hydroxy-4-methyl-2-pentanone, 1-hydroxy-5-methyl-2-hexanone, 3-hydride Xyl-2-pentanone, 6-methyl-3-heptanone, 2-methyl-3- (2-pentenyl) -2-cyclopentenone, 4-isopropyl-2-cyclohexenone, 5-isopropyl-3-nonene-2 , 8-dione, 5-isopropyl-8-methyl-6,8-nonadien-2-one, 3-methyl-2- (cis-2-pentenyl) -2-cyclopentenone, 3-methyl-2- ( trans-2-pentenyl) -2-cyclopentenone, p-menthan-2-one, menthone, 4-methyl-3-penten-2-one, 2-heptanone, 2-nonanone, 2-octanone, methylionone, 5 -Methyl-2-hexanone, 3-methyl-2-butanone, 2-undecanone, 2-decanone, 2-pentanone, 2-tridecanone, 3-buten-2-one, 3 -Methyl-2-cyclopentenone, 6-methyl-2-heptanone, 5-methyl-2-hepten-4-one, 3-methyl-2-hexanone, 3-methyl-2-pentanone, α-methylionone, 3 -Methyl-1,2-cyclohexanedione, 3-methylcyclohexanone, 3-methylcyclopentadecanone, 6-methyl-3,5-heptadien-2-one, 6-methyl-5-hepten-2-one, 3 -Methyl-2,4-nonanedione, 4-nonanone, 3-nonen-2-one, 3,5-octadien-2-one, 1,5-octadien-3-one, 3-octen-2-one, -Octen-3-one, 2-octen-4-one, 4-oxoisophorone, 2-pentadecanone, 3-pentanone, 3-penten-2-one, 4-hydroxyhexane-3- ON, 1- (1-p-Menten-6-yl) -1-propanone, 2-propionylpyrrole, raspberry ketone, 4-tert-butylcyclohexanone, 4-tert-amylcyclohexanone, 2-tetradecanone, tetramethylethylcyclohexenone , 12-tridecene-2-one, 3,5,5-trimethyl-1,2-cyclohexanedione, 1- (2,4,4-trimethyl-2-cyclohexenyl) -trans-2-buten-1-one 2-hydroxy-2,6,6-trimethylcyclohexanone, 2,2,6-trimethylcyclohexanone, 3,3,5-trimethylcyclohexanone, 2,3-undecanedione, 6-hydroxy-5-decanone, berbenone, , 10-Undecen-2-one, 2,2,6-trimethyl-1 4-cyclohexanedione, 2,3-octanedione, 2,5-hexanedione, 2-cyclohexenone, 2-hepten-4-one, 2-hexylidenecyclopentanone, 2-methyl-3-pentanone, 3 , 5,5-trimethyl-4-methylene-2-cyclohexenone, 4- (2,3,6-trimethylphenyl) -3-buten-2-one, 4,5-octanedione, 4,7-dimethyl- 6-octen-3-one, 5,6-decanedione, 5-methyl-5-hexen-2-one, 6-methyl-4,5-heptadien-2-one, 6-hydroxycarbon, 7-octen-2 -One, 8-nonen-2-one, 3-ethyl-2-hydroxy-4-methyl-2-cyclopentenone, 2-hexyl-2-cyclopentenone, 8-hydroxy-4-p- Pentene-3-one, and 5-nonanone, and the like. Among these ketone solvents, methyl ethyl ketone, acetone, methyl isobutyl ketone, cyclohexanone, diisobutyl ketone, and isophorone are preferable because they can exhibit more excellent effects such as ultraviolet curability and yellowing resistance.
 前記アミド系溶剤としては、例えば、ジメチルホルムアミド、N,N-ジメチルアセトアミド、アルコキシ-N-イソプロピル-プロピオンアミド、ヒドロキシアルキルアミドなどの脂肪族アミド系溶剤、あるいはN-メチル-2-ピロリドン、N-エチル-ピロリドンなどの脂環族アミド系溶剤が挙げられる。これらアミド系溶剤の中でも、より優れた紫外線硬化性、耐黄変性などの効果を発現可能なことから、ジメチルホルムアミドが好ましい。 Examples of the amide solvent include aliphatic amide solvents such as dimethylformamide, N, N-dimethylacetamide, alkoxy-N-isopropyl-propionamide, and hydroxyalkylamide, or N-methyl-2-pyrrolidone, N- Examples thereof include alicyclic amide solvents such as ethyl-pyrrolidone. Among these amide solvents, dimethylformamide is preferable because it can exhibit more excellent effects such as ultraviolet curability and yellowing resistance.
 前記ハロゲン化アルキル系溶剤としては、フッ素系、塩素系、臭素系、ヨウ素系などの有機溶剤であり、これらの中でも、より優れた紫外線硬化性、耐黄変性などの効果を発現可能なことから、塩素系有機溶剤が好ましい。 The halogenated alkyl-based solvent is an organic solvent such as fluorine-based, chlorine-based, bromine-based, and iodine-based solvents, and among them, it is possible to express more excellent effects such as UV curability and yellowing resistance. Chlorinated organic solvents are preferred.
 前記塩素系有機溶剤としては、例えば、メチレンクロライド、クロロホルム、トリクロロエチレン、テトラクロロエチレン、四塩化炭素、1,2-ジクロロエタン、1,1,1-トリクロロエタンなどが挙げられ、好ましくは、メチレンクロライド、クロロホルムである。 Examples of the chlorinated organic solvent include methylene chloride, chloroform, trichloroethylene, tetrachloroethylene, carbon tetrachloride, 1,2-dichloroethane, 1,1,1-trichloroethane, and preferably methylene chloride and chloroform. .
 前記有機溶剤(F)の中でも、ケトン系溶剤が紫外線硬化性、耐黄変性の向上により効果的に作用するので、より好ましい。 Among the organic solvents (F), ketone solvents are more preferable because they act more effectively by improving ultraviolet curability and yellowing resistance.
 本発明の紫外線硬化性ウレタンアクリレート組成物は、前記ウレタンアクリレートオリゴマー(E)と前記芳香族骨格を有さない有機溶剤(F)とを混合して得られ、前記有機溶剤(F)の含有率は、0.2~80質量%の範囲である。 The ultraviolet curable urethane acrylate composition of the present invention is obtained by mixing the urethane acrylate oligomer (E) and the organic solvent (F) having no aromatic skeleton, and the content of the organic solvent (F). Is in the range of 0.2 to 80% by weight.
 本発明の紫外線硬化性ウレタンアクリレート組成物中の前記有機溶剤(F)の含有率がかかる範囲であれば、紫外線照射時に効率的且つ正常に紫外線硬化性ウレタンアクリレート組成物を硬化反応させることができ、硬化ムラを起こさずに、平坦で美麗な塗工が可能となる。 If the content rate of the organic solvent (F) in the ultraviolet curable urethane acrylate composition of the present invention is within such a range, the ultraviolet curable urethane acrylate composition can be efficiently and normally cured at the time of ultraviolet irradiation. Thus, a flat and beautiful coating can be achieved without causing uneven curing.
 前記芳香族骨格を有さない有機溶剤(F)の混合には、公知の方法を採用すればよく、特に限定しない。 For mixing the organic solvent (F) having no aromatic skeleton, a known method may be adopted, and there is no particular limitation.
 一般に使用される芳香族構造を有する光重合開始剤(例えば、1-ヒドロキシシクロヘキシルフェニルケトン等)は、芳香族構造の光吸収により分解しラジカルを発生し、分解した光重合開始剤は再結合して、その際、黄色度の高いキノイド構造になることが知られている。 Commonly used photopolymerization initiators having an aromatic structure (for example, 1-hydroxycyclohexyl phenyl ketone) are decomposed by light absorption of the aromatic structure to generate radicals, and the decomposed photopolymerization initiator is recombined. At that time, it is known that the quinoid structure has a high yellowness.
 本発明では、光重合開始剤は全く使用せず、且つ芳香族骨格を有さない有機溶剤(F)を用いることにより、光重合開始剤を用いた場合と同様に紫外線硬化反応を進行させているものと思われるが、その際、光重合開始剤を使用した場合とは異なり、キノイド構造は生成しないので、硬化物を黄変させることがなく、無黄変で透明性に優れる成形体や塗膜等を得ることができると推定している。 In the present invention, no photopolymerization initiator is used, and by using an organic solvent (F) having no aromatic skeleton, an ultraviolet curing reaction is allowed to proceed as in the case of using the photopolymerization initiator. However, unlike the case where a photopolymerization initiator is used, a quinoid structure is not formed, so that the cured product is not yellowed, is non-yellowing and has excellent transparency. It is estimated that a coating film etc. can be obtained.
 本発明の紫外線硬化性ウレタンアクリレート組成物が、前記水酸基を有する(メタ)アクリル化合物(D)に付加反応しなかった未反応の分子末端にイソシアネート基を有するウレタンプレポリマーと、付加反応の生成物である分子末端に(メタ)アクリロイル基を有するウレタンアクリレートオリゴマー(E)との混合物の場合には、製造工程のいずれかの段階で、硬化剤として、芳香族骨格のない官能基を有する反応性化合物を配合することができる。 The ultraviolet curable urethane acrylate composition of the present invention is a product of an addition reaction and a urethane prepolymer having an isocyanate group at an unreacted molecular terminal that has not undergone an addition reaction with the (meth) acrylic compound (D) having a hydroxyl group. In the case of a mixture with a urethane acrylate oligomer (E) having a (meth) acryloyl group at the molecular end, the reactivity having a functional group without an aromatic skeleton as a curing agent at any stage of the production process A compound can be blended.
 前記硬化剤としては、例えば、脂肪族ポリオール、脂環族ポリオール、脂肪族ポリアミン、脂環族ポリアミンなどが挙げられる。 Examples of the curing agent include aliphatic polyols, alicyclic polyols, aliphatic polyamines, and alicyclic polyamines.
 前記硬化剤として用いるポリオールの水酸基と、紫外線硬化性ウレタンアクリレート組成物中のイソシアネート基との当量比、即ち〔NCO/OH当量比〕としては、好ましくは0.7~20の範囲であり、より好ましくは0.7~10の範囲であり、更に好ましくは0.9~5.0の範囲であり、最も好ましくは0.9~1.1である。前記〔NCO/OH当量比〕がかかる範囲であれば、硬化反応を効率的且つ良好に進行させることができる。 The equivalent ratio of the hydroxyl group of the polyol used as the curing agent to the isocyanate group in the ultraviolet curable urethane acrylate composition, that is, the [NCO / OH equivalent ratio] is preferably in the range of 0.7 to 20, more The range is preferably from 0.7 to 10, more preferably from 0.9 to 5.0, and most preferably from 0.9 to 1.1. If the [NCO / OH equivalent ratio] is within such a range, the curing reaction can be efficiently and satisfactorily advanced.
 本発明の紫外線硬化性ウレタンアクリレート組成物には、前記ウレタンアクリレートオリゴマー(E)以外に、本発明の目的を逸脱しない範囲内で芳香族骨格を有さないアクリルモノマーを使用できる。前記アクリルモノマーとしては、例えば(メタ)アクリル酸;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、デシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレートなどのC1-24のアルキル(メタ)アクリレート;シクロヘキシル(メタ)アクリレート、シクロペンチル(メタ)アクリレートなどのシクロアルキル(メタ)アクリレート;ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ボルニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレートなどの橋架け環式(メタ)アクリレート;ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレートなどのヒドロキシC2-10アルキル(メタ)アクリレート又はC2-10アルカンジオールモノ(メタ)アクリレート;トリフルオロエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、ヘキサフルオロイソプロピル(メタ)アクリレートなどのフルオロC1-10アルキル(メタ)アクリレート;メトキシエチル(メタ)アクリレートなどのアルコキシアルキル(メタ)アクリレート;ポリエチレングリコールモノ(メタ)アクリレートなどのポリアルキレングリコールモノ(メタ)アクリレート;グリセリンモノ(メタ)アクリレートなどのアルカンポリオールモノ(メタ)アクリレート;2-ジメチルアミノエチル(メタ)アクリレート、2-ジエチルアミノエチル(メタ)アクリレート、2-t-ブチルアミノエチル(メタ)アクリレートなどのアミノ基を有する(メタ)アクリレート;グリシジル(メタ)アクリレート、アリル(メタ)アクリレート;エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,3-プロパンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレートなどのアルカンジオールジ(メタ)アクリレート;グリセリンジ(メタ)アクリレートなどのアルカンポリオールジ(メタ)アクリレート;ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレートなどのポリアルキレングリコールジ(メタ)アクリレート;脂肪酸変性ペンタエリスリトールなどの酸変性アルカンポリオールのジ(メタ)アクリレート;トリシクロデカンジメタノールジ(メタ)アクリレートなどの橋架け環式ジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートなどのアルカンポリオール(メタ)アクリレート;トリメチロールプロパン、グリセリンなどのアルカンポリオールのC2-4アルキレンオキサイド付加体のトリ(メタ)アクリレート;トリス(2-ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレートなどのトリアジン環を有するトリ(メタ)アクリレートなどが挙げられる。これらは単独使用でも2種類以上組み合わせて使用してもよい。 In addition to the urethane acrylate oligomer (E), an acrylic monomer having no aromatic skeleton can be used in the ultraviolet curable urethane acrylate composition of the present invention within a range not departing from the object of the present invention. Examples of the acrylic monomer include (meth) acrylic acid; methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, and sec-butyl (meth) acrylate. , T-butyl (meth) acrylate, hexyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, decyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) C1-24 alkyl (meth) acrylate such as acrylate; cycloalkyl (meth) acrylate such as cyclohexyl (meth) acrylate and cyclopentyl (meth) acrylate; dicyclopenta Bridged structures such as ru (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, bornyl (meth) acrylate, isobornyl (meth) acrylate, tricyclodecanyl (meth) acrylate (Meth) acrylate; hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate and other hydroxy C2-10 alkyl (meth) acrylate or C2-10 alkanediol mono (meth) acrylate; trifluoro Fluoro C1-10 alkyl (meth) acrylates such as ethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate, hexafluoroisopropyl (meth) acrylate; Alkoxyalkyl (meth) acrylates such as toxiethyl (meth) acrylate; polyalkylene glycol mono (meth) acrylates such as polyethylene glycol mono (meth) acrylate; alkane polyol mono (meth) acrylates such as glycerin mono (meth) acrylate; (Meth) acrylates having amino groups such as dimethylaminoethyl (meth) acrylate, 2-diethylaminoethyl (meth) acrylate, 2-t-butylaminoethyl (meth) acrylate; glycidyl (meth) acrylate, allyl (meth) acrylate Ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,3-propanediol di (meth) acrylate, 1,4-butanediol di ( Alkanediol di (meth) acrylates such as meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate; alkane polyol di (meth) acrylates such as glycerin di (meth) acrylate; Polyalkylene glycol di (meth) acrylates such as diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate and polypropylene glycol di (meth) acrylate ; Di (meth) acrylates of acid-modified alkane polyols such as fatty acid-modified pentaerythritol; Bridges such as tricyclodecane dimethanol di (meth) acrylate Cyclic di (meth) acrylate, trimethylolpropane tri (meth) acrylate, glycerin tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, tetramethylolmethane tetra (meth) acrylate, di Alkane polyol (meth) acrylates such as pentaerythritol penta (meth) acrylate and dipentaerythritol hexa (meth) acrylate; tri (meth) acrylates of C2-4 alkylene oxide adducts of alkane polyols such as trimethylolpropane and glycerol; And tri (meth) acrylate having a triazine ring such as (2-hydroxyethyl) isocyanurate tri (meth) acrylate. These may be used alone or in combination of two or more.
 本発明の紫外線硬化性ウレタンアクリレート組成物には、上記した原料以外にも、各種添加剤を本発明の目的を逸脱しない範囲内で、製造工程の何れの段階においても用いることができる。 In addition to the raw materials described above, various additives can be used in the ultraviolet curable urethane acrylate composition of the present invention at any stage of the production process within a range not departing from the object of the present invention.
 かかる添加剤としては、例えば、整泡剤、酸化防止剤、脱泡剤、砥粒、充填剤、顔料、染料、着色剤、増粘剤、界面活性剤、難燃剤、可塑剤、滑剤、帯電防止剤、耐熱安定剤、粘着付与剤、硬化触媒、安定剤、シランカップリング剤、ワックス等の公知のものが使用できる。また、必要に応じて、ブレンド用樹脂として、従来公知の熱可塑性樹脂、熱硬化性樹脂等を本発明の目的を阻害しない範囲内で適宜、選択して使用することができる。尚、前記添加剤はほんの一例であって、本発明の目的を阻害しない限り、特にその種類及び使用量を限定するものではない。 Examples of such additives include foam stabilizers, antioxidants, defoamers, abrasive grains, fillers, pigments, dyes, colorants, thickeners, surfactants, flame retardants, plasticizers, lubricants, charging agents. Known agents such as an inhibitor, a heat stabilizer, a tackifier, a curing catalyst, a stabilizer, a silane coupling agent, and a wax can be used. Further, as necessary, conventionally known thermoplastic resins, thermosetting resins, and the like can be appropriately selected and used as the blending resin within a range not impairing the object of the present invention. In addition, the said additive is only an example, As long as the objective of this invention is not inhibited, the kind and usage-amount are not specifically limited.
 前記粘着付与剤としては、例えば、ロジン系樹脂、ロジンエステル系樹脂、水添ロジンエステル系樹脂、テルペン系樹脂、テルペンフェノール系樹脂、水添テルペン系樹脂や、石油樹脂としてC5系の脂肪族樹脂、C9系の芳香族樹脂、およびC5系とC9系の共重合樹脂等を使用することができる。 Examples of the tackifier include rosin resins, rosin ester resins, hydrogenated rosin ester resins, terpene resins, terpene phenol resins, hydrogenated terpene resins, and C 5 aliphatics as petroleum resins. Resins, C 9 aromatic resins, C 5 and C 9 copolymer resins, and the like can be used.
 前記可塑剤としては、例えば、ジブチルフタレート、ジオクチルフタレート、ジシクロヘキシルフタレート、ジイソオクチルフタレート、ジイソデシルフタレート、ジベンジルフタレート、ブチルベンジルフタレート、トリオクチルホスフェート、エポキシ系可塑剤、トルエン-スルホアミド、クロロパラフィン、アジピン酸エステル、ヒマシ油等を使用することができる。メチルアシッドホスフェート(AP-1)、アクリル系表面調整剤(BYK-361N)などが挙げられる。 Examples of the plasticizer include dibutyl phthalate, dioctyl phthalate, dicyclohexyl phthalate, diisooctyl phthalate, diisodecyl phthalate, dibenzyl phthalate, butyl benzyl phthalate, trioctyl phosphate, epoxy plasticizer, toluene-sulfoamide, chloroparaffin, adipine Acid esters, castor oil, and the like can be used. Examples include methyl acid phosphate (AP-1) and acrylic surface conditioner (BYK-361N).
 前記安定剤としては、例えば、ヒンダードフェノール系化合物、ベンゾトリアゾール系化合物、ヒンダードアミン系化合物等を使用することができる。 As the stabilizer, for example, hindered phenol compounds, benzotriazole compounds, hindered amine compounds and the like can be used.
 前記充填材としては、例えば、ケイ酸誘導体、タルク、金属粉、炭酸カルシウム、クレー、カーボンブラック等を使用することができる。 As the filler, for example, silicic acid derivatives, talc, metal powder, calcium carbonate, clay, carbon black and the like can be used.
 本発明の紫外線硬化性ウレタンアクリレート組成物は、光重合開始剤を全く使用せず、且つ、希釈溶剤として特定の有機溶剤を含有することにより、優れた紫外線硬化性を発現することができる。 The ultraviolet curable urethane acrylate composition of the present invention does not use a photopolymerization initiator at all, and can exhibit excellent ultraviolet curability by containing a specific organic solvent as a diluent solvent.
 本発明の紫外線硬化性ウレタンアクリレート組成物を、紫外線照射で硬化させる場合には、例えば、水銀灯(低圧、高圧、超高圧等)、水素ランプ、重水素ランプ、ハロゲンランプ、キセノンランプ、カーボンアーク灯、蛍光灯、He-Cdレーザー等の種々の光源が使用でき、それらの中でも高圧水銀灯が好ましい。 When the ultraviolet curable urethane acrylate composition of the present invention is cured by ultraviolet irradiation, for example, a mercury lamp (low pressure, high pressure, ultrahigh pressure, etc.), hydrogen lamp, deuterium lamp, halogen lamp, xenon lamp, carbon arc lamp. Various light sources such as a fluorescent lamp and a He—Cd laser can be used, and among them, a high-pressure mercury lamp is preferable.
 本発明の紫外線硬化性ウレタンアクリレート組成物を用いて、後述の方法に従い作製したフィルムを用いてJIS K 0129に準拠し動的粘弾性分析により測定したtanδピーク温度(損失係数ピーク温度)は、-8~45℃の範囲であり、好ましくは-5~40℃の範囲であり、より好ましくは0~35℃の範囲である。前記フィルムのtanδピーク温度がかかる範囲であれば、一度ついた傷が素早く回復して元の状態に自然に戻る機能、即ち、優れた自己修復性を発現できる。 The tan δ peak temperature (loss coefficient peak temperature) measured by dynamic viscoelasticity analysis in accordance with JIS K 0129 using a film prepared according to the method described later using the ultraviolet curable urethane acrylate composition of the present invention is − The range is from 8 to 45 ° C, preferably from -5 to 40 ° C, more preferably from 0 to 35 ° C. If the tan δ peak temperature of the film is within such a range, it is possible to express a function of quickly recovering a scratch once attached and returning it to its original state, that is, excellent self-repairability.
 しかしながら、前記フィルムのtanδピーク温度が45℃を超える場合には、薄膜成形体の弾性に乏しく、傷の回復に長い時間を要したり、あるいは一度ついた傷が充分に回復しないおそれがある。一方、前記フィルムのtanδピーク温度が-8℃未満の場合には、硬化物の強度が不足するため自己修復性が不充分となったり、あるいは薄膜成形体の表面に粘着性が生じやすくなり物品の表面に接触させて使用できないおそれがある。 However, when the tan δ peak temperature of the film exceeds 45 ° C., the thin film molded article has poor elasticity, and it may take a long time to recover the scratch, or the scratch once attached may not be sufficiently recovered. On the other hand, if the tan δ peak temperature of the film is less than −8 ° C., the strength of the cured product is insufficient, so that the self-repairing property is insufficient, or the surface of the thin film molded article tends to become sticky. There is a possibility that it cannot be used in contact with the surface.
<薄膜成形体及び光学フィルム>
 本発明の薄膜成形体は、基材上に前記紫外線硬化性ウレタンアクリレート組成物の硬化塗膜を有する。
<Thin film molded body and optical film>
The thin film molded article of the present invention has a cured coating film of the ultraviolet curable urethane acrylate composition on a substrate.
 本発明の薄膜成形体は、基材上に前記紫外線硬化性ウレタンアクリレート組成物を塗工して自己修復性を有する最表層を形成し、次いで、前記最表層を紫外線硬化させて得ることができる。前記最表層は、優れた自己修復性、透明性、耐黄変性、粘弾性などの性能を発現できる。 The thin film molded body of the present invention can be obtained by coating the ultraviolet curable urethane acrylate composition on a substrate to form an outermost layer having self-healing properties, and then curing the outermost layer with ultraviolet rays. . The outermost layer can exhibit excellent self-repairing properties, transparency, yellowing resistance, viscoelasticity and other performances.
 前記紫外線硬化性ウレタンアクリレート組成物は、光重合開始剤を全く含有しないにも拘わらず、紫外線照射により優れた紫外線硬化性を発現でき、且つ得られる塗膜や硬化物の経時的な黄変や接触物に対する汚染がなく、塗工性、成形性、透明性などの優れた性能を有しているので、例えば、光学用部材(例えばフィルム、シート)の他、繊維、コーティング材料、電子電機材料、食品パッケージ、化粧品パッケージ、加飾フィルムなどの広範囲の用途に有用である。 Although the ultraviolet curable urethane acrylate composition does not contain any photopolymerization initiator, it can exhibit excellent ultraviolet curability by ultraviolet irradiation, and the coating film or cured product obtained can be yellowed over time. Since there is no contamination to contact objects and it has excellent performance such as coating property, moldability, and transparency, for example, in addition to optical members (for example, films and sheets), fibers, coating materials, electronic electrical materials It is useful for a wide range of applications such as food packaging, cosmetic packaging, and decorative films.
 また、本発明の薄膜成形体において、前記硬化塗膜の膜厚は、好ましくは10~800μmの範囲である。 In the thin film molded product of the present invention, the thickness of the cured coating film is preferably in the range of 10 to 800 μm.
 尚、本発明では、日本国内で一般に呼称されている基準に従い、厚さが200μm以下の部材を「フィルム」、厚さが200μmを超える部材を「シート」と定義する。 In the present invention, a member having a thickness of 200 μm or less is defined as a “film” and a member having a thickness exceeding 200 μm is defined as a “sheet” in accordance with a standard generally called in Japan.
 前記薄膜成形体としては、例えば、自己修復フィルム、自己修復塗料、導光フィルム(ライトガイドフィルム)、光学フィルム、表面保護フィルム、導光シート、導光繊維などが挙げられる。 Examples of the thin film molded body include self-repairing films, self-repairing paints, light guide films (light guide films), optical films, surface protective films, light guide sheets, and light guide fibers.
 本発明の光学フィルムは、前記紫外線硬化性ウレタンアクリレート組成物の硬化塗膜を有するフィルムであって、前記硬化塗膜の膜厚が、好ましくは10~200μmの範囲であり、より好ましくは50~200μmの範囲であり、且つ、JIS K7361-1に準拠して測定した全光線透過率が92.0%以上である。フィルムの膜厚と全光線透過率がかかる範囲であれば、優れた光透過性を発現でき、例えば、導光フィルム(ライトガイドフィルム)、フラットディスプレイパネル用光学フィルム、反射防止フィルム(防眩フィルム、アンチグレア・フィルム)、配向フィルム、偏光フィルム、偏光層保護フィルム、位相差フィルム(光学補償フィルム)、視野角向上フィルム(ワイドビュー・フィルム)、輝度向上フィルム、電磁波シールドフィルム、遮光フィルム、特定周波数選択遮断フィルム(透明電波遮断フィルム、赤外線遮断フィルム、紫外線遮断フィルム)、光学ローパスフィルター(OLPF)フィルム、レンズフィルターなどの光学用材料に好適に使用できる。 The optical film of the present invention is a film having a cured coating film of the ultraviolet curable urethane acrylate composition, and the thickness of the cured coating film is preferably in the range of 10 to 200 μm, more preferably 50 to The total light transmittance measured in accordance with JIS K7361-1 is 92.0% or more in the range of 200 μm. As long as the film thickness and the total light transmittance are within the range, excellent light transmittance can be exhibited. For example, a light guide film (light guide film), an optical film for a flat display panel, an antireflection film (antiglare film) , Anti-glare film), alignment film, polarizing film, polarizing layer protective film, retardation film (optical compensation film), viewing angle improving film (wide view film), brightness improving film, electromagnetic shielding film, light shielding film, specific frequency It can be suitably used for optical materials such as a selective blocking film (transparent radio wave blocking film, infrared blocking film, ultraviolet blocking film), optical low pass filter (OLPF) film, lens filter and the like.
<薄膜成形体の製造方法>
 本発明の薄膜成形体の製造方法としては、例えば、離型基材上に本発明の紫外線硬化性ウレタンアクリレート組成物を塗工して、紫外線照射し硬化後、前記芳香族骨格を有さない有機溶剤(F)を揮発させて硬化塗膜を形成させて、好ましくは10~1000μmの範囲、より好ましくは10~800μmの範囲、更に好ましくは50~800μmの範囲、最も好ましくは10~200μmの薄い厚さの薄膜成形体(例えば、フィルム、シートなど)を得る方法などが挙げられる。
<Manufacturing method of thin film molded body>
As a method for producing the thin film molded body of the present invention, for example, the ultraviolet curable urethane acrylate composition of the present invention is applied onto a release substrate, and after irradiation with ultraviolet rays and curing, it does not have the aromatic skeleton. The organic solvent (F) is volatilized to form a cured coating film, preferably in the range of 10 to 1000 μm, more preferably in the range of 10 to 800 μm, still more preferably in the range of 50 to 800 μm, most preferably in the range of 10 to 200 μm. Examples thereof include a method for obtaining a thin-film molded body (for example, a film, a sheet, etc.) having a small thickness.
 前記基材としては、例えば、金属(板、箔など)、プラスチック(板、シート、フィルムなど)、紙(離型紙など)、ガラス、陶器、木版(化粧版など)、セラミック、布などが挙げられ、特に限定しない。 Examples of the substrate include metals (plates, foils, etc.), plastics (plates, sheets, films, etc.), papers (release papers, etc.), glass, ceramics, wood plates (decorative plates, etc.), ceramics, cloths, and the like. There is no particular limitation.
 本発明の紫外線硬化性ウレタンアクリレート組成物が、前記イソシアネート基末端ウレタンプレポリマー(C)と(メタ)アクリロイル基を有するウレタンアクリレートオリゴマー(E)との混合物の場合には、あらかじめ、硬化剤として、芳香族骨格のない官能基を有する反応性化合物を配合して、例えば、80~140℃の範囲で加熱し硬化させて、前記有機溶剤(F)を揮発させることができる。 When the ultraviolet curable urethane acrylate composition of the present invention is a mixture of the isocyanate group-terminated urethane prepolymer (C) and the urethane acrylate oligomer (E) having a (meth) acryloyl group, as a curing agent in advance, The organic solvent (F) can be volatilized by blending a reactive compound having a functional group having no aromatic skeleton and heating and curing in a range of 80 to 140 ° C., for example.
 本発明の薄膜成形体の製造方法について一例を示すならば、下記に示す如き〔工程1〕~〔工程2〕の一連の工程を含む製造方法を挙げることができる。 If an example is shown about the manufacturing method of the thin film molded object of this invention, the manufacturing method containing the series of processes of [the process 1]-[the process 2] as shown below can be mentioned.
〔工程1〕紫外線硬化性ウレタンアクリレート組成物の調整
 反応容器に溶融状態の芳香族骨格を有さないポリオール(A)を仕込み、攪拌を開始する。次いで、所定量の芳香族骨格を有さないポリイソシアネート(B)を発熱に注意しながら仕込み、内温を所定温度に上昇させた後、該温度で所定時間攪拌し、イソシアネート基末端ウレタンプレポリマー(C)を得る。
 次いで、重合禁止剤と、水酸基を有する(メタ)アクリル化合物(D)を所定量加え、所定時間反応を継続した後、目的のウレタンアクリレートオリゴマー(E)を得る。
 その後、希釈溶剤として芳香族骨格を有さない有機溶剤(F)を加えて溶融粘度を調整して、本発明の紫外線硬化性ウレタンアクリレート組成物を得る。
[Step 1] Preparation of UV-curable urethane acrylate composition A reaction vessel is charged with a polyol (A) having no molten aromatic skeleton, and stirring is started. Next, a predetermined amount of polyisocyanate (B) having no aromatic skeleton was charged while paying attention to heat generation, the internal temperature was raised to a predetermined temperature, and the mixture was stirred at the temperature for a predetermined time to obtain an isocyanate group-terminated urethane prepolymer. (C) is obtained.
Next, a predetermined amount of a polymerization inhibitor and a (meth) acrylic compound (D) having a hydroxyl group are added and the reaction is continued for a predetermined time, and then the target urethane acrylate oligomer (E) is obtained.
Then, the organic solvent (F) which does not have an aromatic skeleton is added as a dilution solvent, and melt viscosity is adjusted, and the ultraviolet curable urethane acrylate composition of this invention is obtained.
〔工程2〕薄膜成形体の製造
 前記〔工程1〕で得た紫外線硬化性ウレタンアクリレート組成物を離型処理の施されたポリエチレンテレフタレート(PET)フィルム上へナイフコーターにより、目的とする薄膜成形体がフィルムの場合には200μm以下の厚さで塗工して、あるいは薄膜成形体がシートの場合には200μmを超える厚さで塗工する。次いで、窒素パージをしながら紫外線照射装置(例えば高圧水銀灯)で紫外線を照射して硬化させる。
 更に、通常60℃で所定時間加熱養生し、前記有機溶剤(F)を揮発させて、本発明の薄膜成形体であるフィルムを得ることができる。
[Step 2] Manufacture of Thin Film Molded Object The target thin film molded body is formed on the polyethylene terephthalate (PET) film subjected to the mold release treatment by the knife coater from the ultraviolet curable urethane acrylate composition obtained in [Step 1]. When the film is a film, it is applied with a thickness of 200 μm or less, or when the thin film molded body is a sheet, it is applied with a thickness exceeding 200 μm. Next, the substrate is cured by irradiating with ultraviolet rays with an ultraviolet irradiation device (for example, a high-pressure mercury lamp) while purging with nitrogen.
Furthermore, the film which is the thin film molded body of the present invention can be obtained by heating and curing at 60 ° C. for a predetermined time to volatilize the organic solvent (F).
 以下、本発明を実施例により、更に具体的に説明するが、本発明の範囲はこれら実施例のみに限定されるものではない。
 また、本発明では、特に断りのない限り、「%」は「質量%」である。
 尚、本発明で用いた測定方法及び評価方法は、以下の通りである。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited only to these examples.
In the present invention, “%” is “mass%” unless otherwise specified.
The measurement method and evaluation method used in the present invention are as follows.
〔イソシアネート基末端ウレタンプレポリマー(C)のイソシアネート当量の測定方法〕
 本発明で用いるイソシアネート基末端ウレタンプレポリマー(C)のイソシアネート当量(単位:g/eq、即ち、g/当量)は、JIS K 7301に従い測定した値である。
 具体的には、得られたウレタンプレポリマーの試料を三角フラスコに精秤して、乾燥トルエンで溶解して、ジ-n-ブチルアミン溶液10mlを加えた後、均一にしてから静置し、0.5規定塩酸の標準溶液でブロムクレゾールグリーンを指示薬として用いて中和滴定にて定量した。
[Method for measuring isocyanate equivalent of isocyanate group-terminated urethane prepolymer (C)]
The isocyanate equivalent (unit: g / eq, that is, g / equivalent) of the isocyanate group-terminated urethane prepolymer (C) used in the present invention is a value measured according to JIS K 7301.
Specifically, the obtained urethane prepolymer sample was precisely weighed in an Erlenmeyer flask, dissolved in dry toluene, added with 10 ml of a di-n-butylamine solution, homogenized, and allowed to stand. Quantified by neutralization titration using bromcresol green as an indicator with a standard solution of 5N hydrochloric acid.
〔分子末端に(メタ)アクリロイル基を有するウレタンアクリレートオリゴマー(E)の(メタ)アクリル当量の計算方法〕
 本発明で記載する(メタ)アクリル当量は、原料の物質収支から計算され、(メタ)アクリロイル基1モルが含有されるウレタンアクリレートオリゴマー(E)の分子量(g/eq)であり、実施例及び比較例で得た組成物においては、(メタ)アクリロイル基濃度(mol/g)の逆数で表される値である。
[Calculation method of (meth) acryl equivalent of urethane acrylate oligomer (E) having (meth) acryloyl group at the molecular terminal]
The (meth) acrylic equivalent described in the present invention is the molecular weight (g / eq) of the urethane acrylate oligomer (E) that is calculated from the material balance of the raw material and contains 1 mol of (meth) acryloyl groups. In the composition obtained in the comparative example, the value is represented by the reciprocal of the (meth) acryloyl group concentration (mol / g).
〔紫外線硬化性(タックフリー)の評価方法と判定基準〕
 実施例及び比較例で得られた紫外線硬化性ウレタンアクリレート組成物を離型処理の施されたポリエチレンテレフタレート(PET)フィルム上へナイフコーターにより塗工し塗膜を形成して、120w/cmの高圧水銀灯1灯、窒素パージ装置を有する紫外線照射装置「Nパージ式コンベア付UV照射装置」(株式会社GSユアサ製)で照射光量0.8J/cm、窒素雰囲気下(酸素濃度1%)の条件下で紫外線を照射して、前記塗膜を硬化させた。
 その後、更に温度60±5℃で10分間加熱して使用した有機溶剤を揮発させて、硬化塗膜を基材上に有する薄膜成形体であるフィルム(厚さ100μmのもの)を得た。
 前記フィルムの表面(最表層)のベタツキの有無を指触で確認し、下記の基準に従い評価した。
 紫外線硬化性(タックフリー)の判定基準
  ○:ベタツキがなく、指に液状物が付着しない場合、紫外線硬化性に優れる。
  ×:ベタツキがあり、指に液状物が付着する場合、紫外線硬化性に劣る。
[Evaluation method and criteria for UV curability (tack-free)]
The UV curable urethane acrylate compositions obtained in the examples and comparative examples were coated on a polyethylene terephthalate (PET) film subjected to a release treatment with a knife coater to form a coating film, and a high pressure of 120 w / cm mercury lamp 1 lamp, an ultraviolet irradiation apparatus "N UV irradiation apparatus with purge conveyor" having a nitrogen purge device light quantity 0.8 J / cm 2 at (Co., Ltd. GS Yuasa), under a nitrogen atmosphere (oxygen concentration of 1%) The coating film was cured by irradiating ultraviolet rays under conditions.
Thereafter, the used organic solvent was further volatilized by heating at a temperature of 60 ± 5 ° C. for 10 minutes to obtain a film (thickness of 100 μm) as a thin film molded body having a cured coating film on the substrate.
The presence or absence of stickiness on the surface (outermost layer) of the film was confirmed by touch and evaluated according to the following criteria.
Criteria for UV Curing (Tack Free) ○: No stickiness and excellent UV curability when no liquid adheres to the finger.
X: There is stickiness, and when the liquid adheres to the finger, it is inferior in ultraviolet curability.
〔フィルムの表面硬度の測定方法〕
 実施例及び比較例で作製したフィルムを用いて、内温23℃、相対湿度50%に調整した恒温恒湿室にて、鉛筆硬度計(荷重750g)で傷つけ後20秒でのフィルムの表面状態を目視で確認し、傷が確認できない限界の鉛筆硬さを表面硬度とした。
[Measurement method of film surface hardness]
Using the films produced in Examples and Comparative Examples, the surface condition of the film in 20 seconds after being damaged with a pencil hardness meter (load 750 g) in a constant temperature and humidity chamber adjusted to an internal temperature of 23 ° C. and a relative humidity of 50%. Was confirmed visually, and the limit pencil hardness at which scratches could not be confirmed was defined as the surface hardness.
〔フィルムの粘弾性の評価方法と判定基準〕
 下記の手順に従い、実施例及び比較例で作製したフィルムを用いて、JIS K 0129に準拠し動的粘弾性分析によりtanδピーク温度(損失係数ピーク温度)を測定して、粘弾性を評価した。
 前記実施例及び比較例で得た組成物を離型ポリエチレンテレフタレート板又はポリカーボネート板上にナイフコーターにより塗工し塗膜を形成した。次いで、紫外線照射機を用いて、窒素雰囲気下、塗膜に紫外線を照射して、前記塗膜を硬化させた。
 その後、更に温度60±5℃で10分間加熱して使用した有機溶剤を揮発させて、硬化塗膜を基材上に有する薄膜成形体であるフィルム(厚さ100μmのもの)を得た。
 前記組成物を用いて作製したフィルムの貯蔵弾性率(E’)及び損失弾性率(E”)を、粘弾性スペクトロメータ(型式:DMS6100、エスアイアイ・ナノテクノロジー株式会社製)を使用して、昇温速度5℃/分、周波数1Hzの条件下、引張モードで測定した。E’/E”をtanδとし、tanδが最大値となる温度を「tanδピーク温度(℃)」として、下記の基準に従い粘弾性を評価した。
 フィルムの粘弾性の判断基準
  ○:tanδピーク温度が0~35℃の場合。
  ×:tanδピーク温度が0℃未満、又は35℃を超える場合。
[Evaluation method and criteria for film viscoelasticity]
Viscoelasticity was evaluated by measuring tan δ peak temperature (loss coefficient peak temperature) by dynamic viscoelasticity analysis according to JIS K 0129 using the films prepared in Examples and Comparative Examples according to the following procedure.
The compositions obtained in the above Examples and Comparative Examples were coated on a release polyethylene terephthalate plate or polycarbonate plate with a knife coater to form a coating film. Next, the coating film was cured by irradiating the coating film with ultraviolet rays under a nitrogen atmosphere using an ultraviolet irradiator.
Thereafter, the used organic solvent was further volatilized by heating at a temperature of 60 ± 5 ° C. for 10 minutes to obtain a film (thickness of 100 μm) as a thin film molded body having a cured coating film on the substrate.
Using a viscoelasticity spectrometer (model: DMS6100, manufactured by SII Nano Technology Co., Ltd.), the storage elastic modulus (E ′) and loss elastic modulus (E ″) of the film prepared using the composition were Measurement was performed in a tensile mode under conditions of a heating rate of 5 ° C./min and a frequency of 1 Hz. E ′ / E ″ was tan δ, and the temperature at which tan δ was the maximum value was “tan δ peak temperature (° C.)”. The viscoelasticity was evaluated according to
Criteria for judging viscoelasticity of film ○: When tan δ peak temperature is 0 to 35 ° C.
X: When tan-delta peak temperature is less than 0 degreeC or exceeds 35 degreeC.
〔フィルムの自己修復性の評価方法と判定基準〕
 本発明でいう「自己修復性」とは、薄膜成形体(例えばフィルム、シートなど)の表面(最表層)に生じた傷が経時で復元し得る特性であり、下記方法により評価し判定した。
 温度23℃、相対湿度50%に調整した恒温恒湿室において、得られたフィルムの表面(最表層)に500gに加重した真鍮ブラシ(線直0.1mm)で傷をつけた直後から、目視で傷が確認できなくなるまでの回復時間(秒)を測定し、下記の基準に従い自己修復性を判定した。
 自己修復性の判断基準
  ○ :回復時間が20秒以内の場合、自己修復性に優れる。
  × :回復時間が20秒を超える場合、自己修復性に劣る。
  ××:回復しない場合、自己修復性なし。
[Evaluation method and criteria for self-healing of film]
The “self-repairing property” as used in the present invention is a characteristic that a scratch generated on the surface (outermost layer) of a thin film molded body (for example, a film, a sheet, etc.) can be restored over time, and was evaluated and determined by the following method.
In a constant temperature and humidity chamber adjusted to a temperature of 23 ° C. and a relative humidity of 50%, immediately after the surface (outermost layer) of the obtained film was scratched with a brass brush weighted to 500 g (straight line 0.1 mm), The recovery time (seconds) until scratches could not be confirmed was measured, and self-repairability was determined according to the following criteria.
Judgment criteria for self-repairability ○: When the recovery time is within 20 seconds, the self-repairability is excellent.
X: When recovery time exceeds 20 seconds, it is inferior to self-repair property.
XX: When not recovering, there is no self-repairing property.
〔フィルムの初期黄色度(YI)の評価方法と判定基準〕
 実施例及び比較例で作製したフィルムの厚さ方向のイエローインデックス(YI)をJIS Z8722に準拠して多光源分光測色計(スガ試験機株式会社製)により測定し、下記の基準に従い評価した。
 初期黄色度の判定基準
  ○:厚さ方向のYIが0.5以下の場合、初期黄色度に優れる。
  ×:厚さ方向のYIが0.5を超える場合、初期黄色度に劣る。
[Evaluation Method and Criteria for Initial Yellowness of Film (YI 0 )]
The yellow index (YI 0 ) in the thickness direction of the films produced in Examples and Comparative Examples was measured with a multi-light source spectrocolorimeter (manufactured by Suga Test Instruments Co., Ltd.) in accordance with JIS Z8722 and evaluated according to the following criteria. did.
Judgment criteria for initial yellowness ○: When YI 0 in the thickness direction is 0.5 or less, the initial yellowness is excellent.
X: When YI 0 in the thickness direction exceeds 0.5, the initial yellowness is inferior.
〔フィルムの耐黄変性の評価方法と判定基準〕
 前記の初期黄色度の評価に用いたフィルムを使用して、乾燥機中で120℃×72時間暴露し、暴露後の黄色度(イエローインデックス:YI)をJIS Z8722に準拠して多光源分光測色計(スガ試験機株式会社製)により測定し、下記の基準に従い評価した。
 耐黄変性の判定基準
  ○:厚さ方向のYIが0.7以下の場合、耐黄変性に優れる。
  ×:厚さ方向のYIが0.7を超える場合、耐黄変性に劣る。
[Evaluation method and criteria for yellowing resistance of film]
Using the film used for the evaluation of the initial yellowness, the film was exposed to 120 ° C. for 72 hours in a dryer, and the yellowness (yellow index: YI 1 ) after the exposure was measured in accordance with JIS Z8722. It was measured with a colorimeter (manufactured by Suga Test Instruments Co., Ltd.) and evaluated according to the following criteria.
Judgment criteria for yellowing resistance ○: When YI 1 in the thickness direction is 0.7 or less, the yellowing resistance is excellent.
×: If the thickness direction YI 1 exceeds 0.7, less yellowing resistance.
〔フィルムの透明性の評価方法と判定基準〕
 実施例及び比較例で作製したフィルムの全光線透過率(%)を、日本電色工業株式会社製NDH-2000を使用し、JIS K7361-1に準拠して測定し下記の基準に従い評価した。
 透明性の判定基準
  ○:全光線透過率が92.0%以上である場合、透明性に優れる。
  ×:全光線透過率が92.0%未満である場合、透明性に劣る。
[Film transparency evaluation method and criteria]
The total light transmittance (%) of the films prepared in Examples and Comparative Examples was measured according to JIS K7361-1 using NDH-2000 manufactured by Nippon Denshoku Industries Co., Ltd. and evaluated according to the following criteria.
Criteria for transparency ○: When the total light transmittance is 92.0% or more, the transparency is excellent.
X: When the total light transmittance is less than 92.0%, the transparency is poor.
〔合成例1〕
≪分子末端に(メタ)アクリロイル基を有するウレタンアクリレートオリゴマー(E1)の合成≫
 反応容器に、芳香族骨格を有さないポリオール(A)として、50℃の溶融状態のポリオキシテトラメチレングリコール(商品名:PTMG-1000、三菱化学株式会社製、Mn=1000。)50質量部を仕込み、攪拌を開始した。
 次いで、芳香族骨格を有さないポリイソシアネート(B)としてヘキサメチレンジイソシアネート(以下「HDI」と略す。)のヌレート変性体(イソシアネート当量=204g/eq)を100質量部加え、発熱に注意しながら内温を85℃に上昇させた後、温度を保ちながら3時間攪拌し、分子末端にイソシアネート基を有するウレタンプレポリマー(C1)を得た。
 更に、水酸基を有する(メタ)アクリル化合物(D)として4-ヒドロキシブチルアクリレート(以下「4HBA」と略す。)57質量部を発熱に注意しながら序々に加えて、85℃にて2時間攪拌して、ウレタンアクリレートオリゴマー(E1)を得た。
[Synthesis Example 1]
≪Synthesis of urethane acrylate oligomer (E1) having (meth) acryloyl group at molecular end≫
50 parts by mass of polyoxytetramethylene glycol (trade name: PTMG-1000, manufactured by Mitsubishi Chemical Corporation, Mn = 1000) in a molten state at 50 ° C. as a polyol (A) having no aromatic skeleton in a reaction vessel. And stirring was started.
Next, 100 parts by mass of a nurate-modified product (isocyanate equivalent = 204 g / eq) of hexamethylene diisocyanate (hereinafter abbreviated as “HDI”) is added as polyisocyanate (B) having no aromatic skeleton, while paying attention to heat generation. After raising the internal temperature to 85 ° C., the mixture was stirred for 3 hours while maintaining the temperature to obtain a urethane prepolymer (C1) having an isocyanate group at the molecular end.
Further, 57 parts by mass of 4-hydroxybutyl acrylate (hereinafter abbreviated as “4HBA”) as a (meth) acrylic compound (D) having a hydroxyl group was gradually added while paying attention to heat generation and stirred at 85 ° C. for 2 hours. Thus, a urethane acrylate oligomer (E1) was obtained.
〔合成例2~9〕
 使用するポリオール(A)、ポリイソシアネート(B)、及び水酸基を有する(メタ)アクリル化合物(D)の種類と仕込量を第1表に示したように変更した以外は、合成例1と同様の反応条件にてウレタンアクリレートオリゴマー(E2)~(E9)を得た。
[Synthesis Examples 2 to 9]
The same as Synthesis Example 1 except that the types and amounts of the polyol (A), polyisocyanate (B), and (meth) acrylic compound (D) having a hydroxyl group used were changed as shown in Table 1. Under the reaction conditions, urethane acrylate oligomers (E2) to (E9) were obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 尚、第1表中の略号は、下記名称を意味する。
 PTMG-1000:ポリオキシテトラメチレングリコール(商標:三菱化学株式会社製、数平均分子量1000)
 PCL:ポリカプロラクトンポリオール(数平均分子量520)
 2HEA:2-ヒドロキシエチルアクリレート
 4HBA:4-ヒドロキシブチルアクリレート
 HDI:1,6-ヘキサメチレンジイソシアネート
 H12MDI:4,4’-ジシクロへキシルメタンジイソシアネート
 IPDI:イソホロンジイソシアネート
 MDI:4,4’-ジフェニルメタンジイソシアネート
In addition, the symbol in Table 1 means the following name.
PTMG-1000: Polyoxytetramethylene glycol (Trademark: manufactured by Mitsubishi Chemical Corporation, number average molecular weight 1000)
PCL: polycaprolactone polyol (number average molecular weight 520)
2HEA: 2-hydroxyethyl acrylate 4HBA: 4-hydroxybutyl acrylate HDI: 1,6-hexamethylene diisocyanate H 12 MDI: 4,4'-dicyclohexylmethane diisocyanate IPDI: isophorone diisocyanate MDI: 4,4'-diphenylmethane diisocyanate
〔実施例1〕
 合成例1で得た前記ウレタンアクリレートオリゴマー(E1)100質量部と、芳香族骨格を有さない有機溶剤(F)としてメチルエチルケトン(以下、「MEK」という。)20質量部を混合容器に秤量して、室温にて均一になるまで混合して、本発明の紫外線硬化性ウレタンアクリレート組成物(X1)を調整した。
 上記で調整した紫外線硬化性ウレタンアクリレート組成物(X1)をポリエチレンテレフタレート(PET)製剥離フィルム上にナイフコーターにより塗工して最表層に塗膜を形成した。
 塗工後直ぐに、120w/cmの高圧水銀灯1灯、窒素パージ装置を有する紫外線照射装置で照射光量0.8J/cm2、窒素雰囲気下(酸素濃度1%以下)で紫外線照射して、前記塗膜を硬化させた。更に、オーブン中60℃で10分間加熱し、有機溶剤を揮発させて、薄膜成形体であるフィルム(P1)(厚さ100μmのもの)を作製した。
[Example 1]
100 parts by mass of the urethane acrylate oligomer (E1) obtained in Synthesis Example 1 and 20 parts by mass of methyl ethyl ketone (hereinafter referred to as “MEK”) as an organic solvent (F) having no aromatic skeleton are weighed in a mixing container. And it mixed until it became uniform at room temperature, and prepared the ultraviolet curable urethane acrylate composition (X1) of this invention.
The ultraviolet curable urethane acrylate composition (X1) prepared above was coated on a polyethylene terephthalate (PET) release film with a knife coater to form a coating film on the outermost layer.
Immediately after coating, a 120w / cm high-pressure mercury lamp and an ultraviolet irradiation device having a nitrogen purging device were irradiated with ultraviolet rays in an irradiation light amount of 0.8 J / cm 2 in a nitrogen atmosphere (oxygen concentration of 1% or less). The film was cured. Furthermore, it heated at 60 degreeC for 10 minute (s) in oven, the organic solvent was volatilized, and the film (P1) (thickness of 100 micrometers) which is a thin film molded object was produced.
〔実施例2~9、及び比較例1~10〕
 使用するプレポリマー、有機溶剤の種類、使用量を第2表及び第3表に示すように変更した以外は実施例1と同様にして、それぞれ紫外線硬化性ウレタンアクリレート組成物(X2)~(X19)を調整し、厚さ100μmのフィルム(P2)~(P19)を作製した。
[Examples 2 to 9 and Comparative Examples 1 to 10]
The ultraviolet curable urethane acrylate compositions (X2) to (X19) were respectively the same as in Example 1 except that the prepolymer used, the type of organic solvent, and the amount used were changed as shown in Tables 2 and 3. ) To prepare films (P2) to (P19) having a thickness of 100 μm.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 尚、第2表及び第3表中の略号は、下記名称を意味する。
 PTMG-1000:ポリオキシテトラメチレングリコール(商標:三菱化学株式会社製、数平均分子量1000)
 PCL:ポリカプロラクトンポリオール(数平均分子量520)
 1,4PBD:1,4-ポリブタジエンジオール(数平均分子量1200)
 2HEA:2-ヒドロキシエチルアクリレート
 4HBA:4-ヒドロキシブチルアクリレート
 HDI:1,6-ヘキサメチレンジイソシアネート
 H12MDI:4,4’-ジシクロへキシルメタンジイソシアネート
 IPDI:イソホロンジイソシアネート
 MDI:4,4’-ジフェニルメタンジイソシアネート
 MEK:メチルエチルケトン
 MIBK:メチルイソブチルケトン
 Irgacure 184:イルガキュア 184(商標:長瀬産業株式会社製、ラジカル系光重合開始剤、化学名:1-ヒドロキシ-シクロヘキシル-フェニルケトン)
In addition, the symbol in Table 2 and Table 3 means the following name.
PTMG-1000: Polyoxytetramethylene glycol (Trademark: manufactured by Mitsubishi Chemical Corporation, number average molecular weight 1000)
PCL: polycaprolactone polyol (number average molecular weight 520)
1,4PBD: 1,4-polybutadienediol (number average molecular weight 1200)
2HEA: 2-hydroxyethyl acrylate 4HBA: 4-hydroxybutyl acrylate HDI: 1,6-hexamethylene diisocyanate H 12 MDI: 4,4'-dicyclohexylmethane diisocyanate IPDI: isophorone diisocyanate MDI: 4,4'-diphenylmethane diisocyanate MEK: methyl ethyl ketone MIBK: methyl isobutyl ketone Irgacure 184: Irgacure 184 (trademark: manufactured by Nagase Sangyo Co., Ltd., radical photopolymerization initiator, chemical name: 1-hydroxy-cyclohexyl-phenyl ketone)
 本発明の紫外線硬化性ウレタンアクリレート組成物は、従来の紫外線硬化性組成物と異なり、光重合開始剤を全く含有しなくても優れた紫外線硬化性を発現でき、且つ、得られる薄膜成形体は、自己修復性、耐黄変性、透明性、及び適度な柔軟性などの優れた性能を有しているので、例えば、光学用部材(例えば、光学フィルム、光学シートなど)、光学用コーティング材料、繊維、電子電機材料、食品パッケージ、化粧品パッケージ、加飾フィルムなどの広範囲の分野に有用である。 Unlike the conventional ultraviolet curable composition, the ultraviolet curable urethane acrylate composition of the present invention can exhibit excellent ultraviolet curability even if it does not contain any photopolymerization initiator, and the obtained thin film molded article is , Having excellent performance such as self-healing property, yellowing resistance, transparency, and moderate flexibility, for example, optical members (for example, optical films, optical sheets, etc.), optical coating materials, It is useful in a wide range of fields such as textiles, electronic materials, food packages, cosmetic packages, and decorative films.

Claims (7)

  1. 芳香族骨格を有さないポリオール(A)と芳香族骨格を有さないポリイソシアネート(B)とを反応させて得られる分子末端にイソシアネート基を有するウレタンプレポリマー(C)に対して、水酸基を有する(メタ)アクリル化合物(D)を付加反応させて得られる分子末端に(メタ)アクリロイル基を有するウレタンアクリレートオリゴマー(E)を含有する紫外線硬化性ウレタンアクリレート組成物であって、ケトン系溶剤、アミド系溶剤、及びハロゲン化アルキル系溶剤からなる群より選ばれる少なくとも一種の芳香族骨格を有さない有機溶剤(F)を0.2~80質量%含有し、光重合開始剤を含有しない紫外線硬化性ウレタンアクリレート組成物であり、前記ウレタンアクリレートオリゴマー(E)の(メタ)アクリル当量が450~1100g/当量の範囲であり、前記紫外線硬化性ウレタンアクリレート組成物により作製した厚さ100μmのフィルムを用いてJIS K 0129に準拠し動的粘弾性分析により測定したtanδピーク温度が-8~45℃の範囲であることを特徴とする紫外線硬化性ウレタンアクリレート組成物。 For the urethane prepolymer (C) having an isocyanate group at the molecular end obtained by reacting the polyol (A) having no aromatic skeleton with the polyisocyanate (B) having no aromatic skeleton, a hydroxyl group is formed. An ultraviolet curable urethane acrylate composition containing a urethane acrylate oligomer (E) having a (meth) acryloyl group at a molecular end obtained by addition reaction of a (meth) acrylic compound (D) having a ketone solvent, An ultraviolet ray containing 0.2 to 80% by mass of an organic solvent (F) having no at least one aromatic skeleton selected from the group consisting of an amide solvent and an alkyl halide solvent and containing no photopolymerization initiator It is a curable urethane acrylate composition, and the urethane acrylate oligomer (E) has a (meth) acrylic equivalent of 4 The tan δ peak temperature measured by dynamic viscoelasticity analysis in accordance with JIS K 0129 using a film having a thickness of 100 μm prepared from the ultraviolet curable urethane acrylate composition is in the range of 0 to 1100 g / equivalent. An ultraviolet curable urethane acrylate composition having a temperature range of 45 ° C.
  2. 前記水酸基を有する(メタ)アクリル化合物(D)が、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、及びペンタエリスリトールトリアクリレートからなる群より選ばれる少なくとも一つである請求項1記載の紫外線硬化性ウレタンアクリレート組成物。 The hydroxyl group-containing (meth) acrylic compound (D) is 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, And at least one selected from the group consisting of pentaerythritol triacrylate.
  3. 前記ウレタンアクリレートオリゴマー(E)のJIS Z 8803に準拠し測定した50℃での溶融粘度が500~100000mPa・sの範囲である請求項1記載の紫外線硬化性ウレタンアクリレート組成物。 2. The ultraviolet curable urethane acrylate composition according to claim 1, wherein the urethane acrylate oligomer (E) has a melt viscosity at 50 ° C. measured in accordance with JIS Z 8880 in the range of 500 to 100,000 mPa · s.
  4. 前記有機溶剤(F)が、メチルエチルケトン、アセトン、メチルイソブチルケトン、シクロヘキサノン、ジイソブチルケトン、イソホロン、ジメチルホルムアミド、メチレンクロライド、及びクロロホルムからなる群より選ばれる少なくとも一つである請求項1記載の紫外線硬化性ウレタンアクリレート組成物。 The ultraviolet curable composition according to claim 1, wherein the organic solvent (F) is at least one selected from the group consisting of methyl ethyl ketone, acetone, methyl isobutyl ketone, cyclohexanone, diisobutyl ketone, isophorone, dimethylformamide, methylene chloride, and chloroform. Urethane acrylate composition.
  5. 基材上に請求項1~4の何れか一項に記載の紫外線硬化性ウレタンアクリレート組成物の硬化塗膜を有することを特徴とする薄膜成形体。 A thin film molded article comprising a cured coating film of the ultraviolet curable urethane acrylate composition according to any one of claims 1 to 4 on a substrate.
  6. 請求項1~4の何れか一項に記載の紫外線硬化性ウレタンアクリレート組成物の硬化塗膜を有する光学フィルムであって、前記硬化塗膜の膜厚50~200μmにおけるJIS K7361-1に準拠して測定した全光線透過率が92%以上であることを特徴とする光学フィルム。 An optical film having a cured coating film of the ultraviolet curable urethane acrylate composition according to any one of claims 1 to 4, wherein the cured coating film has a thickness of 50 to 200 µm in accordance with JIS K7361-1. An optical film having a total light transmittance of 92% or more measured by
  7. 基材上に請求項1~4の何れか一項に記載の紫外線硬化性ウレタンアクリレート組成物を塗工し、紫外線を照射した後、前記有機溶剤(F)を揮発させて硬化塗膜を形成させることを特徴とする薄膜成形体の製造方法。 A UV curable urethane acrylate composition according to any one of claims 1 to 4 is applied onto a substrate, irradiated with UV, and then the organic solvent (F) is volatilized to form a cured coating film. A method for producing a thin film molded article characterized by comprising:
PCT/JP2013/072188 2012-09-20 2013-08-20 Ultraviolet curable urethane acrylate composition, thin film molded body, optical film and method for manufacturing thin film molded body WO2014045782A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014513384A JP5633768B2 (en) 2012-09-20 2013-08-20 Ultraviolet curable urethane acrylate composition, thin film molded article, optical film, and method for producing thin film molded article
KR1020147036294A KR101508706B1 (en) 2012-09-20 2013-08-20 Ultraviolet curable urethane acrylate composition, thin film molded body, optical film and method for manufacturing thin film molded body
CN201380046785.XA CN104619735B (en) 2012-09-20 2013-08-20 Ultra-violet solidified urethane acrylate composition, film shaped body, blooming and the manufacture method of film shaped body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-207000 2012-09-20
JP2012207000 2012-09-20

Publications (1)

Publication Number Publication Date
WO2014045782A1 true WO2014045782A1 (en) 2014-03-27

Family

ID=50341106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072188 WO2014045782A1 (en) 2012-09-20 2013-08-20 Ultraviolet curable urethane acrylate composition, thin film molded body, optical film and method for manufacturing thin film molded body

Country Status (5)

Country Link
JP (1) JP5633768B2 (en)
KR (1) KR101508706B1 (en)
CN (1) CN104619735B (en)
TW (1) TWI487723B (en)
WO (1) WO2014045782A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150116802A (en) * 2014-04-08 2015-10-16 가부시키가이샤 도모에가와 세이시쇼 Protective film, film layered product and polarizer
JP2015203770A (en) * 2014-04-14 2015-11-16 リンテック株式会社 Hard coat film, coating liquid for forming hard coat layer, and method of manufacturing the hard coat film
JP2016169351A (en) * 2015-03-16 2016-09-23 日油株式会社 Curable resin composition and laminated structure
JP2016169305A (en) * 2015-03-12 2016-09-23 東ソー株式会社 Active energy ray-curable resin composition
WO2016208284A1 (en) * 2015-06-26 2016-12-29 Dic株式会社 Steel sheet surface treatment agent and steel sheet with coating film thereof
JP2019151815A (en) * 2018-02-28 2019-09-12 東レ株式会社 Laminate and resin film
EP3842480A4 (en) * 2018-08-23 2022-05-18 Toray Industries, Inc. Resin film, laminated body, and production method for laminated body

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016126103A1 (en) * 2015-02-03 2016-08-11 주식회사 엘지화학 Composition for forming coating layer having self-healing characteristics, coating layer, and coating film
KR101807207B1 (en) 2015-02-03 2017-12-08 주식회사 엘지화학 Coating composition, coating layer and coating film having self-healing property
CN106700024A (en) * 2015-11-15 2017-05-24 惠州市长润发涂料有限公司 Preparation method of UV-curable polyurethane acrylate self-repair resin
JP2019520608A (en) * 2016-06-09 2019-07-18 スリーエム イノベイティブ プロパティズ カンパニー Polyurethane Acrylate Protective Display Film
WO2018003222A1 (en) * 2016-06-28 2018-01-04 Dic株式会社 Polyurethane foam sheet, method for producing same, and method for producing laminate
JP2019529963A (en) * 2016-07-01 2019-10-17 スリーエム イノベイティブ プロパティズ カンパニー Low Tg polyurethane protective display film
CN109705382B (en) * 2018-12-14 2021-08-10 张家港康得新光电材料有限公司 Self-repairing resin, coating, film preparation method and application
KR102124853B1 (en) 2018-12-14 2020-06-19 건국대학교 산학협력단 UV-curable urethane acrylate polymer using mixture of polyester polyols and process for the preparation thereof
CN113667054B (en) * 2021-06-18 2022-09-06 广东邦固化学科技有限公司 Self-repairing resin, preparation method and application thereof, and preparation method of self-repairing optical film
CN113980638B (en) * 2021-11-11 2023-01-10 上海昀通电子科技有限公司 UV pressure-sensitive delayed curing adhesive and preparation method and application thereof
US11939418B2 (en) * 2021-12-15 2024-03-26 Stratasys, Inc. Photo-curable compositions
CN115340817B (en) * 2022-09-15 2023-10-20 中国科学技术大学 Hardening coating with wide temperature range and high damping performance and preparation method thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH048712A (en) * 1990-04-27 1992-01-13 Mitsui Toatsu Chem Inc Radiation-curing type resin and its coating composition
JP2003084102A (en) * 2001-06-25 2003-03-19 Asahi Glass Co Ltd Optical film and method for manufacturing the same
JP2003302501A (en) * 2002-04-12 2003-10-24 Natoko Kk Lens sheet
JP2004217809A (en) * 2003-01-16 2004-08-05 Mitsubishi Chemicals Corp Active energy beam-cured resin sheet
JP2006016416A (en) * 2004-06-30 2006-01-19 Nippon Kayaku Co Ltd Resin composition, resin composition for lens, and cured product thereof
JP2011074266A (en) * 2009-09-30 2011-04-14 Nippon Shokubai Co Ltd Curable resin composition for optical disk, cured product thereof, and optical disk
JP2011208096A (en) * 2010-03-30 2011-10-20 Dainippon Printing Co Ltd Electron beam-curable resin composition and laminate obtained using the same
JP2012036290A (en) * 2010-08-06 2012-02-23 Showa Ink Kogyosho:Kk Curable composition
JP2012193220A (en) * 2011-03-15 2012-10-11 Toagosei Co Ltd Electron beam-curable composition for forming optical film or sheet, optical film or sheet, and polarizer protecting film and sheet polarizer
JP2013049839A (en) * 2011-07-29 2013-03-14 Jsr Corp Self-repairing material, self-repairing member, composition for producing self-repairing material
JP2013133367A (en) * 2011-12-26 2013-07-08 Toagosei Co Ltd Active energy ray-curable composition for forming optical film or sheet and the optical film or sheet
WO2013146193A1 (en) * 2012-03-30 2013-10-03 Dic株式会社 Ultraviolet light curing urethane acrylate composition, thin-film formed body, optical film, and method for manufacturing thin-film formed body

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2468782A1 (en) * 2010-12-27 2012-06-27 Cytec Surface Specialties, S.A. Radiation curable compositions
JP5880304B2 (en) * 2012-06-18 2016-03-09 東亞合成株式会社 Method for producing optical film or sheet
JP2014024880A (en) * 2012-07-24 2014-02-06 Dic Corp Uv-curable urethane acrylate resin composition, thin film molded article, optical film, and production method of thin film molded article
JP2014048453A (en) * 2012-08-31 2014-03-17 Toagosei Co Ltd Production method of low retardation optical film or sheet by heat treatment

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH048712A (en) * 1990-04-27 1992-01-13 Mitsui Toatsu Chem Inc Radiation-curing type resin and its coating composition
JP2003084102A (en) * 2001-06-25 2003-03-19 Asahi Glass Co Ltd Optical film and method for manufacturing the same
JP2003302501A (en) * 2002-04-12 2003-10-24 Natoko Kk Lens sheet
JP2004217809A (en) * 2003-01-16 2004-08-05 Mitsubishi Chemicals Corp Active energy beam-cured resin sheet
JP2006016416A (en) * 2004-06-30 2006-01-19 Nippon Kayaku Co Ltd Resin composition, resin composition for lens, and cured product thereof
JP2011074266A (en) * 2009-09-30 2011-04-14 Nippon Shokubai Co Ltd Curable resin composition for optical disk, cured product thereof, and optical disk
JP2011208096A (en) * 2010-03-30 2011-10-20 Dainippon Printing Co Ltd Electron beam-curable resin composition and laminate obtained using the same
JP2012036290A (en) * 2010-08-06 2012-02-23 Showa Ink Kogyosho:Kk Curable composition
JP2012193220A (en) * 2011-03-15 2012-10-11 Toagosei Co Ltd Electron beam-curable composition for forming optical film or sheet, optical film or sheet, and polarizer protecting film and sheet polarizer
JP2013049839A (en) * 2011-07-29 2013-03-14 Jsr Corp Self-repairing material, self-repairing member, composition for producing self-repairing material
JP2013133367A (en) * 2011-12-26 2013-07-08 Toagosei Co Ltd Active energy ray-curable composition for forming optical film or sheet and the optical film or sheet
WO2013146193A1 (en) * 2012-03-30 2013-10-03 Dic株式会社 Ultraviolet light curing urethane acrylate composition, thin-film formed body, optical film, and method for manufacturing thin-film formed body

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150116802A (en) * 2014-04-08 2015-10-16 가부시키가이샤 도모에가와 세이시쇼 Protective film, film layered product and polarizer
KR102025965B1 (en) 2014-04-08 2019-09-26 가부시키가이샤 도모에가와 세이시쇼 Protective film, film layered product and polarizer
JP2015203770A (en) * 2014-04-14 2015-11-16 リンテック株式会社 Hard coat film, coating liquid for forming hard coat layer, and method of manufacturing the hard coat film
JP2016169305A (en) * 2015-03-12 2016-09-23 東ソー株式会社 Active energy ray-curable resin composition
JP2016169351A (en) * 2015-03-16 2016-09-23 日油株式会社 Curable resin composition and laminated structure
WO2016208284A1 (en) * 2015-06-26 2016-12-29 Dic株式会社 Steel sheet surface treatment agent and steel sheet with coating film thereof
JPWO2016208284A1 (en) * 2015-06-26 2018-02-15 Dic株式会社 Steel sheet surface treatment agent and steel sheet having the coating film
JP2019151815A (en) * 2018-02-28 2019-09-12 東レ株式会社 Laminate and resin film
EP3842480A4 (en) * 2018-08-23 2022-05-18 Toray Industries, Inc. Resin film, laminated body, and production method for laminated body

Also Published As

Publication number Publication date
CN104619735B (en) 2016-08-17
CN104619735A (en) 2015-05-13
TW201418303A (en) 2014-05-16
KR101508706B1 (en) 2015-04-07
KR20150009605A (en) 2015-01-26
JPWO2014045782A1 (en) 2016-08-18
JP5633768B2 (en) 2014-12-03
TWI487723B (en) 2015-06-11

Similar Documents

Publication Publication Date Title
JP5633768B2 (en) Ultraviolet curable urethane acrylate composition, thin film molded article, optical film, and method for producing thin film molded article
JP5516829B2 (en) Method for producing cured coating film, optical film, and method for producing thin film molded body
US9018319B2 (en) Radical-curable hot-melt urethane resin composition and optical molded body
JP5859926B2 (en) Active energy ray curable composition for interlayer filling
JP2014024880A (en) Uv-curable urethane acrylate resin composition, thin film molded article, optical film, and production method of thin film molded article
TWI545138B (en) Activation-energy-ray-curable resin composition
JP6341062B2 (en) Polycarbonate diol and polyurethane and urethane (meth) acrylate using the same
JP2022133387A (en) Urethane (meth)acrylate polymer
JP2019035073A (en) Polycarbonate polyol and method for producing the same
JP6899225B2 (en) Active energy ray-curable composition
JP2020084093A (en) Highly safe urethane acrylate and method for producing the same
JP2014231591A (en) Urethane (meth)acrylate oligomer, curable resin composition, cured product and laminate
JP7257815B2 (en) Urethane (meth)acrylate, active energy ray-curable composition containing the same, and cured product thereof
JP6705165B2 (en) Urethane (meth)acrylate oligomer

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014513384

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838410

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147036294

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13838410

Country of ref document: EP

Kind code of ref document: A1