WO2014045737A1 - Power supply device - Google Patents

Power supply device Download PDF

Info

Publication number
WO2014045737A1
WO2014045737A1 PCT/JP2013/071154 JP2013071154W WO2014045737A1 WO 2014045737 A1 WO2014045737 A1 WO 2014045737A1 JP 2013071154 W JP2013071154 W JP 2013071154W WO 2014045737 A1 WO2014045737 A1 WO 2014045737A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
load
generator
supply device
output
Prior art date
Application number
PCT/JP2013/071154
Other languages
French (fr)
Japanese (ja)
Inventor
松本 圭司
達也 藤森
賢史 八坂
進一 茂木
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Publication of WO2014045737A1 publication Critical patent/WO2014045737A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/48Arrangements for obtaining a constant output value at varying speed of the generator, e.g. on vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator

Definitions

  • the present invention relates to a power supply device (for example, a power supply device for ship propulsion) that supplies output power of a generator to a power load (for example, a motor of a ship propulsion device).
  • a power supply device for example, a power supply device for ship propulsion
  • a power load for example, a motor of a ship propulsion device
  • JP 2011-55671 A Japanese Patent No. 4702521
  • FIG. 3 is a block diagram showing the basic concept of the generator system 200 described in Patent Document 1.
  • the generator system 200 including the generator 201 includes a power supply device 210 that supplies the output power Pg [W] of the generator 201 to a power load 202 such as solar power generation or wind power generation. ing.
  • a command value Pb of a predetermined frequency component f1 is extracted by a low-pass filter (LPF) 211 from a fluctuation frequency of the load power Pa [W] that fluctuates due to a load fluctuation of the power load 202, and obtained. Based on the command value Pb of the frequency component f1, the output power Pg [W] is output from the generator 201.
  • LPF low-pass filter
  • a difference value ⁇ Pg between the load power Pa [W] that varies due to the load fluctuation of the power load 202 and the output power Pg [W] of the generator 201 is obtained by the difference unit 212, and a low-pass filter (LPF) ) 213 extracts a command value Pc of a predetermined frequency component f2 higher than the frequency component f1, and outputs the output power Ph [W] from the power storage means 214 based on the obtained command value Pc of the frequency component f2.
  • the power supply apparatus 210 supplies the output load Pg [W] of the generator 201 to the power load 202 while following the load fluctuation due to weather fluctuation or the like of the power load 202 such as solar power generation or wind power generation. It is like that.
  • the power supply device 210 is used as an existing generator system. In the case of attachment, it is necessary to reset the control configuration of the generator 201 with respect to the command value Pb from the low-pass filter (LPF) 211, so that the power supply device 210 can be attached to the existing generator system. Work becomes complicated.
  • FIG. 4 is a block diagram showing the basic concept of the generator system 300 described in Patent Document 2.
  • a generator system 300 including a generator 301 is used for ship propulsion that supplies output power Pg [W] of the generator 301 to an electric load 302 including an AC motor of a ship propeller.
  • a power supply device 310 is provided.
  • the change rate ⁇ Pa per unit time for the load power Pa [W] of the power load 302 detected by the power detector 311 is calculated by the differentiating circuit 312, and the calculated change rate ⁇ Pa is the power.
  • the increase determination circuit 313 determines that the power storage unit 316 is charged by the power converter 315 when it is determined that it is smaller than the predetermined threshold value, while the calculated change rate ⁇ Pa is determined to be larger than the predetermined threshold value by the power decrease determination circuit 314
  • the power storage unit 316 is discharged by the power converter 315.
  • the power supply device 310 supplies the output power Pg [W] of the generator 301 to the power load 302, load fluctuation due to wave fluctuation of the power load 302 including the AC motor of the propeller for ship propulsion and the like occurs. Even if it occurs, the fluctuation of the output power Pg [W] of the generator 301 is suppressed.
  • the present invention has been made in view of the above problems, and is a power supply device that supplies output power of a generator to a power load, which can be easily attached to an existing generator system and has a simple configuration.
  • an object of the present invention is to provide a power supply device that can suppress fluctuations in the output power of a generator even if a load fluctuation of the power load occurs.
  • the present invention provides a power supply device that supplies output power of a generator to a power load, a power detector that detects the load power of the power load, and a primary delay of the load power A low-pass filter for detecting a value, a differencer for obtaining a difference value between the load power detected by the power detector and the first-order lag value detected by the low-pass filter, and the difference obtained by the differencer A power supply comprising: a power converter that operates using a value as a command value; and a power storage unit that transmits and receives power to and from the power generator through the power converter and the power load.
  • Providing equipment Providing equipment.
  • the power load can be exemplified by a mode including an electric motor of a marine vessel propulsion device (for example, an AC electric motor of a marine vessel propeller).
  • a marine vessel propulsion device for example, an AC electric motor of a marine vessel propeller.
  • the present invention it is possible to easily attach to an existing generator system, and it is possible to suppress fluctuations in the output power of the generator even if a load fluctuation of the electric power load occurs even though the configuration is simple. It becomes possible to do.
  • FIG. 1 is a block diagram showing a schematic configuration of a generator system including a power supply device for ship propulsion according to an embodiment of the present invention.
  • FIG. 2 is a graph conceptually showing a generation process for generating a command value for operating the power converter.
  • FIG. 2A shows a load power as a detected value from the power detector to a low-pass filter (LPF).
  • FIG. 6B is a graph showing temporal changes in load power before being detected, and (b) is a time of a primary delay value after detecting load power, which is a detected value from the power detector, by a low-pass filter (LPF).
  • (C) is a graph which shows the time change of the difference value output from the differentiator between load electric power and a primary delay value.
  • FIG. 3 is a block diagram showing the basic concept of the generator system described in Patent Document 1.
  • FIG. 4 is a block diagram showing the basic concept of the generator system described in Patent Document 2. As shown in FIG.
  • FIG. 1 is a block diagram showing a schematic configuration of a generator system 100 provided with a power supply device 110 for ship propulsion according to an embodiment of the present invention.
  • a generator system 100 shown in FIG. 1 includes a generator 101 and a power supply device 110, and an output load Pg [W] of the generator 101 is supplied to a power load 102 including an AC motor of a propeller for ship propulsion by the power supply device 110. To supply.
  • the generator 101 controls the driving force from a driving source such as an engine so as to be a target output power (for example, 5 kW) and converts it into AC output power Pg [W], and the obtained output power Pg [W] is supplied to the power load 102 via the power supply device 110.
  • a driving source such as an engine so as to be a target output power (for example, 5 kW) and converts it into AC output power Pg [W], and the obtained output power Pg [W] is supplied to the power load 102 via the power supply device 110.
  • the electric power load 102 includes a general load 102b such as an electric device such as a lighting device in addition to the ship propulsion load 102a of the electric motor of the marine vessel propulsion apparatus (specifically, the AC motor of the propeller for marine propulsion).
  • a general load 102b such as an electric device such as a lighting device in addition to the ship propulsion load 102a of the electric motor of the marine vessel propulsion apparatus (specifically, the AC motor of the propeller for marine propulsion).
  • the power supply device 110 is connected between the generator 101 and the power load 102 and can be retrofitted, and includes a power detector 111, a low-pass filter (LPF) 112, a difference unit 113, and a power converter. 114 and power storage means 115.
  • power supply device 110 further includes a supply unit 116.
  • a power input terminal 111 a to which power is input is connected to the output terminal 116 c of the supply unit 116, and a power output terminal 111 b that outputs power is connected to the power load 102.
  • the detection value output terminal 111c to be output is connected to the input terminal 112a of the low-pass filter (LPF) 112 and the addition side terminal 113a of the differentiator 113.
  • the power detector 111 detects the load power Pa [W] of the power load 102 and supplies it to the input terminal 112 a of the low-pass filter (LPF) 112 and the addition-side terminal 113 a of the differentiator 113.
  • the power detector 111 is a voltage detector (not shown) that detects the load voltage Va [V] of the power load 102 and a current detector (not shown) that detects the load current Ia [A] of the power load 102. Z).
  • the low-pass filter (LPF) 112 has an input terminal 112 a connected to the detection value output terminal 111 c of the power detector 111 and an output terminal 112 b connected to the subtraction side terminal 113 b of the subtractor 113.
  • the low-pass filter (LPF) 112 detects a first-order lag value Pd [W] (see FIG. 2B described later) of the load power Pa [W] of the power load 102 and supplies it to the subtraction side terminal 113b of the differentiator 113. It is supposed to be.
  • the power supply apparatus 110 uses a predetermined first-order lag value Pd of a predetermined frequency component fa extracted by the low-pass filter (LPF) 112 from the fluctuation frequency of the load power Pa [W] that fluctuates due to the load fluctuation of the power load 102. [W] can be supplied to the subtraction side terminal 113 b of the differentiator 113.
  • the low-pass filter (LPF) 112 includes a resistor (not shown) connected in series to the connection line and a capacitor (not shown) connected in parallel to the connection line.
  • the subtractor 113 has an addition side terminal 113a connected to the detection value output terminal 111c of the power detector 111, a subtraction side terminal 113b connected to the output terminal 112b of the low pass filter (LPF) 112, and an output terminal 113c. Is connected to a command value input terminal 114a to which a command value of the power converter 114 is input.
  • the difference unit 113 obtains a difference value ⁇ Pd between the load power Pa [W] detected by the power detector 111 and the first-order lag value Pd [W] detected by the low-pass filter 112 and inputs a command value to the power converter 114.
  • the power is supplied to the terminal 114a.
  • the command value input terminal 114a is connected to the output terminal 113c of the subtractor 113
  • the AC side terminal 114b is connected to the input / output terminal 116b of the supply unit 116
  • the DC side terminal 114c is charged.
  • the power converter 114 operates using the difference value ⁇ Pd obtained by the difference unit 113 as a command value, converts the AC output power Pg [W] from the generator 101 into DC power, and supplies the DC power to the power storage unit 115.
  • the DC stored power Pe [W] from the power storage means 115 is converted into AC power and supplied to the power load 102.
  • the power converter 114 includes a converter (not shown) and an inverter (not shown).
  • the power storage means 115 is connected to the DC side terminal 114c of the power converter 114, and power is exchanged with the generator 101 and the power load 102 via the power converter 114. Yes.
  • the power storage means 115 is a storage battery.
  • the power storage means 115 may be a capacitor.
  • the supply unit 116 has an input terminal 116a connected to the output terminal 101a of the generator 101, an input / output terminal 116b connected to the AC side terminal 114b of the power converter 114, and an output terminal 116c connected to the power detector 111. Are connected to the power input terminal 111a.
  • Supply section 116 supplies power storage means 115 with surplus power in which output power Pg [W] from generator 101 exceeds load power Pa [W], while output power Pg [W] from generator 101 is load power. Insufficient power lower than Pa [W] is received from the power storage means 115 and supplied to the power load 102 together with the output power Pg [W].
  • the power converter 114 causes the output power Pg [W] (for example, 5 kW) to exceed the load power Pa [W] (for example, 3 kW) (for example, Pg [W] ⁇ Pa).
  • Pg [W]: 5 kW-3 kW 2 kW
  • the power converter 114 causes the output power Pg [W] (for example, 5 kW) to fall below the load power Pa [W] (for example, 6 kW) (for example, Pa [W] ⁇ Pg).
  • FIG. 2 is a graph conceptually showing a generation process for generating a command value for operating the power converter 114.
  • FIG. 2A shows a temporal change of the load power Pa [W] before the load power Pa [W], which is a detection value from the power detector 111, is detected by the low-pass filter (LPF) 112.
  • FIG. 2B shows a temporal change in the first-order lag value Pd [W] after the load power Pa [W], which is a detected value from the power detector 111, is detected by the low-pass filter (LPF) 112. Yes.
  • FIG. 2C shows a temporal change in the difference value ⁇ Pd output from the differentiator 113 between the load power Pa [W] and the first-order lag value Pd [W].
  • the command value when operating the power converter 114 using the difference value ⁇ Pd output from the difference unit 113 as a command value, the command value is generated as follows.
  • a first-order lag value Pd [W] of a predetermined frequency component fa by a low-pass filter (LPF) 112 from a load power Pa [W] (see FIG. 2A), which is a detected value from the power detector 111 (FIG. 2). 2 (b)) is detected.
  • the first-order lag value Pd [W] (see FIG. 2B) of the frequency component fa can be followed by the generator 101 (specifically, the generator 101 can be surely followed). It is a frequency component.
  • the first-order lag value Pd [W] detected by the low-pass filter (LPF) 112 from the load power Pa [W] (see FIG. 2A), which is the detection value from the power detector 111 (FIG. 2B). )) Is subtracted by the differencer 113, and a difference value ⁇ Pd (see FIG. 2C) is set as a command value for the power converter 114.
  • the power control (charge control and discharge control) by the power converter 114 does not consider the primary delay value Pd [W] (see FIG.
  • the primary delay value Pd [W ] Is a frequency component that can cause the generator 101 to reliably follow, so even if the power control by the power converter 114 does not consider the first-order lag value Pd [W].
  • the fluctuation of the output power Pg [W] of the generator 101 can be suppressed while the generator 101 is reliably followed.
  • the difference value ⁇ Pd (see FIG. 2B) obtained by the difference unit 113 is input as a command value to the power converter 114 instead of the generator 101.
  • the existing generator system there is no need to input a command value to the generator 101 as in Patent Document 1, so there is no need to reset the control configuration of the generator 101. It can be easily attached to the system.
  • the power supply device 110 when the power supply device 110 is attached to the generator system at the manufacturing stage or retrofitted, the power supply device 110 can be easily detached from the generator system.
  • the load power Pa [W] detected by the power detector 111 (see FIG. 2A) and the first-order lag value Pd [W] detected by the low-pass filter (LPF) 112 (see FIG. 2B).
  • the difference value ⁇ Pd (see FIG. 2C) is obtained by the differencer 113, and the power converter 114 is operated using the difference value ⁇ Pd obtained by the differencer 113 as a command value.
  • the power converter 114 can be operated with a simple configuration using the low-pass filter (LPF) 112 and the difference unit 113 without using a differentiation circuit, a power increase determination circuit, or a power decrease determination circuit.
  • the power load 102 includes an electric motor of a marine vessel propulsion device (specifically, an AC electric motor of a marine vessel propeller), and the output electric power Pg [W] of the generator 101 is used as electric power.
  • the fluctuation of the output power Pg [W] of the generator 101 can be reliably suppressed.
  • the main generator mainly contributing to the power supply to the power load.
  • one generator may be preliminarily actuated in order to cope with load fluctuations of the power load. In this case, fuel consumption is deteriorated accordingly.
  • the main generator 101 (for example, two power generation units) that mainly contributes to the power supply to the power load 102 is performed. It is only necessary to actuate the machine, and the preliminarily installed generator can be stopped, and fuel consumption can be improved accordingly. Moreover, it is possible to maintain the preliminarily installed generator while operating the main generator 101.
  • the present invention relates to a power supply device (for example, a power supply device for ship propulsion) that supplies output power of a generator to a power load, and in particular, even if a load fluctuation of the power load occurs, It can be applied to applications for suppressing fluctuations in output power.
  • a power supply device for example, a power supply device for ship propulsion

Abstract

Provided is a power supply device that supplies the power output from a power generator to a power load, can be easily attached to an existing power generator system, and also, although having a simple configuration, can suppress the variation of the power output from the power generator even if the power load fluctuates. The power supply device that supplies the power output from a power generator to a power load comprises: a power detector for detecting the load power of a power load; a low-pass filter for detecting the first-order lag value of the load power; a differential device for obtaining the difference value between the load power detected by the power detector and the first-order lag value detected by the low-pass filter; a power converter operating using, as a command value, the difference value obtained by the differential device; and an electricity storing means for transferring power to and from the power generator and the power load via the power converter.

Description

電力供給装置Power supply
 本発明は、発電機の出力電力を電力負荷(例えば、船舶の推進装置の電動機)に供給する電力供給装置(例えば、船舶推進用の電力供給装置)に関する。 The present invention relates to a power supply device (for example, a power supply device for ship propulsion) that supplies output power of a generator to a power load (for example, a motor of a ship propulsion device).
 発電機の出力電力を電力負荷に供給する電力供給装置において、電力負荷の負荷変動に追従させつつ発電機の出力電力を電力負荷に供給する技術や、発電機の出力電力を電力負荷に供給するにあたって電力負荷の負荷変動が発生しても発電機の出力電力の変動を抑制する技術は、従来から知られている(例えば特許文献1,2参照)。 In the power supply device that supplies the output power of the generator to the power load, the technology that supplies the output power of the generator to the power load while following the load fluctuation of the power load, and the output power of the generator to the power load Conventionally, a technique for suppressing fluctuations in the output power of a generator even when a load fluctuation of the power load occurs is known (see, for example, Patent Documents 1 and 2).
特開2011-55671号公報JP 2011-55671 A 特許第4702521号公報Japanese Patent No. 4702521
 図3は、特許文献1に記載の発電機システム200の基本概念を表したブロック図を示している。 FIG. 3 is a block diagram showing the basic concept of the generator system 200 described in Patent Document 1.
 図3に示すように、発電機201を備えた発電機システム200は、発電機201の出力電力Pg[W]を太陽光発電や風力発電等の電力負荷202に供給する電力供給装置210を備えている。 As shown in FIG. 3, the generator system 200 including the generator 201 includes a power supply device 210 that supplies the output power Pg [W] of the generator 201 to a power load 202 such as solar power generation or wind power generation. ing.
 図3に示す電力供給装置210では、電力負荷202の負荷変動によって変動する負荷電力Pa[W]の変動周波数からローパスフィルタ(LPF)211により所定の周波数成分f1の指令値Pbを抽出し、得られた周波数成分f1の指令値Pbに基づいて発電機201から出力電力Pg[W]を出力する。また、電力負荷202の負荷変動によって変動する負荷電力Pa[W]と発電機201の出力電力Pg[W]との差分値ΔPgを差分器212で求め、求めた差分値ΔPgからローパスフィルタ(LPF)213により周波数成分f1よりも高い所定の周波数成分f2の指令値Pcを抽出し、得られた周波数成分f2の指令値Pcに基づいて蓄電手段214から出力電力Ph[W]を出力する。このようにして、電力供給装置210は、太陽光発電や風力発電等の電力負荷202の天候変動等による負荷変動に追従させつつ発電機201の出力電力Pg[W]を電力負荷202に供給するようになっている。 In the power supply device 210 shown in FIG. 3, a command value Pb of a predetermined frequency component f1 is extracted by a low-pass filter (LPF) 211 from a fluctuation frequency of the load power Pa [W] that fluctuates due to a load fluctuation of the power load 202, and obtained. Based on the command value Pb of the frequency component f1, the output power Pg [W] is output from the generator 201. Further, a difference value ΔPg between the load power Pa [W] that varies due to the load fluctuation of the power load 202 and the output power Pg [W] of the generator 201 is obtained by the difference unit 212, and a low-pass filter (LPF) ) 213 extracts a command value Pc of a predetermined frequency component f2 higher than the frequency component f1, and outputs the output power Ph [W] from the power storage means 214 based on the obtained command value Pc of the frequency component f2. In this way, the power supply apparatus 210 supplies the output load Pg [W] of the generator 201 to the power load 202 while following the load fluctuation due to weather fluctuation or the like of the power load 202 such as solar power generation or wind power generation. It is like that.
 しかしながら、特許文献1に記載の発電機システム200では、ローパスフィルタ(LPF)211から発電機201の制御構成に指令値Pbを入力する必要があるので、電力供給装置210を既存の発電機システムに付設する場合には、ローパスフィルタ(LPF)211からの指令値Pbに対して発電機201の制御構成を再設定する必要があり、それだけ電力供給装置210を既存の発電機システムに付設するための作業が煩雑となる。 However, in the generator system 200 described in Patent Document 1, since it is necessary to input the command value Pb from the low-pass filter (LPF) 211 to the control configuration of the generator 201, the power supply device 210 is used as an existing generator system. In the case of attachment, it is necessary to reset the control configuration of the generator 201 with respect to the command value Pb from the low-pass filter (LPF) 211, so that the power supply device 210 can be attached to the existing generator system. Work becomes complicated.
 また、図4は、特許文献2に記載の発電機システム300の基本概念を表したブロック図を示している。 FIG. 4 is a block diagram showing the basic concept of the generator system 300 described in Patent Document 2.
 図4に示すように、発電機301を備えた発電機システム300は、発電機301の出力電力Pg[W]を船舶推進用プロペラの交流電動機等を含む電力負荷302に供給する船舶推進用の電力供給装置310を備えている。 As shown in FIG. 4, a generator system 300 including a generator 301 is used for ship propulsion that supplies output power Pg [W] of the generator 301 to an electric load 302 including an AC motor of a ship propeller. A power supply device 310 is provided.
 図4に示す電力供給装置310では、電力検出器311により検出した電力負荷302の負荷電力Pa[W]に対する単位時間当たりの変化率ΔPaを微分回路312で演算し、演算した変化率ΔPaが電力増加判定回路313で所定の閾値より小さいと判定したときに電力変換器315により蓄電手段316を充電する一方、演算した変化率ΔPaが電力減少判定回路314で所定の閾値より大きいと判定したときに電力変換器315により蓄電手段316を放電する。このようにして、電力供給装置310は、発電機301の出力電力Pg[W]を電力負荷302に供給するにあたって船舶推進用プロペラの交流電動機等を含む電力負荷302の波変動等による負荷変動が発生しても発電機301の出力電力Pg[W]の変動を抑制するようになっている。 In the power supply device 310 shown in FIG. 4, the change rate ΔPa per unit time for the load power Pa [W] of the power load 302 detected by the power detector 311 is calculated by the differentiating circuit 312, and the calculated change rate ΔPa is the power. When the increase determination circuit 313 determines that the power storage unit 316 is charged by the power converter 315 when it is determined that it is smaller than the predetermined threshold value, while the calculated change rate ΔPa is determined to be larger than the predetermined threshold value by the power decrease determination circuit 314 The power storage unit 316 is discharged by the power converter 315. In this way, when the power supply device 310 supplies the output power Pg [W] of the generator 301 to the power load 302, load fluctuation due to wave fluctuation of the power load 302 including the AC motor of the propeller for ship propulsion and the like occurs. Even if it occurs, the fluctuation of the output power Pg [W] of the generator 301 is suppressed.
 しかしながら、特許文献2に記載の発電機システム300では、発電機301の出力電力Pg[W]を電力負荷302に供給するにあたって発電機301の出力電力Pg[W]の変動を抑制できるものの、微分回路312、電力増加判定回路313や電力減少判定回路314を用いて電力変換器315を作動させる必要があるため、それだけ電力供給装置310の装置構成が複雑化する。 However, in the generator system 300 described in Patent Document 2, the fluctuation of the output power Pg [W] of the generator 301 can be suppressed when supplying the output power Pg [W] of the generator 301 to the power load 302, but the differential Since it is necessary to operate the power converter 315 using the circuit 312, the power increase determination circuit 313, and the power decrease determination circuit 314, the device configuration of the power supply device 310 is complicated accordingly.
 本発明は、前記課題に鑑みなされたものであり、発電機の出力電力を電力負荷に供給する電力供給装置であって、既存の発電機システムに容易に付設することができる上、簡単な構成でありながら、たとえ電力負荷の負荷変動が発生しても発電機の出力電力の変動を抑制することができる電力供給装置を提供することを目的とする。 The present invention has been made in view of the above problems, and is a power supply device that supplies output power of a generator to a power load, which can be easily attached to an existing generator system and has a simple configuration. However, an object of the present invention is to provide a power supply device that can suppress fluctuations in the output power of a generator even if a load fluctuation of the power load occurs.
 本発明は、前記課題を解決するために、発電機の出力電力を電力負荷に供給する電力供給装置であって、前記電力負荷の負荷電力を検出する電力検出器と、前記負荷電力の一次遅れ値を検出するローパスフィルタと、前記電力検出器にて検出した前記負荷電力と前記ローパスフィルタにて検出した前記一次遅れ値との差分値を求める差分器と、前記差分器にて求めた前記差分値を指令値として作動する電力変換器と、前記電力変換器を介して前記発電機との間及び前記電力負荷との間で電力が授受される蓄電手段とを備えることを特徴とする電力供給装置を提供する。 In order to solve the above problems, the present invention provides a power supply device that supplies output power of a generator to a power load, a power detector that detects the load power of the power load, and a primary delay of the load power A low-pass filter for detecting a value, a differencer for obtaining a difference value between the load power detected by the power detector and the first-order lag value detected by the low-pass filter, and the difference obtained by the differencer A power supply comprising: a power converter that operates using a value as a command value; and a power storage unit that transmits and receives power to and from the power generator through the power converter and the power load. Providing equipment.
 本発明において、前記電力負荷は、船舶の推進装置の電動機(例えば、船舶推進用プロペラの交流電動機)を含む態様を例示できる。 In the present invention, the power load can be exemplified by a mode including an electric motor of a marine vessel propulsion device (for example, an AC electric motor of a marine vessel propeller).
 本発明によると、既存の発電機システムに容易に付設することができる上、簡単な構成でありながら、たとえ前記電力負荷の負荷変動が発生しても前記発電機の前記出力電力の変動を抑制することが可能となる。 According to the present invention, it is possible to easily attach to an existing generator system, and it is possible to suppress fluctuations in the output power of the generator even if a load fluctuation of the electric power load occurs even though the configuration is simple. It becomes possible to do.
図1は、本発明の実施の形態に係る船舶推進用の電力供給装置を備えた発電機システムの概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of a generator system including a power supply device for ship propulsion according to an embodiment of the present invention. 図2は、電力変換器を作動させる指令値を生成する生成過程を概念的に示すグラフであって、(a)は、電力検出器からの検出値である負荷電力をローパスフィルタ(LPF)にて検出する前の負荷電力の時間的変化を示すグラフであり、(b)は、電力検出器からの検出値である負荷電力をローパスフィルタ(LPF)にて検出した後の一次遅れ値の時間的変化を示すグラフであり、(c)は、差分器から出力した、負荷電力と一次遅れ値との差分値の時間的変化を示すグラフである。FIG. 2 is a graph conceptually showing a generation process for generating a command value for operating the power converter. FIG. 2A shows a load power as a detected value from the power detector to a low-pass filter (LPF). FIG. 6B is a graph showing temporal changes in load power before being detected, and (b) is a time of a primary delay value after detecting load power, which is a detected value from the power detector, by a low-pass filter (LPF). (C) is a graph which shows the time change of the difference value output from the differentiator between load electric power and a primary delay value. 図3は、特許文献1に記載の発電機システムの基本概念を表したブロック図である。FIG. 3 is a block diagram showing the basic concept of the generator system described in Patent Document 1. 図4は、特許文献2に記載の発電機システムの基本概念を表したブロック図である。FIG. 4 is a block diagram showing the basic concept of the generator system described in Patent Document 2. As shown in FIG.
 以下、本発明に係る実施の形態について図面を参照しながら説明する。 Embodiments according to the present invention will be described below with reference to the drawings.
 図1は、本発明の実施の形態に係る船舶推進用の電力供給装置110を備えた発電機システム100の概略構成を示すブロック図である。 FIG. 1 is a block diagram showing a schematic configuration of a generator system 100 provided with a power supply device 110 for ship propulsion according to an embodiment of the present invention.
 図1に示す発電機システム100は、発電機101及び電力供給装置110を備え、発電機101の出力電力Pg[W]を電力供給装置110により船舶推進用プロペラの交流電動機等を含む電力負荷102に供給するようになっている。 A generator system 100 shown in FIG. 1 includes a generator 101 and a power supply device 110, and an output load Pg [W] of the generator 101 is supplied to a power load 102 including an AC motor of a propeller for ship propulsion by the power supply device 110. To supply.
 発電機101は、エンジン等の駆動源からの駆動力を、目標とする目標出力電力(例えば5kW)になるように制御して交流の出力電力Pg[W]に変換し、得られた出力電力Pg[W]を、電力供給装置110を介して電力負荷102に供給するようになっている。 The generator 101 controls the driving force from a driving source such as an engine so as to be a target output power (for example, 5 kW) and converts it into AC output power Pg [W], and the obtained output power Pg [W] is supplied to the power load 102 via the power supply device 110.
 電力負荷102は、船舶の推進装置の電動機(具体的には船舶推進用プロペラの交流電動機)の船舶推進用負荷102aに加えて、照明機器等の電気機器といった一般負荷102bを含んでいる。 The electric power load 102 includes a general load 102b such as an electric device such as a lighting device in addition to the ship propulsion load 102a of the electric motor of the marine vessel propulsion apparatus (specifically, the AC motor of the propeller for marine propulsion).
 電力供給装置110は、発電機101と電力負荷102との間に接続されて後付けできるようになっており、電力検出器111と、ローパスフィルタ(LPF)112と、差分器113と、電力変換器114、蓄電手段115とを備えている。本実施の形態では、電力供給装置110は、さらに供給部116を備えている。 The power supply device 110 is connected between the generator 101 and the power load 102 and can be retrofitted, and includes a power detector 111, a low-pass filter (LPF) 112, a difference unit 113, and a power converter. 114 and power storage means 115. In the present embodiment, power supply device 110 further includes a supply unit 116.
 電力検出器111は、電力が入力される電力入力端子111aが供給部116の出力端子116cに接続されており、電力を出力する電力出力端子111bが電力負荷102に接続されており、検出値を出力する検出値出力端子111cがローパスフィルタ(LPF)112の入力端子112a及び差分器113の加算側端子113aに接続されている。電力検出器111は、電力負荷102の負荷電力Pa[W]を検出してローパスフィルタ(LPF)112の入力端子112a及び差分器113の加算側端子113aに供給するようになっている。電力検出器111は、ここでは、電力負荷102の負荷電圧Va[V]を検出する電圧検出器(図示せず)及び電力負荷102の負荷電流Ia[A]を検出する電流検出器(図示せず)とを有している。 In the power detector 111, a power input terminal 111 a to which power is input is connected to the output terminal 116 c of the supply unit 116, and a power output terminal 111 b that outputs power is connected to the power load 102. The detection value output terminal 111c to be output is connected to the input terminal 112a of the low-pass filter (LPF) 112 and the addition side terminal 113a of the differentiator 113. The power detector 111 detects the load power Pa [W] of the power load 102 and supplies it to the input terminal 112 a of the low-pass filter (LPF) 112 and the addition-side terminal 113 a of the differentiator 113. Here, the power detector 111 is a voltage detector (not shown) that detects the load voltage Va [V] of the power load 102 and a current detector (not shown) that detects the load current Ia [A] of the power load 102. Z).
 ローパスフィルタ(LPF)112は、入力端子112aが電力検出器111の検出値出力端子111cに接続されており、出力端子112bが差分器113の減算側端子113bに接続されている。ローパスフィルタ(LPF)112は、電力負荷102の負荷電力Pa[W]の一次遅れ値Pd[W](後述する図2(b)参照)を検出して差分器113の減算側端子113bに供給するようになっている。これにより、電力供給装置110は、電力負荷102の負荷変動によって変動する負荷電力Pa[W]の変動周波数からローパスフィルタ(LPF)112により抽出した予め定めた所定の周波数成分faの一次遅れ値Pd[W]を差分器113の減算側端子113bに供給することができる。ローパスフィルタ(LPF)112は、ここでは、接続ラインに直列に接続された抵抗器(図示せず)及び接続ラインに並列に接続されたキャパシタ(図示せず)を有するものとされている。 The low-pass filter (LPF) 112 has an input terminal 112 a connected to the detection value output terminal 111 c of the power detector 111 and an output terminal 112 b connected to the subtraction side terminal 113 b of the subtractor 113. The low-pass filter (LPF) 112 detects a first-order lag value Pd [W] (see FIG. 2B described later) of the load power Pa [W] of the power load 102 and supplies it to the subtraction side terminal 113b of the differentiator 113. It is supposed to be. As a result, the power supply apparatus 110 uses a predetermined first-order lag value Pd of a predetermined frequency component fa extracted by the low-pass filter (LPF) 112 from the fluctuation frequency of the load power Pa [W] that fluctuates due to the load fluctuation of the power load 102. [W] can be supplied to the subtraction side terminal 113 b of the differentiator 113. Here, the low-pass filter (LPF) 112 includes a resistor (not shown) connected in series to the connection line and a capacitor (not shown) connected in parallel to the connection line.
 差分器113は、加算側端子113aが電力検出器111の検出値出力端子111cに接続されており、減算側端子113bがローパスフィルタ(LPF)112の出力端子112bに接続されており、出力端子113cが電力変換器114の指令値が入力される指令値入力端子114aに接続されている。差分器113は、電力検出器111にて検出した負荷電力Pa[W]とローパスフィルタ112にて検出した一次遅れ値Pd[W]との差分値ΔPdを求めて電力変換器114の指令値入力端子114aに供給するようになっている。 The subtractor 113 has an addition side terminal 113a connected to the detection value output terminal 111c of the power detector 111, a subtraction side terminal 113b connected to the output terminal 112b of the low pass filter (LPF) 112, and an output terminal 113c. Is connected to a command value input terminal 114a to which a command value of the power converter 114 is input. The difference unit 113 obtains a difference value ΔPd between the load power Pa [W] detected by the power detector 111 and the first-order lag value Pd [W] detected by the low-pass filter 112 and inputs a command value to the power converter 114. The power is supplied to the terminal 114a.
 電力変換器114は、指令値入力端子114aが差分器113の出力端子113cに接続されており、交流側端子114bが供給部116の入出力端子116bに接続されており、直流側端子114cが蓄電手段115に接続されている。電力変換器114は、差分器113にて求めた差分値ΔPdを指令値として作動し、発電機101からの交流の出力電力Pg[W]を直流電力に変換して蓄電手段115に供給したり、蓄電手段115からの直流の蓄電電力Pe[W]を交流電力に変換して電力負荷102に供給したりするようになっている。電力変換器114は、ここでは、コンバータ(図示せず)及びインバータ(図示せず)を有している。 In the power converter 114, the command value input terminal 114a is connected to the output terminal 113c of the subtractor 113, the AC side terminal 114b is connected to the input / output terminal 116b of the supply unit 116, and the DC side terminal 114c is charged. Connected to means 115. The power converter 114 operates using the difference value ΔPd obtained by the difference unit 113 as a command value, converts the AC output power Pg [W] from the generator 101 into DC power, and supplies the DC power to the power storage unit 115. The DC stored power Pe [W] from the power storage means 115 is converted into AC power and supplied to the power load 102. Here, the power converter 114 includes a converter (not shown) and an inverter (not shown).
 蓄電手段115は、電力変換器114の直流側端子114cに接続されており、電力変換器114を介して発電機101との間及び電力負荷102との間で電力が授受されるようになっている。蓄電手段115は、ここでは、蓄電池とされている。なお、蓄電手段115は、キャパシタであってもよい。 The power storage means 115 is connected to the DC side terminal 114c of the power converter 114, and power is exchanged with the generator 101 and the power load 102 via the power converter 114. Yes. Here, the power storage means 115 is a storage battery. The power storage means 115 may be a capacitor.
 供給部116は、入力端子116aが発電機101の出力端子101aに接続されており、入出力端子116bが電力変換器114の交流側端子114bに接続されており、出力端子116cが電力検出器111の電力入力端子111aに接続されている。供給部116は、発電機101からの出力電力Pg[W]が負荷電力Pa[W]を上回る余剰電力を蓄電手段115に供給する一方、発電機101からの出力電力Pg[W]が負荷電力Pa[W]を下回る不足電力を蓄電手段115から受け取って出力電力Pg[W]と共に電力負荷102に供給するようになっている。 The supply unit 116 has an input terminal 116a connected to the output terminal 101a of the generator 101, an input / output terminal 116b connected to the AC side terminal 114b of the power converter 114, and an output terminal 116c connected to the power detector 111. Are connected to the power input terminal 111a. Supply section 116 supplies power storage means 115 with surplus power in which output power Pg [W] from generator 101 exceeds load power Pa [W], while output power Pg [W] from generator 101 is load power. Insufficient power lower than Pa [W] is received from the power storage means 115 and supplied to the power load 102 together with the output power Pg [W].
 そして、電力供給装置110は、電力負荷102の負荷変動により差分値ΔPdが大きくなって、出力電力Pgが電力負荷102に対して電力過剰状態になると(Pa[W]<Pg[W])、制御部(図示せず)の指示の下、電力変換器114により出力電力Pg[W](例えば5kW)が負荷電力Pa[W](例えば3kW)を上回る余剰電力(例えばPg[W]-Pa[W]:5kW-3kW=2kW)を、供給部116を介して蓄電手段115に供給して蓄電手段115を充電する充電制御を行うようになっている。これにより、蓄電手段115を充電前の蓄電電力Pe[W]に余剰電力(例えばPg[W]-Pa[W])を加えた蓄電電力Pe[W](例えばPe[W]=Pe[W]+(Pg[W]-Pa[W]))にする一方、電力余剰状態の負荷電力Pa[W](Pa[W]<Pg[W])を、出力電力Pg(例えば5kW)から余剰電力(例えばPg[W]-Pa[W]:5kW-3kw=2kW)を差し引いた負荷電力Pa[W](例えばPa[W]=Pg[W]-(Pg[W]-Pa[W]):3kW=5kW-(5kW-3kw))にすることができる。 Then, when the difference value ΔPd increases due to the load fluctuation of the power load 102 and the output power Pg is in an excessive power state with respect to the power load 102 (Pa [W] <Pg [W]), Under the instruction of the control unit (not shown), the power converter 114 causes the output power Pg [W] (for example, 5 kW) to exceed the load power Pa [W] (for example, 3 kW) (for example, Pg [W] −Pa). [W]: 5 kW-3 kW = 2 kW) is supplied to the power storage unit 115 via the supply unit 116 to perform charging control for charging the power storage unit 115. Thereby, the stored power Pe [W] (for example, Pe [W] = Pe [W] obtained by adding surplus power (for example, Pg [W] −Pa [W]) to the stored power Pe [W] before charging the power storage unit 115. ] + (Pg [W] −Pa [W])), while surplus load power Pa [W] (Pa [W] <Pg [W]) in the power surplus state is surplus from output power Pg (for example, 5 kW). Load power Pa [W] (for example, Pa [W] = Pg [W] − (Pg [W] −Pa [W]) obtained by subtracting electric power (for example, Pg [W] −Pa [W]: 5 kW−3 kW = 2 kW) ): 3 kW = 5 kW− (5 kW−3 kW)).
 一方、電力供給装置110は、電力負荷102の負荷変動により差分値ΔPdが小さくなって、出力電力Pgが電力負荷102に対して電力不足状態になると(Pa[W]>Pg[W])、制御部(図示せず)の指示の下、電力変換器114により出力電力Pg[W](例えば5kW)が負荷電力Pa[W](例えば6kW)を下回る不足電力(例えばPa[W]-Pg[W]:6kW-5kW=1kW)を蓄電手段115の放電により蓄電手段115から受け取って、供給部116を介して出力電力Pg[W](例えば5kW)と共に電力負荷102に供給する放電制御を行うようになっている。これにより、蓄電手段115を放電前の蓄電電力Pe[W]から不足電力(例えばPa[W]-Pg[W])を差し引いた蓄電電力Pe[W](例えばPe[W]=Pe[W]-(Pa[W]-Pg[W]))にする一方、電力不足状態の負荷電力Pa[W](Pa[W]>Pg[W])を、出力電力Pg(例えば5kW)に不足電力(例えばPa[W]-Pg[W]:6kW-5kw=1kW)を加えた負荷電力Pa[W](例えばPa[W]=Pg[W]+(Pa[W]-Pg[W]):6kW=5kW+(6kW-5kw))にすることができる。 On the other hand, when the difference value ΔPd becomes small due to the load fluctuation of the power load 102 and the output power Pg becomes in a power shortage state with respect to the power load 102 (Pa [W]> Pg [W]). Under the instruction of the control unit (not shown), the power converter 114 causes the output power Pg [W] (for example, 5 kW) to fall below the load power Pa [W] (for example, 6 kW) (for example, Pa [W] −Pg). [W]: 6 kW-5 kW = 1 kW) is received from the power storage unit 115 by the discharge of the power storage unit 115, and discharge control is performed to supply the power load 102 together with the output power Pg [W] (for example, 5 kW) via the supply unit 116. To do. Thereby, the storage power Pe [W] (for example, Pe [W] = Pe [W] obtained by subtracting the insufficient power (for example, Pa [W] −Pg [W]) from the stored power Pe [W] before discharging the power storage unit 115. ] − (Pa [W] −Pg [W])), the load power Pa [W] (Pa [W]> Pg [W]) in the power shortage state is insufficient for the output power Pg (for example, 5 kW). Load power Pa [W] (for example, Pa [W] = Pg [W] + (Pa [W] −Pg [W]) to which electric power (for example, Pa [W] −Pg [W]: 6 kW−5 kW = 1 kW) is added ): 6 kW = 5 kW + (6 kW−5 kW)).
 図2は、電力変換器114を作動させる指令値を生成する生成過程を概念的に示すグラフである。図2(a)は、電力検出器111からの検出値である負荷電力Pa[W]をローパスフィルタ(LPF)112にて検出する前の負荷電力Pa[W]の時間的変化を示している。図2(b)は、電力検出器111からの検出値である負荷電力Pa[W]をローパスフィルタ(LPF)112にて検出した後の一次遅れ値Pd[W]の時間的変化を示している。また、図2(c)は、差分器113から出力した、負荷電力Pa[W]と一次遅れ値Pd[W]との差分値ΔPdの時間的変化を示している。 FIG. 2 is a graph conceptually showing a generation process for generating a command value for operating the power converter 114. FIG. 2A shows a temporal change of the load power Pa [W] before the load power Pa [W], which is a detection value from the power detector 111, is detected by the low-pass filter (LPF) 112. FIG. . FIG. 2B shows a temporal change in the first-order lag value Pd [W] after the load power Pa [W], which is a detected value from the power detector 111, is detected by the low-pass filter (LPF) 112. Yes. FIG. 2C shows a temporal change in the difference value ΔPd output from the differentiator 113 between the load power Pa [W] and the first-order lag value Pd [W].
 電力供給装置110では、差分器113から出力した差分値ΔPdを指令値として電力変換器114を作動させるにあたり、次のようにして指令値を生成する。 In the power supply device 110, when operating the power converter 114 using the difference value ΔPd output from the difference unit 113 as a command value, the command value is generated as follows.
 すなわち、電力検出器111からの検出値である負荷電力Pa[W](図2(a)参照)からローパスフィルタ(LPF)112にて所定の周波数成分faの一次遅れ値Pd[W](図2(b)参照)を検出する。ここで、周波数成分faの一次遅れ値Pd[W](図2(b)参照)は、発電機101の追従可能な(具体的には発電機101を確実に追従させることができる程度の)周波数成分とされている。 That is, a first-order lag value Pd [W] of a predetermined frequency component fa by a low-pass filter (LPF) 112 from a load power Pa [W] (see FIG. 2A), which is a detected value from the power detector 111 (FIG. 2). 2 (b)) is detected. Here, the first-order lag value Pd [W] (see FIG. 2B) of the frequency component fa can be followed by the generator 101 (specifically, the generator 101 can be surely followed). It is a frequency component.
 そして、電力検出器111からの検出値である負荷電力Pa[W](図2(a)参照)から、ローパスフィルタ(LPF)112にて検出した一次遅れ値Pd[W](図2(b)参照)を差分器113にて差し引いた差分値ΔPd(図2(c)参照)を電力変換器114の指令値とする。ここで、電力変換器114による電力制御(充電制御及び放電制御)は、一次遅れ値Pd[W](図2(b)参照)を考慮していないものとなるが、一次遅れ値Pd[W]の周波数成分faが発電機101を確実に追従させることができる程度の周波数成分とされていることから、電力変換器114による電力制御が一次遅れ値Pd[W]を考慮していなくても、発電機101を確実に追従させた状態で発電機101の出力電力Pg[W]の変動を抑制することができる。 The first-order lag value Pd [W] detected by the low-pass filter (LPF) 112 from the load power Pa [W] (see FIG. 2A), which is the detection value from the power detector 111 (FIG. 2B). )) Is subtracted by the differencer 113, and a difference value ΔPd (see FIG. 2C) is set as a command value for the power converter 114. Here, the power control (charge control and discharge control) by the power converter 114 does not consider the primary delay value Pd [W] (see FIG. 2B), but the primary delay value Pd [W ] Is a frequency component that can cause the generator 101 to reliably follow, so even if the power control by the power converter 114 does not consider the first-order lag value Pd [W]. The fluctuation of the output power Pg [W] of the generator 101 can be suppressed while the generator 101 is reliably followed.
 以上説明した電力供給装置110によれば、差分器113にて求めた差分値ΔPd(図2(b)参照)を指令値として、発電機101ではなく、電力変換器114に入力する。すなわち、既存の発電機システムにおいて、特許文献1の如く、発電機101に指令値を入力する必要がないので、発電機101の制御構成の再設定を行う必要がなく、従って、既存の発電機システムに容易に付設することが可能となる。しかも、製造段階で或いは後付けで電力供給装置110が発電機システムに取り付いている状態においては、電力供給装置110を発電機システムから容易に取り外すことができる。また、特許文献1に記載の構成では、ローパスフィルタが複数存在するために、電力負荷の負荷変動の変動周波数に応じて複数のローパスフィルタをそれぞれ設定する必要があるところ、本実施の形態に係る電力供給装置110では、電力負荷102の負荷変動の変動周波数に応じて単一のローパスフィルタ(LPF)112を設定するだけで済み、それだけローパスフィルタ(LPF)112の設定作業を簡素化することが可能となる。 According to the power supply apparatus 110 described above, the difference value ΔPd (see FIG. 2B) obtained by the difference unit 113 is input as a command value to the power converter 114 instead of the generator 101. In other words, in the existing generator system, there is no need to input a command value to the generator 101 as in Patent Document 1, so there is no need to reset the control configuration of the generator 101. It can be easily attached to the system. In addition, when the power supply device 110 is attached to the generator system at the manufacturing stage or retrofitted, the power supply device 110 can be easily detached from the generator system. Further, in the configuration described in Patent Document 1, since there are a plurality of low-pass filters, it is necessary to set a plurality of low-pass filters according to the fluctuation frequency of the load fluctuation of the power load. In the power supply apparatus 110, it is only necessary to set a single low-pass filter (LPF) 112 according to the fluctuation frequency of the load fluctuation of the power load 102, and the setting work of the low-pass filter (LPF) 112 can be simplified accordingly. It becomes possible.
 さらに、電力検出器111にて検出した負荷電力Pa[W](図2(a)参照)とローパスフィルタ(LPF)112にて検出した一次遅れ値Pd[W](図2(b)参照)との差分値ΔPd(図2(c)参照)を差分器113で求め、差分器113にて求めた差分値ΔPdを指令値として電力変換器114を作動させることで、特許文献2の如く、微分回路、電力増加判定回路や電力減少判定回路を用いることなく、ローパスフィルタ(LPF)112及び差分器113を用いるという簡単な構成で、電力変換器114を作動させることができ、従って、簡単な構成でありながら、たとえ電力負荷102の負荷変動が発生しても発電機101の出力電力Pg[W]の変動を抑制することが可能となる。これにより、発電機101の回転数(rpm)、ひいてはエンジン等の駆動源の回転数(rpm)を安定化させることができる。 Further, the load power Pa [W] detected by the power detector 111 (see FIG. 2A) and the first-order lag value Pd [W] detected by the low-pass filter (LPF) 112 (see FIG. 2B). The difference value ΔPd (see FIG. 2C) is obtained by the differencer 113, and the power converter 114 is operated using the difference value ΔPd obtained by the differencer 113 as a command value. The power converter 114 can be operated with a simple configuration using the low-pass filter (LPF) 112 and the difference unit 113 without using a differentiation circuit, a power increase determination circuit, or a power decrease determination circuit. Even with the configuration, even if the load fluctuation of the power load 102 occurs, it is possible to suppress the fluctuation of the output power Pg [W] of the generator 101. Thereby, the rotation speed (rpm) of the generator 101, and hence the rotation speed (rpm) of a drive source such as an engine can be stabilized.
 また、本実施の形態のように、電力負荷102が船舶の推進装置の電動機(具体的には船舶推進用プロペラの交流電動機)を含んでいて、発電機101の出力電力Pg[W]を電力負荷102に供給するにあたって、たとえ電力負荷102の波変動等による負荷変動が発生しても、発電機101の出力電力Pg[W]の変動を確実に抑制することが可能となる。 Further, as in the present embodiment, the power load 102 includes an electric motor of a marine vessel propulsion device (specifically, an AC electric motor of a marine vessel propeller), and the output electric power Pg [W] of the generator 101 is used as electric power. When supplying the load 102, even if a load fluctuation due to a wave fluctuation or the like of the power load 102 occurs, the fluctuation of the output power Pg [W] of the generator 101 can be reliably suppressed.
 ところで、船舶推進用の発電機システムにおいては、前記したような、蓄電手段への充電制御及び放電制御を行わない場合、一般的には、主として電力負荷への電力供給に寄与するメインの発電機(例えば2台の発電機)に加えて、電力負荷の負荷変動に対応するために、1台の発電機を予備的に作動させることがあり、この場合、それだけ燃費の悪化を招く。 By the way, in the generator system for ship propulsion, when the charge control and the discharge control to the power storage means as described above are not performed, generally, the main generator mainly contributing to the power supply to the power load. In addition to (for example, two generators), one generator may be preliminarily actuated in order to cope with load fluctuations of the power load. In this case, fuel consumption is deteriorated accordingly.
 この点、本実施の形態では、前記したような、蓄電手段115への充電制御及び放電制御を行うので、主として電力負荷102への電力供給に寄与するメインの発電機101(例えば2台の発電機)を作動させるだけで済み、予備的に設置した発電機を停止させておくことができ、それだけ燃費を向上させることが可能となる。しかも、メインの発電機101を作動させている間に、予備的に設置した発電機をメンテナンスすることが可能となる。 In this respect, in the present embodiment, since the charging control and discharging control for the power storage unit 115 as described above are performed, the main generator 101 (for example, two power generation units) that mainly contributes to the power supply to the power load 102 is performed. It is only necessary to actuate the machine, and the preliminarily installed generator can be stopped, and fuel consumption can be improved accordingly. Moreover, it is possible to maintain the preliminarily installed generator while operating the main generator 101.
 本発明は、以上説明した実施の形態に限定されるものではなく、他のいろいろな形で実施することができる。そのため、かかる実施の形態はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。 The present invention is not limited to the embodiment described above, and can be implemented in various other forms. Therefore, such an embodiment is merely an example in all respects and should not be interpreted in a limited manner. The scope of the present invention is shown by the scope of claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.
 なお、この出願は、日本で2012年9月21日に出願された特願2012-208636号に基づく優先権を請求する。その内容はこれに言及することにより、本出願に組み込まれるものである。 This application claims priority based on Japanese Patent Application No. 2012-208636 filed on September 21, 2012 in Japan. The contents of which are hereby incorporated by reference into this application.
 本発明は、発電機の出力電力を電力負荷に供給する電力供給装置(例えば、船舶推進用の電力供給装置)に係るものであり、特に、電力負荷の負荷変動が発生しても発電機の出力電力の変動を抑制するための用途に適用できる。 The present invention relates to a power supply device (for example, a power supply device for ship propulsion) that supplies output power of a generator to a power load, and in particular, even if a load fluctuation of the power load occurs, It can be applied to applications for suppressing fluctuations in output power.
100  発電機システム
101  発電機
101a 出力端子
102  電力負荷
102a 船舶推進用負荷
102b 一般負荷
110  電力供給装置
111  電力検出器
111a 電力入力端子
111b 電力出力端子
111c 検出値出力端子
112  ローパスフィルタ(LPF)
112a 入力端子
112b 出力端子
113  差分器
113a 加算側端子
113b 減算側端子
113c 出力端子
114  電力変換器
114a 指令値入力端子
114b 交流側端子
114c 直流側端子
115  蓄電手段
116  供給部
116a 入力端子
116b 入出力端子
116c 出力端子
200  発電機システム
201  発電機
202  電力負荷
210  電力供給装置
211  ローパスフィルタ(LPF)
212  差分器
213  ローパスフィルタ(LPF)
214  蓄電手段
300  発電機システム
301  発電機
302  電力負荷
310  電力供給装置
311  電力検出器
312  微分回路
313  電力増加判定回路
314  電力減少判定回路
315  電力変換器
316  蓄電手段
Ia   負荷電流
Pa   負荷電力
Pb   指令値
Pc   指令値
Pe   蓄電電力
Pg   出力電力
Ph   出力電力
Va   負荷電圧
f1   周波数成分
f2   周波数成分
fa   周波数成分
ΔPa  変化率
ΔPd  差分値
ΔPg  差分値
100 generator system 101 generator 101a output terminal 102 power load 102a ship propulsion load 102b general load 110 power supply device 111 power detector 111a power input terminal 111b power output terminal 111c detection value output terminal 112 low pass filter (LPF)
112a input terminal 112b output terminal 113 differentiator 113a addition side terminal 113b subtraction side terminal 113c output terminal 114 power converter 114a command value input terminal 114b AC side terminal 114c DC side terminal 115 power storage means 116 supply unit 116a input terminal 116b input / output terminal 116c Output terminal 200 Generator system 201 Generator 202 Power load 210 Power supply device 211 Low pass filter (LPF)
212 Difference 213 Low-pass filter (LPF)
214 power storage means 300 generator system 301 power generator 302 power load 310 power supply device 311 power detector 312 differentiation circuit 313 power increase determination circuit 314 power decrease determination circuit 315 power converter 316 power storage means Ia load current Pa load power Pb command value Pc Command value Pe Storage power Pg Output power Ph Output power Va Load voltage f1 Frequency component f2 Frequency component fa Frequency component ΔPa Change rate ΔPd Difference value ΔPg Difference value

Claims (2)

  1.  発電機の出力電力を電力負荷に供給する電力供給装置であって、
     前記電力負荷の負荷電力を検出する電力検出器と、
     前記負荷電力の一次遅れ値を検出するローパスフィルタと、
     前記電力検出器にて検出した前記負荷電力と前記ローパスフィルタにて検出した前記一次遅れ値との差分値を求める差分器と、
     前記差分器にて求めた前記差分値を指令値として作動する電力変換器と、
     前記電力変換器を介して前記発電機との間及び前記電力負荷との間で電力が授受される蓄電手段と
     を備えることを特徴とする電力供給装置。
    A power supply device that supplies output power of a generator to a power load,
    A power detector for detecting load power of the power load;
    A low-pass filter for detecting a first-order lag value of the load power;
    A differentiator for obtaining a difference value between the load power detected by the power detector and the first-order lag value detected by the low-pass filter;
    A power converter that operates using the difference value obtained by the differencer as a command value;
    A power supply device comprising: a power storage unit configured to transfer power to and from the power generator and the power load via the power converter.
  2.  請求項1に記載の電力供給装置であって、
     前記電力負荷は、船舶の推進装置の電動機を含むことを特徴とする船舶推進用の電力供給装置。
    The power supply device according to claim 1,
    The electric power load includes an electric motor of a marine vessel propulsion device, and the electric power supply device for marine vessel propulsion.
PCT/JP2013/071154 2012-09-21 2013-08-05 Power supply device WO2014045737A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012208636A JP2014064411A (en) 2012-09-21 2012-09-21 Power supply device
JP2012-208636 2012-09-21

Publications (1)

Publication Number Publication Date
WO2014045737A1 true WO2014045737A1 (en) 2014-03-27

Family

ID=50341061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071154 WO2014045737A1 (en) 2012-09-21 2013-08-05 Power supply device

Country Status (2)

Country Link
JP (1) JP2014064411A (en)
WO (1) WO2014045737A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114598A (en) * 1986-10-30 1988-05-19 Taiyo Denki Kk Generator driven by main engine
JP2002118970A (en) * 2000-10-03 2002-04-19 Nissin Electric Co Ltd Power generating system
JP2005269859A (en) * 2004-03-22 2005-09-29 Hitachi Ltd Power generation system and its control method
JP2006238563A (en) * 2005-02-23 2006-09-07 Nishishiba Electric Co Ltd Electric propulsion system
JP2007124779A (en) * 2005-10-27 2007-05-17 Hitachi Ltd Distributed power supply system and method for stabilizing system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114598A (en) * 1986-10-30 1988-05-19 Taiyo Denki Kk Generator driven by main engine
JP2002118970A (en) * 2000-10-03 2002-04-19 Nissin Electric Co Ltd Power generating system
JP2005269859A (en) * 2004-03-22 2005-09-29 Hitachi Ltd Power generation system and its control method
JP2006238563A (en) * 2005-02-23 2006-09-07 Nishishiba Electric Co Ltd Electric propulsion system
JP2007124779A (en) * 2005-10-27 2007-05-17 Hitachi Ltd Distributed power supply system and method for stabilizing system

Also Published As

Publication number Publication date
JP2014064411A (en) 2014-04-10

Similar Documents

Publication Publication Date Title
US10822067B2 (en) Power system of ship
JP6187377B2 (en) Vehicle charging device
JP5244923B2 (en) Wind power generator and output control method
JP4369450B2 (en) Power supply system
JP6263089B2 (en) Ship propulsion system
US9531315B2 (en) Electric vehicle and control method therefor
US9616753B2 (en) Electric power conversion control device for vehicle, control method, and vehicle equipped therewith
KR20140105025A (en) Propulsion control device of electric vehicle and control method thereof
US20170250538A1 (en) Electric power system and control method thereof
US9186998B2 (en) Method for operating an electrical system, and apparatus for controlling an electrical system
WO2013021486A1 (en) Vehicle control device and diesel hybrid vehicle system
JP6352123B2 (en) Control method of propulsion system for moving body
CN101790639A (en) The pitch control system and the method that are used for wind turbine
JP2014068432A (en) Power control device of vehicle
JP2016222149A (en) Ship and power supply method for in-ship power supply system
US8427108B2 (en) Method for controlling an electric accumulator unit
JP2008092722A (en) Power storage system
WO2014045737A1 (en) Power supply device
JP5326786B2 (en) Voltage converter controller
JP6000144B2 (en) Distributed power system
JP2011050196A (en) Control method and controller
JP5555125B2 (en) Power generation system
JP2012186996A (en) Hybrid power supply apparatus and method of controlling hybrid power supply apparatus
JP5076936B2 (en) Hybrid vehicle
JP5503488B2 (en) Power generation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13839618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13839618

Country of ref document: EP

Kind code of ref document: A1