WO2013021486A1 - Vehicle control device and diesel hybrid vehicle system - Google Patents

Vehicle control device and diesel hybrid vehicle system Download PDF

Info

Publication number
WO2013021486A1
WO2013021486A1 PCT/JP2011/068275 JP2011068275W WO2013021486A1 WO 2013021486 A1 WO2013021486 A1 WO 2013021486A1 JP 2011068275 W JP2011068275 W JP 2011068275W WO 2013021486 A1 WO2013021486 A1 WO 2013021486A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
converter
common
inverter
vehicle
Prior art date
Application number
PCT/JP2011/068275
Other languages
French (fr)
Japanese (ja)
Inventor
啓太 畠中
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2011/068275 priority Critical patent/WO2013021486A1/en
Priority to JP2013527819A priority patent/JP5550788B2/en
Publication of WO2013021486A1 publication Critical patent/WO2013021486A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C7/00Other locomotives or motor railcars characterised by the type of motive power plant used; Locomotives or motor railcars with two or more different kinds or types of motive power
    • B61C7/04Locomotives or motor railcars with two or more different kinds or types of engines, e.g. steam and IC engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/30Electric propulsion with power supplied within the vehicle using propulsion power stored mechanically, e.g. in fly-wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/36Vehicles designed to transport cargo, e.g. trucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Definitions

  • the present invention relates to a vehicle control device and a diesel hybrid vehicle system.
  • a conventional diesel hybrid vehicle system drives a generator with a diesel engine, converts AC power generated by the generator into DC power with a converter, and uses DC power converted by the converter and DC power with a power storage device in combination.
  • the DC power is converted into AC power by an inverter, and a driving force is given to the vehicle by driving the motor with the converted AC power (for example, Patent Document 1).
  • the present invention has been made in view of the above, and a vehicle control device that can continue vehicle operation equivalent to normal operation even when one generator or one converter fails. And it aims at providing a diesel hybrid vehicle system.
  • the vehicle control device is configured to be connectable to a DC common portion, and includes a first generator that generates AC power by the output of a diesel engine.
  • a first converter that converts the generated AC power into DC power and outputs the DC power to the DC common part; and second power generation configured to be connectable to the DC common part and generating AC power from the output of the diesel engine
  • a second converter that converts the AC power generated by the machine into DC power and outputs the DC power to the DC common part; and is configured to be connectable to the DC common part.
  • the DC power supplied from the DC common part is charged.
  • a power storage device that discharges DC power to the DC common part and a DC common part that can be connected to the DC common part are converted into AC power from the DC power supplied from the DC common part.
  • the first inverter that supplies the first motor that generates driving force to the first motor and the DC common part are configured to be connectable, and the DC power supplied from the DC common part is converted into AC power to drive the vehicle.
  • a second inverter that supplies power to a second motor that generates power, and controls each operation of the first converter, the second converter, the first inverter, and the second inverter, and the power And a controller for controlling charging / discharging of the storage device.
  • FIG. 1 is a diagram illustrating a configuration example of a diesel hybrid vehicle system including a vehicle control device according to a first embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of a control unit configuring the vehicle control device.
  • FIG. 3 is a diagram illustrating an arrangement example in a railway vehicle of the diesel hybrid vehicle system according to the first embodiment.
  • FIG. 4 is a diagram illustrating a configuration example of a diesel hybrid vehicle system including the vehicle control device according to the second embodiment.
  • FIG. 5 is a diagram illustrating a configuration example of a diesel hybrid vehicle system according to Embodiment 3 configured to distribute the constituent devices to a plurality of vehicles.
  • FIG. 1 is a diagram illustrating a configuration example of a diesel hybrid vehicle system including a vehicle control device according to a first embodiment.
  • the diesel hybrid vehicle system 80 according to Embodiment 1 includes a diesel engine 1, a first generator (denoted as “GE1”) 11, and a second generator (denoted as “GE2”).
  • GE1 first generator
  • GE2 second generator
  • the vehicle control device includes the first converter 12, the second converter 22, the first inverter 14, the second inverter 24, the first storage battery 13, and the first storage battery 13.
  • Two storage batteries 23 and a control unit 50 are provided. Note that one of the first storage battery 13 and the second storage battery 23 is used except for the case where the first storage battery 13 and the second storage battery 23 are distributed to a plurality of vehicles as in the third embodiment to be described later. A configuration including one may be used.
  • the diesel engine 1 is one of power supply sources for generating driving force.
  • the first generator 11 is mechanically connected to one side of a shaft that forms the diesel engine 1
  • the second generator 21 is mechanically connected to the other side of the shaft.
  • the first generator 11 and the first generator 21 generate AC power by the rotation of the diesel engine 1.
  • the first storage battery 13 and the second storage battery 23 are electrical energy storage devices that use lithium ion batteries, nickel metal hydride batteries, electric double layer capacitors, lithium ion capacitors, flywheels, and the like as storage means, and have a driving force. It is a power supply source for generating, and is connected to the DC common part 2 via the first contactor 41 and the second contactor 42, respectively, and charges and discharges DC power.
  • the first converter 12 is connected to the DC common unit 2 via the third contactor 43 and converts the AC power generated by the first generator 11 into DC power, while the first storage battery 13 and DC power supplied from at least one of the second storage batteries 23 is converted into AC power.
  • the second converter 22 is connected to the DC common unit 2 via the fourth contactor 44 and converts the AC power generated by the second generator 21 into DC power, while the first storage battery 13 and DC power discharged by at least one of the second storage batteries 23 is converted into AC power.
  • the first inverter 14 is connected to the DC common unit 2 through the fifth contactor 45, and is one of the first converter 12, the second converter 22, the first storage battery 13, and the second storage battery 23. DC power supplied from at least one is converted into AC power.
  • the second inverter 24 is connected to the DC common unit 2 through the sixth contactor 46, and is one of the first converter 12, the second converter 22, the first storage battery 13, and the second storage battery 23. DC power supplied from at least one is converted into AC power.
  • the first motor 15 receives the supply of AC power from the first inverter 14 and generates a driving force (propulsive force).
  • the second motor 25 receives the supply of AC power from the second inverter 24 and generates a driving force (propulsive force).
  • the auxiliary power supply 34 is connected to the DC common unit 2 through the seventh contactor 47, converts DC power into AC power having a constant voltage and a constant frequency, and supplies the AC power to the auxiliary machine 38.
  • the auxiliary machine 38 is a generic name for load devices other than the drive device.
  • the current detector 71 detects a current flowing between the first generator 11 and the first converter 12 as a generator current IG1, and the current detector 72 includes the second generator 21 and the second converter. 22 is detected as the generator current IG2, the current detector 73 detects the current flowing into and out of the first storage battery 13 as the storage battery current IB1, and the current detector 74 is the second storage battery. 23 is detected as a storage battery current IB2, and a current detector 75 detects a current flowing between the first inverter 14 and the first motor 15 as a motor current IM1, and a current detector 76 The current flowing between the second inverter 24 and the second motor 25 is detected as the motor current IM2. The current detector 77 detects a current flowing between the auxiliary power supply 34 and the auxiliary machine 38 as an auxiliary machine current IA.
  • the voltage detector 83 detects the terminal voltage of the first storage battery 13 as the first storage battery voltage EB1
  • the voltage detector 84 detects the terminal voltage of the second storage battery 23 as the second storage battery voltage EB2
  • the voltage detector 85 detects the DC terminal voltage of the first converter 12 as the first DC voltage EFCD1
  • the voltage detector 86 detects the DC terminal voltage of the second converter 22 as the second DC voltage EFCD2.
  • the voltage detector 87 detects the DC terminal voltage of the first inverter 14 as the third DC voltage EFC1
  • the voltage detector 88 detects the DC terminal voltage of the second inverter 24 as the fourth DC voltage EFC2.
  • the voltage detector 89 detects the DC terminal voltage of the auxiliary power supply 34 as the fifth DC voltage EFCA.
  • the rotation detector 91 detects the rotation speed of the first generator 11 as the generator rotation speed FRG1, and the rotation detector 92 detects the rotation speed of the second generator 21 as the generator rotation speed FRG2.
  • the rotation detector 93 detects the rotation number of the first motor 15 as the motor rotation number RN1, and the rotation detector 94 detects the rotation number of the second motor 25 as the motor rotation number RN2.
  • the detection values (sensor information) detected by these sensors are input to the control unit 50.
  • FIG. 2 is a diagram illustrating a configuration example of the control unit 50 configuring the vehicle control device.
  • the control unit 50 includes a host control unit 60, a first control unit 51, a second control unit 52, a third control unit 53, an engine control unit 54, a storage battery monitoring unit 55, and a brake.
  • a control unit 56 is provided.
  • the first control unit 51, the second control unit 52, the third control unit 53, and the engine control unit 54 are collectively shown as a control unit group 62 by a broken line. The grouping of the part group 62 is for convenience, and each part may be formed individually.
  • the control unit 50 includes the host control unit 60, but the host control unit 60 may be provided outside the control unit 50.
  • the control unit 50 is configured including the brake control unit 56, but the brake control unit 56 may be provided outside the control unit 50.
  • the controller 50 includes the first storage battery voltage EB1, the second storage battery voltage EB2, the first DC voltage EFCD1, the second DC voltage EFCD2, the third DC voltage EFC1, and the fourth sensor information, which are the sensor information described above.
  • DC voltage EFC2, fifth DC voltage EFCA, generator rotation speed FRG1, generator rotation speed FRG2, motor rotation speed RN1, and motor rotation speed RN2 are input.
  • the storage battery monitoring unit 55 of the control unit 50 receives a storage battery state signal STB1 that represents the state of the first storage battery 13 and a storage battery state signal STB2 that represents the state of the second storage battery 23.
  • the These storage battery state signals STB1 and STB2 include information on output voltages of the first storage battery 13 and the second storage battery 23, information (SOC: State Of Charge) indicating the charging (storage) state, the first storage battery 13 and Information on whether or not the second storage battery 23 is in the protected state is included.
  • SOC State Of Charge
  • the host controller 60 of the controller 50 includes operations of the diesel engine 1, the first converter 12, the first inverter 14, the second converter 22, the second inverter 24, and the auxiliary power supply (SIV) 34.
  • a state signal CND1 indicating the state and a state signal CND2 from the brake control unit 56 are input.
  • the propulsion unit is a component that collectively refers to the diesel engine 1, the first converter 12, the first inverter 14, the second converter 22, the second inverter 24, and the auxiliary power supply 34.
  • a group 64 is shown, and a state signal CND1 is output from the propulsion device group 64 to the host control unit 60.
  • an operation command starting, powering, braking, coasting, stopping
  • the host control unit 60 receives the operation command CMD1.
  • the operation command CMD1 is input to the host control unit 60 of the control unit 50 as the operation command CMD1.
  • the storage battery state signals STB1 and STB2 Based on the detection signals of the various sensors, the storage battery state signals STB1 and STB2, the operation command CMD1, and the state signal CND1 from the propulsion device group 64, the host control unit 60
  • a control command CMD2 for controlling 64 is generated and output to the control unit group 62.
  • Each control part which comprises the control part group 62 controls the power converter device in charge according to the instruction
  • the first control unit 51 When the control command CMD2 is an instruction to the first converter 12, the first control unit 51 generates the gate signal GSC1 and controls the first converter 12. When the control command CMD2 is an instruction for the first inverter 14, the first control unit 51 generates the gate signal GSI1 to control the first inverter 14. Similarly, when the control command CMD2 is an instruction to the second converter 22, the second control unit 52 generates the gate signal GSC2 to control the second converter 22, and the control command CMD2 is the second inverter. In the case of an instruction for 24, the second control unit 52 controls the second inverter 24 by generating the gate signal GSI2.
  • the diesel engine 1 when using the motive power of at least one of the 1st generator 11 and the 2nd generator 21 when controlling the 1st converter 12 and the 2nd converter 22, the diesel engine 1 is operated. At this time, the engine control unit 54 generates a rotation speed control signal RD and controls the rotation speed of the diesel engine 1.
  • the control command CMD2 includes an instruction for the auxiliary power supply 34
  • the third control unit 53 generates the gate signal GSA to control the auxiliary power supply 34, A desired power is supplied to the auxiliary machine 38.
  • the brake command BRK1 for the brake control unit 56 is output to the brake control unit 56, the brake control unit 56 generates the brake control command BRK2 and controls the brake device 66.
  • the fifth contactor 45 and the sixth contactor 46 are controlled to be turned on, and the first inverter 14 and the second inverter 24 are common to DC. Connected to section 2.
  • the power running torque command CMD ⁇ b> 2 is input to the first control unit 51 and the second control unit 52.
  • the first control unit 51 outputs a gate signal GSI1 corresponding to the power running torque command CMD2 to the first inverter 14, and the second control unit 52 outputs the gate signal GSI2 corresponding to the power running torque command CMD2 to the second Output to the inverter 24.
  • the first inverter 14 and the second inverter 24 convert DC power supplied from both the first storage battery 13 and the second storage battery 23 connected to the DC common unit 2 to AC power, respectively.
  • the first motor 15 and the second motor 25 are driven.
  • the first motor 15 and the second motor 25 generate a power running torque and control the acceleration of the vehicle.
  • ⁇ Engine start> When the speed of the vehicle becomes equal to or higher than the predetermined speed, the host controller 60 outputs an engine start command CMD2 to the engine controller 54. At this time, the third contactor 43 is controlled to be on, and the first converter 12 is connected to the DC common unit 2. The first control unit 51 outputs a gate signal GSC1 corresponding to the engine starting torque to the first converter 12 to start the first generator 11. When the first generator 11 is started, the engine control unit 54 places the diesel engine 1 in an idling state. Thereafter, the fourth contactor 44 is controlled to be turned on, and the second converter 22 is also connected to the DC common unit 2.
  • the second control unit 52 is configured to convert the second power so as to be converted into AC power having a frequency and voltage corresponding to the rotational speed of the diesel engine 1 based on the rotational speed of the second generator 21 (generator rotational speed FRG2).
  • the generator 21 is controlled. In these controls, it goes without saying that the roles of the first generator 11 and the second generator 12 may be changed. Further, only one of the generators may be operated without operating both the first generator 11 and the second generator 12.
  • the fourth contactor 44 is controlled to be on, and the second converter 22 is connected to the DC common unit 2. .
  • the second control unit 52 outputs a gate signal GSC2 corresponding to the engine starting torque to the second converter 22 to start the second generator 21.
  • the engine control unit 54 controls the diesel engine 1 to an idling state.
  • the upper control unit 60 outputs the generated power command CMD ⁇ b> 2 to the first control unit 51 and the second control unit 52.
  • the first control unit 51 outputs the gate signal GSC1 to the first converter 12 to control the generated power of the first generator 11, and the second control unit 52 outputs the gate signal GSC2 to the second converter. 22 to control the generated power of the second generator 21.
  • the electric power generated by the first generator 11 and the second generator 21 is converted into DC power by the first converter 12 and the second converter 22 and supplied to the DC common unit 2.
  • the discharge power of the 1st storage battery 13 and / or the 2nd storage battery 23 connected to direct current common part 2 Control to reduce the.
  • only one generator can supply generated power, only one of the generators may be operated.
  • the host control unit 60 When the regenerative brake command CMD1 is input to the host control unit 60, the host control unit 60 outputs a regenerative brake command CMD2 corresponding to the regenerative brake command CMD1 to the first control unit 51 and the second control unit 52. To do.
  • the first control unit 51 outputs a gate signal GSI1 corresponding to the regenerative brake command CMD2 to the first inverter 14.
  • the brake torque generated by the first motor 15 becomes regenerative power, is converted into DC power by the first inverter 14, and is supplied to the DC common unit 2.
  • the second control unit 52 outputs a gate signal GSI2 corresponding to the regenerative brake command CMD2 to the second inverter 24.
  • the brake torque generated by the second motor 25 becomes regenerative power, is converted to DC power by the second inverter 24, and is supplied to the DC common unit 2.
  • the direct-current power supplied to the direct-current common unit 2 is charged to the first storage battery 13 and the second storage battery 23.
  • the host control unit 60 When the first storage battery 13 and the second storage battery 23 are substantially fully charged, the host control unit 60 outputs the exhaust brake command CMD2 to the first control unit 51, the second control unit 52, and the engine control unit 54. To do. First control unit 51 and second control unit 52 output gate signals GSC1 and GSC2 corresponding to exhaust brake command CMD2 to first converter 12 and second converter 22, respectively. The first converter 12 and the second converter 22 drive the first generator 11 and the second generator 21, respectively. At this time, the first generator 11 and the second generator 21 operate as motors, and the regenerative power generated by the first motor 15 and the second motor 25 is consumed by the diesel engine 1.
  • a brake command BRK1 is output from the host control unit 60 to the brake control unit 56.
  • the brake controller 56 generates a braking force by controlling a brake device 66 such as an air brake. If the regenerative power decreases, the output of the exhaust brake command CMD2 is stopped or controlled to zero.
  • FIG. 3 is a diagram illustrating an arrangement example in the railway vehicle of the diesel hybrid vehicle system according to the first embodiment.
  • the first inverter 14 is provided on one side separated by the DC common part 2 by providing the DC common part 2 at the center under the floor of the railway vehicle.
  • the second inverter 24, the first converter 12, the second converter 22, and the auxiliary power supply device (SIV) 34 are provided, and the first storage battery 13, the second storage battery 23,
  • the diesel engine 1, the first generator (GE1) 11, the second generator (GE2) 21 and the radiator 68 can be arranged.
  • the first generator 11 is mechanically connected to one side of the shaft forming the diesel engine 1 and the second generator 21 is mechanically connected to the other side of the shaft.
  • the configuration can be easily realized.
  • the direct current terminals 2A and 2B are provided at both ends of the direct current common part 2 as shown in the figure, the connection with the adjacent vehicle becomes easy.
  • the vehicle control device and the diesel hybrid vehicle system of the first embodiment two generators and two converters are provided, and the outputs of the two converters are connected to the DC common part. Since it was set as the structure, even if it is a case where one generator and one converter fail, the effect that vehicle operation equivalent to the time of normal can be continued is acquired. In addition, since it is configured to include two storage batteries and two inverters, even if one motor or one inverter fails, the vehicle can be operated with another motor or another inverter. This makes it possible to continue the operation of the vehicle, to back up when a device fails, and to improve the reliability of the vehicle.
  • FIG. FIG. 4 is a diagram illustrating a configuration example of a diesel hybrid vehicle system including the vehicle control device according to the second embodiment of the present invention.
  • the first generator 11 is connected to one side of the shaft forming the diesel engine 1 and the second generator 21 is connected to the other side of the shaft. Then, it is set as the structure which connects both the 1st generator 11 and the 2nd generator 21 to the one side of an axis
  • symbol is attached
  • FIG. 5 is a diagram illustrating a configuration example of a diesel hybrid vehicle system according to Embodiment 3 configured to distribute the constituent devices to a plurality of vehicles.
  • the devices constituting the diesel hybrid vehicle system 80 are distributed to two vehicles, a vehicle 90A and a vehicle 90B.
  • the diesel engine 1 the first generator 11, the second generator 21, the first storage battery 13, the first converter 12, the second converter 22, and the first auxiliary
  • the power supply device (first SIV) 34A, the auxiliary machine 38A, and the first control unit 51 are arranged.
  • the second storage battery 23, the first inverter 14, the second auxiliary power supply device (second SIV) 34B, auxiliary machine 38B, second inverter 24, first motor 15, second motor 25, and second control unit 52 are arranged. Further, both the vehicle 90A and the vehicle 90B are provided with the DC common part 2, and a connection as an interface for electrically connecting the DC common part 2 between the vehicle 90A and the vehicle 90B. Part 100 is provided.
  • the inverter device (the first inverter 14 and the second inverter 24) is arranged on the vehicle on which the motor is mounted like the vehicle 90B, and the motor is mounted like the vehicle 90A. Since the converter devices (the first converter 12 and the second converter 22) are arranged in a vehicle that has not been provided, an effect that the limited underfloor space can be effectively utilized is obtained. Moreover, since the direct current common part 2 can be used as an inter-vehicle interface, an effect that the configuration of the inter-vehicle interface can be simplified is obtained. Further, even if the arrangement configuration of the devices is different from the example of FIG. 5, there is no need to change the configuration in which the DC common part 2 is an inter-vehicle interface, so a part of the devices is placed on the roof or indoors. It is also possible to obtain the effect of increasing the degree of freedom of arrangement and organization of equipment.
  • Embodiment 4 is an embodiment common to the first to third embodiments described above, and is an embodiment in which the PWM control mode is different between the first converter and the second converter.
  • the first converter is controlled in the asynchronous PWM mode
  • the second converter is controlled in the 1-pulse PWM mode.
  • the first converter may be in a synchronous PWM mode using a plurality of pulses.
  • you may replace control of a 1st converter and a 2nd converter.
  • the number of pulses of one converter can be reduced, so that it is possible to reduce the loss of the two converters together.
  • the number of pulses of one converter can be reduced, the effect that the electric power generated by the generator can be efficiently supplied can be obtained.
  • a railway vehicle equipped with a diesel engine has been described as an example.
  • a generator driven by an engine other than the diesel engine a converter that converts generated power into direct current
  • a power storage device Vanehicles equipped with lithium ion batteries, nickel metal hydride batteries, electric double layer capacitors, lithium ion capacitors, flywheels, etc.
  • hybrid construction machines dump trucks, bulldozers, excavators, etc.
  • the generator and the motor are not limited to types such as an induction motor and a synchronous motor.
  • the present invention provides a vehicle control device and a diesel hybrid vehicle system capable of continuing vehicle operation equivalent to normal operation even when one generator or one converter fails. Useful as.

Abstract

A vehicle control device comprises: first and second converters (12, 22) configured to be connectable to a DC common portion (2) and each converting AC power to DC power and outputting the DC power to the DC common portion (2), the AC power being generated by each of first and second power generators (11, 12) for generating AC power by the output of a diesel engine (1); first and second batteries (13, 23) configured to be connectable to the DC common portion (2), and charged by DC power supplied thereto from the DC common portion (2) or discharging the DC power thereof to the DC common portion (2); first and second inverters (14, 24) configured to be connectable to the DC common portion (2) and each converting the DC power supplied thereto from the DC common portion (2) to AC power and supplying the AC power to each of first and second motors (15, 25); and a control unit (50) for controlling the operations of the first and second converters (12, 22) and the operations of the first and second inverters (14, 24) and also controlling the charging and discharging of the first and second batteries (13, 23).

Description

車両用制御装置およびディーゼルハイブリッド車両システムVehicle control device and diesel hybrid vehicle system
 本発明は、車両用制御装置およびディーゼルハイブリッド車両システムに関する。 The present invention relates to a vehicle control device and a diesel hybrid vehicle system.
 従来のディーゼルハイブリッド車両システムは、ディーゼルエンジンで発電機を駆動し、発電機で発生した交流電力をコンバータで直流電力に変換すると共に、コンバータが変換した直流電力と電力貯蔵装置による直流電力とを併用し、これらの直流電力をインバータにて交流電力に変換し、変換した交流電力でモータを駆動することにより車両に対し推進力を与えている(例えば、特許文献1)。 A conventional diesel hybrid vehicle system drives a generator with a diesel engine, converts AC power generated by the generator into DC power with a converter, and uses DC power converted by the converter and DC power with a power storage device in combination. The DC power is converted into AC power by an inverter, and a driving force is given to the vehicle by driving the motor with the converted AC power (for example, Patent Document 1).
特開2004-282859号公報(「0007」、図1)Japanese Patent Laying-Open No. 2004-282859 (“0007”, FIG. 1)
 しかしながら、従来のディーゼルハイブリッド車両システムでは、発電機やコンバータが故障すると電力貯蔵装置の放電電力でしか走行することができず、故障後の走行距離が短くならざるを得ない。このため、故障後の運用は、緊急的な運用となり、運行ダイヤに支障が生ずるという問題点があった。 However, in the conventional diesel hybrid vehicle system, if the generator or the converter breaks down, the vehicle can travel only with the discharge power of the power storage device, and the travel distance after the failure must be shortened. For this reason, the operation after the failure is an urgent operation, and there is a problem that the operation schedule is disturbed.
 本発明は、上記に鑑みてなされたものであって、1台の発電機や1台のコンバータが故障した場合であっても、正常時と同等の車両運行を継続可能とする車両用制御装置およびディーゼルハイブリッド車両システムを提供することを目的とする。 The present invention has been made in view of the above, and a vehicle control device that can continue vehicle operation equivalent to normal operation even when one generator or one converter fails. And it aims at providing a diesel hybrid vehicle system.
 上述した課題を解決し、目的を達成するために、本発明に係る車両用制御装置は、直流共通部に接続可能に構成され、ディーゼルエンジンの出力により交流電力を発電する第1の発電機が発電した交流電力を直流電力に変換して前記直流共通部に出力する第1のコンバータと、前記直流共通部に接続可能に構成され、前記ディーゼルエンジンの出力により交流電力を発電する第2の発電機が発電した交流電力を直流電力に変換して前記直流共通部に出力する第2のコンバータと、前記直流共通部に接続可能に構成され、当該直流共通部から供給される直流電力を充電し、または、当該直流共通部に直流電力を放電する電力貯蔵装置と、前記直流共通部に接続可能に構成され、当該直流共通部から供給される直流電力を交流電力に変換して車両に駆動力を発生する第1のモータに供給する第1のインバータと、前記直流共通部に接続可能に構成され、当該直流共通部から供給される直流電力を交流電力に変換して車両に駆動力を発生する第2のモータに供給する第2のインバータと、前記第1のコンバータ、前記第2のコンバータ、前記第1のインバータおよび前記第2のインバータの各動作を制御すると共に、前記電力貯蔵装置の充放電を制御する制御部と、を備えたことを特徴とする。 In order to solve the above-described problems and achieve the object, the vehicle control device according to the present invention is configured to be connectable to a DC common portion, and includes a first generator that generates AC power by the output of a diesel engine. A first converter that converts the generated AC power into DC power and outputs the DC power to the DC common part; and second power generation configured to be connectable to the DC common part and generating AC power from the output of the diesel engine A second converter that converts the AC power generated by the machine into DC power and outputs the DC power to the DC common part; and is configured to be connectable to the DC common part. The DC power supplied from the DC common part is charged. Alternatively, a power storage device that discharges DC power to the DC common part and a DC common part that can be connected to the DC common part are converted into AC power from the DC power supplied from the DC common part. The first inverter that supplies the first motor that generates driving force to the first motor and the DC common part are configured to be connectable, and the DC power supplied from the DC common part is converted into AC power to drive the vehicle. A second inverter that supplies power to a second motor that generates power, and controls each operation of the first converter, the second converter, the first inverter, and the second inverter, and the power And a controller for controlling charging / discharging of the storage device.
 本発明によれば、1台の発電機や1台のコンバータが故障した場合であっても、正常時と同等の車両運行を継続できるという効果を奏する。 According to the present invention, even if one generator or one converter breaks down, there is an effect that vehicle operation equivalent to that in normal times can be continued.
図1は、実施の形態1に係る車両用制御装置を含むディーゼルハイブリッド車両システムの一構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of a diesel hybrid vehicle system including a vehicle control device according to a first embodiment. 図2は、車両用制御装置を構成する制御部の一構成例を示す図である。FIG. 2 is a diagram illustrating a configuration example of a control unit configuring the vehicle control device. 図3は、実施の形態1に係るディーゼルハイブリッド車両システムの鉄道車両における配置例を示す図である。FIG. 3 is a diagram illustrating an arrangement example in a railway vehicle of the diesel hybrid vehicle system according to the first embodiment. 図4は、実施の形態2に係る車両用制御装置を含むディーゼルハイブリッド車両システムの一構成例を示す図である。FIG. 4 is a diagram illustrating a configuration example of a diesel hybrid vehicle system including the vehicle control device according to the second embodiment. 図5は、構成機器を複数の車両に振り分けるように構成した実施の形態3に係るディーゼルハイブリッド車両システムの一構成例を示す図である。FIG. 5 is a diagram illustrating a configuration example of a diesel hybrid vehicle system according to Embodiment 3 configured to distribute the constituent devices to a plurality of vehicles.
 以下に添付図面を参照し、本発明の実施の形態に係る車両用制御装置およびディーゼルハイブリッド車両システムについて説明する。なお、以下に示す実施の形態により本発明が限定されるものではない。 Hereinafter, a vehicle control device and a diesel hybrid vehicle system according to an embodiment of the present invention will be described with reference to the accompanying drawings. In addition, this invention is not limited by embodiment shown below.
実施の形態1.
<装置およびシステムの構成>
 図1は、実施の形態1に係る車両用制御装置を含むディーゼルハイブリッド車両システムの一構成例を示す図である。実施の形態1に係るディーゼルハイブリッド車両システム80は、図1に示すように、ディーゼルエンジン1、第1の発電機(「GE1」と表記)11、第2の発電機(「GE2」と表記)21、第1のコンバータ12、第2のコンバータ22、第1のインバータ14、第2のインバータ24、第3のインバータとしての補助電源装置(SIV)34、補機38、第1のモータ(「M1」と表記)15、第2のモータ(「M2」と表記)25、第1の電力貯蔵装置(表記簡略化のため「第1の蓄電池」と称する、以下同じ)13、第2の電力貯蔵装置(表記簡略化のため「第2の蓄電池」と称する、以下同じ)23および、ディーゼルハイブリッド車両システム全体の動作を統括する制御部50を主要構成部として構成されると共に、第1のコンバータ12、第2のコンバータ22、第1のインバータ14、第2のインバータ24、補助電源装置34、第1の蓄電池13および、第2の蓄電池23の各部と、これら各部の直流端子間を共通に接続する直流共通部2との間に介在し、直流共通部2への電気的接続を切り替える第1~第7の接触器41~47、電流を検出するセンサである電流検出器71~77、電圧を検出するセンサである電圧検出器83~89ならびに、第1の発電機11および第2の発電機21の回転数を検出する回転数検出器91,92、第1のモータ15および第2のモータ25の回転数を検出する回転数検出器93,94を備えている。これらの構成部のうち、実施の形態1に係る車両用制御装置は、第1のコンバータ12、第2のコンバータ22、第1のインバータ14、第2のインバータ24、第1の蓄電池13、第2の蓄電池23および制御部50を備えて構成される。なお、後述する実施の形態3のように、第1の蓄電池13および第2の蓄電池23を複数の車両に振り分ける場合などを除き、これら第1の蓄電池13および第2の蓄電池23うちの何れか一つを備える構成であっても構わない。
Embodiment 1 FIG.
<Apparatus and system configuration>
FIG. 1 is a diagram illustrating a configuration example of a diesel hybrid vehicle system including a vehicle control device according to a first embodiment. As shown in FIG. 1, the diesel hybrid vehicle system 80 according to Embodiment 1 includes a diesel engine 1, a first generator (denoted as “GE1”) 11, and a second generator (denoted as “GE2”). 21, first converter 12, second converter 22, first inverter 14, second inverter 24, auxiliary power device (SIV) 34 as a third inverter, auxiliary machine 38, first motor (“ 15, a second motor (denoted as “M2”) 25, a first power storage device (referred to as “first storage battery” for the sake of brevity), the second power The storage device (referred to as “second storage battery” for the sake of brevity, the same applies hereinafter) 23 and a control unit 50 that controls the overall operation of the diesel hybrid vehicle system are configured as main components, and the first The parts of the inverter 12, the second converter 22, the first inverter 14, the second inverter 24, the auxiliary power supply 34, the first storage battery 13 and the second storage battery 23 and the DC terminals of these parts are shared The first to seventh contactors 41 to 47 for switching the electrical connection to the DC common unit 2 and current detectors 71 to 77 which are sensors for detecting current are interposed between the DC common unit 2 and the DC common unit 2 connected to the DC common unit 2. , Voltage detectors 83 to 89 which are sensors for detecting the voltage, rotation speed detectors 91 and 92 for detecting the rotation speeds of the first generator 11 and the second generator 21, the first motor 15 and the first motor 15. Rotational speed detectors 93 and 94 for detecting the rotational speed of the second motor 25 are provided. Among these components, the vehicle control device according to the first embodiment includes the first converter 12, the second converter 22, the first inverter 14, the second inverter 24, the first storage battery 13, and the first storage battery 13. Two storage batteries 23 and a control unit 50 are provided. Note that one of the first storage battery 13 and the second storage battery 23 is used except for the case where the first storage battery 13 and the second storage battery 23 are distributed to a plurality of vehicles as in the third embodiment to be described later. A configuration including one may be used.
 つぎに、ディーゼルハイブリッド車両システムを構成する各部の接続関係および、概略の機能について説明する。 Next, a description will be given of connection relations and general functions of the respective parts constituting the diesel hybrid vehicle system.
 ディーゼルエンジン1は、駆動力を発生するための電力供給源の一つである。第1の発電機11は、ディーゼルエンジン1を形成する軸の一方側に機械的に接続され、第2の発電機21は、この軸の他方側に機械的に接続される。これら第1の発電機11および第1の発電機21は、ディーゼルエンジン1の回転により交流電力を発電する。第1の蓄電池13および第2の蓄電池23は、リチウムイオン電池、ニッケル水素電池、電気二重層キャパシタ、リチウムイオンキャパシタ、フライホイール等を貯蔵手段とする電気エネルギーの貯蔵装置であると共に、駆動力を発生するための電力供給源であり、それぞれ第1の接触器41および第2の接触器42介して直流共通部2に接続され、直流電力を充放電する。第1のコンバータ12は、第3の接触器43を介して直流共通部2に接続され、第1の発電機11が発電した交流電力を直流電力に変換する一方で、第1の蓄電池13および第2の蓄電池23のうちの少なくとも一つから供給される直流電力を交流電力に変換する。第2のコンバータ22は、第4の接触器44を介して直流共通部2に接続され、第2の発電機21が発電した交流電力を直流電力に変換する一方で、第1の蓄電池13および第2の蓄電池23のうちの少なくとも一つが放電する直流電力を交流電力に変換する。第1のインバータ14は、第5の接触器45を介して直流共通部2に接続され、第1のコンバータ12、第2のコンバータ22、第1の蓄電池13および第2の蓄電池23のうちの少なくとも一つから供給される直流電力を交流電力に変換する。第2のインバータ24は、第6の接触器46を介して直流共通部2に接続され、第1のコンバータ12、第2のコンバータ22、第1の蓄電池13および第2の蓄電池23のうちの少なくとも一つから供給される直流電力を交流電力に変換する。第1のモータ15は、第1のインバータ14からの交流電力の供給を受けて駆動力(推進力)を発生する。同様に、第2のモータ25は、第2のインバータ24からの交流電力の供給を受けて駆動力(推進力)を発生する。補助電源装置34は、第7の接触器47を介して直流共通部2に接続され、直流電力を一定電圧一定周波数の交流電力に変換して補機38に供給する。なお、補機38は、駆動装置以外の負荷機器の総称である。 The diesel engine 1 is one of power supply sources for generating driving force. The first generator 11 is mechanically connected to one side of a shaft that forms the diesel engine 1, and the second generator 21 is mechanically connected to the other side of the shaft. The first generator 11 and the first generator 21 generate AC power by the rotation of the diesel engine 1. The first storage battery 13 and the second storage battery 23 are electrical energy storage devices that use lithium ion batteries, nickel metal hydride batteries, electric double layer capacitors, lithium ion capacitors, flywheels, and the like as storage means, and have a driving force. It is a power supply source for generating, and is connected to the DC common part 2 via the first contactor 41 and the second contactor 42, respectively, and charges and discharges DC power. The first converter 12 is connected to the DC common unit 2 via the third contactor 43 and converts the AC power generated by the first generator 11 into DC power, while the first storage battery 13 and DC power supplied from at least one of the second storage batteries 23 is converted into AC power. The second converter 22 is connected to the DC common unit 2 via the fourth contactor 44 and converts the AC power generated by the second generator 21 into DC power, while the first storage battery 13 and DC power discharged by at least one of the second storage batteries 23 is converted into AC power. The first inverter 14 is connected to the DC common unit 2 through the fifth contactor 45, and is one of the first converter 12, the second converter 22, the first storage battery 13, and the second storage battery 23. DC power supplied from at least one is converted into AC power. The second inverter 24 is connected to the DC common unit 2 through the sixth contactor 46, and is one of the first converter 12, the second converter 22, the first storage battery 13, and the second storage battery 23. DC power supplied from at least one is converted into AC power. The first motor 15 receives the supply of AC power from the first inverter 14 and generates a driving force (propulsive force). Similarly, the second motor 25 receives the supply of AC power from the second inverter 24 and generates a driving force (propulsive force). The auxiliary power supply 34 is connected to the DC common unit 2 through the seventh contactor 47, converts DC power into AC power having a constant voltage and a constant frequency, and supplies the AC power to the auxiliary machine 38. The auxiliary machine 38 is a generic name for load devices other than the drive device.
 つぎに、各種センサについて説明する。電流検出器71は、第1の発電機11と第1のコンバータ12との間に流れる電流を発電機電流IG1として検出し、電流検出器72は、第2の発電機21と第2のコンバータ22との間に流れる電流を発電機電流IG2として検出し、電流検出器73は、第1の蓄電池13に流出入する電流を蓄電池電流IB1として検出し、電流検出器74は、第2の蓄電池23に流出入する電流を蓄電池電流IB2として検出し、電流検出器75は、第1のインバータ14と第1のモータ15との間に流れる電流をモータ電流IM1として検出し、電流検出器76は、第2のインバータ24と第2のモータ25との間に流れる電流をモータ電流IM2として検出する。電流検出器77は、補助電源装置34と補機38との間に流れる電流を補機電流IAとして検出する。 Next, various sensors will be described. The current detector 71 detects a current flowing between the first generator 11 and the first converter 12 as a generator current IG1, and the current detector 72 includes the second generator 21 and the second converter. 22 is detected as the generator current IG2, the current detector 73 detects the current flowing into and out of the first storage battery 13 as the storage battery current IB1, and the current detector 74 is the second storage battery. 23 is detected as a storage battery current IB2, and a current detector 75 detects a current flowing between the first inverter 14 and the first motor 15 as a motor current IM1, and a current detector 76 The current flowing between the second inverter 24 and the second motor 25 is detected as the motor current IM2. The current detector 77 detects a current flowing between the auxiliary power supply 34 and the auxiliary machine 38 as an auxiliary machine current IA.
 電圧検出器83は、第1の蓄電池13の端子電圧を第1の蓄電池電圧EB1として検出し、電圧検出器84は、第2の蓄電池23の端子電圧を第2の蓄電池電圧EB2として検出し、電圧検出器85は、第1のコンバータ12の直流端電圧を第1の直流電圧EFCD1として検出し、電圧検出器86は、第2のコンバータ22の直流端電圧を第2の直流電圧EFCD2として検出し、電圧検出器87は、第1のインバータ14の直流端電圧を第3の直流電圧EFC1として検出し、電圧検出器88は、第2のインバータ24の直流端電圧を第4の直流電圧EFC2として検出し、電圧検出器89は、補助電源装置34の直流端電圧を第5の直流電圧EFCAとして検出する。さらに、回転検出器91は、第1の発電機11の回転数を発電機回転数FRG1として検出し、回転検出器92は、第2の発電機21の回転数を発電機回転数FRG2として検出し、回転検出器93は、第1のモータ15の回転数をモータ回転数RN1として検出し、回転検出器94は、第2のモータ25の回転数をモータ回転数RN2として検出する。なお、これらの各センサが検出した検出値(センサ情報)は、制御部50に入力される。 The voltage detector 83 detects the terminal voltage of the first storage battery 13 as the first storage battery voltage EB1, the voltage detector 84 detects the terminal voltage of the second storage battery 23 as the second storage battery voltage EB2, The voltage detector 85 detects the DC terminal voltage of the first converter 12 as the first DC voltage EFCD1, and the voltage detector 86 detects the DC terminal voltage of the second converter 22 as the second DC voltage EFCD2. The voltage detector 87 detects the DC terminal voltage of the first inverter 14 as the third DC voltage EFC1, and the voltage detector 88 detects the DC terminal voltage of the second inverter 24 as the fourth DC voltage EFC2. The voltage detector 89 detects the DC terminal voltage of the auxiliary power supply 34 as the fifth DC voltage EFCA. Further, the rotation detector 91 detects the rotation speed of the first generator 11 as the generator rotation speed FRG1, and the rotation detector 92 detects the rotation speed of the second generator 21 as the generator rotation speed FRG2. The rotation detector 93 detects the rotation number of the first motor 15 as the motor rotation number RN1, and the rotation detector 94 detects the rotation number of the second motor 25 as the motor rotation number RN2. The detection values (sensor information) detected by these sensors are input to the control unit 50.
 図2は、車両用制御装置を構成する制御部50の一構成例を示す図である。制御部50は、図2に示すように、上位制御部60、第1の制御部51、第2の制御部52、第3の制御部53、エンジン制御部54、蓄電池監視部55および、ブレーキ制御部56を備えて構成される。なお、図2では、第1の制御部51、第2の制御部52、第3の制御部53およびエンジン制御部54を一括りにし、破線にて制御部群62として示しているが、制御部群62の括りは便宜上のものであり、各部が個別に形成されているものであっても構わない。また、図2では、上位制御部60を含んで制御部50を構成しているが、制御部50の外部に上位制御部60が設けられる構成であっても構わない。さらに、図2では、ブレーキ制御部56を含んで制御部50を構成しているが、制御部50の外部に、ブレーキ制御部56が設けられる構成であっても構わない。 FIG. 2 is a diagram illustrating a configuration example of the control unit 50 configuring the vehicle control device. As shown in FIG. 2, the control unit 50 includes a host control unit 60, a first control unit 51, a second control unit 52, a third control unit 53, an engine control unit 54, a storage battery monitoring unit 55, and a brake. A control unit 56 is provided. In FIG. 2, the first control unit 51, the second control unit 52, the third control unit 53, and the engine control unit 54 are collectively shown as a control unit group 62 by a broken line. The grouping of the part group 62 is for convenience, and each part may be formed individually. In FIG. 2, the control unit 50 includes the host control unit 60, but the host control unit 60 may be provided outside the control unit 50. Further, in FIG. 2, the control unit 50 is configured including the brake control unit 56, but the brake control unit 56 may be provided outside the control unit 50.
 制御部50には、上述したセンサ情報である第1の蓄電池電圧EB1、第2の蓄電池電圧EB2、第1の直流電圧EFCD1、第2の直流電圧EFCD2、第3の直流電圧EFC1、第4の直流電圧EFC2、第5の直流電圧EFCA、発電機回転数FRG1、発電機回転数FRG2、モータ回転数RN1およびモータ回転数RN2が入力される。これらのセンサ情報に加え、制御部50の蓄電池監視部55には、第1の蓄電池13の状態を表す蓄電池状態信号STB1と、第2の蓄電池23の状態を表す蓄電池状態信号STB2とが入力される。これらの蓄電池状態信号STB1,STB2には、第1の蓄電池13および第2の蓄電池23の出力電圧の情報、充電(貯蔵)状態を表す情報(SOC:State Of Charge)、第1の蓄電池13および第2の蓄電池23が保護状態であるか否かの情報などが含まれる。 The controller 50 includes the first storage battery voltage EB1, the second storage battery voltage EB2, the first DC voltage EFCD1, the second DC voltage EFCD2, the third DC voltage EFC1, and the fourth sensor information, which are the sensor information described above. DC voltage EFC2, fifth DC voltage EFCA, generator rotation speed FRG1, generator rotation speed FRG2, motor rotation speed RN1, and motor rotation speed RN2 are input. In addition to the sensor information, the storage battery monitoring unit 55 of the control unit 50 receives a storage battery state signal STB1 that represents the state of the first storage battery 13 and a storage battery state signal STB2 that represents the state of the second storage battery 23. The These storage battery state signals STB1 and STB2 include information on output voltages of the first storage battery 13 and the second storage battery 23, information (SOC: State Of Charge) indicating the charging (storage) state, the first storage battery 13 and Information on whether or not the second storage battery 23 is in the protected state is included.
 また、制御部50の上位制御部60には、ディーゼルエンジン1、第1のコンバータ12、第1のインバータ14、第2のコンバータ22、第2のインバータ24、補助電源装置(SIV)34の動作状態を示す状態信号CND1や、ブレーキ制御部56からの状態信号CND2が入力される。なお、図2では、説明の便宜上、ディーゼルエンジン1、第1のコンバータ12、第1のインバータ14、第2のコンバータ22、第2のインバータ24および補助電源装置34を総称する構成部を推進装置群64とし、この推進装置群64から上位制御部60に対して状態信号CND1が出力される構成として示している。 In addition, the host controller 60 of the controller 50 includes operations of the diesel engine 1, the first converter 12, the first inverter 14, the second converter 22, the second inverter 24, and the auxiliary power supply (SIV) 34. A state signal CND1 indicating the state and a state signal CND2 from the brake control unit 56 are input. In FIG. 2, for convenience of explanation, the propulsion unit is a component that collectively refers to the diesel engine 1, the first converter 12, the first inverter 14, the second converter 22, the second inverter 24, and the auxiliary power supply 34. A group 64 is shown, and a state signal CND1 is output from the propulsion device group 64 to the host control unit 60.
 また、制御部50の上位制御部60には、操作指令CMD1として、図示しない運転台からの運転指令(起動、力行、ブレーキ、惰行、停車)や、受電開始操作指令などが入力される。上位制御部60は、上記各種センサの検出信号、蓄電池監視部55を介して入力される蓄電池状態信号STB1,STB2、操作指令CMD1、推進装置群64からの状態信号CND1に基づいて、推進装置群64を制御するための制御指令CMD2を生成して制御部群62に出力する。制御部群62を構成する各制御部は、制御指令CMD2の指示に従って担当する電力変換装置を制御する。 In addition, an operation command (starting, powering, braking, coasting, stopping), a power reception start operation command, and the like from an unillustrated cab are input to the host control unit 60 of the control unit 50 as the operation command CMD1. Based on the detection signals of the various sensors, the storage battery state signals STB1 and STB2, the operation command CMD1, and the state signal CND1 from the propulsion device group 64, the host control unit 60 A control command CMD2 for controlling 64 is generated and output to the control unit group 62. Each control part which comprises the control part group 62 controls the power converter device in charge according to the instruction | indication of control command CMD2.
 制御指令CMD2が第1のコンバータ12に対する指示の場合、第1の制御部51は、ゲート信号GSC1を生成して第1のコンバータ12を制御する。また、制御指令CMD2が第1のインバータ14に対する指示の場合、第1の制御部51は、ゲート信号GSI1を生成して第1のインバータ14を制御する。以下同様に、制御指令CMD2が第2のコンバータ22に対する指示の場合、第2の制御部52は、ゲート信号GSC2を生成して第2のコンバータ22を制御し、制御指令CMD2が第2のインバータ24に対する指示の場合、第2の制御部52は、ゲート信号GSI2を生成して第2のインバータ24を制御する。なお、第1のコンバータ12および第2のコンバータ22を制御する際に第1の発電機11および第2の発電機21のうちの少なくとも一つの動力を利用する場合、ディーゼルエンジン1を動作させる。この際、エンジン制御部54は、回転数制御信号RDを生成してディーゼルエンジン1の回転数を制御する。また、制御指令CMD2に補助電源装置34に対する指示が含まれている場合には、上記の制御に加え、第3の制御部53は、ゲート信号GSAを生成して補助電源装置34を制御し、補機38に所望の電力を供給する。また、ブレーキ制御部56に対するブレーキ指令BRK1がブレーキ制御部56に出力される場合、ブレーキ制御部56は、ブレーキ制御指令BRK2を生成してブレーキ装置66を制御する。 When the control command CMD2 is an instruction to the first converter 12, the first control unit 51 generates the gate signal GSC1 and controls the first converter 12. When the control command CMD2 is an instruction for the first inverter 14, the first control unit 51 generates the gate signal GSI1 to control the first inverter 14. Similarly, when the control command CMD2 is an instruction to the second converter 22, the second control unit 52 generates the gate signal GSC2 to control the second converter 22, and the control command CMD2 is the second inverter. In the case of an instruction for 24, the second control unit 52 controls the second inverter 24 by generating the gate signal GSI2. In addition, when using the motive power of at least one of the 1st generator 11 and the 2nd generator 21 when controlling the 1st converter 12 and the 2nd converter 22, the diesel engine 1 is operated. At this time, the engine control unit 54 generates a rotation speed control signal RD and controls the rotation speed of the diesel engine 1. When the control command CMD2 includes an instruction for the auxiliary power supply 34, in addition to the above control, the third control unit 53 generates the gate signal GSA to control the auxiliary power supply 34, A desired power is supplied to the auxiliary machine 38. When the brake command BRK1 for the brake control unit 56 is output to the brake control unit 56, the brake control unit 56 generates the brake control command BRK2 and controls the brake device 66.
 つぎに、実施の形態1に係るディーゼルハイブリッド車両システムの動作について図1および図2の図面を参照して説明する。なお、ここでの動作説明は、回路の切り替わり、電力の流れ、および電力の流れの変化を中心に説明する。 Next, the operation of the diesel hybrid vehicle system according to Embodiment 1 will be described with reference to FIGS. 1 and 2. Note that the description of the operation here will focus on circuit switching, power flow, and change in power flow.
<起動から力行>
 起動指令CMD1が上位制御部60に入力されると、第1の接触器41および第2の接触器42はオンに制御され、第1の蓄電池13および第2の蓄電池23は直流共通部2に接続される。この後、第7の接触器47がオンに制御され、補助電源装置(SIV)3が直流共通部2に接続され、第1の蓄電池13および第2の蓄電池23の電力を合わせた直流電力が補助電源装置(SIV)3にて交流電力に変換され、補機38へ供給される。
<Powering from startup>
When the start command CMD1 is input to the host control unit 60, the first contactor 41 and the second contactor 42 are controlled to be on, and the first storage battery 13 and the second storage battery 23 are connected to the DC common unit 2. Connected. Thereafter, the seventh contactor 47 is controlled to be turned on, the auxiliary power supply (SIV) 3 is connected to the DC common unit 2, and the DC power obtained by combining the power of the first storage battery 13 and the second storage battery 23 is obtained. The auxiliary power supply (SIV) 3 converts it into AC power and supplies it to the auxiliary machine 38.
 つぎに、力行指令CMD1が上位制御部60に入力されると、第5の接触器45および第6の接触器46がオンに制御され、第1のインバータ14および第2のインバータ24が直流共通部2に接続される。この後、第1の制御部51および第2の制御部52に力行トルク指令CMD2が入力される。第1の制御部51は、力行トルク指令CMD2に応じたゲート信号GSI1を第1のインバータ14に出力し、第2の制御部52は、力行トルク指令CMD2に応じたゲート信号GSI2を第2のインバータ24に出力する。第1のインバータ14および第2のインバータ24は、それぞれが直流共通部2に接続された第1の蓄電池13および第2の蓄電池23の双方が供給する直流電力を交流電力に変換し、それぞれ第1のモータ15および第2のモータ25を駆動する。第1のモータ15および第2のモータ25は、力行トルクを発生し、車両を加速制御する。 Next, when the power running command CMD1 is input to the host control unit 60, the fifth contactor 45 and the sixth contactor 46 are controlled to be turned on, and the first inverter 14 and the second inverter 24 are common to DC. Connected to section 2. Thereafter, the power running torque command CMD <b> 2 is input to the first control unit 51 and the second control unit 52. The first control unit 51 outputs a gate signal GSI1 corresponding to the power running torque command CMD2 to the first inverter 14, and the second control unit 52 outputs the gate signal GSI2 corresponding to the power running torque command CMD2 to the second Output to the inverter 24. The first inverter 14 and the second inverter 24 convert DC power supplied from both the first storage battery 13 and the second storage battery 23 connected to the DC common unit 2 to AC power, respectively. The first motor 15 and the second motor 25 are driven. The first motor 15 and the second motor 25 generate a power running torque and control the acceleration of the vehicle.
<エンジン始動>
 車両の速度が所定の速度以上になると、上位制御部60は、エンジン制御部54に対しエンジン始動指令CMD2を出力する。このとき、第3の接触器43はオンに制御され、第1のコンバータ12は直流共通部2に接続される。第1の制御部51は、エンジン始動トルクに応じたゲート信号GSC1を第1のコンバータ12に出力し、第1の発電機11を始動する。第1の発電機11が始動すると、エンジン制御部54は、ディーゼルエンジン1をアイドリング状態とする。この後、第4の接触器44がオンに制御され、第2のコンバータ22も直流共通部2に接続される。第2の制御部52は、第2の発電機21の回転数(発電機回転数FRG2)に基づき、ディーゼルエンジン1の回転数に応じた周波数・電圧の交流電力に変換されるように第2の発電機21を制御する。なお、これらの制御において、第1の発電機11と第2の発電機12の役割を変更してもよいことは無論である。また、第1の発電機11および第2の発電機12の双方を動作させずに、何れか一方の発電機のみを動作させてもよい。
<Engine start>
When the speed of the vehicle becomes equal to or higher than the predetermined speed, the host controller 60 outputs an engine start command CMD2 to the engine controller 54. At this time, the third contactor 43 is controlled to be on, and the first converter 12 is connected to the DC common unit 2. The first control unit 51 outputs a gate signal GSC1 corresponding to the engine starting torque to the first converter 12 to start the first generator 11. When the first generator 11 is started, the engine control unit 54 places the diesel engine 1 in an idling state. Thereafter, the fourth contactor 44 is controlled to be turned on, and the second converter 22 is also connected to the DC common unit 2. The second control unit 52 is configured to convert the second power so as to be converted into AC power having a frequency and voltage corresponding to the rotational speed of the diesel engine 1 based on the rotational speed of the second generator 21 (generator rotational speed FRG2). The generator 21 is controlled. In these controls, it goes without saying that the roles of the first generator 11 and the second generator 12 may be changed. Further, only one of the generators may be operated without operating both the first generator 11 and the second generator 12.
 また、第1の発電機11および第1のコンバータ12のうちの少なくとも一つが故障した場合、第4の接触器44はオンに制御され、第2のコンバータ22は直流共通部2に接続される。第2の制御部52は、エンジン始動トルクに応じたゲート信号GSC2を第2のコンバータ22に出力し、第2の発電機21を始動する。第2の発電機21が始動されると、エンジン制御部54は、ディーゼルエンジン1をアイドリング状態に制御する。 Further, when at least one of the first generator 11 and the first converter 12 fails, the fourth contactor 44 is controlled to be on, and the second converter 22 is connected to the DC common unit 2. . The second control unit 52 outputs a gate signal GSC2 corresponding to the engine starting torque to the second converter 22 to start the second generator 21. When the second generator 21 is started, the engine control unit 54 controls the diesel engine 1 to an idling state.
<発電>
 エンジン制御部54によってディーゼルエンジン1がアイドリング状態に制御されると、上位制御部60は、第1の制御部51および第2の制御部52に対し発電電力指令CMD2を出力する。第1の制御部51は、ゲート信号GSC1を第1のコンバータ12に出力し、第1の発電機11の発電電力を制御し、第2の制御部52は、ゲート信号GSC2を第2のコンバータ22に出力し、第2の発電機21の発電電力を制御する。第1の発電機11および第2の発電機21によって発電された電力は、第1のコンバータ12および第2のコンバータ22によってそれぞれ直流電力に変換され、直流共通部2に供給される。この際、第1の発電機11および/または第2の発電機21による発電電力に応じて、直流共通部2に接続されている第1の蓄電池13および/または第2の蓄電池23の放電電力を減少させる制御を行う。なお、1台の発電機のみで発電電力が賄える場合、何れか一方の発電機のみを動作させてもよい。
<Power generation>
When the diesel engine 1 is controlled to the idling state by the engine control unit 54, the upper control unit 60 outputs the generated power command CMD <b> 2 to the first control unit 51 and the second control unit 52. The first control unit 51 outputs the gate signal GSC1 to the first converter 12 to control the generated power of the first generator 11, and the second control unit 52 outputs the gate signal GSC2 to the second converter. 22 to control the generated power of the second generator 21. The electric power generated by the first generator 11 and the second generator 21 is converted into DC power by the first converter 12 and the second converter 22 and supplied to the DC common unit 2. Under the present circumstances, according to the electric power generated by the 1st generator 11 and / or the 2nd generator 21, the discharge power of the 1st storage battery 13 and / or the 2nd storage battery 23 connected to direct current common part 2 Control to reduce the. In addition, when only one generator can supply generated power, only one of the generators may be operated.
<惰行>
 力行指令CMD1がオフになると、上位制御部60からの発電電力指令CMD2の出力は停止され、もしくは零に制御される。第1の制御部51および第2の制御部52からは、当該発電電力指令CMD2に応じたゲート信号GSC1,GSC2が生成され、それぞれ第1のコンバータ12および第2のコンバータ22を制御する。なお、補機38に対する電力供給は、直流共通部2に接続されている第1の蓄電池13および第2の蓄電池23の放電電力を用いて継続される。
<Coaching>
When the power running command CMD1 is turned off, the output of the generated power command CMD2 from the host control unit 60 is stopped or controlled to zero. From the first control unit 51 and the second control unit 52, gate signals GSC1 and GSC2 corresponding to the generated power command CMD2 are generated and control the first converter 12 and the second converter 22, respectively. The power supply to the auxiliary machine 38 is continued using the discharge power of the first storage battery 13 and the second storage battery 23 connected to the DC common unit 2.
<ブレーキ>
 回生ブレーキ指令CMD1が上位制御部60に入力されると、上位制御部60は、第1の制御部51および第2の制御部52に対し当該回生ブレーキ指令CMD1に応じた回生ブレーキ指令CMD2を出力する。第1の制御部51は、回生ブレーキ指令CMD2に応じたゲート信号GSI1を第1のインバータ14に出力する。第1のモータ15が発生するブレーキトルクは回生電力となって第1のインバータ14にて直流電力に変換され、直流共通部2に供給される。同様に、第2の制御部52は、回生ブレーキ指令CMD2に応じたゲート信号GSI2を第2のインバータ24に出力する。第2のモータ25が発生するブレーキトルクは回生電力となって第2のインバータ24にて直流電力に変換され、直流共通部2に供給される。なお、直流共通部2に供給される直流電力は、第1の蓄電池13および第2の蓄電池23に充電される。
<Brake>
When the regenerative brake command CMD1 is input to the host control unit 60, the host control unit 60 outputs a regenerative brake command CMD2 corresponding to the regenerative brake command CMD1 to the first control unit 51 and the second control unit 52. To do. The first control unit 51 outputs a gate signal GSI1 corresponding to the regenerative brake command CMD2 to the first inverter 14. The brake torque generated by the first motor 15 becomes regenerative power, is converted into DC power by the first inverter 14, and is supplied to the DC common unit 2. Similarly, the second control unit 52 outputs a gate signal GSI2 corresponding to the regenerative brake command CMD2 to the second inverter 24. The brake torque generated by the second motor 25 becomes regenerative power, is converted to DC power by the second inverter 24, and is supplied to the DC common unit 2. The direct-current power supplied to the direct-current common unit 2 is charged to the first storage battery 13 and the second storage battery 23.
 第1の蓄電池13および第2の蓄電池23が略満充電状態になると、上位制御部60は、第1の制御部51、第2の制御部52およびエンジン制御部54に排気ブレーキ指令CMD2を出力する。第1の制御部51および第2の制御部52は、排気ブレーキ指令CMD2に応じたゲート信号GSC1,GSC2をそれぞれ第1のコンバータ12および第2のコンバータ22に出力する。第1のコンバータ12および第2のコンバータ22は、それぞれ第1の発電機11および第2の発電機21を駆動する。このとき、第1の発電機11および第2の発電機21はモータとして動作し、第1のモータ15と第2のモータ25の発生する回生電力はディーゼルエンジン1にて消費される。ここで、第1のモータ15および第2のモータ25の発生する回生電力がディーゼルエンジン1の排気ブレーキによる消費電力を上回る場合(回生電力の増加は、直流共通部2の電圧上昇によって判定可能である)、上位制御部60からブレーキ制御部56に対してブレーキ指令BRK1が出力される。ブレーキ制御部56は、空気ブレーキなどのブレーキ装置66を制御してブレーキ力を発生する。なお、回生電力が小さくなれば、排気ブレーキ指令CMD2の出力は停止され、もしくは零に制御される。 When the first storage battery 13 and the second storage battery 23 are substantially fully charged, the host control unit 60 outputs the exhaust brake command CMD2 to the first control unit 51, the second control unit 52, and the engine control unit 54. To do. First control unit 51 and second control unit 52 output gate signals GSC1 and GSC2 corresponding to exhaust brake command CMD2 to first converter 12 and second converter 22, respectively. The first converter 12 and the second converter 22 drive the first generator 11 and the second generator 21, respectively. At this time, the first generator 11 and the second generator 21 operate as motors, and the regenerative power generated by the first motor 15 and the second motor 25 is consumed by the diesel engine 1. Here, when the regenerative power generated by the first motor 15 and the second motor 25 exceeds the power consumed by the exhaust brake of the diesel engine 1 (the increase of the regenerative power can be determined by the voltage increase of the DC common unit 2). A brake command BRK1 is output from the host control unit 60 to the brake control unit 56. The brake controller 56 generates a braking force by controlling a brake device 66 such as an air brake. If the regenerative power decreases, the output of the exhaust brake command CMD2 is stopped or controlled to zero.
<停止>
 車両が減速し、車両の速度が低くなると、空気ブレーキのみの制御となり、車両が停止する。ここで、第1の蓄電池13および第2の蓄電池23が十分充電されている場合、ディーゼルエンジン1を停止させ、直流共通部2の直流電力のみで補助電源装置34を動作させ、補助電源装置34の発生する交流電力を補機38に供給する。
<Stop>
When the vehicle decelerates and the speed of the vehicle decreases, only the air brake is controlled and the vehicle stops. Here, if the first storage battery 13 and the second storage battery 23 are sufficiently charged, the diesel engine 1 is stopped, the auxiliary power supply 34 is operated only by the DC power of the DC common unit 2, and the auxiliary power supply 34. Is supplied to the auxiliary machine 38.
 図3は、実施の形態1に係るディーゼルハイブリッド車両システムの鉄道車両における配置例を示す図である。実施の形態1に係るディーゼルハイブリッド車両システムでは、図に示すように、鉄道車両の床下中央部に直流共通部2を設けることにより、直流共通部2で区切られる一方側に第1のインバータ14、第2のインバータ24、第1のコンバータ12、第2のコンバータ22および補助電源装置(SIV)34を設け、直流共通部2で区切られる他方側に第1の蓄電池13、第2の蓄電池23、ディーゼルエンジン1、第1の発電機(GE1)11、第2の発電機(GE2)21を設け、さらにラジエータ68を配置する構成が可能となる。また、このような配置構成により、ディーゼルエンジン1を形成する軸の一方側に第1の発電機11を機械的に接続し、軸の他方側に第2の発電機21を機械的に接続する構成を簡易に実現することができる。なお、図示のように直流共通部2の両端に直流端子2A,2Bを設けるようにすれば、隣接車両との接続が容易となる。 FIG. 3 is a diagram illustrating an arrangement example in the railway vehicle of the diesel hybrid vehicle system according to the first embodiment. In the diesel hybrid vehicle system according to the first embodiment, as shown in the figure, the first inverter 14 is provided on one side separated by the DC common part 2 by providing the DC common part 2 at the center under the floor of the railway vehicle. The second inverter 24, the first converter 12, the second converter 22, and the auxiliary power supply device (SIV) 34 are provided, and the first storage battery 13, the second storage battery 23, The diesel engine 1, the first generator (GE1) 11, the second generator (GE2) 21 and the radiator 68 can be arranged. Also, with such an arrangement, the first generator 11 is mechanically connected to one side of the shaft forming the diesel engine 1 and the second generator 21 is mechanically connected to the other side of the shaft. The configuration can be easily realized. In addition, if the direct current terminals 2A and 2B are provided at both ends of the direct current common part 2 as shown in the figure, the connection with the adjacent vehicle becomes easy.
 以上説明したように、実施の形態1の車両用制御装置およびディーゼルハイブリッド車両システムによれば、2台の発電機と2台のコンバータを設け、2台のコンバータの出力を直流共通部に接続する構成としたので、1台の発電機や1台のコンバータが故障した場合であっても、正常時と同等の車両運行を継続することができるという効果が得られる。また、2台の蓄電池と2台のインバータを備える構成としたので、1台のモータや1台のインバータが故障した場合であっても、もう1台のモータや、もう1台のインバータで車両の運転を継続でき、機器故障時のバックアップができ、車両の信頼性が向上するという効果が得られる。 As described above, according to the vehicle control device and the diesel hybrid vehicle system of the first embodiment, two generators and two converters are provided, and the outputs of the two converters are connected to the DC common part. Since it was set as the structure, even if it is a case where one generator and one converter fail, the effect that vehicle operation equivalent to the time of normal can be continued is acquired. In addition, since it is configured to include two storage batteries and two inverters, even if one motor or one inverter fails, the vehicle can be operated with another motor or another inverter. This makes it possible to continue the operation of the vehicle, to back up when a device fails, and to improve the reliability of the vehicle.
実施の形態2.
 図4は、本発明の実施の形態2に係る車両用制御装置を含むディーゼルハイブリッド車両システムの一構成例を示す図である。実施の形態1では、ディーゼルエンジン1を形成する軸の一方側に第1の発電機11を接続し、軸の他方側に第2の発電機21を接続する構成としていたが、実施の形態2では、軸の一方側に第1の発電機11および第2の発電機21の双方を接続する構成としている。なお、その他の構成については、図1に示した実施の形態1の構成と同一または同等であり、共通する構成部には同一の符号を付し、その説明を省略する。
Embodiment 2. FIG.
FIG. 4 is a diagram illustrating a configuration example of a diesel hybrid vehicle system including the vehicle control device according to the second embodiment of the present invention. In the first embodiment, the first generator 11 is connected to one side of the shaft forming the diesel engine 1 and the second generator 21 is connected to the other side of the shaft. Then, it is set as the structure which connects both the 1st generator 11 and the 2nd generator 21 to the one side of an axis | shaft. In addition, about another structure, it is the same as that of Embodiment 1 shown in FIG. 1, or is equivalent, The same code | symbol is attached | subjected to a common structure part, The description is abbreviate | omitted.
 鉄道車両の床下空間には、多数の配線が張り巡らされているのと共に、推進制御関連以外の装置も多数搭載されているため、様々な制約がある。例えば、図3の構成において、ディーゼルエンジン1、第1の発電機11または第2の発電機21の配置に制約がかかる場合であっても、ディーゼルエンジン1と第1の発電機11の配置を入れ替えたり、ディーゼルエンジン1と第2の発電機21の配置を入れ替えたりすることにより、実施の形態2の構成を採用できるので、配置構成に選択の幅と柔軟性が広がるという効果が得られる。 There are various restrictions in the space under the floor of a railway vehicle because many wires are installed and many devices other than those related to propulsion control are installed. For example, in the configuration of FIG. 3, even if the arrangement of the diesel engine 1, the first generator 11, or the second generator 21 is restricted, the arrangement of the diesel engine 1 and the first generator 11 is changed. Since the configuration of the second embodiment can be adopted by switching or replacing the arrangement of the diesel engine 1 and the second generator 21, it is possible to obtain an effect that the selection range and flexibility are widened in the arrangement configuration.
実施の形態3.
 図5は、構成機器を複数の車両に振り分けるように構成した実施の形態3に係るディーゼルハイブリッド車両システムの一構成例を示す図である。図5に示すように、実施の形態3では、ディーゼルハイブリッド車両システム80を構成する機器を車両90Aおよび車両90Bの2つの車両に振り分けている。具体的に説明すると、車両90Aでは、ディーゼルエンジン1、第1の発電機11、第2の発電機21、第1の蓄電池13、第1のコンバータ12、第2のコンバータ22、第1の補助電源装置(第1のSIV)34A、補機38Aおよび第1の制御部51を配置し、車両90Bでは、第2の蓄電池23、第1のインバータ14、第2の補助電源装置(第2のSIV)34B、補機38B、第2のインバータ24、第1のモータ15、第2のモータ25および第2の制御部52を配置している。また、車両90Aおよび車両90Bの双方には直流共通部2がそれぞれ設けられると共に、車両90Aと車両90Bとの間には、双方の直流共通部2を電気的に接続するためのインタフェースである接続部100が設けられている。
Embodiment 3 FIG.
FIG. 5 is a diagram illustrating a configuration example of a diesel hybrid vehicle system according to Embodiment 3 configured to distribute the constituent devices to a plurality of vehicles. As shown in FIG. 5, in the third embodiment, the devices constituting the diesel hybrid vehicle system 80 are distributed to two vehicles, a vehicle 90A and a vehicle 90B. Specifically, in the vehicle 90 </ b> A, the diesel engine 1, the first generator 11, the second generator 21, the first storage battery 13, the first converter 12, the second converter 22, and the first auxiliary The power supply device (first SIV) 34A, the auxiliary machine 38A, and the first control unit 51 are arranged. In the vehicle 90B, the second storage battery 23, the first inverter 14, the second auxiliary power supply device (second SIV) 34B, auxiliary machine 38B, second inverter 24, first motor 15, second motor 25, and second control unit 52 are arranged. Further, both the vehicle 90A and the vehicle 90B are provided with the DC common part 2, and a connection as an interface for electrically connecting the DC common part 2 between the vehicle 90A and the vehicle 90B. Part 100 is provided.
 実施の形態3の構成によれば、車両90Bのようにモータが搭載されている車両にインバータ装置(第1のインバータ14および第2のインバータ24)を配置し、車両90Aのようにモータが搭載されていない車両にコンバータ装置(第1のコンバータ12および第2のコンバータ22)を配置しているので、限られた床下空間を有効に活用することができるという効果が得られる。また、直流共通部2を車両間インタフェースとすることができるので、車両間インタフェースの構成を簡素化することができるという効果が得られる。また、機器の配置構成が図5の例とは異なる場合であっても、直流共通部2を車両間インタフェースとする構成を変更する必要がないので、機器の一部を屋根上や室内に置くことも可能であり、機器の配置構成や編成の自由度が増すという効果が得られる。 According to the configuration of the third embodiment, the inverter device (the first inverter 14 and the second inverter 24) is arranged on the vehicle on which the motor is mounted like the vehicle 90B, and the motor is mounted like the vehicle 90A. Since the converter devices (the first converter 12 and the second converter 22) are arranged in a vehicle that has not been provided, an effect that the limited underfloor space can be effectively utilized is obtained. Moreover, since the direct current common part 2 can be used as an inter-vehicle interface, an effect that the configuration of the inter-vehicle interface can be simplified is obtained. Further, even if the arrangement configuration of the devices is different from the example of FIG. 5, there is no need to change the configuration in which the DC common part 2 is an inter-vehicle interface, so a part of the devices is placed on the roof or indoors. It is also possible to obtain the effect of increasing the degree of freedom of arrangement and organization of equipment.
実施の形態4.
 実施の形態4は、上述した実施の形態1~3に共通する実施の形態であり、第1のコンバータと第2のコンバータとでPWMの制御モードを異ならせる実施の形態である。本実施の形態では、例えば、第1のコンバータは非同期PWMモードで制御し、第2のコンバータは1パルスPWMモードで制御する。なお、第1のコンバータは、複数パルスによる同期PWMモードであっても構わない。また、第1のコンバータと第2のコンバータの制御を入れ替えてもよい。このような制御により、一方のコンバータのパルス数を削減できるので、コンバータ2台合わせての損失を低減することができるという効果が得られる。また、一方のコンバータのパルス数を削減できるので、発電機の発電電力を効率よく供給できるという効果が得られる。
Embodiment 4 FIG.
The fourth embodiment is an embodiment common to the first to third embodiments described above, and is an embodiment in which the PWM control mode is different between the first converter and the second converter. In the present embodiment, for example, the first converter is controlled in the asynchronous PWM mode, and the second converter is controlled in the 1-pulse PWM mode. Note that the first converter may be in a synchronous PWM mode using a plurality of pulses. Moreover, you may replace control of a 1st converter and a 2nd converter. By such control, the number of pulses of one converter can be reduced, so that it is possible to reduce the loss of the two converters together. Moreover, since the number of pulses of one converter can be reduced, the effect that the electric power generated by the generator can be efficiently supplied can be obtained.
 なお、以上の実施の形態1~4に示した構成は、本発明の構成の一例であり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能であることは言うまでもない。 Note that the configurations shown in the above first to fourth embodiments are examples of the configuration of the present invention, and can be combined with other known techniques, and can be combined without departing from the gist of the present invention. Needless to say, the configuration may be modified by omitting the unit.
 また、実施の形態1~4では、ディーゼルエンジンを搭載した鉄道車両を一例として説明したが、ディーゼルエンジン以外のエンジンにより駆動される発電機と、発電電力を直流に変換するコンバータと、電力貯蔵装置(リチウムイオン電池、ニッケル水素電池、電気二重層キャパシタ、リチウムイオンキャパシタ、フライホイール等)を搭載したハイブリッド移動体(自動車、自動2輪等)、ハイブリッド建設機械(ダンプトラック、ブルドーザ、ショベルカー等)あるいは、船舶の分野にも利用可能である。なお、発電機やモータは、誘導電動機や同期電動機などの種類を限定するものではないことは言うまでもない。 In the first to fourth embodiments, a railway vehicle equipped with a diesel engine has been described as an example. However, a generator driven by an engine other than the diesel engine, a converter that converts generated power into direct current, and a power storage device (Vehicles equipped with lithium ion batteries, nickel metal hydride batteries, electric double layer capacitors, lithium ion capacitors, flywheels, etc.), hybrid construction machines (dump trucks, bulldozers, excavators, etc.) Alternatively, it can be used in the field of ships. Needless to say, the generator and the motor are not limited to types such as an induction motor and a synchronous motor.
 以上のように、本発明は、1台の発電機や1台のコンバータが故障した場合であっても、正常時と同等の車両運行を継続することができる車両用制御装置およびディーゼルハイブリッド車両システムとして有用である。 As described above, the present invention provides a vehicle control device and a diesel hybrid vehicle system capable of continuing vehicle operation equivalent to normal operation even when one generator or one converter fails. Useful as.
1 ディーゼルエンジン
2 直流共通部
2A,2B 直流端子
11 第1の発電機(GE1)
12 第1のコンバータ
13 第1の蓄電池
14 第1のインバータ
15 第1のモータ(M1)
21 第2の発電機(GE2)
22 第2のコンバータ
23 第2の蓄電池
24 第2のインバータ
25 第2のモータ(M2)
34 補助電源装置(SIV)
34A 第1の補助電源装置(第1のSIV)
34B 第2の補助電源装置(第2のSIV)
38,38A,38B 補機
41 第1の接触器
42 第2の接触器
43 第3の接触器
44 第4の接触器
45 第5の接触器
46 第6の接触器
47 第7の接触器
50 制御部
51 第1の制御部
52 第2の制御部
53 第3の制御部
54 エンジン制御部
55 蓄電池監視部
56 ブレーキ制御部
60 上位制御部
62 制御部群
64 推進装置群
66 ブレーキ装置
68 ラジエータ
71~77 電流検出器
80 ディーゼルハイブリッド車両システム
83~89 電圧検出器
91,92,93,94 回転数検出器
100 接続部
DESCRIPTION OF SYMBOLS 1 Diesel engine 2 DC common part 2A, 2B DC terminal 11 1st generator (GE1)
12 1st converter 13 1st storage battery 14 1st inverter 15 1st motor (M1)
21 Second generator (GE2)
22 2nd converter 23 2nd storage battery 24 2nd inverter 25 2nd motor (M2)
34 Auxiliary power supply (SIV)
34A First auxiliary power supply (first SIV)
34B Second auxiliary power supply (second SIV)
38, 38A, 38B Auxiliary machine 41 1st contactor 42 2nd contactor 43 3rd contactor 44 4th contactor 45 5th contactor 46 6th contactor 47 7th contactor 50 Control unit 51 First control unit 52 Second control unit 53 Third control unit 54 Engine control unit 55 Storage battery monitoring unit 56 Brake control unit 60 Host control unit 62 Control unit group 64 Propulsion device group 66 Brake device 68 Radiator 71 ~ 77 Current detector 80 Diesel hybrid vehicle system 83 ~ 89 Voltage detector 91, 92, 93, 94 Speed detector 100 Connection

Claims (8)

  1.  ディーゼルエンジンと、
     前記ディーゼルエンジンの出力により交流電力を発電する第1および第2の発電機と、
     車両内の直流共通部に接続可能に構成され、前記第1の発電機が発電した交流電力を直流電力に変換して前記直流共通部に出力する第1のコンバータと、
     前記直流共通部に接続可能に構成され、前記第2の発電機が発電した交流電力を直流電力に変換して前記直流共通部に出力する第2のコンバータと、
     前記直流共通部に接続可能に構成され、当該直流共通部から供給される直流電力を充電し、または、当該直流共通部に直流電力を放電する第1の電力貯蔵装置と、
     前記直流共通部に接続可能に構成され、当該直流共通部から供給される直流電力を交流電力に変換して補機に供給する第1の補助電源装置と、
     前記第1のコンバータ、前記第2のコンバータ、前記第1の補助電源装置の各動作を制御すると共に、前記第1の電力貯蔵装置の充放電を制御する第1の制御部と、
     を第1の車両に搭載し、
     車両に駆動力を発生する第1および第2のモータと、
     車両内の直流共通部に接続可能に構成され、当該直流共通部から供給される直流電力を交流電力に変換して前記第1のモータに供給する第1のインバータと、
     前記直流共通部に接続可能に構成され、当該直流共通部から供給される直流電力を交流電力に変換して前記第2のモータに供給する第2のインバータと、
     前記直流共通部に接続可能に構成され、当該直流共通部から供給される直流電力を充電し、または、当該直流共通部に直流電力を放電する第1の電力貯蔵装置と、
     前記直流共通部に接続可能に構成され、当該直流共通部から供給される直流電力を交流電力に変換して補機に供給する第2の補助電源装置と、
     前記第1のインバータ、前記第2のインバータ、前記第2の補助電源装置の各動作を制御すると共に、前記第2の電力貯蔵装置の充放電を制御する第2の制御部と、
     を第2の車両に搭載し、
     前記第1の車両の直流共通部と前記第2の車両の直流共通部とを車両間で接続したことを特徴とするディーゼルハイブリッド車両システム。
    A diesel engine,
    First and second generators for generating AC power from the output of the diesel engine;
    A first converter configured to be connectable to a DC common part in a vehicle, converting AC power generated by the first generator into DC power and outputting the DC power to the DC common part;
    A second converter configured to be connectable to the DC common unit, converting AC power generated by the second generator into DC power and outputting the DC power to the DC common unit;
    A first power storage device configured to be connectable to the DC common unit, charging DC power supplied from the DC common unit, or discharging DC power to the DC common unit;
    A first auxiliary power unit configured to be connectable to the DC common part, converting DC power supplied from the DC common part into AC power and supplying the auxiliary machine;
    A first control unit that controls each operation of the first converter, the second converter, and the first auxiliary power supply device, and controls charging and discharging of the first power storage device;
    On the first vehicle,
    First and second motors for generating driving force in the vehicle;
    A first inverter configured to be connectable to a DC common unit in the vehicle, converting DC power supplied from the DC common unit into AC power and supplying the AC to the first motor;
    A second inverter configured to be connectable to the DC common part, converting DC power supplied from the DC common part into AC power and supplying the second motor;
    A first power storage device configured to be connectable to the DC common unit, charging DC power supplied from the DC common unit, or discharging DC power to the DC common unit;
    A second auxiliary power unit configured to be connectable to the DC common unit, converting DC power supplied from the DC common unit into AC power and supplying the auxiliary power; and
    A second control unit that controls each operation of the first inverter, the second inverter, and the second auxiliary power supply device, and controls charging and discharging of the second power storage device;
    On a second vehicle,
    A diesel hybrid vehicle system, wherein a DC common part of the first vehicle and a DC common part of the second vehicle are connected between vehicles.
  2.  直流共通部に接続可能に構成され、ディーゼルエンジンの出力により交流電力を発電する第1の発電機が発電した交流電力を直流電力に変換して前記直流共通部に出力する第1のコンバータと、
     前記直流共通部に接続可能に構成され、前記ディーゼルエンジンの出力により交流電力を発電する第2の発電機が発電した交流電力を直流電力に変換して前記直流共通部に出力する第2のコンバータと、
     前記直流共通部に接続可能に構成され、当該直流共通部から供給される直流電力を充電し、または、当該直流共通部に直流電力を放電する電力貯蔵装置と、
     前記直流共通部に接続可能に構成され、当該直流共通部から供給される直流電力を交流電力に変換して車両に駆動力を発生する第1のモータに供給する第1のインバータと、
     前記直流共通部に接続可能に構成され、当該直流共通部から供給される直流電力を交流電力に変換して車両に駆動力を発生する第2のモータに供給する第2のインバータと、
     前記第1のコンバータ、前記第2のコンバータ、前記第1のインバータおよび前記第2のインバータの各動作を制御すると共に、前記電力貯蔵装置の充放電を制御する制御部と、
     を備えたことを特徴とする車両用制御装置。
    A first converter configured to be connectable to a DC common part, converting AC power generated by a first generator that generates AC power from the output of a diesel engine into DC power, and outputting the DC power to the DC common part;
    A second converter configured to be connectable to the DC common part and converting AC power generated by a second generator that generates AC power from the output of the diesel engine into DC power and outputting the DC power to the DC common part When,
    A power storage device configured to be connectable to the DC common unit, charging DC power supplied from the DC common unit, or discharging DC power to the DC common unit;
    A first inverter configured to be connectable to the direct current common unit, converting the direct current power supplied from the direct current common unit into alternating current power and supplying the first motor to generate driving force for the vehicle;
    A second inverter configured to be connectable to the direct current common unit, converting the direct current power supplied from the direct current common unit into alternating current power and supplying the second motor to generate driving force for the vehicle;
    A control unit that controls each operation of the first converter, the second converter, the first inverter, and the second inverter, and controls charging and discharging of the power storage device;
    A vehicle control device comprising:
  3.  前記制御部は、力行指令が入力された場合、前記電力貯蔵装置の直流電力を前記直流共通部に出力すると共に、前記第1のインバータおよび前記第2のインバータのうちの少なくとも一つを前記直流共通部に接続し、当該直流共通部に接続した前記第1のインバータおよび前記第2のインバータのうちの少なくとも一つを動作させて車両を駆動することを特徴とする請求項2に記載の車両用制御装置。 When the power running command is input, the control unit outputs DC power of the power storage device to the DC common unit, and at least one of the first inverter and the second inverter is connected to the DC 3. The vehicle according to claim 2, wherein the vehicle is connected to a common unit, and the vehicle is driven by operating at least one of the first inverter and the second inverter connected to the DC common unit. Control device.
  4.  前記制御部は、エンジン始動指令が入力された場合、前記第1のコンバータおよび前記第2のコンバータのうちの少なくとも一つを前記直流共通部に接続すると共に、当該直流共通部に接続されたコンバータに接続される前記第1の発電機および/または前記第2の発電機を動作させ、その発電電力を直流電力に変換して前記直流共通部に供給することを特徴とする請求項2に記載の車両用制御装置。 When the engine start command is input, the control unit connects at least one of the first converter and the second converter to the DC common unit and a converter connected to the DC common unit. 3. The first generator and / or the second generator connected to each other is operated, and the generated power is converted into DC power and supplied to the DC common unit. Vehicle control device.
  5.  前記第1の発電機および前記第2の発電機を動作させている場合、
     前記制御部は、前記第1の発電機および/または前記第2の発電機による発電電力に応じて、前記電力貯蔵装置の放電電力を減少させる制御を行うことを特徴とする請求項4に記載の車両用制御装置。
    When operating the first generator and the second generator,
    The said control part performs control which reduces the discharge electric power of the said electric power storage apparatus according to the electric power generated by the said 1st generator and / or the said 2nd generator. Vehicle control device.
  6.  前記制御部は、回生ブレーキ指令が入力された場合、前記第1のインバータおよび前記第2のインバータを前記直流共通部に接続すると共に、前記第1のモータおよび前記第2のモータが発生する回生電力をそれぞれ前記第1のインバータおよび前記第2のインバータにて直流電力に変換し、変換した直流電力を前記直流共通部に供給して前記電力貯蔵装置を充電することを特徴とする請求項2に記載の車両用制御装置。 When the regenerative brake command is input, the control unit connects the first inverter and the second inverter to the DC common unit, and generates regenerative power generated by the first motor and the second motor. 3. The electric power is converted into DC power by the first inverter and the second inverter, respectively, and the converted DC power is supplied to the DC common unit to charge the power storage device. The vehicle control device described in 1.
  7.  前記電力貯蔵装置に対する回生電力の充電によって前記電力貯蔵装置が略満充電状態になった場合、
     前記制御部は、前記第1のコンバータおよび前記第2のコンバータのうちの少なくとも一つを前記直流共通部に接続すると共に、当該直流共通部に接続されたコンバータに接続される前記第1の発電機および/または前記第2の発電機をモータとして動作させ、前記第1のモータおよび前記第2のモータが発生する回生電力を前記ディーゼルエンジンにて消費させることを特徴とする請求項6に記載の車両用制御装置。
    When the power storage device is substantially fully charged by charging regenerative power to the power storage device,
    The control unit connects at least one of the first converter and the second converter to the DC common unit and the first power generation connected to the converter connected to the DC common unit. The machine and / or the second generator is operated as a motor, and regenerative power generated by the first motor and the second motor is consumed by the diesel engine. Vehicle control device.
  8.  前記制御部は、前記第1のコンバータおよび第2のコンバータの双方を動作させる場合、前記第1のコンバータと前記第2のコンバータとでPWMの制御モードを異ならせることを特徴とする請求項2に記載の車両用制御装置。 The control unit, when operating both the first converter and the second converter, makes the PWM control mode different between the first converter and the second converter. The vehicle control device described in 1.
PCT/JP2011/068275 2011-08-10 2011-08-10 Vehicle control device and diesel hybrid vehicle system WO2013021486A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2011/068275 WO2013021486A1 (en) 2011-08-10 2011-08-10 Vehicle control device and diesel hybrid vehicle system
JP2013527819A JP5550788B2 (en) 2011-08-10 2011-08-10 Diesel hybrid vehicle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/068275 WO2013021486A1 (en) 2011-08-10 2011-08-10 Vehicle control device and diesel hybrid vehicle system

Publications (1)

Publication Number Publication Date
WO2013021486A1 true WO2013021486A1 (en) 2013-02-14

Family

ID=47668035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068275 WO2013021486A1 (en) 2011-08-10 2011-08-10 Vehicle control device and diesel hybrid vehicle system

Country Status (2)

Country Link
JP (1) JP5550788B2 (en)
WO (1) WO2013021486A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015020540A (en) * 2013-07-18 2015-02-02 本田技研工業株式会社 Vehicle with on-board generator
US9399456B2 (en) 2014-03-12 2016-07-26 National Taiwan Normal University Hybrid electric vehicle
US9493077B2 (en) 2013-07-01 2016-11-15 Mitsubishi Electric Corporation Hybrid drive system
CN107206887A (en) * 2014-08-14 2017-09-26 沃尔沃卡车集团 Electric or hybrid vehicle with the multiple driver elements being arranged in multiple independent sectors of vehicle
US10065511B2 (en) 2013-07-02 2018-09-04 Mitsubishi Electric Corporation Hybrid drive system
WO2018229863A1 (en) * 2017-06-13 2018-12-20 株式会社東芝 Railroad vehicle
CN109131380A (en) * 2018-08-23 2019-01-04 中车大连机车车辆有限公司 The major-minor transmission system of diesel locomotive and diesel locomotive
CN112441025A (en) * 2020-10-30 2021-03-05 华中农业大学 Single-rail transport vehicle for extended-range hillside orchard

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11332007A (en) * 1998-05-15 1999-11-30 Isuzu Ceramics Res Inst Co Ltd Driver of series-type hybrid car
JP2009119973A (en) * 2007-11-13 2009-06-04 Komatsu Ltd Driving device for electric vehicle
JP2010088145A (en) * 2008-09-29 2010-04-15 Hitachi Ltd System for driving railway car

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3924725B2 (en) * 2003-03-14 2007-06-06 株式会社日立製作所 Railway vehicle drive system
JP2008154401A (en) * 2006-12-19 2008-07-03 Hitachi Ltd Railroad vehicle drive device, and railroad vehicle system
JP5801999B2 (en) * 2010-08-24 2015-10-28 株式会社日立製作所 Train trains equipped with railway on-board electrical equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11332007A (en) * 1998-05-15 1999-11-30 Isuzu Ceramics Res Inst Co Ltd Driver of series-type hybrid car
JP2009119973A (en) * 2007-11-13 2009-06-04 Komatsu Ltd Driving device for electric vehicle
JP2010088145A (en) * 2008-09-29 2010-04-15 Hitachi Ltd System for driving railway car

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9493077B2 (en) 2013-07-01 2016-11-15 Mitsubishi Electric Corporation Hybrid drive system
EP3000646B1 (en) 2013-07-02 2020-05-13 Mitsubishi Electric Corporation Hybrid drive system
US10065511B2 (en) 2013-07-02 2018-09-04 Mitsubishi Electric Corporation Hybrid drive system
EP3000646B2 (en) 2013-07-02 2023-03-22 NexGen Control Systems, LLC Hybrid drive system
JP2015020540A (en) * 2013-07-18 2015-02-02 本田技研工業株式会社 Vehicle with on-board generator
US9399456B2 (en) 2014-03-12 2016-07-26 National Taiwan Normal University Hybrid electric vehicle
CN107206887A (en) * 2014-08-14 2017-09-26 沃尔沃卡车集团 Electric or hybrid vehicle with the multiple driver elements being arranged in multiple independent sectors of vehicle
JPWO2018229863A1 (en) * 2017-06-13 2020-05-21 株式会社東芝 Railway vehicle
CN110603168A (en) * 2017-06-13 2019-12-20 株式会社东芝 Railway vehicle
EP3640075A4 (en) * 2017-06-13 2021-01-27 Kabushiki Kaisha Toshiba Railroad vehicle
WO2018229863A1 (en) * 2017-06-13 2018-12-20 株式会社東芝 Railroad vehicle
CN110603168B (en) * 2017-06-13 2023-03-31 株式会社东芝 Railway vehicle
CN109131380A (en) * 2018-08-23 2019-01-04 中车大连机车车辆有限公司 The major-minor transmission system of diesel locomotive and diesel locomotive
CN112441025A (en) * 2020-10-30 2021-03-05 华中农业大学 Single-rail transport vehicle for extended-range hillside orchard

Also Published As

Publication number Publication date
JPWO2013021486A1 (en) 2015-03-05
JP5550788B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
JP5550788B2 (en) Diesel hybrid vehicle system
KR101144033B1 (en) Method for controlling motor control system for hybrid vehicle
JP2013035534A (en) Hybrid vehicle
US20090315518A1 (en) Power supply device and vehicle
WO2012026026A1 (en) Vehicle control device and diesel/hybrid vehicle system
US8026679B2 (en) Hybrid vehicle
JP6080507B2 (en) Railway vehicle drive system
JP2001065385A (en) Control device for hybrid vehicle
US8838303B2 (en) Vehicle system control device
US9346363B2 (en) Propulsion control apparatus of engine hybrid railroad vehicle
JP5821569B2 (en) Hybrid car
JP5699969B2 (en) Converter fault detection device and converter fault detection method
JP3886940B2 (en) Control device for hybrid vehicle
JP5675561B2 (en) Electric car
US10099680B2 (en) Hybrid vehicle
WO2014041695A1 (en) Propulsion control device for hybrid vehicle
KR20140065209A (en) Electric vehicle and control method thereof
JP2007267445A (en) Load driving unit and automobile equipped therewith
KR20140065208A (en) Electric vehicle and control method thereof
KR20110048857A (en) Electric vehicle
JP2019115216A (en) Driving system for railroad vehicle
JP4648431B2 (en) Railway vehicle drive system and railway vehicle
JP2005348578A (en) Power supply device and vehicle equipped with it
JP2012235590A (en) Vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870681

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013527819

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11870681

Country of ref document: EP

Kind code of ref document: A1