WO2014044965A1 - Sonde de mesure de depot de suie dans l'echappement et son procede de fabrication - Google Patents

Sonde de mesure de depot de suie dans l'echappement et son procede de fabrication Download PDF

Info

Publication number
WO2014044965A1
WO2014044965A1 PCT/FR2013/052136 FR2013052136W WO2014044965A1 WO 2014044965 A1 WO2014044965 A1 WO 2014044965A1 FR 2013052136 W FR2013052136 W FR 2013052136W WO 2014044965 A1 WO2014044965 A1 WO 2014044965A1
Authority
WO
WIPO (PCT)
Prior art keywords
clusters
electrically conductive
conductive material
soot
dielectric
Prior art date
Application number
PCT/FR2013/052136
Other languages
English (en)
Inventor
Jacques NOULETTE
Frédéric DUAULT
Original Assignee
Electricfil Automotive
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electricfil Automotive filed Critical Electricfil Automotive
Priority to DE112013004590.7T priority Critical patent/DE112013004590T5/de
Publication of WO2014044965A1 publication Critical patent/WO2014044965A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0606Investigating concentration of particle suspensions by collecting particles on a support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0046Investigating dispersion of solids in gas, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/043Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a granular material

Definitions

  • the present invention relates to the technical field of measuring the amount of soot contained in the exhaust gas of an internal combustion engine of a land vehicle, such as an automobile, a truck, etc.
  • the present invention more specifically relates to a probe adapted to measure the soot deposition involved in the polluting emissions from these automobile exhaust gases.
  • the patent application FR 2 805 347 describes a measuring device comprising a probe interposed locally in the exhaust stream so as to capture its circulating particles.
  • This probe comprises an elongated dielectric support coated with an electrically conductive material forming at least two detection electrodes of which at least one part forms a soot collection surface.
  • the detection electrodes are spaced apart from each other by a dielectric groove having a particular design for producing interfered or undetected detection electrodes.
  • the electrodes are connected to an electronic system for measuring the variation of the electrical resistance resulting from the deposition of soot on the elongated dielectric support.
  • This electronic system comprises processing means capable of evaluating, from the measurement of this electrical resistance, the flow rate of the particles transported by the gas flow or the degree of fouling of a filter element traversed by the gaseous flow carrying the particles. .
  • processing means capable of evaluating, from the measurement of this electrical resistance, the flow rate of the particles transported by the gas flow or the degree of fouling of a filter element traversed by the gaseous flow carrying the particles. .
  • a similar measuring system is described in DE 10 2005 030134.
  • Determining the degree of fouling of the filter element such as a particulate filter makes it possible to determine the most appropriate moments for triggering a cleaning process of the filter element. Indeed, in order to avoid clogging the filter element, it is provided periodically to ensure its regeneration by combustion of soot deposition.
  • This regeneration operation can lead to deterioration of the filter element if, in particular, an excess of soot has accumulated inside the cells constituting such a filter element.
  • regeneration of the soot can cause such an exothermic reaction that the filter may crack due to stress due to differential expansion, or even melt.
  • the filter element is no longer able to perform its function so that fine soot (close to 70 nm in diameter) are no longer stopped by the filter element.
  • fine soot close to 70 nm in diameter
  • One way of proceeding is to measure the soot deposition carried out on a measuring probe disposed in the stream of the exhaust gases, downstream of the filtering element.
  • the document DE 10 2006 040351 teaches to dispose at least between the detection electrodes, a material promoting the deposition of the soot particles to form a conductive connection with the electrodes.
  • the soot particles are deposited in dendritic form to shorten the distance between the electrodes.
  • the document DE 10 2010 011639 describes a sensor for measuring the amount of soot deposited between two detection electrodes between which an additive material is placed to reduce the resistance between its electrodes.
  • the present invention therefore aims to propose a new probe of simple design and low cost and adapted to accurately and rapidly measure the amount of soot deposited on a collection surface placed locally in the fiow of the gases. exhaust.
  • the probe for measuring the amount of soot deposited on a collection surface comprises an elongate dielectric support coated with a layer of an electrically conductive material forming at least two detection electrodes of which at least one This part forms the soot-collecting surface, the two electrodes being separated by an inter-electrode distance via a dielectric groove delimited on either side by edges of the electrically conductive material.
  • the edges of the dielectric groove are provided with clusters formed of the electrically conductive material forming the detection electrodes, these clusters being located and spaced from each other to serve as anchors for soot bridges between the electrodes.
  • the object of the invention also relates to a measurement probe comprising one and / or the other of the following additional characteristics:
  • each cluster has a diameter of between 0.03 and 0.3 times the inter-electrode distance
  • the clusters are spaced from one another by an edge, between 1 and 10 times the diameter of the clusters,
  • the clusters are distributed substantially uniformly on each of the edges of the dielectric groove
  • the edges of the dielectric groove are distant from a measurement of between 10 and 100 ⁇
  • a voltage source connected to the two electrodes for applying a bias voltage so as to locally obtain between two clusters disposed on either side of the dielectric groove, an electric field between 10 6 and 10 8 V / m and preferably between 3.10 6 and 1, 2x10 7 V / m.
  • Another object of the invention is to propose a method for manufacturing a measurement probe according to the invention.
  • the manufacturing method of a measurement probe in accordance with the invention consists in removing, by a laser beam along a groove, a part of an electrically conductive material deposited on a dielectric support in order to form two electrodes for detecting the amount of soot deposited.
  • the method consists in choosing a laser with determined characteristics and a determined speed of displacement of the laser beam so as to create, during the production of the dielectric groove, localized clusters of electrically conductive material forming the detection electrodes, spaced apart from each other and located along the edges of the dielectric core.
  • the object of the invention is also to provide a manufacturing method comprising one and / or the other of the following additional characteristics:
  • a laser having a power of between 5 and 15 Watts, a frequency between 70 and 80 kHz and a pulse duration between 2.5 and 8 ⁇ s,
  • Figure 1 is a top view showing a measuring probe according to the invention.
  • Figure 2 is an elevational sectional view taken substantially in accordance with its signs II-II of Figure 1.
  • FIGS 3 and 4 are large scale top views showing the measuring probe according to the invention.
  • the object of the invention relates to a probe 1 adapted to measure the deposition of soot on a collection surface 2 placed in its exhaust gas of an internal combustion engine of a vehicle in the general sense.
  • measuring probe 1 is in the form of a thin rectangular plate having a distal portion 3 mounted iibre to be in contact with the exhaust gas and a proximal portion 4 mounted on a not shown support.
  • this measurement probe is mounted inside a tubular protection body, not shown, but of any type known in the ground.
  • the measuring probe 1 comprises an elongated dielectric support 6 made, for example, of a ceramic material.
  • the measurement probe 1 comprises a first main face 6 1 extending parallel to a second opposite main face 6 2 .
  • the dielectric support 6 comprises at the distal portion 3, at least two detection electrodes 9, 10 arranged adjacently or side by side.
  • the elongate dielectric support 6 comprises a first electrode 9 and a second electrode 10 arranged on the first main face 6 1 .
  • the dielectric support 6 thus has on its first main face 6 1 , the collection surface 2 for soot in which are located all or part of the detection electrodes 9, 10.
  • these detection electrodes 9, 10 are connected to the proximal portion 4 of the dielectric support 6, to a not shown connection system, by means of electrical connections 9 1 , 10 1 arranged on the first main face 61. of the dielectric support 6.
  • the connection system is connected to an electronic system capable of evaluating the amount of soot deposited on the coliect surface. This electronic system is not precisely described because it is well known to those skilled in the art, and is not part of the object of the invention.
  • the detection electrodes 9, 10 may have different shapes.
  • elves can be parallel to each other with variable spacings or interdiglated form with constant or variable pitch.
  • the detection electrodes 9, 10 are interdigitated or intercrossed.
  • the dielectric support 6 is coated by a layer 11 of an electrically conductive material forming the detection electrodes 9, 10.
  • the electrically conductive material 11 is deposited on the dielectric support 6 by any appropriate means such as by screen printing, plasma, CVD, PVD or inkjet.
  • the electrically conductive material 11 is a refractory metal such as palladium, gold and advantageously platinum.
  • the thickness of the layer of the material Electrical conductor 11 is between 5 and 10 ⁇ m and advantageously between 7 and 10 ⁇ m.
  • a probe with a layer of piatomine deposited by screen printing on a dielectric support and having a thickness of 8 ⁇ m has been produced.
  • the detection electrodes 9, 10 are separated by a dielectric space or a dielectric groove 13.
  • This dielectric groove 13 is delimited on either side by two edges 14 of the electrically conductive material forming the detection electrodes 9, 10.
  • dielectric 13 has a width represented by the reference L in FIG. 2 and corresponds to the inter-electrode distance between the two edges 14 of the electrically conductive material.
  • the width of the groove 13 is between 10 and 100 microns and advantageously of the order of 15 microns.
  • the edges 14 of the dielectric groove 13 are provided with clusters 16 of electrically conductive material 11, spaced apart from each other. You! that this is clear from the Ftg. 3 and 4, each edge 14 of the dielectric groove 13 is thus provided with protuberances or clusters 16 of electrically conductive material 11 in the form of localized balls of material.
  • These localized clusters 16 which are formed of the electrically conductive material 11 forming the detection electrodes 9, 10 are adjacent or are integral with the electrically conductive material forming the detection electrodes 9, 10.
  • the clusters 16 and the detection electrodes 9, 10 are made by the same material, namely the electrically conductive material 11. These clusters 16 thus extend from the edges 14, within the dielectric groove 13 while remaining separate from each other.
  • the clusters 16 situated on one and the same edge 14 are not contiguous and the clusters 16 arranged along an edge 14 are distant from the clusters 16 belonging to the other edge 14.
  • the clusters 16 are distributed substantially homogeneously on each of the edges of the groove 13. In other words, the clusters 16 are distributed substantially regularly along each edge 14 of the groove 13.
  • the clusters 16 are spaced from each other along an edge 14 by a distance of between 1 and 10 times the diameter of the clusters.
  • the diameter of cluster 16 corresponds to the measurement taken of the clusters 16 in the direction of extension of the groove 13.
  • Each cluster 14 has a diameter of between 0.03 and 0.3 times the inter-electrode distance L.
  • the inter-electrode distance L corresponds to the average width or distance between the edges 14 of the Si! 13.
  • the clusters 16 have a diameter of between 0.45 ⁇ m and 4.5 ⁇ m.
  • the clusters 14 have diameters of substantially the same value. It follows that the measurements made are not widely dispersed.
  • the clusters 16 extend projecting with respect to the upper surface of the layer of electrically conductive material 11.
  • soot bridges 18 are formed between the edges 14 of the groove 13, starting from 16.
  • the soot in the form of filaments are anchored on each cluster 16 vis-à-vis so that a soot bridge is created between the clusters serving as anchor.
  • Clusters 16 thus promote the formation of soot bridges that form quickly and homogeneously.
  • the clusters 16 are made during the realization of the groove 13 by means of a laser beam.
  • the clusters 16 are obtained without the addition of additional material. It must be considered that the laser beam is moved to follow a path corresponding to the desired pattern for the detection electrodes 9, 10. During its journey, the laser beam removes the electrically conductive material it in all its thickness so as to set the dielectric support 6 and create the dielectric space 13.
  • the method of manufacturing the measurement probe 1 according to the invention thus consists in choosing a laser with determined characteristics and a determined speed of displacement of the laser beam so as to create during the production of the dielectric groove 13, the clusters 16
  • the electrically conductive material layer 11 is ablated to form the dielectric groove 13
  • a portion of the electrically conductive material 11 is sublimed while another portion melts.
  • the liquid then product is so idi fi ed on the edges 14 of the detection electrodes 9, 10 to form the solid clusters 16 of electrically conductive material.
  • the method consists in selecting as a characteristic of the laser the power, the frequency and the duration of the extinction.
  • the method consists in choosing a laser having a power of between 5 and 15 Watts, a frequency between 70 and 80 kHz and a pulse duration between 2.5 and 8 ps.
  • the diameter of the laser beam is between 15 and 20 ⁇ m at the focal length.
  • the laser beam is displaced with a speed of between 50 and 200 mm / s.
  • the measuring probe 1 makes it possible to create soot bridges between the detection electrodes 9, 10 contributing to lowering the measurable resistance.
  • the measuring probe 1 is made so that the soot bridges 18 between its detection electrodes 9, 10 are formed quickly in order to have a fast measurement.
  • a small inter-electrode distance L promotes the formation of soot bridges between the detection electrodes 9, 10.
  • the clusters 16 are created in large numbers because the greater the number of soot bridges is important, more the measurement of the amount of soot is fast.
  • Clusters 16 are homogeneously created because the more soot bridges form homogeneously, the greater the amount of soot is repeatable.
  • the detection electrodes 9, 10 have a significant length in order to increase the length of hooked soot bridges 18, which which promotes the formation of a large number of bridges in a homogeneous manner allowing a repeatable measurement.
  • the bias voltage applied across the detection electrodes 9, 10 is such that, depending on the inter-electrode distance, the electric field created between the two detection electrodes 9, 10 promotes the deposition of the electrodes. between the clusters 16 which by their peak effect increases the electric field at the level of the clusters 16,
  • a voltage source connected to the two electrodes 9, 10 to apply a bias voltage so as to obtain between two clusters 16 disposed on either side of the dielectric terminal 13, an electric field between 10 6 and 10 8 V / m and preferably between 3.10 6 and 1.2x10 7 V / m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

Une sonde de mesure de la quantité de suie déposée sur une surface de collecte, comportant un support diélectrique allongé revêtu d'une couche d'un matériau conducteur électrique formant au moins deux électrodes de détection, dont, au moins un une partie forme la surface de collecte des suies, les deux élément, étant séparées selon une distance inter-électrode par l'intermédiaire d'un sillon diélectrique délimité de part et d'autre par des bords (14) du matériau conducteur électrique. Les bords (14) du sillon diélectrique sont pourvus d'amas formés du matériau conducteur électrique (11) formant les électrodes de détection (9, 10) espacés les uns des autres pour servir d'ancrage pour des ponts de suie (18) entre les électrodes.

Description

SONDE DE MESURE DE DEPOT DE SUIE DANS L'ECHAPPEMENT
ET SON PROCEDE DE FABRICATION
La présente invention concerne ie domaine technique de la mesure de îa quantité de suie contenue dans les gaz d'échappement d'un moteur à combustion interne d'un véhicule terrestre, tel qu'une automobile, un camion, etc.
La présente invention concerne plus précisément une sonde adaptée pour mesurer Se dépôt de suie intervenant dans les émissions polluantes en provenance de ces gaz d'échappement automobile.
Compte tenu des contraintes environnementales, il apparaît le besoin de pouvoir quantifier les émissions de particules ou de suie provenant des moteurs thermiques avec une fiabilité et une précision élevées,
Dans l'état de la technique, différentes solutions ont été proposées pour la détection des suies dans les gaz d'échappement.
Par exemple, la demande de brevet FR 2 805 347 décrit un dispositif de mesure comportant une sonde interposée localement dans le flux de gaz d'échappement de manière à capter Ses particuies en circulation. Cette sonde comporte un support diélectrique allongé revêtu par un matériau conducteur électrique formant au moins deux électrodes de détection dont au moins une partie forme une surface de collecte des suies. Les électrodes de détection sont espacées l'une de l'autre par un sillon diélectrique présentant un dessin particulier pour réaliser des électrodes de détection înterdigitées ou non. Les électrodes sont reliées à un système électronique permettant de mesurer la variation de la résistance électrique résultant du dépôt de suie sur le support diélectrique allongé. Ce système électronique comporte des moyens de traitement aptes à évaluer, à partir de la mesure de cette résistance électrique, Se débit des particules transportées par le flux gazeux ou le degré d'encrassement d'un élément filtrant traversé par le flux gazeux transportant les particules. Un système de mesure similaire est décrit par le document DE 10 2005 030134.
La détermination du degré d'encrassement de l'élément filtrant tel qu'un filtre à particules permet de déterminer les moments les mieux appropriés pour déclencher un processus de nettoyage de l'élément filtrant. En effet, afin d'éviter un colmatage de l'élément filtrant, il est prévu périodiquement d'assurer sa régénération par combustion du dépôt de suie.
Cette opération de régénération peut entraîner une détérioration de l 'élément filtrant si en particulier, un excédent de suies s'est accumulé à l'intérieur des alvéoles constituant un tel élément filtrant. Dans ce cas, la régénération des suies peut provoquer une réaction tellement exothermique que le filtre peut se fissurer à cause de contraintes dues à des dilatations différentielles, voire même fondre. Il s'ensuit que l'élément filtrant n'est plus à même d'exercer sa fonction de sorte que des suies fines (proches de 70 nm de diamètre) ne sont plus arrêtées par l'élément filtrant. Afin de détecter une défaillance de l'élément filtrant, il apparaît ie besoin de pouvoir mesurer de manière précise et rapide la concentration de suie dans la veine de gaz en aval du filtre à particules. Une façon de procéder est de mesurer Se dépôt de suie réalisé sur une sonde de mesure disposé dans le fiux des gaz d'échappement, en aval de l'élément filtrant.
Pour favoriser le dépôt des particules de suie, le document DE 10 2006 040351 enseigne de disposer au moins entre les éiectrodes de détection, un matériau favorisant le dépôt des particules de suie pour former une liaison conductrice avec les électrodes. Les particules de suie se déposent sous forme dendritique permettant de raccourcir la distance entre les électrodes.
Dans le même sens, le document DE 10 2010 011639 décrit un capteur de mesure de la quantité de suie déposée entre deux électrodes de détection entre iesquelles est placé un matériau additif pour diminuer la résistance entre Ses électrodes.
De telles solutions nécessitent l'ajout d'un matériau supplémentaire, ce qui rend complexe la fabrication d'un tel capteur et augmente son coût.
La présente invention vise donc à proposer une nouvelle sonde de conception simple et d'un coût réduit et adaptée pour mesurer de manière précise et rapide, la quantité de dépôt de suie déposé sur une surface de collecte placée localement dans le fiux des gaz d'échappement.
Un autre objet de l'invention est de proposer une sonde de mesure adaptée pour présenter des mesures reproductibles. Pour atteindre de tels objectifs, la sonde de mesure de la quantité de suie déposée sur une surface de coiiecte, comporte un support diélectrique allongé revêtu d'une couche d'un matériau conducteur électrique formant au moins deux électrodes de détection dont, au moins une partie forme la surface de coiiecte des suies, les deux éiectrodes étant séparées selon une distance inter-électrodes par l'intermédiaire d'un sillon diélectrique délimité de part et d'autre par des bords du matériau conducteur électrique.
Selon l'invention, les bords du sillon diélectrique sont pourvus d'amas formés du matériau conducteur électrique formant les éiectrodes de détection, ces amas étant localisés et espacés les uns des autres pour servir d'ancrage pour des ponts de suie entre les éiectrodes.
L'objet de l'invention, vise également une sonde de mesure comportant i'une et/ou l'autre des caractéristiques additionnelles suivantes :
- Ses amas localisés s'étendent en saillie par rapport à la surface du matériau conducteur électrique,
- chaque amas possède un diamètre compris entre 0,03 et 0,3 fois ia distance inter-éiectrode,
- les amas sont espacés les uns des autres selon un bord, entre 1 et 10 fois le diamètre des amas,
- les amas sont répartis de manière sensiblement homogène sur chacun des bords du sillon diélectrique,
- les bords du sillon diélectrique sont distants d'une mesure comprise entre 10 et 100 μιη,
- une source de tension reliée aux deux électrodes pour appliquer une tension de polarisation de manière à obtenir localement entre deux amas disposés de part et d'autre du sillon diélectrique, un champ électrique entre 106 et 108 V/m et de préférence entre 3.106 et 1 ,2x107 V/m.
Un autre objet de l'invention est de proposer un procédé de fabrication d'une sonde de mesure conforme à l'invention. Le procédé de fabrication, d'une sonde de mesure conforme à l'invention, consiste à enlever par un faisceau laser selon un sillon, une partie d'un matériau conducteur électrique déposé sur un support diélectrique afin de former deux électrodes de détection de la quantité de suie déposée. Le procédé consiste à choisir un laser avec des caractéristiques déterminées et une vitesse déterminée de déplacement du faisceau laser de manière à créer lors de la réalisation du sillon diélectrique, des amas localisés du matériau conducteur électrique formant ies électrodes de détection, espacés les uns des autres et situés le long des bords du siiion diélectrique.
L'objet de l'invention vise également un procédé de fabrication comportant i'une et/ou l'autre des caractéristiques additionnelles suivantes :
- choisir en tant que caractéristique du laser, !a puissance, fa fréquence et la durée d'impulsion,
- choisir un laser présentant une puissance comprise entre 5 et 15 Watts, une fréquence entre 70 et 80 kHz et une durée d'impulsion entre 2,5 et 8 μs,
- déplacer le faisceau laser avec une vitesse de déplacement comprise entre 50 et 200 mm/s.
Diverses autres caractéristiques ressortent de la description faite ci-dessous en référence aux dessins annexés qui montrent, à titre d'exemples non limitatifs, des formes de réaîisation de l'objet de l'invention.
La Figure 1 est une vue de dessus montrant une sonde de mesure conforme à l'invention.
La Figure 2 est une vue en coupe élévation prise sensiblement selon Ses Signes II-II de la figure 1.
Les Figures 3 et 4 sont des vues de dessus à grande échelle montrant la sonde de mesure conforme à l'invention.
Tel que cela ressort plus précisément des Fig. 1 et 2, l'objet de l'invention concerne une sonde 1 adaptée pour mesurer le dépôt de suie sur une surface de collecte 2 placée dans Ses gaz d'échappement d'un moteur à combustion interne d'un véhicuSe au sens général Cette sonde de mesure 1 se présente sous la forme d'une mince plaquette rectangulaire présentant une partie distaie 3 montée iibre pour être en contact avec les gaz d'échappement et une partie proximale 4 montée sur un support non représenté. De manière classique, cette sonde de mesure est montée à l'intérieur d'un corps tubulaire de protection non représenté mais de tout type connu en sol
La sonde de mesure 1 comporte un support diélectrique allongé 6 réalisé, par exemple, en une matière céramique. La sonde de mesure 1 comporte une première face principale 61 s'étendant parallèlement è une deuxième face principale opposée 62.
Le support diélectrique 6 comporte à la partie distale 3, au moins deux électrodes de détection 9, 10 disposées de manière adjacente ou côte à côte. Dans l'exemple illustré, le support diélectrique allongé 6 comporte une première électrode 9 et une deuxième électrode 10 aménagées sur la première face principale 61. Le support diélectrique 6 présente ainsi sur sa première face principale 61, la surface de collecte 2 pour les suies dans laquelle sont situées tout ou partie des électrodes de détection 9, 10.
De manière classique, ces électrodes de détection 9, 10 sont reliées à la partie proximale 4 du support diélectrique 6, à un système de connexion non représenté, à l'aide de liaisons électriques 91, 101 aménagées sur la première face principale 61 du support diélectrique 6. Le système de connexion est connecté à un système électronique apte à évaluer la quantité de suie déposée sur la surface de coliecte. Ce système électronique n'est pas décrit précisément car il est bien connu de l'homme du métier, et ne fait pas partie précisément de l'objet de l'invention.
IS est à noter que les électrodes de détection 9, 10, peuvent présenter différentes formes. Par exemple, elfes peuvent être parallèles entre-elles avec des écartements variables ou de forme interdigltée à pas constant ou variable. Dans l'exemple illustré sur les dessins, les électrodes de détection 9, 10 sont interdigitées ou entrecroisées.
Le support diélectrique 6 est revêtu par une couche 11 d'un matériau conducteur électrique formant les électrodes de détection 9, 10. Le matériau conducteur électrique 11 est déposé sur le support diélectrique 6 par tous moyens appropriés tels que par sérigraphie, plasma, CVD, PVD ou jet d'encre. De préférence, le matériau conducteur électrique 11 est un métal réfractaire tel que le palladium, i'or et avantageusement le platine. De préférence, l'épaisseur de la couche du matériau conducteur électrique 11 est comprise entre 5 et 10 pm et avantageusement entre 7 et 10 pm. A titre d'exemple, il a été réalisé une sonde avec une couche de piatine déposée par sérigraphie sur un support diélectrique et présentant une épaisseur de 8 pm.
Les électrodes de détection 9, 10 sont séparées par un espace diélectrique ou un sillon diélectrique 13. Ce sillon diélectrique 13 est délimité de part et d'autre par deux bords 14 du matériau conducteur électrique formant les électrodes de détection 9, 10. Le sillon diélectrique 13 possède une largeur représentée par la référence L sur la Fig. 2 et correspond à fa distance inter-électrodes prise entre les deux bords 14 du matériau conducteur électrique. Par exemple, la largeur du sillon 13 est comprise entre 10 et 100 μm et avantageusement de l'ordre de 15 μm.
Conformément à l'invention, les bords 14 du sillon diélectrique 13 sont pourvus d'amas 16 de matériau conducteur électrique 11, espacés les uns des autres. Te! que cela ressort plus précisément des Ftg. 3 et 4, chaque bord 14 du sillon diélectrique 13 est pourvu ainsi de protubérances ou d'amas 16 de matériau conducteur électrique 11 se présentant sous forme de boules localisées de matière. Ces amas localisés 16 qui sont formés du matériau conducteur électrique 11 formant les électrodes de détection 9, 10 sont attenants ou font corps au matériau conducteur électrique formant les électrodes de détection 9, 10. Les amas 16 et les électrodes de détection 9, 10 sont réalisés par le même matériau, à savoir le matériau conducteur électrique 11. Ces amas 16 s'étendent ainsi à partir des bords 14, à l'intérieur du sillon diélectrique 13 tout en restant séparés Ses uns des autres. Ainsi, les amas 16 situés selon un même bord 14 ne sont pas jointifs et les amas 16 disposés selon un bord 14 sont distants des amas 16 appartenant à l'autre bord 14.
Avantageusement, les amas 16 sont répartis de manière sensiblement homogène sur chacun des bords du sillon 13. En d'autres termes, les amas 16 sont répartis sensiblement régulièrement le long de chaque bord 14 du sillon 13.
Avantageusement, les amas 16 sont espacés les uns des autres selon un bord 14 d'une distance comprise entre 1 et 10 fois le diamètre des amas. Le diamètre des amas 16 correspond à la mesure prise des amas 16 se!on la direction d'extension du sillon 13.
Chaque amas 14 possède un diamètre compris entre 0,03 et 0,3 fois la distance inter-électrode L. De manière arbitraire, la distance inter-électrode L correspond à la largeur ou à la distance moyenne entre les bords 14 du si!Son 13. Dans le cas où la distance inter-électrode L est égale à 15 prn, alors les amas 16 possèdent un diamètre compris entre 0,45 pm et 4,5μm. Avantageusement les amas 14 possèdent des diamètres sensiblement de même valeur. Il s'ensuit que les mesures réalisées sont peu dispersées, Avantageusement, !es amas 16 s'étendent en saillie par rapport à la surface supérieure de la couche de matériau conducteur électrique 11.
La présence des amas 16 sur les bords 14 des électrodes de détection 9, 10 permet une meilleure accroche des suies entre les électrodes de détection 9, 10. Il se forme ainsi des ponts de suie 18 entre les bords 14 du sillon 13, à partir des amas 16. Les suies sous forme de filaments viennent s'ancrer sur chacun des amas 16 en vis-à- vis de sorte qu'un pont de suie se crée entre les amas servant d'ancrage. Les amas 16 favorisent ainsi la formation de ponts de suie qui se forment rapidement et de manière homogène.
Selon une autre caractéristique de Slnvention, les amas 16 sont réalisés lors de la réalisation du sillon 13 par l'intermédiaire d'un faisceau laser. En d'autres termes, les amas 16 sont obtenus sans l'ajout de matériau supplémentaire. Il doit être considéré que le faisceau laser est déplacé pour suivre un trajet correspondant au dessin souhaité pour les électrodes de détection 9, 10. Lors de son trajet, le faisceau laser enlève le matériau conducteur électrique il selon toute son épaisseur de manière à mettre à nu le support diélectrique 6 et à créer l'espace diélectrique 13.
Le procédé de fabrication de la sonde de mesure 1 seion l'invention, consiste ainsi à choisir un laser avec des caractéristiques déterminées et une vitesse déterminée de déplacement du faisceau laser de manière à créer lors de la réalisation du sillon diélectrique 13, les amas 16. Lors de l'ablation de la couche de matériau conducteur électrique 11 pour réaliser le sillon diélectrique 13, une partie du matériau conducteur électrique 11 est sublimée tandis qu'une autre partie rentre en fusion. Le liquide alors produit, se so!idifie sur tes bords 14 des électrodes de détection 9, 10 pour former les amas solides 16 de matériau conducteur électrique.
Le procédé consiste à choisir en tant que caractéristique du laser, la puissance, ia fréquence et fa durée dimpuision.
Le procédé consiste è choisir un laser présentant une puissance comprise entre 5 et 15 Watts, une fréquence entre 70 et 80 kHz et une durée d'impulsion entre 2,5 et 8 ps. A titre d'exemple, le diamètre du faisceau laser est compris entre 15 et 20 μm à la distance focale.
Avantageusement, le faisceau îaser est déplacé avec une vitesse comprise entre 50 et 200 mm/s.
A titre d'exemple, pour un dépôt de platine de 10 pm d'épaisseur, réalisé par sérigraphie d'une encre n°9141 commercialisée par îa société Dupont, les paramètres d'un faisceau laser sont les suivants :
- Puissance : 7 W
- Vitesse : 50 mm/s
- Fréquence : 80 KHz
- Durée d'impulsion : 4 ps.
Il ressort de la description qui précède que la sonde de mesure 1 selon l'invention permet de créer des ponts de suie entre îes électrodes de détection 9, 10 contribuant à abaisser la résistance mesurable. Plus le nombre de ponts de suie entre Ses électrodes est élevé, plus la résistance mesurée est basse.
La sonde de mesure 1 est réalisée de manière que les ponts de suie 18 entre Ses électrodes de détection 9, 10 se forment rapidement afin de disposer d'une mesure rapide. A cet égard, une faible distance inter-électrode L favorise la formation des ponts de suie entre les électrodes de détection 9, 10. De même, îes amas 16 sont créés en nombre important car plus le nombre de ponts de suie est important, pîus la mesure de la quantité de suie est rapide. Les amas 16 sont créés de manière homogène car plus les ponts de suie se forment de manière homogène, pius îa mesure de la quantité de suie est répétable. De préférence, les électrodes de détection 9, 10, présentent une longueur importante afin d'augmenter la longueur d'accroché des ponts de suie 18, ce qui favorise la formation d'un grand nombre de ponts de façon homogène permettant une mesure répétable.
Il est à noter que la tension de polarisation appliquée aux bornes des électrodes de détection 9, 10 est telle, qu'en fonction de la distance inter-électrode, le champ électrique créé entre les deux électrodes de détection 9, 10 favorise le dépôt des suies entre les amas 16 qui par leur effet de pointe augmente le champ électrique au niveau des amas 16, A cet égard, une source de tension reliée aux deux électrodes 9, 10 pour appliquer une tension de polarisation de manière à obtenir locaiement entre deux amas 16 disposés de part et d'autre du sîilon diélectrique 13, un champ électrique entre 106 et 108 V/m et de préférence entre 3.106 et 1,2x107 V/m.
L'invention n'est pas limitée aux exemples décrits et représentés car diverses modifications peuvent y être apportées sans sortir de son cadre.

Claims

REVENDICATIONS
1 - Sonde de mesure de la quantité de suie déposée sur une surface de collecte (2), comportant un support diélectrique allongé (6) revêtu d'une couche d'un matériau conducteur électrique (11) formant au moins deux électrodes de détection (9, 10) dont, au moins une partie forme la surface de collecte des suies, les deux électrodes (9, 10) étant séparées selon une distance inter-électrodes par l'intermédiaire d'un sillon diélectrique (13) délimité de part et d'autre par des bords (14) du matériau conducteur électrique, caractérisé en ce que les bords (14) du sillon diélectrique (13) sont pourvus d'amas (16) formés du matériau conducteur électrique (11) formant les électrodes de détection (9, 10), ces amas (16) étant localisés et espacés les uns des autres pour servir d'ancrage pour des ponts de suie (18) entre les électrodes.
2 - Sonde de mesure selon la revendication 1, caractérisée en ce que les amas localisés (16) s'étendent en saillie par rapport à la surface du matériau conducteur électrique (11).
3 - Sonde de mesure selon la revendication 1 ou 2, caractérisée en ce que chaque amas (16) possède un diamètre compris entre 0,03 et 0,3 fois la distance interélectrode.
4 - Sonde de mesure selon l'une des revendications 1 à 3, caractérisée en ce que les amas (16) sont espacés les uns des autres selon un bord (14), entre 1 et 10 fois le diamètre des amas.
5 - Sonde de mesure selon l'une des revendications 1 à 4, caractérisée en ce que les amas (16) sont répartis de manière sensiblement homogène sur chacun des bords (14) du sillon diélectrique (13).
6 - Sonde de mesure selon l'une des revendications 1 à 5, caractérisée en ce que les bords (14) du sillon diélectrique (13) sont distants d'une mesure comprise entre 10 et 100 μm.
7 - Sonde de mesure selon l'une des revendications 1 à 6, caractérisée en ce qu'elle comporte une source de tension reliée aux deux électrodes (9,10) appliquant une tension de polarisation de manière à obtenir localement entre deux amas (16) disposés de part et d'autre du sillon diélectrique (13), un champ électrique entre 106 et 108 V/m et de préférence entre 3.106 et 1,2x107 V/m.
8 - Procédé de fabrication d'une sonde de mesure conforme à l'une des revendications 1 à 7, consistant à enlever par un faisceau laser selon un sillon (13), une partie d'un matériau conducteur électrique (11) déposé sur un support diélectrique (6) afin de former deux électrodes de détection (9, 10) de la quantité de suie déposée, caractérisé en ce qu'il consiste à choisir un laser avec des caractéristiques déterminées et une vitesse déterminée de déplacement du faisceau laser de manière à créer lors de la réalisation du sillon diélectrique (13), des amas localisés (16) du matériau conducteur électrique (11) formant les électrodes de détection (9, 10), espacés les uns des autres et situés le long des bords (14) du sillon diélectrique (13).
9 - Procédé de fabrication selon la revendication 8, caractérisé en ce qu'il consiste à choisir en tant que caractéristique du laser, la puissance, la fréquence et la durée d'impulsion.
10 - Procédé de fabrication selon la revendication 8 ou 9, caractérisé en ce qu'il consiste à choisir un laser présentant une puissance comprise entre 5 et 15 Watts, une fréquence entre 70 et 80 kHz et une durée d'impulsion entre 2,5 et 8 μs.
11 - Procédé de fabrication selon l'une des revendications 8 à 10, caractérisé en ce qu'il consiste à déplacer le faisceau laser avec une vitesse de déplacement comprise entre 50 et 200 mm/s.
PCT/FR2013/052136 2012-09-20 2013-09-17 Sonde de mesure de depot de suie dans l'echappement et son procede de fabrication WO2014044965A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112013004590.7T DE112013004590T5 (de) 2012-09-20 2013-09-17 Sonde zur Messung der Rußablagerung im Auspuff und ihr Herstellungsverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1258855A FR2995689B1 (fr) 2012-09-20 2012-09-20 Sonde de mesure de depot de suie dans l'echappement et son procede de fabrication
FR1258855 2012-09-20

Publications (1)

Publication Number Publication Date
WO2014044965A1 true WO2014044965A1 (fr) 2014-03-27

Family

ID=47137944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/052136 WO2014044965A1 (fr) 2012-09-20 2013-09-17 Sonde de mesure de depot de suie dans l'echappement et son procede de fabrication

Country Status (3)

Country Link
DE (1) DE112013004590T5 (fr)
FR (1) FR2995689B1 (fr)
WO (1) WO2014044965A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017207781A1 (de) * 2017-05-09 2018-11-15 Robert Bosch Gmbh Sensorelement zur Erfassung von Partikeln eines Messgases in einem Messgasraum

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2805347A1 (fr) 2000-02-22 2001-08-24 Inst Francais Du Petrole Dispositif pour controler le debit de particules conductrices dans un flux de gaz
DE102005030134A1 (de) 2005-06-28 2007-01-04 Siemens Ag Sensor und Betriebsverfahren zur Detektion von Ruß
DE102006040351A1 (de) 2006-08-29 2008-03-06 Robert Bosch Gmbh Sensor zur resistiven Bestimmung von Konzentrationen leitfähiger Partikel in Gasgemischen
DE102006053689A1 (de) * 2006-11-13 2008-05-15 Vishay Bccomponents Beyschlag Gmbh Sensoranordnung
DE102007047078A1 (de) * 2007-10-01 2009-04-02 Robert Bosch Gmbh Sensorelement zur Detektion von Partikeln in einem Gas und Verfahren zu dessen Herstellung
DE102010011639A1 (de) 2010-03-16 2011-09-22 Continental Automotive Gmbh Rußsensor, Herstellungsverfahren eines Rußsensors sowie Betriebsverfahren eines Rußsensors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2805347A1 (fr) 2000-02-22 2001-08-24 Inst Francais Du Petrole Dispositif pour controler le debit de particules conductrices dans un flux de gaz
DE102005030134A1 (de) 2005-06-28 2007-01-04 Siemens Ag Sensor und Betriebsverfahren zur Detektion von Ruß
DE102006040351A1 (de) 2006-08-29 2008-03-06 Robert Bosch Gmbh Sensor zur resistiven Bestimmung von Konzentrationen leitfähiger Partikel in Gasgemischen
DE102006053689A1 (de) * 2006-11-13 2008-05-15 Vishay Bccomponents Beyschlag Gmbh Sensoranordnung
DE102007047078A1 (de) * 2007-10-01 2009-04-02 Robert Bosch Gmbh Sensorelement zur Detektion von Partikeln in einem Gas und Verfahren zu dessen Herstellung
DE102010011639A1 (de) 2010-03-16 2011-09-22 Continental Automotive Gmbh Rußsensor, Herstellungsverfahren eines Rußsensors sowie Betriebsverfahren eines Rußsensors

Also Published As

Publication number Publication date
FR2995689A1 (fr) 2014-03-21
FR2995689B1 (fr) 2015-07-03
DE112013004590T5 (de) 2015-06-11

Similar Documents

Publication Publication Date Title
EP2737185B1 (fr) Procede et dispositif de mesure de la concentration de suies dans un gaz d'echappement, notamment d'un moteur a combustion interne
EP2167950B9 (fr) Procede de mesure d'une epaisseur seuil de couche de materiau purement resistif, dispositif de mise en oeuvre, et utilisation d'un tel dispositif dans un pot d'echappement
DE102007021913A1 (de) Verfahren und Sensor zur Detektion von Teilchen in einem Gasstrom sowie deren Verwendung
FR2914421A1 (fr) Procede de gestion d'un capteur accumulateur de particules et dispositif pour la mise en oeuvre du procede
FR2901024A1 (fr) Capteur de suie.
JP2008523367A (ja) センサ
FR2890172A1 (fr) Procede de gestion d'un detecteur de particules dans un flux de gaz et dispositif pour la mise en oeuvre du procede.
EP1524507B1 (fr) Détecteur bolométrique, dispositif de détection infrarouge mettant en oeuvre un tel détecteur bolométrique et procédé de fabrication de ce détecteur
WO2006003347A1 (fr) Procede de supervision d'un procede de soudage par resistance et dispositif pour la mise en oeuvre de ce procede
WO2011101586A1 (fr) Procede et dispositif pour determiner l'etat de fonctionnement d'une sonde de mesure de la quantite de suie dans les gaz d'echappement d'un vehicule
WO2014044965A1 (fr) Sonde de mesure de depot de suie dans l'echappement et son procede de fabrication
FR2952435A1 (fr) Detecteur de particules
FR2760531A1 (fr) Dispositif destine a detecter l'encrassement et a chauffer localement un milieu isolant
FR2954827A1 (fr) Element de capteur pour la saisie d'une propriete d'un gaz et procede de realisation d'un tel element
FR2891896A1 (fr) Procede d'instrumentation d'un element en materiau composite a matrice ceramique
FR2919928A1 (fr) Capteur pour gaz et procede de detection de constituants gazeux dans un melange et/ou de mesure des concentrations respectives de ces constituants
EP2376864A1 (fr) Dispositif de mesure d'une epaisseur seuil de couche de materiau purement resistif, procede de mesure, procede de dimensionnement d'un tel dispositif et utilisation d'un tel dispositif dans un pot d'echappement
EP3966360B1 (fr) Procédé de réalisation d'un dispositif de mesure de déformations sur une pièce en composite à matrice céramique et pièce correspondante
FR3012047A1 (fr) Capteur de suie en forme de peignes sur un element de support arrondi
FR3010185A1 (fr) Capteur de suie en forme de peignes decentres
EP2180155B1 (fr) Filtre à particules comportant une structure céramique et un dispositif pour surveiller l'intégrité de ladite structure céramique
EP0124465A1 (fr) Dispositif de contrÔle de charge, et son application au contrÔle de la vitesse des gouttes d'encre d'une imprimante à jet d'encre.
EP3667309B1 (fr) Capteur de flux thermique a fil chauffant
EP1398624B1 (fr) Capteur chimique de gaz et son procédé de fabrication
EP4034310A1 (fr) Procédé de fusion d'un corps au moyen d'une onde ultrasonore

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13779252

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112013004590

Country of ref document: DE

Ref document number: 1120130045907

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13779252

Country of ref document: EP

Kind code of ref document: A1