WO2014044089A1 - 在线式不间断电源拓扑 - Google Patents

在线式不间断电源拓扑 Download PDF

Info

Publication number
WO2014044089A1
WO2014044089A1 PCT/CN2013/080952 CN2013080952W WO2014044089A1 WO 2014044089 A1 WO2014044089 A1 WO 2014044089A1 CN 2013080952 W CN2013080952 W CN 2013080952W WO 2014044089 A1 WO2014044089 A1 WO 2014044089A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
capacitor
phase
power supply
diode
Prior art date
Application number
PCT/CN2013/080952
Other languages
English (en)
French (fr)
Inventor
阳岳丰
顾亦磊
李岳辉
Original Assignee
伊顿制造(格拉斯哥)有限合伙莫尔日分支机构
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构 filed Critical 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构
Priority to US14/429,380 priority Critical patent/US9819221B2/en
Priority to EP13838564.6A priority patent/EP2899836B1/en
Publication of WO2014044089A1 publication Critical patent/WO2014044089A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • H02J9/063Common neutral, e.g. AC input neutral line connected to AC output neutral line and DC middle point
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Definitions

  • the present invention relates to the field of switching power supplies, and more particularly to an online uninterruptible power supply (UPS). Background technique
  • UPS uninterruptible power supply
  • the uninterruptible power supply is a power supply device that provides uninterrupted, high-quality, reliable AC power to the load, and has real-time protection and monitoring and monitoring of the power supply status. It plays an important role in improving the quality of the power supply and ensuring the normal operation of the equipment. From the perspective of circuit structure and uninterrupted power supply, UPS is mainly divided into two types: backup and online.
  • Fig. 1 schematically shows a block diagram of a configuration of a conventional online UPS.
  • the input AC voltage is rectified and filtered to become a DC voltage, which directly drives the inverter to supply power to the load and simultaneously charges the battery.
  • the inverter output regulates the regulated AC output voltage to the load.
  • the inverter converts the DC voltage supplied by the battery into an AC voltage to supply the load, thereby achieving uninterrupted power supply.
  • a topology of a conventional online UPS is shown in Figure 2, which consists of two levels of power conversion, the Power Factor Correction (PFC) stage and the inverter stage. Due to the two-stage power conversion, the total conversion efficiency is difficult to further increase due to the limitations of existing semiconductor and magnetic material technologies. For example, if both power conversion stages are optimized to achieve 98% efficiency, the overall efficiency drops to around 96%.
  • the UPS topology includes a high efficiency bypass mode that turns the bypass switch off and the power conversion stage is turned off, the operation of this mode is limited by many factors and relies too much on the quality of the input mains.
  • the object of the present invention is to provide a new online UPS topology to improve the conversion efficiency of the UPS online mode.
  • the bus voltage replaces the traditional DC bus voltage, and at most one power conversion stage operates at the high frequency switching state at the same time, while other power converters only switch at the zero crossing of the power frequency cycle, thereby achieving high efficiency online.
  • UPS power converters
  • the novel online UPS topology of the present invention can also retain the two-stage switching mode (double conversion mode), battery operating mode, and bypass mode of the conventional UPS.
  • a single-phase online uninterruptible power supply topology includes a main power loop and an auxiliary power loop, wherein the main power loop is composed of an input stage, a power conversion stage, and an output stage, and the auxiliary power loop is composed of The charger, the battery, and the DC/DC converter are connected in sequence.
  • the input stage of the main power loop includes a first capacitor and a first inductor.
  • the power conversion stage of the main power loop includes first to fourth series branches connected in parallel between the positive and negative bus bars.
  • the first series branch routing first diode and the second diode are formed in series
  • the second series branch routing second capacitor is formed in series with the third capacitor
  • the first switch is connected to the intermediate node and the second node of the first series branch Between the intermediate nodes of the series branch.
  • the third series branch routing third switch, the fifth capacitor, the sixth capacitor, and the fourth switch are sequentially connected in series, and the node between the intermediate node of the second series branch and the fifth and sixth capacitors is commonly connected to the ground
  • the fourth The fifth switch is connected in series with the sixth switch
  • the second switch is connected between the intermediate node of the second series branch and the intermediate node of the fourth series branch
  • the third switch and the fourth switch are respectively connected in parallel
  • the output stage of the main power loop includes a second inductor and a fourth capacitor.
  • the input of the charger of the auxiliary power circuit is connected to the AC input or the positive and negative bus of the uninterruptible power supply.
  • the output of the DC/DC converter of the auxiliary power circuit is connected to a node between the third switch and the fifth capacitor and a node between the sixth capacitor and the fourth switch.
  • the capacity of the second capacitor and the third capacitor is substantially smaller than the capacity of the fifth capacitor and the sixth capacitor.
  • the second capacitor and the third capacitor are selected from the group consisting of a film capacitor and a ceramic capacitor, and the fifth capacitor and the sixth capacitor are electrolytic capacitors.
  • the capacitance values of the second capacitor and the third capacitor may be below 50 ⁇ F.
  • the main power loop is controlled such that the third switch and the fourth switch are turned off, and the fifth capacitor and the sixth capacitor are precharged via the third diode and the fourth diode, respectively.
  • the potential that causes the third diode and the fourth diode to be turned off it is possible to operate in the following mode:
  • Boost-buck mode in which the main power loop switches between boost mode and buck mode.
  • the main power loop is controlled to operate in a conducting mode when the input voltage is within a tolerance of a predetermined output voltage value during one cycle of the input voltage;
  • the operation is performed in the boost mode; if the instantaneous value of the input voltage is greater than the preset value
  • the output voltage value is operated in buck mode; if the instantaneous value of the input voltage is sometimes less than, and sometimes greater than, the preset output voltage value, it operates in boost-buck mode.
  • the main power loop is controlled to: if the input voltage waveform distortion is within an allowable range, the duty cycle of the drive signal of the corresponding switch that is switched at a high frequency remains unchanged for one cycle of the input voltage .
  • the main power loop is controlled such that, in the case where the third switch and the fourth switch are turned on, the first to third series branches constitute a power factor correction stage, and the fourth series branch constitutes an inverter level.
  • the third diode and the fourth diode may be the body diode of the third switch and the fourth switch itself, or may be a diode separate from the third switch and the fourth switch.
  • the UPS topology and control method of the present invention is also applicable to two-phase or three-phase on-line UPS, particularly a three-phase UPS system having a shared battery pack.
  • each phase includes a primary power loop and a secondary power loop as described above.
  • the secondary power loop is shared between the phases.
  • the new in-line UPS in accordance with the present invention can have four modes of operation: (1) high efficiency mode of operation; (2) double conversion mode; (3) battery mode; and, (4) optional bypass mode as appropriate.
  • the high-efficiency operation mode is unique to the invention, and the invention can also retain the double conversion mode, the battery mode of the conventional online UPS, and even retain the bypass mode.
  • the online UPS can operate in a high efficiency mode.
  • the online UPS can operate in battery mode or double conversion mode.
  • the conversion from the high efficiency operation mode of the present invention to the double conversion mode or the battery mode is more seamless, seamless, and the output is uninterrupted compared to the conversion from the bypass mode to the double conversion mode or the battery mode.
  • FIG. 1 is a schematic block diagram of a conventional online UPS
  • Figure 2 is a topology of a conventional online UPS
  • FIG. 3 is a three-phase online UPS topology according to an embodiment of the invention.
  • 5(A)-(C) respectively show input and output voltage waveforms, current conduction and control block diagrams of a single-phase online UPS in a boost mode according to an embodiment of the present invention
  • FIGS. 6(A)-(C) are diagrams showing input and output voltage waveforms, current conduction, and control block diagrams of a single-phase online UPS in a down-convert mode according to an embodiment of the present invention
  • FIGS. 7(A)-(C) are diagrams showing input and output voltage waveforms, current conduction, and control block diagrams of a single-phase in-line UPS in a conducting mode, respectively, in accordance with an embodiment of the present invention
  • FIG. 8 is a diagram showing input and output voltage waveforms of a single-phase in-line UPS in a boost-buck mode, in accordance with an embodiment of the present invention. detailed description
  • 3 and 4 respectively show three-phase and single-phase online type according to an embodiment of the present invention
  • UPS topology For simplicity, the following is a description of single-phase UPS applications, however, all results are equally applicable to three-phase or two-phase UPS applications.
  • a single-phase, on-line, uninterruptible power supply topology can include a main power loop, an auxiliary power loop, and optionally a bypass loop.
  • the main power loop is composed of an input stage, a power conversion stage, and an output stage.
  • the input stage of the main power loop includes a first capacitor C1 and a first inductor L1.
  • the power conversion stage of the main power loop comprises first to fourth series branches connected in parallel between the positive and negative busses +BUS, -BUS.
  • the first series branch routing first diode D1 is formed in series with the second diode D2
  • the second series branch routing second capacitor C2 is formed in series with the third capacitor C3
  • the first switch S1 is connected to the first series branch Between the intermediate node and the intermediate node of the second series branch.
  • the third series branch routing third switch S3, the fifth capacitor C5, the sixth capacitor C6, and the fourth switch S4 are sequentially connected in series, and the node between the intermediate node of the second series branch and the fifth and sixth capacitors C5 and C6 Connected to ground in common
  • the fourth series branch routing fifth switch S5 is formed in series with the sixth switch S6, and the second switch S2 is connected between the intermediate node of the second series branch and the intermediate node of the fourth series branch.
  • the third switch S3 and the fourth switch S4 respectively have a third diode D3 and a fourth diode D4 connected in parallel for the fifth capacitor C5 and the third switch S3 and the fourth switch S4 are turned off Pre-charging of six capacitor C6.
  • the output stage of the main power loop includes a second inductor L2 and a fourth capacitor C4.
  • the auxiliary power circuit is constructed by sequentially connecting a charger, a battery, and a DC/DC converter.
  • the configuration of the charger, the battery, and the DC/DC converter is similar to that in the prior art, and a detailed description thereof is omitted herein.
  • the output of the DC/DC converter is connected to a node between the third switch S3 and the fifth capacitor C5 and a node between the sixth capacitor C6 and the fourth switch S4.
  • the novel in-line UPS according to the present invention may include a bypass loop for bypass operation.
  • the configuration of the bypass circuit is similar to that in the prior art, and a detailed description thereof will be omitted herein.
  • One of the differences between the single-phase UPS topology shown in Figure 4 and the traditional topology is the configuration of the bus capacitance.
  • a large-capacity electrolytic capacitor is directly mounted on the DC bus to filter out the AC voltage and store energy.
  • the second and third capacitors C2 and C3 on the bus bars +BUS, -BUS are capacitors of relatively small capacity, which can be used without a electrolytic capacitor, and respectively, using a single film capacitor or
  • the ceramic capacitors may alternatively be composed of two or more film capacitors or ceramic capacitors in parallel; at the same time, the capacitors C5 and C6 having relatively large capacities are respectively connected to the bus bars +BUS, -BUS via switches S3, S4, which may be individually
  • the electrolytic capacitors may be formed by connecting two or more electrolytic capacitors in parallel.
  • the capacity of the second and third capacitors C2, C3 may generally be below 50 F depending on the actual high frequency switching frequency; and the capacity of the fifth and sixth capacitors C5, C6 is generally several hundred or more.
  • the switches S3 and S4 are respectively connected in parallel with diodes D3 and D4 as shown in the figure.
  • the in-line UPS of the present invention can be operated in a high efficiency mode.
  • the high efficiency mode first, the switches S3 and S4 connected to the electrolytic capacitors C5 and C6 are turned off, and the electrolytic capacitors C5 and C6 are precharged via the diodes D3 and D4, respectively, and then enter the high efficiency operation mode.
  • the switches S3 and S4 connected to the electrolytic capacitors C5 and C6 are turned on, the UPS can be operated in the conventional double conversion mode or the electric mode.
  • S1-S6 in Fig. 4 may be a switching device or a switching device commonly used in the field such as a MOSFET or an IGBT.
  • the filtering components L1, L2, Cl, and C4 are similar to those in a conventional UPS in device selection and parameter selection.
  • the novel online UPS proposed by the present invention can be realized at low cost by software update in the control mode.
  • the control and operation of the novel in-line UPS in accordance with the present invention will be described below with reference to Figures 5-8.
  • the switching devices S3, S4 When the switching devices S3, S4 are turned on, the structure and operation of the online UPS of the present invention are not substantially different from the prior art UPS; only when the switching devices S3, S4 are turned off, the high efficiency unique to the present invention is entered. Operating mode. Via the diodes D3, D4, the voltages on the electrolytic capacitors C5, C6 are precharged to the maximum (peak) of the half-wave sine of the nodes A, B, after which, The electrolytic capacitors C5 and C6 maintain this maximum voltage value, and the diodes D3 and D4 are turned off and the current is no longer turned on.
  • Boost mode when the input AC voltage is lower than the predetermined output voltage value.
  • the input and output voltage waveforms in this mode are shown in Figure 5 (A), the current conduction path is shown in Figure 5 (B), and the control block diagram is shown in Figure 5 (C).
  • the first switch S1 is switched on, and the second switch S2 is turned off.
  • the fifth switch S5 and the sixth switch S6 are turned on and off at the input voltage crossing point at the power frequency.
  • the main power loop in the boost mode includes two stages, the first stage implements the rectification/boost function, and the second stage performs the conversion. Specifically, the first stage raises the input mains voltage to the desired output voltage value, and filters out the harmonic voltage if the input voltage contains harmonics, producing positive and negative half-wave sine on +/- BUS, respectively. Voltage, Since C2 and C3 may not completely filter out the high frequency switching ripple current, the positive and negative half-wave sinusoidal voltages on +/-BUS may contain a few high frequency switching frequency harmonics. The second stage converts the half-wave sinusoidal voltage on the +/-BUS into a sinusoidal AC voltage and filters out the harmonics of the switching frequency to output a high quality sinusoidal voltage.
  • the first switch S1 is turned off, and the second switch S2, the fifth switch S5, and the sixth switch S6 are high frequency switches.
  • the main power loop in the buck mode includes the first stage that implements the rectification function and the second stage that implements the buck/conversion function. Specifically, diodes D1 and D2 in the first stage rectify the input mains voltage and generate positive and negative half-wave sinusoidal voltages on +/- BUS, respectively. The second stage steps down the positive and negative half-wave sinusoidal voltages on +/-BUS to the desired output voltage value, and filters out the harmonic voltages in the presence of harmonics, converting and outputting a high quality sinusoidal voltage.
  • the first switch S1 and the second switch S2 are turned off, and the fifth switch S5 and the sixth switch S6 are turned on and off at the input voltage crossing point by the power frequency.
  • the main power loop in the conduction mode includes the first stage that implements the rectification function and the second stage that implements the conversion function. Specifically, diodes D1 and D2 in the first stage rectify the input mains voltage and generate positive and negative half-wave sinusoidal voltages on +/- BUS, respectively. The second stage converts the half-wave sinusoidal voltage on the +/-BUS into a sinusoidal AC voltage and outputs it. At this time, there is no power level for high frequency operation.
  • the boost-buck mode When the input AC voltage is higher than, and sometimes lower than, the predetermined voltage value, the boost-buck mode is entered. At this time, the UPS alternates between the boost and buck modes, and the input and output voltage waveforms are as shown in FIG. Show.
  • the main power loop in boost-buck mode includes: (1) The first stage, which boosts and rectifies the input voltage when the input voltage is lower than the desired output voltage during a city electrical cycle. When the voltage is equal to or higher than the desired output voltage, only rectification is performed, producing positive and negative half-wave sinusoidal voltages on +/- BUS. (2) Second stage: In a city electrician frequency cycle, when the input voltage is higher than the desired output voltage, the +/- BUS voltage is stepped down and converted and output, when the input voltage is equal to or lower than the desired output voltage , only transform output.
  • the online UPS according to the present invention operates at a high frequency at most one level at any one time.
  • the two-stage converter operates at the power frequency.
  • the AC input voltage deviates from the allowable range of the preset output voltage value, at most one converter operates at a high level.
  • control block diagrams shown in FIG. 5 (C), 6 (C), and 7 (C) are only simple functional diagrams, and some functions related to the present invention are illustrated, wherein the dotted line The plot indicates that the corresponding part is inactive during the current working state. Indicated by these functions
  • those skilled in the art can appropriately implement the control of the online UPS of the present invention by using a combination of software and hardware.
  • the driver may be partially implemented by hardware
  • the voltage and current sampling portions may be implemented by a combination of software and hardware
  • other portions may be implemented in software, however, the present invention is not limited thereto.
  • Those skilled in the art can fully adopt other configurations in practicing the inventive concept of the present invention.
  • the control method of the online UPS of the present invention firstly, whether the double conversion mode or the high efficiency operation mode is used can be determined by the degree of distortion of the input voltage waveform. If there is severe distortion, the UPS operates in the double conversion mode, and vice versa. Adopt high efficiency operation mode.
  • the degree of distortion that can be accepted in the high-efficiency operating mode varies according to the environment in which it is used. It is usually chosen to be, for example, a range of total voltage harmonic content (THDv) ⁇ +/- 10%.
  • the instantaneous value of the input voltage is compared with the preset output voltage value, and the comparison result between the instantaneous value of the input voltage and the preset output voltage value is further determined to be boosted, stepped down, Turn on or boost-buck mode operation.
  • the boost, buck, turn-on, and boost-buck modes here all refer to modes of operation during a power-frequency cycle.
  • the input voltage instantaneous value is sometimes higher than the preset value, sometimes lower than the preset value, then the converter sometimes needs to be boosted, and sometimes the buck is required, then the boost-buck mode is selected.
  • the allowable range of preset output voltage values can be selected, for example, as +/- 10%.
  • the UPS When the UPS is operating in boost, buck, and boost-buck modes in high-efficiency operation mode, if the input voltage waveform is distorted within the allowable range (including pure sinusoidal waveforms or very small distortion), high-frequency operation
  • the duty cycle of the drive signal of the switch can be unchanged during one power frequency cycle.
  • the input current is mainly adjusted to track the waveform and phase of the input voltage. Therefore, the current control loop has a fast adjustment speed, and the bandwidth is much higher than the power frequency (10 times or more), otherwise the purpose of tracking the input voltage cannot be achieved.
  • the control loop of the voltage loop is relatively slow, and the bandwidth is less than the power frequency.
  • the purpose is to filter out the power frequency voltage harmonics of the output DC voltage by 2 times, preventing it from being mixed into the current loop and causing the input current to be distorted.
  • the present invention employs two control loops for control, a voltage outer loop and a current inner loop (as shown in Figure 5 (C)).
  • the output capacitors C2 and C3 have a small capacity, the nonlinear influence on the input current can be neglected, and the input current is automatically tracked and output.
  • the voltage loop control bandwidth is higher than the power frequency. Relative to the power frequency, the voltage loop can quickly adjust the output voltage to achieve the desired output waveform of the preset value.
  • the parameters of the loop compensator are different from those in the conventional mode, which can be easily implemented in software.
  • the concept of the present invention is applicable to a two-phase or three-phase UPS that uses a single-phase UPS, does not use a common charger, a battery, a DC/DC converter, and is also suitable for two phases using a common charger, a battery, and a DC/DC converter. And three-phase UPS.
  • common chargers, batteries, and DC/DC converters can be used between phases.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种在线式不间断电源拓扑。单相拓扑包含主、辅回路。主回路功率变换级包含并联在正负母线(+BUS,-BUS)间的第一至第四支路,第一支路由第一、第二二极管(D1,D2)串联构成,第二支路由第二、第三电容器(C2,C3)串联构成,第一开关(S1)连接在第一、第二支路中间节点之间,第三支路由第三开关(S3)、第五电容器(C5)、第六电容器(C6)、第四开关(S4)串联构成,第二支路中间节点与第五、第六电容器(C5,C6)之间节点共同接地,第四支路由第五、第六开关(S5,S6)串联构成,第二开关(S2)连接在第二、第四支路中间节点之间,第三、第四开关(S3,S4)分别具有并联的第三、第四二极管(D3,D4)。辅回路充电器输入端连接到不间断电源交流输入端或正负母线(+BUS,-BUS),DC/DC转换器的输出端连接到第三开关(S3)与第五电容器(C5)之间节点以及第六电容器(C6)与第四开关(S4)之间节点,所述拓扑提高了不间断电源在线模式的转换效率。

Description

在线式不间断电源拓朴 技术领域
本发明涉及开关电源领域,具体而言,涉及在线式不间断电源(UPS )。 背景技术
不间断电源 (UPS )是一种向负载提供不间断、 优质、 可靠的交流电 能, 并具有实时保护和监测监控供电状态功能的供电设备, 对改善供电质 量、 保证设备正常运行有着重要的作用。 从电路结构、 不间断供电方式的 角度划分, UPS主要分为后备式和在线式两大类。
图 1示意性地示出了传统的在线式 UPS的配置框图。当市电供电正常 时, 输入的交流电压经整流和滤波后变为直流电压, 直接驱动逆变器向负 载供电, 同时对蓄电池进行充电。 逆变器输出稳压稳频的交流输出电压供 给负载。 当市电不正常或中断时, 逆变器将电池提供的直流电压变换为交 流电压供给负载, 从而实现不间断供电。
基于在线式 UPS概念, 已经开发出多种电路拓朴和控制方法。传统的 在线式 UPS的一种拓朴如图 2所示, 其包含两级功率变换, 即功率因数校 正( PFC )级和逆变器级。 由于存在两级功率变换, 受现有的半导体和磁 性材料技术的限制, 总的转换效率难以进一步提高。 例如, 如果两个功率 变换级均被最优化为获得 98%的效率,整体效率下降到 96%左右。尽管该 UPS拓朴包含开通旁路开关而关闭功率变换级的、 高效率的旁路模式, 但 是,这种模式的运行 ^受到很多因素的限制,过于依赖输入市电的质量。
在线式 UPS仍存在改进空间。 发明内容
本发明的目的在于提供一种新型在线式 UPS拓朴, 以提高 UPS在线 模式的转换效率。 通过巧妙的母线电容配置方式和新颖的控制方式, 以交 流母线电压代替传统的直流母线电压, 并使同一时刻至多只有一个功率转 换级工作在高频开关状态, 而其它功率转换器仅在工频周期的过零点上进 行切换, 从而实现高效率的在线式 UPS。 同时, 本发明的新型在线式 UPS 拓朴还可保留传统 UPS的两级变换工作模式(双转换模式)、 电池工作模 式以及旁路工作模式。
根据本发明一实施方式, 一种单相在线式不间断电源拓朴包含主功率 回路与辅功率回路, 其中, 主功率回路由输入级、 功率变换级以及输出级 依次连接构成, 辅功率回路由充电器、 电池以及 DC/DC转换器依次连接 构成。 主功率回路的输入级包含第一电容器与第一电感器。 主功率回路的 功率变换级包含并联连接在正负母线之间的第一至第四串联支路。 第一串 联支路由第一二极管与第二二极管串联构成, 第二串联支路由第二电容器 与第三电容器串联构成, 第一开关连接在第一串联支路的中间节点与第二 串联支路的中间节点之间。 第三串联支路由第三开关、 第五电容器、 第六 电容器、 第四开关依次串联构成, 第二串联支路的中间节点与第五、 第六 电容器之间的节点共同连接到地, 第四串联支路由第五开关与第六开关串 联构成, 第二开关连接在第二串联支路的中间节点与第四串联支路的中间 节点之间, 第三开关与第四开关分别具有并联连接的第三二极管与第四二 极管。 主功率回路的输出级包含第二电感器与第四电容器。 辅功率回路的 充电器的输入端连接到不间断电源的交流输入端或正负母线。 辅功率回路 的 DC/DC转换器的输出端连接到第三开关与第五电容器之间的节点以及 第六电容器与第四开关之间的节点。 其中, 第二电容器、 第三电容器的容 量实质小于第五电容器、 第六电容器的容量。
在一优选实施例中, 第二电容器与第三电容器选自薄膜电容器与陶瓷 电容器, 第五电容器与第六电容器为电解电容器。
在一优选实施例中, 第二电容器与第三电容器的电容值可在 50 μ F以 下。
在一优选实施例中, 主功率回路被控制为, 在第三开关与第四开关被 断开, 第五电容器与第六电容器分别经由第三二极管与第四二极管预充电 到使得第三二极管与第四二极管截止的电位的情况下, 能够以以下模式运 行:
( 1 )升压模式, 其中, 第一开关高频开关, 第二开关关断, 第五开关 与第六开关以工频在输入电压过零点上开通以及关断;
( 2 )降压模式, 其中, 第一开关关断, 第二开关、 第五开关与第六开 关高频开关;
( 3 )导通模式, 其中, 第一开关与第二开关关断, 第五开关与第六开 关以工频在输入电压过零点上开通以及关断; 或
( 4 )升压 -降压模式, 其中, 主功率回路在升压模式与降压模式之间 进行切换。
在一优选实施例中,主功率回路被控制为:在输入电压的一个周期中, 当输入电压在预设的输出电压值的容许范围之内时, 以导通模式运行; 在 输入电压的一个周期中, 当输入电压在预设的输出电压值的容许范围之外 时, 如果输入电压的瞬时值小于预设的输出电压值, 以升压模式运行; 如 果输入电压的瞬时值大于预设的输出电压值, 以降压模式运行; 如果输入 电压的瞬时值有时小于、有时大于预设的输出电压值, 以升压 -降压模式运 行。
在一优选实施例中, 主功率回路被控制为: 如果输入电压波形畸变在 容许范围内, 以高频进行开关的相应的开关的驱动信号的占空比在输入电 压的一个周期中保持不变。
在一优选实施例中, 主功率回路被控制为, 在第三开关与第四开关开 通的情况下, 第一至第三串联支路构成功率因数校正级, 第四串联支路构 成逆变器级。
在一优选实施例中, 第三二极管与第四二极管可以为第三开关与第四 开关自身的体二极管, 或者, 也可以为与第三开关、 第四开关分立的二极 管。
本发明的 UPS拓朴和控制方法也适用于两相或三相在线式 UPS,特别 是具有共用电池组的三相 UPS系统。在根据本发明另一实施方式的两相或 三相在线式不间断电源拓朴中, 每一相包含如上所述的主功率回路与辅功 率回路。
在一优选实施例中, 辅功率回路在各相之间共用。
根据本发明的新型在线式 UPS可具有四种运行模式: ( 1 ) 高效率运 行模式; (2 )双转换模式; (3 )电池模式; 以及, (4 )视情况可选的旁 路模式。 其中, 高效率运行模式为本发明所特有, 并且, 本发明还可保留 传统在线式 UPS 的双转换模式、 电池模式, 甚至保留旁路模式。 当输入 AC电压不存在中断或严重畸变时, 在线式 UPS可以以高效率运行模式运 行, 当存在输入 AC电力中断或大到一定程度的畸变时, 在线式 UPS可以 以电池模式或双转换模式运行。 相比于从旁路模式到双转换模式或电池模 式的转换, 从本发明的高效率运行模式到双转换模式或电池模式的转换更 为 、 无缝, 且输出无中断。 附图说明
参照附图, 由下面给出的对优选实施例的详细介绍, 将会明了本发明 的这些以及其他目的、 特征和优点, 在附图中:
图 1为传统的在线式 UPS的示意性配置框图;
图 2为传统的在线式 UPS的一种拓朴;
图 3为根据本发明一实施例的三相在线式 UPS拓朴;
图 4为根据本发明一实施例的单相在线式 UPS拓朴;
图 5 ( A ) - ( C )分别为根据本发明一实施例的单相在线式 UPS在升 压模式下的输入与输出电压波形、 电流导通^圣以及控制框图;
图 6 ( A ) - ( C )分别为根据本发明一实施例的单相在线式 UPS在降 压模式下的输入与输出电压波形、 电流导通 ^^以及控制框图;
图 7 ( A ) - ( C )分别为根据本发明一实施例的单相在线式 UPS在导 通模式下的输入与输出电压波形、 电流导通^圣以及控制框图; 以及
图 8为根据本发明一实施例的单相在线式 UPS在升压-降压模式下的 输入与输出电压波形。 具体实施方式
下面将参照附图详细介绍用于实现本发明的优选实施方式。
图 3 和图 4分别示出了根据本发明的实施例的三相以及单相在线式
UPS拓朴。 为简化起见, 下面针对单相 UPS应用进行介绍, 然而, 所有结 果同样适用于三相或两相 UPS应用。
如图 4所示, 单相在线式不间断电源拓朴可包含主功率回路、 辅功率 回路以及视情况可选的旁路回路。 主功率回路由输入级、 功率变换级以及 输出级依次连接构成。 主功率回路的输入级包含第一电容器 C1 与第一电 感器 Ll。 主功率回路的功率变换级包含并联连接在正负母线 +BUS、 -BUS 之间的第一至第四串联支路。 第一串联支路由第一二极管 D1 与第二二极 管 D2串联构成, 第二串联支路由第二电容器 C2与第三电容器 C3串联构 成,第一开关 S1连接在第一串联支路的中间节点与第二串联支路的中间节 点之间。 第三串联支路由第三开关 S3、 第五电容器 C5、 第六电容器 C6、 第四开关 S4依次串联构成,第二串联支路的中间节点与第五、第六电容器 C5、 C6之间的节点共同连接到地, 第四串联支路由第五开关 S5与第六开 关 S6串联构成, 第二开关 S2连接在第二串联支路的中间节点与第四串联 支路的中间节点之间。 第三开关 S3与第四开关 S4分别具有并联连接的第 三二极管 D3与第四二极管 D4,用于在第三开关 S3与第四开关 S4关断时 对第五电容器 C5与第六电容器 C6的预充电。主功率回路的输出级包含第 二电感器 L2与第四电容器 C4。
辅功率回路由充电器、 电池以及 DC/DC转换器依次连接构成, 其中, 充电器、 电池以及 DC/DC转换器的配置与现有技术中的类似, 在此省略 对其的详细介绍。 DC/DC转换器的输出端连接到第三开关 S3与第五电容 器 C5之间的节点以及第六电容器 C6与第四开关 S4之间的节点。
视情况可选地,根据本发明的新型在线式 UPS可包含旁路回路, 用于 实现旁路运行。 旁路回路的配置与现有技术中的类似, 在此省略对其的详 细介绍。 图 4所示的单相 UPS拓朴与传统拓朴的区别之一在于母线电容的配 置。在传统的 UPS中, 直流母线上直接安装大容量的电解电容器以滤除交 流电压并进行储能。 形成对比的是, 在本发明中, 母线 +BUS、 -BUS上的 第二、 第三电容器 C2、 C3为容量相对较小的电容器, 其可以不使用电解 电容器, 而分别采用单个的薄膜电容器或陶瓷电容器, 或者可以分别由两 个以上的薄膜电容器或陶瓷电容器并联构成; 同时, 容量相对较大的电容 器 C5、 C6分别经由开关 S3、 S4连接到母线 +BUS、 -BUS, 其可以分别为 单个的电解电容器, 或者可以分别由两个以上的电解电容器并联构成。 第 二、 第三电容器 C2、 C3的容量一般可在 50 F以下, 取决于实际的高频 开关频率; 而第五、 第六电容器 C5、 C6的容量一般为几百 或者更大。 借助这种配置, 用母线上的小容量电容器 C2、 C3滤除高频开关纹波, 在 母线 +BUS、 -BUS上产生交流母线电压。
开关 S3、 S4分别并联有方向如图中所示的二极管 D3、 D4。 借助对开 关 S3、 S4的控制, 可以使本发明的在线式 UPS以高效率模式运行。 在高 效率模式下, 首先, 连接电解电容器 C5、 C6的开关 S3、 S4关断, 电解电 容器 C5、 C6分别经由二极管 D3、 D4预充电, 然后进入高效率运行模式。 在连接电解电容器 C5、 C6的开关 S3、 S4开通时, UPS可以以传统的双 转换模式或者电 ί ^式运行。
图 4中的 S1-S6可以是积减开关或 MOSFET、 IGBT等本领域常用的 开关器件, 滤波部件 Ll、 L2、 Cl、 C4在器件选择和参数选择上与传统 UPS中相类似。
借助在硬件结构上对传统在线式 UPS的上述改动,通过控制方式上的 软件更新, 可以以低成本实现本发明提出的新型在线式 UPS。 根据本发明 的新型在线式 UPS的控制和运行方式将在下面参照图 5-8进行介绍。
当开关器件 S3、 S4开通时, 本发明的在线式 UPS的结构和运行与现 有技术的 UPS没有实质性区别; 仅当开关器件 S3、 S4关断的情况下, 进 入本发明特有的高效率运行模式。 经由二极管 D3、 D4, 电解电容器 C5、 C6上的电压被预充电到节点 A、 B的半波正弦的最大值(峰值) , 此后, 电解电容器 C5、 C6维持这个最大电压值, 二极管 D3、 D4截止而不再导 通电流。
在高效率运行模式下, 存在四种可能的运行状态:
[第一种】升压模式
当输入 AC电压低于预定输出电压值时, 升压模式。 这种运行模 式下的输入、 输出电压波形如图 5 (A)所示, 电流导通路径如图 5 (B) 所示, 控制框图如图 5 (C)所示。
在升压模式中, 第一开关 S1高频开关, 第二开关 S2关断, 第五开关 S5、 第六开关 S6以工频在输入电压过零点上开通以及关断。
可见,升压模式下的主功率回路包含两级,第一级实现整流 /升压功能, 第二级进行转换。 具体而言, 第一级将输入市电电压升高到期望的输出电 压值, 并且在输入电压含有谐波的情况下滤除谐波电压, 分别在 +/-BUS上 产生正负半波正弦电压, 由于 C2、 C3可能不能完全滤除高频开关紋波电 流, +/-BUS上的正负半波正弦电压可能含有少许高频开关频率谐波。 第二 级将 +/-BUS上的半波正弦电压转换成正弦交流电压,并且滤除其中的开关 频率的谐波, 输出高质量的正弦电压。
[第二种】降压模式
当输入 AC电压高于预定输出电压值时, 降压模式。 这种运行模 式下的输入、 输出电压波形如图 6 (A)所示, 电流导通路径如图 6 (B) 所示, 控制框图如图 6 (C)所示。
在降压模式中, 第一开关 S1关断, 第二开关 S2、 第五开关 S5、 第六 开关 S6高频开关。
可见, 降压模式下的主功率回路包含实现整流功能的第一级以及实现 降压 /转换功能的第二级。 具体而言, 第一级中的二极管 Dl、 D2对输入市 电电压整流, 分别在 +/-BUS 上产生正负半波正弦电压。 第二级将 +/-BUS 上正负半波正弦电压降压到期望的输出电压值, 并在含有谐波的情况下滤 除其中的谐波电压, 转换并输出高质量的正弦电压。
[第三种】导通模式 当输入 AC电压在预定输出电压值的容差范围内时, ¾A导通模式。 这种运行模式下的输入、 输出电压波形如图 7 ( A )所示, 电流导通路径如 图 7 ( Β )所示, 控制框图如图 7 ( C )所示。
在导通模式中, 第一开关 Sl、 第二开关 S2关断, 第五开关 S5、 第六 开关 S6以工频在输入电压过零点上开通以及关断。
可见, 导通模式下的主功率回路包含实现整流功能的第一级以及实现 转换功能的第二级。 具体而言, 第一级中的二极管 Dl、 D2对输入市电电 压整流, 分别在 +/-BUS上产生正负半波正弦电压。 第二级将 +/-BUS上的 半波正弦电压转换成正弦交流电压并输出。 此时, 不存在高频运行的功率 级。
[第四种】升压-降压模式
当输入 AC电压时而高于、时而低于预定电压值,进入升压 -降压模式, 此时, UPS在升压、 降压两种模式之间交替往返, 输入、 输出电压波形如 图 8所示。
升压 -降压模式下的主功率回路包含: (1 )第一级, 其在一个市电工 频周期中, 当输入电压比期望输出电压低时,对输入电压进行升压和整流, 当输入电压等于或高于期望输出电压时, 只进行整流, 在 +/-BUS上产生正 负半波正弦电压。 (2 )第二级: 在一个市电工频周期中, 当输入电压比期 望输出电压高时, 对 +/-BUS电压进行降压和变换并输出, 当输入电压等于 或低于期望输出电压时, 只进行变换输出。
由此可见,;1:艮据本发明的在线式 UPS在任一时刻至多只存在一级以高 频运行。 当交流输入电压在预设输出电压值的容许范围内时, 两级转换器 都工作在工频频率,当交流输入电压偏离了预设输出电压值的容许范围时, 至多一个转换器工作在高频开关状态,而其余转换器工作在工频频率状态, 使得 UPS的运行效率大为提高。
需要说明的是, 图 5 ( C ) 、 6 ( C ) 、 7 ( C )所示的控制框图只是简 单的功能示意图, 其对本发明所涉及的某些功能进行了图示, 其中, 点划 线绘图表示对应部分在当前工作状态下处于非活动状态。 由这些功能示意 图, 本领域技术人员能够通过使用软件和硬件的组合适当地实现对本发明 的在线式 UPS的控制。 关于控制框图中的各个功能模块, 举例而言, 驱动 器可以部分地由硬件实现, 电压、 电流采样部分可以由软硬件结合实现, 其它部分可以在软件中实现, 然而, 本发明并不仅限于此, 本领域技术人 员完全可在实践本发明的发明构思时采用其他的配置方式。
例如, 在本发明的在线式 UPS的控制方式中, 首先, 可由输入电压波 形畸变程度来决定使用双转换模式还是高效率运行模式运行, 如果存在严 重畸变, UPS以双转换模式运行, 反之, 可以采用高效率运行模式。 高效 率运行模式下可以接受的畸变程度按照不同的使用环境而不同, 通常可选 择为例如总电压谐波含量 ( THDv )≤+/-10%的范围。
其次, 在高效率运行模式下, 将输入电压的瞬时值与预设输出电压值 进行比较, 视输入电压瞬时值与预设输出电压值之间的比较结果, 进一步 决定以升压、 降压、 导通还是升压-降压模式运行。 这里的升压、 降压、 导 通、 升压-降压模式都是指在一个工频周期内的工作模式。 例如, 在一个工 频周期里面, 输入电压瞬时值有时比预设值高, 有时比预设值低, 那么变 换器有时需要升压, 有时需要降压, 则选择升压 -降压模式。 在优选实施例 中, 预设输出电压值的容许范围可选择为例如 +/-10%。
当 UPS以高效率运行模式下的升压、 降压、 升压 -降压模式运行时, 如果输入电压波形畸变在容许范围内 (包括纯正弦波形或者畸变非常小的 情况) , 高频工作的开关的驱动信号的占空比可在一个工频周期内不变。
在传统的 PFC变换器中, 为了达到较高的功率因数, 主要调节输入电 流, 使其跟踪输入电压的波形和相位。 因此, 电流控制环的调节速度 快, 带宽比工频频率要高很多( 10倍以上),否则达不到跟踪输入电压的目的。 而电压环的控制速度比较慢, 带宽小于工频频率, 目的是滤除输出直流电 压中的 2倍工频电压谐波, 防止它混入电流环中造成输入电流畸变。 与此 形成对比的是,本发明采用两个控制环进行控制,电压外环和电流内环(例 如图 5 ( C )所示)。 在本发明的变换器中, 由于输出电容器 C2、 C3的容 量很小, 对输入电流产生的非线性影响可以忽略, 输入电流会自动跟踪输 入电压, 由于主要是快速调节输出电压的瞬时值, 电压环控制带宽比工频 频率要高。 相对于工频频率而言, 电压环可以快速调整输出电压, 以达到 预设值的理想输出波形。
此外, 高频率模式下,环路补偿器的参数和传统模式下的参数不一样, 这一点在软件中可以很容易地实现。
本发明的构思适用于单相 UPS、 不使用公共充电器、 电池、 DC/DC转 换器的两相或三相 UPS, 同时也适用于使用公共充电器、 电池、 DC/DC转 换器的两相和三相 UPS。 通常, 为了简化系统结构和降低成本, 可在相之 间使用公共的充电器、 电池以及 DC/DC转换器。
尽管参照优选实施例对本发明的在线式 UPS拓朴及其控制进行了介 绍, 然而, 本领域技术人员可以明了, 在不脱离本发明的精神和范围的情 况下, 可对所图示和介绍的细节进行多种修改、 变型和替代。 例如, 辅功 率回路的充电器的输入端可以不连接到交流输入端, 而是连接到母线 +BUS、 -BUSo 因此, 本发明的范围不限于上述具体介绍的实施方式, 而 由所附权利要求书及其所有等价内容的全部广度限定。

Claims

权 利 要 求
1.一种单相在线式不间断电源拓朴,其包含主功率回路与辅功率回路, 所述不间断电源拓朴的特征在于:
主功率回路由输入级、 功率变换级以及输出级依次连接构成, 辅功率 回路由充电器、 电池以及 DC/DC转换器依次连接构成,
其中,主功率回路的输入级包含第一电容器( C1 )与第一电感器( L1 ), 其中, 主功率回路的功率变换级包含并联连接在正负母线(+BUS, -BUS)之间的第一至第四串联支路, 第一串联支路由第一二极管(D1)与 第二二极管 (D2) 串联构成, 第二串联支路由第二电容器(C2)与第三电 容器(C3) 串联构成, 第一开关(S1)连接在第一串联支路的中间节点与 第二串联支路的中间节点之间, 第三串联支路由第三开关(S3) 、 第五电 容器(C5)、 第六电容器(C6)、 第四开关(S4)依次串联构成, 第二串 联支路的中间节点与第五、 第六电容器(C5, C6)之间的节点共同连接到 地, 第四串联支路由第五开关(S5)与第六开关(S6) 串联构成, 第二开 关( S2 )连接在第二串联支路的中间节点与第四串联支路的中间节点之间, 第三开关(S3)与第四开关(S4)分别具有并联连接的第三二极管(D3) 与第四二极管(D4) ,
其中,主功率回路的输出级包含第二电感器( L2 )与第四电容器( C4 ), 其中, 辅功率回路的充电器的输入端连接到所述不间断电源的交流输 入端或正负母线(+BUS, -BUS) , 辅功率回路的 DC/DC转换器的输出端 连接到第三开关( S3 )与第五电容器( C5 )之间的节点以及第六电容器( C6 ) 与第四开关(S4)之间的节点,
且其中, 第二电容器(C2)、 第三电容器(C3)的容量实质小于第五 电容器(C5) 、 第六电容器(C6)的容量。
2. 根据权利要求 1的单相在线式不间断电源拓朴, 其中, 第二电容器 ( C2 )与第三电容器( C3 )选自薄膜电容器与陶瓷电容器,第五电容器( C5 ) 与第六电容器(C6)为电解电容器。
3. 根据权利要求 1或 2的单相在线式不间断电源拓朴, 其中, 第二电 容器(C2)与第三电容器(C3) 的电容值在 50 以下。
4. 根据权利要求 1或 2的单相在线式不间断电源拓朴, 其中, 主功率 回路被控制为, 在第三开关(S3)与第四开关(S4)被断开, 第五电容器
( C5 )与第六电容器( C6 )分别经由第三二极管 ( D3 )与第四二极管 ( D4 ) 预充电到使得第三二极管( D3 )与第四二极管( D4 )截止的电位的情况下, 能够以以下模式运行:
(1)升压模式, 其中, 第一开关(S1) 高频开关, 第二开关(S2) 关断, 第五开关(S5)与第六开关(S6) 以工频在输入电压过零点上开通 以及关断;
(2) 降压模式, 其中, 第一开关(S1) 关断, 第二开关(S2) 、 第 五开关(S5)与第六开关(S6) 高频开关;
(3)导通模式, 其中, 第一开关(S1)与第二开关(S2) 关断, 第 五开关(S5)与第六开关(S6)以工频在输入电压过零点上开通以及关断; 或
(4)升压 -降压模式, 其中, 所述主功率回路在升压模式与降压模式 之间进行切换。
5. 根据权利要求 4的单相在线式不间断电源拓朴, 其中, 主功率回路 被控制为:
在输入电压的一个周期中, 当输入电压在预设的输出电压值的容许范 围之内时, 以导通模式运行;
在输入电压的一个周期中, 当输入电压在预设的输出电压值的容许范 围之外时, 如果输入电压的瞬时值小于预设的输出电压值, 以升压模式运 行; 如果输入电压的瞬时值大于预设的输出电压值, 以降压模式运行; 如 果输入电压的瞬时值有时小于、有时大于预设的输出电压值, 以升压 -降压 模式运行。
6. 根据权利要求 4的单相在线式不间断电源拓朴, 其中, 主功率回路 被控制为: 如果输入电压波形畸变在容许范围内, 以高频进行开关的相应 的开关的驱动信号的占空比在输入电压的一个周期中保持不变。
7.根据权利要求 1或 2的单相在线式不间断电源拓朴, 其中, 主功率 回路被控制为, 在第三开关(S3)与第四开关(S4)开通的情况下, 第一 至第三串联支路构成功率因数校正级, 第四串联支路构成逆变器级。
8. 根据权利要求 1或 2的单相在线式不间断电源拓朴, 其中, 第三二 极管(D3)与第四二极管 (D4)为第三开关(S3)与第四开关(S4) 自身 的体二极管, 或者为与第三开关(S3) 、 第四开关(S4)分立的二极管。
9. 一种两相或三相在线式不间断电源拓朴,其中的每一相包含根据权 利要求 1-8中任意一项的主功率回路与辅功率回路。
10. 根据权利要求 9的两相或三相在线式不间断电源拓朴, 其中, 辅 功率回路在各相之间共用。
PCT/CN2013/080952 2012-09-20 2013-08-07 在线式不间断电源拓扑 WO2014044089A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/429,380 US9819221B2 (en) 2012-09-20 2013-08-07 Online uninterruptible power supply topology
EP13838564.6A EP2899836B1 (en) 2012-09-20 2013-08-07 On-line uninterrupted power supply topology

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210352113.9A CN103683356B (zh) 2012-09-20 2012-09-20 在线式不间断电源拓扑
CN201210352113.9 2012-09-20

Publications (1)

Publication Number Publication Date
WO2014044089A1 true WO2014044089A1 (zh) 2014-03-27

Family

ID=50320026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080952 WO2014044089A1 (zh) 2012-09-20 2013-08-07 在线式不间断电源拓扑

Country Status (4)

Country Link
US (1) US9819221B2 (zh)
EP (1) EP2899836B1 (zh)
CN (1) CN103683356B (zh)
WO (1) WO2014044089A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2991210A1 (en) * 2014-08-28 2016-03-02 Astronics Advanced Electronic Systems Corp. Split rail pfc and ac inverter architecture
CN106786582A (zh) * 2016-12-26 2017-05-31 易事特集团股份有限公司 不间断电源系统及其输出电压谐波抑制电路
EP3138190A4 (en) * 2014-05-01 2017-12-27 Schneider Electric IT Corporation Power supply control
US10277067B2 (en) 2013-10-30 2019-04-30 Schneider Electric It Corporation Power supply control
TWI669894B (zh) * 2018-09-28 2019-08-21 浦登有限公司 多模式電源轉換器
CN113949281A (zh) * 2021-10-19 2022-01-18 浙江德升新能源科技有限公司 一种pcs黑启动电路

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8994336B2 (en) * 2007-02-26 2015-03-31 Black & Decker Inc. Portable alternating current inverter having reduced impedance losses
KR101590698B1 (ko) * 2014-03-31 2016-02-01 엘지전자 주식회사 전원 판단 장치
CN104362730A (zh) * 2014-10-24 2015-02-18 广东易事特电源股份有限公司 提升ups轻载性能的控制方法
US10461576B2 (en) * 2014-12-08 2019-10-29 Toshiba Mitsubishi-Electric Industrial Systems Corporation Uninterruptible power supply apparatus
EP3240139A4 (en) * 2014-12-25 2018-08-15 Toshiba Mitsubishi-Electric Industrial Systems Corporation Uninterruptible power supply device
US10300791B2 (en) * 2015-12-18 2019-05-28 Ge Global Sourcing Llc Trolley interfacing device having a pre-charging unit
US10574086B2 (en) * 2016-04-08 2020-02-25 Rhombus Energy Solutions, Inc. Nonlinear control algorithm and system for a single-phase AC-AC converter with bidirectional isolated DC-DC converter
US9977455B2 (en) * 2016-04-11 2018-05-22 Futurewei Technologies, Inc. Method and apparatus for filtering a rectified voltage
CN107666175B (zh) * 2016-07-29 2023-05-09 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构 方波不间断电源的控制方法及控制装置
CN107800185B (zh) * 2016-08-29 2023-06-09 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构 在线式不间断电源
CN106230253B (zh) * 2016-09-09 2019-05-07 华为技术有限公司 升压功率变换电路和控制方法
US10211672B2 (en) 2016-10-13 2019-02-19 Schneider Electric It Corporation DC-link bus balancer
US10579339B2 (en) * 2017-04-05 2020-03-03 Intel Corporation Random number generator that includes physically unclonable circuits
WO2018198053A1 (en) * 2017-04-27 2018-11-01 Edge Electrons Limited Apparatus for minimizing peak power demand on inverter in power supply with one or more switched reactive loads
US10122256B1 (en) * 2017-07-13 2018-11-06 Infineon Technologies Austria Ag Method and apparatus for zero-current switching control in switched-capacitor converters
JP6545230B2 (ja) * 2017-08-31 2019-07-17 本田技研工業株式会社 車両の電源システム
JP6338131B1 (ja) * 2017-09-04 2018-06-06 日新電機株式会社 電源システム
CN107959433B (zh) * 2017-12-21 2020-08-28 阳光电源股份有限公司 一种抑制漏电流的逆变器及逆变系统
CA3021726A1 (en) * 2018-02-23 2019-08-23 Douglas Urban Energy distribution apparatus, system and method thereof
CN110365223B (zh) * 2018-04-08 2024-02-13 佛山科学技术学院 一种基于三电平逆变技术的三相大功率不间断电源
CN110829571B (zh) * 2018-08-09 2024-03-15 施耐德电气It公司 高效柔性转换器
EP3847741A4 (en) * 2018-09-06 2022-05-25 Cornell University HIGH POWER DENSITY POWER CONVERTER AND UNINTERRUPTIBLE POWER SUPPLY CIRCUIT AND METHODS
CN109450243B (zh) * 2018-10-16 2020-05-22 广东美的制冷设备有限公司 Pfc电路、电机控制系统及空调器
WO2020097586A1 (en) * 2018-11-08 2020-05-14 Guangdong Redx Electrical Technology Limited Novel fws dc-ac grid connected inverter
TWI690144B (zh) * 2018-11-14 2020-04-01 國家中山科學研究院 三臂式整流與變流電路
TWI692184B (zh) * 2019-01-25 2020-04-21 美律實業股份有限公司 電源供應裝置及電源供應方法
KR20220104202A (ko) * 2019-12-27 2022-07-26 에이비비 슈바이쯔 아게 그리드 아일랜딩 검출 방법 및 장치
CN111614070B (zh) * 2020-05-29 2022-05-10 科华恒盛股份有限公司 旁路保护电路、方法和不间断电源
GB2586343B (en) * 2020-07-07 2024-03-13 Zhong Qingchang Power electronic converter with a ground fault detection unit that shares a common ground with both DC ports and AC ports
CN114513041A (zh) * 2020-10-27 2022-05-17 施耐德电气It公司 不间断电源供应器的高效控制方法
EP4047784A1 (en) 2021-02-23 2022-08-24 ABB Schweiz AG Power supply assembly
CN113572242B (zh) * 2021-09-26 2022-01-04 广东希荻微电子股份有限公司 一种充电电路与集成芯片
CN114785131B (zh) * 2022-06-20 2022-08-30 深圳市泰德半导体有限公司 频率控制电路及电源管理芯片

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2393249Y (zh) * 1998-12-15 2000-08-23 王宝国 能量切换在线式不间断开关电源装置
CN1556573A (zh) * 2004-01-06 2004-12-22 春兰(集团)公司 实时在线式不间断直流电源
EP2020725A2 (en) * 2007-07-06 2009-02-04 Emerson Network Power Co., Ltd. On-line uninterruptible power system
CN101521394A (zh) * 2008-02-28 2009-09-02 德观电子(上海)有限公司 在线式不间断电源装置
US20110316336A1 (en) * 2010-06-24 2011-12-29 Toru Okubo Device mounted uninterruptable power supply system and method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6819576B2 (en) * 1999-08-13 2004-11-16 Powerware Corporation Power conversion apparatus and methods using balancer circuits
US6483730B2 (en) * 1999-08-13 2002-11-19 Powerware Corporation Power converters with AC and DC operating modes and methods of operation thereof
US6906933B2 (en) * 2002-11-01 2005-06-14 Powerware Corporation Power supply apparatus and methods with power-factor correcting bypass mode
US7050312B2 (en) * 2004-03-09 2006-05-23 Eaton Power Quality Corporation Multi-mode uninterruptible power supplies and methods of operation thereof
US7576446B2 (en) * 2005-12-20 2009-08-18 Fairchild Semiconductor Corporation Zero voltage switching (ZVS) in a power converter
JP2012044824A (ja) * 2010-08-23 2012-03-01 Fuji Electric Co Ltd 電力変換装置
KR101850487B1 (ko) * 2011-06-21 2018-04-19 삼성전자주식회사 전력공급제어장치
US9106103B2 (en) * 2011-09-23 2015-08-11 Eaton Corporation Unintteruptible power supply systems and methods employing on-demand energy storage
CN103208855B (zh) * 2012-01-17 2016-06-29 华为技术有限公司 一种不间断电源和dc-dc变换器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2393249Y (zh) * 1998-12-15 2000-08-23 王宝国 能量切换在线式不间断开关电源装置
CN1556573A (zh) * 2004-01-06 2004-12-22 春兰(集团)公司 实时在线式不间断直流电源
EP2020725A2 (en) * 2007-07-06 2009-02-04 Emerson Network Power Co., Ltd. On-line uninterruptible power system
CN101521394A (zh) * 2008-02-28 2009-09-02 德观电子(上海)有限公司 在线式不间断电源装置
US20110316336A1 (en) * 2010-06-24 2011-12-29 Toru Okubo Device mounted uninterruptable power supply system and method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10277067B2 (en) 2013-10-30 2019-04-30 Schneider Electric It Corporation Power supply control
EP3138190A4 (en) * 2014-05-01 2017-12-27 Schneider Electric IT Corporation Power supply control
US10491137B2 (en) 2014-05-01 2019-11-26 Schneider Electric It Corporation Power supply control
EP2991210A1 (en) * 2014-08-28 2016-03-02 Astronics Advanced Electronic Systems Corp. Split rail pfc and ac inverter architecture
CN106786582A (zh) * 2016-12-26 2017-05-31 易事特集团股份有限公司 不间断电源系统及其输出电压谐波抑制电路
CN106786582B (zh) * 2016-12-26 2019-05-17 易事特集团股份有限公司 不间断电源系统及其输出电压谐波抑制电路
TWI669894B (zh) * 2018-09-28 2019-08-21 浦登有限公司 多模式電源轉換器
CN113949281A (zh) * 2021-10-19 2022-01-18 浙江德升新能源科技有限公司 一种pcs黑启动电路
CN113949281B (zh) * 2021-10-19 2023-11-03 浙江德升新能源科技有限公司 一种pcs黑启动电路

Also Published As

Publication number Publication date
CN103683356A (zh) 2014-03-26
CN103683356B (zh) 2015-10-21
EP2899836B1 (en) 2017-09-27
EP2899836A1 (en) 2015-07-29
US20160006295A1 (en) 2016-01-07
US9819221B2 (en) 2017-11-14
EP2899836A4 (en) 2016-06-08

Similar Documents

Publication Publication Date Title
WO2014044089A1 (zh) 在线式不间断电源拓扑
CA2965488C (en) Multi-mode energy router
WO2021232785A1 (zh) 三桥臂拓扑装置、控制方法、以及不间断电源系统
JP6710615B2 (ja) 双方向ac−dcコンバータ
CA3066649C (en) Constant current fast charging of electric vehicles via dc grid using dual inverter drive
JP4910078B1 (ja) Dc/dc変換器およびac/dc変換器
US6567283B2 (en) Enhanced conduction angle power factor correction topology
TWI373900B (en) High efficiency charging circuit and power supplying system
WO2003065539A1 (fr) Circuit de correction du facteur de puissance pour alimentation sans coupure
WO2018227307A1 (en) Constant current fast charging of electric vehicles via dc grid using dual inverter drive
CN104078992A (zh) 一种储能电压平衡电力电子电能变换系统及其控制方法
CN104428988A (zh) 具有多个直流电源的双向换能器
Karshenas et al. Basic families of medium-power soft-switched isolated bidirectional dc-dc converters
WO2021232749A1 (zh) 三桥臂拓扑装置及不间断电源系统
TWI462457B (zh) 單相三線三埠式電能轉換系統
JP2022119173A (ja) ダイレクト電気車充電器
CN106411154A (zh) 电源转换器
WO2022078121A1 (zh) 充电装置和车辆
Burlaka et al. Bidirectional single stage isolated DC-AC converter
Li et al. A Boost-Full-Bridge-Type Single-Active-Bridge Isolated AC-DC Converter
JP3588917B2 (ja) 電力変換装置
Afsharian et al. Analysis of one phase loss operation of three-phase isolated buck matrix-type rectifier with a boost switch
JP2024511395A (ja) 電気自動車の電気システム
CN109391138A (zh) 一种补偿型稳压电源
Sharma et al. A Bidirectional Electric Vehicle Charger for Wide Output Voltage Range Application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838564

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14429380

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013838564

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013838564

Country of ref document: EP