WO2014043942A1 - 一种光学补偿膜及减弱va液晶显示器暗态漏光的方法 - Google Patents

一种光学补偿膜及减弱va液晶显示器暗态漏光的方法 Download PDF

Info

Publication number
WO2014043942A1
WO2014043942A1 PCT/CN2012/082297 CN2012082297W WO2014043942A1 WO 2014043942 A1 WO2014043942 A1 WO 2014043942A1 CN 2012082297 W CN2012082297 W CN 2012082297W WO 2014043942 A1 WO2014043942 A1 WO 2014043942A1
Authority
WO
WIPO (PCT)
Prior art keywords
compensation film
rth
liquid crystal
compensation
refractive index
Prior art date
Application number
PCT/CN2012/082297
Other languages
English (en)
French (fr)
Inventor
康志聪
海博
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US13/698,048 priority Critical patent/US8736799B2/en
Publication of WO2014043942A1 publication Critical patent/WO2014043942A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/02Number of plates being 2
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/05Single plate on one side of the LC cell

Definitions

  • the present invention relates to the field of optics, and more particularly to an optical compensation film for a VA liquid crystal display and a method for attenuating dark light leakage of a VA liquid crystal display using an optical compensation film.
  • the contrast of the picture is continuously lowered, and the sharpness of the picture is gradually reduced. This is because the birefringence of the liquid crystal molecules in the liquid crystal layer changes as the observation angle changes.
  • the compensation is compensated by the wide viewing angle compensation film, which can effectively reduce the light leakage of the dark state picture, and can greatly improve the picture within a certain angle of view. Contrast.
  • the compensation principle of the compensation film is generally to correct the phase difference generated by the liquid crystal at different viewing angles, so that the birefringence property of the liquid crystal molecules is compensated for symmetry.
  • the compensation film used for large-size LCD TVs is mostly for VA (Vertical Alignment) display mode.
  • Konica's N-TAC was used earlier, and it has been developed. It forms the Zeonor of OPOTES, the F-TAC series of Fujitsu, and the X-plate of Nitto Denko.
  • the commonly used compensation architecture is the single-layer biaxial compensation architecture shown in Figure 1 and the biaxial biaxial compensation architecture shown in Figure 2.
  • the single-layer dual-axis compensation architecture is usually composed of a cellulose triacetate TAC layer, a polyvinyl alcohol PVA layer, a cellulose triacetate TAC layer, a pressure sensitive adhesive PSA layer, a vertical alignment unit VA Cell layer, and a pressure sensitive adhesive.
  • PSA layer, biaxial Biaxial layer, polyvinyl alcohol PVA layer, cellulose triacetate TAC layer, each of these layers is an optical compensation film; for example, TAC layer is TAC compensation film; Biaxial in the compensation structure
  • the layer has only one layer, so it is called a single-layer dual-axis compensation architecture.
  • the double-layer dual-axis compensation film compensation can effectively reduce the light leakage of the dark state picture and improve the contrast and sharpness of the large viewing angle, but it is expensive and is not conducive to cost reduction.
  • Single layer double axis Compensation film compensation can effectively reduce the cost, but it will increase the risk of light leakage in the dark state picture.
  • the current state of the single-layer dual-axis and double-layer biaxial compensation caused by the dark state light leakage distribution map, Figure 5 and Figure 6 are the current single-layer dual-axis and double-layer dual-axis compensation caused by the full-view contrast distribution simulation results, from Figure 3
  • the double-layer biaxial compensation is much smaller than the single-layer biaxial compensation dark state leakage, and the full-view contrast distribution is also superior to the single-layer dual-axis compensation.
  • the object of the present invention is to improve the serious dark light leakage caused by single-layer biaxial compensation and to increase the contrast and sharpness of large viewing angles (non-horizontal, vertical azimuth large viewing angles).
  • the invention is mainly used for the optical compensation film of the liquid crystal display of the VA display mode, especially for the LC ⁇ ND (liquid crystal optical path difference) in the [324.3 nm, 342.8 nm] interval, and the liquid crystal pretilt angle is at [85°, 90°) Interval optical compensation film, by changing the single-layer biaxial compensation value of the optical compensation film and the compensation value of TAC to attenuate the serious dark light leakage caused by the current single-layer biaxial compensation, and the invention can effectively increase Contrast and sharpness of large viewing angles (non-horizontal, large azimuth angles).
  • the invention provides an optical compensation film for a VA liquid crystal display, wherein the liquid crystal optical path difference LC ⁇ ND of the optical compensation film is: [324.3 nm, 342.8 nm], and the liquid crystal pretilt angle range is [85°, 90°), the in-plane optical path compensation value Ro of the single-layer biaxial compensation film of the VA liquid crystal display has a value range of: 48 nm ⁇ Ro ⁇ 84 nm, and the out-of-plane optical path difference compensation value Rth ranges from : 160nm ⁇ Rth ⁇ 280nm; the compensation value Rth of the TAC (Triacetyl Cellulose) compensation film is Yl Rth Y2;
  • X is the out-of-plane retardation compensation value Rth of the single-layer biaxial compensation film.
  • the present invention further provides a method for attenuating dark light leakage of a VA liquid crystal display using an optical compensation film, the method comprising: the LCA ND range for the liquid crystal optical path difference is: [324.3 nm, 342.8 nm],
  • the optical compensation film whose liquid crystal pretilt angle has a Pretilt angle range of [85°, 90°) adjusts the range of the in-plane retardation compensation value Ro of the single-layer biaxial compensation film of the VA liquid crystal display to: 48 nm Ro 84 nm
  • the range of the out-of-plane retardation compensation value Rth is adjusted to: 160 nm Rth 280 nm; the range of the compensation value Rth of the cellulose triacetate TAC compensation film is adjusted to Yl Rth Y2;
  • X is the out-of-plane retardation compensation value Rth of the single-layer biaxial compensation film.
  • the range of the in-plane retardation compensation value Ro of the single-layer biaxial compensation film is adjusted to: 48 nm ⁇ Ro ⁇ 84 nm, and the range of the out-of-plane retardation compensation value Rth is adjusted to: 160 nm ⁇ Rth 280nm steps, including:
  • the thickness d of the single-layer biaxial compensation film is adjusted, and the single layer double is
  • the range of the in-plane retardation compensation value Ro of the axial compensation film is adjusted to: 48 nm Ro 84 nm, and the range of the out-of-plane retardation compensation value Rth is adjusted to be: 160 nm ⁇ Rth ⁇ 280 nm:
  • Rth [(Nx + Ny)/2-Nz]*d
  • Nx is the refractive index in the X direction of the maximum refractive index given in the plane of the single-layer biaxial compensation film
  • Ny is the in-plane of the single-layer biaxial compensation film
  • the refractive index in the Y direction orthogonal to the X direction, ⁇ is the refractive index in the thickness direction of the single-layer biaxial compensation film.
  • the value range of the compensation value Rth of the cellulose triacetate TAC compensation film is adjusted to
  • Yl Rth Y2 The steps of Yl Rth Y2 include:
  • the thickness d of the TAC compensation film is adjusted, and the compensation value Rth of the TAC compensation film is taken according to the following formula.
  • the value range is adjusted to Yl ⁇ Rth ⁇ Y2:
  • Rt [(Nx + Ny)/2-Nz]*d
  • Nx is the refractive index in the X direction of the maximum refractive index given in the TAC compensation film plane
  • Ny is the in-plane of the TAC compensation film orthogonal to the X direction.
  • the refractive index in the Y direction, Nz is the refractive index of the TAC compensation film thickness direction.
  • the range of the in-plane optical path difference compensation value Ro of the single-layer biaxial compensation film is adjusted to: 48nm ⁇ Ro ⁇ 84nm, the range of the out-of-plane retardation compensation value Rth is adjusted to: 160nm ⁇ Rth 280nm, including:
  • the refractive index Nx, Ny, Nz of the single-layer biaxial compensation film is adjusted, and the single layer double is adjusted according to the following formula
  • the range of the in-plane retardation compensation value Ro of the axial compensation film is adjusted to: 48 nm Ro 84 nm, and the range of the out-of-plane retardation compensation value Rth is adjusted to be: 160 nm ⁇ Rth ⁇ 280 nm:
  • Rt [(Nx + Ny)/2-Nz]*d
  • Nx is the refractive index in the X direction of the maximum refractive index given in the plane of the single-layer biaxial compensation film
  • Ny is the in-plane of the single-layer biaxial compensation film
  • the refractive index in the Y direction orthogonal to the X direction, ⁇ is the refractive index in the thickness direction of the single-layer biaxial compensation film.
  • the step of adjusting the range of the compensation value Rth of the triacetate TAC compensation film to Yl Rth Y2 includes:
  • the refractive index Nx, Ny, Nz of the TAC compensation film is adjusted, and the compensation value Rth of the TAC compensation film is obtained according to the following formula
  • the value range is adjusted to Yl ⁇ Rth ⁇ Y2:
  • Rt [(Nx + Ny)/2-Nz]*d
  • Nx is the refractive index in the X direction of the maximum refractive index given in the TAC compensation film plane
  • Ny is the in-plane of the TAC compensation film orthogonal to the X direction.
  • the refractive index in the Y direction, Nz is the refractive index of the TAC compensation film thickness direction.
  • the range of the in-plane retardation compensation value Ro of the single-layer biaxial compensation film is adjusted to: 48 nm ⁇ Ro ⁇ 84 nm, and the range of the out-of-plane retardation compensation value Rth is adjusted to: 160 nm ⁇ Rth 280nm steps, including:
  • the refractive index Nx, Ny, Nz and the thickness d of the single-layer biaxial compensation film are adjusted, and the range of the in-plane optical path difference compensation value Ro of the single-layer biaxial compensation film is adjusted according to the following formula: : 48nm ⁇ Ro ⁇ 84nm, adjust the range of the out-of-plane retardation compensation value Rth to: 160nm Rth
  • Rt [(Nx + Ny)/2-Nz]*d where Nx is the refractive index in the X direction of the maximum refractive index given in the plane of the single-layer biaxial compensation film, Ny
  • the single-layer biaxial compensation film has a refractive index in the Y direction orthogonal to the X direction in the plane, and ⁇ is a refractive index in the thickness direction of the single layer biaxial compensation film.
  • the step of adjusting the range of the compensation value Rth of the triacetate TAC compensation film to Yl Rth Y2 includes:
  • the refractive indices Nx, Ny, Nz and thickness d of the TAC compensation film are adjusted, and the range of the compensation value Rth of the TAC compensation film is adjusted to Yl ⁇ Rth ⁇ Y2 according to the following formula:
  • Nx is the refractive index in the X direction of the maximum refractive index given in the TAC compensation film plane
  • Ny is the in-plane of the TAC compensation film orthogonal to the X direction
  • the refractive index in the Y direction, Nz is the refractive index of the TAC compensation film thickness direction.
  • FIG. 1 is a schematic diagram of a prior art single layer dual axis compensation architecture
  • FIG. 2 is a schematic diagram of a prior art double-layer dual-axis compensation architecture
  • FIG. 3 is a dark state light leakage distribution diagram of a prior art single layer dual axis compensation architecture
  • FIG. 5 is a full-view contrast distribution diagram of a prior art single-layer dual-axis compensation architecture
  • FIG. 6 is a full-view contrast distribution diagram of a prior art double-layer dual-axis compensation architecture
  • FIG. 7 is a schematic diagram of a single-layer dual-axis compensation architecture 1 applicable to the present invention.
  • FIG. 8 is a schematic diagram of a single-layer dual-axis compensation architecture 2 applicable to the present invention.
  • FIG. 9 is a schematic diagram of a single-layer dual-axis compensation architecture 3 applicable to the present invention.
  • FIG. 10 is a schematic diagram of a single-layer dual-axis compensation architecture 4 applicable to the present invention.
  • 11 is a schematic diagram of a single-layer dual-axis compensation architecture 5 applicable to the present invention
  • 12 is a schematic diagram of a single-layer dual-axis compensation architecture 6 applicable to the present invention
  • FIG. 13 is a dark state light leakage distribution diagram of a single-layer dual-axis compensation architecture after applying the present invention
  • the dark state light leakage caused by the layer double-axis compensation architecture is serious, and the implementation of the present invention can effectively increase the contrast and sharpness of a large viewing angle (a large viewing angle of a non-horizontal, vertical azimuth).
  • the invention provides an optical compensation film for a VA liquid crystal display, and a suitable compensation structure thereof is shown in FIG. 7 to FIG. 10:
  • the liquid crystal optical path difference LCA ND range of the VA liquid crystal display at a wavelength of 550 nm is: [324.3 Nm, 342.8nm]
  • the liquid crystal pretilt angle range is [85°, 90°)
  • the in-plane optical path compensation value Ro of the single-layer biaxial compensation film of the VA liquid crystal display has a value range of: 48 nm Ro 84nm
  • the out-of-plane optical path difference compensation value Rth ranges from: 160nm Rth 280nm
  • the compensation value Rth of the TAC compensation film ranges from Yl Rth Y2;
  • X is the out-of-plane retardation compensation value Rth of the single-layer biaxial compensation film.
  • Table 1 When the compensation structure of the optical compensation film is as shown in Fig. 11 and Fig. 12, the compensation of the TAC compensation film The value Rth is the sum of TAC1 Rth and TAC2 Rth.
  • the optical of the VA liquid crystal display can be properly matched.
  • the in-plane retardation compensation value Ro and the out-of-plane retardation compensation value Rth of the single-layer biaxial compensation film in the compensation film, and the compensation value Rth of the TAC compensation film are used to achieve an ideal dark state light leakage effect.
  • the present invention further provides a method for attenuating dark light leakage of a VA liquid crystal display using an optical compensation film, the method comprising: the liquid crystal optical path difference LC ⁇ ND of the VA liquid crystal display at a wavelength of 550 nm is: [324.3 Nm, 342.8nm], its liquid crystal pretilt angle Pretilt angle range is [85 °, 90.
  • the value range is adjusted to: 48 nm ⁇ Ro ⁇ 84 nm, and the range of the out-of-plane retardation compensation value Rth is adjusted to: 160 nm Rth 280nm; the range of the compensation value Rth of the TAC compensation film is adjusted to Yl Rth Y2;
  • X is the out-of-plane retardation compensation value Rth of the single-layer biaxial compensation film.
  • the compensation value of the single-layer biaxial compensation film and the compensation value of the TAC compensation film of the optical compensation film can be adjusted in three ways:
  • the thickness d of the single-layer biaxial compensation film is adjusted, and the single layer double is
  • the range of the in-plane retardation compensation value Ro of the axial compensation film is adjusted to: 48 nm Ro 84 nm, and the range of the out-of-plane retardation compensation value Rth is adjusted to be: 160 nm ⁇ Rth ⁇ 280 nm:
  • Rt [(Nx + Ny)/2-Nz]*d
  • Nx is the refractive index in the X direction of the maximum refractive index given in the plane of the single-layer biaxial compensation film
  • Ny is the in-plane of the single-layer biaxial compensation film
  • the refractive index in the Y direction orthogonal to the X direction, ⁇ is the refractive index in the thickness direction of the single-layer biaxial compensation film.
  • the thickness d of the TAC compensation film is adjusted, and the compensation value Rth of the TAC compensation film is obtained according to the following formula
  • the range of values is adjusted to Yl ⁇ Rth ⁇ Y2:
  • Nx is the refractive index in the X direction of the maximum refractive index given in the TAC compensation film plane
  • Ny is the in-plane of the TAC compensation film orthogonal to the X direction.
  • the refractive index in the Y direction, Nz is the refractive index of the TAC compensation film thickness direction.
  • Rt [(Nx + Ny)/2-Nz]*d
  • Nx is the refractive index in the X direction of the maximum refractive index given in the plane of the single-layer biaxial compensation film
  • Ny is the in-plane of the single-layer biaxial compensation film
  • the refractive index in the Y direction orthogonal to the X direction, ⁇ is the refractive index in the thickness direction of the single layer biaxial compensation film
  • the range of the external optical path difference compensation value Rth is adjusted to be 160 nm ⁇ Rth ⁇ 280 nm.
  • the refractive index Nx, Ny, Nz of the TAC compensation film is adjusted, and the compensation value Rth of the TAC compensation film is taken according to the following formula
  • the value range is adjusted to Yl ⁇ Rth ⁇ Y2:
  • Nx the refractive index in the X direction of the maximum refractive index given in the TAC compensation film plane
  • Ny is the in-plane of the TAC compensation film orthogonal to the X direction.
  • the refractive index in the Y direction, Nz is the refractive index of the TAC compensation film thickness direction.
  • the third type is the third type.
  • the refractive index Nx, Ny, Nz and the thickness d of the single-layer biaxial compensation film are simultaneously adjusted, and the range of the in-plane optical path difference compensation value Ro of the single-layer biaxial compensation film is determined according to the following formula Adjusted to: 48nm ⁇ Ro ⁇ 84nm, the range of the out-of-plane retardation compensation value Rth is adjusted to: 160nm ⁇ Rth
  • Nx is the refractive index in the X direction of the maximum refractive index given in the plane of the single-layer biaxial compensation film
  • Ny The single-layer biaxial compensation film has a refractive index in the Y direction orthogonal to the X direction in the plane, and ⁇ is a refractive index in the thickness direction of the single layer biaxial compensation film;
  • the refractive indices Nx, Ny, Nz and thickness d of the TAC compensation film are simultaneously adjusted, and the range of the compensation value Rth of the TAC compensation film is adjusted to Yl Rth Y2 according to the following formula:
  • Nx the refractive index in the X direction of the maximum refractive index given in the TAC compensation film plane
  • Ny is the in-plane of the TAC compensation film orthogonal to the X direction
  • the refractive index in the Y direction, Nz is the refractive index of the TAC compensation film thickness direction.
  • the full-view contrast distribution map is as shown in FIG. 13
  • the serious dark light leakage caused by the current single-layer dual-axis compensation architecture can be greatly improved, and the contrast and sharpness of the large viewing angle (non-horizontal vertical azimuth) can be effectively improved, and the double-axis compensation is compared with the double layer.
  • the architecture can effectively reduce costs.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

一种用于VA液晶显示器的光学补偿膜和一种使用光学补偿膜减弱VA液晶显示器暗态漏光的方法。VA液晶显示器在波长=550nm的液晶光程差LCΔND范围为:[324.3nm,342.8nm],其液晶预倾角范围为[85°,90°),其单层双轴补偿膜的Ro的取值范围为48nm≤Ro≤84nm,其Rth的取值范围为:160nm≤Rth≤280nm;其TAC补偿值Rth的取值范围为Y1≤Rth≤Y2。在VA液晶显示器中使用光学补偿膜可以改善使用现行单层双轴补偿膜的补偿值造成的暗态漏光严重的现象,可以有效的提高大视角的对比度和清晰度,同时相对于双层双轴补偿结构可以有效降低成本。

Description

一种光学补偿膜及减弱 VA液晶显示器暗态漏光的方法 本申请要求于 2012年 9月 24日提交中国专利局、申请号为 201210358060.1 、 发明名称为 "一种光学补偿膜及减弱 VA液晶显示器暗态漏光的方法" 的中国 专利申请的优先权, 上述专利的全部内容通过引用结合在本申请中。 技术领域
本发明涉及一种光学领域,尤其涉及一种用于 VA液晶显示器的光学补偿膜 和使用光学补偿膜减弱 VA液晶显示器暗态漏光的方法。 背景技术
随着 TFT-LCD ( Thin Film Transistor LCD , 薄膜场效应晶体管液晶显示器) 的观察角度增大, 画面的对比度不断降低, 画面的清晰度也逐渐下降。 这是由 于液晶层中液晶分子的双折射率随着观察角度变化发生改变的结果, 采用宽视 角补偿膜进行补偿, 可以有效降低暗态画面的漏光, 在一定的视角内能大幅度 提高画面的对比度。
补偿膜的补偿原理一般是将液晶在不同视角产生的相位差进行修正, 让液 晶分子的双折射性质得到对称性的补偿。
针对不同的液晶显示模式, 使用的补偿膜也不同, 大尺寸液晶电视使用的 补偿膜大多是针对 VA ( Vertical Alignment, 垂直配向)显示模式, 早期使用的 有 Konica公司的 N-TAC, 后来不断发展形成 OPOTES公司的 Zeonor, 富士通 的 F-TAC系列, 日东电工的 X-plate等。 目前常用的补偿架构为如图 1所示的单 层双轴(Biaxial )补偿架构和如图 2所示的双层双轴(Biaxial )补偿架构。 如图 所示, 单层双轴补偿架构通常依次由三醋酸纤维素 TAC层、 聚乙烯醇 PVA层、 三醋酸纤维素 TAC层、 压敏胶粘剂 PSA层、 垂直配向单元 VA Cell层、 压敏胶 粘剂 PSA层、 双轴 Biaxial层、 聚乙烯醇 PVA层、 三醋酸纤维素 TAC层构成, 这些层中每一层就是一层光学补偿膜; 例如 TAC层也就是 TAC补偿膜; 该补偿 架构中的 Biaxial层只有一层, 因此称为单层双轴补偿架构。
采用双层双轴补偿膜补偿, 能有效的减少暗态画面的漏光, 提高大视角的 对比度和清晰度, 但是它的价格比较昂贵, 不利于降低成本。 而采用单层双轴 补偿膜补偿, 可以有效的降低成本, 但是会增加暗态画面的漏光风险。
举例来讲, 图 3和图 4分別为液晶光程差(LC AND ) =333.6nm, 液晶预倾 角( Pretilt angle ) =89。 时现行单层双轴与双层双轴补偿造成的暗态漏光分布图, 图 5和图 6分別为现行单层双轴与双层双轴补偿造成的全视角对比度分布模拟 结果, 从图 3至图 6可以明显的看出, 双层双轴补偿比单层双轴补偿暗态漏光 小很多, 全视角对比度分布也优于单层双轴补偿。
如何利用单层双轴补偿膜进行补偿, 又能达到双层双轴补偿膜的补偿效果, 从而降低成本, 减少暗态漏光的风险是亟待解决的技术问题。 发明内容
本发明的目的在于改善单层双轴补偿造成的暗态漏光严重现象, 增加大视 角 (非水平, 垂直方位角的大视角) 的对比度和清晰度。
本发明主要用于 VA显示模式的液晶显示器的光学补偿膜, 尤其是针对 LC △ ND (液晶光程差)在 [324.3nm, 342.8nm]区间, 液晶预倾角 ( Pretilt angle ) 在 [85° , 90° ) 区间的光学补偿膜, 通过改变该光学补偿膜的单层双轴补偿值 和 TAC的补偿值来减弱目前单层双轴补偿造成的暗态漏光严重现象, 实施本发 明可以有效的增加大视角 (非水平, 垂直方位角的大视角) 的对比度和清晰度。
具体的, 本发明的技术方案是这样实现的:
本发明提供一种用于 VA液晶显示器的光学补偿膜,该光学补偿膜的液晶光 程差 LC△ ND范围为: [324.3nm, 342.8nm] , 其液晶预倾角 Pretilt angle范围为 [85° , 90° ) , 该 VA液晶显示器的单层双轴补偿膜的面内光程差补偿值 Ro的 取值范围为: 48nm < Ro < 84nm,其面外光程差补偿值 Rth的取值范围为: 160nm < Rth < 280nm; 其 TAC (三醋酸纤维素, Triacetyl Cellulose )补偿膜的补偿值 Rth的取值范围为 Yl Rth Y2;
其中:
Yl=0.00521518 ^2 -3.12384 ^ +482.11
Υ2=-0.00677798 X 2 +1.9941 X +24.78
X 为单层双轴补偿膜的面外光程差补偿值 Rth。
相应的,本发明还提供一种使用光学补偿膜减弱 VA液晶显示器暗态漏光的 方法, 所述方法包括: 针对液晶光程差 LCA ND范围为: [324.3nm, 342.8nm] , 其液晶预倾角 Pretilt angle范围为 [85° , 90° )的光学补偿膜, 将 VA液晶显示 器的单层双轴补偿膜的面内光程差补偿值 Ro的取值范围调整为: 48nm Ro 84nm, 将其面外光程差补偿值 Rth的取值范围调整为: 160nm Rth 280nm; 将其三醋酸纤维素 TAC补偿膜的补偿值 Rth的取值范围调整为 Yl Rth Y2; 其中:
Yl=0.00521518^2-3.12384^ +482.11
Υ2=-0.00677798 X 2 +1.9941 X +24.78
X 为单层双轴补偿膜的面外光程差补偿值 Rth。
其中, 将其单层双轴补偿膜的面内光程差补偿值 Ro 的取值范围调整为: 48nm <Ro< 84nm,将其面外光程差补偿值 Rth的取值范围调整为: 160nm < Rth 280nm的步骤, 包括:
已知所述光学补偿膜中的单层双轴补偿膜的折射率 Nx, Ny, Nz的值时, 调整所述单层双轴补偿膜的厚度 d,根据以下公式, 将所述单层双轴补偿膜的面 内光程差补偿值 Ro的取值范围调整为: 48nm Ro 84nm, 将其面外光程差补 偿值 Rth的取值范围调整为: 160nm < Rth < 280nm:
Ro = (Nx-Ny)*d
Rth = [(Nx + Ny)/2-Nz]*d 其中, Nx为单层双轴补偿膜面内给出的最大折射率的 X方向的折射率, Ny 为单层双轴补偿膜面内与 X方向正交的 Y方向的折射率,Νζ为单层双轴补偿膜 厚度方向的折射率。
其中, 所述将其三醋酸纤维素 TAC补偿膜的补偿值 Rth的取值范围调整为
Yl Rth Y2的步骤, 包括:
已知所述光学补偿膜中的 TAC补偿膜的折射率 Nx, Ny, Nz的值时, 调整 所述 TAC补偿膜的厚度 d, 根据以下公式, 将所述 TAC补偿膜的补偿值 Rth的 取值范围调整为 Yl < Rth < Y2:
Rt =[(Nx + Ny)/2-Nz]*d 其中, Nx为 TAC补偿膜面内给出的最大折射率的 X方向的折射率, Ny为 TAC补偿膜面内与 X方向正交的 Y方向的折射率, Nz为 TAC补偿膜厚度方向 的折射率。
其中, 将其单层双轴补偿膜的面内光程差补偿值 Ro 的取值范围调整为: 48nm <Ro< 84nm,将其面外光程差补偿值 Rth的取值范围调整为: 160nm < Rth 280nm的步骤, 包括:
已知所述光学补偿膜中的单层双轴补偿膜的厚度 d的值时, 调整所述单层 双轴补偿膜的折射率 Nx, Ny, Nz, 根据以下公式, 将所述单层双轴补偿膜的面 内光程差补偿值 Ro的取值范围调整为: 48nm Ro 84nm, 将其面外光程差补 偿值 Rth的取值范围调整为: 160nm < Rth < 280nm:
Ro = (Nx-Ny)*d
Rt = [(Nx + Ny)/2-Nz]*d 其中, Nx为单层双轴补偿膜面内给出的最大折射率的 X方向的折射率, Ny 为单层双轴补偿膜面内与 X方向正交的 Y方向的折射率,Νζ为单层双轴补偿膜 厚度方向的折射率。
其中, 所述将其三醋酸纤维素 TAC补偿膜的补偿值 Rth的取值范围调整为 Yl Rth Y2的步骤, 包括:
已知所述光学补偿膜中的 TAC补偿膜的厚度 d的值时,调整所述 TAC补偿 膜的折射率 Nx, Ny, Nz, 根据以下公式, 将所述 TAC补偿膜的补偿值 Rth的 取值范围调整为 Yl < Rth < Y2:
Rt =[(Nx + Ny)/2-Nz]*d 其中, Nx为 TAC补偿膜面内给出的最大折射率的 X方向的折射率, Ny为 TAC补偿膜面内与 X方向正交的 Y方向的折射率, Nz为 TAC补偿膜厚度方向 的折射率。
其中, 将其单层双轴补偿膜的面内光程差补偿值 Ro 的取值范围调整为: 48nm <Ro< 84nm,将其面外光程差补偿值 Rth的取值范围调整为: 160nm < Rth 280nm的步骤, 包括:
同时调整所述单层双轴补偿膜的折射率 Nx, Ny, Nz和厚度 d, 根据以下公 式, 将所述单层双轴补偿膜的面内光程差补偿值 Ro 的取值范围调整为: 48nm <Ro<84nm, 将其面外光程差补偿值 Rth 的取值范围调整为: 160nm Rth
280匪:
Ro = (Nx-Ny)*d
Rt = [(Nx + Ny)/2-Nz]*d 其中, Nx为单层双轴补偿膜面内给出的最大折射率的 X方向的折射率, Ny 为单层双轴补偿膜面内与 X方向正交的 Y方向的折射率,ΝΖ为单层双轴补偿膜 厚度方向的折射率。
其中, 所述将其三醋酸纤维素 TAC补偿膜的补偿值 Rth的取值范围调整为 Yl Rth Y2的步骤, 包括:
同时调整所述 TAC补偿膜的折射率 Nx, Ny, Nz和厚度 d, 根据以下公式, 将所述 TAC补偿膜的补偿值 Rth的取值范围调整为 Yl < Rth < Y2:
她 = [(Nx + Ny) / 2 - Nz] * d 其中, Nx为 TAC补偿膜面内给出的最大折射率的 X方向的折射率, Ny为 TAC补偿膜面内与 X方向正交的 Y方向的折射率, Nz为 TAC补偿膜厚度方向 的折射率。
实施本发明, 可以大幅改善现行单层双轴补偿膜造成的暗态漏光严重现象, 可以有效的提高大视角 (非水平垂直方位角) 的对比度和清晰度, 同时相对于 双层双轴补偿可以有效的降低成本。 附图说明 例或现有技术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为现有技术的单层双轴补偿架构的示意图;
图 2为现有技术的双层双轴补偿架构的示意图;
图 3为现有技术的单层双轴补偿架构的暗态漏光分布图;
图 4为现有技术的双层双轴补偿架构的暗态漏光分布图;
图 5为现有技术的单层双轴补偿架构的全视角对比度分布图;
图 6为现有技术的双层双轴补偿架构的全视角对比度分布图;
图 7为本发明适用的单层双轴补偿架构一的示意图;
图 8为本发明适用的单层双轴补偿架构二的示意图;
图 9为本发明适用的单层双轴补偿架构三的示意图;
图 10为本发明适用的单层双轴补偿架构四的示意图;
图 11为本发明适用的单层双轴补偿架构五的示意图; 图 12为本发明适用的单层双轴补偿架构六的示意图;
图 13为应用本发明后的单层双轴补偿架构的暗态漏光分布图;
图 14为应用本发明后的单层双轴补偿架构的全视角对比度分布图。 具体实施方式
本发明主要用于 VA显示模式的液晶显示器的光学补偿膜, 尤其是针对该 VA液晶显示器在波长 =550nm处的 LC Δ Νϋ(液晶光程差)在[324.311111, 342.8nm] 区间, 液晶预倾角 ( Pretilt angle ) 范围为 [85° , 90° ) 的光学补偿膜, 通过改 变该 VA液晶显示器所用的光学补偿膜的单层双轴补偿膜的补偿值和 TAC补偿 膜的补偿值来减弱目前单层双轴补偿架构所造成的暗态漏光严重现象, 实施本 发明可以有效的增加大视角 (非水平, 垂直方位角的大视角) 的对比度和清晰 度。
具体的, 本发明的技术方案是这样实现的:
本发明提供一种用于 VA液晶显示器的光学补偿膜,其适用的补偿架构如图 7至图 10所示:该 VA液晶显示器在波长 =550nm处的液晶光程差 LCA ND范围 为: [324.3nm, 342.8nm] , 其液晶预倾角的范围为 [85° , 90° ) , 所述 VA液晶 显示器的单层双轴补偿膜的面内光程差补偿值 Ro的取值范围为: 48nm Ro 84nm, 其面外光程差补偿值 Rth的取值范围为: 160nm Rth 280nm; 其 TAC 补偿膜的补偿值 Rth的取值范围为 Yl Rth Y2;
其中:
Yl=0.00521518 ^2 -3.12384 ^ +482.11
Υ2=-0.00677798 X 2 +1.9941 X +24.78
X 为单层双轴补偿膜的面外光程差补偿值 Rth。
用表格表示, 如表 1所示: 表 1
Figure imgf000008_0001
当光学补偿膜的补偿架构如图 11和图 12所示时, 其中 TAC补偿膜的补偿 值 Rth为 TAC1 Rth 与 TAC2 Rth的和。
实施本发明, 当 VA液晶显示器在波长 =550nm处的 LCANd在 [324.3nm, 342.8nm]区间, Pretilt angle的范围为 [85° , 90° ) 时, 可以通过合理的搭配该 VA液晶显示器的光学补偿膜中的单层双轴补偿膜的面内光程差补偿值 Ro和面 外光程差补偿值 Rth, 以及 TAC补偿膜的补偿值 Rth来达到理想的暗态漏光效 果。
相应的,本发明还提供一种使用光学补偿膜减弱 VA液晶显示器暗态漏光的 方法, 所述方法包括: 针对 VA液晶显示器在波长 =550nm处的液晶光程差 LC △ ND范围为: [324.3nm, 342.8nm], 其液晶预倾角 Pretilt angle范围为 [85° , 90。 )时, 将单层双轴补偿膜的面内光程差补偿值 Ro的取值范围调整为: 48nm <Ro<84nm, 将其面外光程差补偿值 Rth 的取值范围调整为: 160nm Rth 280nm; 将其 TAC补偿膜的补偿值 Rth的取值范围调整为 Yl Rth Y2;
其中:
Yl=0.00521518^2-3.12384^ +482.11
Υ2=-0.00677798 X 2 +1.9941 X +24.78
X 为单层双轴补偿膜的面外光程差补偿值 Rth。
具体实现中, 可以有三种方式调整得到光学补偿膜的单层双轴补偿膜的补 偿值和 TAC补偿膜的补偿值:
第一种:
当已知所述光学补偿膜的单层双轴补偿膜的折射率 Nx, Ny, Nz的值时, 调整所述单层双轴补偿膜的厚度 d,根据以下公式, 将所述单层双轴补偿膜的面 内光程差补偿值 Ro的取值范围调整为: 48nm Ro 84nm, 将其面外光程差补 偿值 Rth的取值范围调整为: 160nm < Rth < 280nm:
Ro = (Nx-Ny)*d
Rt = [(Nx + Ny)/2-Nz]*d 其中, Nx为单层双轴补偿膜面内给出的最大折射率的 X方向的折射率, Ny 为单层双轴补偿膜面内与 X方向正交的 Y方向的折射率,Νζ为单层双轴补偿膜 厚度方向的折射率。
当已知所述光学补偿膜中的 TAC补偿膜的折射率 Nx, Ny, Nz的值时, 调 整所述 TAC补偿膜的厚度 d, 根据以下公式, 将所述 TAC补偿膜的补偿值 Rth 的取值范围调整为 Yl < Rth < Y2:
她 = [(Nx + Ny)/2-Nz]*d 其中, Nx为 TAC补偿膜面内给出的最大折射率的 X方向的折射率, Ny 为 TAC补偿膜面内与 X方向正交的 Y方向的折射率, Nz为 TAC补偿膜厚度方 向的折射率。
第二种:
当已知所述光学补偿膜的单层双轴补偿膜的厚度 d的值时, 根据以下公式:
Ro = (Nx-Ny)*d
Rt = [(Nx + Ny)/2-Nz]*d 其中, Nx为单层双轴补偿膜面内给出的最大折射率的 X方向的折射率, Ny 为单层双轴补偿膜面内与 X方向正交的 Y方向的折射率,Νζ为单层双轴补偿膜 厚度方向的折射率;
调整所述单层双轴补偿膜的折射率 Nx, Ny, Nz, 将所述单层双轴补偿膜的 面内光程差补偿值 Ro的取值范围调整为: 48nm Ro 84nm, 将其面外光程差 补偿值 Rth的取值范围调整为: 160nm < Rth < 280nm。
当已知所述光学补偿膜的 TAC补偿膜的厚度 d的值时,调整所述 TAC补偿 膜的折射率 Nx, Ny, Nz, 根据以下公式, 将所述 TAC补偿膜的补偿值 Rth的 取值范围调整为 Yl < Rth < Y2:
Rth = [(Nx + Ny)/2-Nz]*d 其中, Nx为 TAC补偿膜面内给出的最大折射率的 X方向的折射率, Ny为 TAC补偿膜面内与 X方向正交的 Y方向的折射率, Nz为 TAC补偿膜厚度方向 的折射率。
第三种:
首先, 同时调整所述单层双轴补偿膜的折射率 Nx, Ny, Nz和厚度 d, 根据 以下公式, 将所述单层双轴补偿膜的面内光程差补偿值 Ro的取值范围调整为: 48nm <Ro< 84nm,将其面外光程差补偿值 Rth的取值范围调整为: 160nm < Rth
< 280nm:
Ro = (Nx-Ny)*d
她 = [(Nx + Ny)/2-Nz]*d 其中, Nx为单层双轴补偿膜面内给出的最大折射率的 X方向的折射率, Ny 为单层双轴补偿膜面内与 X方向正交的 Y方向的折射率,ΝΖ为单层双轴补偿膜 厚度方向的折射率;
然后, 同时调整所述 TAC补偿膜的折射率 Nx, Ny, Nz和厚度 d, 根据以 下公式, 将所述 TAC补偿膜的补偿值 Rth的取值范围调整为 Yl Rth Y2:
Rth = [(Nx + Ny) / 2 - Nz] * d 其中, Nx为 TAC补偿膜面内给出的最大折射率的 X方向的折射率, Ny为 TAC补偿膜面内与 X方向正交的 Y方向的折射率, Nz为 TAC补偿膜厚度方向 的折射率。
举例来讲, 当选取 LC ANd=333.6nm, Pretilt angle=89° 单层双轴补偿膜的 补偿值 Ro=66nm, Rth=220nm, TAC补偿膜的补偿值 Rth=82.6nm的暗态漏光分 布图如图 13所示, 其全视角对比度分布图如图 14所示。
由图 13和图 3, 图 14和图 5的对比, 可以直观的看到, 改善后单层双轴补 偿架构的暗态漏光已经低于现行单层双轴补偿架构的暗态漏光, 全视角对比度 分布也优于现行单层双轴补偿架构的全视角对比度分布。
实施本发明, 可以大幅改善现行单层双轴补偿架构所造成的暗态漏光严重 现象, 可以有效的提高大视角 (非水平垂直方位角) 的对比度和清晰度, 同时 相对于双层双轴补偿架构可以有效的降低成本。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明, 不 能认定本发明的具体实施只局限于这些说明。 对于本发明所属技术领域的普通 技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干筒单推演或替 换, 都应当视为属于本发明的保护范围。

Claims

权 利 要 求
1、 一种用于 VA液晶显示器的光学补偿膜, 该 VA液晶显示器在波长 =550nm处的液晶光程差 LCAND范围为: [324.3nm, 342.8nm], 其液晶预 倾角范围为 [85° ,90° ), 其中, 所述 VA液晶显示器的单层双轴补偿膜的面 内光程差补偿值 Ro的取值范围为: 48nm Ro 84nm, 其面外光程差补偿 值 Rth的取值范围为: 160nm < Rth < 280nm; 其三醋酸纤维素 TAC补偿膜 的补偿值 Rth的取值范围为 Yl < Rth < Y2;
其中:
Yl=0.00521518x2-3.12384 X +482.11
Υ2=-0.00677798 X 2 +1.9941 X +24.78
X 为单层双轴补偿膜的面外光程差补偿值 Rth。
2、 一种使用光学补偿膜减弱 VA液晶显示器暗态漏光的方法, 其中, 所述方法包括:针对 VA液晶显示器在波长 =550nm处的液晶光程差 LC△ ND 范围为: [324.3nm, 342.8nm], 其液晶预倾角范围为 [85° ,90。 )时, 将所述 VA液晶显示器的单层双轴补偿膜的面内光程差补偿值 Ro的取值范围调整 为: 48nm Ro 84nm, 将其面外光程差补偿值 Rth 的取值范围调整为: 160nm<Rth<280nm; 将其三醋酸纤维素 TAC补偿膜的补偿值 Rth的取值 范围调整为 Yl Rth Y2;
其中:
Yl=0.00521518x2-3.12384 X +482.11
Υ2=-0.00677798 X 2 +1.9941 X +24.78
X 为单层双轴补偿膜的面外光程差补偿值 Rth。
3、 如权利要求 2所述的使用光学补偿膜减弱 VA液晶显示器暗态漏光 的方法, 其中, 将所述 VA液晶显示器的单层双轴补偿膜的面内光程差补偿 值 Ro 的取值范围调整为: 48nm Ro 84nm, 将其面外光程差补偿值 Rth 的取值范围调整为: 160nm < Rth < 280nm的步骤包括:
已知所述单层双轴补偿膜的折射率 Nx, Ny, Nz的值时, 调整所述单层 双轴补偿膜的厚度 d, 根据以下公式, 将所述单层双轴补偿膜的面内光程差 补偿值 Ro的取值范围调整为: 48nm Ro 84nm, 将其面外光程差补偿值 Rth的取值范围调整为: 160nm < Rth < 280nm:
Ro = (Nx-Ny)*d
Rt = [(Nx + Ny)/2-Nz]*d
其中, Nx为单层双轴补偿膜面内给出的最大折射率的 X方向的折射率, Ny为单层双轴补偿膜面内与 X方向正交的 Y方向的折射率, Nz为单层双 轴补偿膜厚度方向的折射率。
4、 如权利要求 2所述的使用光学补偿膜减弱 VA液晶显示器暗态漏光 的方法, 其中, 将所述 VA液晶显示器的三醋酸纤维素 TAC补偿膜的补偿 值 Rth的取值范围调整为 Yl Rth Y2的步骤, 包括:
已知所述 TAC补偿膜的折射率 Nx, Ny, Nz的值时, 调整所述 TAC补 偿膜的厚度 d,根据以下公式,将所述 TAC补偿膜的补偿值 Rth的取值范围 调整为 Yl Rth Y2:
她 = [(Nx + Ny)/2-Nz]*d
其中, Nx为 TAC补偿膜面内给出的最大折射率的 X方向的折射率, Ny为 TAC补偿膜面内与 X方向正交的 Y方向的折射率, Nz为 TAC补偿膜 厚度方向的折射率。
5、 如权利要求 2所述的使用光学补偿膜减弱 VA液晶显示器暗态漏光 的方法, 其中, 将所述 VA液晶显示器的单层双轴补偿膜的面内光程差补偿 值 Ro 的取值范围调整为: 48nm Ro 84nm, 将其面外光程差补偿值 Rth 的取值范围调整为: 160nm Rth 280nm的步骤, 包括:
已知所述单层双轴补偿膜的厚度 d的值时,调整所述单层双轴补偿膜的 折射率 Nx, Ny, Nz, 根据以下公式, 将所述单层双轴补偿膜的面内光程差 补偿值 Ro的取值范围调整为: 48nm Ro 84nm, 将其面外光程差补偿值
Rth的取值范围调整为: 160nm < Rth < 280nm:
Ro = (Nx-Ny)*d
Rt = [(Nx + Ny)/2-Nz]*d
其中, Nx为单层双轴补偿膜面内给出的最大折射率的 X方向的折射率, Ny为单层双轴补偿膜面内与 X方向正交的 Y方向的折射率, Nz为单层双 轴补偿膜厚度方向的折射率。
6、 如权利要求 2所述的使用光学补偿膜减弱 VA液晶显示器暗态漏光 的方法, 其中, 将所述 VA液晶显示器的三醋酸纤维素 TAC补偿膜的补偿 值 Rth的取值范围调整为 Yl Rth Y2的步骤, 包括:
已知所述 TAC补偿膜的厚度 d的值时, 调整所述 TAC补偿膜的折射率 Nx, Ny, Nz, 根据以下公式, 将所述 TAC补偿膜的补偿值 Rth的取值范围 调整为 Yl Rth Y2:
她 = [(Nx + Ny)/2-Nz]*d
其中, Nx为 TAC补偿膜面内给出的最大折射率的 X方向的折射率, Ny为 TAC补偿膜面内与 X方向正交的 Y方向的折射率, Nz为 TAC补偿膜 厚度方向的折射率。
7、 如权利要求 2所述的使用光学补偿膜减弱 VA液晶显示器暗态漏光 的方法, 其中, 将所述 VA液晶显示器的单层双轴补偿膜的面内光程差补偿 值 Ro 的取值范围调整为: 48nm Ro 84nm, 将其面外光程差补偿值 Rth 的取值范围调整为: 160nm Rth 280nm的步骤; 包括:
同时调整所述单层双轴补偿膜的折射率 Nx, Ny, Nz和厚度 d, 根据以 下公式,将所述单层双轴补偿膜的面内光程差补偿值 Ro的取值范围调整为: 48nm<Ro<84nm, 将其面外光程差补偿值 Rth的取值范围调整为: 160nm
< Rth < 280nm:
Ro = (Nx-Ny)*d
Rth = [(Nx + Ny)/2-Nz]*d
其中, Nx为单层双轴补偿膜面内给出的最大折射率的 X方向的折射率, Ny为单层双轴补偿膜面内与 X方向正交的 Y方向的折射率, Nz为单层双 轴补偿膜厚度方向的折射率。
8、 如权利要求 2所述的使用光学补偿膜减弱 VA液晶显示器暗态漏光 的方法, 其中, 将所述 VA液晶显示器的三醋酸纤维素 TAC补偿膜的补偿 值 Rth的取值范围调整为 Yl Rth Y2的步骤, 包括:
同时调整所述 TAC补偿膜的折射率 Nx, Ny, Nz和厚度 d, 根据以下 公式, 将所述 TAC补偿膜的补偿值 Rth的取值范围调整为 Yl Rth Y2: 她 = [(Nx + Ny)/2-Nz]*d 其中, Nx为 TAC补偿膜面内给出的最大折射率的 X方向的折射率, Ny为 TAC补偿膜面内与 X方向正交的 Y方向的折射率, Nz为 TAC补偿膜 厚度方向的折射率。
PCT/CN2012/082297 2012-09-24 2012-09-28 一种光学补偿膜及减弱va液晶显示器暗态漏光的方法 WO2014043942A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/698,048 US8736799B2 (en) 2012-09-24 2012-09-28 Optical compensation films and method for reducing dark-state light leakage of vertical alignment liquid crystal displays

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210358060.1 2012-09-24
CN201210358060.1A CN102854660B (zh) 2012-09-24 2012-09-24 一种使用光学补偿膜减弱va液晶显示器暗态漏光的方法

Publications (1)

Publication Number Publication Date
WO2014043942A1 true WO2014043942A1 (zh) 2014-03-27

Family

ID=47401381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082297 WO2014043942A1 (zh) 2012-09-24 2012-09-28 一种光学补偿膜及减弱va液晶显示器暗态漏光的方法

Country Status (3)

Country Link
US (1) US8736799B2 (zh)
CN (1) CN102854660B (zh)
WO (1) WO2014043942A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103364995B (zh) * 2013-07-10 2016-03-09 深圳市华星光电技术有限公司 液晶显示器及其光学补偿方法
CN103605239B (zh) * 2013-11-22 2016-08-17 深圳市华星光电技术有限公司 一种液晶显示器
CN104035234B (zh) * 2014-06-25 2016-06-01 深圳市华星光电技术有限公司 液晶显示器及其光学补偿方法
CN104062808B (zh) * 2014-06-25 2016-08-17 深圳市华星光电技术有限公司 液晶显示器及其光学补偿方法
US20150378199A1 (en) * 2014-06-25 2015-12-31 Shenzhen China Star Optoelectronics Technology Co., Ltd. Liquid crystal display and optical compensation method applied in liquid crystal display
CN104317105A (zh) * 2014-10-29 2015-01-28 深圳市华星光电技术有限公司 液晶面板补偿架构及液晶显示装置
CN104536204A (zh) * 2014-12-25 2015-04-22 深圳市华星光电技术有限公司 液晶显示器
CN105334672A (zh) * 2015-12-08 2016-02-17 深圳市华星光电技术有限公司 液晶面板补偿架构及其光学补偿方法
CN105388669A (zh) * 2015-12-08 2016-03-09 深圳市华星光电技术有限公司 液晶面板补偿架构及其光学补偿方法
CN105353563A (zh) * 2015-12-08 2016-02-24 深圳市华星光电技术有限公司 液晶面板补偿架构及其光学补偿方法
EP3444646B1 (en) * 2016-04-14 2023-09-27 LG Chem, Ltd. Eyewear comprising transmittance-variable film
CN107966846B (zh) * 2017-12-12 2020-07-31 惠州市华星光电技术有限公司 一种液晶显示面板及液晶显示器
CN115268142B (zh) * 2022-08-05 2023-08-01 龙华相位新材料(绵阳)股份有限公司 Va显示屏补偿膜及其制备方法、贴合方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1745330A (zh) * 2003-01-28 2006-03-08 Lg化学株式会社 具有负补偿膜的垂直排列型液晶显示器
CN1745331A (zh) * 2003-01-28 2006-03-08 Lg化学株式会社 双轴延迟补偿膜和使用该双轴延迟补偿膜的垂直排列的液晶显示器
WO2006054695A1 (ja) * 2004-11-19 2006-05-26 Zeon Corporation 液晶表示装置
JP2008225283A (ja) * 2007-03-15 2008-09-25 Nippon Zeon Co Ltd 偏光板及び液晶表示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100910559B1 (ko) * 2002-12-24 2009-08-03 삼성전자주식회사 액정 표시 장치
TWI242083B (en) * 2003-08-11 2005-10-21 Sony Corp Liquid crystal display device
US20070091229A1 (en) * 2005-06-09 2007-04-26 Jang Soo J Vertically aligned liquid crystal display
CN101140386A (zh) * 2006-09-05 2008-03-12 奇美电子股份有限公司 液晶显示装置
TWI395019B (zh) * 2009-10-06 2013-05-01 Wintek Corp 液晶顯示器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1745330A (zh) * 2003-01-28 2006-03-08 Lg化学株式会社 具有负补偿膜的垂直排列型液晶显示器
CN1745331A (zh) * 2003-01-28 2006-03-08 Lg化学株式会社 双轴延迟补偿膜和使用该双轴延迟补偿膜的垂直排列的液晶显示器
WO2006054695A1 (ja) * 2004-11-19 2006-05-26 Zeon Corporation 液晶表示装置
JP2008225283A (ja) * 2007-03-15 2008-09-25 Nippon Zeon Co Ltd 偏光板及び液晶表示装置

Also Published As

Publication number Publication date
CN102854660B (zh) 2015-02-11
CN102854660A (zh) 2013-01-02
US8736799B2 (en) 2014-05-27
US20140111751A1 (en) 2014-04-24

Similar Documents

Publication Publication Date Title
WO2014043942A1 (zh) 一种光学补偿膜及减弱va液晶显示器暗态漏光的方法
JP4538096B2 (ja) 液晶表示装置
US8531765B2 (en) Circularly polarizing plate and display device
TWI528057B (zh) 偏振板和包括所述偏振板的液晶顯示裝置
JP6266769B2 (ja) 液晶ディスプレイの光学補償方法
US9274376B2 (en) Liquid crystal display device
WO2014180036A1 (zh) 液晶显示器及其光学补偿方法
TW200530638A (en) Liquid crystal display
US9158157B2 (en) Liquid crystal display
WO2014043943A1 (zh) 一种光学补偿膜及减弱va液晶显示器暗态漏光的方法
WO2014056245A1 (zh) Va显示模式补偿架构及va显示模式液晶显示装置
WO2014180048A1 (zh) 液晶显示器及其光学补偿方法
WO2015149377A1 (zh) 用于液晶面板的双层双轴补偿架构及液晶显示装置
WO2015196503A1 (zh) 液晶显示器及其光学补偿方法
WO2016101339A1 (zh) 液晶显示器
WO2014079096A1 (zh) 用于液晶面板的补偿系统及液晶显示装置
TWI391727B (zh) 液晶顯示器
WO2014107886A1 (zh) 用于液晶面板的补偿系统及液晶显示装置
WO2015149379A1 (zh) 用于液晶面板的单层双轴补偿架构及液晶显示装置
US20040223104A1 (en) [wide viewing angle liquid crystal display]
JP6587685B2 (ja) 液晶表示装置
KR20210016618A (ko) 액정 패널 및 액정 표시 장치
US20140192300A1 (en) Compensation System for Liquid Crystal Panel and Liquid Crystal Display Device
WO2017166388A1 (zh) 显示基板、液晶显示面板及显示装置
US8836898B2 (en) Compensation system for liquid crystal panels and liquid crystal display

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13698048

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12885176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12885176

Country of ref document: EP

Kind code of ref document: A1