WO2014042444A1 - 이동통신 기지국의 안테나 및 그 제어 방법 - Google Patents

이동통신 기지국의 안테나 및 그 제어 방법 Download PDF

Info

Publication number
WO2014042444A1
WO2014042444A1 PCT/KR2013/008261 KR2013008261W WO2014042444A1 WO 2014042444 A1 WO2014042444 A1 WO 2014042444A1 KR 2013008261 W KR2013008261 W KR 2013008261W WO 2014042444 A1 WO2014042444 A1 WO 2014042444A1
Authority
WO
WIPO (PCT)
Prior art keywords
procedure
frame
ras
ret
rab
Prior art date
Application number
PCT/KR2013/008261
Other languages
English (en)
French (fr)
Inventor
문영찬
소성환
이동훈
우기훈
Original Assignee
주식회사 케이엠더블유
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이엠더블유 filed Critical 주식회사 케이엠더블유
Priority to CN201380047794.0A priority Critical patent/CN104641509B/zh
Priority to JP2015529697A priority patent/JP6125638B2/ja
Priority to EP13836683.6A priority patent/EP2897224B1/en
Priority to KR1020157004017A priority patent/KR101756129B1/ko
Publication of WO2014042444A1 publication Critical patent/WO2014042444A1/ko
Priority to US14/640,468 priority patent/US9379435B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/04Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying one co-ordinate of the orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/005Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using remotely controlled antenna positioning or scanning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/32Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by mechanical means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the present invention relates to an antenna of a mobile communication base station, and more particularly, to an antenna to which an antenna interface standards group (AISG) protocol is applied and a control method thereof.
  • AISG antenna interface standards group
  • Antennas of mobile communication base stations which are widely used at present have a structure in which a plurality of radiating elements that can be transmitted or received with two polarizations (normally X-shaped polarizations) that are generally perpendicular to each other are arranged vertically.
  • X-polarized polarization is that the polarization plane is basically aligned at an angle of + 45 ° or -45 ° with respect to the horizontal or vertical plane.
  • the antenna typically includes a remote electrical tilt (RET) device for electronically controlled remote down tilt angle, as well as a remote azimuth steering (RAS) device for remote azimuth steering adjustment and remotely.
  • RET remote electrical tilt
  • RAS remote azimuth steering
  • a remote azimuth beamwidth (RAB) device for adjusting azimuth beamwidth may be provided.
  • An example of an antenna with such devices is Korean Patent Publication No. 10-2010-0122092 (named: multibeam antenna with multi-device control unit, inventor Girard Gregory, Sullie Frank, published date) by Amphenol Corporation. : November 19, 2010).
  • an AISG (Antenna Interface Standards Group) v2.1.0 has recently been proposed, and a communication method through a 3rd generation partnership project (3GPP) protocol has also been proposed.
  • 3GPP 3rd generation partnership project
  • RET control is largely divided into a primary station and a secondary station.
  • the primary station part refers to a part for transmitting a control signal, such as the MCU 22, which may be provided in the base station main body as a master part, and the secondary station is a slave part of the RET 14 and the ALD modem 13 Receives a control signal as shown in the) and performs an operation according to the control signal.
  • the mobile communication base station may be generally composed of an antenna system installed at a high position such as a building or a pillar, a base station main body system installed on the ground, and a feeder cable connecting the base station.
  • the secondary station portion may correspond to the antenna device.
  • the base station main body 21 transmits an RF signal through a feed cable
  • the MCU 22 transmits a DC signal and an RS485 communication signal to drive the RET equipment 14.
  • the signals transmitted in the above two parts are converted into a DC signal + RF signal + OOK signal through a modem ALD modem 23 to be combined.
  • the above signal is transmitted back to the antenna bottom through the feed cable.
  • the antenna system Top ALD modem 13 filters the DC signal + OOK signal to the RET 14 to help the RET device 14 receive a command.
  • the modem 13 provides an RF signal to the transmission and reception antenna units 11 and 12 of the antenna 10. Signals received by the transmission and reception antenna units 11 and 12 of the antenna 10 are provided to the base station main body unit 21 via a feed cable.
  • FIG. 2 and 3 illustrate a structure in which the RET equipment 14, the RAS equipment 15, and the RAB equipment 16 are installed in the antenna 10 according to current AISG regulations.
  • the RET equipment 14, the RAS equipment 15, and the RAB equipment 16 are installed to be connected to the outside through a plurality of AISG connectors installed on the lower cap of the antenna 10, respectively.
  • RAS equipment (15), RAB equipment (16) through the AISG connector using an AISG cable in a daisy chain (daisy chain) method.
  • the external DC + RS485 signal may be connected to be provided primarily to the RET equipment (14).
  • the RET equipment 14 is connected through an AISG connector installed on the lower cap of the antenna 10, and the RET equipment 14, the RAS equipment 15, and the RAB equipment (inside the enclosure of the antenna 10). 16) has a structure that is daisy-chained using the AISG cable.
  • each RET device 14, RAS 15, and RAB 16 should be performed by each base station main system, respectively, and the communication procedure is complicated. This problem becomes more serious in the case of a dual band antenna, a triple band, and a quad band antenna.
  • an object of the present invention is to simplify the control target equipment installed in the antenna, to reduce the cost of installing the equipment, to reduce the installation space and weight, and to more efficiently control the equipment in the base station body system
  • An antenna of a mobile communication base station and a control method thereof are provided.
  • each drive motor, RET driving unit for driving the electrical, mechanical devices for the respective adjustment of the RET, RAS and RAB A RAS driver and a RAB driver; It is characterized in that it is provided with a control signal for at least RET, RAS and RAB control by communicating with the base station main body system to control the driving of the RET driver, RAS driver and RAB driver.
  • a method for controlling a mobile communication base station antenna which is a secondary device that performs a control operation by exchanging a high-level data-link control (HDLC) message according to the specification of an antenna interface standard (AISG) with a primary device To; Receiving the HDLC message from the primary equipment; Checking whether the received HDLC message is in an information frame (I-Frame) format and extracting a procedure ID from the corresponding I-frame; By checking the extracted procedure ID, whether the current I-frame is related to a vendor procedure preset as a vendor specific procedure, and in advance for controlling Remote Azimuth Steering (RAS) or Remote Azimuth Beamwidth (RAB). Checking a vendor procedure code which is set information; Performing the predetermined RAS or RAB control operation according to the checked vendor procedure code; And notifying the primary device of the result of performing the RAS or RAB control operation through a response message.
  • HDLC high-level data-link control
  • AISG antenna interface standard
  • the antenna of the mobile communication base station simplifies the control target equipment installed in the antenna, reducing the cost of installing the equipment, and can reduce the installation space and weight, more efficient in the base station main body system To control the equipment.
  • FIG. 1 is a diagram illustrating a block configuration for RET control of an antenna of a conventional mobile communication base station
  • FIG. 2 is a diagram illustrating a block configuration for RET, RAS, and RAB control of a conventional mobile communication base station antenna
  • 3 is another example of a block configuration for RET, RAS, RAB control of a conventional mobile communication base station antenna
  • FIG. 4 is an exemplary diagram of a block configuration for RET, RAS, RAB control of a mobile communication base station antenna according to an embodiment of the present invention
  • FIG. 5 is an exemplary diagram of a block configuration for RET, RAS, RAB control of a mobile communication base station antenna according to another embodiment of the present invention
  • 6 to 9 are comparative examples of the lower cap of the mobile communication base station antenna according to the first to fourth embodiments of the present invention.
  • FIG. 10 is a signal flowchart for controlling a mobile communication base station antenna according to an embodiment of the present invention.
  • 11A and 11B are exemplary views illustrating a format of a transmission frame between primary equipment and secondary equipment for RAS control of a base station antenna according to an embodiment of the present invention.
  • 12A and 12B are exemplary views illustrating a format of a transmission frame between primary equipment and secondary equipment for RAB control of a base station antenna according to an embodiment of the present invention.
  • FIGS. 13A and 13B are exemplary views illustrating a format of a transmission frame between primary equipment and secondary equipment for RET control of a baseband antenna having a single band structure according to an embodiment of the present invention.
  • 14A and 14B are exemplary views illustrating a format of a transmission frame between primary equipment and secondary equipment for RET control of a baseband antenna having a dual band structure according to an embodiment of the present invention.
  • FIG. 4 is a block diagram for RET, RAS, and RAB control of a mobile communication base station antenna according to an embodiment of the present invention.
  • a single band antenna 30 having transmission and reception antenna units 31 and 32 is provided. ).
  • the mobile communication base station antenna 30 according to an embodiment of the present invention each having a drive motor, RET for driving electrical and mechanical devices for the respective adjustment of the RET, RAS and RAB A driver 341, RAS driver 342, and RAB driver 343; Multi-functional equipment for controlling the driving of the RET driver 341, RAS driver 342, and RAB driver 343 by receiving control signals for at least RET, RAS, and RAB control by communicating with a base station main body system (not shown).
  • Aka multi-RET 34 is provided.
  • the multi-function equipment 34 is installed to be connected to the outside through an AISG connector installed on the lower cap of the antenna 30, and is configured to receive an external DC + RS485 signal using an AISG cable through the AISG connector.
  • FIG. 5 is an exemplary diagram of a block configuration for RET, RAS, and RAB control of a mobile communication base station antenna according to another embodiment of the present invention, and a dual band provided with a pair of transmit / receive antenna units for each of two bands (four in total)
  • the case of the antenna 40 is shown. That is, a first antenna (# 1) having a transmission and reception antenna unit of the first band and a second antenna (# 2) having a transmission and reception antenna unit of the second band are provided, and in FIG. The illustration of the parts is omitted.
  • the mobile communication base station antenna 40 drives electric and mechanical devices for adjusting RET, RAS, and RAB of the first antenna # 1.
  • RET driver 441, RAS driver 442 and RAB driver 443, and RET driver 445 for driving electrical and mechanical devices for the respective adjustments of RET, RAS and RAB of the second antenna # 2.
  • a RAS driver 446 and a RAB driver 447 is provided.
  • the multi-function equipment 44 according to the present invention communicates with a base station main body system (not shown) to receive control signals for controlling RET, RAS, and RAB, and thus, the first antenna # 1 and the second antenna.
  • the driving of the RET drivers 441 and 445, the RAS drivers 442 and 446 and the RAB drivers 443 and 447 of the antenna # 2 is controlled.
  • the multi-function equipment 44 is installed to be connected to the outside through an AISG connector installed on the lower cap of the antenna 40, and is configured to receive an external DC + RS485 signal using the AISG cable through the AISG connector.
  • the antenna according to the present invention uses only one multi-function equipment to perform tilt, steering, and beam width adjustment, thus eliminating the need for conventional three types of equipment. Space is reduced and installation costs are reduced. Moreover, it is even more efficient with triple band antennas, including dual band antennas. In addition, the number of AISG cables is reduced, compared to the daisy chain method of conventional RET, RAS, RAB equipment, thereby reducing the cost. Of course, even in this case, the cost is further reduced with the triple band antenna as well as the dual band antenna.
  • FIGS. 6 to 9 are comparative examples of the lower caps of the mobile communication base station antennas according to the first to fourth embodiments of the present invention.
  • FIGS. 6 to 9 illustrate single band antennas, dual band antennas, Examples of triple band antennas and quad band antennas are shown. Also, in FIGS. 6 to 9, (a) and (b) respectively show structures of a conventional antenna and a lower cap, and (c) and (d) show structures of an antenna and a lower cap according to embodiments of the present invention. Is shown.
  • the lower caps of the antenna according to the prior art and the present invention include a pair of DIN connectors and one RET device for connecting a transmitting and receiving antenna unit and a feeding cable.
  • a pair of AISG connectors for connecting with external AISG cables.
  • the structure of the lower cap of the antenna according to the prior art and the present invention may be the same.
  • each RET device in the case of a dual band, triple or quad band antenna, since two or more RET devices are conventionally provided in the lower cap of the antenna, DIN connectors for transmitting and receiving antenna units In addition, each RET device must be equipped with all AISG connectors to connect with external AISG cables. In this case, you also need an AISG cable to daisy-chain each RET device. In addition, although not shown in Figures 6 to 9 for convenience of description, when the RAS, RAB equipment is added to the antenna of the conventional AISG cable for the connection between them is also required, of course.
  • RET device ie, a multi-function device
  • AISG connectors are configured to connect the same to the external AISG cable.
  • the number of addresses required for control decreases. That is, in the present invention, by using only one multi-function equipment (number of addresses: the same) it is possible to control the antenna installed for each multi-frequency band, it is easy to expand (in the conventional case, one band per one RET equipment) There is no scalability because it controls the antenna.)
  • FIG. 10 is a signal flow diagram for controlling a mobile communication base station antenna according to an embodiment of the present invention.
  • a primary device may correspond to an MCU of a base station main system, and a secondary device may include a secondary device. It is a multi-function equipment of the antenna according to the present invention.
  • an initial access operation according to an AISG rule is performed between a primary device and a secondary device, and in step 110, a high-level data-link according to AISG is specified from a primary device to a secondary device.
  • Control Provide ID
  • the secondary device receives the HDLC message in step 112, and in step 114, it is determined whether the HDLC message is an I-Frame (I-Frame: Information Frame) format preset for RET, RAS, and RAB control according to the present invention.
  • I-Frame Information Frame
  • the process proceeds to step 116, and if it is not the I-frame format, the process proceeds to step 115 and U-Frame (U-Frame: Unnumbered) used for other operations, such as system management. performs an S-Frame (Supervisory Frame) processing operation used for a frame or link control. That is, in an embodiment of the present invention, a command is transmitted for RET, RAS, and RAB control using an I-frame carrying user information and control information of the user information.
  • I-Frame Information Frame
  • a procedure ID is extracted from the I-frame.
  • the procedure ID extracted in step 116 is checked to determine whether the current I-frame is related to a vendor procedure preset as a vendor specific procedure, and in the case of vendor procedure, step 130 Proceed to step 122 if it is not a vendor procedure. That is, in an embodiment of the present invention, the vendor procedure ID is set in advance to indicate RAS and RAB control in the I-frame, and the vendor procedure ID may be set to '0x90', for example.
  • the I-frame checks preset information for RAS or RAB control, for example, vendor procedure code, according to an embodiment of the present invention.
  • step 132 it is checked whether the checked vendor procedure code is related to RAS control.
  • driving of the RAS is generated by generating a driving signal to the RAS driver according to the checked vendor procedure code.
  • step 132 determines whether the vendor procedure code relates to the RAB control, and in step 142 controls the RAB driver accordingly.
  • step 140 if the checked vendor procedure code is not RAB control, the process proceeds to step 144 and determines that it is an unspecified procedure code. In this case, the operation response according to the procedure code is generated as FAIL.
  • step 122 if the extracted procedure ID is not a vendor procedure ID, the procedure ID checks whether the procedure ID is a preset procedure ID for RET control. .
  • the procedure ID for the RET control may be set to '0x31', for example. If the procedure ID corresponds to RET control in step 122.
  • step 124 the RET driving information included in the corresponding frame is checked, and accordingly, a driving signal is generated in the RET driving unit to control the RET driving. In this case, if the procedure ID does not correspond to the RET control in step 122, the procedure proceeds to step 126 to perform an operation according to the procedure ID.
  • the corresponding secondary device performs a processing operation on a command (frame) received from the primary device.
  • the control response signal is checked from the RET driver, the RAS driver, and the RAB driver. Check the processing result of the operations.
  • the secondary device transmits an HDLC response message indicating whether the normal operation is performed to the primary device.
  • FIG. 11A and 11B are exemplary views illustrating a format of a transmission frame between primary equipment and secondary equipment for RAS control of a base station antenna according to an embodiment of the present invention
  • FIG. 11A is a calibration for adjusting the RAS driver to an initial value.
  • Frames related to control are shown
  • FIG. 11B shows frames related to set control for driving the RAS driver to a specific value.
  • FIG. 11A an example of a frame format corresponding to a RAS calibration command transmitted from a secondary device to a secondary device is shown in FIG. 11A.
  • the frame includes a procedure ID field (PID) of 1 octet, a frame length field (Length low, Length high) of 2 octets, and a vendor code of 2 octets. Field, and one octet of vendor procedure code fields (VPCs).
  • PID procedure ID field
  • VPCs vendor procedure code fields
  • the value of the procedure ID field is, for example, set to '0x90' as an 'Unsigned integer' type, indicating that it is about a vendor-defined procedure that is this frame.
  • the vendor code is a code previously assigned to each vendor to identify the vendor, and may be set, for example, to '0x4B and 0x4D' indicating 'KM' as an ASCII code type.
  • the vendor procedure code may be set to '0x31', for example, which may be set to mean a RAS calibration command, in accordance with an embodiment of the invention.
  • the frame length field of two octets is set to '0x03, 0x00' because the data octet length after the corresponding frame length field is three octets.
  • FIG. 11A illustrates an example of a frame format corresponding to the response message according to the execution of the RAS calibration command from the secondary device to the primary device
  • FIG. 11A (b) shows a message indicating that normal operation is performed.
  • (c) of FIG. 11A corresponds to a message indicating that an operation fails.
  • a frame for notifying normal operation of a RAS calibration command includes a procedure ID field (PID) of 1 octet and a frame length field (Length low, Length high) of 2 octets. And one octet return code field, two octets vendor code field, and one octet vendor procedure code field (VPC).
  • PID procedure ID field
  • VPC octet vendor procedure code field
  • the value of the procedure ID field, the vendor code, and the vendor procedure code may be set to '0x90', '0x4B, 0x4D', and '0x31', respectively, as in (a) of FIG. 11A, where the return code field is For example, it may be set to '0x00' indicating normal operation performance (OK).
  • a frame for notifying operation failure of a RAS calibration command includes a procedure ID field (PID) of 1 octet, a frame length field (Length low, Length high) of 2 octets, It may include at least one octet of return code fields.
  • a vendor procedure code field (not shown) of one octet may be further included as necessary.
  • the value of the procedure ID field is set to '0x90' as in (a) of FIG. 11A, where the return code field includes, for example, one octet '0x0B' indicating an operation execution failure (FAIL).
  • FAIL operation execution failure
  • a value of at least one or more octets may be further set in the return code field to indicate more detailed information about an operation failure.
  • FIG. 11A (c) for example, it is an unsupported procedure. It is shown that it is set to '0x25' indicating.
  • FIG. 11B an example of a frame format corresponding to a RAS set command transmitted from a secondary device to a secondary device is illustrated in FIG. 11B (a).
  • the frame has a procedure ID field of one octet, a frame length field of two octets, a vendor code field of two octets, and similarly to (a) of FIG. 11A. It may be determined by including a 1 octet vendor procedure code field (VPC) and a 2 octet RAS setting value field.
  • VPC vendor procedure code field
  • the value of the procedure ID field, the vendor code, and the vendor procedure code may be set to '0x90', '0x4B, 0x4D', and '0x31', respectively, as in (a) of FIG. 11A.
  • the vendor procedure code may be set to, for example, '0x33', which may be determined to mean a RAS setting command according to an embodiment of the present invention.
  • the RAS setting value may be set to '0x32, 0x00', for example, to set the driving operation of the RAS driver of 5.0 degrees.
  • FIG. 11B illustrates an example of a frame format corresponding to the response message according to the execution of the RAS setting command from the secondary device to the primary device, and FIG. 11B (b) shows a message indicating that normal operation is performed.
  • FIG. 11B corresponds to a message indicating that an operation fails. As shown in (b) of FIG.
  • a frame for notifying normal operation of a RAS setting command includes a procedure ID field of 1 octet, a frame length field of 2 octets, a return code field of 1 octet, A vendor code field of 2 octets, a vendor procedure code field of 1 octet, and a RAS setting value field of 2 octets may be determined.
  • the value of the procedure ID field, the vendor code, the vendor procedure code, and the RAS setting value are set to '0x90', '0x4B, 0x4D', '0x33', and '0x32, 0x00', respectively, as shown in FIG. 11B.
  • the return code field may be set to '0x00' indicating, for example, normal operation performance (OK).
  • a frame for notifying execution of an operation for a RAS setup command may include a procedure ID field of 1 octet, a frame length field of 2 octets, and a return code field of at least 1 octet. Can be. In addition, it may further include one octet of vendor procedure code fields (not shown).
  • the value of the procedure ID field is set to '0x90' as in (a) of FIG. 11B, where the return code field includes, for example, '0x0B' of one octet indicating FAIL.
  • a value of one octet may be further set in the return code field to indicate more detailed information about an operation failure.
  • the driver jam state may be set. Set to '0x03' is shown.
  • FIG. 12A and 12B are exemplary views illustrating a format of a transmission frame between primary equipment and secondary equipment for RAB control of a base station antenna according to an embodiment of the present invention
  • FIG. 12A is a calibration for adjusting an RAB driver to an initial value.
  • Frames related to control are shown
  • FIG. 12B shows frames related to set control for driving the RAB driver to a specific value.
  • FIG. 12A an example of a frame format corresponding to an RAB calibration command transmitted from a secondary device to a secondary device is illustrated in FIG. 12A.
  • the frame includes a procedure ID field of one octet, a frame length field of two octets, a vendor code field of two octets, a vendor procedure code field of one octet, and the like. It can be determined to include.
  • each frame are generally the same as the frame corresponding to the RAS calibration command as shown in (a) of FIG. 11A, but the vendor procedure code may be set to '0x71', for example. According to an embodiment of the present invention, it may be set to mean a RAB calibration command.
  • FIG. 12A illustrates an example of a frame format corresponding to a response message according to the execution of the RAB calibration command from the secondary device to the primary device
  • FIG. 12A (b) shows a message indicating that normal operation is performed
  • 12A (c) corresponds to a message indicating that an operation fails.
  • a frame for notifying normal operation of a RAS calibration command includes a procedure ID field of one octet, a frame length field of two octets, a return code field of two octets, and two frames.
  • a vendor code field of an octet and a vendor procedure code field of one octet may be determined.
  • each frame is generally the same as the response frame for the RAS calibration command as shown in FIG. 11A (b), except that the vendor procedure code is, for example, '0x61' '0x71'. have.
  • a frame for notifying operation failure of a RAB calibration command may include a procedure ID field of one octet, a frame length field of two octets, and a return code field of at least one octet. Can be. In addition, it may further include a one-octet vendor procedure code field (not shown).
  • the values of each frame may be substantially the same as the response frame for the RAS calibration command as shown in (c) of FIG. 11A.
  • FIG. 12B an example of a frame format corresponding to the RAB Set command transmitted from the secondary device to the secondary device is illustrated in FIG. 12B (a).
  • the frame has a procedure ID field of one octet, a frame length field of two octets, a vendor code field of two octets, and the like. It may be determined by including a 1 octet vendor procedure code field and a 2 octet RAB setting value field.
  • the vendor procedure code may be set to, for example, '0x73', which may be determined to mean a RAB setting command according to an embodiment of the present invention.
  • the RAB setting value may be set to '0x53, 0x00', for example, to set the driving operation of the RAB driving unit at 8.3 degrees.
  • FIG. 12B illustrates an example of a frame format corresponding to a response message according to the execution of the RAB setting command from the secondary device to the primary device, and FIG. 12B (b) shows a message indicating that normal operation is performed.
  • FIG. 12B corresponds to a message indicating that the operation fails. As shown in (b) of FIG.
  • a frame for notifying normal operation of a RAB setting command includes a procedure ID field of one octet, a frame length field of two octets, a return code field of one octet, A vendor code field of 2 octets, a vendor procedure code field of 1 octet, and a RAB setting value field of 2 octets may be determined.
  • the return code field may be set to, for example, '0x00' indicating normal operation performance (OK).
  • a frame for notifying operation failure of an RAB setting command may include a procedure ID field of 1 octet, a frame length field of 2 octets, and a return code field of at least 1 octet.
  • the return code includes one octet '0x0B' indicating an operation failure.
  • a value of one octet may be further set in the return code field to indicate more detailed information about the failure to perform an operation.
  • a calibration operation is not performed. It is shown that it is set to '0x0E' indicating.
  • FIG. 13A and 13B are exemplary views illustrating a format of a transmission frame between primary equipment and secondary equipment for RET control of a baseband antenna having a single band structure according to an embodiment of the present invention
  • FIG. 13A illustrates frames related to RET calibration control
  • 13B shows frames related to RET setting control.
  • FIG. 13A an example of a frame format corresponding to an RET calibration command transmitted from a secondary device to a secondary device is illustrated in FIG. 13A.
  • the frame is determined by including a procedure ID field of one octet and a frame length field of two octets.
  • the procedure ID field is set to '0x31', for example, according to the AISG standard.
  • FIG. 13B illustrates an example of a frame format corresponding to a response message according to the execution of the RET calibration command from the secondary device to the primary device
  • FIG. 13A (b) shows a message indicating that normal operation is performed.
  • (c) of FIG. 13A corresponds to a message indicating that an operation fails.
  • a frame for notifying normal performance of a RET calibration command includes a procedure ID field of 1 octet, a frame length field of 2 octets, and a return code field of 1 octet. Can be determined. At this time, it is shown that the return code is set to '0x00', for example, to indicate the normal operation.
  • a frame for notifying operation failure of a RET setting command may include a procedure ID field of 1 octet, a frame length field of 2 octets, and a return code field of 2 octets. have.
  • the return code is set to '0x0B' indicating the failure to perform the operation and '0x19' indicating the detailed information about the failure to perform the operation, for example, an unspecified procedure.
  • FIG. 13B an example of a frame format corresponding to the RET setting command transmitted from the secondary device to the secondary device is shown in FIG. 13B (a).
  • the frame has a procedure ID field of one octet, a frame length field of two octets, and a RET setting value field of two octets similarly to (a) of FIG. 13A. It may be determined to include.
  • the procedure ID field is set to '0x33', for example.
  • the RET setting value may be set to '0x64, 0x00', for example, to set the driving operation of the RET driver of 10.0 degrees.
  • a frame for notifying normal operation of a RET setting command includes a procedure ID field of one octet, a frame length field of two octets, and a return code field of one octet. Can be determined. In this case, the return code field may be set to, for example, '0x00' indicating normal operation performance (OK).
  • a frame for notifying execution of an operation for a RET setting command may include a procedure ID field of 1 octet, a frame length field of 2 octets, and a return code field of 2 octets. have.
  • the return code is set to '0x0B' indicating the failure to perform the operation and '0x0E' indicating the detailed information about the failure to perform the operation, for example, not performing the calibration operation.
  • FIG. 14A and 14B are exemplary views illustrating a format of a transmission frame between primary equipment and secondary equipment for RET control of a dual band base station antenna according to an embodiment of the present invention, and FIG. 14A illustrates frames related to RET calibration control. 14B shows frames associated with RET setup control.
  • FIG. 14A an example of a frame format corresponding to a RET calibration command transmitted from a secondary device to a secondary device is illustrated in FIG. 14A (a).
  • the frame is determined by including a procedure ID field of one octet, a frame length field of two octets, and an antenna number field of one octet.
  • the procedure ID field is set to '0x80', for example, according to the AISG standard.
  • the antenna number may be set to, for example, '0x01' to indicate that the antenna to be controlled is the first antenna.
  • FIG. 14A shows an example of a frame format corresponding to a response message according to the execution of the RET calibration command from the secondary device to the primary device
  • FIG. 14A (b) shows a message indicating that normal operation is performed.
  • (c) of FIG. 14A corresponds to a message indicating that an operation fails.
  • a frame for notifying normal operation of a RET calibration command includes a procedure ID field of 1 octet, a frame length field of 2 octets, an antenna number field of 1 octet, It may be determined including a return code field of one octet.
  • the procedure ID field is set to '0x80', for example, according to the AISG standard.
  • the return code is set to, for example, '0x00' to indicate that the normal operation is performed.
  • a frame for notifying operation failure of a RET setting command includes a procedure ID field of 1 octet, a frame length field of 2 octets, an antenna number field of 1 octet, and a 2 octet of It may include a return code field.
  • the return code is set to '0x0B' indicating an operation failure and '0x03' indicating detailed information about the operation failure, for example, a driver jam state.
  • FIG. 14B an example of a frame format corresponding to the RET setting command transmitted from the secondary device to the secondary device is shown in FIG. 14B (a).
  • the frame has a procedure ID field of one octet, a frame length field of two octets, an antenna number field of one octet, and similarly to (a) of FIG. 14A. It may be determined by including a 2-octet RET setting value field. For example at this time.
  • the RET setting value may be set to '0x64, 0x00', for example, to set the driving operation of the RET driver of 10.0 degrees.
  • the antenna number is set to '0x02', for example, to indicate that the antenna to be controlled is the second antenna.
  • a frame for notifying normal operation of a RET setting command includes a procedure ID field of one octet, a frame length field of two octets, an antenna number field of one octet, It may be determined including a return code field of one octet. In this case, the return code field may be set to, for example, '0x00' indicating normal operation performance (OK).
  • a frame for notifying operation failure of a RET setting command includes a procedure ID field of 1 octet, a frame length field of 2 octets, an antenna number field of 1 octet, and 2 octets. It may include a return code field of. In this case, it is shown that the return code is set to '0x0B' indicating an operation failure and detailed information about the operation failure, for example, '0x13' indicating an exceeding driving range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

본 발명은 이동통신 기지국 안테나에 있어서, 각각 구동 모터를 구비하여, RET, RAS 및 RAB의 각각의 조정을 위한 전기, 기구적 장치들을 구동하는 RET 구동부, RAS 구동부 및 RAB 구동부와; 기지국 본체 시스템과 통신하여 적어도 RET, RAS 및RAB 제어를 위한 제어 신호를 제공받아 RET 구동부, RAS 구동부 및 RAB 구동부의 구동을 제어하는 다중 기능 장비를 구비한다.

Description

이동통신 기지국의 안테나 및 그 제어 방법
본 발명은 이동통신 기지국의 안테나에 관한 것으로서, AISG(Antenna Interface Standards Group) 프로토콜이 적용되는 안테나 및 그 제어 방법에 관한 것이다.
현재 널리 사용되고 있는 이동통신 기지국의 안테나는 통상 서로 수직인 두 개의 편파(통상 X자 편파)로 송신 또는 수신할 수 있는 방사 소자들이 다수개 수직으로 배열되는 구조를 구비한다. X자 편파는 편파 평면이 기본적으로 수평 또는 수직 평면에 대하여 +45° 또는 -45°의 각도로 정렬된다.
이 경우에, 안테나에는 통상 원격에서 제어 가능한 전자식의 다운틸트(Down Tilt)각 조정을 위한 RET(Remote Electrical Tilt) 장치를 비롯하여, 원격으로 방위각 스티어링 조정을 위한 RAS(Remote Azimuth Steering) 장치 및 원격으로 방위각의 빔폭 조정을 위한 RAB(Remote Azimuth Beamwidth) 장치가 구비될 수 있다. 이러한 장치들을 구비한 안테나의 예로는 암페놀 코포레이션에 의해 선출원된 국내 특허 공개번호 제10-2010-0122092호(명칭: 멀티 디바이스 제어 유닛을 갖춘 다중빔 안테나, 발명자 지라드 그레고리, 술리에 프랑크, 공개일: 2010년 11월 19일)에 개시된 바를 들 수 있다.
상기 RET 장치, RAS 장치 및 RAB 장치들의 제어를 위하여, 근래에, AISG(Antenna Interface Standards Group) v2.1.0이 제안되었으며, 3GPP(3rd Generation Partnership Project) 프로토콜을 통한 통신 방식도 제안되고 있다.
도 1을 참조하면, AISG의 규격에 따르면, RET 제어는 크게 일차국(primary station)과 이차국(secondary station)으로 구분된다. 일차국 부분은 마스터(master)부분으로 기지국 본체에 구비될 수 있는, MCU(22) 등 제어신호를 송신하는 부분을 말하며, 이차국은 슬레이브(slave) 부분으로 RET(14)와 ALD 모뎀(13)과 같이 제어신호를 수신하여 해당 제어신호에 따른 동작을 수행하는 부분이다. 이동통신 기지국은 통상 건물이나 지주 등과 같은 높은 위치에 설치되는 안테나 시스템과, 지상에 설치되는 기지국 본체 시스템 및 이들 간을 연결하는 급전 케이블(feeder cable)로 구성될 수 있는데, 상기 일차국 부분은 기지국 본체 시스템에 해당하며, 이차국 부분은 안테나 장치에 해당할 수 있다.
도 1을 보면 기지국 본체부(21)는 급전 케이블 통하여 RF신호를 송신하며, MCU(22)에서는 RET 장비(14)를 구동시키기 위하여 DC 신호와 RS485 통신 신호를 송신한다. 위 두 부분에서 송신된 신호는 모뎀(Bottom ALD modem)(23)에 거쳐 DC 신호 + RF 신호 + OOK 신호로 변환이 되어 합쳐지게 된다. 위 신호는 다시 급전 케이블을 통해 안테나 밑단까지 송신이 된다. 안테나 시스템의 모뎀(Top ALD modem)(13)은 DC 신호 + OOK 신호를 걸러내어 RET(14)로 제공하여 RET 장비(14)가 명령을 수신할 수 있게 도와준다. 또한, 모뎀(13)은 RF 신호는 안테나(10)의 송수신 안테나부(11,12)로 제공한다. 안테나(10)의 송수신 안테나부(11, 12)에서 수신된 신호는 급전 케이블을 통해 기지국 본체부(21)로 제공된다.
도 2 및 도 3에는 현재의 AISG 규정에 따라, 안테나(10)에서 RET 장비(14), RAS 장비(15), RAB 장비(16)가 설치된 구조가 도시되고 있다. 도 2에서는 안테나(10)의 하부 캡 상에 설치되는 다수의 AISG 커넥터를 통해 RET 장비(14), RAS 장비(15), RAB 장비(16)가 각각 외부와 연결되도록 설치되며, RET 장비(14), RAS 장비(15), RAB 장비(16)간에는 AISG 커넥터를 통해 AISG 케이블을 이용하여 데이지 체인(daisy chain) 방식으로 연결한다. 이때 외부의 DC + RS485 신호는 일차적으로 RET 장비(14)로 제공되도록 연결될 수 있다.
도 3에서는 안테나(10)의 하부 캡 상에 설치되는 AISG 커넥터를 통해 RET 장비(14)가 연결되며, 안테나(10)의 함체 내부에서 RET 장비(14), RAS 장비(15), RAB 장비(16)가 AISG 케이블을 이용하여 데이지 체인 방식으로 연결되는 구조를 가진다.
그런데, 상기와 같이, 현재의 AISG 규정에 따르면, 안테나(10)에 RET, RAS, RAB 제어를 위해, 각각의 RET 장비(14), RAS 장비(15) 및 RAB 장비(16)가 구비되어야 하며, 이들 간에 AISG 케이블을 이용하여 연결되어야 하기 때문에, 장비 설치에 따른 비용이 증가하며, 설치 공간 및 무게에 따른 문제점이 있었다. 또한, 이 경우에 각각의 기지국 본체 시스템에서 각 RET 장비(14), RAS 장비(15) 및 RAB 장비(16) 별로 각각 제어 신호 송수신 절차를 수행하여야 했으며, 이에 따라 통신 절차가 복잡하였다. 이러한 문제점은 듀얼 밴드(dual band) 안테나, 트리플(triple) 밴드, 쿼드(quad) 밴드 안테나의 경우에 더욱 심각하게 된다.
따라서, 본 발명의 목적은 안테나에 설치되는 제어 대상 장비를 간략화화여, 장비 설치에 따른 비용을 감소시키며, 설치 공간 및 무게를 줄일 수 있으며, 기지국 본체 시스템에서 보다 효율적으로 장비를 제어할 수 있도록 하기 위한 이동통신 기지국의 안테나 및 그 제어 방법을 제공함에 있다.
상기한 목적을 달성하기 위하여 본 발명의 일 특징에 따르면, 이동통신 기지국 안테나에 있어서, 각각 구동 모터를 구비하여, RET, RAS 및 RAB의 각각의 조정을 위한 전기, 기구적 장치들을 구동하는 RET 구동부, RAS 구동부 및RAB 구동부와; 기지국 본체 시스템과 통신하여 적어도RET, RAS 및 RAB 제어를 위한 제어 신호를 제공받아 상기 RET 구동부, RAS 구동부 및RAB 구동부의 구동을 제어하는 다중 기능 장비를 구비함을 특징으로 한다.
본 발명의 다른 특징에 따르면, 일차 장비와AISG(Antenna Interface Standards Group) 규정에 따른 HDLC(High-level Data-Link Control) 메시지를 주고받아 제어 동작을 수행하는 이차 장비인 이동통신 기지국 안테나의 제어 방법에 있어서; 상기 일차 장비로부터 상기 HDLC 메시지를 수신하는 과정과; 상기 수신한 HDLC 메시지가 I-프레임(I-Frame: Information Frame) 포맷인지를 확인하여, 해당 I-프레임에서 프로시저 ID(Procedure ID)를 추출하는 과정과; 상기 추출한 프로시저 ID를 확인하여 현재 I-프레임이 벤더 정의 프로시저(Vendor Specific Procedure)로 미리 설정된 벤더 프로시저에 관한 것인지와, RAS(Remote Azimuth Steering) 또는 RAB(Remote Azimuth Beamwidth) 제어를 위한 미리 설정된 정보인 벤더 프로시저 코드(Vendor Procedure Code)를 확인하는 과정과; 상기 확인한 벤더 프로시저 코드에 따라 미리 설정된 상기 RAS 또는 RAB 제어 동작을 수행하는 과정과; 상기 RAS 또는RAB 제어 동작의 수행 결과를 상기 일차 장비로 응답 메시지를 통해 알리는 과정을 포함함을 특징으로 한다.
상기한 바와 같이, 본 발명에 따른 이동통신 기지국의 안테나는 안테나에 설치되는 제어 대상 장비를 간략화하여, 장비 설치에 따른 비용을 감소시키며, 설치 공간 및 무게를 줄일 수 있으며, 기지국 본체 시스템에서 보다 효율적으로 장비를 제어할 수 있도록 할 수 있다.
도 1은 종래의 이동통신 기지국의 안테나의 RET 제어를 위한 블록 구성의 일 예시도
도 2는 종래의 이동통신 기지국 안테나의 RET, RAS, RAB 제어를 위한 블록 구성의 일 예시도
도 3은 종래의 이동통신 기지국 안테나의 RET, RAS, RAB 제어를 위한 블록 구성의 다른 예시도
도 4는 본 발명의 일 실시예에 따른 이동통신 기지국 안테나의 RET, RAS, RAB 제어를 위한 블록 구성의 예시도
도 5는 본 발명의 다른 실시예에 따른 이동통신 기지국 안테나의 RET, RAS, RAB 제어를 위한 블록 구성의 예시도
도 6 내지 도 9는 본 발명의 제1 내지 제4 실시예에 따른 이동통신 기지국 안테나의 하부 캡에 대한 종래와의 비교 예시도
도 10은 본 발명의 일 실시예에 따른 이동통신 기지국 안테나 제어를 위한 신호 흐름도
도 11a 및 도 11b는 본 발명의 일 실시예에 따른 기지국 안테나의 RAS 제어를 위한 일차 장비 및 이차 장비간의 전송 프레임의 포맷 예시도
도 12a 및 도 12b는 본 발명의 일 실시예에 따른 기지국 안테나의 RAB 제어를 위한 일차 장비 및 이차 장비간의 전송 프레임의 포맷 예시도
도 13a 및 도 13b는 본 발명의 일 실시예에 따른 싱글 밴드 구조의 기지국 안테나의 RET 제어를 위한 일차 장비 및 이차 장비간의 전송 프레임의 포맷 예시도
도 14a 및 도 14b는 본 발명의 일 실시예에 따른 듀얼 밴드 구조의 기지국 안테나의 RET 제어를 위한 일차 장비 및 이차 장비간의 전송 프레임의 포맷 예시도
이하 본 발명에 따른 바람직한 실시예를 첨부한 도면을 참조하여 상세히 설명한다. 하기 설명에서는 구체적인 구성 소자 등과 같은 특정 사항들이 나타나고 있는데 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐 이러한 특정 사항들이 본 발명의 범위 내에서 소정의 변형이나 혹은 변경이 이루어질 수 있음은 이 기술분야에서 통상의 지식을 가진 자에게는 자명하다 할 것이다.
도 4는 본 발명의 일 실시예에 따른 이동통신 기지국 안테나의 RET, RAS, RAB 제어를 위한 블록 구성의 예시도로서, 송수신 안테나부(31,32)가 구비된 싱글(single) 밴드 안테나(30)의 경우를 나타낸다. 도 4를 참조하면, 본 발명의 일 실시예에 따른 이동통신 기지국 안테나(30)에는, 각각 구동 모터를 구비하여, RET, RAS 및 RAB의 각각의 조정을 위한 전기, 기구적 장치들을 구동하는 RET 구동부(341), RAS 구동부(342) 및 RAB 구동부(343)와; 기지국 본체 시스템(미도시)과 통신하여 적어도 RET, RAS 및 RAB 제어를 위한 제어 신호를 제공받아 상기 RET 구동부(341), RAS 구동부(342) 및 RAB 구동부(343)의 구동을 제어하는 다중 기능 장비(일명 multi-RET)(34)를 구비한다.
다중 기능 장비(34)는 안테나(30)의 하부 캡 상에 설치되는 AISG 커넥터를 통해 외부와 연결되도록 설치되며, AISG 커넥터를 통해 AISG 케이블을 이용하여 외부의DC + RS485 신호를 제공받도록 구성된다.
도 5는 본 발명의 다른 실시예에 따른 이동통신 기지국 안테나의 RET, RAS, RAB 제어를 위한 블록 구성의 예시도로서, 송수신 안테나부가 두 개의 밴드별로 각각 한 쌍씩(총 4개) 구비되는 듀얼 밴드 안테나(40)의 경우를 나타낸다. 즉, 제1 밴드의 송수신 안테나부를 구비하는 제1안테나(#1)와, 제2 밴드의 송수신 안테나부를 구비하는 제2안테나(#2)가 구비되며, 도 5에서는 설명의 편의를 위해 송수신 안테나부들에 대한 도시는 생략하였다.
도 5를 참조하면, 본 발명의 다른 실시예에 따른 이동통신 기지국 안테나(40)에는, 제1안테나(#1)의 RET, RAS 및 RAB의 각각의 조정을 위한 전기, 기구적 장치들을 구동하는 RET 구동부(441), RAS 구동부(442) 및 RAB 구동부(443)와, 제2안테나(#2)의 RET, RAS 및 RAB의 각각의 조정을 위한 전기, 기구적 장치들을 구동하는 RET 구동부(445), RAS 구동부(446) 및 RAB 구동부(447)가 구비된다. 또한, 이 경우에 본 발명에 따른 다중 기능 장비(44)는 기지국 본체 시스템(미도시)과 통신하여 RET, RAS 및 RAB 제어를 위한 제어 신호를 제공받아 상기 제1안테나(#1) 및 제2안테나(#2)의 RET 구동부(441, 445, RAS 구동부(442, 446) 및 RAB 구동부(443, 447)의 구동을 제어한다.
다중 기능 장비(44)에는 안테나(40)의 하부 캡 상에 설치되는 AISG 커넥터를 통해 외부와 연결되도록 설치되며, AISG 커넥터를 통해 AISG 케이블을 이용하여 외부의DC + RS485 신호를 제공받도록 구성된다.
상기 도 3 및 도 4에 도시된 바와 같이, 본 발명에 따른 안테나에서는 하나의 다중 기능 장비만을 사용하여, 틸트, 스티어링, 빔폭 조정을 수행하므로, 종래의 3종류 각각의 장비가 필요 없게 되므로, 설치 공간이 줄어들며, 설치 비용이 절감된다. 더욱이, 듀얼 밴드 안테나를 비롯하여 트리플 밴드 안테나에서는 더욱 더 효율적이다. 또한, 종래의 RET, RAS, RAB 장비들을 데이지 체인 방식으로 연결하는 것에 비해, AISG 케이블의 수가 감소하므로, 그 만큼 비용이 절감된다. 물론, 이 경우에도 듀얼 밴드 안테나를 비롯하여 트리플 밴드 안테나에서는 더욱 더 비용이 절감된다.
도 6 내지 도 9는 본 발명의 제1 내지 제4 실시예에 따른 이동통신 기지국 안테나의 하부 캡에 대한 종래와의 비교 예시도로서, 도 6 내지 도 9에는 각각 싱글 밴드 안테나, 듀얼 밴드 안테나, 트리플 밴드 안테나 및 쿼드 밴드 안테나의 예가 도시되고 있다. 또한 도 6 내지 도 9에서 각각 (a), (b)에는 종래의 안테나 및 하부 캡의 구조가 도시되며, (c), (d)에는 본 발명의 실시예들에 따른 안테나 및 하부 캡의 구조가 도시되고 있다.
먼저, 도 6을 참조하면, 싱글 밴드 안테나일 경우에, 종래와 본 발명에 따른 안테나의 하부 캡들에는 송신 및 수신 안테나부와 급전 케이블을 연결하기 위한 한 쌍의 DIN 커넥터와, 하나의 RET 장비를 외부AISG 케이블과 연결하기 위한 한 쌍의 AISG 커넥터가 구비된다. 이 경우에는 종래와 본 발명에 따른 안테나의 하부 캡의 구조는 동일할 수 있다.
그런데, 도 7 내지 도 9에 도시된 바와 같이, 듀얼 밴드나, 트리플 또는 쿼드 밴드 안테나일 경우에는, 안테나의 하부 캡에는 종래에는 RET 장비들이 2개 이상 구비되므로, 송수신 안테나부들을 위한 DIN 커넥터들을 비롯하여 각각의 RET 장비들별로 외부 AISG 케이블과 연결하기 위한 AISG 커넥터들이 모두 구비되어야 한다. 또한, 이 경우에는 각 RET 장비들을 데이지 체인 방식으로 연결하기 위한 AISG 케이블도 필요하게 된다. 또한 도 6 내지 도 9에서는 설명의 편의를 위해 도시하지 않았으나, 안테나에 RAS, RAB 장비들이 추가되는 경우에는 종래에는 이들 간에 연결을 위한 AISG 케이블 등도 필요하게 됨이 물론이다.
이에 비해, 본 발명에서는 하부 캡에 하나의 RET 장비(즉, 다중 기능 장비)만 구비되므로, 이를 외부 AISG 케이블과 연결하기 위한 한 쌍의 AISG 커넥터만 구성됨을 알 수 있다.
상기 도 6 내지 도 9에 도시된 바와 같이, 종래의 방식에 따른 RET 장비를 설치할 경우에, 주파수 밴드 별로 설치 안테나 증가할수록 RET 장비의 개수가 증가되나, 본 발명에서는 RET 장비의 개수가 늘어나지 않으므로, 비용 절감의 효과를 가지게 된다. 또한, 종래에 비해 RET 장비들 간을 연결하는 AISG 케이블의 수가 감소됨으로, 마찬가지로 비용이 절감된다.
또한, RET 개수가 감소됨에 따라 제어에 필요한 어드레스(address)의 개수도 감소된다. 즉, 본 발명에서 다중 기능 장비 하나만을 사용하여(어드레스 개수 : 동일) 다중 주파수 밴드 별로 설치되는 안테나를 제어할 수 있으므로, 확장성이 용이하다.(종래의 경우에는 하나의 RET 장비당 하나의 밴드의 안테나를 제어하기 때문에 확장성이 없다.)
또한, 종래에서는 RET의 개수가 늘어날수록 안테나의 하부 캡의 가용 공간이 협소해진다. 따라서 DIN 커넥터 등을 배치할 공간이 협소해지므로, 결론적으로 안테나 하부 캡의 면적이 넓게 설계되어져야 하거나, 좁은 배치에 따른 DIN 체결시 간섭을 받게 된다. 또한, AISG 케이블의 개수도 늘어나므로 여러 개의 AISG 케이블을 연결하는데도 어려움이 발생한다. 이에 비해 본 발명에서는 종래와 비교하여 동일한 안테나 하부 캡 면적 대비 DIN 커넥터들 및AISG 케이블의 설치가 용이하다.
도 10은 본 발명의 일 실시예에 따른 이동통신 기지국 안테나 제어를 위한 신호 흐름도로서, 도 10에서 일차 장비(Primary Device)는 기지국 본체 시스템의 MCU 등에 해당할 수 있으며, 이차 장비(Secondary Device)는 본 발명에 따른 안테나의 다중 기능 장비이다. 도 10을 참조하면, 먼저 100 단계에서는, 일차 장비 및 이차 장비 간에 AISG 규정에 따른 초기 접속 동작을 수행하며, 이후 110단계에서는 일차 장비에서 이차 장비로 AISG 규정에 따른 HDLC(High-level Data-Link Control) 명령(Procedure ID)을 위한HDLC 메시지를 전송한다. 이에 따라 이차 장비는112단계에서 HDLC 메시지를 수신하고, 114단계에서는 HDLC 메시지가 본 발명에 따라, RET, RAS, RAB 제어를 위해 미리 설정되는 I-프레임(I-Frame: Information Frame) 포맷인지를 확인하여, I-프레임 포맷일 경우에는 이후 116단계로 진행하며, I-프레임 포맷이 아닐 경우에는 115단계로 진행하여 그 밖의 동작, 즉 시스템 관리 등 위해 사용되는 U-프레임(U-Frame: Unnumbered frame), 또는 링크 제어 등을 위해 사용되는 S-프레임(S-Frame: Supervisory Frame) 처리 동작을 수행한다. 즉, 본 발명의 실시예에서는, 사용자 정보 및 해당 사용자 정보의 제어 정보를 운반하는 I-프레임을 이용하여 RET, RAS, RAB 제어를 위해 명령을 전송한다.
116 단계에서는 I-프레임에서 프로시저 ID(Procedure ID)를 추출한다. 이후 120단계에서는 상기 116단계에서 추출한 프로시저 ID를 확인하여 현재 I-프레임이 벤더 정의 프로시저(Vendor Specific Procedure)로 미리 설정된 벤더 프로시저에 관한 것인지 확인하고, 벤더 프로시저인 경우에 130단계로 진행하며, 벤더 프로시저가 아닌 경우에 122단계로 진행한다. 즉, 본 발명의 실시예에서는 I-프레임에서 RAS, RAB 제어임을 나타내도록 벤더 프로시저 ID를 미리 설정하며, 이러한 벤더 프로시저 ID는 예를 들어 ID가 '0x90'으로 정해질 수 있다. 130단계에서는 I-프레임에서 본 발명의 실시예에 따라 RAS 또는 RAB 제어를 위한 미리 설정된 정보, 예를 들어, 벤더 프로시저 코드(Vendor Procedure Code)를 확인한다. 132단계에서는 상기 확인한 벤더 프로시저 코드가 RAS 제어에 관한 것인지를 확인하여, 이후 134단계에서, 상기 확인한 벤더 프로시저 코드에 따라 RAS 구동부에 구동 신호를 발생하는 등 RAS 구동을 제어한다.
한편, 상기 132단계에서 확인한 벤더 프로시저 코드가 RAS 제어가 아닐 경우에는, 이후 140단계로 진행하여, 벤더 프로시저 코드가 RAB 제어에 관한 것인지를 확인하여 이후 142단계에서는 이에 따라 RAB 구동부를 제어한다.
한편, 상기 140단계에서는 확인한 벤더 프로시저 코드가 RAB 제어가 아닐 경우에는, 이후 144단계로 진행하여, 미지정 프로시저 코드인 것으로 판단한다. 이 경우에는 해당 프로시저 코드에 따른 동작 응답을 실패(FAIL)로 발생하게 된다.
한편, 상기 120단계에서 프로시저 ID를 확인 시, 추출한 프로시저ID가 벤더 프로시저 ID가 아닐 경우에 진행한 122단계에서는, 해당 프로시저 ID가 RET 제어를 위해 미리 설정된 프로시저 ID인지를 확인한다. 이러한 RET 제어를 위한 프로시저 ID는 예를 들어 ID가 '0x31'로 정해질 수 있다. 122단계에서 프로시서 ID가RET 제어에 해당하는 것일 경우에는. 이후 124단계로 진행하여 해당 프레임에 실린 RET 구동 정보를 확인하여 이에 따라RET 구동부에 구동 신호를 발생하는 등 RET 구동을 제어한다. 이때 상기 122단계에서 프로시서ID가 RET 제어에 해당하지 않을 경우에는 이후 126단계로 진행하여 해당 프로시저 ID에 따른 동작을 수행한다.
상기한 각 단계들을 통해 해당 이차 장비에서는 일차 장비로부터 수신한 명령(프레임)에 대한 처리 동작을 수행하며, 이후 150단계에서는 RET 구동부, RAS 구동부 및 RAB 구동부들로부터 제어 응답 신호를 확인하는 등 상기한 동작들의 처리 결과를 확인한다. 이후 152단계에서 이차 장비는 일차 장비로 정상 동작 수행 여부를 알리는 HDLC 응답 메시지를 전송한다.
도 11a 및 도 11b는 본 발명의 일 실시예에 따른 기지국 안테나의 RAS 제어를 위한 일차 장비 및 이차 장비간의 전송 프레임의 포맷 예시도로서, 도 11a는 RAS 구동부를 초기값으로 조정하기 위한 캘리브레이션(calibration) 제어와 관련한 프레임들이 도시되며, 도 11b는 RAS 구동부를 특정 값으로 구동하기 위한 설정(Set) 제어와 관련한 프레임들이 도시된다.
먼저, 도 11a를 참조하면, 도 11a의 (a)에는 일차 장비에서 이차 장비에서 전송되는 RAS 캘리브레이션 명령에 해당하는 프레임 포맷의 예가 도시되고 있다. 도 11a의 (a)에 도시된 바와 같이, 해당 프레임은 1옥텟(octet)의 프로시저 ID 필드(PID)와, 2옥텟의 프레임 길이 필드(Length low, Length high)와, 2옥텟의 벤더 코드 필드와, 1옥텟의 벤더 프로시저 코드 필드(VPC) 등을 포함하여 정해질 수 있다.
프로시저 ID 필드의 값은 예를 들어, 'Unsigned integer' 타입으로 '0x90'으로 설정되어, 본 프레임인 벤더 정의 프로시저에 관한 것임을 나타낸다. 벤더 코드는 해당 벤더를 식별하기 위해 미리 각 벤더별로 부여된 코드로서, 예를 들어, ASCII 코드 타입으로 'KM'을 나타내는 '0x4B, 0x4D'로 설정될 수 있다. 벤더 프로시저 코드는 예를 들어, '0x31'로 설정될 수 있는데, 이는 본 발명의 실시예에 따라, RAS 캘리브레이션 명령을 의미하는 것으로 설정될 수 있다. 2옥텟의 프레임 길이 필드는 해당 프레임 길이 필드 후단의 데이터 옥텟 길이가 3옥텟이므로, '0x03, 0x00'으로 설정됨이 도시되고 있다.
도 11a의 (b), (c)에는 이차 장비에서 일차 장비로 RAS 캘리브레이션 명령 수행에 따른 응답 메시지에 해당하는 프레임 포맷의 예가 도시되고 있으며, 도 11a의 (b)는 정상 동작 수행을 알리는 메시지에 해당하며, 도 11a의 (c)는 동작 수행 실패를 알리는 메시지에 해당한다. 도 11a의 (b)에 도시된 바와 같이, RAS 캘리브레이션 명령에 대한 정상 동작 수행을 알리기 위한 프레임은 1옥텟의 프로시저 ID 필드(PID)와, 2옥텟의 프레임 길이 필드(Length low, Length high)와, 1옥텟의 리턴(Return) 코드 필드, 2옥텟의 벤더 코드 필드와, 1옥텟의 벤더 프로시저 코드 필드(VPC)를 포함하여 정해질 수 있다.
프로시저 ID 필드의 값, 벤더 코드, 벤더 프로시저 코드는, 도 11a의 (a)와 마찬가지로, 각각'0x90', '0x4B, 0x4D', '0x31'로 설정될 수 있으며, 이때 리턴 코드 필드가 예를 들어, 정상 동작 수행(OK)을 나타내는 '0x00'으로 설정될 수 있다.
도 11a의 (c)를 참조하면, RAS 캘리브레이션 명령에 대한 동작 수행 실패를 알리기 위한 프레임은 1옥텟의 프로시저 ID 필드(PID)와, 2옥텟의 프레임 길이 필드(Length low, Length high)와, 적어도 1옥텟의 리턴 코드 필드를 포함할 수 있다. 이외에도 1옥텟의 벤더 프로시저 코드 필드(미도시)를 필요에 따라 더 포함할 수도 있다.
프로시저 ID 필드의 값은 도 11a의 (a)와 마찬가지로 '0x90'으로 정해지며, 이때, 리턴 코드 필드는 예를 들어, 동작 수행 실패(FAIL)를 나타내는 1옥텟의 '0x0B'를 포함한다. 추가로 리턴 코드 필드에는 동작 수행 실패에 대한 보다 상세 정보를 나타내기 위한 적어도 한 개 이상의 옥텟의 값이 더 설정될 수 있는데, 도 11a의 (c)의 예에서는, 예를 들어, 미지원 프로시저임을 나타내는 '0x25'로 설정됨이 도시되고 있다.
다음으로, 도 11b를 참조하면, 도 11b의 (a)에는 일차 장비에서 이차 장비에서 전송되는 RAS 설정(Set) 명령에 해당하는 프레임 포맷의 예가 도시되고 있다. 도 11b의 (a)에 도시된 바와 같이, 해당 프레임은 상기 도 11a의 (a)와 유사하게, 1옥텟의 프로시저 ID 필드와, 2옥텟의 프레임 길이 필드와, 2옥텟의 벤더 코드 필드와, 1옥텟의 벤더 프로시저 코드 필드(VPC) 및 2옥텟의 RAS 설정 값 필드를 포함하여 정해질 수 있다.
프로시저 ID 필드의 값, 벤더 코드, 벤더 프로시저 코드는, 도 11a의 (a)와 마찬가지로, 각각 '0x90', '0x4B, 0x4D', '0x31'로 설정될 수 있다. 이때 벤더 프로시저 코드는 예를 들어, '0x33'으로 설정될 수 있는데, 이는 본 발명의 실시예에 따라, RAS 설정 명령을 의미하는 것으로 정해질 수 있다. RAS 설정 값은 예를 들어, 5.0도로 RAS 구동부의 구동 동작을 설정하기 위하여, '0x32, 0x00'으로 설정될 수 있다.
도 11b의 (b), (c)에는 이차 장비에서 일차 장비로 RAS 설정 명령 수행에 따른 응답 메시지에 해당하는 프레임 포맷의 예가 도시되고 있으며, 도 11b의 (b)는 정상 동작 수행을 알리는 메시지에 해당하며, 도 11b의 (c)는 동작 수행 실패를 알리는 메시지에 해당한다. 도 11b의 (b)에 도시된 바와 같이, RAS 설정 명령에 대한 정상 동작 수행을 알리기 위한 프레임은 1옥텟의 프로시저 ID 필드와, 2옥텟의 프레임 길이 필드와, 1옥텟의 리턴 코드 필드와, 2옥텟의 벤더 코드 필드와, 1옥텟의 벤더 프로시저 코드 필드 및 2옥텟의 RAS 설정 값 필드를 포함하여 정해질 수 있다.
프로시저 ID 필드의 값, 벤더 코드, 벤더 프로시저 코드 및 RAS 설정 값은, 도 11b의 (b)와 마찬가지로, 각각 '0x90', '0x4B, 0x4D', '0x33', '0x32, 0x00'으로 설정될 수 있으며, 이때 리턴 코드 필드가 예를 들어, 정상 동작 수행(OK)을 나타내는 '0x00'으로 설정될 수 있다.
도 11b의 (c)를 참조하면, RAS 설정 명령에 대한 동작 수행 실패를 알리기 위한 프레임은 1옥텟의 프로시저 ID 필드와, 2옥텟의 프레임 길이 필드와, 적어도 1옥텟의 리턴 코드 필드를 포함할 수 있다. 이외에도 1옥텟의 벤더 프로시저 코드 필드(미도시)를 더 포함할 수도 있다.
프로시저 ID 필드의 값은 도 11b의 (a)와 마찬가지로 '0x90'으로 정해지며, 이때, 리턴 코드 필드는 예를 들어, 동작 수행 실패(FAIL)를 나타내는 1옥텟의 '0x0B'를 포함한다. 추가로 리턴 코드 필드에는 동작 수행 실패에 대한 보다 상세 정보를 나타내기 위한 1옥텟의 값이 더 설정될 수 있는데, 도 11b의(c)의 예에서는, 예를 들어, 구동기 고착(jam) 상태를 나타내는 '0x03'으로 설정됨이 도시되고 있다.
도 12a 및 도 12b는 본 발명의 일 실시예에 따른 기지국 안테나의 RAB 제어를 위한 일차 장비 및 이차 장비간의 전송 프레임의 포맷 예시도로서, 도 12a는 RAB 구동부를 초기값으로 조정하기 위한 캘리브레이션(calibration) 제어와 관련한 프레임들이 도시되며, 도 12b는 RAB 구동부를 특정 값으로 구동하기 위한 설정(Set) 제어와 관련한 프레임들이 도시된다.
먼저, 도 12a를 참조하면, 도 12a의 (a)에는 일차 장비에서 이차 장비에서 전송되는 RAB 캘리브레이션 명령에 해당하는 프레임 포맷의 예가 도시되고 있다. 도 12a의 (a)에 도시된 바와 같이, 해당 프레임은 1옥텟의 프로시저 ID 필드와, 2옥텟의 프레임 길이 필드와, 2옥텟의 벤더 코드 필드와, 1옥텟의 벤더 프로시저 코드 필드 등을 포함하여 정해질 수 있다.
각 프레임의 값들은 상기 도 11a의 (a)에 도시된 바와 같은 RAS 캘리브레이션 명령에 해당하는 프레임과 대체로 동일하지만, 다만, 벤더 프로시저 코드는 예를 들어, '0x71'로 설정될 수 있는데, 이는 본 발명의 실시예에 따라, RAB 캘리브레이션 명령을 의미하는 것으로 설정될 수 있다.
도 12a의 (b), (c)에는 이차 장비에서 일차 장비로 RAB 캘리브레이션 명령 수행에 따른 응답 메시지에 해당하는 프레임 포맷의 예가 도시되고 있으며, 도 12a의 (b)는 정상 동작 수행을 알리는 메시지에 해당하며, 도 12a의 (c)는 동작 수행 실패를 알리는 메시지에 해당한다. 도 12a의 (b)에 도시된 바와 같이, RAS 캘리브레이션 명령에 대한 정상 동작 수행을 알리기 위한 프레임은 1옥텟의 프로시저 ID 필드와, 2옥텟의 프레임 길이 필드와, 1옥텟의 리턴 코드 필드, 2옥텟의 벤더 코드 필드와, 1옥텟의 벤더 프로시저 코드 필드를 포함하여 정해질 수 있다.
각 프레임의 값들은 상기 도 11a의 (b)에 도시된 바와 같은 RAS 캘리브레이션 명령에 대한 응답 프레임과 대체로 동일하지만, 다만, 벤더 프로시저 코드는 예를 들어, '0x61''0x71'됨이 도시되고 있다.
도 12a의 (c)를 참조하면, RAB 캘리브레이션 명령에 대한 동작 수행 실패를 알리기 위한 프레임은 1옥텟의 프로시저 ID 필드와, 2옥텟의 프레임 길이 필드와, 적어도 1옥텟의 리턴 코드 필드를 포함할 수 있다. *이외에도 1옥텟의 벤더 프로시저 코드 필드(미도시)를 더 포함할 수도 있다. 각 프레임의 값들은 상기 도 11a의 (c)에 도시된 바와 같은 RAS 캘리브레이션 명령에 대한 응답 프레임과 대체로 동일할 수 있다.
다음으로, 도 12b를 참조하면, 도 12b의 (a)에는 일차 장비에서 이차 장비에서 전송되는 RAB 설정(Set) 명령에 해당하는 프레임 포맷의 예가 도시되고 있다. 도 12b의 (a)에 도시된 바와 같이, 해당 프레임은 상기 도 12a의 (a)와 유사하게, 1옥텟의 프로시저 ID 필드와, 2옥텟의 프레임 길이 필드와, 2옥텟의 벤더 코드 필드와, 1옥텟의 벤더 프로시저 코드 필드 및 2옥텟의 RAB 설정 값 필드를 포함하여 정해질 수 있다.
이때 벤더 프로시저 코드는 예를 들어, '0x73'으로 설정될 수 있는데, 이는 본 발명의 실시예에 따라, RAB 설정 명령을 의미하는 것으로 정해질 수 있다. RAB 설정 값은 예를 들어, 8.3도로 RAB 구동부의 구동 동작을 설정하기 위하여, '0x53, 0x00'으로 설정될 수 있다.
도 12b의 (b), (c)에는 이차 장비에서 일차 장비로 RAB 설정 명령 수행에 따른 응답 메시지에 해당하는 프레임 포맷의 예가 도시되고 있으며, 도 12b의 (b)는 정상 동작 수행을 알리는 메시지에 해당하며, 도 12b의 (c)는 동작 수행 실패를 알리는 메시지에 해당한다. 도 12b의 (b)에 도시된 바와 같이, RAB 설정 명령에 대한 정상 동작 수행을 알리기 위한 프레임은 1옥텟의 프로시저 ID 필드와, 2옥텟의 프레임 길이 필드와, 1옥텟의 리턴 코드 필드와, 2옥텟의 벤더 코드 필드와, 1옥텟의 벤더 프로시저 코드 필드 및 2옥텟의 RAB 설정 값 필드를 포함하여 정해질 수 있다. 이때 리턴 코드 필드가 예를 들어, 정상 동작 수행(OK)을 나타내는 '0x00'으로 설정될 수 있다.
도 12b의 (c)를 참조하면, RAB 설정 명령에 대한 동작 수행 실패를 알리기 위한 프레임은 1옥텟의 프로시저 ID 필드와, 2옥텟의 프레임 길이 필드와, 적어도 1옥텟의 리턴 코드 필드를 포함할 수 있다. 이때, 리턴 코드는 동작 수행 실패를 나타내는 1옥텟의 '0x0B'를 포함한다. 추가로 리턴 코드 필드에는 동작 수행 실패에 대한 보다 상세 정보를 나타내기 위한 1옥텟의 값이 더 설정될 수 있는데, 도 12b의(c)의 예에서는, 예를 들어, 캘리브레이션 동작이 수행되지 않음을 나타내는 '0x0E'로 설정됨이 도시되고 있다.
도 13a 및 도 13b는 본 발명의 일 실시예에 따른 싱글 밴드 구조의 기지국 안테나의 RET 제어를 위한 일차 장비 및 이차 장비간의 전송 프레임의 포맷 예시도로서, 도 13a는 RET 캘리브레이션 제어와 관련한 프레임들이 도시되며, 도 13b는 RET 설정 제어와 관련한 프레임들이 도시된다.
먼저, 도 13a를 참조하면, 도 13a의 (a)에는 일차 장비에서 이차 장비에서 전송되는 RET 캘리브레이션 명령에 해당하는 프레임 포맷의 예가 도시되고 있다. 도 13a의 (a)에 도시된 바와 같이, 해당 프레임은 1옥텟의 프로시저 ID 필드와, 2옥텟의 프레임 길이 필드를 포함하여 정해진다. 이때 프로시저 ID 필드는AISG 규격에 따라, 예를 들어 '0x31'로 설정됨이 도시되고 있다.
도 13a의 (b), (c)에는 이차 장비에서 일차 장비로 RET 캘리브레이션 명령 수행에 따른 응답 메시지에 해당하는 프레임 포맷의 예가 도시되고 있으며, 도 13a의 (b)는 정상 동작 수행을 알리는 메시지에 해당하며, 도 13a의 (c)는 동작 수행 실패를 알리는 메시지에 해당한다. 도 13a의 (b)에 도시된 바와 같이, RET 캘리브레이션 명령에 대한 정상 동작 수행을 알리기 위한 프레임은 1옥텟의 프로시저 ID 필드와, 2옥텟의 프레임 길이 필드와, 1옥텟의 리턴 코드 필드를 포함하여 정해질 수 있다. 이때 리턴 코드는 정상 동작 수행을 알리기 위해 예를 들어 '0x00'으로 설정됨이 도시되고 있다.
도 13a의 (c)를 참조하면, RET 설정 명령에 대한 동작 수행 실패를 알리기 위한 프레임은 1옥텟의 프로시저 ID 필드와, 2옥텟의 프레임 길이 필드와, 2옥텟의 리턴 코드 필드를 포함할 수 있다. 이때 리턴 코드는 동작 수행 실패를 나타내는 '0x0B'와, 동작 수행 실패에 대한 상세 정보, 예를 들어, 미지정 프로시저임을 나타내기 위한 '0x19'로 설정됨이 도시되고 있다.
다음으로, 도 13b를 참조하면, 도 13b의 (a)에는 일차 장비에서 이차 장비에서 전송되는 RET 설정 명령에 해당하는 프레임 포맷의 예가 도시되고 있다. 도 13b의 (a)에 도시된 바와 같이, 해당 프레임은 상기 도 13a의 (a)와 유사하게, 1옥텟의 프로시저 ID 필드와, 2옥텟의 프레임 길이 필드와, 2옥텟의 RET 설정 값 필드를 포함하여 정해질 수 있다. 이때 프로시저 ID 필드는 예를 들어 '0x33'으로 설정됨이 도시되고 있다. 이때 예를 들어. RET 설정 값은 예를 들어, 10.0도로 RET 구동부의 구동 동작을 설정하기 위하여, '0x64, 0x00'으로 설정될 수 있다.
도 13b의 (b), (c)에는 이차 장비에서 일차 장비로 RET 설정 명령 수행에 따른 응답 메시지에 해당하는 프레임 포맷의 예가 도시되고 있으며, 도 13b의 (b)는 정상 동작 수행을 알리는 메시지에 해당하며, 도 13b의 (c)는 동작 수행 실패를 알리는 메시지에 해당한다. 도 13b의 (b)에 도시된 바와 같이, RET 설정 명령에 대한 정상 동작 수행을 알리기 위한 프레임은 1옥텟의 프로시저 ID 필드와, 2옥텟의 프레임 길이 필드와, 1옥텟의 리턴 코드 필드를 포함하여 정해질 수 있다. 이때 리턴 코드 필드가 예를 들어, 정상 동작 수행(OK)을 나타내는 '0x00'으로 설정될 수 있다.
도 13b의 (c)를 참조하면, RET 설정 명령에 대한 동작 수행 실패를 알리기 위한 프레임은 1옥텟의 프로시저 ID 필드와, 2옥텟의 프레임 길이 필드와, 2옥텟의 리턴 코드 필드를 포함할 수 있다. 이때 리턴 코드는 동작 수행 실패를 나타내는 '0x0B'와, 동작 수행 실패에 대한 상세 정보, 예를 들어, 캘리브레이션 동작이 수행되지 않음을 나타내는 '0x0E'로 설정됨이 도시되고 있다.
도 14a 및 도 14b는 본 발명의 일 실시예에 따른 듀얼 밴드 기지국 안테나의 RET 제어를 위한 일차 장비 및 이차 장비간의 전송 프레임의 포맷 예시도로서, 도 14a는RET 캘리브레이션 제어와 관련한 프레임들이 도시되며, 도 14b는 RET 설정 제어와 관련한 프레임들이 도시된다.
먼저, 도 14a를 참조하면, 도 14a의 (a)에는 일차 장비에서 이차 장비에서 전송되는 RET 캘리브레이션 명령에 해당하는 프레임 포맷의 예가 도시되고 있다. 도 14a의 (a)에 도시된 바와 같이, 해당 프레임은 1옥텟의 프로시저 ID 필드와, 2옥텟의 프레임 길이 필드 및 1옥텟의 안테나 번호 필드를 포함하여 정해진다. 이때 프로시저 ID 필드는 AISG 규격에 따라, 예를 들어 '0x80'으로 설정됨이 도시되고 있다. 또한, 이때 안테나 번호는 제어 대상 안테나가 첫 번째 안테나임을 알리기 위해 예를 들어 '0x01'로 설정될 수 있다.
도 14a의 (b), (c)에는 이차 장비에서 일차 장비로 RET 캘리브레이션 명령 수행에 따른 응답 메시지에 해당하는 프레임 포맷의 예가 도시되고 있으며, 도 14a의 (b)는 정상 동작 수행을 알리는 메시지에 해당하며, 도 14a의 (c)는 동작 수행 실패를 알리는 메시지에 해당한다. 도 14a의 (b)에 도시된 바와 같이, RET 캘리브레이션 명령에 대한 정상 동작 수행을 알리기 위한 프레임은 1옥텟의 프로시저 ID 필드와, 2옥텟의 프레임 길이 필드와, 1옥텟의 안테나 번호 필드와, 1옥텟의 리턴 코드 필드를 포함하여 정해질 수 있다. 이때 프로시저 ID 필드는 AISG 규격에 따라, 예를 들어'0x80'으로 설정됨이 도시되고 있다. 또한, 리턴 코드는 정상 동작 수행을 알리기 위해 예를 들어 '0x00'으로 설정됨이 도시되고 있다.
도 14a의 (c)를 참조하면, RET 설정 명령에 대한 동작 수행 실패를 알리기 위한 프레임은 1옥텟의 프로시저 ID 필드와, 2옥텟의 프레임 길이 필드와, 1옥텟의 안테나 번호 필드, 2옥텟의 리턴 코드 필드를 포함할 수 있다. 이때 리턴 코드는 동작 수행 실패를 나타내는 '0x0B'와, 동작 수행 실패에 대한 상세 정보, 예를 들어, 구동기 고착(jam) 상태임을 나타내기 위한 '0x03'으로 설정됨이 도시되고 있다.
다음으로, 도 14b를 참조하면, 도 14b의 (a)에는 일차 장비에서 이차 장비에서 전송되는 RET 설정 명령에 해당하는 프레임 포맷의 예가 도시되고 있다. 도 14b의 (a)에 도시된 바와 같이, 해당 프레임은 상기 도 14a의 (a)와 유사하게, 1옥텟의 프로시저 ID 필드와, 2옥텟의 프레임 길이 필드와, 1옥텟의 안테나 번호 필드와, 2옥텟의 RET 설정 값 필드를 포함하여 정해질 수 있다. 이때 예를 들어. RET 설정 값은 예를 들어, 10.0도로 RET 구동부의 구동 동작을 설정하기 위하여, '0x64, 0x00'으로 설정될 수 있다. 또한, 이때 안테나 번호는 제어 대상 안테나가 두번째 안테나임을 알리기 위해 예를 들어 '0x02'로 설정됨이 도시되고 있다.
도 14b의 (b), (c)에는 이차 장비에서 일차 장비로 RET 설정 명령 수행에 따른 응답 메시지에 해당하는 프레임 포맷의 예가 도시되고 있으며, 도 14b의 (b)는 정상 동작 수행을 알리는 메시지에 해당하며, 도 14b의 (c)는 동작 수행 실패를 알리는 메시지에 해당한다. 도 14b의 (b)에 도시된 바와 같이, RET 설정 명령에 대한 정상 동작 수행을 알리기 위한 프레임은 1옥텟의 프로시저 ID 필드와, 2옥텟의 프레임 길이 필드와, 1옥텟의 안테나 번호 필드와, 1옥텟의 리턴 코드 필드를 포함하여 정해질 수 있다. 이때 리턴 코드 필드가 예를 들어, 정상 동작 수행(OK)을 나타내는 '0x00'으로 설정될 수 있다.
도 14b의 (c)를 참조하면, RET 설정 명령에 대한 동작 수행 실패를 알리기 위한 프레임은 1옥텟의 프로시저 ID 필드와, 2옥텟의 프레임 길이 필드와, 1옥텟의 안테나 번호 필드와, 2옥텟의 리턴 코드 필드를 포함할 수 있다. 이때 리턴 코드는 동작 수행 실패를 나타내는 '0x0B'와, 동작 수행 실패에 대한 상세 정보, 예를 들어, 구동 범위 초과를 나타내는 '0x13'으로 설정됨이 도시되고 있다.
상기와 같이 본 발명의 일 실시예에 따른 이동통신 기지국의 안테나에 대한구성 및 동작이 이루어질 수 있으며, 한편 상기한 본 발명의 설명에서는 구체적인 실시예에 관해 설명하였으나 여러 가지 변형이 본 발명의 범위를 벗어나지 않고 실시될 수 있다. 따라서 본 발명의 범위는 설명된 실시예에 의하여 정할 것이 아니고 청구범위와 청구범위의 균등한 것에 의하여 정하여져야 할 것이다.

Claims (10)

  1. 이동통신 기지국 안테나에 있어서,
    각각 구동 모터를 구비하여, RET(Remote Electrical Tilt), RAS(Remote Azimuth Steering) 및 RAB(Remote Azimuth Beamwidth)의 각각의 조정을 위한 전기, 기구적 장치들을 구동하는 RET 구동부, RAS 구동부 및 RAB 구동부와;
    기지국 본체 시스템과 통신하여 상기 RET, RAS 및RAB 제어를 위한 제어 신호를 제공받아 상기 RET 구동부, RAS 구동부 및 RAB 구동부의 구동을 제어하는 다중 기능 장비를 포함함을 특징으로 하는 기지국 안테나.
  2. 제1항에 있어서, 상기 다중 기능 장비는 상기 안테나의 하부 캡 상에 설치되는 AISG(Antenna Interface Standards Group) 커넥터를 통해 외부와 연결되도록 설치되며, 상기 AISG 커넥터를 통해 AISG 케이블을 이용하여 외부의 DC + RS485 신호를 제공받도록 구성됨을 특징으로 하는 기지국 안테나.
  3. 제1항에 있어서, 상기 기지국 안테나는 다중 밴드 구조를 가지며,
    상기 RET 구동부, RAS 구동부 및 RAB 구동부는 상기 다중 밴드를 구현하는 각각의 송수신 안테나부별로 하나씩 복수개가 구비되며;
    상기 다중 기능 장비는 상기 각각의 송수신 안테나부별로 구비되는 복수개의 기 RET 구동부, RAS 구동부 및 RAB 구동부의 구동을 제어함을 특징으로 하는 기지국 안테나.
  4. 제1항에 있어서, 상기 다중 기능 장비는 상기 기지국 본체 시스템과 AISG(Antenna Interface Standards Group) 규정에 따라 상기 기지국 본체 시스템을 일차 장비로 간주하며, HDLC(High-level Data-Link Control) 메시지를 주고받음으로써, 상기 RET, RAS 및 RAB 제어 동작을 수행함을 특징으로 하는 기지국 안테나.
  5. 제4항에 있어서, 상기 다중 기능 장비는,
    상기 일차 장비로부터 상기 HDLC 메시지를 수신하고,
    상기 수신한 HDLC 메시지가 I-프레임(I-Frame: Information Frame) 포맷인지를 확인하여, 해당 I-프레임에서 프로시저 ID(Procedure ID)를 추출하고,
    상기 추출한 프로시저 ID를 확인하여 현재 I-프레임이 벤더 정의 프로시저(Vendor Specific Procedure)로 미리 설정된 벤더 프로시저에 관한 것인지와, 상기 RAS 또는 RAB 제어를 위한 미리 설정된 정보인 벤더 프로시저 코드(Vendor Procedure Code)를 확인하고,
    상기 확인한 벤더 프로시저 코드에 따라 미리 설정된 상기 RAS 또는 RAB 제어 동작을 수행하고,
    상기 RAS 또는 RAB 제어 동작의 수행 결과를 상기 일차 장비로 응답 메시지를 통해 알림을 특징으로 하는 기지국 안테나.
  6. 일차 장비와 AISG(Antenna Interface Standards Group) 규정에 따른 HDLC(High-level Data-Link Control) 메시지를 주고받아 제어 동작을 수행하는 이차 장비인 이동통신 기지국 안테나의 제어 방법에 있어서,
    상기 일차 장비로부터 상기 HDLC 메시지를 수신하는 과정과;
    상기 수신한 HDLC 메시지가 I-프레임(I-Frame: Information Frame) 포맷인지를 확인하여, 해당 I-프레임에서 프로시저 ID(Procedure ID)를 추출하는 과정과;
    상기 추출한 프로시저 ID를 확인하여 현재 I-프레임이 벤더 정의 프로시저(Vendor Specific Procedure)로 미리 설정된 벤더 프로시저에 관한 것인지와, RAS(Remote Azimuth Steering) 또는RAB(Remote Azimuth Beamwidth) 제어를 위한 미리 설정된 정보인 벤더 프로시저 코드(Vendor Procedure Code)를 확인하는 과정과;
    상기 확인한 벤더 프로시저 코드에 따라 미리 설정된 상기 RAS 또는 RAB 제어 동작을 수행하는 과정과;
    상기 RAS 또는 RAB 제어 동작의 수행 결과를 상기 일차 장비로 응답 메시지를 통해 알리는 과정을 포함함을 특징으로 하는 기지국 안테나 제어 방법.
  7. 제6항에 있어서, 상기 I-프레임이 벤더 프로시저에 관한 것이 아닐 경우에는, 해당 프로시저 ID가 RET(Remote Electrical Tilt) 제어를 위해 미리 설정된 프로시저 ID인지를 확인하는 과정과;
    상기 RET 제어를 위한 프로시저 ID로 확인될 경우에는, 이에 따라 RET 제어 동작을 수행함을 특징으로 하는 기지국 안테나 제어 방법.
  8. 제6항에 있어서, 상기 벤더 프로시저에 관한 프레임은, 1옥텟(octet)의 프로시저ID 필드(PID)와, 2옥텟의 프레임 길이 필드와, 2옥텟의 벤더 코드 필드와, 1옥텟의 벤더 프로시저 코드 필드를 포함함을 특징으로 하는 기지국 안테나 제어 방법.
  9. 제8항에 있어서, 상기 벤더 프로시저에 관한 프레임은, 2옥텟의 상기 RAB 또는 상기RAS 설정 값 필드를 더 포함함을 특징으로 하는 기지국 안테나 제어 방법.
  10. 제6항에 있어서, 상기 응답메시지는, 정상 동작 수행을 알리는 메시지와, 동작 수행 실패를 알리는 메시지를 포함하며,
    상기 정상 동작 수행을 알리는 메시지의 프레임은, 1옥텟의 프로시저 ID 필드와, 2옥텟의 프레임 길이 필드와, 1옥텟의 리턴(Return) 코드 필드, 2옥텟의 벤더 코드 필드와, 1옥텟의 벤더 프로시저 코드 필드를 포함하며,
    상기 동작 수행 실패를 알리는 메시지의 프레임은, 1옥텟의 프로시저 ID 필드와, 2옥텟의 프레임 길이 필드와, 적어도 1옥텟의 리턴 코드 필드를 포함함을 특징으로 하는 기지국 안테나 제어 방법.
PCT/KR2013/008261 2012-09-14 2013-09-12 이동통신 기지국의 안테나 및 그 제어 방법 WO2014042444A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380047794.0A CN104641509B (zh) 2012-09-14 2013-09-12 移动通信基站的天线和用于控制其的方法
JP2015529697A JP6125638B2 (ja) 2012-09-14 2013-09-12 移動通信基地局のアンテナ及びその制御方法
EP13836683.6A EP2897224B1 (en) 2012-09-14 2013-09-12 Antenna of mobile communication base station and method for controlling same
KR1020157004017A KR101756129B1 (ko) 2012-09-14 2013-09-12 이동통신 기지국의 안테나 및 그 제어 방법
US14/640,468 US9379435B2 (en) 2012-09-14 2015-03-06 Antenna of mobile communication base station and method for controlling same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0101922 2012-09-14
KR20120101922 2012-09-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/640,468 Continuation US9379435B2 (en) 2012-09-14 2015-03-06 Antenna of mobile communication base station and method for controlling same

Publications (1)

Publication Number Publication Date
WO2014042444A1 true WO2014042444A1 (ko) 2014-03-20

Family

ID=50278470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/008261 WO2014042444A1 (ko) 2012-09-14 2013-09-12 이동통신 기지국의 안테나 및 그 제어 방법

Country Status (6)

Country Link
US (1) US9379435B2 (ko)
EP (1) EP2897224B1 (ko)
JP (1) JP6125638B2 (ko)
KR (1) KR101756129B1 (ko)
CN (1) CN104641509B (ko)
WO (1) WO2014042444A1 (ko)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101554005B1 (ko) * 2015-05-26 2015-09-18 (주)링크텍 다중대역 기지국시스템에서 다중대역결합 및 안테나 틸팅을 위한 급전선 공유장치
WO2016085129A1 (ko) * 2014-11-25 2016-06-02 주식회사 케이엠더블유 다중 대역 기지국 시스템에 사용되는 컴바이너 및 컴바이너 제어 방법
EP3086620A1 (en) * 2015-04-21 2016-10-26 KMW Inc. Antenna control system and its operating method
JP2017011549A (ja) * 2015-06-24 2017-01-12 日本電業工作株式会社 制御装置、アンテナ及びプログラム
JP2017022428A (ja) * 2015-07-07 2017-01-26 日本電業工作株式会社 制御装置、アンテナ及びプログラム
JP2017536714A (ja) * 2014-09-03 2017-12-07 華為技術有限公司Huawei Technologies Co.,Ltd. アンテナ機能拡張装置、デバイス、及び方法
EP3226519A4 (en) * 2014-11-25 2018-07-25 KMW Inc. Antenna control system in base station system and configuration method therefor
WO2018149976A2 (de) 2017-02-16 2018-08-23 Kathrein-Werke Kg Antenne, insbesondere mobilfunkantenne

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105390812B (zh) * 2015-11-24 2018-09-25 中国电信股份有限公司 远程调整天线的方法、设备以及系统
WO2018105103A1 (ja) * 2016-12-09 2018-06-14 日本電業工作株式会社 制御装置、アンテナ及びプログラム
WO2018170246A1 (en) 2017-03-17 2018-09-20 Commscope Technologies Llc Current surge protection circuits for base station antennas having remote electronic tilt capability and related methods
US10854967B2 (en) 2017-03-30 2020-12-01 Commscope Technologies Llc Base station antennas that are configurable for either independent or common down tilt control and related methods
DE102018103908B3 (de) 2018-02-21 2019-05-09 Kathrein Se Heterogene Mobilfunkanordnung zur Versorgung zumindest einer Mobilfunkzelle mit Mobilfunkdienstleistungen
CN110518356A (zh) * 2019-08-20 2019-11-29 武汉虹信通信技术有限责任公司 电调天线控制装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6239744B1 (en) * 1999-06-30 2001-05-29 Radio Frequency Systems, Inc. Remote tilt antenna system
US20070030208A1 (en) * 2003-06-16 2007-02-08 Linehan Kevin E Cellular antenna and systems and methods therefor
US20090040106A1 (en) * 2007-05-25 2009-02-12 Le Quoc M Cellular Antennas and Communications Methods
US20090203406A1 (en) * 2000-07-10 2009-08-13 Andrew Corporation Cellular antenna
WO2009102775A2 (en) * 2008-02-11 2009-08-20 Amphenol Corporation Multi-beam antenna with multi-device control unit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8027703B2 (en) * 2009-02-11 2011-09-27 Amphenol Corporation Multi-beam antenna with multi-device control unit
DE102009022158A1 (de) 2009-05-20 2010-11-25 Kathrein-Werke Kg Antenneneinrichtung, insbesondere für eine Mobilfunkanlage, mit mehreren zugeordneten Funktionseinheiten
US9306278B2 (en) * 2011-11-14 2016-04-05 Intel Corporation Common multi-purpose actuator to control antenna remote electrical tilt, remote azimuth steering and remote azimuth beam-width control

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6239744B1 (en) * 1999-06-30 2001-05-29 Radio Frequency Systems, Inc. Remote tilt antenna system
US20090203406A1 (en) * 2000-07-10 2009-08-13 Andrew Corporation Cellular antenna
US20070030208A1 (en) * 2003-06-16 2007-02-08 Linehan Kevin E Cellular antenna and systems and methods therefor
US20090040106A1 (en) * 2007-05-25 2009-02-12 Le Quoc M Cellular Antennas and Communications Methods
WO2009102775A2 (en) * 2008-02-11 2009-08-20 Amphenol Corporation Multi-beam antenna with multi-device control unit
KR20100122092A (ko) 2008-02-11 2010-11-19 암페놀 코포레이션 멀티 디바이스 제어 유닛을 갖춘 다중빔 안테나

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017536714A (ja) * 2014-09-03 2017-12-07 華為技術有限公司Huawei Technologies Co.,Ltd. アンテナ機能拡張装置、デバイス、及び方法
CN107690752A (zh) * 2014-11-25 2018-02-13 株式会社Kmw 多频带基站系统中使用的合成器及合成器控制方法
WO2016085129A1 (ko) * 2014-11-25 2016-06-02 주식회사 케이엠더블유 다중 대역 기지국 시스템에 사용되는 컴바이너 및 컴바이너 제어 방법
CN107690752B (zh) * 2014-11-25 2019-12-27 株式会社Kmw 多频带基站系统中使用的合成器及合成器控制方法
US10321337B2 (en) 2014-11-25 2019-06-11 Kmw Inc. Antenna control system in base station system and configuration method therefor
EP3226519A4 (en) * 2014-11-25 2018-07-25 KMW Inc. Antenna control system in base station system and configuration method therefor
KR101771241B1 (ko) 2014-11-25 2017-08-25 주식회사 케이엠더블유 다중 대역 기지국 시스템에 사용되는 컴바이너 및 컴바이너 제어 방법
US9866367B2 (en) 2014-11-25 2018-01-09 Kmw Inc. Combiner for use in multi-band base station and method for controlling combiner
US9913129B2 (en) * 2015-04-21 2018-03-06 Kmw Inc. Antenna control system and its operating method
EP3086620A1 (en) * 2015-04-21 2016-10-26 KMW Inc. Antenna control system and its operating method
KR101554005B1 (ko) * 2015-05-26 2015-09-18 (주)링크텍 다중대역 기지국시스템에서 다중대역결합 및 안테나 틸팅을 위한 급전선 공유장치
JP2017011549A (ja) * 2015-06-24 2017-01-12 日本電業工作株式会社 制御装置、アンテナ及びプログラム
JP2017022428A (ja) * 2015-07-07 2017-01-26 日本電業工作株式会社 制御装置、アンテナ及びプログラム
WO2018149976A2 (de) 2017-02-16 2018-08-23 Kathrein-Werke Kg Antenne, insbesondere mobilfunkantenne
US11375298B2 (en) 2017-02-16 2022-06-28 Telefonaktiebolaget Lm Ericsson (Publ) Antenna, in particular mobile phone antenna

Also Published As

Publication number Publication date
US9379435B2 (en) 2016-06-28
JP2015534317A (ja) 2015-11-26
EP2897224A4 (en) 2016-06-01
KR20150056764A (ko) 2015-05-27
EP2897224A1 (en) 2015-07-22
JP6125638B2 (ja) 2017-05-10
CN104641509A (zh) 2015-05-20
US20150244069A1 (en) 2015-08-27
KR101756129B1 (ko) 2017-07-11
EP2897224B1 (en) 2019-05-08
CN104641509B (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
WO2014042444A1 (ko) 이동통신 기지국의 안테나 및 그 제어 방법
WO2013111971A1 (ko) 이동통신 기지국의 안테나 시스템
US8688033B2 (en) Antenna system, in particular mobile communication antenna system, and associated transmission and control device
WO2016052779A1 (ko) 휴대용 안테나 제어 장치 및 안테나 제어 시스템
WO2014003503A1 (en) Method and apparatus for transmitting signal in beam forming-based communication system
EP3086620B1 (en) Antenna control system and its operating method
WO2013154301A1 (ko) 위성 통신 기능을 구비한 휴대 단말기 보조장치
WO2014157785A1 (ko) 휴대용 위성통신장치
WO2016036053A1 (ko) 이동통신 시스템용 안테나 장치
WO2016200133A1 (ko) 안테나 장치
WO2016085125A1 (ko) 기지국 시스템에서의 안테나 제어 시스템 및 그 구성 방법
WO2016032114A1 (ko) 기지국 안테나의 정재파비 제어 방법
WO2013176370A1 (en) Antenna phase conversion device and antenna phase conversion system
WO2019235684A1 (ko) 고밀집 네트워크 환경을 위한 wifi 네트워크 시스템
WO2011027935A1 (ko) 근거리 영역 내의 방송통신 융합 구간에 대한 신호 간섭 최소화 시스템 및 방법, 그리고 이에 적용되는 장치
US8073003B2 (en) General purpose physical data transmission port
WO2015056989A1 (ko) 무선 고주파 신호 경로 형성 장치 및 그 제어 방법
WO2015167061A1 (ko) 통신 서비스 제공 시스템 및 그 제어방법
WO2021060851A1 (ko) 시간-편파 분리가 가능한 4중 편파 안테나 모듈
WO2022265311A1 (ko) 안테나 기기의 클램핑 장치
EP3430840B1 (en) Distributed wireless intercom audio routing over ethernet with roaming
WO2016060306A1 (ko) 기지국 안테나 장치
WO2017074033A1 (ko) 다중 대역 패치 안테나 모듈
CN217687303U (zh) 一种铁塔数据集中监测设备
WO2022196933A1 (ko) 멀티 링크 통신을 위한 근거리 통신 안테나

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13836683

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157004017

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015529697

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE