WO2014042055A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2014042055A1
WO2014042055A1 PCT/JP2013/073814 JP2013073814W WO2014042055A1 WO 2014042055 A1 WO2014042055 A1 WO 2014042055A1 JP 2013073814 W JP2013073814 W JP 2013073814W WO 2014042055 A1 WO2014042055 A1 WO 2014042055A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
substrate
mems
mems sensor
semiconductor device
Prior art date
Application number
PCT/JP2013/073814
Other languages
French (fr)
Japanese (ja)
Inventor
菊入 勝也
尚信 大川
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to JP2014535505A priority Critical patent/JP5859133B2/en
Publication of WO2014042055A1 publication Critical patent/WO2014042055A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0009Structural features, others than packages, for protecting a device against environmental influences
    • B81B7/0019Protection against thermal alteration or destruction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • B81B7/0058Packages or encapsulation for protecting against damages due to external chemical or mechanical influences, e.g. shocks or vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0292Sensors not provided for in B81B2201/0207 - B81B2201/0285
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS

Definitions

  • the present invention relates to a semiconductor device provided with a MEMS sensor.
  • Patent Document 1 and Patent Document 2 disclose inventions related to MEMS devices. As shown in Patent Documents 1 and 2, the MEMS sensor is disposed on a substrate and sealed with a mold resin. The MEMS sensor is formed mainly of silicon.
  • thermal stress is applied to the MEMS sensor due to the difference in coefficient of linear thermal expansion between the MEMS sensor and the mold resin covering the MEMS sensor and the difference in coefficient of linear thermal expansion between the MEMS sensor and the substrate. As a result, there is a problem that the sensor sensitivity is lowered.
  • an object of the present invention is to provide a semiconductor device that can reduce the influence of thermal stress on the MEMS sensor.
  • the semiconductor device in the present invention is A MEMS sensor mainly composed of silicon laminated on a support substrate via a first die bond resin, a first silicon substrate laminated via a second die bond resin on the MEMS sensor, and a sealing material And a mold resin as Each die bond resin is formed of a softer material than the mold resin.
  • the first silicon substrate of the same kind as that of the MEMS sensor is disposed on the MEMS sensor. Therefore, since the first silicon substrate having the same or close linear thermal expansion coefficient as the MEMS sensor is interposed between the MEMS sensor and the mold resin, the influence of the mold resin having a different linear thermal expansion coefficient from above the MEMS sensor. Do not receive directly.
  • a first silicon substrate of the same type as the MEMS sensor is overlaid on the MEMS sensor, and is softer than the mold resin between the MEMS sensor and the first silicon substrate and between the support substrate and the MEMS sensor. By using a simple die bond resin, it becomes possible to effectively mitigate the influence of thermal stress on the MEMS sensor.
  • the first silicon substrate constitutes an ASIC for a magnetic sensor, and the magnetic sensor is disposed on the ASIC for the magnetic sensor.
  • the number of parts can be reduced, and the semiconductor device can be downsized.
  • the MEMS sensor can be appropriately covered with one magnetic sensor ASIC (first silicon substrate), and the influence of thermal stress on the MEMS sensor can be effectively reduced, and multi-axis detection can be performed.
  • Possible magnetic sensors can be arranged.
  • the Young's modulus of each die bond resin is preferably 0.1 to 10 GPa, and the Young's modulus of the mold resin is preferably 10 to 30 GPa. This makes it possible to effectively mitigate the influence of thermal stress on the MEMS sensor.
  • the support substrate is a printed circuit board made of a glass epoxy substrate.
  • bonding between the glass epoxy substrate and the MEMS sensor via a die-bonding resin alleviates the influence of thermal stress on the MEMS sensor due to the difference in linear thermal expansion coefficient between the glass epoxy substrate and the MEMS sensor. can do.
  • the MEMS sensor has a configuration in which a sensor substrate mainly composed of silicon and a functional layer are stacked, and the sensor substrate disposed on the support substrate via the first die-bonding resin includes: It is preferable that at least an ASIC for a MEMS sensor is configured. As a result, the number of parts can be reduced, and the semiconductor device can be miniaturized.
  • the MEMS sensor has a laminated structure in which the functional layer is provided between a first sensor substrate and a second sensor substrate, the first sensor substrate is the ASIC, The first sensor substrate is preferably formed thicker than the second sensor substrate. Thereby, it becomes possible to reduce the influence of the thermal stress on the MEMS sensor more effectively.
  • the MEMS sensor is laminated on a second silicon substrate disposed on a support substrate via the first die bond resin.
  • the upper and lower sides of the MEMS sensor are sandwiched between the first silicon substrate and the second silicon substrate made of the same material as the MEMS sensor via a soft die bond resin.
  • the second silicon substrate constitutes at least an ASIC for a MEMS sensor.
  • the number of parts can be reduced, and the semiconductor device can be miniaturized.
  • the MEMS sensor preferably has a structure in which a sensor substrate mainly composed of silicon and a functional layer are laminated.
  • a plurality of the MEMS sensors are stacked.
  • the some MEMS sensor is arranged in parallel on the common ASIC for MEMS sensors.
  • FIG. 1 is a perspective view of the semiconductor device according to the first embodiment.
  • FIG. 2 is a longitudinal sectional view of the semiconductor device shown in FIG.
  • FIG. 3 is a partially enlarged longitudinal sectional view of a printed circuit board constituted by the glass epoxy substrate in the present embodiment.
  • FIG. 4A is a plan view showing an example of a functional layer of the MEMS sensor in the present embodiment
  • FIG. 4B is a partially enlarged longitudinal section showing a part of the MEMS sensor in the embodiment enlarged.
  • FIG. FIG. 5A is a partially enlarged plan view of a Y-axis magnetic sensor that detects an external magnetic field in the Y-axis direction
  • FIG. 5B is a portion of the Z-axis magnetic sensor that detects an external magnetic field in the Z-axis direction.
  • FIG. 4C is an enlarged longitudinal sectional view, and FIG. 4C is a partially enlarged plan view of an X-axis magnetic sensor that detects an external magnetic field in the X-axis direction.
  • FIG. 6 is a longitudinal sectional view of the semiconductor device according to the second embodiment.
  • FIG. 7 is a longitudinal sectional view of the semiconductor device according to the third embodiment.
  • FIG. 8 is a longitudinal sectional view of the semiconductor device according to the fourth embodiment.
  • FIG. 9 is a longitudinal sectional view of a semiconductor device according to the fifth embodiment.
  • FIG. 10 is a perspective view of the semiconductor device used in the simulation experiment.
  • FIG. 11 is a graph showing the relationship between the Young's modulus of the die bond resin and the offset amount in the MEMS sensor.
  • a MEMS sensor 3 and a magnetic sensor 4 are stacked on a printed circuit board (support substrate) 2 formed of a glass epoxy substrate. Therefore, the semiconductor device 1 is configured to have the functions of the MEMS sensor 3 and the magnetic sensor 4.
  • the MEMS sensor 3 is an acceleration sensor
  • the magnetic sensor 4 is a geomagnetic sensor.
  • a MEMS sensor 3 mainly composed of silicon is laminated on a printed board 2 via a first die bond resin 5.
  • the MEMS sensor 3 includes a first sensor substrate 6, a second sensor substrate 7, and a functional layer 8 provided between the first sensor substrate 6 and the second sensor substrate 7. It is comprised.
  • the functional layer 8 will be described with reference to FIGS.
  • the functional layer 8 is a silicon layer.
  • a frame body layer 15 is formed in the peripheral region, and the inside of the frame body layer 15 is a sensor region formation region.
  • the frame body layer 15 is indicated by oblique lines.
  • the functional layer 8 has a first hole 26, a second hole 27, and a third hole 28 that define the outer shape of the sensor portion inside the frame body layer 15.
  • Each hole 26, 27, 28 penetrates the frame layer 15 in the thickness direction.
  • the frame layer 15 and the second sensor substrate 7 are joined by an insulating layer 29.
  • the second sensor substrate 7 is made of silicon.
  • the frame layer 15 and the first sensor substrate 6 are bonded by the metal bonding layer 30.
  • the metal bonding layer 30 is formed by eutectic bonding of an Al layer 36 and a Ge layer 37, for example.
  • the first sensor substrate 6 has a configuration in which an insulating layer 6b is formed on the surface of a silicon substrate 6a, and a wiring layer is formed inside the insulating layer 6b.
  • the first movable body 41 is provided in the first hole 26.
  • the first movable portion 41 can detect the acceleration in the Z direction in the direction orthogonal to the sensor substrates 6 and 7.
  • a second movable body 42 is provided in the second hole 27.
  • the second movable body 42 can detect the acceleration in the Y direction parallel to the substrate surfaces of the sensor substrates 6 and 7.
  • a third movable body 43 is provided in the third hole 28.
  • the third movable body 43 can detect acceleration in the X direction orthogonal to the Z direction and the Y direction.
  • Each of the movable bodies 41 to 43 is cut out from the silicon layer by deep RIE or the like.
  • the sensor structure shown in FIG. 4A is, for example, a capacitance type, and is provided with a fixed portion that faces each of the movable bodies 41 to 43. Based on the change in capacitance generated between the movable bodies 41 to 43 and the fixed portion, accelerations in the X direction, the Y direction, and the Z direction can be detected.
  • the detection method may be other than the capacitance type.
  • an anchor portion 44 that supports the movable bodies 41 to 43 and the fixed portion is provided, and the anchor portion 44 and the second sensor substrate 7 are joined via an insulating layer 29. ing. Further, the anchor portion 44 and the first sensor substrate 6 are bonded by a metal bonding layer 30 formed by eutectic bonding of an Al layer 36 and a Ge layer 37.
  • symbol 46 shown in FIG.4 (b) is a movable body.
  • the movable body 46 is one of the movable bodies 41 to 43 shown in FIG. 4A, but is not particularly limited in FIG. 4B.
  • the movable body 46 is connected to the anchor portion 44 via a spring portion (not shown).
  • the anchor portion 44 is electrically connected to the wiring layer 45 provided in the insulating layer 6 b of the first sensor substrate 6 through the metal bonding layer 30. Capacitance change can be detected through the wiring layer 45.
  • the configuration of the functional layer 8 shown in FIG. 4A is merely an example, and the configuration of another functional layer 8 may be used.
  • An SOI substrate can be constituted by the second silicon substrate 7, the functional layer 8, and the insulating layer 29 shown in FIG. SiO 2 can be selected for the insulating layer 29.
  • the insulating layer 6b on the first sensor substrate 6 side is formed of SiO 2 , SiN, or the like, and may be a single layer or a structure in which a plurality of insulating layers of different materials are stacked.
  • the MEMS sensor 3 includes insulating layers 6b and 29 and a metal bonding layer 30, but the other parts are basically silicon.
  • the MEMS sensor 3 has a structure in which the functional layer 8 is a silicon layer, and the sensor substrates 6 and 7 facing the functional layer 8 (silicon layer) have a silicon substrate. It has a main structure.
  • the MEMS sensor 3 has a first sensor substrate 6 disposed on the lower surface side and a second sensor substrate 7 disposed on the upper surface side, and the upper and lower surfaces of the MEMS sensor 3. The silicon surface is exposed.
  • the first sensor substrate 6 constituting the MEMS sensor 3 also serves as the ASIC for the MEMS sensor. That is, the first sensor substrate 6 has a role of a wiring substrate for the functional layer 8 of the MEMS sensor 3 and a role as an ASIC.
  • the wiring layer 45 shown in FIG. 4B is connected to the ASIC circuit. As shown in FIGS. 1 and 2, a plurality of electrode portions 10 are formed on the surface of the first sensor substrate (MEMS sensor ASIC 6). Is exposed.
  • a silicon substrate (first silicon substrate) 11 is bonded on the MEMS sensor 3 via a second die bond resin 9.
  • first silicon substrate not only the first silicon substrate but also the second silicon substrate exists.
  • first and second terms for the silicon substrate are used for portions other than the MEMS sensor 3. This is applied to a silicon substrate.
  • the first silicon substrate 11 constitutes an ASIC 12 for a magnetic sensor.
  • the magnetic sensor ASIC 12 includes various semiconductor elements 11a to 11d formed on the surface of the first silicon substrate 11, an insulating layer 13 covering the surface of the first silicon substrate 11, and each semiconductor element. 11a to 11d and an electrode portion 14 electrically connected via a wiring layer (not shown).
  • a plurality of magnetic sensors 4a and 4b are arranged on the ASIC 12 for magnetic sensors.
  • One magnetic sensor 4 may be provided, but a plurality of magnetic sensors 4a and 4b are provided in the first embodiment.
  • the magnetic sensor 4a is for detecting an external magnetic field in the X-axis direction and the Y-axis direction
  • the magnetic sensor 4b is for detecting an external magnetic field in the Z-axis direction.
  • FIG. 5A shows a part of the Y-axis magnetic sensor 16.
  • the Y-axis magnetic sensor 16 electrically connects a plurality of element portions 16a extending in the X direction and spaced apart in the Y direction, and the end portions of the element portions 16a. And a connection portion 16b connected to the.
  • the element portion 16a is formed of, for example, an element structure of a GMR element, and the sensitivity axis direction is the Y direction.
  • the sensitivity axis direction is a direction in which the electric resistance value of the element portion 16a becomes the maximum value or the minimum value when an external magnetic field acts in that direction.
  • the element portion 16a is a GMR element
  • the fixed magnetization direction of the fixed magnetic layer (pinned layer) constituting the GMR element is the sensitivity axis direction.
  • the Y-axis magnetic sensor 16 in FIG. 5A can detect the external magnetic field in the Y direction based on the change in electrical resistance when the external magnetic field from the Y direction acts.
  • FIG. 5B shows a part of the Z-axis magnetic sensor 17.
  • the Z-axis magnetic sensor 17 includes an element portion 17a, an insulating layer 17b covering the element portion 17a, and a soft magnetic body 17c provided on the insulating layer 17b. Has been.
  • the element unit 17a is, for example, a GMR element, and the sensitivity axis direction is, for example, the Y direction.
  • the external magnetic field H1 that has entered the soft magnetic body 17c from the Z direction (vertical direction) leaks from the lower end 17c1 of the soft magnetic body 17c, a part thereof is converted into the X direction.
  • the external magnetic field H2 is configured. By arranging the element portion 17a at a place where the external magnetic field H2 acts, the external magnetic field H1 in the Z direction can be apparently detected by the element portion 17a.
  • FIG. 5C shows a part of the X-axis magnetic sensor 18.
  • the X-axis magnetic sensor 18 electrically connects a plurality of element portions 18a extending in the Y direction and spaced apart in the X direction, and ends of the element portions 18a. And a connecting portion 18b connected to the.
  • the element portion 18a has, for example, a laminated structure of GMR elements, and the sensitivity axis direction is the X direction.
  • the X-axis magnetic sensor 18 in FIG. 5C can detect the external magnetic field in the X direction based on the change in electrical resistance when the external magnetic field from the X direction acts.
  • the forms of the Y-axis magnetic sensor 16, the Z-axis magnetic sensor 17, and the X-axis magnetic sensor 18 may be other than those shown in FIG.
  • a magnetic sensor 4a shown in FIG. 1 has a package structure including a Y-axis magnetic sensor 16 and an X-axis magnetic sensor 18 shown in FIGS. Further, the magnetic sensor 4b shown in FIG. 1 has a package structure including the Z-axis magnetic sensor 17 shown in FIG.
  • the magnetic sensors 4a and 4b are fixedly supported on the magnetic sensor ASIC 12.
  • Each magnetic sensor 4a, 4b constitutes a geomagnetic sensor, for example.
  • a plurality of electrode portions 12 a are exposed on the surface of the magnetic sensor ASIC 12.
  • the electrode part 12a of the magnetic sensor ASIC 12 and the output part of each of the magnetic sensors 4a and 4b are electrically connected by wire bonding.
  • the plurality of electrode portions 12a and the plurality of electrode portions 12b are electrically connected via a circuit in the magnetic sensor ASIC.
  • a mold resin 20 as a sealing material covers the printed board 2, the side surfaces of the MEMS sensor 3 and the magnetic sensor 4, and the surface of the magnetic sensor 4.
  • the mold resin 20 is shown transparent so that the MEMS sensor 3 and the magnetic sensor 4 disposed inside the conductor device 1 can be seen.
  • the mold resin 20 is in contact with the surface of the MEMS sensor 3, the first silicon substrate 11 (ASIC 12 for magnetic sensor), and the magnetic sensor 4 with almost no gap.
  • Each electrode portion 2b provided on the surface and the electrode portion 12b provided on the magnetic sensor ASIC 12 are electrically connected to each other by wire bonding.
  • a plurality of electrodes 2a and 2b provided on the front surface of the printed circuit board 2 are electrically connected to the back surface of the printed circuit board 2 through internal wiring layers (not shown).
  • a terminal portion 2c is provided.
  • the first die bond resin 5 and the second die bond resin 9 shown in FIG. 2 are made of a softer material than the mold resin 20.
  • the material is not particularly limited as long as the die bond resins 5 and 9 are softer than the mold resin 20, but as an example, the die bond resins 5 and 9 are epoxy resins, and the mold resin 20 is an epoxy resin and a glass filler. Is a mixed configuration.
  • the material can be changed between the first die bond resin 5 and the second die bond resin 9, the same material can reduce the production cost and the heat to the MEMS sensor 3. It is preferable because it can effectively relieve stress.
  • the mold resin 20 has a configuration in which, for example, a glass filler is mixed in the resin as described above so as to approach the linear thermal expansion coefficient of the printed circuit board 2 configured by the glass epoxy substrate 2.
  • the first silicon substrate 11 made of the same material as that of the MEMS sensor 3 is overlaid on the MEMS sensor 3. Arranged. That is, since the first silicon substrate 11 that is the same as or close to the linear thermal expansion coefficient of the MEMS sensor 3 is interposed between the MEMS sensor 3 and the mold resin 20, the MEMS sensor 3 has a linear thermal expansion coefficient from above. The influence of the different mold resin 20 can be avoided directly. However, the thermal stress applied to the MEMS sensor 3 cannot be sufficiently relaxed only by stacking the first silicon substrate 11 of the same type as the MEMS sensor 3 on the MEMS sensor 3.
  • the die bond resins 5 and 9 used between the MEMS sensor 3 and the first silicon substrate 11 and between the printed circuit board (support substrate) 2 and the MEMS sensor 3 are used in place of the mold resin 20.
  • a soft material was used. Thereby, the influence of the thermal stress on the MEMS sensor 3 can be effectively reduced.
  • each die bond resin 5 and 9 is softer than the mold resin 20
  • each die bond resin 5 and 9 has a Young's modulus lower than that of the mold resin 20.
  • the die bond resins 5 and 9 have a Young's modulus of 0.1 to 10 GPa and the mold resin 20 has a Young's modulus of 10 to 30 GPa.
  • the Young's modulus of the die bond resins 5 and 9 is preferably 1 ⁇ 2 or less, more preferably 1 ⁇ 4 or less of the Young's modulus of the mold resin 20.
  • the first silicon substrate 11 constitutes an ASIC 12 for magnetic sensor
  • the magnetic sensor 4 is disposed on the ASIC 12 for magnetic sensor.
  • the ASIC 12 for magnetic sensor need not be provided separately from the first silicon substrate 11. Therefore, the number of components can be reduced, and the semiconductor device 1 can be reduced in size (reduced in height).
  • a plurality of magnetic sensors 4a and 4b having different detection directions of the external magnetic field are arranged on a common ASIC 12 for magnetic sensors.
  • the MEMS sensor 3 can be appropriately covered with one magnetic sensor ASIC (first silicon substrate 11) 12, and the influence of thermal stress on the MEMS sensor 3 can be effectively reduced.
  • a magnetic sensor 4 capable of multi-axis detection can be arranged.
  • substrate and the MEMS sensor 3 are joined by the die-bonding resin 5 softer than the mold resin 20, it is a printed circuit board (glass epoxy board
  • the first sensor substrate 6 constituting the MEMS sensor 3 also serves as the wiring substrate of the MEMS sensor 3 and the ASIC for the MEMS sensor.
  • the number of parts can be reduced, and the semiconductor device 1 can be reduced in size (reduced height).
  • the first sensor substrate 6 has a thickness dimension T1
  • the second sensor substrate 7 has a thickness dimension T2
  • T1 is thicker than T2.
  • FIG. 6 is a longitudinal sectional view of the semiconductor device 50 according to the second embodiment.
  • the same parts as those of the semiconductor device 1 shown in FIGS. 1 and 2 are denoted by the same reference numerals.
  • a second silicon substrate 51 is laminated on a printed board 2 made of a glass epoxy substrate via a third die bond resin 54.
  • a MEMS sensor 53 is laminated on the second silicon substrate 51 via the first die bond resin 5.
  • the first silicon substrate 11 is laminated on the MEMS sensor 53 via the second die bond resin 9.
  • the first silicon substrate 11 constitutes a magnetic sensor ASIC 12, and the magnetic sensor 4 is installed on the magnetic sensor ASIC 12.
  • a mold resin as a sealing material is formed on the printed circuit board 2 from the second silicon substrate 51, the MEMS sensor 53, the first silicon substrate 11 (ASIC 12 for the magnetic sensor), the side surfaces of the magnetic sensor 4, and the magnetic sensor 4. 20 is provided.
  • Each die bond resin 5, 9, 54 is a softer material than the mold resin 20.
  • a second silicon substrate 51 is provided between the MEMS sensor 53 and the printed board 2. Therefore, in FIG. 6, the upper and lower sides of the MEMS sensor 53 are sandwiched between the first silicon substrate 11 and the second silicon substrate 51 via the soft die bond resins 5 and 9. Thereby, the influence of the thermal stress with respect to the MEMS sensor 53 can be relieved more effectively.
  • the second silicon substrate 51 constitutes at least an ASIC 55 for a MEMS sensor.
  • the second sensor substrate 52 constituting the MEMS sensor 53 can be used only as a wiring substrate for the MEMS sensor 53.
  • the MEMS sensor 53 has a laminated structure in which the functional layer 8 is interposed between the first sensor substrate 52 and the second sensor substrate 7.
  • the second sensor substrate 52 has a configuration in which an insulating layer having a wiring layer is formed on the surface of a silicon substrate, and the MEMS sensor 53 has a silicon-based configuration including a silicon substrate and a silicon layer.
  • the electrode 52a of the second sensor substrate 52 which is the wiring substrate of the MEMS sensor 53, and the electrode portion 55a of the ASIC 55 are wire-bonded.
  • the second silicon substrate 51 may be an ASIC for both the magnetic sensor 4 and the MEMS sensor 53.
  • the second silicon substrate 51 is used as the ASIC 55, it is not necessary to provide an ASIC separately from the second silicon substrate 51, the number of components can be reduced, and the semiconductor device 50 can be reduced. Downsizing (low profile) can be promoted.
  • FIG. 7 shows a semiconductor device 60 of the third embodiment.
  • a second silicon substrate 51 for a MEMS sensor or an ASIC 55 for a magnetic sensor and a MEMS sensor
  • a printed circuit board 2 composed of a glass epoxy substrate via a third die bond resin 54.
  • a MEMS sensor 61 is laminated on the first die bond resin 5.
  • the MEMS sensor 61 is simply illustrated, but for example, has the same configuration as the MEMS sensor 53 illustrated in FIG. 6.
  • the MEMS sensor 63 is further laminated on the MEMS sensor 61 via the fourth die bond resin 62.
  • the first silicon substrate 11 is laminated on the MEMS sensor 63 via the second die bond resin 9.
  • the second silicon substrate 51, the MEMS sensors 61 and 63, the first silicon substrate 11 (magnetic sensor ASIC 12), the side surfaces of the magnetic sensor 4, and the magnetic sensor 4 are used as a sealing material.
  • a mold resin 20 is provided.
  • Each die bond resin 5, 9, 54, 62 is a softer material than the mold resin 20.
  • the upper and lower sides of the MEMS sensors 61 and 63 are sandwiched between the first silicon substrate 11 and the second silicon substrate 51 via a soft die bond resin. Thereby, the influence of the thermal stress with respect to the MEMS sensor 53 can be relieved more effectively.
  • the MEMS sensors 61 and 63 may be of the same type or different.
  • the MEMS sensors 61 and 63 are both acceleration sensors, but the MEMS sensor 61 and the MEMS sensor 63 may have different acceleration detection directions.
  • the MEMS sensor 61 and the MEMS sensor 63 can be configured as different MEMS sensors such as an acceleration sensor, a gyroscope, and an atmospheric pressure sensor.
  • FIG. 8 shows a semiconductor device 70 according to the fourth embodiment.
  • a second silicon substrate 51 (for a MEMS sensor, or an ASIC 55 for a magnetic sensor and a MEMS sensor) is laminated on a printed circuit board 2 composed of a glass epoxy substrate via a third die bond resin 54.
  • a plurality of MEMS sensors 71, 72 are arranged side by side via the first die bond resin 5.
  • a first silicon substrate 11 is laminated on each MEMS sensor 71, 72 via a second die bond resin 9.
  • Each first silicon substrate 11 can be configured as a magnetic sensor ASIC 12, and the magnetic sensor 4 is provided on each magnetic sensor ASIC.
  • a mold resin 20 is provided as a stopper.
  • Each die bond resin 5, 9, 54 is a softer material than the mold resin 20.
  • the upper and lower sides of the MEMS sensors 71 and 72 are sandwiched between the first silicon substrate 11 and the second silicon substrate 51 via a soft die bond resin. Thereby, the influence of the thermal stress with respect to the MEMS sensors 71 and 72 can be relieved more effectively.
  • a plurality of MEMS sensors 71 and 72 are arranged side by side on a common ASIC 55.
  • the MEMS sensors 71 and 72 may be of the same type or different.
  • the first silicon substrate 11 is laminated on the upper surfaces of the MEMS sensors 71 and 72 arranged side by side through the die bond resin 9.
  • the first silicon substrate 11 is provided on the upper surface of each MEMS sensor 71, 72, but a common first silicon substrate 11 may be disposed on the upper surface of each MEMS sensor 71, 72. It is.
  • FIG. 9 shows a semiconductor device 80 of the fifth embodiment.
  • a second silicon substrate 51 for a MEMS sensor, or an ASIC 55 for a magnetic sensor and a MEMS sensor
  • the MEMS sensor 81 is arranged in parallel on the first die bond resin 5.
  • a first silicon substrate 82 is laminated on the MEMS sensor 81 with a second die bond resin 9 interposed therebetween.
  • a mold resin 20 as a sealing material is provided from the printed circuit board 2 to the second silicon substrate 51, the MEMS sensor 81, the side surfaces of the first silicon substrate 11, and the first silicon substrate 11. .
  • Each die bond resin 5, 9, 54 is a softer material than the mold resin 20.
  • the upper and lower sides of the MEMS sensor 81 are sandwiched between the first silicon substrate 11 and the second silicon substrate 51 via a soft die bond resin. Thereby, the influence of the thermal stress with respect to the MEMS sensor 81 can be relieved more effectively.
  • the first silicon substrate 11 is not a magnetic sensor ASIC but a simple silicon substrate. Therefore, the semiconductor device 80 shown in FIG. 9 is not provided with a magnetic sensor. Although the magnetic sensor is not arranged in FIG. 9, the first silicon substrate 11 is arranged on the upper surface of the MEMS sensor 81 via a die bond resin in order to relieve the thermal stress on the MEMS sensor 81.
  • a semiconductor device 90 shown in FIG. 10 was produced.
  • the configuration is basically the same as that of the semiconductor device 1 shown in FIG. That is, the MEMS sensor 3 is laminated on the upper surface of the printed board 2 made of a glass epoxy substrate via a die bond resin (not shown), and the first silicon substrate 11 is placed on the MEMS sensor 3 via a die bond resin (not shown). Were laminated. Further, the magnetic sensor 4 was disposed on the first silicon substrate 11. Further, the periphery was sealed with a mold resin 20.
  • the semiconductor device 90 in FIG. 10 is used for the simulation experiment.
  • the MEMS sensor and the printed circuit board include not only a silicon substrate but also an insulating layer and a metal bonding layer. In this experiment, it was assumed that the silicon substrate was formed.
  • the Young's modulus of the mold resin 20 was set to 20 GPa. Then, the Young's modulus of the die bond resin was changed to 0.6 GPa, 2.8 GPa, 9 GPa, and 200 GPa, and the offset amount of the MEMS sensor 3 at that time was examined.
  • the offset amount indicates the amount of change in the detected value obtained from the MEMS sensor 3 when a heat treatment of ⁇ 60 ° C. is performed on the normal temperature (25 ° C.). Therefore, the offset amount is preferably zero.
  • the functional layer 8 of the MEMS sensor 3 has, for example, the structure of a triaxial acceleration sensor similar to that shown in FIG. 4A, and how the offset amount of the acceleration of each axis changes with respect to the Young's modulus of the die bond resin. I investigated. The experimental results are shown in FIG.
  • the Young's modulus of the die bond resin is increased to 200 GPa, the offset amount of acceleration in any of the X axis, the Y axis, and the Z axis becomes very large and deteriorates.
  • the Young's modulus of the mold resin 20 is 20 GPa, if the Young's modulus of the die bond resin is 0.6 GPa to 9 GPa, which is smaller than the Young's modulus of the mold resin, the die bond resin can be made softer than the mold resin 20 and offset. It was found that the amount could be reduced.
  • Second silicon substrate 1, 50, 60, 70, 80 Semiconductor device 2 Printed circuit board 3, 53, 61, 63, 71, 72, 81 MEMS sensor 4, 4a, 4b Magnetic sensor 5 First die bond resin 6 First sensor substrate 7, 52 Second sensor substrate 8 Functional layer 9 Second die bond resin 11 First silicon substrate 16 Y-axis magnetic sensor 17 Z-axis magnetic sensor 18 X-axis magnetic sensor 20 Mold resin 29 Insulating layer 30 Metal bonding layers 41 to 43 Movable Body 45 Wiring layer 51 Second silicon substrate 54 Third die bond resin

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Micromachines (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

[Problem] The purpose of the present invention is to provide a semiconductor device enabling an unprecedented reduction in the impact of thermal stress, in particular on a MEMS sensor. [Solution] The present invention is characterized by comprising: a MEMS sensor (3) composed principally of silicon layered onto a printed substrate (2) (support substrate) with a first die-bonding resin (5) interposed therebetween; a first silicon substrate (11) (magnetic sensor ASIC) layered onto the MEMS sensor (3) with a second die-bonding resin (9) interposed therebetween; and a molded resin (20) serving as a sealant; the die-bonding resins (5, 9) being formed of materials softer than the molded resin (20).

Description

半導体装置Semiconductor device
 本発明は、MEMSセンサを備えた半導体装置に関する。 The present invention relates to a semiconductor device provided with a MEMS sensor.
 特許文献1および特許文献2には、MEMSデバイスに関する発明が開示されている。
 特許文献1,2に示すようにMEMSセンサは基板上に配置され、モールド樹脂にて封止されている。MEMSセンサはシリコンを主体として形成されている。
Patent Document 1 and Patent Document 2 disclose inventions related to MEMS devices.
As shown in Patent Documents 1 and 2, the MEMS sensor is disposed on a substrate and sealed with a mold resin. The MEMS sensor is formed mainly of silicon.
 従来においては、MEMSセンサとMEMSセンサを覆うモールド樹脂との間での線熱膨張係数の差および、MEMSセンサと基板との間での線熱膨張係数の差により、MEMSセンサに熱応力が加わり、それによりセンサ感度が低下する問題があった。 Conventionally, thermal stress is applied to the MEMS sensor due to the difference in coefficient of linear thermal expansion between the MEMS sensor and the mold resin covering the MEMS sensor and the difference in coefficient of linear thermal expansion between the MEMS sensor and the substrate. As a result, there is a problem that the sensor sensitivity is lowered.
特開2012-35338号公報JP 2012-35338 A 特開2010-164412号公報JP 2010-164212 A
 本発明は、上記従来の課題を解決するものであり、特に、MEMSセンサに対する熱応力の影響を従来よりも小さくすることができる半導体装置を提供することを目的としている。 The present invention solves the above-described conventional problems, and in particular, an object of the present invention is to provide a semiconductor device that can reduce the influence of thermal stress on the MEMS sensor.
 本発明における半導体装置は、
 支持基板上に第1のダイボンド樹脂を介して積層されたシリコンを主体とするMEMSセンサと、前記MEMSセンサ上に第2のダイボンド樹脂を介して積層された第1のシリコン基板と、封止材としてのモールド樹脂と、を有しており、
 各ダイボンド樹脂は、前記モールド樹脂よりも軟質な材質により形成されていることを特徴とするものである。
The semiconductor device in the present invention is
A MEMS sensor mainly composed of silicon laminated on a support substrate via a first die bond resin, a first silicon substrate laminated via a second die bond resin on the MEMS sensor, and a sealing material And a mold resin as
Each die bond resin is formed of a softer material than the mold resin.
 このように本発明では、MEMSセンサと同種の材質の第1のシリコン基板をMEMSセンサ上に重ねて配置した。したがってMEMSセンサとモールド樹脂との間には、MEMSセンサの線熱膨張係数と同じかあるいはそれに近い第1のシリコン基板が介在するため、MEMSセンサの上方から線熱膨張係数が異なるモールド樹脂の影響を直接受けない。本発明では、MEMSセンサと同種の第1のシリコン基板をMEMSセンサ上に重ねるとともに、MEMSセンサと第1のシリコン基板との間、および支持基板とMEMSセンサとの間に、モールド樹脂よりも軟質なダイボンド樹脂を用いることで、MEMSセンサに対する熱応力の影響を効果的に緩和することが可能になる。 As described above, in the present invention, the first silicon substrate of the same kind as that of the MEMS sensor is disposed on the MEMS sensor. Therefore, since the first silicon substrate having the same or close linear thermal expansion coefficient as the MEMS sensor is interposed between the MEMS sensor and the mold resin, the influence of the mold resin having a different linear thermal expansion coefficient from above the MEMS sensor. Do not receive directly. In the present invention, a first silicon substrate of the same type as the MEMS sensor is overlaid on the MEMS sensor, and is softer than the mold resin between the MEMS sensor and the first silicon substrate and between the support substrate and the MEMS sensor. By using a simple die bond resin, it becomes possible to effectively mitigate the influence of thermal stress on the MEMS sensor.
 前記第1のシリコン基板は、磁気センサ用ASICを構成しており、前記磁気センサ用ASIC上に磁気センサが配置されていることが好ましい。これにより部品点数を減らすことができ、半導体装置の小型化を実現できる。 It is preferable that the first silicon substrate constitutes an ASIC for a magnetic sensor, and the magnetic sensor is disposed on the ASIC for the magnetic sensor. As a result, the number of parts can be reduced, and the semiconductor device can be downsized.
 また本発明では、磁界の検知方向が異なる複数の前記磁気センサが、共通の前記磁気センサ用ASIC上に配置されていることが好ましい。これにより、MEMSセンサ上を適切に一つの磁気センサ用ASIC(第1のシリコン基板)で覆うことができ、MEMSセンサに対する熱応力の影響を効果的に緩和することができるとともに、多軸検知が可能な磁気センサを配置できる。 In the present invention, it is preferable that a plurality of the magnetic sensors having different magnetic field detection directions are arranged on the common magnetic sensor ASIC. Thus, the MEMS sensor can be appropriately covered with one magnetic sensor ASIC (first silicon substrate), and the influence of thermal stress on the MEMS sensor can be effectively reduced, and multi-axis detection can be performed. Possible magnetic sensors can be arranged.
 また本発明では、各ダイボンド樹脂のヤング率は、0.1~10GPaであり、前記モールド樹脂のヤング率は、10~30GPaであることが好ましい。これにより、MEMSセンサに対する熱応力の影響を効果的に緩和することが可能になる。 In the present invention, the Young's modulus of each die bond resin is preferably 0.1 to 10 GPa, and the Young's modulus of the mold resin is preferably 10 to 30 GPa. This makes it possible to effectively mitigate the influence of thermal stress on the MEMS sensor.
 また本発明では、前記支持基板は、ガラスエポキシ基板より構成されたプリント基板であることが好ましい。かかる場合、ガラスエポキシ基板とMEMSセンサとの間を、ダイボンド樹脂を介して接合することで、ガラスエポキシ基板とMEMSセンサとの線熱膨張係数差に起因する、MEMSセンサに対する熱応力の影響を緩和することができる。 In the present invention, it is preferable that the support substrate is a printed circuit board made of a glass epoxy substrate. In such a case, bonding between the glass epoxy substrate and the MEMS sensor via a die-bonding resin alleviates the influence of thermal stress on the MEMS sensor due to the difference in linear thermal expansion coefficient between the glass epoxy substrate and the MEMS sensor. can do.
 また本発明では、前記MEMSセンサは、シリコンを主体としたセンサ基板と機能層とが積層された構成であり、前記支持基板上に前記第1のダイボンド樹脂を介して配置された前記センサ基板は、少なくともMEMSセンサ用としてのASICを構成していることが好ましい。これにより部品点数を低減でき、半導体装置の小型化を実現できる。 In the present invention, the MEMS sensor has a configuration in which a sensor substrate mainly composed of silicon and a functional layer are stacked, and the sensor substrate disposed on the support substrate via the first die-bonding resin includes: It is preferable that at least an ASIC for a MEMS sensor is configured. As a result, the number of parts can be reduced, and the semiconductor device can be miniaturized.
 また本発明では、前記MEMSセンサは、第1のセンサ基板と第2のセンサ基板との間に前記機能層が設けられた積層構造であり、前記第1のセンサ基板が前記ASICであり、前記第1のセンサ基板は前記第2のセンサ基板よりも厚く形成されていることが好ましい。これにより、MEMSセンサに対する熱応力の影響をより効果的に緩和することが可能になる。 In the present invention, the MEMS sensor has a laminated structure in which the functional layer is provided between a first sensor substrate and a second sensor substrate, the first sensor substrate is the ASIC, The first sensor substrate is preferably formed thicker than the second sensor substrate. Thereby, it becomes possible to reduce the influence of the thermal stress on the MEMS sensor more effectively.
 また本発明では、前記MEMSセンサは、支持基板上に配置された第2のシリコン基板上に前記第1のダイボンド樹脂を介して積層されていることが好ましい。本発明では、MEMSセンサと同種の材質の第1のシリコン基板および第2のシリコン基板によりMEMSセンサの上下を、軟質のダイボンド樹脂を介して挟んだ。これにより、MEMSセンサに対する熱応力の影響をより効果的に緩和することが可能になる。 In the present invention, it is preferable that the MEMS sensor is laminated on a second silicon substrate disposed on a support substrate via the first die bond resin. In the present invention, the upper and lower sides of the MEMS sensor are sandwiched between the first silicon substrate and the second silicon substrate made of the same material as the MEMS sensor via a soft die bond resin. Thereby, it becomes possible to reduce the influence of the thermal stress on the MEMS sensor more effectively.
 また本発明では、前記第2のシリコン基板は、少なくともMEMSセンサ用としてのASICを構成していることが好ましい。これにより部品点数を低減でき、半導体装置の小型化を実現できる。 In the present invention, it is preferable that the second silicon substrate constitutes at least an ASIC for a MEMS sensor. As a result, the number of parts can be reduced, and the semiconductor device can be miniaturized.
 また本発明では、前記MEMSセンサは、シリコンを主体としたセンサ基板と機能層とが積層された構成であることが好ましい。 In the present invention, the MEMS sensor preferably has a structure in which a sensor substrate mainly composed of silicon and a functional layer are laminated.
 また本発明では、複数の前記MEMSセンサが積層されていることが好ましい。あるいは、複数のMEMSセンサが、共通のMEMSセンサ用ASIC上に並設されていることが好ましい。 In the present invention, it is preferable that a plurality of the MEMS sensors are stacked. Or it is preferable that the some MEMS sensor is arranged in parallel on the common ASIC for MEMS sensors.
 本発明によれば、MEMSセンサに対する熱応力の影響を効果的に緩和することが可能になる。 According to the present invention, it is possible to effectively mitigate the influence of thermal stress on the MEMS sensor.
図1は、第1実施形態における半導体装置の斜視図である。FIG. 1 is a perspective view of the semiconductor device according to the first embodiment. 図2は、図1に示す半導体装置の縦断面図である。FIG. 2 is a longitudinal sectional view of the semiconductor device shown in FIG. 図3は、本実施形態におけるガラスエポキシ基板により構成されたプリント基板の部分拡大縦断面図である。FIG. 3 is a partially enlarged longitudinal sectional view of a printed circuit board constituted by the glass epoxy substrate in the present embodiment. 図4(a)は、本実施形態におけるMEMSセンサの機能層の一例を示す平面図であり、図4(b)は、本実施形態におけるMEMSセンサの一部を拡大して示した部分拡大縦断面図である。FIG. 4A is a plan view showing an example of a functional layer of the MEMS sensor in the present embodiment, and FIG. 4B is a partially enlarged longitudinal section showing a part of the MEMS sensor in the embodiment enlarged. FIG. 図5(a)は、Y軸方向の外部磁界を検知するY軸磁気センサの部分拡大平面図であり、図5(b)は、Z軸方向の外部磁界を検知するZ軸磁気センサの部分拡大縦断面図であり、図4(c)は、X軸方向の外部磁界を検知するX軸磁気センサの部分拡大平面図である。FIG. 5A is a partially enlarged plan view of a Y-axis magnetic sensor that detects an external magnetic field in the Y-axis direction, and FIG. 5B is a portion of the Z-axis magnetic sensor that detects an external magnetic field in the Z-axis direction. FIG. 4C is an enlarged longitudinal sectional view, and FIG. 4C is a partially enlarged plan view of an X-axis magnetic sensor that detects an external magnetic field in the X-axis direction. 図6は、第2実施形態における半導体装置の縦断面図である。FIG. 6 is a longitudinal sectional view of the semiconductor device according to the second embodiment. 図7は、第3実施形態における半導体装置の縦断面図である。FIG. 7 is a longitudinal sectional view of the semiconductor device according to the third embodiment. 図8は、第4実施形態における半導体装置の縦断面図である。FIG. 8 is a longitudinal sectional view of the semiconductor device according to the fourth embodiment. 図9は、第5実施形態における半導体装置の縦断面図である。FIG. 9 is a longitudinal sectional view of a semiconductor device according to the fifth embodiment. 図10は、シミュレーション実験に使用した半導体装置の斜視図である。FIG. 10 is a perspective view of the semiconductor device used in the simulation experiment. 図11は、ダイボンド樹脂のヤング率とMEMSセンサにおけるオフセット量との関係を示すグラフである。FIG. 11 is a graph showing the relationship between the Young's modulus of the die bond resin and the offset amount in the MEMS sensor.
 図1に示す半導体装置1には、ガラスエポキシ基板により構成されたプリント基板(支持基板)2上にMEMSセンサ3と磁気センサ4とが積層されている。よって半導体装置1は、MEMSセンサ3および磁気センサ4の各機能を備えた構成となっている。例えばMEMSセンサ3は加速度センサで、磁気センサ4は地磁気センサを構成している。 In the semiconductor device 1 shown in FIG. 1, a MEMS sensor 3 and a magnetic sensor 4 are stacked on a printed circuit board (support substrate) 2 formed of a glass epoxy substrate. Therefore, the semiconductor device 1 is configured to have the functions of the MEMS sensor 3 and the magnetic sensor 4. For example, the MEMS sensor 3 is an acceleration sensor, and the magnetic sensor 4 is a geomagnetic sensor.
 図2に示すように、プリント基板2上には第1のダイボンド樹脂5を介してシリコンを主体とするMEMSセンサ3が積層されている。 As shown in FIG. 2, a MEMS sensor 3 mainly composed of silicon is laminated on a printed board 2 via a first die bond resin 5.
 図2に示すようにMEMSセンサ3は、第1のセンサ基板6と第2のセンサ基板7と、第1のセンサ基板6と第2のセンサ基板7との間に設けられた機能層8とを有して構成される。 As shown in FIG. 2, the MEMS sensor 3 includes a first sensor substrate 6, a second sensor substrate 7, and a functional layer 8 provided between the first sensor substrate 6 and the second sensor substrate 7. It is comprised.
 機能層8について図4(a)(b)を用いて説明する。機能層8はシリコン層である。機能層8には、周囲領域に枠体層15が形成されており、枠体層15の内部がセンサ部の形成領域となっている。図4(a)では枠体層15を斜線で示している。 The functional layer 8 will be described with reference to FIGS. The functional layer 8 is a silicon layer. In the functional layer 8, a frame body layer 15 is formed in the peripheral region, and the inside of the frame body layer 15 is a sensor region formation region. In FIG. 4A, the frame body layer 15 is indicated by oblique lines.
 図4(a)に示すように、機能層8には枠体層15の内側にセンサ部の外形を規定する第1の穴26と第2の穴27および第3の穴28が形成されており、それぞれの穴26,27,28は、枠体層15を厚さ方向に貫通している。 As shown in FIG. 4A, the functional layer 8 has a first hole 26, a second hole 27, and a third hole 28 that define the outer shape of the sensor portion inside the frame body layer 15. Each hole 26, 27, 28 penetrates the frame layer 15 in the thickness direction.
 図4(b)に示すように枠体層15と第2のセンサ基板7との間が絶縁層29により接合されている。第2のセンサ基板7はシリコンで形成されている。また図4(b)に示すように枠体層15と第1のセンサ基板6との間が金属接合層30により接合されている。金属接合層30は例えば、Al層36とGe層37とが共晶接合されたものである。第1のセンサ基板6はシリコン基板6aの表面に絶縁層6bが形成された構成であり、また絶縁層6bの内部には配線層が形成されている。 As shown in FIG. 4B, the frame layer 15 and the second sensor substrate 7 are joined by an insulating layer 29. The second sensor substrate 7 is made of silicon. Further, as shown in FIG. 4B, the frame layer 15 and the first sensor substrate 6 are bonded by the metal bonding layer 30. The metal bonding layer 30 is formed by eutectic bonding of an Al layer 36 and a Ge layer 37, for example. The first sensor substrate 6 has a configuration in which an insulating layer 6b is formed on the surface of a silicon substrate 6a, and a wiring layer is formed inside the insulating layer 6b.
 図4(a)に示すように第1の穴26には、第1の可動体41が設けられている。第1の可動部41により、各センサ基板6,7と直交する向きのZ方向の加速度を検知できる。また、第2の穴27には第2の可動体42が設けられている。第2の可動体42により、各センサ基板6,7の基板面と平行なY方向の加速度を検知できる。また、第3の穴28には、第3の可動体43が設けられている。第3の可動体43により、Z方向およびY方向に直交するX方向の加速度を検知できる。
 各可動体41~43はシリコン層からディープRIE等により切り出したものである。
As shown in FIG. 4A, the first movable body 41 is provided in the first hole 26. The first movable portion 41 can detect the acceleration in the Z direction in the direction orthogonal to the sensor substrates 6 and 7. A second movable body 42 is provided in the second hole 27. The second movable body 42 can detect the acceleration in the Y direction parallel to the substrate surfaces of the sensor substrates 6 and 7. Further, a third movable body 43 is provided in the third hole 28. The third movable body 43 can detect acceleration in the X direction orthogonal to the Z direction and the Y direction.
Each of the movable bodies 41 to 43 is cut out from the silicon layer by deep RIE or the like.
 図4(a)に示すセンサ構造は、例えば静電容量型であり、各可動体41~43と対向する固定部が設けられている。そして各可動体41~43と固定部との間で生じる静電容量変化に基づいて、X方向、Y方向およびZ方向の加速度を検知できる。なお検出方法としては静電容量型以外であってもよい。 The sensor structure shown in FIG. 4A is, for example, a capacitance type, and is provided with a fixed portion that faces each of the movable bodies 41 to 43. Based on the change in capacitance generated between the movable bodies 41 to 43 and the fixed portion, accelerations in the X direction, the Y direction, and the Z direction can be detected. The detection method may be other than the capacitance type.
 図4(b)に示すように、可動体41~43や固定部を支持するアンカ部44が設けられており、アンカ部44と第2のセンサ基板7間は絶縁層29を介して接合されている。また、アンカ部44と第1のセンサ基板6との間は、Al層36とGe層37とが共晶接合されてなる金属接合層30により接合されている。また図4(b)に示す符号46は可動体である。可動体46は、図4(a)に示す各可動体41~43のいずれかを示しているが、図4(b)では特に限定していない。可動体46はアンカ部44に図示しないばね部を介してつながっている。 As shown in FIG. 4B, an anchor portion 44 that supports the movable bodies 41 to 43 and the fixed portion is provided, and the anchor portion 44 and the second sensor substrate 7 are joined via an insulating layer 29. ing. Further, the anchor portion 44 and the first sensor substrate 6 are bonded by a metal bonding layer 30 formed by eutectic bonding of an Al layer 36 and a Ge layer 37. Moreover, the code | symbol 46 shown in FIG.4 (b) is a movable body. The movable body 46 is one of the movable bodies 41 to 43 shown in FIG. 4A, but is not particularly limited in FIG. 4B. The movable body 46 is connected to the anchor portion 44 via a spring portion (not shown).
 図4(b)に示すように、アンカ部44は金属接合層30を介して第1のセンサ基板6の絶縁層6b内に設けられた配線層45と電気的に接続されている。配線層45を通して静電容量変化を検出することができる。 As shown in FIG. 4B, the anchor portion 44 is electrically connected to the wiring layer 45 provided in the insulating layer 6 b of the first sensor substrate 6 through the metal bonding layer 30. Capacitance change can be detected through the wiring layer 45.
 図4(a)に示す機能層8の構成はあくまで一例であり、ほかの機能層8の構成であってもよい。 The configuration of the functional layer 8 shown in FIG. 4A is merely an example, and the configuration of another functional layer 8 may be used.
 図4(b)に示す第2のシリコン基板7と、機能層8と絶縁層29によりSOI基板を構成することができる。絶縁層29にはSiOを選択できる。また第1のセンサ基板6側の絶縁層6bはSiOやSiN等で形成され、単層であっても材質の異なる複数の絶縁層が積層された構成であってもよい。 An SOI substrate can be constituted by the second silicon substrate 7, the functional layer 8, and the insulating layer 29 shown in FIG. SiO 2 can be selected for the insulating layer 29. The insulating layer 6b on the first sensor substrate 6 side is formed of SiO 2 , SiN, or the like, and may be a single layer or a structure in which a plurality of insulating layers of different materials are stacked.
 MEMSセンサ3には絶縁層6b,29や金属接合層30を含むが、それ以外の部分は基本的にシリコンである。このように、MEMSセンサ3は、機能層8の部分がシリコン層であり、また機能層8(シリコン層)と対向するセンサ基板6,7がシリコン基板を有した構成となっており、シリコンを主体とした構成となっている。 The MEMS sensor 3 includes insulating layers 6b and 29 and a metal bonding layer 30, but the other parts are basically silicon. Thus, the MEMS sensor 3 has a structure in which the functional layer 8 is a silicon layer, and the sensor substrates 6 and 7 facing the functional layer 8 (silicon layer) have a silicon substrate. It has a main structure.
 図2、図4(b)に示すようにMEMSセンサ3は下面側に第1のセンサ基板6が配置され、上面側に第2のセンサ基板7が配置されており、MEMSセンサ3の上下面は、シリコン表面が露出している。 As shown in FIGS. 2 and 4B, the MEMS sensor 3 has a first sensor substrate 6 disposed on the lower surface side and a second sensor substrate 7 disposed on the upper surface side, and the upper and lower surfaces of the MEMS sensor 3. The silicon surface is exposed.
 図1,図2に示す第1実施形態では、MEMSセンサ3を構成する第1のセンサ基板6が、MEMSセンサ用ASICを兼用している。すなわち第1のセンサ基板6はMEMSセンサ3の機能層8に対する配線基板の役割とASICとしての役割を持っている。 In the first embodiment shown in FIGS. 1 and 2, the first sensor substrate 6 constituting the MEMS sensor 3 also serves as the ASIC for the MEMS sensor. That is, the first sensor substrate 6 has a role of a wiring substrate for the functional layer 8 of the MEMS sensor 3 and a role as an ASIC.
 図4(b)に示す配線層45は、ASICの回路に接続されており、図1,図2に示すように第1のセンサ基板(MEMSセンサ用ASIC6)の表面には複数の電極部10が露出形成されている。 The wiring layer 45 shown in FIG. 4B is connected to the ASIC circuit. As shown in FIGS. 1 and 2, a plurality of electrode portions 10 are formed on the surface of the first sensor substrate (MEMS sensor ASIC 6). Is exposed.
 図2に示すようにMEMSセンサ3上には第2のダイボンド樹脂9を介してシリコン基板(第1のシリコン基板)11が接合されている。また後述の図6では第1のシリコン基板のみならず第2のシリコン基板も存在するが、本明細書では、シリコン基板に対する第1、第2の用語は、MEMSセンサ3以外の部分に使用されるシリコン基板に対して適用される。 As shown in FIG. 2, a silicon substrate (first silicon substrate) 11 is bonded on the MEMS sensor 3 via a second die bond resin 9. In FIG. 6 to be described later, not only the first silicon substrate but also the second silicon substrate exists. In this specification, the first and second terms for the silicon substrate are used for portions other than the MEMS sensor 3. This is applied to a silicon substrate.
 図1,図2に示す第1実施形態では、第1のシリコン基板11は、磁気センサ用ASIC12を構成している。図3に示すように磁気センサ用ASIC12は第1のシリコン基板11の表面に形成された各種の半導体素子11a~11dと、第1のシリコン基板11の表面を覆う絶縁層13と、各半導体素子11a~11dと配線層(図示せず)を介して電気的に接続された電極部14とを有して構成される。 In the first embodiment shown in FIGS. 1 and 2, the first silicon substrate 11 constitutes an ASIC 12 for a magnetic sensor. As shown in FIG. 3, the magnetic sensor ASIC 12 includes various semiconductor elements 11a to 11d formed on the surface of the first silicon substrate 11, an insulating layer 13 covering the surface of the first silicon substrate 11, and each semiconductor element. 11a to 11d and an electrode portion 14 electrically connected via a wiring layer (not shown).
 そして図1,図2に示すように磁気センサ用ASIC12上には複数の磁気センサ4a,4bが配置されている。磁気センサ4は一つであってもよいが、第1実施形態では複数の磁気センサ4a,4bが設けられている。例えば磁気センサ4aはX軸方向およびY軸方向の外部磁界検知用であり、磁気センサ4bはZ軸方向の外部磁界検知用である。 1 and 2, a plurality of magnetic sensors 4a and 4b are arranged on the ASIC 12 for magnetic sensors. One magnetic sensor 4 may be provided, but a plurality of magnetic sensors 4a and 4b are provided in the first embodiment. For example, the magnetic sensor 4a is for detecting an external magnetic field in the X-axis direction and the Y-axis direction, and the magnetic sensor 4b is for detecting an external magnetic field in the Z-axis direction.
 図5(a)はY軸磁気センサ16の一部を示している。図5(a)に示すようにY軸磁気センサ16は、X方向に延出するとともにY方向に間隔をあけて配置された複数の素子部16aと、各素子部16aの端部を電気的に接続する接続部16bとを有して構成される。素子部16aは、例えばGMR素子の素子構造で形成されており、感度軸方向がY方向である。感度軸方向とは、その方向に外部磁界が作用したとき素子部16aの電気抵抗値が最大値あるいは最小値となる方向である。素子部16aがGMR素子であるとき、GMR素子を構成する固定磁性層(ピンド層)の固定磁化方向が感度軸方向である。 FIG. 5A shows a part of the Y-axis magnetic sensor 16. As shown in FIG. 5A, the Y-axis magnetic sensor 16 electrically connects a plurality of element portions 16a extending in the X direction and spaced apart in the Y direction, and the end portions of the element portions 16a. And a connection portion 16b connected to the. The element portion 16a is formed of, for example, an element structure of a GMR element, and the sensitivity axis direction is the Y direction. The sensitivity axis direction is a direction in which the electric resistance value of the element portion 16a becomes the maximum value or the minimum value when an external magnetic field acts in that direction. When the element portion 16a is a GMR element, the fixed magnetization direction of the fixed magnetic layer (pinned layer) constituting the GMR element is the sensitivity axis direction.
 よって図5(a)のY軸磁気センサ16では、Y方向からの外部磁界が作用した際の電気抵抗変化に基づいてY方向の外部磁界を検知することができる。 Therefore, the Y-axis magnetic sensor 16 in FIG. 5A can detect the external magnetic field in the Y direction based on the change in electrical resistance when the external magnetic field from the Y direction acts.
 また、図5(b)はZ軸磁気センサ17の一部を示している。図5(b)に示すようにZ軸磁気センサ17では、素子部17aと、素子部17a上を覆う絶縁層17bと、絶縁層17b上に設けられた軟磁性体17cとを有して構成されている。 FIG. 5B shows a part of the Z-axis magnetic sensor 17. As shown in FIG. 5B, the Z-axis magnetic sensor 17 includes an element portion 17a, an insulating layer 17b covering the element portion 17a, and a soft magnetic body 17c provided on the insulating layer 17b. Has been.
 素子部17aは例えばGMR素子であり、感度軸方向は例えばY方向とされている。図5(b)に示すようにZ方向(垂直方向)から軟磁性体17cに進入した外部磁界H1は、軟磁性体17cの下端部17c1から漏れ出したとき、一部がX方向に変換された外部磁界H2を構成する。そして素子部17aを外部磁界H2が作用する場所に配置することで、見かけ上、Z方向の外部磁界H1を素子部17aにより検知することができる。 The element unit 17a is, for example, a GMR element, and the sensitivity axis direction is, for example, the Y direction. As shown in FIG. 5B, when the external magnetic field H1 that has entered the soft magnetic body 17c from the Z direction (vertical direction) leaks from the lower end 17c1 of the soft magnetic body 17c, a part thereof is converted into the X direction. The external magnetic field H2 is configured. By arranging the element portion 17a at a place where the external magnetic field H2 acts, the external magnetic field H1 in the Z direction can be apparently detected by the element portion 17a.
 図5(c)はX軸磁気センサ18の一部を示している。図5(c)に示すようにX軸磁気センサ18は、Y方向に延出するとともにX方向に間隔をあけて配置された複数の素子部18aと、各素子部18aの端部を電気的に接続する接続部18bとを有して構成される。素子部18aは、例えばGMR素子の積層構造であり、感度軸方向がX方向である。 FIG. 5C shows a part of the X-axis magnetic sensor 18. As shown in FIG. 5C, the X-axis magnetic sensor 18 electrically connects a plurality of element portions 18a extending in the Y direction and spaced apart in the X direction, and ends of the element portions 18a. And a connecting portion 18b connected to the. The element portion 18a has, for example, a laminated structure of GMR elements, and the sensitivity axis direction is the X direction.
 よって図5(c)のX軸磁気センサ18では、X方向からの外部磁界が作用した際の電気抵抗変化に基づいてX方向の外部磁界を検知することができる。なおY軸磁気センサ16、Z軸磁気センサ17およびX軸磁気センサ18の形態は図5以外であってもよい。 Therefore, the X-axis magnetic sensor 18 in FIG. 5C can detect the external magnetic field in the X direction based on the change in electrical resistance when the external magnetic field from the X direction acts. The forms of the Y-axis magnetic sensor 16, the Z-axis magnetic sensor 17, and the X-axis magnetic sensor 18 may be other than those shown in FIG.
 図1に示す磁気センサ4aは、図5(a)(c)に示すY軸磁気センサ16およびX軸磁気センサ18を備えたパッケージ構造である。また、図1に示す磁気センサ4bは、図5(b)に示すZ軸磁気センサ17を備えたパッケージ構造である。 A magnetic sensor 4a shown in FIG. 1 has a package structure including a Y-axis magnetic sensor 16 and an X-axis magnetic sensor 18 shown in FIGS. Further, the magnetic sensor 4b shown in FIG. 1 has a package structure including the Z-axis magnetic sensor 17 shown in FIG.
 各磁気センサ4a,4bは、磁気センサ用ASIC12上に固定支持されている。各磁気センサ4a,4bは例えば地磁気センサを構成している。 The magnetic sensors 4a and 4b are fixedly supported on the magnetic sensor ASIC 12. Each magnetic sensor 4a, 4b constitutes a geomagnetic sensor, for example.
 図1に示すように磁気センサ用ASIC12の表面には複数の電極部12aが露出している。磁気センサ用ASIC12の電極部12aと各磁気センサ4a、4bの出力部との間が、ワイヤボンディングされて電気的に接続されている。また、複数の電極部12aと複数の電極部12b間が磁気センサ用ASIC内の回路を介して電気的に接続されている。 As shown in FIG. 1, a plurality of electrode portions 12 a are exposed on the surface of the magnetic sensor ASIC 12. The electrode part 12a of the magnetic sensor ASIC 12 and the output part of each of the magnetic sensors 4a and 4b are electrically connected by wire bonding. The plurality of electrode portions 12a and the plurality of electrode portions 12b are electrically connected via a circuit in the magnetic sensor ASIC.
 図1,図2に示すように、プリント基板2上からMEMSセンサ3および磁気センサ4の側面、さらには磁気センサ4の表面にかけて封止材としてのモールド樹脂20が覆っている。なお図1では、導体装置1内部に配置されるMEMSセンサ3および磁気センサ4が見えるように、モールド樹脂20を透明で示した。 As shown in FIGS. 1 and 2, a mold resin 20 as a sealing material covers the printed board 2, the side surfaces of the MEMS sensor 3 and the magnetic sensor 4, and the surface of the magnetic sensor 4. In FIG. 1, the mold resin 20 is shown transparent so that the MEMS sensor 3 and the magnetic sensor 4 disposed inside the conductor device 1 can be seen.
 モールド樹脂20は、MEMSセンサ3、第1のシリコン基板11(磁気センサ用ASIC12)、および磁気センサ4の表面にほぼ隙間なく接している。 The mold resin 20 is in contact with the surface of the MEMS sensor 3, the first silicon substrate 11 (ASIC 12 for magnetic sensor), and the magnetic sensor 4 with almost no gap.
 図1,図2に示すようにプリント基板2の表面に設けられた各電極部2aと、MEMSセンサ用ASICである第1のセンサ基板6の各電極部10との間、およびプリント基板2の表面に設けられた各電極部2bと、磁気センサ用ASIC12に設けられた電極部12bとの間がそれぞれ、ワイヤボンディングにより電気的に接続されている。 As shown in FIG. 1 and FIG. 2, between each electrode portion 2 a provided on the surface of the printed circuit board 2 and each electrode section 10 of the first sensor substrate 6 which is an ASIC for MEMS sensors, and between the printed circuit board 2 Each electrode portion 2b provided on the surface and the electrode portion 12b provided on the magnetic sensor ASIC 12 are electrically connected to each other by wire bonding.
 また図1に示すようにプリント基板2の裏面には、プリント基板2の表面に設けられた各電極部2a,2bと内部配線層(図示せず)を介して電気的に接続された複数の端子部2cが設けられている。 As shown in FIG. 1, a plurality of electrodes 2a and 2b provided on the front surface of the printed circuit board 2 are electrically connected to the back surface of the printed circuit board 2 through internal wiring layers (not shown). A terminal portion 2c is provided.
 図2に示す第1のダイボンド樹脂5および第2のダイボンド樹脂9は、モールド樹脂20よりも軟質な材質により形成されている。 The first die bond resin 5 and the second die bond resin 9 shown in FIG. 2 are made of a softer material than the mold resin 20.
 ダイボンド樹脂5,9がモールド樹脂20より軟質であれば特に材質を限定するものでないが、一例を示すと、ダイボンド樹脂5,9はエポキシ系樹脂であり、モールド樹脂20はエポキシ系樹脂にガラスフィラーが混在した構成である。また第1のダイボンド樹脂5と第2のダイボンド樹脂9とで材質を変えることも可能であるが、材質を同じとすることが、生産コストの低減を図ることができ、またMEMSセンサ3に対する熱応力を効果的に緩和でき好適である。 The material is not particularly limited as long as the die bond resins 5 and 9 are softer than the mold resin 20, but as an example, the die bond resins 5 and 9 are epoxy resins, and the mold resin 20 is an epoxy resin and a glass filler. Is a mixed configuration. In addition, although the material can be changed between the first die bond resin 5 and the second die bond resin 9, the same material can reduce the production cost and the heat to the MEMS sensor 3. It is preferable because it can effectively relieve stress.
 モールド樹脂20は、ガラスエポキシ基板2により構成されたプリント基板2の線熱膨張係数に近づくように上記したように樹脂に例えばガラスフィラーを混在した構成となっている。 The mold resin 20 has a configuration in which, for example, a glass filler is mixed in the resin as described above so as to approach the linear thermal expansion coefficient of the printed circuit board 2 configured by the glass epoxy substrate 2.
 ところでMEMSセンサ3の場合、磁気センサ4と異なって、熱応力が作用してバイアスがかかったとき、オフセット補正をソフト上で行うことが困難である。 Incidentally, in the case of the MEMS sensor 3, unlike the magnetic sensor 4, it is difficult to perform offset correction on software when a bias is applied due to thermal stress.
 このため、シリコンを主体としたMEMSセンサ3に対する熱応力の影響を効果的に抑制すべく、第一に、MEMSセンサ3と同種の材質の第1のシリコン基板11をMEMSセンサ3上に重ねて配置した。すなわちMEMSセンサ3とモールド樹脂20との間には、MEMSセンサ3の線熱膨張係数と同じかあるいはそれに近い第1のシリコン基板11が介在するため、MEMSセンサ3は上方から線熱膨張係数が異なるモールド樹脂20の影響を直接受けないようにできる。ただし、MEMSセンサ3と同種の第1のシリコン基板11をMEMSセンサ3上に重ねただけでは、MEMSセンサ3に対する熱応力を十分に緩和できない。そこで本実施形態では、MEMSセンサ3と第1のシリコン基板11との間、およびプリント基板(支持基板)2とMEMSセンサ3との間に使用されるダイボンド樹脂5,9にモールド樹脂20よりも軟質な材質を用いた。これにより、MEMSセンサ3に対する熱応力の影響を効果的に緩和することが可能になる。 For this reason, in order to effectively suppress the influence of thermal stress on the MEMS sensor 3 mainly composed of silicon, first, the first silicon substrate 11 made of the same material as that of the MEMS sensor 3 is overlaid on the MEMS sensor 3. Arranged. That is, since the first silicon substrate 11 that is the same as or close to the linear thermal expansion coefficient of the MEMS sensor 3 is interposed between the MEMS sensor 3 and the mold resin 20, the MEMS sensor 3 has a linear thermal expansion coefficient from above. The influence of the different mold resin 20 can be avoided directly. However, the thermal stress applied to the MEMS sensor 3 cannot be sufficiently relaxed only by stacking the first silicon substrate 11 of the same type as the MEMS sensor 3 on the MEMS sensor 3. Therefore, in this embodiment, the die bond resins 5 and 9 used between the MEMS sensor 3 and the first silicon substrate 11 and between the printed circuit board (support substrate) 2 and the MEMS sensor 3 are used in place of the mold resin 20. A soft material was used. Thereby, the influence of the thermal stress on the MEMS sensor 3 can be effectively reduced.
 ここで、各ダイボンド樹脂5,9は、モールド樹脂20よりも軟質であるため、各ダイボンド樹脂5,9は、モールド樹脂20よりもヤング率が低い。具体的には、ダイボンド樹脂5,9のヤング率は、0.1~10GPaであり、モールド樹脂20のヤング率は、10~30GPaであることが好ましい。また、ダイボンド樹脂5,9のヤング率は、モールド樹脂20のヤング率に対して1/2以下の大きさであることが好ましく、1/4以下であることがより好ましい。 Here, since each die bond resin 5 and 9 is softer than the mold resin 20, each die bond resin 5 and 9 has a Young's modulus lower than that of the mold resin 20. Specifically, it is preferable that the die bond resins 5 and 9 have a Young's modulus of 0.1 to 10 GPa and the mold resin 20 has a Young's modulus of 10 to 30 GPa. Further, the Young's modulus of the die bond resins 5 and 9 is preferably ½ or less, more preferably ¼ or less of the Young's modulus of the mold resin 20.
 これにより、MEMSセンサ3に対する熱応力の影響を効果的に緩和することができる。 Thereby, the influence of the thermal stress on the MEMS sensor 3 can be effectively reduced.
 本実施形態では、第1のシリコン基板11は磁気センサ用ASIC12を構成しており、磁気センサ用ASIC12上に磁気センサ4が配置されている。これにより、磁気センサ用ASIC12を第1のシリコン基板11とは別に設けなくてもよく、したがって部品点数を減らすことができ、半導体装置1の小型化(低背化)を実現することができる。 In the present embodiment, the first silicon substrate 11 constitutes an ASIC 12 for magnetic sensor, and the magnetic sensor 4 is disposed on the ASIC 12 for magnetic sensor. As a result, the ASIC 12 for magnetic sensor need not be provided separately from the first silicon substrate 11. Therefore, the number of components can be reduced, and the semiconductor device 1 can be reduced in size (reduced in height).
 また図1に示すように、外部磁界の検知方向が異なる複数の磁気センサ4a,4bが、共通の磁気センサ用ASIC12上に配置されていることが好ましい。これにより、MEMSセンサ3上を適切に一つの磁気センサ用ASIC(第1のシリコン基板11)12で覆うことができ、MEMSセンサ3に対する熱応力の影響を効果的に緩和することができるとともに、多軸検知が可能な磁気センサ4を配置できる。 Further, as shown in FIG. 1, it is preferable that a plurality of magnetic sensors 4a and 4b having different detection directions of the external magnetic field are arranged on a common ASIC 12 for magnetic sensors. Thus, the MEMS sensor 3 can be appropriately covered with one magnetic sensor ASIC (first silicon substrate 11) 12, and the influence of thermal stress on the MEMS sensor 3 can be effectively reduced. A magnetic sensor 4 capable of multi-axis detection can be arranged.
 また第1実施形態では、ガラスエポキシ基板により構成されたプリント基板2とMEMSセンサ3との間が、モールド樹脂20よりも軟質のダイボンド樹脂5により接合されているため、プリント基板(ガラスエポキシ基板)2とMEMSセンサ3との線膨張係数差に起因する、MEMSセンサ3に対する熱応力の影響を緩和することができる。 Moreover, in 1st Embodiment, since the printed circuit board 2 comprised by the glass epoxy board | substrate and the MEMS sensor 3 are joined by the die-bonding resin 5 softer than the mold resin 20, it is a printed circuit board (glass epoxy board | substrate). 2 and the influence of thermal stress on the MEMS sensor 3 due to the difference in linear expansion coefficient between the MEMS sensor 3 and the MEMS sensor 3 can be reduced.
 また、図1,図2に示す第1実施形態では、MEMSセンサ3を構成する第1のセンサ基板6が、MEMSセンサ3の配線基板およびMEMSセンサ用ASICを兼用している。これにより、部品点数を減らすことができ、半導体装置1の小型化(低背化)を実現できる。 In the first embodiment shown in FIGS. 1 and 2, the first sensor substrate 6 constituting the MEMS sensor 3 also serves as the wiring substrate of the MEMS sensor 3 and the ASIC for the MEMS sensor. As a result, the number of parts can be reduced, and the semiconductor device 1 can be reduced in size (reduced height).
 また図2に示すように、第1のセンサ基板6は厚さ寸法がT1で、第2のセンサ基板7は厚さ寸法がT2であり、T1はT2よりも厚くなっている。このようにプリント基板2(ガラスエポキシ基板)とダイボンド樹脂5を介して接合される第1のセンサ基板6を厚く形成することで、MEMSセンサ3に対する熱応力の影響を効果的に緩和することができる。 Further, as shown in FIG. 2, the first sensor substrate 6 has a thickness dimension T1, the second sensor substrate 7 has a thickness dimension T2, and T1 is thicker than T2. In this way, by thickly forming the first sensor substrate 6 bonded to the printed circuit board 2 (glass epoxy substrate) via the die bond resin 5, the influence of the thermal stress on the MEMS sensor 3 can be effectively reduced. it can.
 図6は、第2実施形態における半導体装置50の縦断面図である。なお図1、図2に示す半導体装置1と同じ部分については同じ符号を付した。 FIG. 6 is a longitudinal sectional view of the semiconductor device 50 according to the second embodiment. The same parts as those of the semiconductor device 1 shown in FIGS. 1 and 2 are denoted by the same reference numerals.
 図6に示すように、ガラスエポキシ基板からなるプリント基板2上には第3のダイボンド樹脂54を介して第2のシリコン基板51が積層されている。そして第2のシリコン基板51上に第1のダイボンド樹脂5を介してMEMSセンサ53が積層されている。さらにMEMSセンサ53上に第2のダイボンド樹脂9を介して第1のシリコン基板11が積層されている。第1のシリコン基板11は磁気センサ用ASIC12を構成しており、磁気センサ用ASIC12上に磁気センサ4が設置されている。また、プリント基板2上から第2のシリコン基板51、MEMSセンサ53、第1のシリコン基板11(磁気センサ用ASIC12)および磁気センサ4の各側面さらに磁気センサ4上にかけて封止材としてのモールド樹脂20が設けられている。
 各ダイボンド樹脂5,9,54は、モールド樹脂20よりも軟質な材質である。
As shown in FIG. 6, a second silicon substrate 51 is laminated on a printed board 2 made of a glass epoxy substrate via a third die bond resin 54. A MEMS sensor 53 is laminated on the second silicon substrate 51 via the first die bond resin 5. Further, the first silicon substrate 11 is laminated on the MEMS sensor 53 via the second die bond resin 9. The first silicon substrate 11 constitutes a magnetic sensor ASIC 12, and the magnetic sensor 4 is installed on the magnetic sensor ASIC 12. Also, a mold resin as a sealing material is formed on the printed circuit board 2 from the second silicon substrate 51, the MEMS sensor 53, the first silicon substrate 11 (ASIC 12 for the magnetic sensor), the side surfaces of the magnetic sensor 4, and the magnetic sensor 4. 20 is provided.
Each die bond resin 5, 9, 54 is a softer material than the mold resin 20.
 図6の第2実施形態では、図1、図2に示す第1実施形態と異なって、第2のシリコン基板51が、MEMSセンサ53とプリント基板2との間に設けられている。したがって図6では、第1のシリコン基板11および第2のシリコン基板51により、MEMSセンサ53の上下を、軟質のダイボンド樹脂5,9を介して挟んだ形態となっている。これにより、MEMSセンサ53に対する熱応力の影響をより効果的に緩和することができる。 In the second embodiment shown in FIG. 6, unlike the first embodiment shown in FIGS. 1 and 2, a second silicon substrate 51 is provided between the MEMS sensor 53 and the printed board 2. Therefore, in FIG. 6, the upper and lower sides of the MEMS sensor 53 are sandwiched between the first silicon substrate 11 and the second silicon substrate 51 via the soft die bond resins 5 and 9. Thereby, the influence of the thermal stress with respect to the MEMS sensor 53 can be relieved more effectively.
 図6に示す形態では、第2のシリコン基板51は、少なくともMEMSセンサ用としてのASIC55を構成していることが好ましい。かかる構成では、図1,図2に示す形態と異なって、MEMSセンサ53を構成する第2のセンサ基板52をMEMSセンサ53の配線基板としてのみ使用することができる。MEMSセンサ53は、第1のセンサ基板52と第2のセンサ基板7との間に機能層8が介在した積層構造である。第2のセンサ基板52は、シリコン基板の表面に配線層が内在する絶縁層が形成された構成であり、MEMSセンサ53はシリコン基板およびシリコン層を有するシリコン主体の構成とされている。 In the form shown in FIG. 6, it is preferable that the second silicon substrate 51 constitutes at least an ASIC 55 for a MEMS sensor. In such a configuration, unlike the embodiment shown in FIGS. 1 and 2, the second sensor substrate 52 constituting the MEMS sensor 53 can be used only as a wiring substrate for the MEMS sensor 53. The MEMS sensor 53 has a laminated structure in which the functional layer 8 is interposed between the first sensor substrate 52 and the second sensor substrate 7. The second sensor substrate 52 has a configuration in which an insulating layer having a wiring layer is formed on the surface of a silicon substrate, and the MEMS sensor 53 has a silicon-based configuration including a silicon substrate and a silicon layer.
 図6に示すように、MEMSセンサ53の配線基板である第2のセンサ基板52の電極52aとASIC55の電極部55a間がワイヤボンディングされている。 As shown in FIG. 6, the electrode 52a of the second sensor substrate 52, which is the wiring substrate of the MEMS sensor 53, and the electrode portion 55a of the ASIC 55 are wire-bonded.
 なお第2のシリコン基板51は、磁気センサ4およびMEMSセンサ53双方のASICとすることもできる。 Note that the second silicon substrate 51 may be an ASIC for both the magnetic sensor 4 and the MEMS sensor 53.
 図6に示す実施形態では、第2のシリコン基板51をASIC55として使用しているため、第2のシリコン基板51とは別にASICを設けることが必要でなく、部品点数を低減でき、半導体装置50の小型化(低背化)を促進できる。 In the embodiment shown in FIG. 6, since the second silicon substrate 51 is used as the ASIC 55, it is not necessary to provide an ASIC separately from the second silicon substrate 51, the number of components can be reduced, and the semiconductor device 50 can be reduced. Downsizing (low profile) can be promoted.
 図7は、第3実施形態の半導体装置60を示す。図7では、ガラスエポキシ基板から構成されるプリント基板2上に第2のシリコン基板51(MEMSセンサ用、あるいは磁気センサおよびMEMSセンサ用ASIC55)が第3のダイボンド樹脂54を介して積層され、ASIC55上にMEMSセンサ61が第1のダイボンド樹脂5を介して積層されている。図7では、MEMSセンサ61を簡易的に示したが、例えば図6に示すMEMSセンサ53と同様の構成である。図7に示す形態では、さらにMEMSセンサ61上に第4のダイボンド樹脂62を介してMEMSセンサ63が積層されている。そしてMEMSセンサ63上に第2のダイボンド樹脂9を介して第1のシリコン基板11が積層されている。そして、プリント基板2上から第2のシリコン基板51、MEMSセンサ61,63、第1のシリコン基板11(磁気センサ用ASIC12)および磁気センサ4の各側面さらに磁気センサ4上にかけて封止材としてのモールド樹脂20が設けられている。
 各ダイボンド樹脂5,9,54,62は、モールド樹脂20よりも軟質な材質である。
FIG. 7 shows a semiconductor device 60 of the third embodiment. In FIG. 7, a second silicon substrate 51 (for a MEMS sensor or an ASIC 55 for a magnetic sensor and a MEMS sensor) is laminated on a printed circuit board 2 composed of a glass epoxy substrate via a third die bond resin 54. A MEMS sensor 61 is laminated on the first die bond resin 5. In FIG. 7, the MEMS sensor 61 is simply illustrated, but for example, has the same configuration as the MEMS sensor 53 illustrated in FIG. 6. In the form shown in FIG. 7, the MEMS sensor 63 is further laminated on the MEMS sensor 61 via the fourth die bond resin 62. The first silicon substrate 11 is laminated on the MEMS sensor 63 via the second die bond resin 9. The second silicon substrate 51, the MEMS sensors 61 and 63, the first silicon substrate 11 (magnetic sensor ASIC 12), the side surfaces of the magnetic sensor 4, and the magnetic sensor 4 are used as a sealing material. A mold resin 20 is provided.
Each die bond resin 5, 9, 54, 62 is a softer material than the mold resin 20.
 図7に示す実施形態においても、第1のシリコン基板11および第2のシリコン基板51により、MEMSセンサ61,63の上下を、軟質のダイボンド樹脂を介して挟んだ形態となっている。これにより、MEMSセンサ53に対する熱応力の影響をより効果的に緩和することができる。 In the embodiment shown in FIG. 7 as well, the upper and lower sides of the MEMS sensors 61 and 63 are sandwiched between the first silicon substrate 11 and the second silicon substrate 51 via a soft die bond resin. Thereby, the influence of the thermal stress with respect to the MEMS sensor 53 can be relieved more effectively.
 図7に示す形態では、複数のMEMSセンサ61,63が積層された構成となっている。MEMSセンサ61,63は同じ種類のものであっても、あるいは異なるものであってもよい。例えばMEMSセンサ61,63はともに加速度センサであるが、MEMSセンサ61とMEMSセンサ63とで加速度の検出方向が異なる方向とすることができる。また、MEMSセンサ61およびMEMSセンサ63を、加速度センサ、ジャイロ、気圧センサ等の異なるMEMSセンサとして構成することもできる。 7 has a configuration in which a plurality of MEMS sensors 61 and 63 are stacked. The MEMS sensors 61 and 63 may be of the same type or different. For example, the MEMS sensors 61 and 63 are both acceleration sensors, but the MEMS sensor 61 and the MEMS sensor 63 may have different acceleration detection directions. Further, the MEMS sensor 61 and the MEMS sensor 63 can be configured as different MEMS sensors such as an acceleration sensor, a gyroscope, and an atmospheric pressure sensor.
 図8は、第4実施形態の半導体装置70を示す。図8では、ガラスエポキシ基板から構成されるプリント基板2上に第2のシリコン基板51(MEMSセンサ用、あるいは磁気センサおよびMEMSセンサ用ASIC55)が第3のダイボンド樹脂54を介して積層され、ASIC55上に複数のMEMSセンサ71,72が第1のダイボンド樹脂5を介して並設されている。また各MEMSセンサ71,72上には第2のダイボンド樹脂9を介して第1のシリコン基板11が積層されている。各第1のシリコン基板11を磁気センサ用ASIC12として構成でき、各磁気センサ用ASIC上に磁気センサ4が設けられている。そして、プリント基板2上から第2のシリコン基板51、各MEMSセンサ71,72、各第1のシリコン基板11(磁気センサ用ASIC12)および各磁気センサ4の各側面さらに各磁気センサ4上にかけて封止材としてのモールド樹脂20が設けられている。
 各ダイボンド樹脂5,9,54は、モールド樹脂20よりも軟質な材質である。
FIG. 8 shows a semiconductor device 70 according to the fourth embodiment. In FIG. 8, a second silicon substrate 51 (for a MEMS sensor, or an ASIC 55 for a magnetic sensor and a MEMS sensor) is laminated on a printed circuit board 2 composed of a glass epoxy substrate via a third die bond resin 54. A plurality of MEMS sensors 71, 72 are arranged side by side via the first die bond resin 5. A first silicon substrate 11 is laminated on each MEMS sensor 71, 72 via a second die bond resin 9. Each first silicon substrate 11 can be configured as a magnetic sensor ASIC 12, and the magnetic sensor 4 is provided on each magnetic sensor ASIC. Then, sealing is performed from the printed circuit board 2 to the second silicon substrate 51, the MEMS sensors 71 and 72, the first silicon substrate 11 (magnetic sensor ASIC 12), the side surfaces of the magnetic sensors 4, and the magnetic sensors 4. A mold resin 20 is provided as a stopper.
Each die bond resin 5, 9, 54 is a softer material than the mold resin 20.
 図8に示す実施形態においても、第1のシリコン基板11および第2のシリコン基板51により、MEMSセンサ71,72の上下を、軟質のダイボンド樹脂を介して挟んだ形態となっている。これにより、MEMSセンサ71,72に対する熱応力の影響をより効果的に緩和することができる。 Also in the embodiment shown in FIG. 8, the upper and lower sides of the MEMS sensors 71 and 72 are sandwiched between the first silicon substrate 11 and the second silicon substrate 51 via a soft die bond resin. Thereby, the influence of the thermal stress with respect to the MEMS sensors 71 and 72 can be relieved more effectively.
 図8に示す形態では、複数のMEMSセンサ71,72が共通のASIC55上に並設された構成となっている。MEMSセンサ71,72は同じ種類のものであっても、あるいは異なるものであってもよい。 In the form shown in FIG. 8, a plurality of MEMS sensors 71 and 72 are arranged side by side on a common ASIC 55. The MEMS sensors 71 and 72 may be of the same type or different.
 図8では、並設された各MEMSセンサ71,72の上面にダイボンド樹脂9を介して第1のシリコン基板11を積層している。図8では、各MEMSセンサ71,72の上面に、それぞれ第1のシリコン基板11を設けているが、各MEMSセンサ71,72の上面に共通の第1のシリコン基板11を配置することも可能である。 In FIG. 8, the first silicon substrate 11 is laminated on the upper surfaces of the MEMS sensors 71 and 72 arranged side by side through the die bond resin 9. In FIG. 8, the first silicon substrate 11 is provided on the upper surface of each MEMS sensor 71, 72, but a common first silicon substrate 11 may be disposed on the upper surface of each MEMS sensor 71, 72. It is.
 図9は、第5実施形態の半導体装置80を示す。図9では、ガラスエポキシ基板から構成されるプリント基板2上に第2のシリコン基板51(MEMSセンサ用、あるいは磁気センサおよびMEMSセンサ用ASIC55)が第3のダイボンド樹脂54を介して積層され、ASIC55上にMEMSセンサ81が第1のダイボンド樹脂5を介して並設されている。またMEMSセンサ81上に第2のダイボンド樹脂9を介して第1のシリコン基板82が積層されている。そして、プリント基板2上から第2のシリコン基板51、MEMSセンサ81、および第1のシリコン基板11の各側面さらに第1のシリコン基板11上にかけて封止材としてのモールド樹脂20が設けられている。
 各ダイボンド樹脂5,9,54は、モールド樹脂20よりも軟質な材質である。
FIG. 9 shows a semiconductor device 80 of the fifth embodiment. In FIG. 9, a second silicon substrate 51 (for a MEMS sensor, or an ASIC 55 for a magnetic sensor and a MEMS sensor) is laminated on a printed circuit board 2 made of a glass epoxy substrate via a third die bond resin 54. The MEMS sensor 81 is arranged in parallel on the first die bond resin 5. A first silicon substrate 82 is laminated on the MEMS sensor 81 with a second die bond resin 9 interposed therebetween. A mold resin 20 as a sealing material is provided from the printed circuit board 2 to the second silicon substrate 51, the MEMS sensor 81, the side surfaces of the first silicon substrate 11, and the first silicon substrate 11. .
Each die bond resin 5, 9, 54 is a softer material than the mold resin 20.
 図9に示す実施形態においても、第1のシリコン基板11および第2のシリコン基板51により、MEMSセンサ81の上下を、軟質のダイボンド樹脂介して挟んだ形態となっている。これにより、MEMSセンサ81に対する熱応力の影響をより効果的に緩和することができる。 Also in the embodiment shown in FIG. 9, the upper and lower sides of the MEMS sensor 81 are sandwiched between the first silicon substrate 11 and the second silicon substrate 51 via a soft die bond resin. Thereby, the influence of the thermal stress with respect to the MEMS sensor 81 can be relieved more effectively.
 図9に示す形態では、第1のシリコン基板11は磁気センサ用ASICではなく、単なるシリコン基板である。よって図9に示す半導体装置80には磁気センサが設けられていない。図9では磁気センサを配置しないものの、MEMSセンサ81に対する熱応力を緩和するために、MEMSセンサ81の上面にダイボンド樹脂を介して第1のシリコン基板11を配置したのである。 In the form shown in FIG. 9, the first silicon substrate 11 is not a magnetic sensor ASIC but a simple silicon substrate. Therefore, the semiconductor device 80 shown in FIG. 9 is not provided with a magnetic sensor. Although the magnetic sensor is not arranged in FIG. 9, the first silicon substrate 11 is arranged on the upper surface of the MEMS sensor 81 via a die bond resin in order to relieve the thermal stress on the MEMS sensor 81.
 図10に示す半導体装置90を作製した。基本的には図2に示す半導体装置1と同様の構成である。すなわちガラスエポキシ基板からなるプリント基板2の上面にダイボンド樹脂(図示せず)を介してMEMSセンサ3を積層し、MEMSセンサ3上にダイボンド樹脂(図示せず)を介して第1のシリコン基板11を積層した。さらに第1のシリコン基板11上に磁気センサ4を配置した。さらに周囲をモールド樹脂20で封止した。 A semiconductor device 90 shown in FIG. 10 was produced. The configuration is basically the same as that of the semiconductor device 1 shown in FIG. That is, the MEMS sensor 3 is laminated on the upper surface of the printed board 2 made of a glass epoxy substrate via a die bond resin (not shown), and the first silicon substrate 11 is placed on the MEMS sensor 3 via a die bond resin (not shown). Were laminated. Further, the magnetic sensor 4 was disposed on the first silicon substrate 11. Further, the periphery was sealed with a mold resin 20.
 なお図10での半導体装置90はシミュレーション実験に使用したものであり、実際には、図4や図5に示すようにMEMSセンサやプリント基板には、シリコン基板だけでなく絶縁層や金属接合層等が存在するが、この実験ではシリコン基板で形成されているものとした。 The semiconductor device 90 in FIG. 10 is used for the simulation experiment. Actually, as shown in FIGS. 4 and 5, the MEMS sensor and the printed circuit board include not only a silicon substrate but also an insulating layer and a metal bonding layer. In this experiment, it was assumed that the silicon substrate was formed.
 また実験では、モールド樹脂20のヤング率を20GPaとした。そしてダイボンド樹脂のヤング率を0.6GPa、2.8GPa、9GPaおよび200GPaと変化させて、その際のMEMSセンサ3のオフセット量を調べた。オフセット量は、常温(25℃)に対して、±60℃の熱処理を施した際に、MEMSセンサ3から得られる検出値の変化量を示すものである。したがってオフセット量はゼロであるほど好ましい。 In the experiment, the Young's modulus of the mold resin 20 was set to 20 GPa. Then, the Young's modulus of the die bond resin was changed to 0.6 GPa, 2.8 GPa, 9 GPa, and 200 GPa, and the offset amount of the MEMS sensor 3 at that time was examined. The offset amount indicates the amount of change in the detected value obtained from the MEMS sensor 3 when a heat treatment of ± 60 ° C. is performed on the normal temperature (25 ° C.). Therefore, the offset amount is preferably zero.
 そしてMEMSセンサ3の機能層8は例えば図4(a)と同様の3軸の加速度センサの構造であり、各軸の加速度のオフセット量が、ダイボンド樹脂のヤング率に対してどのように変化するか調べた。その実験結果が図11に示されている。 The functional layer 8 of the MEMS sensor 3 has, for example, the structure of a triaxial acceleration sensor similar to that shown in FIG. 4A, and how the offset amount of the acceleration of each axis changes with respect to the Young's modulus of the die bond resin. I investigated. The experimental results are shown in FIG.
 図11に示すように、ダイボンド樹脂のヤング率が200GPaにまで大きくなると、X軸、Y軸およびZ軸のいずれの加速度のオフセット量も非常に大きくなり悪化することがわかった。ここでモールド樹脂20のヤング率は20GPaであるため、ダイボンド樹脂のヤング率をモールド樹脂のヤング率よりも小さい0.6GPa~9GPaとすれば、ダイボンド樹脂をモールド樹脂20よりも軟質にでき、オフセット量を小さくできることがわかった。 As shown in FIG. 11, it was found that when the Young's modulus of the die bond resin is increased to 200 GPa, the offset amount of acceleration in any of the X axis, the Y axis, and the Z axis becomes very large and deteriorates. Here, since the Young's modulus of the mold resin 20 is 20 GPa, if the Young's modulus of the die bond resin is 0.6 GPa to 9 GPa, which is smaller than the Young's modulus of the mold resin, the die bond resin can be made softer than the mold resin 20 and offset. It was found that the amount could be reduced.
1、50、60、70、80 半導体装置
2 プリント基板
3、53、61、63、71、72、81 MEMSセンサ
4、4a、4b 磁気センサ
5 第1のダイボンド樹脂
6 第1のセンサ基板
7、52 第2のセンサ基板
8 機能層
9 第2のダイボンド樹脂
11 第1のシリコン基板
16 Y軸磁気センサ
17 Z軸磁気センサ
18 X軸磁気センサ
20 モールド樹脂
29 絶縁層
30 金属接合層
41~43 可動体
45 配線層
51 第2のシリコン基板
54 第3のダイボンド樹脂
1, 50, 60, 70, 80 Semiconductor device 2 Printed circuit board 3, 53, 61, 63, 71, 72, 81 MEMS sensor 4, 4a, 4b Magnetic sensor 5 First die bond resin 6 First sensor substrate 7, 52 Second sensor substrate 8 Functional layer 9 Second die bond resin 11 First silicon substrate 16 Y-axis magnetic sensor 17 Z-axis magnetic sensor 18 X-axis magnetic sensor 20 Mold resin 29 Insulating layer 30 Metal bonding layers 41 to 43 Movable Body 45 Wiring layer 51 Second silicon substrate 54 Third die bond resin

Claims (12)

  1.  支持基板上に第1のダイボンド樹脂を介して積層されたシリコンを主体とするMEMSセンサと、前記MEMSセンサ上に第2のダイボンド樹脂を介して積層された第1のシリコン基板と、封止材としてのモールド樹脂と、を有しており、
     各ダイボンド樹脂は、前記モールド樹脂よりも軟質な材質により形成されていることを特徴とする半導体装置。
    A MEMS sensor mainly composed of silicon laminated on a support substrate via a first die bond resin, a first silicon substrate laminated via a second die bond resin on the MEMS sensor, and a sealing material And a mold resin as
    Each die bond resin is formed of a softer material than the mold resin.
  2.  前記第1のシリコン基板は、磁気センサ用ASICを構成しており、前記磁気センサ用ASIC上に磁気センサが配置されている請求項1記載の半導体装置。 The semiconductor device according to claim 1, wherein the first silicon substrate constitutes an ASIC for a magnetic sensor, and the magnetic sensor is disposed on the ASIC for the magnetic sensor.
  3.  磁界の検知方向が異なる複数の前記磁気センサが、共通の前記磁気センサ用ASIC上に配置されている請求項2記載の半導体装置。 3. The semiconductor device according to claim 2, wherein a plurality of the magnetic sensors having different magnetic field detection directions are arranged on the common magnetic sensor ASIC.
  4.  各ダイボンド樹脂のヤング率は、0.1~10GPaであり、前記モールド樹脂のヤング率は、10~30GPaである請求項1ないし3のいずれか1項に記載の半導体装置。 4. The semiconductor device according to claim 1, wherein a Young's modulus of each die bond resin is 0.1 to 10 GPa, and a Young's modulus of the mold resin is 10 to 30 GPa.
  5.  前記支持基板は、ガラスエポキシ基板より構成されたプリント基板である請求項1ないし4のいずれか1項に記載の半導体装置。 5. The semiconductor device according to claim 1, wherein the support substrate is a printed circuit board made of a glass epoxy substrate.
  6.  前記MEMSセンサは、シリコンを主体としたセンサ基板と機能層とが積層された構成であり、前記支持基板上に前記第1のダイボンド樹脂を介して配置された前記センサ基板は、少なくともMEMSセンサ用としてのASICを構成している請求項1ないし5のいずれか1項に記載の半導体装置。 The MEMS sensor has a configuration in which a sensor substrate mainly composed of silicon and a functional layer are stacked, and the sensor substrate disposed on the support substrate via the first die bond resin is at least for a MEMS sensor. The semiconductor device according to claim 1, which constitutes an ASIC.
  7.  前記MEMSセンサは、第1のセンサ基板と第2のセンサ基板との間に前記機能層が設けられた積層構造であり、前記第1のセンサ基板が前記ASICであり、前記第1のセンサ基板は前記第2のセンサ基板よりも厚く形成されている請求項6記載の半導体装置。 The MEMS sensor has a laminated structure in which the functional layer is provided between a first sensor substrate and a second sensor substrate, the first sensor substrate is the ASIC, and the first sensor substrate. 7. The semiconductor device according to claim 6, wherein the semiconductor device is formed thicker than the second sensor substrate.
  8.  前記MEMSセンサは、支持基板上に配置された第2のシリコン基板上に前記第1のダイボンド樹脂を介して積層されている請求項1ないし5のいずれか1項に記載の半導体装置。 6. The semiconductor device according to claim 1, wherein the MEMS sensor is stacked on a second silicon substrate disposed on a support substrate via the first die bond resin.
  9.  前記第2のシリコン基板は、少なくともMEMSセンサ用としてのASICを構成している請求項8記載の半導体装置。 The semiconductor device according to claim 8, wherein the second silicon substrate constitutes at least an ASIC for a MEMS sensor.
  10.  前記MEMSセンサは、シリコンを主体としたセンサ基板と機能層とが積層された構成である請求項8または9に記載の半導体装置。 10. The semiconductor device according to claim 8, wherein the MEMS sensor has a configuration in which a sensor substrate mainly composed of silicon and a functional layer are stacked.
  11.  複数の前記MEMSセンサが積層されている請求項1ないし10のいずれか1項に記載の半導体装置。 The semiconductor device according to claim 1, wherein a plurality of the MEMS sensors are stacked.
  12.  複数のMEMSセンサが、共通のMEMSセンサ用ASIC上に並設されている請求項1ないし10のいずれか1項に記載の半導体装置。 The semiconductor device according to claim 1, wherein a plurality of MEMS sensors are arranged in parallel on a common MEMS sensor ASIC.
PCT/JP2013/073814 2012-09-13 2013-09-04 Semiconductor device WO2014042055A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014535505A JP5859133B2 (en) 2012-09-13 2013-09-04 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012201037 2012-09-13
JP2012-201037 2012-09-13

Publications (1)

Publication Number Publication Date
WO2014042055A1 true WO2014042055A1 (en) 2014-03-20

Family

ID=50278169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073814 WO2014042055A1 (en) 2012-09-13 2013-09-04 Semiconductor device

Country Status (2)

Country Link
JP (1) JP5859133B2 (en)
WO (1) WO2014042055A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018017717A (en) * 2016-07-15 2018-02-01 Tdk株式会社 Sensor unit
US11282808B2 (en) 2019-04-26 2022-03-22 Seiko Epson Corporation Inertial sensor, electronic instrument, vehicle, and method for manufacturing inertial sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019128304A (en) * 2018-01-26 2019-08-01 セイコーエプソン株式会社 Physical quantity sensor, inertial measurement unit, electronic apparatus, portable electronic apparatus, and movable body

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000214177A (en) * 1999-01-27 2000-08-04 Mitsubishi Electric Corp Semiconductor acceleration sensor and its manufacture
JP2004132792A (en) * 2002-10-09 2004-04-30 Toyota Motor Corp Structure of sensor unit
WO2007020701A1 (en) * 2005-08-18 2007-02-22 C & N Inc Acceleration sensor
JP2009063550A (en) * 2007-09-10 2009-03-26 Rohm Co Ltd Semiconductor sensor device
JP2010073765A (en) * 2008-09-17 2010-04-02 Renesas Technology Corp Semiconductor device and method of manufacturing the same
WO2012124282A1 (en) * 2011-03-11 2012-09-20 パナソニック株式会社 Sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4766087B2 (en) * 2007-12-14 2011-09-07 株式会社デンソー Electronic equipment
JP6136101B2 (en) * 2012-04-10 2017-05-31 日立化成株式会社 Photosensitive resin composition, film-like resin, resin sheet, resin pattern, semiconductor wafer with resin layer, transparent substrate with resin layer, semiconductor device, and method for manufacturing semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000214177A (en) * 1999-01-27 2000-08-04 Mitsubishi Electric Corp Semiconductor acceleration sensor and its manufacture
JP2004132792A (en) * 2002-10-09 2004-04-30 Toyota Motor Corp Structure of sensor unit
WO2007020701A1 (en) * 2005-08-18 2007-02-22 C & N Inc Acceleration sensor
JP2009063550A (en) * 2007-09-10 2009-03-26 Rohm Co Ltd Semiconductor sensor device
JP2010073765A (en) * 2008-09-17 2010-04-02 Renesas Technology Corp Semiconductor device and method of manufacturing the same
WO2012124282A1 (en) * 2011-03-11 2012-09-20 パナソニック株式会社 Sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018017717A (en) * 2016-07-15 2018-02-01 Tdk株式会社 Sensor unit
US11282808B2 (en) 2019-04-26 2022-03-22 Seiko Epson Corporation Inertial sensor, electronic instrument, vehicle, and method for manufacturing inertial sensor

Also Published As

Publication number Publication date
JP5859133B2 (en) 2016-02-10
JPWO2014042055A1 (en) 2016-08-18

Similar Documents

Publication Publication Date Title
JP4238724B2 (en) Semiconductor device
JP4165360B2 (en) Mechanical quantity sensor
JP5486271B2 (en) Acceleration sensor and method of manufacturing acceleration sensor
JP4973443B2 (en) Sensor device
JP2006275660A (en) Semiconductor sensor and its manufacturing method
JP2010093228A (en) Semiconductor device and method of manufacturing the same
JP6209270B2 (en) Acceleration sensor
JP2004333133A (en) Inertial force sensor
JP5859133B2 (en) Semiconductor device
JP2009300197A (en) Semiconductor pressure sensor
JP2005127750A (en) Semiconductor sensor and its manufacturing method
KR101573367B1 (en) Piezoresistive typed ceramic pressure sensor
JP4715503B2 (en) Manufacturing method of sensor module
JP5343678B2 (en) Semiconductor device and manufacturing method thereof
JP2008082952A (en) Semiconductor strain sensor
JP4706634B2 (en) Semiconductor sensor and manufacturing method thereof
JP2010008172A (en) Semiconductor device
JP2007192792A (en) Sensor element
JP5328492B2 (en) Pressure sensor module, pressure sensor package, and manufacturing method thereof
JP5328493B2 (en) Pressure sensor module, pressure sensor package, and manufacturing method thereof
JP2006300905A (en) Acceleration sensor and method of manufacturing same
JP4925273B2 (en) Semiconductor device
JP5328479B2 (en) Pressure sensor module, pressure sensor package, and manufacturing method thereof
JP2009047650A (en) Sensor device and its manufacturing method
JP2014128842A (en) Semiconductor package having mems element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13837790

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014535505

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13837790

Country of ref document: EP

Kind code of ref document: A1