WO2014042036A1 - Electrostrictive actuator and method for manufacturing same - Google Patents

Electrostrictive actuator and method for manufacturing same Download PDF

Info

Publication number
WO2014042036A1
WO2014042036A1 PCT/JP2013/073646 JP2013073646W WO2014042036A1 WO 2014042036 A1 WO2014042036 A1 WO 2014042036A1 JP 2013073646 W JP2013073646 W JP 2013073646W WO 2014042036 A1 WO2014042036 A1 WO 2014042036A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin sheet
electrostrictive
insulating resin
insulating
electrode
Prior art date
Application number
PCT/JP2013/073646
Other languages
French (fr)
Japanese (ja)
Inventor
大寺 昭三
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2014535494A priority Critical patent/JP5949927B2/en
Publication of WO2014042036A1 publication Critical patent/WO2014042036A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/871Single-layered electrodes of multilayer piezoelectric or electrostrictive devices, e.g. internal electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • H10N30/067Forming single-layered electrodes of multilayered piezoelectric or electrostrictive parts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • H10N30/506Piezoelectric or electrostrictive devices having a stacked or multilayer structure of cylindrical shape with stacking in radial direction, e.g. coaxial or spiral type rolls
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials
    • H10N30/878Conductive materials the principal material being non-metallic, e.g. oxide or carbon based

Definitions

  • the present invention relates to an electrostrictive actuator and a manufacturing method thereof, and particularly to an electrostrictive actuator using an electrostrictive resin sheet made of a polymer electrostrictive material and a manufacturing method thereof.
  • Patent Document 1 An electrostrictive actuator that is of interest to the present invention is described in, for example, Japanese Patent Application Laid-Open No. 2009-232523 (Patent Document 1).
  • Patent Document 1 describes an actuator in which a dielectric elastomer as a polymer electrostrictive material and an electrode are laminated.
  • a voltage is applied to the dielectric elastomer via an electrode, the dielectric elastomer is deformed.
  • a soft elastomer having an elastic modulus of 1 MPa or less is used.
  • the electrode is formed using a paste or paint in which conductive carbon such as carbon black or carbon nanotube is mixed with oil or elastomer as a binder.
  • conductive carbon such as carbon black or carbon nanotube
  • oil or elastomer as a binder.
  • carbon black and carbon nanotubes are relatively hard particles, hard particles such as carbon black and carbon nanotubes harden the electrode. Therefore, in order to keep the electrode soft, it is preferable not to contain a lot of hard particles such as carbon black and carbon nanotubes. It is necessary to contain a relatively large amount of the conductive particles, for example, 10% by volume or more.
  • the electrode becomes hard, so that the problem that deformation of the dielectric elastomer is hindered is encountered.
  • an object of the present invention is to provide an electrostrictive actuator that can reduce the problem of inhibiting deformation of the electrostrictive resin sheet by the electrodes as described above, and a method for manufacturing the electrostrictive actuator.
  • the present invention provides an electrostrictive resin sheet made of a polymer electrostrictive material and a first electrode provided in contact with both main surfaces of the electrostrictive resin sheet in order to apply a voltage in the thickness direction of the electrostrictive resin sheet.
  • the electrostrictive resin sheet is bonded to the electrostrictive resin sheet in a face-to-face state.
  • the surface layer is provided by a conductive material distributed in a state of forming a current path extending in the main surface direction.
  • the insulating resin sheet has a lower elastic modulus than the electrostrictive resin sheet, that is, more easily deformed such as bending and stretching. It does not substantially inhibit the deformation.
  • at least one of the first and second electrodes is provided by a conductive material distributed in the surface layer of the insulating resin sheet that is likely to be deformed such as bending and stretching, at least one of the first and second electrodes No substantial deformation of the electrostrictive resin sheet such as bending or elongation is hindered.
  • the present invention is also directed to a method of manufacturing an electrostrictive actuator having the above-described structure.
  • An electrostrictive actuator manufacturing method includes a step of preparing an electrostrictive resin sheet made of a polymer electrostrictive material, and an electrically insulating insulating resin sheet having a lower elastic modulus than the electrostrictive resin sheet.
  • the electrostrictive resin sheet and the insulating resin sheet have main components common to each other. This is because, when joining the electrostrictive resin sheet and the insulating resin sheet, good adhesion can be obtained between them.
  • the electrostrictive resin sheet described above is preferably uniaxially stretched. In this case, a plurality of wrinkles extending in the stretching direction are usually formed on the surface of the electrostrictive resin sheet.
  • the insulating sheet since the insulating sheet has a lower elastic modulus than the electrostrictive sheet, the insulating sheet follows the surface of the electrostrictive resin sheet so as not to form a gap between the insulating sheet and the electrostrictive resin sheet. Will have a rough surface. According to such a structure, the problem resulting from the space
  • the step of joining the insulating resin sheet and the electrostrictive resin sheet in a face-to-face state is performed so that the surface of the electrostrictive resin sheet follows the insulating resin. It is preferable that the insulating resin sheet and the electrostrictive resin sheet be thermocompression-bonded while the sheet is deformed.
  • the organic conductive ink In order to form the electrode, it is preferable to allow the organic conductive ink to permeate the main surface of the insulating resin sheet.
  • fine irregularities due to a lamellar structure are formed on the surface of a polymer film. Since the insulating resin sheet used in the present invention is also a polymer film, fine irregularities due to such a lamellar structure are formed on its main surface. Therefore, when the organic conductive ink is infiltrated into the main surface of the insulating resin sheet, the conductive material using the organic conductive ink is advantageous in a state where a current path extending in the main surface direction is formed in the surface layer of the insulating resin sheet. Can be distributed. Further, the electrode formed in this way is easily deformed following the bending deformation of the insulating resin sheet. Therefore, the electrode is not easily broken by the bending deformation, thereby improving the reliability of electrical conduction in the electrode. be able to.
  • a first insulating resin sheet that holds the first electrode and a second insulating resin sheet that holds the second electrode are prepared.
  • the strain resin sheet is sandwiched between the first insulating resin sheet and the second insulating resin sheet.
  • the electrostrictive resin sheet and the insulating resin sheet are preferably in a wound state.
  • the number of layers of the electrostrictive resin sheets can be increased, and a stronger displacement force can be obtained in the electrostrictive actuator.
  • the electrostrictive actuator according to the present invention since the insulating resin sheet and the electrode are more easily bent and deformed than the electrostrictive resin sheet, the insulating resin sheet and the electrode substantially deform the electrostrictive resin sheet. Will not be disturbed. Therefore, a highly efficient electrostrictive actuator can be obtained.
  • the electrostrictive actuator manufacturing method of the present invention at least one of the electrodes is not directly formed on the electrostrictive resin sheet, but is formed on the insulating resin sheet, and then the electrode is electrostrictive resin sheet.
  • the insulating resin sheet and the electrostrictive resin sheet are joined in a face-to-face state so as to be in contact with at least one of the main surfaces. Therefore, the problem of electrical short-circuiting of electrodes between the front and back main surfaces that can occur when electrodes are formed on both main surfaces of an extremely thin electrostrictive resin sheet having a thickness of, for example, 1 ⁇ m using, for example, organic conductive ink. Can be advantageously avoided.
  • FIG. 2 is a cross-sectional view separately showing each other
  • FIG. 2B is a cross-sectional view showing a state where the electrostrictive resin sheet 2 and the insulating resin sheets 3 and 4 shown in FIG. Yes
  • (3) is a state where the electrostrictive resin sheet 2 and the insulating resin sheets 3 and 4 shown in (2) are wound and the terminal conductors 14 and 15 are formed, that is, a completed electrostrictive actuator.
  • 1 is a perspective view showing 1.
  • FIG. 1 It is sectional drawing which shows typically the state which formed the electrode 9 in the surface layer 7 extended along the main surface 5 of the insulating resin sheet 3 shown to FIG. 1 (1). It is a top view which expands and schematically shows a part of main surface 5 of the insulating resin sheet 3 shown in FIG. A preferred embodiment adopted to increase the reliability of the electrical connection between the terminal conductors 14 and 15 shown in FIG. 1 (3) and the electrodes 9 and 10 shown in FIGS. 1 (1) and (2) will be described. It is a perspective view of the sheet laminated body 20 for doing. 1 is a schematic cross-sectional view for explaining a laminated state of an electrostrictive resin sheet 2 and insulating resin sheets 3 and 4 in the embodiment shown in FIG.
  • (A) is a state before lamination
  • (B ) Shows the state after lamination. It is a figure corresponding to FIG. 5 for demonstrating the 2nd Embodiment of this invention. It is a figure corresponding to FIG. 5 for demonstrating the 3rd Embodiment of this invention. It is a figure corresponding to FIG. 5 for demonstrating the 4th Embodiment of this invention. It is a perspective view which shows the external appearance of the braille display apparatus 31 as a preferable application example of the electrostrictive actuator which concerns on this invention.
  • the manufacturing method of the electrostrictive actuator 1 by one Embodiment of this invention is demonstrated first. This is because if the manufacturing method of the electrostrictive actuator 1 is understood, the structure of the electrostrictive actuator 1 becomes clear.
  • an electrostrictive resin sheet 2 and first and second insulating resin sheets 3 and 4 are prepared.
  • the electrostrictive resin sheet 2 is made of a polymer electrostrictive material.
  • the polymer electrostrictive material is not particularly limited as long as it is a polymer material having a permanent dipole.
  • the polymer electrostrictive material include PVDF (polyvinylidene fluoride), PVDF copolymer, for example, a copolymer such as P (VDF-TrFE) and P (VDF-VF), and P (VDF-TrFE).
  • -CFE P (VDF-TrFE-CTFE), P (VDF-TrFE-CDFE), P (VDF-TrFE-HFA), P (VDF-TrFE-HFP), P (VDF-TrFE-VC), etc.
  • a terpolymer may be mentioned.
  • P (VDF-TrFE-CFE) is particularly preferable because a large distortion can be obtained.
  • P is poly
  • VDF vinylidene fluoride
  • TrFE trifluoroethylene
  • CFE is chlorofluoroethylene
  • CTFE is chlorotrifluoroethylene
  • CDFE is chloro.
  • Difluoroethylene HFA represents hexafluoroacetone
  • HFP represents hexafluoropropylene
  • VC represents vinyl chloride
  • VF represents vinyl fluoride.
  • the thickness of the electrostrictive resin sheet 2 may be set as appropriate, but may be, for example, about several ⁇ m to 100 ⁇ m.
  • the insulating resin sheets 3 and 4 may be made of a polymer electrostrictive material as in the case of the electrostrictive resin sheet 2 or may be made of another polymer material that does not have electrostrictive properties. .
  • the insulating resin sheets 3 and 4 must satisfy the condition that the elastic modulus is lower than that of the electrostrictive resin sheet 2, that is, bendable more easily. Therefore, preferably, as the insulating resin sheets 3 and 4, the above-described polymer electrostrictive material is used without stretching, and the electrostrictive resin sheet 2 is made of the same material as the insulating resin sheets 3 and 4. The resulting sheet is drawn and fibrillated.
  • an organic material can be stretched at a temperature not lower than the glass transition point and not higher than the melting point.
  • a temperature in the case of an organic material having a glass transition point of 0 ° C. or lower and a melting point of 120 ° C., it can be stretched at room temperature, but it is desirable to stretch at a temperature of 40 to 50 ° C.
  • stretching both ends of the sheet are held, and in that state, the sheet is stretched by pulling to a length of 2 times or more, preferably 3 times or more of the initial length.
  • a roll-to-roll method in which the number of rotations of the roll on the winding side is made larger than the number of rotations of the roll on the supply side may be adopted.
  • the pulling speed is selected to be, for example, 10 mm / second or more.
  • the electrostrictive resin sheet 2 having an elastic modulus higher than that of the initial sheet can be obtained.
  • the elastic modulus of the initial sheet is 100 MPa, if this is stretched 4 times, the elastic modulus increases to 400 MPa.
  • the conductive layer is formed in a state in which a current path extending in the main surface direction is formed.
  • First and second electrodes 9 and 10 in which materials are distributed are formed, respectively. This process will be described with reference to FIGS. 2 and 3 when the electrode 9 is formed on one insulating resin sheet 3.
  • Organic conductive ink is used to form the electrode 9.
  • the organic conductive ink is obtained by, for example, dissolving an organic conductive material such as PEDOT (polyethylenedioxythiophene), PPy (polypyrrole), PANI (polyaniline) in an organic solvent.
  • PEDOT polyethylenedioxythiophene
  • PPy polypyrrole
  • PANI polyaniline
  • FIG. 3 schematically shows an enlarged part of the main surface 5 of the insulating resin sheet 3.
  • the main surface 5 of the insulating resin sheet 3 has a crystal part called a lamella 11, and fine irregularities due to such a lamella structure are formed.
  • FIG. 3 schematically shows the conductive material 12 taken into a minute recess having a lamellar structure.
  • the organic conductive ink is heat-treated at 85 ° C. for 30 minutes, for example, after application.
  • the electrode 9 formed in this manner exists only in the surface layer 7 of the insulating resin sheet 3, the electrode 9 easily bends and follows the bending deformation of the insulating resin sheet 3, and functions as an extensible electrode. Therefore, it is difficult to be destroyed by bending deformation. Further, as shown in FIG. 3, the conductive material 12 taken into the minute recesses having the lamella structure forms a number of current paths corresponding to the number of the minute recesses having the lamella structure. For these reasons, the electrode 9 can obtain an electrically conductive state having high reliability.
  • the organic conductive ink containing the aforementioned PEDOT is used as the insulating resin.
  • An experiment was performed in which the sheet 3 was adhered to the lamella structure portion of the main surface 5 with a thickness of 10 to 400 nm.
  • the elastic modulus of PEDOT is 2 GPa
  • the elastic modulus of the portion where the electrode 9 is formed in the insulating resin sheet 3 is higher than 100 MPa which is the elastic modulus of the insulating resin sheet 3
  • the insulating resin sheet 3 was confirmed to be lower than 400 MPa, which is the elastic modulus of the electrostrictive resin sheet 2 obtained by stretching the initial sheet made of the same material as 3 by 4 times.
  • the electrostrictive resin sheet 2 and the insulating resin sheets 3 and 4 shown in FIG. 1 (1) have a longitudinal shape extending in a direction orthogonal to the paper surface. In FIG. Cross sections in the width direction of the resin sheet 2 and the insulating resin sheets 3 and 4 appear.
  • the first electrode 9 formed on the first insulating resin sheet 3 is formed so as to reach the left end of the first insulating resin sheet 3 as shown in FIG.
  • a predetermined gap is formed on the right end of the insulating resin sheet 3 of FIG.
  • the second electrode 10 formed on the second insulating resin sheet 4 is formed so as to reach the right end of the second insulating resin sheet 4 according to the drawing, and the second insulating resin sheet 4 A predetermined gap is formed at the left end in the figure.
  • the first and second insulating resins are such that the first and second electrodes 9 and 10 are in contact with both main surfaces of the electrostrictive resin sheet 2, respectively.
  • Sheets 3 and 4 and electrostrictive resin sheet 2 are joined in a face-to-face state. More specifically, after the first and second insulating resin sheets 3 and 4 and the electrostrictive resin sheet 2 are overlaid, for example, a state where a vacuum is applied while applying heat of 85 to 100 ° C.
  • the first and second insulating resin sheets 3 and 4 and the electrostrictive resin sheet 2 are bonded together by thermocompression bonding. Instead of thermocompression bonding, bonding with an adhesive from an epoxy resin or the like may be applied.
  • the three-layered sheet laminate 20 in which the first and second insulating resin sheets 3 and 4 and the electrostrictive resin sheet 2 are bonded is an axis line in the left-right direction in FIG.
  • a roll-shaped actuator main body 13 as shown in FIG. 1 (3) is obtained.
  • the electrostrictive resin sheet 2 and the first and second insulating resin sheets 3 and 4 are illustrated with exaggerated thickness direction dimensions. Please point out.
  • first and second terminal conductors 14 and 15 are formed at both ends of the actuator body 13, respectively.
  • Terminal conductors 14 and 15 are formed, for example, by applying a silver paste.
  • the first electrode 9 is exposed at the left end face according to FIG. 1 (3), so that the first terminal conductor 14 is electrically connected to the first electrode 9.
  • the second electrode 10 is exposed at the right end face, the second terminal conductor 15 is electrically connected to the second electrode 10.
  • the electrostrictive actuator 1 is obtained as described above.
  • the electrostrictive actuator 1 when a voltage is applied between the first and second electrodes 9 and 10 via the first and second terminal conductors 14 and 15, electrostriction deformation is caused thereby.
  • the thickness of the electrostrictive resin sheet 2 between the first and second electrodes 9 and 10 decreases.
  • the electrostrictive resin sheet 2 extends in the surface direction, and the actuator body 13 is displaced so as to extend in the axial direction as indicated by a double arrow 16 in FIG. This amount of displacement can be controlled by the applied voltage.
  • the actuator body 13 if the voltage application is cut off, the actuator body 13 returns to the original state.
  • the number of layers of the electrostrictive resin sheet 2 can be increased, and a stronger displacement force can be obtained in the electrostrictive actuator 1.
  • FIG. 4 the configuration shown in FIG. 4 may be adopted.
  • the sheet laminate 20 is shown in a perspective view, but it should be pointed out that the thickness in the thickness direction of the sheet laminate 20 is considerably exaggerated.
  • the edge 21 on the drawer side of the electrodes 9 and 10 (the electrode 10 is shown in FIG. 4) of the sheet laminate 20 is shown.
  • a plurality of cuts 23 and 24 may be formed so as to be distributed along the lines 22 and 22.
  • the organic conductive ink flows along each of the edges 21 and 22 of the sheet laminate 20, more specifically, each end face and the main surface adjacent thereto. It is applied along each part.
  • this organic conductive ink the same organic conductive ink as used for forming the electrodes 9 and 10 can be used. The organic conductive ink penetrates into the cuts 23 and 24 and is electrically connected to each of the electrodes 9 and 10.
  • the terminal conductors 14 and 15 are formed as shown in FIG. 1 (3) after the sheet laminate 20 is wound as indicated by the arrow 19, the terminal conductor 14 And 15 are surely in contact with the organic conductive ink soaked in each of the cuts 23 and 24, so that the reliability of the electrical connection between the terminal conductors 14 and 15 and the electrodes 9 and 10 can be improved.
  • the terminal conductors 14 and 15 formed by applying a silver paste for example, by applying a terminal conductor by the organic conductive ink itself soaked in each of the cuts 23 and 24. May be omitted.
  • FIG. 5 is a cross-sectional view for explaining the laminated state of the electrostrictive resin sheet 2 and the insulating resin sheets 3 and 4 in the embodiment shown in FIG.
  • a uniaxial stretching process is performed in order to obtain the electrostrictive resin sheet 2 having a relatively high elastic modulus.
  • polar groups are oriented or structural anisotropy is brought about to improve the electrostrictive characteristics.
  • the electrostrictive resin sheet 2 is formed with fine wrinkles extending in the stretching direction.
  • the surface of the electrostrictive resin sheet 2 is stretched in the stretching direction.
  • a plurality of fine ridges extending in the direction are formed. In FIG. 5, these ridges 25 are very schematically illustrated by wavy lines.
  • the electrostrictive resin sheet 2 Since the electrostrictive resin sheet 2 has a high elastic modulus by stretching, the surface thereof is relatively hard. Therefore, if the electrostrictive resin sheet 2 having the ridges 25 formed on the surface is used instead of the insulating resin sheets 3 and 4 having a relatively low elastic modulus shown in FIG. In the laminated state shown in B), voids are generated between the sheets, and these voids tend to remain after thermocompression bonding. In addition, if the pressure bonding is performed at a temperature at which heat melting occurs, the voids may be eliminated, but in this case, the orientation is lost in the electrostrictive resin sheet 2 and the characteristics are deteriorated. .
  • the insulating resin sheets 3 and 4 having a relatively low elastic modulus are laminated so as to be in contact with the electrostrictive resin sheet 2 having the flange 25 formed on the surface, the insulating resin sheets 3 and 4 are laminated. As shown in FIG. 5 (B), it easily deforms following the surface of the electrostrictive resin sheet 2 so as not to form a gap with the electrostrictive resin sheet 2. That is, the insulating resin sheets 3 and 4 have a surface that follows the surface of the electrostrictive resin sheet 2.
  • the insulating resin sheets 3 and 4 and the electrostrictive resin sheet 2 are joined so as to follow the surface of the electrostrictive resin sheet 2 in the process of joining the electrostrictive resin sheets 2 in a face-to-face state.
  • the insulating resin sheets 3 and 4 and the electrostrictive resin sheet 2 may be thermocompression bonded while the resin sheets 3 and 4 are deformed.
  • 6 to 8 correspond to FIG. 5 and are for explaining the second to fourth embodiments of the present invention, respectively. 6 to 8, elements corresponding to those shown in FIG. 5 are denoted by the same reference numerals.
  • the first and second insulating resin sheets 3 and 4 and the electrostrictive resin sheet 2 are wound, one of the first and second insulating resin sheets 3 and 4 is Omitted and the first and second electrodes corresponding to the first and second electrodes 9 and 10 may be formed on each main surface of the remaining insulating resin sheet, respectively. Even when such a configuration is adopted, when the insulating resin sheet and the electrostrictive resin sheet are wound, the first and second electrodes are in contact with both main surfaces of the electrostrictive resin sheet, respectively. Can be obtained.
  • FIG. 6A as described above, the first insulating resin sheet 3 is omitted, and the first insulating resin sheet 3 is left on the surface layer extending along each main surface of the second insulating resin sheet 4.
  • a second embodiment is shown in which a second electrode 9 and a second electrode 10 are respectively formed. Also in this embodiment, when the insulating resin sheet 4 having a relatively low elastic modulus is laminated so as to be in contact with the electrostrictive resin sheet 2 having the surface 25 formed on the surface, and the thermocompression bonding is performed, the insulating resin sheet 6 is easily deformed following the surface of the electrostrictive resin sheet 2 so as not to form a gap with the electrostrictive resin sheet 2 as shown in FIG.
  • the first insulating resin sheet 3 is omitted, and the second electrode 10 is formed on the surface layer extending along the lower main surface of the remaining second insulating resin sheet 4 as shown in the drawing.
  • a third embodiment is shown in which the first electrode 9 is formed on the lower main surface of the electrostrictive resin sheet 2 as shown in the figure.
  • the insulating resin sheet 4 having a relatively low elastic modulus is laminated so as to be in contact with the electrostrictive resin sheet 2 having the surface 25 formed on the surface, and the thermocompression bonding is performed, the insulating resin sheet 7 is easily deformed following the surface of the electrostrictive resin sheet 2 so as not to form a gap with the electrostrictive resin sheet 2 as shown in FIG.
  • the first insulating resin sheet 3 is omitted, and the first electrode 9 is formed on the surface layer extending along the upper main surface of the remaining second insulating resin sheet 4 in the drawing.
  • the second electrode 10 is formed on the upper main surface of the electrostrictive resin sheet 2 as shown in the drawing.
  • the insulating resin sheet 4 having a relatively low elastic modulus is laminated so as to be in contact with the electrostrictive resin sheet 2 having the surface 25 formed on the surface, and the thermocompression bonding is performed, the insulating resin sheet As shown in FIG. 8B, No. 4 easily deforms following the surface of the electrostrictive resin sheet 2 so as not to form a gap with the electrostrictive resin sheet 2.
  • one of the first and second electrodes 9 and 10 is on the electrostrictive resin sheet 2 side. Is formed. Even in this case, the problem of inhibiting deformation of the electrostrictive resin sheet 2 can be reduced as compared with the case where electrodes are formed on both surfaces of the electrostrictive resin sheet 2.
  • the roll-shaped electrostrictive actuator 1 as shown in FIG. 1 (3) is displaced as indicated by the double arrow 16.
  • the electrostrictive actuator 1 it has been confirmed that, for example, a diameter of 1 mm, a displacement of 50 to 100 ⁇ m, and a generated force of 0.5 N can be obtained.
  • an apparatus for variably displaying Braille is advantageously provided. Can be configured.
  • the electrostrictive actuator 1 can also be applied to the braille display device 31 shown in FIG.
  • a plurality of electrostrictive actuators 1 have their respective end surfaces (surfaces provided with the terminal conductors 14 or 15) directed in the same direction. Are arranged.
  • the plurality of electrostrictive actuators 1 can be arranged at 1 mm intervals, and a display of 64 ⁇ 98 dots can be realized.
  • the electrostrictive actuator 1 is in a roll shape
  • the electrostrictive actuator may be configured while the structure illustrated in FIG.
  • a plurality of the sheet laminates 20 shown in FIG. 1 (2) or FIG. 5 (B) may be laminated as necessary.
  • a plurality of the sheet laminates 20 shown in FIG. 6B, FIG. 7B, or FIG. 8B may be laminated.
  • seat laminated body 20 it can also be set as the wound body which has other cross-sectional shapes, such as an oval cross-section, instead of making it a roll shape with a circular cross section.
  • Electrostrictive actuator 1 Electrostrictive resin sheet 3, 4 Insulating resin sheet 5, 6 Main surface 7, 8 Surface layer 9, 10 Electrode 11 Lamella 12 Conductive material 13 Actuator body 14, 15 Terminal conductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention solves a problem of interference with the deformation of an electrostrictive resin sheet caused by an electrode in an electrostrictive actuator comprising an electrostrictive resin sheet made of an electrostrictive polymeric material, and first and second electrodes respectively provided so as to be in contact with both the principal surfaces of the electrostrictive resin sheet to apply a voltage in the thickness direction of the electrostrictive resin sheet. An electrostrictive actuator (1) is joined to an electrostrictive resin sheet (2) with the surface of the electrostrictive actuator (1) facing the surface of the electrostrictive resin sheet (2), and has electric insulation resin sheets (3, 4) which have elastic moduli lower than that of the electrostrictive resin sheet (2). Electrodes (9, 10) are formed of a conductive material that is distributed so as to form a current path extending in the principal surface direction in surface layers (7, 8) that extend along the principal surfaces (5, 6) of the insulation resin sheets (3, 4) which are in contact with the electrostrictive resin sheet (2).

Description

電歪アクチュエータおよびその製造方法Electrostrictive actuator and manufacturing method thereof
 この発明は、電歪アクチュエータおよびその製造方法に関するもので、特に、高分子電歪材料からなる電歪性樹脂シートを用いた電歪アクチュエータおよびその製造方法に関するものである。 The present invention relates to an electrostrictive actuator and a manufacturing method thereof, and particularly to an electrostrictive actuator using an electrostrictive resin sheet made of a polymer electrostrictive material and a manufacturing method thereof.
 この発明にとって興味ある電歪アクチュエータとして、たとえば特開2009-232523号公報(特許文献1)に記載されたものがある。特許文献1には、高分子電歪材料としての誘電体エラストマーと電極とが積層されたアクチュエータが記載されている。この先行技術では、電極を介して誘電体エラストマーに電圧が印加されたとき、誘電体エラストマーが変形する。誘電体エラストマーを大きく変形させるため、エラストマーとしては、弾性率が1MPa以下の柔らかいものが使用されている。 An electrostrictive actuator that is of interest to the present invention is described in, for example, Japanese Patent Application Laid-Open No. 2009-232523 (Patent Document 1). Patent Document 1 describes an actuator in which a dielectric elastomer as a polymer electrostrictive material and an electrode are laminated. In this prior art, when a voltage is applied to the dielectric elastomer via an electrode, the dielectric elastomer is deformed. In order to greatly deform the dielectric elastomer, a soft elastomer having an elastic modulus of 1 MPa or less is used.
 他方、電極は、カーボンブラック、カーボンナノチューブ等の導電性カーボンに、バインダとしてオイルやエラストマーを混合したペーストまたは塗料を用いて形成されている。ここで、カーボンブラックやカーボンナノチューブは、比較的硬い粒子であるので、カーボンブラックやカーボンナノチューブのような硬い粒子は、電極を固くしてしまう。そのため、電極を柔らかく保つためには、カーボンブラックやカーボンナノチューブのような硬い粒子を多く含有させない方が好ましいが、電極において必要な導電率を得るためには、カーボンブラックやカーボンナノチューブのような導電性粒子をたとえば10体積%以上というように比較的多く含有させなければならない。 On the other hand, the electrode is formed using a paste or paint in which conductive carbon such as carbon black or carbon nanotube is mixed with oil or elastomer as a binder. Here, since carbon black and carbon nanotubes are relatively hard particles, hard particles such as carbon black and carbon nanotubes harden the electrode. Therefore, in order to keep the electrode soft, it is preferable not to contain a lot of hard particles such as carbon black and carbon nanotubes. It is necessary to contain a relatively large amount of the conductive particles, for example, 10% by volume or more.
 その結果、電極が固くなり、そのため、誘電体エラストマーの変形が阻害されてしまうという問題に遭遇する。 As a result, the electrode becomes hard, so that the problem that deformation of the dielectric elastomer is hindered is encountered.
 なお、電極の厚みに比較して、誘電体エラストマーの厚みを十分厚くすることによって、電極による変形阻害の影響を低減することが考えられる。しかし、この場合、誘電体エラストマーを変形させるために印加すべき電圧を誘電体エラストマーの厚みの増大に応じて高くしなければならないという別の問題に遭遇する。一例を挙げると、たとえば、電極の厚み10μmに対して、誘電体エラストマーの厚みを100μmと厚くすることによって、電極による変形阻害の影響を低減しようとする場合、通常、誘電体エラストマーの厚み1μmあたり、150V程度の電圧を印加するため、誘電体エラストマーの厚みが100μmになると、約15kVといった高い電圧を印加しなければならなくなってしまう。 Note that it is conceivable to reduce the influence of deformation inhibition by the electrode by sufficiently increasing the thickness of the dielectric elastomer as compared with the thickness of the electrode. However, in this case, another problem is encountered in that the voltage to be applied to deform the dielectric elastomer must be increased with the increase in thickness of the dielectric elastomer. For example, when the thickness of the dielectric elastomer is increased to 100 μm with respect to the thickness of the electrode 10 μm, the influence of deformation inhibition by the electrode is usually reduced per 1 μm of the dielectric elastomer thickness. Since a voltage of about 150 V is applied, when the dielectric elastomer has a thickness of 100 μm, a high voltage of about 15 kV must be applied.
特開2009-232523号公報JP 2009-232523 A
 そこで、この発明の目的は、上述したような電極による電歪性樹脂シートの変形阻害の問題を低減し得る電歪アクチュエータおよびその製造方法を提供しようとすることである。 Accordingly, an object of the present invention is to provide an electrostrictive actuator that can reduce the problem of inhibiting deformation of the electrostrictive resin sheet by the electrodes as described above, and a method for manufacturing the electrostrictive actuator.
 この発明は、高分子電歪材料からなる電歪性樹脂シートと、電歪性樹脂シートの厚み方向に電圧を印加するため、電歪性樹脂シートの両主面にそれぞれ接するように設けられる第1および第2の電極と、を備える、電歪アクチュエータの構造にまず向けられるものであって、上述した技術的課題を解決するため、電歪性樹脂シートに対して面対向状態で接合されるものであり、電歪性樹脂シートより弾性率の低い、電気絶縁性の絶縁性樹脂シートをさらに備え、上記第1および第2の電極の少なくとも一方は、絶縁性樹脂シートの、電歪性樹脂シートに接する主面に沿って延びる表面層において、主面方向に延びる電流経路を形成する状態で分布する導電性材料によって与えられていることを特徴としている。 The present invention provides an electrostrictive resin sheet made of a polymer electrostrictive material and a first electrode provided in contact with both main surfaces of the electrostrictive resin sheet in order to apply a voltage in the thickness direction of the electrostrictive resin sheet. In order to solve the above-described technical problem, the electrostrictive resin sheet is bonded to the electrostrictive resin sheet in a face-to-face state. An electrically insulating insulating resin sheet having a lower elastic modulus than the electrostrictive resin sheet, wherein at least one of the first and second electrodes is an electrostrictive resin of an insulating resin sheet In the surface layer extending along the main surface in contact with the sheet, the surface layer is provided by a conductive material distributed in a state of forming a current path extending in the main surface direction.
 上記の構造の電歪アクチュエータによれば、絶縁性樹脂シートは、電歪性樹脂シートより弾性率が低い、すなわち、より曲げ・伸びといった変形が生じやすいので、電歪性樹脂シートの曲げ・伸び等の変形を実質的に阻害しない。また、第1および第2の電極の少なくとも一方は、曲げ・伸びといった変形が生じやすい絶縁性樹脂シートの表面層に分布する導電性材料によって与えられるので、第1および第2の電極の少なくとも一方については電歪性樹脂シートの曲げ・伸び等の変形を実質的に阻害することがない。 According to the electrostrictive actuator having the above structure, the insulating resin sheet has a lower elastic modulus than the electrostrictive resin sheet, that is, more easily deformed such as bending and stretching. It does not substantially inhibit the deformation. In addition, since at least one of the first and second electrodes is provided by a conductive material distributed in the surface layer of the insulating resin sheet that is likely to be deformed such as bending and stretching, at least one of the first and second electrodes No substantial deformation of the electrostrictive resin sheet such as bending or elongation is hindered.
 この発明は、また、上述した構造を有する電歪アクチュエータを製造する方法にも向けられる。 The present invention is also directed to a method of manufacturing an electrostrictive actuator having the above-described structure.
 この発明に係る電歪アクチュエータの製造方法は、高分子電歪材料からなる電歪性樹脂シートを用意する工程と、電歪性樹脂シートより弾性率の低い、電気絶縁性の絶縁性樹脂シートを用意する工程と、絶縁性樹脂シートの少なくとも一方の主面に沿って延びる表面層において、主面方向に延びる電流経路を形成する状態で導電性材料が分布してなる電極を形成する工程と、電極が電歪性樹脂シートの少なくとも一方の主面に接するように、絶縁性樹脂シートと電歪性樹脂シートとを面対向状態で接合する工程と、を備えることを特徴としている。 An electrostrictive actuator manufacturing method according to the present invention includes a step of preparing an electrostrictive resin sheet made of a polymer electrostrictive material, and an electrically insulating insulating resin sheet having a lower elastic modulus than the electrostrictive resin sheet. A step of preparing, and in a surface layer extending along at least one main surface of the insulating resin sheet, a step of forming an electrode in which a conductive material is distributed in a state of forming a current path extending in the main surface direction; A step of joining the insulating resin sheet and the electrostrictive resin sheet in a face-to-face state so that the electrode is in contact with at least one main surface of the electrostrictive resin sheet.
 この発明において、電歪性樹脂シートと絶縁性樹脂シートとが、互いに共通する主成分を有することが好ましい。電歪性樹脂シートと絶縁性樹脂シートとの接合に際して、両者の間で良好な密着性を得ることができるからである。 In this invention, it is preferable that the electrostrictive resin sheet and the insulating resin sheet have main components common to each other. This is because, when joining the electrostrictive resin sheet and the insulating resin sheet, good adhesion can be obtained between them.
 上述の場合、電歪性樹脂シートとして、絶縁性樹脂シートと同じ材料からなるシートを延伸することによって得られたものを用いるようにすれば、材料の共通化によるコストダウンを図り得るとともに、延伸による弾性率の向上の結果、確実に、延伸前の絶縁性樹脂シートの弾性率を、延伸後の電歪性樹脂シートの弾性率より低いものとすることができる。 In the above-mentioned case, if an electrostrictive resin sheet obtained by stretching a sheet made of the same material as the insulating resin sheet is used, the cost can be reduced due to the common use of the material, and stretching As a result of the improvement of the elastic modulus, the elastic modulus of the insulating resin sheet before stretching can be surely made lower than the elastic modulus of the electrostrictive resin sheet after stretching.
 上述した電歪性樹脂シートとしては、好ましくは、1軸延伸したものが用いられる。この場合、電歪性樹脂シートの表面には、通常、延伸方向に延びる複数の襞が形成される。他方、絶縁性シートは、電歪性シートより弾性率が低いので、互いに面対向することで、電歪性樹脂シートとの間に空隙を形成しないように、電歪性樹脂シートの表面に倣った表面を有することになる。このような構成によれば、電歪性樹脂シートと絶縁性樹脂シートとの間の空隙に起因する問題を回避することができる。すなわち、電極間に、電歪性樹脂シートに加えて、空気層が存在する場合には、電極間での見かけの誘電率といった電気的特性が大きく低下してしまうという問題を招くが、上記構成によれば、このような問題を回避することができる。 The electrostrictive resin sheet described above is preferably uniaxially stretched. In this case, a plurality of wrinkles extending in the stretching direction are usually formed on the surface of the electrostrictive resin sheet. On the other hand, since the insulating sheet has a lower elastic modulus than the electrostrictive sheet, the insulating sheet follows the surface of the electrostrictive resin sheet so as not to form a gap between the insulating sheet and the electrostrictive resin sheet. Will have a rough surface. According to such a structure, the problem resulting from the space | gap between an electrostrictive resin sheet and an insulating resin sheet can be avoided. That is, in the case where an air layer is present between the electrodes in addition to the electrostrictive resin sheet, the electrical characteristics such as the apparent dielectric constant between the electrodes are greatly reduced. According to this, such a problem can be avoided.
 上述の構成を備える電歪アクチュエータを製造する場合には、絶縁性樹脂シートと電歪性樹脂シートとを面対向状態で接合する工程は、電歪性樹脂シートの表面に倣うように絶縁性樹脂シートを変形させながら、絶縁性樹脂シートと電歪性樹脂シートとを熱圧着するように実施されることが好ましい。 When manufacturing an electrostrictive actuator having the above-described configuration, the step of joining the insulating resin sheet and the electrostrictive resin sheet in a face-to-face state is performed so that the surface of the electrostrictive resin sheet follows the insulating resin. It is preferable that the insulating resin sheet and the electrostrictive resin sheet be thermocompression-bonded while the sheet is deformed.
 電極を形成するため、絶縁性樹脂シートの主面に有機導電性インクを浸透させるようにすることが好ましい。一般に、高分子フィルムの表面には、ラメラ構造による微細な凹凸が形成されている。この発明で用いられる絶縁性樹脂シートも高分子フィルムであるので、その主面には、このようなラメラ構造による微細な凹凸が形成されている。そのため、絶縁性樹脂シートの主面に有機導電性インクを浸透させると、絶縁性樹脂シートの表面層において、主面方向に延びる電流経路を形成する状態で有機導電性インクによる導電性材料を有利に分布させることができる。また、このようにして形成された電極は、絶縁性樹脂シートの曲げ変形に倣って曲げ変形しやすく、そのため、曲げ変形によっても破壊されにくく、よって、電極における電気的導通の信頼性を向上させることができる。 In order to form the electrode, it is preferable to allow the organic conductive ink to permeate the main surface of the insulating resin sheet. In general, fine irregularities due to a lamellar structure are formed on the surface of a polymer film. Since the insulating resin sheet used in the present invention is also a polymer film, fine irregularities due to such a lamellar structure are formed on its main surface. Therefore, when the organic conductive ink is infiltrated into the main surface of the insulating resin sheet, the conductive material using the organic conductive ink is advantageous in a state where a current path extending in the main surface direction is formed in the surface layer of the insulating resin sheet. Can be distributed. Further, the electrode formed in this way is easily deformed following the bending deformation of the insulating resin sheet. Therefore, the electrode is not easily broken by the bending deformation, thereby improving the reliability of electrical conduction in the electrode. be able to.
 この発明において、典型的には、絶縁性樹脂シートとして、第1の電極を保持する第1の絶縁性樹脂シートと第2の電極を保持する第2の絶縁性樹脂シートとが用意され、電歪性樹脂シートは、第1の絶縁性樹脂シートと第2の絶縁性樹脂シートとに挟まれた状態とされる。 In the present invention, typically, as the insulating resin sheet, a first insulating resin sheet that holds the first electrode and a second insulating resin sheet that holds the second electrode are prepared. The strain resin sheet is sandwiched between the first insulating resin sheet and the second insulating resin sheet.
 また、この発明において、電歪性樹脂シートおよび絶縁性樹脂シートは巻回された状態にあることが好ましい。この場合、巻回数を増すことにより、電歪性樹脂シートの積層数を増すことができ、電歪アクチュエータにおいて、より強い変位力を得ることができる。 In the present invention, the electrostrictive resin sheet and the insulating resin sheet are preferably in a wound state. In this case, by increasing the number of windings, the number of layers of the electrostrictive resin sheets can be increased, and a stronger displacement force can be obtained in the electrostrictive actuator.
 この発明に係る電歪アクチュエータによれば、絶縁性樹脂シートおよび電極は、電歪性樹脂シートより曲げ変形しやすいので、これら絶縁性樹脂シートおよび電極が電歪性樹脂シートの曲げ変形を実質的に阻害することがなくなる。したがって、高効率の電歪アクチュエータを得ることができる。 According to the electrostrictive actuator according to the present invention, since the insulating resin sheet and the electrode are more easily bent and deformed than the electrostrictive resin sheet, the insulating resin sheet and the electrode substantially deform the electrostrictive resin sheet. Will not be disturbed. Therefore, a highly efficient electrostrictive actuator can be obtained.
 この発明に係る電歪アクチュエータの製造方法によれば、少なくとも一方の電極を、電歪性樹脂シートに直接形成するのではなく、絶縁性樹脂シートに形成した上で、電極が電歪性樹脂シートの少なくとも一方の主面に接するように、絶縁性樹脂シートと電歪性樹脂シートとを面対向状態で接合するようにしている。したがって、たとえば1μmといった厚みの極めて薄い電歪性樹脂シートの両主面に、たとえば有機導電性インクを用いて電極を形成した場合に生じ得る、表裏主面間での電極の電気的短絡の問題を有利に回避することができる。 According to the electrostrictive actuator manufacturing method of the present invention, at least one of the electrodes is not directly formed on the electrostrictive resin sheet, but is formed on the insulating resin sheet, and then the electrode is electrostrictive resin sheet. The insulating resin sheet and the electrostrictive resin sheet are joined in a face-to-face state so as to be in contact with at least one of the main surfaces. Therefore, the problem of electrical short-circuiting of electrodes between the front and back main surfaces that can occur when electrodes are formed on both main surfaces of an extremely thin electrostrictive resin sheet having a thickness of, for example, 1 μm using, for example, organic conductive ink. Can be advantageously avoided.
この発明の第1の実施形態による電歪アクチュエータ1の製造方法を工程順に示すもので、(1)は、電歪アクチュエータ1を構成する電歪性樹脂シート2と絶縁性樹脂シート3および4とを互いに分離して示す断面図であり、(2)は、(1)に示した電歪性樹脂シート2と絶縁性樹脂シート3および4とを積層し、互いに圧着した状態を示す断面図であり、(3)は、(2)に示した電歪性樹脂シート2および絶縁性樹脂シート3および4を巻回し、かつ端子導体14および15を形成した状態、すなわち、完成された電歪アクチュエータ1を示す斜視図である。The manufacturing method of the electrostrictive actuator 1 by this 1st Embodiment is shown in order of a process, (1) is the electrostrictive resin sheet 2 and the insulating resin sheets 3 and 4 which comprise the electrostrictive actuator 1, FIG. 2 is a cross-sectional view separately showing each other, and FIG. 2B is a cross-sectional view showing a state where the electrostrictive resin sheet 2 and the insulating resin sheets 3 and 4 shown in FIG. Yes, (3) is a state where the electrostrictive resin sheet 2 and the insulating resin sheets 3 and 4 shown in (2) are wound and the terminal conductors 14 and 15 are formed, that is, a completed electrostrictive actuator. 1 is a perspective view showing 1. FIG. 図1(1)に示した絶縁性樹脂シート3の主面5に沿って延びる表面層7に電極9を形成した状態を模式的に示す断面図である。It is sectional drawing which shows typically the state which formed the electrode 9 in the surface layer 7 extended along the main surface 5 of the insulating resin sheet 3 shown to FIG. 1 (1). 図2に示した絶縁性樹脂シート3の主面5の一部を拡大して模式的に示す平面図である。It is a top view which expands and schematically shows a part of main surface 5 of the insulating resin sheet 3 shown in FIG. 図1(3)に示した端子導体14および15と図1(1)および(2)に示した電極9および10との電気的接続の信頼性を高めるために採用される好ましい実施形態を説明するためのシート積層体20の斜視図である。A preferred embodiment adopted to increase the reliability of the electrical connection between the terminal conductors 14 and 15 shown in FIG. 1 (3) and the electrodes 9 and 10 shown in FIGS. 1 (1) and (2) will be described. It is a perspective view of the sheet laminated body 20 for doing. 図1に示した実施形態について、電歪性樹脂シート2と絶縁性樹脂シート3および4との積層状態を説明するための模式的断面図であり、(A)は積層前の状態、(B)は積層後の状態を示している。1 is a schematic cross-sectional view for explaining a laminated state of an electrostrictive resin sheet 2 and insulating resin sheets 3 and 4 in the embodiment shown in FIG. 1, (A) is a state before lamination, (B ) Shows the state after lamination. この発明の第2の実施形態を説明するための図5に対応する図である。It is a figure corresponding to FIG. 5 for demonstrating the 2nd Embodiment of this invention. この発明の第3の実施形態を説明するための図5に対応する図である。It is a figure corresponding to FIG. 5 for demonstrating the 3rd Embodiment of this invention. この発明の第4の実施形態を説明するための図5に対応する図である。It is a figure corresponding to FIG. 5 for demonstrating the 4th Embodiment of this invention. この発明に係る電歪アクチュエータの好ましい応用例としての点字ディスプレイ装置31の外観を示す斜視図である。It is a perspective view which shows the external appearance of the braille display apparatus 31 as a preferable application example of the electrostrictive actuator which concerns on this invention.
 図1ないし図3を参照して、この発明の一実施形態による電歪アクチュエータ1の製造方法について、まず説明する。電歪アクチュエータ1の製造方法が理解されれば、電歪アクチュエータ1の構造が明らかになるからである。 With reference to FIG. 1 thru | or FIG. 3, the manufacturing method of the electrostrictive actuator 1 by one Embodiment of this invention is demonstrated first. This is because if the manufacturing method of the electrostrictive actuator 1 is understood, the structure of the electrostrictive actuator 1 becomes clear.
 図1(1)に示すように、電歪性樹脂シート2ならびに第1および第2の絶縁性樹脂シート3および4が用意される。 As shown in FIG. 1 (1), an electrostrictive resin sheet 2 and first and second insulating resin sheets 3 and 4 are prepared.
 電歪性樹脂シート2は、高分子電歪材料からなる。高分子電歪材料は、永久双極子を有する高分子材料であれば、特に限定されない。高分子電歪材料の例としては、PVDF(ポリビニリデンフルオロイド)、PVDF系の共重合体、たとえば、P(VDF-TrFE)、P(VDF-VF)などのコポリマーや、P(VDF-TrFE-CFE)、P(VDF-TrFE-CTFE)、P(VDF-TrFE-CDFE)、P(VDF-TrFE-HFA)、P(VDF-TrFE-HFP)、P(VDF-TrFE-VC)などのターポリマーが挙げられる。なかでも、P(VDF-TrFE-CFE)が、大きな歪みが得られる点で特に好ましい。 The electrostrictive resin sheet 2 is made of a polymer electrostrictive material. The polymer electrostrictive material is not particularly limited as long as it is a polymer material having a permanent dipole. Examples of the polymer electrostrictive material include PVDF (polyvinylidene fluoride), PVDF copolymer, for example, a copolymer such as P (VDF-TrFE) and P (VDF-VF), and P (VDF-TrFE). -CFE), P (VDF-TrFE-CTFE), P (VDF-TrFE-CDFE), P (VDF-TrFE-HFA), P (VDF-TrFE-HFP), P (VDF-TrFE-VC), etc. A terpolymer may be mentioned. Among these, P (VDF-TrFE-CFE) is particularly preferable because a large distortion can be obtained.
 なお、上記の高分子電歪材料の例示において、Pはポリを、VDFはビニリデンフルオライドを、TrFEはトリフルオロエチレンを、CFEはクロロフルオロエチレンを、CTFEはクロロトリフルオロエチレンを、CDFEはクロロジフルオロエチレンを、HFAはヘキサフルオロアセトンを、HFPはヘキサフルオロプロピレンを、VCはビニルクロライド、VFはビニルフルオライドをそれぞれ示す。 In the above examples of polymer electrostrictive materials, P is poly, VDF is vinylidene fluoride, TrFE is trifluoroethylene, CFE is chlorofluoroethylene, CTFE is chlorotrifluoroethylene, and CDFE is chloro. Difluoroethylene, HFA represents hexafluoroacetone, HFP represents hexafluoropropylene, VC represents vinyl chloride, and VF represents vinyl fluoride.
 電歪性樹脂シート2の厚さは、適宜設定してよいが、たとえば数μm~100μm程度とし得る。 The thickness of the electrostrictive resin sheet 2 may be set as appropriate, but may be, for example, about several μm to 100 μm.
 絶縁性樹脂シート3および4は、電歪性樹脂シート2の場合と同様、高分子電歪材料から構成されても、あるいは、電歪性を有しない他の高分子材料から構成されてもよい。他方、絶縁性樹脂シート3および4は、電歪性樹脂シート2より弾性率が低い、すなわち、より曲げ変形しやすいという条件を満たすものでなければならない。そのため、好ましくは、絶縁性樹脂シート3および4として、上述した高分子電歪材料からなるものを延伸せずに用い、電歪性樹脂シート2は、絶縁性樹脂シート3および4と同じ材料からなるシートを延伸し、フィブリル化することによって得るようにされる。 The insulating resin sheets 3 and 4 may be made of a polymer electrostrictive material as in the case of the electrostrictive resin sheet 2 or may be made of another polymer material that does not have electrostrictive properties. . On the other hand, the insulating resin sheets 3 and 4 must satisfy the condition that the elastic modulus is lower than that of the electrostrictive resin sheet 2, that is, bendable more easily. Therefore, preferably, as the insulating resin sheets 3 and 4, the above-described polymer electrostrictive material is used without stretching, and the electrostrictive resin sheet 2 is made of the same material as the insulating resin sheets 3 and 4. The resulting sheet is drawn and fibrillated.
 一般に、有機材料は、ガラス転移点以上、かつ融点以下の温度で延伸することができる。たとえば、ガラス転移点が0℃以下、融点が120℃である有機材料の場合には、室温でも延伸することができるが、40~50℃の温度で延伸することが望ましい。延伸にあたっては、シートの両端を保持し、その状態で、初期の長さに対して2倍以上、好ましくは3倍以上の長さに引っ張って伸ばすことが行なわれるが、この場合、短冊状のシートを1枚ずつ引っ張るバッチ処理が採用されても、供給側のロールの回転数より巻取側のロールの回転数を多くしたロール・ツー・ロール方式が採用されてもよい。引っ張り速度は、たとえば10mm/秒またはそれ以上に選ばれる。 Generally, an organic material can be stretched at a temperature not lower than the glass transition point and not higher than the melting point. For example, in the case of an organic material having a glass transition point of 0 ° C. or lower and a melting point of 120 ° C., it can be stretched at room temperature, but it is desirable to stretch at a temperature of 40 to 50 ° C. In stretching, both ends of the sheet are held, and in that state, the sheet is stretched by pulling to a length of 2 times or more, preferably 3 times or more of the initial length. Even when batch processing for pulling the sheets one by one is adopted, a roll-to-roll method in which the number of rotations of the roll on the winding side is made larger than the number of rotations of the roll on the supply side may be adopted. The pulling speed is selected to be, for example, 10 mm / second or more.
 絶縁性樹脂シート3および4と同じ材料からなる初期シートを延伸すれば、初期シートより弾性率が上がった電歪性樹脂シート2が得られる。たとえば、初期シートの弾性率が100MPaであるとき、これを4倍延伸すれば、弾性率が400MPaに上がる。 If the initial sheet made of the same material as the insulating resin sheets 3 and 4 is stretched, the electrostrictive resin sheet 2 having an elastic modulus higher than that of the initial sheet can be obtained. For example, when the elastic modulus of the initial sheet is 100 MPa, if this is stretched 4 times, the elastic modulus increases to 400 MPa.
 次に、第1および第2の絶縁性樹脂シート3および4の各々の主面5および6に沿ってそれぞれ延びる表面層7および8において、主面方向に延びる電流経路を形成する状態で導電性材料が分布してなる第1および第2の電極9および10がそれぞれ形成される。この工程を、図2および図3を参照しながら、一方の絶縁性樹脂シート3に電極9が形成される場合について説明する。 Next, in the surface layers 7 and 8 extending along the main surfaces 5 and 6 of the first and second insulating resin sheets 3 and 4, respectively, the conductive layer is formed in a state in which a current path extending in the main surface direction is formed. First and second electrodes 9 and 10 in which materials are distributed are formed, respectively. This process will be described with reference to FIGS. 2 and 3 when the electrode 9 is formed on one insulating resin sheet 3.
 電極9を形成するため、有機導電性インクが用いられる。有機導電性インクは、たとえば、PEDOT(ポリエチレンジオキシチオフェン)、PPy(ポリピロール)、PANI(ポリアニリン)などの有機導電性材料を有機溶剤に溶かすことによって得られたものである。 Organic conductive ink is used to form the electrode 9. The organic conductive ink is obtained by, for example, dissolving an organic conductive material such as PEDOT (polyethylenedioxythiophene), PPy (polypyrrole), PANI (polyaniline) in an organic solvent.
 前述したように、一般に、高分子フィルムの表面には、ラメラ構造による微細な凹凸が形成されている。図3には、絶縁性樹脂シート3の主面5の一部が拡大されて模式的に示されている。図3に示すように、絶縁性樹脂シート3の主面5には、ラメラ11と呼ばれる結晶部が存在し、このようなラメラ構造による微細な凹凸が形成されている。 As described above, in general, fine unevenness due to a lamellar structure is formed on the surface of a polymer film. FIG. 3 schematically shows an enlarged part of the main surface 5 of the insulating resin sheet 3. As shown in FIG. 3, the main surface 5 of the insulating resin sheet 3 has a crystal part called a lamella 11, and fine irregularities due to such a lamella structure are formed.
 そのため、絶縁性樹脂シート3の主面5に、上述した有機導電性インクを、はけ塗り、シルクスクリーン印刷、スプレーパターン塗布等の方法により塗布し、浸透させると、図2に示すように、絶縁性樹脂シート3の表面層7において、主面方向に延びる電流経路を形成する状態で有機導電性インクによる導電性材料が分布した電極9が形成される。図3には、ラメラ構造による微細な凹部内に取り込まれた導電性材料12が模式的に図示されている。有機導電性インクは、塗布後、たとえば85℃で30分間の熱処理が施される。 Therefore, when the organic conductive ink described above is applied to the main surface 5 of the insulating resin sheet 3 by a method such as brush coating, silk screen printing, spray pattern coating, or the like, as shown in FIG. On the surface layer 7 of the insulating resin sheet 3, an electrode 9 is formed in which a conductive material made of organic conductive ink is distributed in a state in which a current path extending in the main surface direction is formed. FIG. 3 schematically shows the conductive material 12 taken into a minute recess having a lamellar structure. The organic conductive ink is heat-treated at 85 ° C. for 30 minutes, for example, after application.
 このようにして形成された電極9は、絶縁性樹脂シート3の表面層7においてのみ存在しているので、絶縁性樹脂シート3の曲げ変形に倣って曲げ変形しやすく、伸縮可能な電極として機能するため、曲げ変形によっても破壊されにくい。また、図3に示すように、ラメラ構造による微細な凹部内に取り込まれた導電性材料12は、ラメラ構造による微細な凹部の数に応じた数の電流経路を形成する。これらのことから、電極9において、高い信頼性を有する電気的導通状態を得ることができる。 Since the electrode 9 formed in this manner exists only in the surface layer 7 of the insulating resin sheet 3, the electrode 9 easily bends and follows the bending deformation of the insulating resin sheet 3, and functions as an extensible electrode. Therefore, it is difficult to be destroyed by bending deformation. Further, as shown in FIG. 3, the conductive material 12 taken into the minute recesses having the lamella structure forms a number of current paths corresponding to the number of the minute recesses having the lamella structure. For these reasons, the electrode 9 can obtain an electrically conductive state having high reliability.
 前に例示したように、弾性率が100MPaである絶縁性樹脂シート3の主面5に電極9を形成するため、有機導電性インクとして、前述したPEDOTを含むものを用い、これを絶縁性樹脂シート3の主面5のラメラ構造部分に10~400nmの厚みで付着させる実験を実施した。この場合、PEDOTの弾性率は2GPaであるが、絶縁性樹脂シート3における電極9が形成された部分の弾性率は、絶縁性樹脂シート3の弾性率である100MPaより高く、かつ絶縁性樹脂シート3と同じ材料からなる初期シートを4倍延伸することによって得られた電歪性樹脂シート2の弾性率である400MPaより低くなることが確認された。 As illustrated before, in order to form the electrode 9 on the main surface 5 of the insulating resin sheet 3 having an elastic modulus of 100 MPa, the organic conductive ink containing the aforementioned PEDOT is used as the insulating resin. An experiment was performed in which the sheet 3 was adhered to the lamella structure portion of the main surface 5 with a thickness of 10 to 400 nm. In this case, although the elastic modulus of PEDOT is 2 GPa, the elastic modulus of the portion where the electrode 9 is formed in the insulating resin sheet 3 is higher than 100 MPa which is the elastic modulus of the insulating resin sheet 3, and the insulating resin sheet 3 was confirmed to be lower than 400 MPa, which is the elastic modulus of the electrostrictive resin sheet 2 obtained by stretching the initial sheet made of the same material as 3 by 4 times.
 以上の図2および図3を参照しながらの説明は、第2の絶縁性樹脂シート4に第2の電極10が形成される場合についても当てはまる。 The above description with reference to FIG. 2 and FIG. 3 also applies to the case where the second electrode 10 is formed on the second insulating resin sheet 4.
 図1(1)に示した電歪性樹脂シート2ならびに絶縁性樹脂シート3および4は、紙面に直交する方向に延びる長手の形状を有していて、図1(1)では、電歪性樹脂シート2ならびに絶縁性樹脂シート3および4の幅方向断面が現れている。 The electrostrictive resin sheet 2 and the insulating resin sheets 3 and 4 shown in FIG. 1 (1) have a longitudinal shape extending in a direction orthogonal to the paper surface. In FIG. Cross sections in the width direction of the resin sheet 2 and the insulating resin sheets 3 and 4 appear.
 図1(1)に示すように、第1の絶縁性樹脂シート3に形成される第1の電極9は、第1の絶縁性樹脂シート3の図による左端にまで届くように形成され、第1の絶縁性樹脂シート3の図による右端に対しては所定のギャップを形成している。他方、第2の絶縁性樹脂シート4に形成される第2の電極10は、第2の絶縁性樹脂シート4の図による右端にまで届くように形成され、第2の絶縁性樹脂シート4の図による左端に対しては所定のギャップを形成している。 As shown in FIG. 1 (1), the first electrode 9 formed on the first insulating resin sheet 3 is formed so as to reach the left end of the first insulating resin sheet 3 as shown in FIG. A predetermined gap is formed on the right end of the insulating resin sheet 3 of FIG. On the other hand, the second electrode 10 formed on the second insulating resin sheet 4 is formed so as to reach the right end of the second insulating resin sheet 4 according to the drawing, and the second insulating resin sheet 4 A predetermined gap is formed at the left end in the figure.
 次に、図1(2)に示すように、電歪性樹脂シート2の両主面に、第1および第2の電極9および10がそれぞれ接するように、第1および第2の絶縁性樹脂シート3および4と電歪性樹脂シート2とが面対向状態で接合される。より具体的には、第1および第2の絶縁性樹脂シート3および4と電歪性樹脂シート2とを重ねた後、たとえば、85~100℃の熱を付与しながら、真空に引いた状態で熱圧着により、第1および第2の絶縁性樹脂シート3および4と電歪性樹脂シート2とが貼り合わされる。熱圧着に代えて、エポキシ樹脂などから接着剤による貼り合わせを適用してもよい。 Next, as shown in FIG. 1 (2), the first and second insulating resins are such that the first and second electrodes 9 and 10 are in contact with both main surfaces of the electrostrictive resin sheet 2, respectively. Sheets 3 and 4 and electrostrictive resin sheet 2 are joined in a face-to-face state. More specifically, after the first and second insulating resin sheets 3 and 4 and the electrostrictive resin sheet 2 are overlaid, for example, a state where a vacuum is applied while applying heat of 85 to 100 ° C. The first and second insulating resin sheets 3 and 4 and the electrostrictive resin sheet 2 are bonded together by thermocompression bonding. Instead of thermocompression bonding, bonding with an adhesive from an epoxy resin or the like may be applied.
 次に、第1および第2の絶縁性樹脂シート3および4と電歪性樹脂シート2とが貼り合わされた、3層からなるシート積層体20が、図1(2)の左右方向に向く軸線のまわりに巻回され、それによって、図1(3)に示すようなロール状のアクチュエータ本体13が得られる。なお、図1(1)および(2)において、電歪性樹脂シート2と第1および第2の絶縁性樹脂シート3および4とは、各々の厚み方向寸法が誇張されて図示されていることを指摘しておく。 Next, the three-layered sheet laminate 20 in which the first and second insulating resin sheets 3 and 4 and the electrostrictive resin sheet 2 are bonded is an axis line in the left-right direction in FIG. Thus, a roll-shaped actuator main body 13 as shown in FIG. 1 (3) is obtained. In FIGS. 1 (1) and (2), the electrostrictive resin sheet 2 and the first and second insulating resin sheets 3 and 4 are illustrated with exaggerated thickness direction dimensions. Please point out.
 次に、アクチュエータ本体13の両端部に、第1および第2の端子導体14および15がそれぞれ形成される。端子導体14および15は、たとえば、銀ペーストを塗布することによって形成される。ロール状のアクチュエータ本体13において、図1(3)による左側の端面には、第1の電極9が露出しているので、第1の端子導体14は第1の電極9と電気的に接続され、他方、右側の端面には、第2の電極10が露出しているので、第2の端子導体15は第2の電極10と電気的に接続される。 Next, first and second terminal conductors 14 and 15 are formed at both ends of the actuator body 13, respectively. Terminal conductors 14 and 15 are formed, for example, by applying a silver paste. In the roll-shaped actuator body 13, the first electrode 9 is exposed at the left end face according to FIG. 1 (3), so that the first terminal conductor 14 is electrically connected to the first electrode 9. On the other hand, since the second electrode 10 is exposed at the right end face, the second terminal conductor 15 is electrically connected to the second electrode 10.
 以上のようにして、電歪アクチュエータ1が得られる。 The electrostrictive actuator 1 is obtained as described above.
 図1(2)に示した状態において、第1および第2の絶縁性樹脂シート3および4の各々の外側に向く主面は電気絶縁性であるので、図1(3)に示すように、絶縁性樹脂シート3および4ならびに電歪性樹脂シート2が巻回状態とされた場合でも、電極9および10間で漏れ電流は発生しない。 In the state shown in FIG. 1 (2), the main surfaces facing the outside of each of the first and second insulating resin sheets 3 and 4 are electrically insulating, so as shown in FIG. Even when the insulating resin sheets 3 and 4 and the electrostrictive resin sheet 2 are wound, no leakage current is generated between the electrodes 9 and 10.
 電歪アクチュエータ1において、第1および第2の端子導体14および15を介して、第1および第2の電極9および10間に電圧が印加されると、電歪の変形が引き起こされ、それによって、第1および第2の電極9および10間の電歪性樹脂シート2の厚みが減少する。その結果、電歪性樹脂シート2が面方向に伸長し、図1(3)において両方向矢印16で示すように、アクチュエータ本体13がその軸線方向に伸長するように変位する。この変位量は、印加される電圧によって制御され得る。他方、電圧の印加を遮断すれば、アクチュエータ本体13は、元の状態に戻る。 In the electrostrictive actuator 1, when a voltage is applied between the first and second electrodes 9 and 10 via the first and second terminal conductors 14 and 15, electrostriction deformation is caused thereby. The thickness of the electrostrictive resin sheet 2 between the first and second electrodes 9 and 10 decreases. As a result, the electrostrictive resin sheet 2 extends in the surface direction, and the actuator body 13 is displaced so as to extend in the axial direction as indicated by a double arrow 16 in FIG. This amount of displacement can be controlled by the applied voltage. On the other hand, if the voltage application is cut off, the actuator body 13 returns to the original state.
 ロール状のアクチュエータ本体13を得るための巻回数を増すことにより、電歪性樹脂シート2の積層数を増すことができ、電歪アクチュエータ1において、より強い変位力を得ることができる。 By increasing the number of windings for obtaining the roll-shaped actuator body 13, the number of layers of the electrostrictive resin sheet 2 can be increased, and a stronger displacement force can be obtained in the electrostrictive actuator 1.
 以上説明した実施形態の変形例として、図4に示した構成が採用されてもよい。図4には、シート積層体20が斜視図で示されているが、シート積層体20は、その厚み方向寸法がかなり誇張されて図示されていることを指摘しておく。 As a modification of the embodiment described above, the configuration shown in FIG. 4 may be adopted. In FIG. 4, the sheet laminate 20 is shown in a perspective view, but it should be pointed out that the thickness in the thickness direction of the sheet laminate 20 is considerably exaggerated.
 シート積層体20の巻回前の段階において、図4に示すように、シート積層体20の、電極9および10(図4では、電極10が図示されている。)の引出し側の端縁21および22に沿って分布するように、複数の切込み23および24を形成しておいてもよい。この場合、シート積層体20を巻回する前に、有機導電性インクがシート積層体20の端縁21および22の各々に沿って、より具体的には、各端面およびそれに隣接する主面の各一部に沿って塗布される。この有機導電性インクとしては、電極9および10を形成するために用いた有機導電性インクと同じものを用いることができる。有機導電性インクは、切込み23および24内にしみ込み、電極9および10の各々と電気的に導通状態となる。 At the stage before winding the sheet laminate 20, as shown in FIG. 4, the edge 21 on the drawer side of the electrodes 9 and 10 (the electrode 10 is shown in FIG. 4) of the sheet laminate 20 is shown. A plurality of cuts 23 and 24 may be formed so as to be distributed along the lines 22 and 22. In this case, before winding the sheet laminate 20, the organic conductive ink flows along each of the edges 21 and 22 of the sheet laminate 20, more specifically, each end face and the main surface adjacent thereto. It is applied along each part. As this organic conductive ink, the same organic conductive ink as used for forming the electrodes 9 and 10 can be used. The organic conductive ink penetrates into the cuts 23 and 24 and is electrically connected to each of the electrodes 9 and 10.
 したがって、上記の好ましい実施形態によれば、シート積層体20を矢印19で示すように巻回した後に、図1(3)に示すように、端子導体14および15を形成したとき、端子導体14および15の各々は、切込み23および24の各々にしみ込んだ有機導電性インクと確実に接触するため、端子導体14および15と電極9および10との電気的接続の信頼性を高めることができる。 Therefore, according to the preferred embodiment described above, when the terminal conductors 14 and 15 are formed as shown in FIG. 1 (3) after the sheet laminate 20 is wound as indicated by the arrow 19, the terminal conductor 14 And 15 are surely in contact with the organic conductive ink soaked in each of the cuts 23 and 24, so that the reliability of the electrical connection between the terminal conductors 14 and 15 and the electrodes 9 and 10 can be improved.
 なお、上記の好ましい実施形態の場合、切込み23および24の各々にしみ込んだ有機導電性インク自身によって、端子導体を与えるようにし、たとえば、銀ペーストを塗布することによって形成される端子導体14および15を省略してもよい。 In the case of the preferred embodiment described above, the terminal conductors 14 and 15 formed by applying a silver paste, for example, by applying a terminal conductor by the organic conductive ink itself soaked in each of the cuts 23 and 24. May be omitted.
 図5は、図1に示した実施形態について、電歪性樹脂シート2と絶縁性樹脂シート3および4との積層状態を説明するための断面図である。図5において、図1に示した要素に相当する要素には同様の参照符号を付している。 FIG. 5 is a cross-sectional view for explaining the laminated state of the electrostrictive resin sheet 2 and the insulating resin sheets 3 and 4 in the embodiment shown in FIG. In FIG. 5, elements corresponding to the elements shown in FIG.
 前述したように、弾性率の比較的高い電歪性樹脂シート2を得るため、1軸延伸工程が実施される。しかし、1軸延伸すると、高分子電歪材料において、極性基が配向したり、構造的に異方性がもたらされたりして、電歪特性が向上するが、電歪性樹脂シート2が部分的に繊維化(フィブリル化)して、結果的に、電歪性樹脂シート2には、延伸方向に延びる細かい皺が形成され、そのため、電歪性樹脂シート2の表面には、延伸方向に延びる複数の細かい襞が形成される。図5では、これら襞25を波線によって極めて模式的に図示している。 As described above, a uniaxial stretching process is performed in order to obtain the electrostrictive resin sheet 2 having a relatively high elastic modulus. However, when uniaxially stretched, in the polymer electrostrictive material, polar groups are oriented or structural anisotropy is brought about to improve the electrostrictive characteristics. As a result, the electrostrictive resin sheet 2 is formed with fine wrinkles extending in the stretching direction. As a result, the surface of the electrostrictive resin sheet 2 is stretched in the stretching direction. A plurality of fine ridges extending in the direction are formed. In FIG. 5, these ridges 25 are very schematically illustrated by wavy lines.
 電歪性樹脂シート2は、延伸により弾性率が高くされているので、その表面は比較的硬い。したがって、仮に、図5(A)に示した弾性率の比較的低い絶縁性樹脂シート3および4に代えて、表面に襞25が形成された電歪性樹脂シート2を用いると、図5(B)に示した積層状態において、シート間に空隙が生じ、この空隙は、熱圧着後においても残ったままとなりやすい。なお、熱溶融が生じる程度の温度で圧着を実施すれば、空隙は解消されるかもしれないが、この場合、電歪性樹脂シート2において、配向性が消滅し、特性劣化を引き起こすことになる。 Since the electrostrictive resin sheet 2 has a high elastic modulus by stretching, the surface thereof is relatively hard. Therefore, if the electrostrictive resin sheet 2 having the ridges 25 formed on the surface is used instead of the insulating resin sheets 3 and 4 having a relatively low elastic modulus shown in FIG. In the laminated state shown in B), voids are generated between the sheets, and these voids tend to remain after thermocompression bonding. In addition, if the pressure bonding is performed at a temperature at which heat melting occurs, the voids may be eliminated, but in this case, the orientation is lost in the electrostrictive resin sheet 2 and the characteristics are deteriorated. .
 この実施形態では、表面に襞25が形成された電歪性樹脂シート2に接するように、弾性率の比較的低い絶縁性樹脂シート3および4が積層されるので、絶縁性樹脂シート3および4は、図5(B)に示すように、電歪性樹脂シート2との間に空隙を形成しないように、電歪性樹脂シート2の表面に倣って容易に変形する。すなわち、絶縁性樹脂シート3および4は、電歪性樹脂シート2の表面に倣った表面を有する状態となる。 In this embodiment, since the insulating resin sheets 3 and 4 having a relatively low elastic modulus are laminated so as to be in contact with the electrostrictive resin sheet 2 having the flange 25 formed on the surface, the insulating resin sheets 3 and 4 are laminated. As shown in FIG. 5 (B), it easily deforms following the surface of the electrostrictive resin sheet 2 so as not to form a gap with the electrostrictive resin sheet 2. That is, the insulating resin sheets 3 and 4 have a surface that follows the surface of the electrostrictive resin sheet 2.
 上述のような積層構造を得るには、絶縁性樹脂シート3および4と電歪性樹脂シート2とを面対向状態で接合する工程において、電歪性樹脂シート2の表面に倣うように絶縁性樹脂シート3および4を変形させながら、絶縁性樹脂シート3および4と電歪性樹脂シート2とを熱圧着すればよい。 In order to obtain the laminated structure as described above, the insulating resin sheets 3 and 4 and the electrostrictive resin sheet 2 are joined so as to follow the surface of the electrostrictive resin sheet 2 in the process of joining the electrostrictive resin sheets 2 in a face-to-face state. The insulating resin sheets 3 and 4 and the electrostrictive resin sheet 2 may be thermocompression bonded while the resin sheets 3 and 4 are deformed.
 図5(B)に示した積層構造によれば、シート2~4間の空隙に起因する見かけの誘電率の低下の問題を回避することができる。すなわち、電極9および10間に、電歪性樹脂シート2に加えて、空気層が存在する場合には、電極9および10間での見かけの誘電率が大きく低下してしまうという問題を招くが、図5(B)に示した積層構造によれば、このような問題を回避することができる。 5B, it is possible to avoid the problem of a decrease in the apparent dielectric constant caused by the gap between the sheets 2 to 4. In the laminated structure shown in FIG. That is, when an air layer is present between the electrodes 9 and 10 in addition to the electrostrictive resin sheet 2, the apparent dielectric constant between the electrodes 9 and 10 is greatly reduced. According to the stacked structure shown in FIG. 5B, such a problem can be avoided.
 上記の空気層による問題を確認するために実施した実験例を紹介すると、厚みが3μmで、平面寸法が20mm×35mmの積層体を得るため、延伸フィルム同士を重ね合わせたものでは、容量は23nFであり、比誘電率を求めると、11となったが、延伸フィルムと無延伸フィルムとを重ね合わせたものでは、容量は62nFとより大きくなり、比誘電率を求めると、30とより高くなった。 Introducing an experimental example carried out to confirm the problem due to the air layer, a laminate having a thickness of 3 μm and a planar dimension of 20 mm × 35 mm was obtained. When the relative dielectric constant was calculated, it was 11. However, when the stretched film and the unstretched film were superposed, the capacity was 62 nF, and when the relative dielectric constant was determined, it was 30 and higher. It was.
 図6ないし図8は、図5に対応する図であって、それぞれ、この発明の第2ないし第4の実施形態を説明するためのものである。図6ないし図8において、図5に示した要素に相当する要素には同様の参照符号を付している。 6 to 8 correspond to FIG. 5 and are for explaining the second to fourth embodiments of the present invention, respectively. 6 to 8, elements corresponding to those shown in FIG. 5 are denoted by the same reference numerals.
 前述したように、第1および第2の絶縁性樹脂シート3および4ならびに電歪性樹脂シート2が巻回状態とされる場合、第1および第2の絶縁性樹脂シート3および4の一方を省略し、残された絶縁性樹脂シートの各主面に、第1および第2の電極9および10に相当する第1および第2の電極をそれぞれ形成するようにしてもよい。このような構成が採用されても、絶縁性樹脂シートおよび電歪性樹脂シートが巻回状態とされたとき、電歪性樹脂シートの両主面に第1および第2の電極がそれぞれ接する状態を得ることができる。 As described above, when the first and second insulating resin sheets 3 and 4 and the electrostrictive resin sheet 2 are wound, one of the first and second insulating resin sheets 3 and 4 is Omitted and the first and second electrodes corresponding to the first and second electrodes 9 and 10 may be formed on each main surface of the remaining insulating resin sheet, respectively. Even when such a configuration is adopted, when the insulating resin sheet and the electrostrictive resin sheet are wound, the first and second electrodes are in contact with both main surfaces of the electrostrictive resin sheet, respectively. Can be obtained.
 図6(A)には、上述のように、第1の絶縁性樹脂シート3を省略し、残された第2の絶縁性樹脂シート4の各主面に沿って延びる表面層に、第1および第2の電極9および10をそれぞれ形成した、第2の実施形態が示されている。この実施形態においても、表面に襞25が形成された電歪性樹脂シート2に接するように、弾性率の比較的低い絶縁性樹脂シート4が積層され、熱圧着されると、絶縁性樹脂シート4は、図6(B)に示すように、電歪性樹脂シート2との間に空隙を形成しないように、電歪性樹脂シート2の表面に倣って容易に変形する。 In FIG. 6A, as described above, the first insulating resin sheet 3 is omitted, and the first insulating resin sheet 3 is left on the surface layer extending along each main surface of the second insulating resin sheet 4. A second embodiment is shown in which a second electrode 9 and a second electrode 10 are respectively formed. Also in this embodiment, when the insulating resin sheet 4 having a relatively low elastic modulus is laminated so as to be in contact with the electrostrictive resin sheet 2 having the surface 25 formed on the surface, and the thermocompression bonding is performed, the insulating resin sheet 6 is easily deformed following the surface of the electrostrictive resin sheet 2 so as not to form a gap with the electrostrictive resin sheet 2 as shown in FIG.
 図7(A)には、第1の絶縁性樹脂シート3を省略し、残された第2の絶縁性樹脂シート4の図による下方主面に沿って延びる表面層に、第2の電極10を形成し、電歪性樹脂シート2の図による下方主面に、第1の電極9を形成した、第3の実施形態が示されている。この実施形態においても、表面に襞25が形成された電歪性樹脂シート2に接するように、弾性率の比較的低い絶縁性樹脂シート4が積層され、熱圧着されると、絶縁性樹脂シート4は、図7(B)に示すように、電歪性樹脂シート2との間に空隙を形成しないように、電歪性樹脂シート2の表面に倣って容易に変形する。 In FIG. 7A, the first insulating resin sheet 3 is omitted, and the second electrode 10 is formed on the surface layer extending along the lower main surface of the remaining second insulating resin sheet 4 as shown in the drawing. A third embodiment is shown in which the first electrode 9 is formed on the lower main surface of the electrostrictive resin sheet 2 as shown in the figure. Also in this embodiment, when the insulating resin sheet 4 having a relatively low elastic modulus is laminated so as to be in contact with the electrostrictive resin sheet 2 having the surface 25 formed on the surface, and the thermocompression bonding is performed, the insulating resin sheet 7 is easily deformed following the surface of the electrostrictive resin sheet 2 so as not to form a gap with the electrostrictive resin sheet 2 as shown in FIG.
 図8(A)には、第1の絶縁性樹脂シート3を省略し、残された第2の絶縁性樹脂シート4の図による上方主面に沿って延びる表面層に、第1の電極9を形成し、電歪性樹脂シート2の図による上方主面に、第2の電極10を形成した、第4の実施形態が示されている。この実施形態においても、表面に襞25が形成された電歪性樹脂シート2に接するように、弾性率の比較的低い絶縁性樹脂シート4が積層され、熱圧着されると、絶縁性樹脂シート4は、図8(B)に示すように、電歪性樹脂シート2との間に空隙を形成しないように、電歪性樹脂シート2の表面に倣って容易に変形する。 In FIG. 8A, the first insulating resin sheet 3 is omitted, and the first electrode 9 is formed on the surface layer extending along the upper main surface of the remaining second insulating resin sheet 4 in the drawing. In the fourth embodiment, the second electrode 10 is formed on the upper main surface of the electrostrictive resin sheet 2 as shown in the drawing. Also in this embodiment, when the insulating resin sheet 4 having a relatively low elastic modulus is laminated so as to be in contact with the electrostrictive resin sheet 2 having the surface 25 formed on the surface, and the thermocompression bonding is performed, the insulating resin sheet As shown in FIG. 8B, No. 4 easily deforms following the surface of the electrostrictive resin sheet 2 so as not to form a gap with the electrostrictive resin sheet 2.
 なお、図7および図8に示した第3および第4の実施形態では、積層前の状態で、第1および第2の電極9および10のいずれか一方が、電歪性樹脂シート2側に形成されている。この場合であっても、電歪性樹脂シート2の両面に電極が形成される場合に比べると、電歪性樹脂シート2の変形阻害の問題を低減することができる。 In the third and fourth embodiments shown in FIGS. 7 and 8, in the state before lamination, one of the first and second electrodes 9 and 10 is on the electrostrictive resin sheet 2 side. Is formed. Even in this case, the problem of inhibiting deformation of the electrostrictive resin sheet 2 can be reduced as compared with the case where electrodes are formed on both surfaces of the electrostrictive resin sheet 2.
 前述したように、図1(3)に示すようなロール状の電歪アクチュエータ1は、両方向矢印16で示すように変位する。この電歪アクチュエータ1によれば、たとえば、直径1mmのもので、変位量50~100μm、発生力0.5Nの性能を得られることが確認されている。したがって、たとえば、6個の電歪アクチュエータ1を縦に3個、横に2個並べて配置し、各々の電歪アクチュエータ1に電圧を印加することで、点字を可変表示するための機器を有利に構成することができる。 As described above, the roll-shaped electrostrictive actuator 1 as shown in FIG. 1 (3) is displaced as indicated by the double arrow 16. According to the electrostrictive actuator 1, it has been confirmed that, for example, a diameter of 1 mm, a displacement of 50 to 100 μm, and a generated force of 0.5 N can be obtained. Accordingly, for example, by arranging six electrostrictive actuators 1 vertically and two horizontally, and applying a voltage to each electrostrictive actuator 1, an apparatus for variably displaying Braille is advantageously provided. Can be configured.
 また、図9に示す点字ディスプレイ装置31においても、電歪アクチュエータ1を適用することができる。点字ディスプレイ装置31のディスプレイ面32には、図9において省略的に図示するように、複数の電歪アクチュエータ1が、各々の端面(端子導体14または15が設けられた面)を同じ方向に向けて配列される。一例として、複数の電歪アクチュエータ1は、1mm間隔で配列されることができ、64×98ドットの表示を実現することができる。 The electrostrictive actuator 1 can also be applied to the braille display device 31 shown in FIG. On the display surface 32 of the braille display device 31, as shown in an abbreviated manner in FIG. 9, a plurality of electrostrictive actuators 1 have their respective end surfaces (surfaces provided with the terminal conductors 14 or 15) directed in the same direction. Are arranged. As an example, the plurality of electrostrictive actuators 1 can be arranged at 1 mm intervals, and a display of 64 × 98 dots can be realized.
 以上、この発明を図示した実施形態に関連して説明したが、この発明の範囲内において、その他種々の実施形態が可能である。 While the present invention has been described with reference to the illustrated embodiment, various other embodiments are possible within the scope of the present invention.
 たとえば、図示した電歪アクチュエータ1は、ロール状であったが、図1(2)に示した構造物を平面状態のままとしながら、電歪アクチュエータを構成するようにしてもよい。この場合、必要に応じて、図1(2)または図5(B)に示したシート積層体20を複数積層してもよい。同様に、図6(B)、図7(B)または図8(B)に示したシート積層体20を複数積層してもよい。また、シート積層体20を巻回する場合、断面円形のロール状にするのではなく、断面長円形等の他の断面形状を有する巻回体とすることもできる。 For example, although the illustrated electrostrictive actuator 1 is in a roll shape, the electrostrictive actuator may be configured while the structure illustrated in FIG. In this case, a plurality of the sheet laminates 20 shown in FIG. 1 (2) or FIG. 5 (B) may be laminated as necessary. Similarly, a plurality of the sheet laminates 20 shown in FIG. 6B, FIG. 7B, or FIG. 8B may be laminated. Moreover, when winding the sheet | seat laminated body 20, it can also be set as the wound body which has other cross-sectional shapes, such as an oval cross-section, instead of making it a roll shape with a circular cross section.
1 電歪アクチュエータ
2 電歪性樹脂シート
3,4 絶縁性樹脂シート
5,6 主面
7,8 表面層
9,10 電極
11 ラメラ
12 導電性材料
13 アクチュエータ本体
14,15 端子導体
DESCRIPTION OF SYMBOLS 1 Electrostrictive actuator 2 Electrostrictive resin sheet 3, 4 Insulating resin sheet 5, 6 Main surface 7, 8 Surface layer 9, 10 Electrode 11 Lamella 12 Conductive material 13 Actuator body 14, 15 Terminal conductor

Claims (13)

  1.  高分子電歪材料からなる電歪性樹脂シートと、
     前記電歪性樹脂シートの厚み方向に電圧を印加するため、前記電歪性樹脂シートの両主面にそれぞれ接するように設けられる第1および第2の電極と、
     前記電歪性樹脂シートに対して面対向状態で接合されるものであり、前記電歪性樹脂シートより弾性率の低い、電気絶縁性の絶縁性樹脂シートと、
    を備え、
     前記第1および第2の電極の少なくとも一方は、前記絶縁性樹脂シートの、前記電歪性樹脂シートに接する主面に沿って延びる表面層において、主面方向に延びる電流経路を形成する状態で分布する導電性材料によって与えられている、
    電歪アクチュエータ。
    An electrostrictive resin sheet made of a polymer electrostrictive material;
    In order to apply a voltage in the thickness direction of the electrostrictive resin sheet, first and second electrodes provided to be in contact with both main surfaces of the electrostrictive resin sheet,
    An electrically insulating insulating resin sheet that is bonded to the electrostrictive resin sheet in a face-to-face state and has a lower elastic modulus than the electrostrictive resin sheet;
    With
    At least one of the first and second electrodes forms a current path extending in the principal surface direction in a surface layer of the insulating resin sheet that extends along the principal surface in contact with the electrostrictive resin sheet. Given by the conductive material distributed,
    Electrostrictive actuator.
  2.  前記電歪性樹脂シートは、表面に複数の襞を形成しており、前記絶縁性樹脂シートは、前記電歪性樹脂シートとの間に空隙を形成しないように、前記電歪性樹脂シートの表面に倣った表面を有している、請求項1に記載の電歪アクチュエータ。 The electrostrictive resin sheet has a plurality of ridges formed on the surface thereof, and the insulating resin sheet is formed on the electrostrictive resin sheet so as not to form a gap between the electrostrictive resin sheet and the electrostrictive resin sheet. The electrostrictive actuator according to claim 1, wherein the electrostrictive actuator has a surface that follows the surface.
  3.  前記電歪性樹脂シートと前記絶縁性樹脂シートとは、互いに共通する主成分を有する、請求項1または2に記載の電歪アクチュエータ。 The electrostrictive actuator according to claim 1 or 2, wherein the electrostrictive resin sheet and the insulating resin sheet have main components common to each other.
  4.  前記電歪性樹脂シートは、前記絶縁性樹脂シートと同じ材料からなるシートを延伸することによって得られたものである、請求項3に記載の電歪アクチュエータ。 The electrostrictive actuator according to claim 3, wherein the electrostrictive resin sheet is obtained by stretching a sheet made of the same material as the insulating resin sheet.
  5.  前記絶縁性樹脂シートに形成された前記電極は、前記絶縁性樹脂シートの前記主面に有機導電性インクを浸透させることによって形成されたものである、請求項1ないし4のいずれかに記載の電歪アクチュエータ。 5. The electrode according to claim 1, wherein the electrode formed on the insulating resin sheet is formed by infiltrating an organic conductive ink into the main surface of the insulating resin sheet. Electrostrictive actuator.
  6.  前記絶縁性樹脂シートは、前記第1の電極を保持する第1の絶縁性樹脂シートと前記第2の電極を保持する第2の絶縁性樹脂シートとを備え、前記電歪性樹脂シートは、前記第1の絶縁性樹脂シートと前記第2の絶縁性樹脂シートとに挟まれた状態とされる、請求項1ないし5のいずれかに記載の電歪アクチュエータ。 The insulating resin sheet includes a first insulating resin sheet that holds the first electrode and a second insulating resin sheet that holds the second electrode, and the electrostrictive resin sheet includes: The electrostrictive actuator according to claim 1, wherein the electrostrictive actuator is sandwiched between the first insulating resin sheet and the second insulating resin sheet.
  7.  前記電歪性樹脂シートおよび前記絶縁性樹脂シートが巻回された状態にある、請求項1ないし6のいずれかに記載の電歪アクチュエータ。 The electrostrictive actuator according to any one of claims 1 to 6, wherein the electrostrictive resin sheet and the insulating resin sheet are wound.
  8.  高分子電歪材料からなる電歪性樹脂シートを用意する工程と、
     前記電歪性樹脂シートより弾性率の低い、電気絶縁性の絶縁性樹脂シートを用意する工程と、
     前記絶縁性樹脂シートの少なくとも一方の主面に沿って延びる表面層において、主面方向に延びる電流経路を形成する状態で導電性材料が分布してなる電極を形成する工程と、
     前記電極が前記電歪性樹脂シートの少なくとも一方の主面に接するように、前記絶縁性樹脂シートと前記電歪性樹脂シートとを面対向状態で接合する工程と、
    を備える、電歪アクチュエータの製造方法。
    Preparing an electrostrictive resin sheet made of a polymer electrostrictive material;
    Preparing an electrically insulating insulating resin sheet having a lower elastic modulus than the electrostrictive resin sheet;
    Forming an electrode in which a conductive material is distributed in a state of forming a current path extending in a main surface direction in a surface layer extending along at least one main surface of the insulating resin sheet;
    Bonding the insulating resin sheet and the electrostrictive resin sheet in a face-to-face state so that the electrode is in contact with at least one main surface of the electrostrictive resin sheet;
    A method of manufacturing an electrostrictive actuator.
  9.  前記電歪性樹脂シートを用意する工程は、前記絶縁性樹脂シートと同じ材料からなるシートを延伸することによって、前記電歪性樹脂シートを得る工程を備える、請求項7に記載の電歪アクチュエータの製造方法。 The electrostrictive actuator according to claim 7, wherein the step of preparing the electrostrictive resin sheet includes a step of obtaining the electrostrictive resin sheet by stretching a sheet made of the same material as the insulating resin sheet. Manufacturing method.
  10.  前記絶縁性樹脂シートと前記電歪性樹脂シートとを面対向状態で接合する工程は、前記電歪性樹脂シートの表面に倣うように前記絶縁性樹脂シートを変形させながら、前記絶縁性樹脂シートと前記電歪性樹脂シートとを熱圧着する工程を含む、請求項8または9に記載の電歪アクチュエータの製造方法。 The step of joining the insulating resin sheet and the electrostrictive resin sheet in a face-to-face state is performed by deforming the insulating resin sheet so as to follow the surface of the electrostrictive resin sheet. A method for manufacturing an electrostrictive actuator according to claim 8 or 9, comprising a step of thermocompression bonding the electrostrictive resin sheet and the electrostrictive resin sheet.
  11.  前記電極を形成する工程は、前記絶縁性樹脂シートの前記主面に有機導電性インクを浸透させる工程を備える、請求項8ないし10のいずれかに記載の電歪アクチュエータの製造方法。 The method of manufacturing an electrostrictive actuator according to claim 8, wherein the step of forming the electrode includes a step of allowing an organic conductive ink to penetrate into the main surface of the insulating resin sheet.
  12.  前記絶縁性樹脂シートを用意する工程は、第1の前記電極を保持する第1の絶縁性樹脂シートと第2の前記電極を保持する第2の絶縁性樹脂シートとをそれぞれ用意する工程を備え、
     前記絶縁性樹脂シートと前記電歪性樹脂シートとを接合する工程は、前記第1の絶縁性樹脂シートと前記第2の絶縁性樹脂シートとによって、前記電歪性樹脂シートを挟んだ状態となるように、前記第1および第2の絶縁性樹脂シートの各々と前記電歪性樹脂シートとを接合する工程を備える、
    請求項8ないし11のいずれかに記載の電歪アクチュエータの製造方法。
    The step of preparing the insulating resin sheet includes a step of preparing a first insulating resin sheet that holds the first electrode and a second insulating resin sheet that holds the second electrode. ,
    The step of joining the insulating resin sheet and the electrostrictive resin sheet includes a state in which the electrostrictive resin sheet is sandwiched between the first insulating resin sheet and the second insulating resin sheet. So as to comprise the step of joining each of the first and second insulating resin sheets and the electrostrictive resin sheet,
    The method of manufacturing an electrostrictive actuator according to claim 8.
  13.  前記絶縁性樹脂シートと前記電歪性樹脂シートとを接合する工程の後、前記電歪性樹脂シートおよび前記絶縁性樹脂シートを巻回する工程をさらに備える、請求項8ないし12のいずれかに記載の電歪アクチュエータの製造方法。 13. The method according to claim 8, further comprising a step of winding the electrostrictive resin sheet and the insulating resin sheet after the step of joining the insulating resin sheet and the electrostrictive resin sheet. The manufacturing method of the electrostrictive actuator of description.
PCT/JP2013/073646 2012-09-15 2013-09-03 Electrostrictive actuator and method for manufacturing same WO2014042036A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014535494A JP5949927B2 (en) 2012-09-15 2013-09-03 Electrostrictive actuator and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-203724 2012-09-15
JP2012203724 2012-09-15

Publications (1)

Publication Number Publication Date
WO2014042036A1 true WO2014042036A1 (en) 2014-03-20

Family

ID=50278152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073646 WO2014042036A1 (en) 2012-09-15 2013-09-03 Electrostrictive actuator and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP5949927B2 (en)
WO (1) WO2014042036A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009232523A (en) * 2008-03-20 2009-10-08 Tokai Rubber Ind Ltd Electrostrictive actuator and manufacturing method therefor
JP2010068667A (en) * 2008-09-12 2010-03-25 Toyoda Gosei Co Ltd Dielectric actuator
JP2010175521A (en) * 2009-02-02 2010-08-12 Fujifilm Corp Vibration mode sensor film, vibration mode actuator film, and vibration suppression film
JP2012135137A (en) * 2010-12-22 2012-07-12 Canon Inc Actuator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5434510B2 (en) * 2009-11-17 2014-03-05 株式会社リコー Circuit board, image display apparatus, circuit board manufacturing method, and image display apparatus manufacturing method
JP5054132B2 (en) * 2010-01-21 2012-10-24 セイコープレシジョン株式会社 Capacitance type input device and electronic apparatus including the same.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009232523A (en) * 2008-03-20 2009-10-08 Tokai Rubber Ind Ltd Electrostrictive actuator and manufacturing method therefor
JP2010068667A (en) * 2008-09-12 2010-03-25 Toyoda Gosei Co Ltd Dielectric actuator
JP2010175521A (en) * 2009-02-02 2010-08-12 Fujifilm Corp Vibration mode sensor film, vibration mode actuator film, and vibration suppression film
JP2012135137A (en) * 2010-12-22 2012-07-12 Canon Inc Actuator

Also Published As

Publication number Publication date
JP5949927B2 (en) 2016-07-13
JPWO2014042036A1 (en) 2016-08-18

Similar Documents

Publication Publication Date Title
JP5267559B2 (en) Sheet-type vibrating body and acoustic equipment
EP3041059B1 (en) Multilayer actuator and display device comprising the same
US20230007400A1 (en) Laminated piezoelectric element
WO2018207707A1 (en) Actuator, drive member, haptic device, and drive device
KR20220056865A (en) Piezoelectric film and manufacturing method of piezoelectric film
JP5949927B2 (en) Electrostrictive actuator and manufacturing method thereof
JP5541419B2 (en) Actuator element and method of manufacturing the actuator element
KR20170058768A (en) Multilayer polyvinylidene polymer piezoelectril film and the preparing method thereof
JP5790310B2 (en) Actuator element manufacturing method
JP5618013B2 (en) Multilayer actuator
WO2015083589A1 (en) Multiple actuator
JP5988718B2 (en) A flexible sheet for transducers and a method for producing a flexible sheet for transducers.
JP2016201995A (en) Flexible sheet for transducer
WO2020241387A1 (en) Electrostatic actuator having multilayer structure
JP7286790B2 (en) Piezoelectric element
JP6108138B2 (en) Insulating substrate with conductive pattern
JP2013078239A (en) Actuator element
CN107665851A (en) Component selection system
JP6040557B2 (en) Image switching device
JP2017028769A (en) Manufacturing method of polymer element, manufacturing method of conductive laminate structure, manufacturing method of collector layer, polymer element, actuator element, sensor element, and conductive laminate structure
WO2013027696A1 (en) Actuator device and method for producing actuator device
JP2013008733A (en) Electrostrictive actuator
CN117981356A (en) Piezoelectric element and piezoelectric speaker
JP2017034290A (en) Piezoelectric film laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13837297

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014535494

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13837297

Country of ref document: EP

Kind code of ref document: A1