WO2014040446A1 - 一种InN基薄膜材料生长方法 - Google Patents
一种InN基薄膜材料生长方法 Download PDFInfo
- Publication number
- WO2014040446A1 WO2014040446A1 PCT/CN2013/078022 CN2013078022W WO2014040446A1 WO 2014040446 A1 WO2014040446 A1 WO 2014040446A1 CN 2013078022 W CN2013078022 W CN 2013078022W WO 2014040446 A1 WO2014040446 A1 WO 2014040446A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- inn
- indium
- flow rate
- preparing
- purity
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 239000000463 material Substances 0.000 title abstract description 27
- 239000010409 thin film Substances 0.000 title abstract description 12
- 229910052751 metal Inorganic materials 0.000 claims abstract description 27
- 239000002184 metal Substances 0.000 claims abstract description 27
- 229910052738 indium Inorganic materials 0.000 claims abstract description 26
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000000956 alloy Substances 0.000 claims abstract description 14
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 claims abstract description 13
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 19
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 15
- 229910001199 N alloy Inorganic materials 0.000 claims description 12
- 239000012159 carrier gas Substances 0.000 claims description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims description 9
- 229910052594 sapphire Inorganic materials 0.000 claims description 9
- 239000010980 sapphire Substances 0.000 claims description 9
- UPWPDUACHOATKO-UHFFFAOYSA-K gallium trichloride Chemical compound Cl[Ga](Cl)Cl UPWPDUACHOATKO-UHFFFAOYSA-K 0.000 claims description 8
- PSCMQHVBLHHWTO-UHFFFAOYSA-K indium(iii) chloride Chemical compound Cl[In](Cl)Cl PSCMQHVBLHHWTO-UHFFFAOYSA-K 0.000 claims description 8
- 239000000758 substrate Substances 0.000 claims description 8
- 229910021529 ammonia Inorganic materials 0.000 claims description 4
- 239000002131 composite material Substances 0.000 claims description 4
- 238000004140 cleaning Methods 0.000 claims description 3
- 229910001873 dinitrogen Inorganic materials 0.000 claims 1
- 239000010437 gem Substances 0.000 claims 1
- 229910001751 gemstone Inorganic materials 0.000 claims 1
- NWAIGJYBQQYSPW-UHFFFAOYSA-N azanylidyneindigane Chemical compound [In]#N NWAIGJYBQQYSPW-UHFFFAOYSA-N 0.000 description 34
- 239000010408 film Substances 0.000 description 23
- 229910052733 gallium Inorganic materials 0.000 description 14
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 12
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000001451 molecular beam epitaxy Methods 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000255 optical extinction spectrum Methods 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 238000000103 photoluminescence spectrum Methods 0.000 description 1
- 238000013082 photovoltaic technology Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000003887 surface segregation Methods 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
Definitions
- the present invention relates to a method for growing an InN film or an In x G ai - X N alloy film material by hydride vapor phase epitaxy.
- Solar energy is the cleanest renewable energy source. Studying how to use solar energy is an important issue in the development of energy technology, and solar photovoltaic cells are one of the most convenient and convenient means of using solar energy.
- solar photovoltaic cells are mainly composed of polycrystalline silicon, monocrystalline silicon and amorphous silicon thin film solar cells.
- the band gap of In x G ai — X N alloy material in Group III nitride is continuously adjustable, and the corresponding spectrum covers the entire solar spectrum almost perfectly. It is an ideal material system for realizing high efficiency solar cells.
- InN indium nitride
- MOCVD metal-organic chemical vapor deposition
- InN single crystal thin film materials were prepared using advanced MOCVD and MBE techniques. Yamamoto et al. first used MOCVD to grow high-quality InN thin films by enhancing ammonia decomposition technology; Georgia University H. Lu et al. used MBE to prepare high quality InN materials, and in 2002, with Davydov, Y. Saito et al. found that the band gap width of InN is not 1.89 eV.
- the photoluminescence spectrum and optical transmission spectrum data show that the band gap width of InN is much less than 1.89 eV, which is around 0.7 eV. Confirming the forbidden band width of InN is a very meaningful work.
- the value varies from 1.89eV to 0.7eV, which is considered to be the absorption and emission wave corresponding to the In x G ai — X N material material system.
- the length can extend from the near ultraviolet to the near infrared region to partially cover the absorption and emission wavelengths of other III-V materials such as GaAs, GalnP.
- the In x Gai_ x N material is an alloy of GaN material and InN material.
- the alloy can be continuously adjusted to any value between 3.4 eV and 0.7 eV by adjusting the ratio of GaN and InN materials, which has great application prospects.
- it is difficult to grow In x G ai — X N alloy material by MOCVD because the N equilibrium pressure of InN is much higher than the N equilibrium pressure of GaN under the MOCVD growth state, and the decomposition temperature of InN is much lower than that of GaN. GaN and InN are difficult to melt each other.
- the lattice constants of GaN and InN are quite different.
- the In composition of the In x G ai — X N alloy increases, it is required to prevent the decomposition of InN.
- the growth temperature, the phase separation of the material and the surface segregation of the In atom are severe, and the crystal dislocation density is high.
- the low growth temperature affects the migration of Ga and In atoms on the surface of the material, and the surface flatness of the film is not high.
- research around this material has formed an international research hotspot.
- InN-based materials are also grown in many ways, such as metal organic vapor phase epitaxy (MOCVD), molecular beam epitaxy (MBE), etc., but such devices are expensive and expensive.
- MOCVD metal organic vapor phase epitaxy
- MBE molecular beam epitaxy
- the present invention provides a method and process for growing InN or InxGal-xN alloy thin film materials using a metal indium (In) as an In source and a hydride vapor phase epitaxy (HVPE) device.
- a metal indium (In) as an In source
- HVPE hydride vapor phase epitaxy
- the object of the present invention is to: grow an InN film and an InxGal-xN alloy film material in a hydride vapor phase epitaxial growth apparatus using metal indium as an In source.
- the technical solution of the present invention is a method for preparing an InN-based thin film, which is characterized in that an InN thin film is grown by a hydride vapor phase epitaxy (HVPE) apparatus.
- HVPE hydride vapor phase epitaxy
- the sapphire or GaN/sapphire composite substrate is cleaned and placed in the HVPE growth system to start growing the InN film;
- the growth zone temperature is 500-65 CTC;
- the high purity N 2 is used as the carrier gas, and the total N 2 carrier gas flow rate is l-5 slm;
- the source is made of high-purity metal indium and high-purity HC1 to form indium chloride, the metal source region temperature is 700-900 ° C;
- HC flow rate: l-20 sccm, and HCl nitrogen carrier gas flow rate is 10-1000 sccm.
- High-purity ammonia gas is used as a nitrogen source, NH 3 flow rate: 50-500 sc
- the gallium source is reacted with high-purity metal indium and high-purity HC1 to form gallium chloride, and the metal source region temperature is 700-900 °C.
- HC flow rate l-20 sccm, HCl nitrogen carrier gas flow rate 10-1000 sccm.
- the invention adopts a mixture of high-purity metal indium and high-purity metal gallium to react with HC1 to form indium chloride and gallium chloride, and reacts with high-purity ammonia gas, and when the growth temperature is 500-65 CTC, the In x G ai — X N alloy can be obtained. film.
- the ratio of metal indium and gallium in the mixed metal source By changing the ratio of metal indium and gallium in the mixed metal source, an In x G ai — X N film having a different In content can be obtained.
- the ratio of the mixed source of indium and gallium metal is not equal to the ratio of indium gallium in the In x G ai — X N alloy film.
- In in alloy film The ratio is lower than the proportion of indium in the mixed metal source.
- the invention has the beneficial effects that the present invention provides a method and a process for growing an InN film and an In x G ai — X N alloy film which are simple in process and low in cost.
- the film thickness can be on the order of microns.
- Figure 1 is a XRD analysis of a product of an embodiment of the invention. XRD analysis of HVPE growth InN on GaN/sapphire substrates grown at different temperatures was given. detailed description
- the method and process of the present invention After cleaning the sapphire or GaN/sapphire composite substrate, it is placed in an HVPE growth system to start growing an InN film or an InxGal-xN alloy film.
- the HVPE technology is used to prepare the InN thin film, including the following steps:
- the substrate is placed in a reaction chamber of a hydride vapor phase epitaxy system to start low temperature growth of the InN film.
- the growth temperature is 500-650 °C.
- High-purity ammonia gas is used as a nitrogen source, NH 3 flow rate: 50-2000 sccm ; growth time is 30 minutes.
- the growth results are shown in Fig. 1, and the growth temperature is 500 ° C, 550 ° C, 600 ° C and 625 ° C.
- the carrier gas flow rate of HC1 is 10-1000 sccm.
- the growth temperature is especially 550 ° C to 600 ° C.
- step 2 After the growth of step 2 is completed, the sample is cooled and the InN film is obtained. During the cooling process, the ammonia atmosphere is maintained.
- Example 2 Preparation of InN film and InxGal-xN alloy film by HVPE technology:
- the metal indium source is replaced by a mixture of high-purity metal indium and high-purity metal gallium, and reacts with HC1 to obtain indium chloride and gallium chloride; wherein high-purity metal gallium and high purity
- the HC1 reaction produces gallium chloride as a gallium source, HC flow rate: 5, 10, 20 sccm, and HC1 nitrogen carrier gas flow rate 100--400 sccm is most commonly used.
- the molar ratio of the mixed source of indium and gallium metal is determined, the molar ratio of indium chloride to gallium chloride is uncertain and needs to be achieved by controlling the HC1 flow rate and the like.
- Indium chloride and gallium chloride are then reacted with ammonia gas to obtain an In x G ai — X N alloy film.
- concentration ratio of indium and gallium in the mixed metal source By changing the concentration ratio of indium and gallium in the mixed metal source, an In x G ai — X N alloy film having different In concentrations X can be obtained.
- the ratio of the mixed source of indium and gallium metal is not equal to the ratio of indium gallium in the In x G ai - X N alloy film.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
Abstract
一种采用金属铟作为铟源,用氢化物气相外延生长InN薄膜或InxGa1-xN合金薄膜材料生长方法工艺。
Description
一种 InN基薄膜材料生长方法 技术领域
本发明涉及一种用氢化物气相外延生长 InN薄膜或 InxGai— XN合金薄膜材料生长方 法。
背景技术
太阳能源是最为洁净的可再生能源, 研究如何利用太阳能是发展能源技术的重要课 题, 而太阳能光伏电池是利用太阳能最为简洁方便的手段之一。 目前, 太阳能光伏电池 主要以多晶硅、单晶硅和非晶硅薄膜太阳能电池为主。 III族氮化物中 InxGai— XN合金材料 的带隙连续可调, 对应的光谱几乎完美覆盖整个太阳光谱, 是实现高效率太阳能电池的 理想材料体系。 如果这一新材料体系被用来制备太阳电池, 尤其是用来制备多节串联电 池, 只需要改变 InxGai— XN合金材料中不同 In和 Ga金属的组分, 即可以调节吸收不同波 段的光子, 调节吸收窗口。 这给予设计和生长串联电池极大的自由度, 有利于达到最佳 的吸收波段组合。 理论计算表明, 不同组分的 InxGal-xN电池的节数做得足够多, 理论 上最大的转换效率可以达到 85 %。 因此, III族氮化物太阳能电池极有可能成为第三代光 伏技术的重要发展方向之一, 需得到优先的研究和发展。
在 III族氮化物半导体材料中, 氮化铟 (InN)具有最小的电子有效质量、 最高的电子迁 移率、 最大的峰值和饱和电子漂移速率和最小的禁带宽度, 同时, 也是利用 MOCVD技 术生长最为困难的。 首先, InN生长要求相当高的氮平衡蒸汽压, 它比生长 GaN和 A1N 高两个数量级; 其次, InN的分解温度较低, 低生长温度带来氨气 (NH3)分解效率很低, 衬底表面沉积的原子迁移速度低, 难于形成二维生长模式。 另一方面, InN 的晶格常数 大,与蓝宝石 (0001)衬底在 a方向上晶格失配达到 25%,这导致了 InN薄膜中高密度的缺 陷。
早期的报道中, InN 的制备方法普遍采用热蒸发或磁控溅射, 并对材料的光学和电 学性质进行研究, 材料的禁带宽度长期被认为是在 1.89eV左右。 随着材料制备技术的更 新, 开始利用先进的 MOCVD和 MBE技术制备 InN单晶薄膜材料。 Yamamoto等人最早 利用 MOCVD, 通过增强氨气分解技术, 生长出高质量的 InN薄膜; 康奈尔大学 H.Lu等 人采用 MBE, 制备出质量优异的 InN材料, 并且在 2002年, 与 Davydov、 Y.Saito等小 组都发现 InN的带隙宽度不在 1.89eV, 利用光致荧光谱和光学透射谱数据显示 InN的带 隙宽度远小于 1.89eV, 在 0.7eV附近。 确认 InN的禁带宽度是非常有意义的工作, 数值 从以前认为的 1.89eV到 0.7eV变化, 使得 InxGai— XN材料材料体系对应的吸收和发射波
长可以从近紫外延伸到近红外区域, 从而部分覆盖其他 III- V材料例如 GaAs、 GalnP的吸 收和发射波长。
InxGai_xN材料是由 GaN材料和 InN材料的合金, 在理论上, 可以通过调节 GaN和 InN材料的比例连续调节此合金在 3.4eV和 0.7eV之间任意数值, 具有极大应用前景。然 而,利用 MOCVD生长 InxGai— XN合金材料比较困难,原因在于 MOCVD生长状态下, InN 的 N平衡压强远高于 GaN的 N平衡压强,而且 InN的分解温度远低于 GaN,这使得 GaN 和 InN很难互熔, 此外, GaN和 InN的晶格常数差别较大, 由于这些特点, 当 InxGai— XN 合金的 In组分增加时, 为防止 InN分解, 需要较低的生长温度, 材料的相分离和 In原子 表面分凝现象严重, 晶体位错密度较高。 而且, 低生长温度影响 Ga和 In原子在材料表 面迁移, 薄膜表面平整度不高。 然而, 由于此材料具有重要的应用和研究意义, 围绕此 材料的研究已经形成国际上的研究热点。
InN基材料和 GaN的生长一样也有很多种方法,如金属有机物气相外延(MOCVD)、 分子束外延 (MBE) 等, 但是此类设备价格成本高, 源材料价格高昂。
本发明给出了一种采用金属铟 (In) 做 In源, 用氢化物气相外延 (HVPE) 设备生 长 InN或 InxGal-xN合金薄膜材料的方法及工艺。
发明内容
本发明目的是: 用金属铟作为 In源, 在氢化物气相外延生长设备中生长 InN薄膜和 InxGal-xN合金薄膜材料。
本发明的技术方案是, 制备 InN 基薄膜的方法, 其特征是利用氢化物气相外延 (HVPE) 设备生长 InN薄膜。 蓝宝石或者 GaN/蓝宝石复合衬底清洗后, 放入 HVPE生 长系统中, 开始生长 InN薄膜; 生长区温度: 500-65CTC ; 高纯 N2作为载气, 总 N2载气 流量 l-5slm; 铟源采用高纯金属铟和高纯 HC1反应生成氯化铟, 金属源区温度 700-900 °C ; HC 流量: l-20sccm, HCl的氮气载气流量 10-1000sccm。 高纯氨气作为氮源, NH3 流量: 50— 500sccm; 生长时间 10-120分钟。
制备 InxGal-xN合金薄膜时,在上述条件的基础上,镓源采用高纯金属铟和高纯 HC1 反应生成氯化镓, 金属源区温度 700-900 °C。 HC 流量: l-20sccm, HCl的氮气载气流量 10-1000sccm。
本发明采用用高纯金属铟和高纯金属镓混合物与 HC1反应生成氯化铟和氯化镓, 与 高纯氨气反应, 生长温度 500-65CTC时, 可以得到 InxGai— XN合金薄膜。 改变混合金属源 中金属铟和镓的比列, 可以得到 In含量不同的 InxGai— XN薄膜。 注意: 此处, 铟和镓金 属混合源的比例不等同于 InxGai— XN合金薄膜中的铟镓比例。一般来说, 合金薄膜中的 In
比例要低于混合金属源中的铟比例。
本发明有益效果是: 本发明给出了一种工艺简单、 成本低廉的 InN薄膜和 InxGai— XN 合金薄膜的生长方法和工艺。 膜厚度可以达到微米量级。
附图说明
图 1为本发明实施例的产物 XRD分析。给出不同温度生长的 GaN/蓝宝石衬底上 HVPE 生长 InN的 XRD分析。 具体实施方式
本发明方法和工艺: 蓝宝石或者 GaN/蓝宝石复合衬底清洗后, 放入 HVPE生长系统 中, 开始生长 InN薄膜或 InxGal-xN合金薄膜。
实施例一, HVPE技术制备 InN薄膜薄膜, 包括下面几步:
1、 蓝宝石衬底或者 GaN/蓝宝石复合衬底的清洗和处理。将样品依次在去离子水、 乙醇和去离子水中进行超声清洗, 除去表面残留的污染物, 用氮气吹干。
2、 上述衬底放入氢化物气相外延系统反应腔内, 开始低温生长 InN薄膜。 生长 温度 500-650°C。 高纯 N2作为载气, 总 N2载气流量 l-5slm; 高纯金属铟和高 纯 HC1反应生成氯化铟作为铟源, HC 流量: 5、 10、 20sccm均可, HC1的氮 气载气流量 100--400sCCm 最为常用。 高纯氨气作为氮源, NH3流量: 50-2000sccm; 生长时间 30分钟。 生长结果见实例附图 1, 生长温度: 500°C、 550°C、 600 °C和 625 °C四个温度条件均可。 HC1的载气流量 10-1000sccm。 生 长温度尤其是 550°C至 600 °C。
3、 按照步骤 2生长完成后降温取出样品, 即获得 InN薄膜。 在降温过程中, 一 直保持氨气气氛。
实施例二、 HVPE技术制备 InN薄膜和 InxGal-xN合金薄膜:
按照步骤 1、 2、 3中的参数, 将金属铟源, 替换为高纯金属铟和高纯金属镓混 合物, 与 HC1反应, 得到氯化铟和氯化镓; 其中高纯金属镓和高纯 HC1反应生成氯 化镓作为镓源, HC 流量: 5、 10、 20sccm均可, HC1的氮气载气流量 100--400sccm 最为常用。虽然铟和镓金属混合源的摩尔比是确定的,但是氯化铟比氯化镓的摩尔比 例不确定, 需通过控制 HC1流量等来实现。 氯化铟和氯化镓再与氨气反应, 可以得 到 InxGai— XN合金薄膜。 改变混合金属源中铟和镓的浓度比例, 可以得到不同 In浓度 X的 InxGai— XN合金薄膜。 此处, 铟和镓金属混合源的比例不等同于 InxGai— XN合金薄 膜中的铟镓比例。
本发明实施例并非本发明的全部, 本发明中所述具体实施案例仅为本发明的较佳实 施案例而已, 并非用来限定本发明的实施范围。 即凡依本发明申请专利范围的内容所作 的等效变化与修饰, 都应作为本发明的技术范畴。
Claims
1、 制备 InN基薄膜的方法, 其特征是,宝石或者 GaN/蓝宝石复合衬底清洗后, 放入 HVPE生长系统中, 开始生长 InN薄膜; 生长区温度: 500-65CTC ; 高纯 N2作为载气, 总 N2载气流量 l-5slm; 铟源采用高纯金属铟和高纯 HC1 反应生成氯化铟, 金属源区温度 700-900 °C ; HCl流量: l-20sccm, HCl的氮气载气流量 10-lOOOsccm;纯氨气作为氮源, NH3流量: 50-500sccm; 生长时间 10-120分钟。
2、 根据权利要求 1所述的制备 InN基薄膜的方法, 其特征是, 生长温度是 55CTC至 600 °C。
3、 根据权利要求 1所述的制备 InN基薄膜的方法, 其特征是生长 InxGai— XN合金薄 膜, 用高纯金属铟和高纯金属镓混合源与 HC1 反应生成氯化铟和氯化镓, 与高纯氨气反 应; 温度 500- 750 °C, 金属源区温度 700-900 °C。
4、 根据权利要求 3 所述的制备 InN 基薄膜的方法, 其特征是, 生长 InxGai— XN 薄 膜, 不同摩尔数比的铟和高纯金属镓混合金属源会给出不同铟浓度的 InxGai— XN 合金薄 膜; 合金薄膜中的铟比例 X要低于混合金属源中的铟比例。
5、 根据权利要求 1所述的制备 InN基薄膜的方法, 其特征是生长 InxGai— XN合金薄 膜时氯化铟与氯化镓的摩尔比例, 通过控制 HC1流量来实现。
6、 根据权利要求 3所述的制备 InN基薄膜的方法, 其特征是, HC 流量 5-20sCCm。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012103448006A CN102912315A (zh) | 2012-09-17 | 2012-09-17 | 一种InN基薄膜材料生长方法 |
CN201210344800.6 | 2012-09-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014040446A1 true WO2014040446A1 (zh) | 2014-03-20 |
Family
ID=47610885
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/078022 WO2014040446A1 (zh) | 2012-09-17 | 2013-06-26 | 一种InN基薄膜材料生长方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102912315A (zh) |
WO (1) | WO2014040446A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102912315A (zh) * | 2012-09-17 | 2013-02-06 | 南京大学 | 一种InN基薄膜材料生长方法 |
CN113363338A (zh) * | 2021-06-02 | 2021-09-07 | 中国电子科技集团公司第四十六研究所 | 一种在GaAs衬底上生长GaInP薄膜的方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101194053A (zh) * | 2005-08-25 | 2008-06-04 | 住友电气工业株式会社 | 制造GaxIn1-xN(0≤x≤1)晶体的方法、GaxIn1-xN(0≤x≤1)结晶衬底、制造GaN晶体的方法、GaN结晶衬底和产品 |
CN101289172A (zh) * | 2008-04-14 | 2008-10-22 | 南京大学 | 通过气相传输法制备InN纳米线和纳米棒的方法 |
US7727333B1 (en) * | 2006-03-27 | 2010-06-01 | Technologies And Devices International, Inc. | HVPE apparatus and methods for growth of indium containing materials and materials and structures grown thereby |
CN102912315A (zh) * | 2012-09-17 | 2013-02-06 | 南京大学 | 一种InN基薄膜材料生长方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080276860A1 (en) * | 2007-05-10 | 2008-11-13 | Burrows Brian H | Cross flow apparatus and method for hydride vapor phase deposition |
-
2012
- 2012-09-17 CN CN2012103448006A patent/CN102912315A/zh active Pending
-
2013
- 2013-06-26 WO PCT/CN2013/078022 patent/WO2014040446A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101194053A (zh) * | 2005-08-25 | 2008-06-04 | 住友电气工业株式会社 | 制造GaxIn1-xN(0≤x≤1)晶体的方法、GaxIn1-xN(0≤x≤1)结晶衬底、制造GaN晶体的方法、GaN结晶衬底和产品 |
US7727333B1 (en) * | 2006-03-27 | 2010-06-01 | Technologies And Devices International, Inc. | HVPE apparatus and methods for growth of indium containing materials and materials and structures grown thereby |
CN101289172A (zh) * | 2008-04-14 | 2008-10-22 | 南京大学 | 通过气相传输法制备InN纳米线和纳米棒的方法 |
CN102912315A (zh) * | 2012-09-17 | 2013-02-06 | 南京大学 | 一种InN基薄膜材料生长方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102912315A (zh) | 2013-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113235047B (zh) | 一种AlN薄膜的制备方法 | |
Kukushkin et al. | Plasma assisted molecular beam epitaxy of thin GaN films on Si (111) and SiC/Si (111) substrates: Effect of SiC and polarity issues | |
EP2047501A1 (en) | Deposition of group iii-nitrides on ge | |
Imade et al. | Vapor-phase epitaxy of high-crystallinity GaN films using Ga2O vapor and NH3 | |
CN105441902A (zh) | 一种外延碳化硅-石墨烯复合薄膜的制备方法 | |
CN108987257B (zh) | 利用卤化物气相外延法在Si衬底上生长Ga2O3薄膜的方法 | |
CN108428618A (zh) | 基于石墨烯插入层结构的氮化镓生长方法 | |
US8529698B2 (en) | Ingan columnar nano-heterostructures for solar cells | |
US9396936B2 (en) | Method for growing aluminum indium nitride films on silicon substrate | |
WO2014040446A1 (zh) | 一种InN基薄膜材料生长方法 | |
US11661673B1 (en) | HVPE apparatus and methods for growing indium nitride and indium nitride materials and structures grown thereby | |
Houchin et al. | Atmospheric‐pressure MOVPE growth of In‐rich InAlN | |
Bhuiyan et al. | Growth of single crystalline Si on graphene using RF-MBE: Orientation control with an AlN interface layer | |
CN110517949B (zh) | 一种利用SiO2作为衬底制备非极性a面GaN外延层的方法 | |
JP7120598B2 (ja) | 窒化アルミニウム単結晶膜及び半導体素子の製造方法 | |
CN106757358A (zh) | 一种氮化铝单晶纳米管阵列的生长方法 | |
Zhu et al. | Structural characterization of InN films grown on different buffer layers by metalorganic chemical vapor deposition | |
Avdeev et al. | Development of 2 ″AlN substrates using SiC seeds | |
CN102817073A (zh) | 一种生长富In组分非极性A面InGaN薄膜的方法 | |
CN110670138A (zh) | 用于氮化铝单晶生长的复合籽晶及其制备方法 | |
Singh et al. | Growth of indium nitride nanopetal structures on indium oxide buffer layer | |
Golgir et al. | Effect of laser-assisted resonant excitation on the growth of GaN films | |
Li et al. | Porous single-crystal GaN films obtained by direct top-down nitridation of bulk and film β-Ga2O3 | |
CN102560675A (zh) | 生长在LiGaO2衬底上的非极性InN薄膜及其制备方法 | |
Yang et al. | Formation of GaN Film by Ammoniating Ga 2 O 3 Deposited on Si Substrate with Electrophoresis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13837462 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13837462 Country of ref document: EP Kind code of ref document: A1 |